
Old Dominion University

ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations

Mechanical & Aerospace Engineering

Winter 2018

Offshore Wind Energy: Simulating Local Offshore
Wind Turbine
Ian P. Aquino
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

Part of the Mechanical Engineering Commons, and the Oil, Gas, and Energy Commons

This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for

inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more

information, please contact digitalcommons@odu.edu.

Recommended Citation
Aquino, Ian P.. "Offshore Wind Energy: Simulating Local Offshore Wind Turbine" (2018). Master of Science (MS), thesis, Mechanical
& Aerospace Engineering, Old Dominion University, DOI: 10.25777/yk5c-3h57
https://digitalcommons.odu.edu/mae_etds/169

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/169?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


 

 

OFFSHORE WIND ENERGY:  

SIMULATING LOCAL OFFSHORE WIND TURBINE 

by 

Ian P. Aquino 

B.S. May 2011, Radford University 

 

 

 

A Thesis Submitted to the Faculty of 

Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

 

MASTER OF SCIENCE 

MECHANICAL ENGINEERING 

OLD DOMINION UNIVERSITY 

December 2018 

 

 

 

 
 

         Approved by:  

                                 

                                                                                             

                                                                                             Ayodeji Demuren (Director)  

                                                                                              

                                                                                             

                                                                                             Krishna Kaipa (Member)  

 

                      

                                                                                             Xiaoyu Zhang (Member) 

  

                                             

Brett Newman (Member) 

 

 

 



 

 

 

ABSTRACT 

OFFSHORE WIND ENERGY: SIMULATING LOCAL OFFSHORE WIND TURBINE 

Ian P. Aquino 

Old Dominion University, 2018 

Director: Ayodeji Demuren 

  

Dominion Virginia Energy is looking at the possible creation of an offshore wind plant as 

a renewable source of electricity to be located off the coast of Virginia Beach.  This thesis 

reports on a computer simulation based on local wind conditions and possible single wind 

turbine installation. 

The National Buoy Data Center keeps records of the local wind conditions gathered in 

real time and available to the public.  These data give a general overview of the wind conditions 

in Virginia Beach which is used to simulate atmospheric boundary layer (ABL) flow conditions 

and is subsequently used as input data for different test cases for wind turbine simulations.  The 

program used to simulate the turbine is Simulator fOr Wind Farm Applications (SOWFA) 

developed by NREL.  SOWFA is based on the open source CFD code OpenFoam. 

With current studies and data from other wind plants, certain expectations and predictions 

can be made for local power generation. Local wind used in a general turbine energy output 

equation shows that most turbine energy is generated between 11 m/s and 12 m/s over the span 

of a year. The simulations created with a speed slightly over the rated speed of 11.4 m/s 

produced the turbines max power output of the expected 5 MW.  Combining the knowledge of 

local data producing the majority of power at its rated speed and simulations producing 5 MW of 

power at this speed help confirm the importance of creating an offshore turbine.  
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INTRODUCTION 

 

 Overview 

In the past, offshore wind turbines may have not been a cost efficient way of providing 

energy.  Now, with cheaper and more efficient technology used for wind energy is becoming 

more available, it is worth looking into the use of offshore wind energy.  Dominion Virginia 

Energy is looking to the production of offshore wind power by creating a wind farm off the coast 

of Virginia Beach [1].  Currently, there is only one operational offshore wind farm in the United 

States, and it is located in the Rhode Island.  The Wind Block Island Wind Farm in Rhode Island 

started operations in December 2016 and uses five Alstom Haliade 150-6MW turbines to create a 

30MW offshore wind farm [2].  The offshore wind plant (wind plant and wind farm are 

interchangeable terms) for Virginia is currently in planning, with installation targeted to be 

completed by 2020. It will be two 6MW turbines installed next to each other 27 miles off the 

coast of Virginia Beach [1].  To get a better understanding of the local conditions that affect 

offshore wind energy production, a program called Simulator fOr Wind Farm Applications 

(SOWFA) will be used to simulate the turbines interaction with the local atmospheric boundary 

condition. 

SOWFA is a simulator for wind farm applications that currently uses CFD tools based on 

OpenFOAM. It is coupled with NREL’s FAST wind turbine/system dynamic models.  This was 

created to be an open-source simulator with the ability to include other modules [3].  
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OpenFOAM has been shown to be a fairly accurate solver for ABL simulations, making it an 

ideal choice for this application because it is flexible, open source, and available at no cost [4]. 

 Generally, SOWFA requires creating three different simulations.  The first one 

creates a 3D mesh in a three dimensional domain where it uses the input data such as wind 

speed, direction, temperature, and others to form the ABL (Atmospheric Boundary Layer) results 

for that space.  This is referred to as the Precursor in SOWFA.  The second simulation allows for 

the manipulation or change of the turbine used for the wind plant.  This is called the Turbine 

simulation, and it allows for the simulation of the wind turbine in a smaller grid using data 

separate from the ones obtained from the Precursor.  Using an isolated wind turbine allows the 

user to verify that the turbine is producing expected results.  The final one incorporates aspects 

from both simulations mentioned previously.  The Wind Farm simulation uses the data from the 

precursor as the input data to populate the domain used in the wind plant grid.  It also places the 

desired turbine in a specified location for the precursor data to interact with the turbine blades 

[3]. 

  

  Scope of Research 

There are plenty of ways to come up with estimates of power generation of a turbine in 

simple conditions.  The simplest of cases is one where the wind turbine has fairly constant wind 

direction and speed.  This starts to get more complicated with the addition of wind turbines since 

the leading turbine creates a wake behind it reducing the energy trailing turbines can extract.  

Multiple turbines in the windfarm with the addition of changing wind conditions can make 

understanding the local conditions’ effects on the windfarm difficult. 
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The purpose of this research is to successfully simulate and understand basic cases of a 

single wind turbine and compare to expected results.  This single wind turbine simulations is a 

necessary step to creating a wind farm simulation as it confirms the simulation works under 

desired conditions and gives a better understanding when designing the other parameters for the 

wind farm.  The objectives of this study include. 

1) Making any necessary fixes to the SOWFA code to make it work with OpenFOAM 2.0.1.  

This problem has arisen due to the fact that SOWFA is an open source program where 

certain fixes were not documented for different versions of OpenFOAM.  

2) Extract local wind data from the National Data Buoy Center data collection for local 

conditions.  Once the data is collected, it will need to be organized into a usable format 

that can be used in SOWFA simulations. 

3) Create a few different scenarios where each simulation has varied wind speed and 

direction.  Each of these simulations will be split and analyzed in the Precursor, Turbine, 

and Wind Farm portion of their simulation. 
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LITERATURE REVIEW 

 

 With plenty of studies having been done, there can be some general expectations 

when it comes to the decision to use wind for energy.  There often are trends when it comes to 

the nature of wind for each specific location even if they differ from each other.  These trends 

can be variables such as the season and time of day.  This knowledge can be a very useful tool 

when deciding if wind energy is a reasonable and cost effective move for the future. 

 

 Wind Energy 

There are plenty of difficulties when deciding if wind energy is a practical and cost 

effective method of producing energy, but there are also patterns and known processes for 

creating an informed decision.  Useful information to estimate would be the wind power output. 

 The wind turbine’s power output is given by the expression 

 𝑃 = 12 𝐶𝑝𝜌𝐴𝑈3 2.1.1 

 

where 𝐶𝑝 is the power coefficient,  𝜌 is the density of air (1.225𝑘𝑔/𝑚3 ), A is the rotor swept 

area, and U is wind speed.  The power coefficient describes the fraction of power that can be 

converted to mechanical energy from the wind.  There is a theoretical maximum called the Betz 

Limit with a value of 0.593 [5, p. 6].  The two main factors for increasing power output is 

through using a location with higher wind speeds or by increasing the swept area of rotor [5, p. 

7]. 

 



5 

 

As can be seen from Equation 2.1.1, a doubling of the rotor diameter would lead to a 

four-time increase in power.  Also, it can be seen that a doubling of wind speed would lead to an 

eight-fold increase of power.  This has led to wind farm development to be located in areas with 

higher wind speeds.   

Although wind speed is the greatest factor for generating power, there are other factors 

that can be taken into account, such as air density.  Air density will change depending on 

temperature and elevation.  A turbine will usually produce more power in the winter than the 

summer for the same wind speeds [6].  

The wind turbine must cover a large range of different wind speeds.  For instance, the 

theoretical NREL 5 MW turbine cuts in at 3 m/s and cuts out at 25 m/s to prevent damage [7].  

This corresponds to a much larger range of intercepted power than can be converted to energy. 

For example, if the cut-in speed is 4 m/s and the cut-out speed is 24 m/s, the 6 to 1 wind speed 

corresponds to a 216 to 1 range of intercepted power.  This means that a short period of strong 

wind will contribute a lot more than a constant breeze over a long period.  In other words, one 

hour of a severe gale will have as much energy as 216 hours of a moderate breeze.  Plant 

locations are often discussed in terms of their mean wind speed, but the variability of speed is 

also an important factor.  Sites that are gusty will generally produce more energy than ones with 

constant wind with the same average wind speed over the year [6, p. 32].  Figure 2-1 shows a 

better understanding of the cubic relationship between wind speed and power.   
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Figure 2-1. Power in the Wind 

 

2.1.1  The Nature of Wind 

Wind energy is subject to a large range of variability.  This includes spatial and temporal 

variability in small and large scales.  For spatial variability, it refers to the fact that there are 

many regions in the world that are different geographically with very different wind conditions.  

Temporal variability can be predictable for certain time scales while unpredictable in others.  

With short time-scales, it is not easy to predict more than a few days in advance, but for even 

shorter time-scales, there may be predictable patterns called diurnal variations depending on the 

locations.  For longer periods shorter than a year, seasonal variations can be predictable, but for 

long-term scales that may span over a decade or more, there may be a large variations [5, p. 11].  

This is not well understood, which can make it difficult for predicting the economic viability of a 

wind-farm. 
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2.1.2 Wind Variation by Location 

The differential heating of the earth’s surface is the main driving force behind wind.  The 

warm air rises then circulates in the atmosphere where it will sink back down to a cooler 

location.  This large scale motion is largely affected by the earth’s rotation [5, p. 12]. This results 

in global circulation patterns that lead to known patterns like the trade winds.  The global pattern 

is affected by the non-uniform surface of the earth, such as oceans and land masses.  This causes 

the global circulation patterns to be disturbed by smaller scale variation on the continental scale.  

All of these complex interactions are what lead to the day to day unpredictability of the weather.  

Even though the weather in particular locations can be unpredictable, underlying tendencies lead 

to the different climates between regions.  Topography will also have an impact on the climate 

differences. 

 Coastal regions tend to be windy because of the differential heating between land 

and sea. When the sea is warmer than the land, the wind circulates the colder air from the land to 

the warmer sea before it rises over the water and cools back down over land.  This pattern is 

reversed when the land is warmer.  This pattern tends to reverse over a 24 hour cycle because the 

land heats up and cools down quicker than the surface of the sea [5, p. 13]. 

 

2.1.3  Annual and Seasonal Variations 

Most locations will experience variations of wind speed over the period of the year.  For 

example, local NOAA measurements (Figure 2-2) on the coast of Norfolk show that during the 

summer months, the wind speeds tend to be at their lowest and start to increase during the fall, 

staying there till early spring when it starts to decrease leading up to the summer [8]. 
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Figure 2-2  Average wind speed by month 

 

2.1.4  Diurnal Variations 

There also tend to be systematic variations in the wind during the day.  This is driven by 

the differential heating from the sun and rotation of the earth.  This tends to make the winds 

stronger during the day than the night.  These diurnal effects depend greatly on proximity to the 

ocean and the local geography [6, pp. 38-39]. 

 

2.1.5  Wind and Height Variation 

In general, the higher the turbine the better due to the fact that wind strength increases with 

height.  Another benefit may be that the stresses that turbulence can cause tend to decrease with 
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higher turbines.  This average increase in wind speed can be approximated by using the power 

law: 

 
𝑈𝑈0 = ( ℎℎ0)𝛼 

 

2.1.2 

where 𝑈 is the speed at the height ℎ, and 𝑈0 is the speed and a reference height of ℎ0. The power 

law exponent that depends on surface roughness is represented by 𝛼.  The exponent 𝛼 increases 

with rougher surfaces; for example, calm seas can be a value of around 0.1, while landscapes 

with trees and hedges can be around 0.3 [6, p. 36].  We can see from the equation that raising the 

height of the turbine as much economically possible as beneficial, especially over rough 

surfaces.  A value of 0.14 for 𝛼 is the default estimate used in North America [6, p. 37]. 

 

2.1.6  Offshore Application 

When using the power law to predict the benefits of raising the hub height, the standard 

value of 0.14 for 𝛼 is often used [6, p. 36].  Unlike the land, the roughness of the sea is 

dependent on wave height and patterns.  A range of 0.1 to 0.2 usually covers most of the offshore 

sites.  For offshore sites, it is very difficult to predict the wind shear for a particular site.  One 

factor that makes this difficult is that the roughness of the sea surface depends on the wave 

conditions, which depends on the wind conditions.  Another factor is that there is often a delay 

between the changes in wind speed versus the changes in wave height and pattern.  The seasonal 

differences in temperature between air and water has an effect on wind shear [6, p. 158]. 

 Turbulence intensity at sea can often be less than that on land because of a lower 

surface roughness.  Even though turbulence can exert more stress on turbine blades and 
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structures it can reduce the wake lengths which in turn would reduce array losses from upstream 

neighbors [6, p. 159].   

 Offshore Wind Energy Review 

With the increased interest in offshore wind energy, there are a variety of studies related 

to this subject.  Areas of interest include ABL’s effect on turbines, turbine array placement, 

turbine wakes, and plenty of other related topics.  These efforts have been important for moving 

towards renewable energy, where through simulations and calculations, offshore energy has been 

shown to be a reasonable place for energy production in the Mid-Atlantic region [9].  Other 

offshore energy generation studies have be done well for the Atlantic [10].  Of course there are 

plenty of other locations other than the Atlantic where simulations were modeled for, such as the 

one done by Christos [11]. 

Wake studies are important in offshore wind energy because the trailing turbines will 

produce less energy, and the placement and distance from leading turbines will be important 

factors in making the wind plant as efficient as possible.  There is also surface roughness and 

atmospheric stability which can have important effects on wind turbines power production, 

wake, and structural response [12].  Other numerical computation studies, such as one by Ivanell, 

give a better understanding of wakes generated by turbines [13].   Another simulation has 

included looking at how the alignment of the wind plant affects the average power output of the 

windfarms, which has shown in a single inflow direction that a staggered (row 1 and row 3 are 

aligned) set up would not produce the most power [14].  This topic of layout optimization has 

been simulated by others as well [15]. 
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 Using measurement-driven data can also be useful when trying to create 

simulations local to an area of interest.  This approach also allows the comparison of the 

simulation to measure turbine performance in that location. Using measurement-driven data, 

Quon et al. were able to accurately show that SOWFA could capture the performance loss of the 

trailing turbine [16]. 

 Another important direction offshore studies are going is in the cost-effectiveness 

of using offshore energy.  An important aspect for this is understanding the loading fatigue on 

turbines in turbulent conditions produced by wake of leading turbines.  These turbulent 

conditions increase the loads on the turbine [17].  Types of turbine may also increase loading 

such a floating turbines needed for deep water [18].  Turbine load studies can be key in 

understanding the life cycle of the turbines and ways to improve its efficiency. 

 There are plenty of other areas that are being studied in respect to offshore energy 

such as yaw control and pitch control [19] [20].  With offshore wind energy gaining importance 

the understanding around many of these concepts will continue to improve and lead to more 

efficient offshore wind plants. 
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TURBINE THEORY 

 

A wind turbine works by extracting the kinetic energy from wind.  The removal of kinetic 

energy will cause the wind to slow down.  Only the air that passes through the rotor disk will be 

affected and can be assumed that the air mass that passes through the disc remains separate from 

the air that doesn’t pass through the rotor disc.  This forms a long stream tube where the mass 

flow rate will be the same along all stream-wise positions.  Since the air in the stream tube slows 

down without being compressed, the cross-sectional area of the stream tube expands.  This is to 

accommodate the slower air [5, p. 41].  

Wind turbines are designed to extract pressure energy in a step-like manner, because a 

sudden step change in velocity is not possible due to the enormous forces it would require.  As 

the air travels towards the turbine, it gradually slows before reaching the rotor disc.  By the time 

the air arrives at the rotor disk, it is already at a lower velocity than the free stream wind.  

Because its kinetic energy has already decreased before any work has be done on the air, its 

static pressure rises. 

When the air passes through the rotor disc it causes a drop in static pressure.  This air that 

is traveling downstream, called the wake, will have lower speed and static pressure.  Far 

downstream the static pressure will increase back up to that of the atmospheric level to reach 

equilibrium.  This increase in static pressure decreases the kinetic energy even more leading to 

an even further decrease in wind speed.  The wake far downstream will thus have the same static 

pressure as far upstream but with a decrease in kinetic energy [5, p. 42]. 
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 Actuator Disc Concept 

Without any specific turbine design, the energy extraction process can still be analyzed.  

The device used for this process is called an actuator disc, which can be seen in Figure 3-1.  In 

order for the mass flow rate to be equal along the stream-tube the cross-sectional area of the 

stream-tube will be smaller upstream and larger downstream.   

 

 
Figure 3-1.  An Energy Extracting Actuator Disc and Stream-tube 

 

The mass flow rate along the stream-tube can be represented by Equation 3.1.1, since the mass 

flow rate is the same everywhere along the stream-tube 

 𝜌𝐴∞𝑈∞ = 𝜌𝐴𝑑𝑈𝑑 = 𝜌𝐴𝑤𝑈𝑤 3.1.1 

 

The mass of air in a unit length of time is 𝜌𝐴𝑈, where 𝜌 is air density, A is the cross-sectional 

area and U is the flow velocity.  The subscripts ∞, 𝑑, 𝑎𝑛𝑑 𝑤 refer to conditions far upstream, 

conditions at the disc, and condition in the far wake respectively. 
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The actuator disc induces a velocity variation that must be imposed in the free-stream 

velocity.  The induced flow at the disc is given by – 𝑎𝑈∞, where α is the axial flow induction 

factor.  This gives a net stream-wise velocity at the disc 

 𝑈𝑑 = 𝑈∞(1 − 𝑎) 3.1.2 

 

 A constantly loaded actuator disc, in which the forces representing a rotor are 

prescribed and distributed on a permeable disc of zero thickness, is the simplest formulation of 

this model.  This approach has been used in order to validate the assumptions underlying the 

momentum theory [21].  It has also been used for giving information about fundamental features 

of axisymmetric wakes, including unsteady wake states [22].  Other more recent studies have 

used a constant loaded actuator disc in combination with a large eddy simulation of the flow field 

to study the properties of the Reynolds stresses [23]. 

 

3.1.1 Momentum Theory 

When the air passes through the disc, it goes through a change in velocity. The change in 

velocity 𝑈∞ − 𝑈𝑤 times the mass flow rate equals the change in momentum 

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = (𝑈∞ − 𝑈𝑤)𝜌𝐴𝑑𝑈𝑑 3.1.3 

 

The pressure difference across the disc is the force behind the change in momentum.  

This is because the stream-tube is surrounded by air at atmospheric pressure which gives a net 

force of zero. Therefore, 

 (𝑝𝑑+ − 𝑝𝑑−) 𝐴𝑑 = (𝑈∞ − 𝑈𝑤)𝜌𝐴𝑑𝑈∞(1 − 𝑎) 3.1.4 
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The pressure difference (𝑝𝑑+ − 𝑝𝑑−) can be obtained by applying Bernoulli’s equation to the 

upstream and a downstream sections of the stream tube separately.  The reason separate 

equations are necessary is because the total energy upstream is different than downstream.  For a 

unit volume of air, 

  12 𝜌𝑈2 + 𝑝 + 𝜌𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 3.1.5 

so upstream will be 

 12 𝜌∞𝑈∞2 + 𝜌∞𝑔ℎ∞ = 12 𝜌𝑑𝑈𝑑2 + 𝑝𝑑+ + 𝜌𝑑𝑔ℎ𝑑 3.1.6 

 

Assuming the flow is incompressible(𝜌∞ = 𝜌𝑑) and the horizontal (ℎ∞ = ℎ𝑑) then upstream 

will be 

 12 𝜌𝑈∞2 + 𝜌∞ = 12 𝜌𝑈𝑑2 + 𝜌𝑑+ 3.1.7 

and downstream will be 

 12 𝜌𝑈𝑤2 + 𝜌∞ = 12 𝜌𝑈𝑑2 + 𝜌𝑑− 3.1.8 

Subtract these two equations 

 (𝜌𝑑+ − 𝜌𝑑−) = 12 𝜌(𝑈∞2 − 𝑈𝑤2 ) 3.1.9 

Equation 3.1.4 then gives 

 12 𝜌(𝑈∞2 − 𝑈𝑤2 )𝐴𝑑 = (𝑈∞ − 𝑈𝑤)𝜌𝐴𝑈∞(1 − 𝑎) 3.1.10 

so 

 𝑈𝑤 = (1 − 2𝑎)𝑈∞ 
 

3.1.11 

3.1.2 Power Coefficient 

From Equation 3.1.4, the force on the air becomes 

 𝐹 = (𝜌𝑑+ − 𝜌𝑑−)𝐴𝑑 = 2𝜌𝐴𝑑𝑈∞2 𝑎(1 − 𝑎) 3.1.12 
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Since this force is concentrated on the actuator disc, the rate of work done by this force is 𝐹𝑈𝑑 

giving the power extraction from the air 

 𝑃𝑜𝑤𝑒𝑟 = 𝐹𝑈𝑑 = 2𝜌𝐴𝑑𝑈∞3 𝑎(1 − 𝑎)2 
3.1.13 

 

This defines the power coefficient as  

 𝐶𝑝 = 𝑃𝑜𝑤𝑒𝑟12 𝜌𝑈∞3 𝐴𝑑 3.1.14 

 

where the denominator represents the available power in the air in the absence of the actuator 

disc. Therefore, 

 𝐶𝑝 = 4𝑎(1 − 𝑎)2 3.1.15 

 

The maximum value of 𝐶𝑝 occurs when 

 𝑑𝐶𝑝𝑑𝑎 = 4(1 − 𝑎)(1 − 3𝑎) = 0 3.1.16 

 

which makes 𝑎 = 13. Hence, 

 𝐶𝑃𝑚𝑎𝑥 = 1627 = 0.593 3.1.17 

 

Using Equation 3.1.12, the force on the actuator disc that is caused by the pressure drop 

can also be non-dimensionalized to give a Coefficient of Thrust: 
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  𝐶𝑇 = 𝐹(12 𝜌𝑈∞2 𝐴𝑑) 3.1.18 

 
  

 𝐶𝑇 = 4𝑎(1 − 𝑎) 3.1.19 

 

When 𝑎 ≥ 12, a problem occurs because the wake velocity (1 − 2𝑎)𝑈∞ becomes 0 or 

negative.  In these conditions the momentum theory will no longer work, and some modifications 

need to be made [5].  Figure 3-2 shows the variation of the power coefficient and thrust 

coefficient with a.  The dashed lines represent where the conditions mentioned no longer work. 

 

 
Figure 3-2  Variation of Cp and CT with Axial Induction Factor a 
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 Actuator Line Model 

The Actuator Line Model uses discrete sections with its respective properties and airfoil 

to simulate the turbine’s set points along each blades axis [24].  It uses the local wind speed and 

angle of attack to calculate the lift and drag at each point.  Figure 3-3 shows the cross-sectional 

airfoil at some definable radius along the blade.  Skipping ahead, Figure 3-4 shows an example 

of how the points may be arranged for the actuator line model. 

 

 

Figure 3-3.  Cross-sectional airfoil element showing velocity and force vectors 

 

The local velocity relative to the rotating blade is determined by 

 𝑉𝑟𝑒𝑙 = √𝑉𝑧2 + (Ω𝑟 − 𝑉𝜃)2 3.2.6 

 

In this equation, 𝑉𝑧 represents the velocity in the axial direction, and 𝑉𝜃 represents the 

tangential wind velocity.  Here, Ω denotes the angular velocity.  In these turbine simulations, the 

inflow is constant and all coming from the axial direction, meaning that 𝑉𝑧 should be small 

compared to Ω along the tip of the blade and would make a bigger difference as it gets closer to 

the center.  
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The local angle of attack is given by 

 𝛼 = 𝜑 − 𝛾 3.2.7 

 

where 𝛾 represents the local pitch angle, and the flow angle between 𝑉𝑟𝑒𝑙 and the rotor plane is 

determined by 

 𝜑 = tan−1 𝑉𝑧Ω𝑟 − 𝑉𝜃 3.2.8 

  

Knowing the values of the angle of attack the lift and drag can be calculated using 

 𝐿 = 12 𝐶𝐿(𝛼)𝜌𝑉2𝑐𝑤 3.2.9 

 

 𝐷 = 12 𝐶𝐷(𝛼)𝜌𝑉2𝑐𝑤 3.2.10 

 𝐶𝐿(𝛼) and 𝐶𝐷(𝛼) are obtained from predetermined values based off experimental data for the 

specific turbine being used in simulations (these simulations use Appendix A for 𝐶𝐿(𝛼) and 𝐶𝐷(𝛼)).  Where 𝐶𝐿(𝛼) and 𝐶𝐷(𝛼) are the lift coefficient and drag coefficient, respectively.  

While 𝑉 is the velocity magnitude, 𝜌 is the density, 𝑐 is the chord, and 𝑤 is the width of the 

section.   

Sørensen and Shen use a Gaussian projection to project the force calculated at the 

actuator line points onto the CFD grid as a body force [25].  𝐹𝑖𝐴 is the actuator element force, r is 

the distance between CFD cell center and actuator point, and 𝜀 controls Gaussian width.  𝑓𝑖𝑇 is 

the force normalized and projected back to the flow in Equation 3.4.1 described later. 

 𝑓𝑖𝑇(𝑟) = 𝐹𝑖𝐴𝜀3𝜋3/2 𝑒𝑥𝑝 [− (𝑟𝜀)2] 3.2.11 
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The benefit of the actuator line model is that fewer grid points are needed when using 

airfoil data compared to using the actual geometry to simulate the influence of the blades.  This 

allows for a detailed study of the different wake structures such as tip and root vortices while 

using a reasonable number of grid nodes. 

 

 Basis of Turbine Model 

To be able to generate useful data for the study, use of a realistic turbine is necessary.  

The Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) 

sponsored a conceptual study to assess offshore wind technology.  One of the specifications 

created for their study is the “NREL offshore 5-MW baseline wind turbine”.  When creating the 

baseline turbine, the first aspects taken into consideration were size and power rating needed for 

an offshore wind turbine.  Based on previous studies, in order for the turbine to be cost effective 

the turbine had to be rated 5-MW or higher [26].  Conceptual models that were used in 

WindPact, RECOFF and DOWEC projects help create a composite by using the best available 

data. 

 For the development of the NREL 5-MW the data from the DOWEC study played the 

biggest role.  The Repower 5M has a rotor radius of about 63 m.  With the radius being a 63 m, it 

was decided to use a hub height of 90 m to give a 15 m air gap.  Other properties for the NREL 

5-MW baseline wind turbine can be found in the table below [7]. 
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Table 3-1.  Properties of the NREL 5-MW Baseline Wind Turbine 

Rating 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades 

Control Variable Speed, Collective Pitch 

Drivetrain High Speed, Multiple-Stage Gearbox 

Rotor, Hub Diameter 126 m, 3 m 

Hub Height 90 m 

Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rated Tip Speed 80 m/s 

Overhang, Shaft Tilt, Precone 5m, 5°, 2.5° 

Rotor Mass 110,000 kg 

Nacelle Mass 240,000 kg 

Tower Mass 347,000 kg 

Coordinate Location of Overall CM (-0.2 m, 0.0 m, 64.0 m) 

 

The swept area of this turbine is 12,445.3 𝑚2.  This value takes into account of the blades 

precone which reduce the total swept area. 

 

 NREL Turbine and SOWFA 

The actuator line model in SOWFA implements three separate blades with constant 

geometric values according to its radius along the blade as seen in Table 3-2.  This table 

represent actuator points of the NREL turbine and which airfoil each point will be used for the 

simulation.  For example, if a simulation point is 40 meters from the center of the turbine, it will 

use the closest actuator point at 40.45 meters as a reference point.  This means that the chord 

length will 3.256 meters and the twist of the blade will be 4.188 degrees.  It will also use the 

properties of DU21_A17, which can be seen in the appendix Figure A-5. 
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Table 3-2 Distributed Blade Aerodynamic Properties 

 

 

As can be seen, there are different airfoil values for the turbine along the blade. Even 

though there are only 17 actuator points along the radius of the blade, the simulation calculates 

multiple points for each actuator point as in rotates as seen in Figure 3-4.  For blade 1, the blue 

dots show all the data points that are calculated along the turbine blade, while the red dots 

represent the actuator points along the radius.  This also applies to blade 2 and blade 3.  Also, in 

SOWFA the starting position of blade 1 is at 0 degrees which is represented in Figure 3-4  

Actuator points and data points along turbine blade. 

radius(m) c(m) twist(deg) airfoil

2.8667 3.542 13.308 Cylinder1

5.6 3.854 13.308 Cylinder1

8.3333 4.167 13.308 Cylinder2

11.75 4.557 13.308 DU40_A17

15.85 4.652 11.48 DU35_A17

19.95 4.458 10.162 DU35_A17

24.05 4.249 9.011 DU30_A17

28.15 4.007 7.795 DU25_A17

32.25 3.748 6.544 DU25_A17

36.35 3.502 5.361 DU21_A17

40.45 3.256 4.188 DU21_A17

44.55 3.01 3.125 NACA64_A17

48.65 2.764 2.319 NACA64_A17

52.75 2.518 1.526 NACA64_A17

56.1667 2.313 0.863 NACA64_A17

58.9 2.086 0.37 NACA64_A17

61.6333 1.419 0.106 NACA64_A17
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Figure 3-4  Actuator points and data points along turbine blade 

 

The SOWFA simulations implement the actuator line model to simulate the turbine.  The 

actuator line method helps resolve some of the problems with the actuator disc method 

mentioned earlier.  The main limitation of the actuator disc method is that it assumes rotationally 

symmetric flow conditions and is not very effective in capturing the influence of tip vortices.  

The actuator line model distributes the loads along lines that represent blades in a 3-dimensional 

domain.   

SOWFA implements a set of equations such as the momentum transport in Equation 

3.4.1. 

 

𝜕�̅�𝑖𝜕𝑡 + 𝜕𝜕𝑥𝑗 (�̅�𝑗�̅�𝑖) = 

−2𝜀𝑖3𝑘𝛺3�̅�𝑘 − 𝜕�̃�𝜕𝑥𝑖 − 1𝜌0 𝜕𝜕𝑥𝑖 �̅�0(𝑥, 𝑦) − 𝜕𝜕𝑥𝑗 (𝜏𝑖𝑗𝐷) − 𝑔𝑧𝜌0 𝜕𝜕𝑥𝑖 𝜌𝑏 + 1𝜌0 𝑓𝑖𝑇 

3.4.1 
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Potential temperature transport 

 𝜕�̅�𝜕𝑡 + 𝜕𝜕𝑥𝑖 (�̅�𝑗�̅�) = − 𝜕𝜕𝑥𝑗 (𝑞𝑗) 3.4.2 

 

 

To account for the buoyancy effects caused by variable density the Boussinesq 

approximation is used. The ratio of “buoyant density” to constant density is 

 𝜌𝑘𝜌0 = 1 − (�̅� − 𝜃0𝜃0 )   ;     𝜃0 = 300𝐾 3.4.3 

 

The rotation of the planet creates the Coriolis Force.  The simulation has +x as east, +y as 

north and +z being up. Ω𝑗 is the rotation rate vector at a location on the planet’s surface.  𝜙 

represents the latitude and 𝜔 is the planet’s rotation rate. 

 −2𝜀𝑖𝑗𝑘Ω𝑗�̅�𝑘    ;      Ω𝑗 = 𝜔 [ 0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙] 3.4.4 

 

SOWFA uses these equations for simulating the atmospheric boundary layer and 

implements the actuator line model to simulate the forces applied to the turbine.  The force 

simulated on the actuator points along the blade creates an equal and opposite force against the 

wind which is represented by the last terms (
1𝜌0 𝑓𝑖𝑇) effect on the momentum equation (3.4.1).  

This creates a wake that is affected by the forces on each actuator point on the turbine. 
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LOCAL WEATHER CONDITIONS 

 

 NOAA Data explained 

The data used for simulating the turbine wind were obtained from the National Buoy 

Data Center.  The anemometer is located on the shore of Norfolk (Figure 4-1) near the mouth of 

the Chesapeake Bay (36.926 N 76.007 W).  The height of the anemometer is 27.9 meters above 

the sites elevation.  The planned position of the Virginia offshore turbines is around 27 miles 

away from land and would be near the red buoy of the image below.  That buoy off the coast of 

Virginia does not have an anemometer on it and is unable to record wind speed.  Because the 

offshore buoys do not have anemometers, the closest station with the necessary data was used as 

the reference point for the local wind data [27].   

 

 

Figure 4-1.  Location of anemometer used for local wind data 
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The measurements that the anemometer at this location records are WDIR (wind 

direction), WSPD (wind speed), GST (gust speed), and ATMP (air temperature). The wind 

direction is measured in degrees clockwise from true north in which the wind is coming from.  

Wind speed is averaged over a 6-minute period [28].  

There are two methods used to calculate the average wind speed and direction [29]. 

1) The first method for averaging wind is applied to the measurements that are reported 

from DACT, VEEP, and ARES payloads.  The average wind speed is the simple 

scalar average of the wind speed observations.  A “unit-vector” average is used to 

calculate the average wind direction.  Unity serves as the length of the vector, and 

the wind direction serves as the orientation of the vector.  Then u and v components 

are computed and the average wind direction is derived from arctan(u/v). This 

technique will produce greater wind speeds than if a true vector average was used. 

2) The second method used to calculate the average wind speed and direction that is 

reported by NDBC’s older GSBP payloads are a true vector average.  In this method, 

the magnitude of the vector is represented by the wind speed observation and the 

direction observations are used for the orientation.  The vectors are then broken 

down into their u and v components then averaged separately.  The resulting average 

speed and direction are calculated from the Pythagorean Theorem and arctan(u/v) 

respectively.  

Gust speed is measured by 5 to 8 second peaks during the 6 minute period. And air temperature 

is measure in Celsius [28]. 
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4.1.1  NOAA wind data 

When predicting wind speed over the course of a year, it has been helpful for many cases 

to characterize it in a probability distribution.  If not much data has been collected, probability 

distributions such as the Weibull distribution are used to represent the possible variation in an 

hourly mean of wind speed over the year [5, p. 14].  In this case, using a probability distribution 

is not needed because for this study there has been plenty of measurements taken along the coast.  

Within the year represented by this distribution table there are about 100 hours missing from the 

data.  Factors such as equipment failure are likely to blame for some of the gaps in the data.  

These data have been slightly modified to try to better predict the power output of the turbine 

over the year.  For the wind distribution the Power Law has been used to make up for the 

relatively low elevation of the anemometer of 27.9 meters to about 90 meters.  For Figure 4-2 

and Figure 4-3, the wind speed has been distributed in bins of 1m/s intervals.  This allows for 

good but simple estimates of the possible power generated by the turbine at the specified 

location.  Now by only looking at the wind distribution (Figure 4-2) it may seem that the turbine 

would not produce a lot of energy since the wind speed spends most of the time between 4 to 6 

m/s.  This may lead one to assume that this range is where most of the energy is produced over 

the yearly cycle, but Figure 4-3 shows that is not the case.  Taking into account the rated speed at 

11.4 m/s, it is no surprise that the bins for 11 m/s and 12 m/s produce the most energy. 
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Figure 4-2.  Wind Speed Distrubution 

 

 

Figure 4-3.  Estimated power generated distribution 

 

Taking the sum of all the bins the estimated power that can be generated using Equation 

2.1.1 is roughly around 11,000 MWh.  This seems to match with the fact that the average 

onshore 3 MW turbine can produce around 6,000 MWh in a year [30].  It may be safe to assume 
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that the electricity produced will actually be greater than this estimate because of the fact the 

anemometer was not offshore where wind speeds are expected to be greater. 
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RESULTS 

 

SOWFA has 3 parts to it for simulating a wind plant.  First step is to simulate an 

atmospheric boundary layer that is at least 3x3x1 km in the x,y and z directions respectively.  

The second step is to use or modify the NREL turbine simulation in SOWFA. For these 

simulations the original turbine was used.  The next step is to use the data created from the 

precursor as the inflow for the intended turbine.  This will put a turbine in an assigned location in 

the 3-D domain. 

 

 Precursor 

The first step in creating a turbine simulation was to simulate a precursor simulation.  The 

values created from this will later be used as inflow values for the wind plant simulations.  

Figure 5-1 shows visual representation of the wind profile in the z-direction (up).  As can be seen 

from the figure, the wind speed increases as elevation increases.  

Figure 5-1  Contours of velocity magnitude of simulated ABL represents an input wind 

velocity of 5.2 m/s at an elevations of 29.7 m high.  For this simulation, the aerodynamic 

roughness height of the surface (z0) is given a value of 0.0002 in the ABL conditions.  This is 

the suggested value of z0 for open water.  The value for z0 increases as surface roughness 

increases.  For example, a value of 0.1 is generally used to simulate surfaces that has many trees 

and hedges.  Mentioned in a previous section the surface roughness can increase in open water as 
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Figure 5-1  Contours of velocity magnitude of simulated ABL 

 

a result of increased wind speed.  The values for wind speed are 3.4 m/s (Figure 5-2), 5.2 m/s 

(Figure 5-3) and 9.6 m/s (Figure 5-4) all with the initial input elevation of 27.9 meters.  As 

represented in the figures below, compare the time-averaged velocity along the z-axis.  The 

simulations are compared to the Power Law 

𝑈𝑧2 = 𝑈𝑧1 (𝑧2𝑧1)𝛼
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and the log wind profile 

𝑈𝑧2 = 𝑈𝑧1 ln (𝑧2𝑧0)ln (𝑧1𝑧0) 

𝑈𝑧1 is the velocity at the reference height (𝑧1) of 27.9 m.  𝑈𝑧2 is the height to be calculated at 

height 𝑧2. 𝛼 is the wind shear exponent with a value of 0.14 and 𝑧0 is the roughness height with a 

value of 0.0002. This shows the results are similar to expectations.  The sharp velocity increase 

around the 700 m position can be explained when compared to the temperature profile. 

 

 

Figure 5-2.  Time-averaged simulated velocity vs elevation z for 3.4m/s 
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Figure 5-3.  Time-averaged simulated velocity vs elevation z for 5.2m/s 

 

 

 

Figure 5-4.  Time-averaged simulated velocity vs elevation z for 9.6m/s 
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The sudden increase of temperature is due to a defined capping inversion.  This slows 

down the boundary layer vertical growth.  Temperature is kept at a constant value up to a certain 

height before it starts to increase.  In these cases, it was set around 700 m in elevation.  The 

constant temperature for Figure 5-6 is set to a different value than the temperatures for Figure 

5-5 and Figure 5-7Figure 5-6.  This also shows that a minor change of temperature does not 

affect the temperature profile in these simulations and that the wind speed does not greatly affect 

the temperature profile either. 

 

 

Figure 5-5.  Mean temperature for simulation using 3.4m/s as initial velocity 
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Figure 5-6.  Mean temperature for simulation using 5.2m/s as initial velocity 

 

 

Figure 5-7.  Mean temperature for simulation using 9.6m/s as initial velocity 
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 Turbine Simulations 

The turbine simulation starts off with a constant velocity for inflow.  Three separate 

simulations were performed; in these cases, the value is taken from using the precursor 

simulations average value at around 90 meters in elevation.  For example, the precursor with an 

inflow velocity of 5.4 m/s at 27.9 m in elevation had an average wind velocity of 6.2 m/s at 

around 90 m in elevation.  Using this method, the inflow velocities were 4.1 m/s, 6.2 m/s and 

11.6 m/s, respectively.   

 

 
Figure 5-8  Contours of velocity magnitude at t=12000 seconds 

 

 
Figure 5-9  Contours of the time-averaged velocity magnitude  
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Figure 5-10  Contours of pressure averaged over time 

 

Figure 5-8  Contours of velocity magnitude at t=12000 seconds, Figure 5-9, and Figure 

5-10 are the SOWFA contours of the turbine simulation at velocity of 6.2 m/s.  Figure 5-8 shows 

the velocity at the time step of 1800 seconds, while Figure 5-9 shows the mean velocity and 

shows a more distinct stream tube behind the turbine.  Also, as discussed previously, it shows 

that the velocity in front of the turbine also goes through a decrease in wind speed.  Figure 5-10 

shows that the pressure increases as it approaches the blades then starts from a negative value 

immediately behind the blade and starts to increase as it flows downstream.  These confirm some 

of the expected results as shown previously in Figure 3-1, and would look similar for the other 2 

cases.  In order to get a better understanding, it would be worth looking into the extracted values 

at the blade. 

 To smooth out the blade data obtained from the turbine simulation, averaging the 

data over time or a spatial location would give a better idea how the calculated blade values 

change as it rotates along the axis.  Figure 5-11, shows the azimuth blade angle in respect to 

origin over time.  In this figure the dotted line does not represent any values but shows that the 

azimuth at 0 degrees and 360 degrees are the same position along its rotation. 
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Figure 5-11  Azimuth for 6.2 m/s inflow 

 

 The first set of figures (Figure 5-14, Figure 5-16, Figure 5-19, Figure 5-21, Figure 

5-24, Figure 5-26, Figure 5-28, Figure 5-30, Figure 5-32, and Figure 5-34) for each data category 

plots the average value of each point along the blade.  These plot only review the data compiled 

along 1 of the 3 blades as the other blades will give similar results.  For these data points along 

the blade, there is a dotted line connecting each point; this dotted line does not have any 

significance.  The second set of the figures (Figure 5-15, Figure 5-17, Figure 5-20, Figure 5-22, 

Figure 5-25, Figure 5-27, Figure 5-29, Figure 5-31, Figure 5-33, and Figure 5-35) for each 

section makes use of averaging the blade by its position along its axis (or azimuth) and only 

looks at the results at the tip of the blade at 63 meter from the center. The results were grouped 

by degrees of 1, meaning there is a group for 1 to 360.  When the azimuth is at 0 or 360 this 

means that the blade is pointing straight up as seen in Figure 5-12.  
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Figure 5-12.  Azimuth positions 

 

5.2.1 Axial Velocity 

Figure 5-13 shows that the axial flow is perpendicular to the turbines plane and flows in 

the X direction for these simulations.  In order to calculate the force on each blade point, the 

inflow wind velocity must be determined.  As discussed in the momentum theory, the velocity 

will decrease before it reaches the blade, which the plots show since there is no point along the 

blade where the velocity is greater than the inflow wind speed.  In Figure 5-14, the computed 

axial velocity along the blade is the greatest near the center of the turbine and starts to decrease 

along the blade in the center then starts to increase towards the tips of the blade.  There also 

appears to be a trend of the higher wind speeds to have an axial velocity that decreases/increases 

more and at a quicker rate towards the hub and tip of the blades.  
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Figure 5-13. Direction of axial velocity in relation to the turbine 
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Figure 5-14.  Computed averaged axial velocity along blade 
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The values for axial velocity change depending on their position along the axis.  Figure 

5-15 represents the data along the turbines tip and suggest that the axial velocity is greatest when 

its angle is around 180 degrees if inflow is uniform and constant. 

 

 

Figure 5-15.  Computed axial velocity of blade tip averaged along azimuth 
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5.2.2 Tangential Velocity 

 The next data to look at is the tangential velocity (Figure 5-16), which in these 

SOWFA results refers to (Ω𝑟 − 𝑉𝜃) in Equation 3.2.6.  The rotation rate of the turbine depend on 

the inflow velocity, which directly influences the tangential velocity.  The results show a linear 

increase with Ω𝑟 being the main contributing factor in the tangential velocity for these 

simulations. For example, at 6.2 m/s the blades rotate at 8 rpm which equals to around 52 m/s for 

tangential velocity which agree with the results. 

  

 

Figure 5-16. Computed average tangential velocity along blade 
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The tangential velocity cycle appears to be affected by the gravitational force in Figure 

5-17.  This can be seen from the fact the velocity is at its highest and lowest when parallel to the 

ground.  At 90 (Figure 5-18.A) degrees the blade is moving in a downward direction parallel to 

the ground and at 270 (Figure 5-18.B) degrees the opposite is true. 

 

 

Figure 5-17.  Computed tangential velocity of blade tip averaged along azimuth 
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Figure 5-18.  A) Blade position at 90°     B) Blade position at 270° 
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5.2.3 Velocity Magnitude 

Modifying Equation 3.2.6 to match the terms used in SOWFA, the equation becomes 𝑉𝑚𝑎𝑔 = √𝑉𝑥2 + (Ω𝑟 − 𝑉𝜃)2.  With this SOWFA output results can be calculated and confirmed 

in Figure 5-19.  As expected the tangential velocity contributes more to the velocity magnitude, 

especially closer it gets to the tips. 

 

 

Figure 5-19.  Computed average velocity magnitude along blade 

 

 

 



47 

 

In Figure 5-20, the tangential velocity is the greater contributor to the magnitude.  For 

example, at V0 = 11.6 m/s, axial velocity at the tip is around 10 m/s, while the tangential velocity 

is around 80 m/s. 𝑉𝑚𝑎𝑔 = √102 + (80)2 = 80.6 𝑚/𝑠. 

 It should be expected that Figure 5-20 will have a very similar pattern and values as the 

tangential velocity near the tip of the blade (Figure 5-17) where tangential velocity is at its 

greatest.  

 

 

Figure 5-20.  Computed velocity magnitude of blade tip averaged along azimuth 
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5.2.4 Alpha 

With axial velocity and tangential velocity, the angle of attack (α) can be determined. 

Solving alpha is necessary to determine the coefficient of lift and coefficient of drag seen in 

equations 3.2.9 and equation 3.2.10.  To solve for the alpha the equations 3.2.7  𝛼 = 𝜑 − 𝛾 

 and equation 3.2.8 are used.  𝜑 = tan−1 𝑉𝑥Ω𝑟 − 𝑉𝜃 

In equation 3.2.7, 𝛾 is the local pitch angle which is equal to twist angles in table 3-2 for 

these simulations.  The turbine will start to turn the blade to increase the pitch angle when the 

wind speed is greater than the rated wind speed in order to keep an ideal tip speed ratio.  If the 

twist angle (𝛾) is greater than the flow angle (𝜑) then alpha can be negative as seen in the result 

for V0 = 3.4 m/s. 
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Figure 5-21.  Compueted averaged alpha along blade 
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Using equation 3.2.7 and equation 3.2.8 the results from SOWFA can be checked to see 

if the results are the expected values for the alpha. The blue line in Figure 5-22.  Computed alpha 

of blade tip averaged along azimuth represents the results, while the red represents the estimated 

values for alpha using the equations.  Alpha is necessary in determining the coefficients of lift 

and drag in the airfoils tables in Appendix A.  The differences will come from the small 

fluctuations of 𝑉𝜃, where its effects become less as the blade rotation speed increases. 

 

 

Figure 5-22.  Computed alpha of blade tip averaged along azimuth 
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5.2.5 Coefficient of Drag 

Once alpha has been calculated, the drag and lift coefficient can determined.  Cd and Cl 

values depend directly on the values of alpha, by using the airfoil properties in Appendix A.  For 

example, NACA64 is used near the tip of the blade.  In NACA64, when alpha is 5 degrees would 

have a Cd of 0.0058 and a Cl of 1.011.  Also notice in Figure 5-24 that the first nine data points 

along the blade are constant across each test case.  This is because Cd is 0.5 for the airfoil 

Cylinder1 and 0.35 for the airfoil Cylinder2 which correspond to those points. Figure 5-23 gives 

a visual understanding of why Cylinder1 and Cylinder2 have constant values. 

 
Figure 5-23.  Cylinder1 and Cylinder2 reference point 
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Figure 5-24.  Computed averaged Cd along blade 
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 Figure 5-25 references NACA64 in Appendix A to determine the coefficient of 

drag.  This airfoil shows that drag will get to be very small the closer alpha gets to 0. 

  

 

Figure 5-25.  Computed Cd of blade tip averaged along azimuth 
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5.2.6 Coefficient of Lift 

Again the first nine data points are constant across all three results, but this time the 

values are 0 for the points that reference Cylinder1 and Cylinder2 in Figure 5-26.  The value for 

the coefficient of lift is 0 because this is the cylinder section connected to the blade.  You may 

have noticed that in previous plot and this one that the points group into distinct sections.  This is 

due to the fact that each section is referencing a different airfoil. 

 

 

Figure 5-26.  Computed averaged Cl along blade 
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Figure 5-27 shows the coefficient of lift’s fluctuation along the azimuth and gives a 

closer look at its values that correspond to alpha in Figure 5-22. 

 

 

Figure 5-27.  Computed Cl of blade tip averaged along azimuth 
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5.2.7 Drag 

Now that the coefficient of drag is available, Equation 3.3.10 can be used to confirm the 

values for drag in Figure 5-28. 

 

 

Figure 5-28.  Computed average drag along blade 
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In Figure 5-29, it appears that drag does not have the same periodic fluctuations along the 

azimuth.  This different periodic fluctuation is most likely due to the relationship between the 

different values of Cd and Velocity in Equation 3.2.10. 

 

 

Figure 5-29.  Computed drag of blade tip averaged along azimuth 
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5.2.8 Lift 

As was the case for drag, lift (Figure 5-30) can be solved in a similar way using the 

coefficient of lift.  Equation 3.2.9 would be the equation to reference when solving lift. 

 

 

Figure 5-30.  Computed averaged lift along blade 
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As was the case for drag, Figure 5-31 does not seem to have a constant periodic 

fluctuation between the three cases. 

 

 

Figure 5-31.  Computed lift of blade tip averaged along azimuth 
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5.2.9 Axial Force 

The data for axial force in Figure 5-32 is essentially the same as seen for lift.  This should 

be expected because lift is the driving force when it comes to rotating the blades, also referred to 

as the force normal to the blade. 

 

 

Figure 5-32.  Computed averaged axial force along blade 
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As expected, axial force (Figure 5-33) looks very similar to lift (Figure 5-31). 

 

 

Figure 5-33.  Computed axial force of blade tip averaged along azimuth 
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5.2.10 Tangential Force 

For the tangential force in Figure 5-34, there is a group of points that fall in the negatives.  

If looking closely at the negative values, they are grouped together similar to the data for drag.  

This shows that the tangential force is along the blade itself and causes a moment at the root of 

the blade.  This is also where drag is greater than lift. 

 

 

Figure 5-34.  Computed averaged tangential force along blade 
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In Figure 5-35 the tangential force is greatest when it is at the bottom of its rotation.  This 

looks like it matches with axial velocity in Figure 5-15.    

 

 

Figure 5-35.  Computed tangential force of blade tip averaged along azimuth 
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5.2.11 Power Generator 

Now, in Figure 5-36, compare the power generated to the Equation 2.1.1 to see if the 

simulated data matched with the expected values. Peak power coefficient 𝐶𝑝 = 0.482 [7], air 

density 𝜌 = 1.225, and 𝐴 = 12445𝑚2.  The electrical generator efficiency is 94.4%.  With these 

values, the expected power generated would be around 0.23 MW and 0.82 MW. As for anything 

above 11.4m/s, the power generated will be around 5MW.  These calculated values are 

represented by the red dotted line in Figure 5-36. 

 

 

Figure 5-36.  Computed power generated over time 
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A closer look using Figure 5-37 shows that there is some fluctuation for the power 

generated even though it is relatively small compared to the power generated. 

 

 

Figure 5-37.  Power generated averaged along azimuth 
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Now, using the average generated power of the turbine and comparing it to the average 

total power available in the wind, the power efficiency can be determined at each separate 

simulation as shown in Table 5-1.  Peak power for coefficient 𝐶𝑝 = 0.482 is not exceeded in 

these simulations. 

 

Table 5-1 

Inflow Velocity 
Average Wind 

Power (MW) 

Average Generated 

Power (MW) 
Cp 

V0 = 4.1 m/s 0.53 0.21 0.40 

V0 = 6.2 m/s 1.82 0.82 0.45 

V0 = 11.6 m/s 11.95 4.90 0.41 
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5.2.12  Wake Profiles 

Figure 5-38, Figure 5-39, and Figure 5-40 show the axial velocity distribution in the wake 

for the three simulated cases.  The distributions are averaged in time and measured across the 

horizontal plane (y-axis).  The figures below are measured by the axial velocity over the inflow 

velocity and the distance is measured in terms of radius of blades.  In these figures, the values 

were taken at 3, 6, 10, and 14 radii downstream of the turbine.  In the leading plot are the values 

taken at the blade.  

For Figure 5-38, there is a rapid wake expansion immediately after the rotor and the 

velocity deficit seems to reach near its peak around 3 radii downstream.  Somewhere before 10 

radii downstream turbulent mixing causes the velocity distribution to become similar to a 

Gaussian type of distribution.  

 

 

Figure 5-38.  Turbine wake profile at constant inflow of 4.1m/s 
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In Figure 5-39, the distribution expands at a slower rate than the previous figure but is 

still at a moderate pace.  At some point between 6 and 10 radii downstream, the velocity deficit 

reaches its maximum and is around twice the induced velocities at the blades.  At 14 radii 

downstream, the wake looks like it is developing towards a Gaussian like shape. 

 

 

Figure 5-39.  Turbine wake profile at constant inflow of 6.2m/s 
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In Figure 5-40, the wake stays mostly constant downstream, and the axial induction has 

values close to double the amount than it does at the rotor.  In this figure the wake keeps a pretty 

well defined stream-tube downstream. 

 

 

Figure 5-40.  Turbine wake profile at constant inflow of 11.6m/s 
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 Wind Plant 

The Wind Plant simulation uses the data produced from the precursor simulation as the 

inflow for the turbine simulation.  The large domain allows for the placement of multiple 

turbines in specified locations.  In this case, there was only one turbine placed in the middle of 

the domain as seen in Figure 5-41. The image of the left is the time-average velocity magnitude 

while the image on the right is the velocity magnitude at t = 22,800. These data can be compared 

to the previous turbine data that uses a constant inflow.  

 

 
Figure 5-41.  Contours of Wind plant simulation for velocity 5.4 m/s 

 

In the figures below, the azimuth for the wind plant data are grouped together by degrees 

of 3 in order to help smooth out the fluctuations caused by the atmospheric boundary layer, such 

as the non-uniform inflow.  Like in the previous figures grouped by azimuth, the data represent 

the values near the tip of the blade. As for the data along the blade, the results have very similar 

shapes as the turbine with the constant inflow.  
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5.3.1  Axial Velocity 

For the wind plant, it can been seen that the axial velocity of Figure 5-42 does not match 

with the axial velocity in Figure 5-15.  This is likely due to the fact that increasing elevation 

usually increases wind speed.  And as seen in Figure 5-42 the lowest velocities on the blade fall 

near 180 degrees where the tip of the blade is at its lowest and the velocity peak is near the top of 

its rotation. 

 

 

Figure 5-42.  Axial velocity of blade tip averaged along azimuth 
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5.3.2 Alpha 

In Figure 5-43, alpha looks like its values correspond to the axial velocity in the previous 

figure.  With this it shows that alpha’s relationship to axial velocity are similar in both cases. 

 

 

Figure 5-43.  Alpha of blade tip averaged along azimuth 
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5.3.3 Drag 

Drag in Figure 5-44 does not seem to have an easy to distinguish pattern.  This is most 

likely caused because the atmospheric boundary layers fluctuations have a pretty large impact on 

drag since it is a small force respectively. 

 

 

Figure 5-44.  Drag of blade tip averaged along azimuth 
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5.3.4 Lift 

Here, lift in Figure 5-45 is correlated again with the axial inflow and resembles a similar 

pattern.  This is expected since lift depend on wind speed which increases with elevation. 

 

 

Figure 5-45.  Lift of blade tip averaged along azimuth 
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5.3.5 Power Generator 

Figure 5-46 shows the power generated over time for the wind plant simulations.  The 

wind plant simulation for the turbine with the initial velocity of 9.6 m/s reaches the rated velocity 

at the hub height and averages at about 5 MW.  In the two other cases, the average power 

generated seems to be a little more than in the constant inflow cases of the turbine simulations.  

The top plot averages at around 0.29 MW, and the bottom plot averages at around 1.1 MW for 

generated power.  The reason for this is because of variability of the wind usually effects the 

power generated for a turbine.  As stated in Chapter 2, gusty sites tend to produce more energy 

than sites with constant wind speed. 

In the cases where the flow used is an ABL shear flow the peak power coefficient does 

not seem to apply for these simulations.  There are circumstances where this can happen like in a 

simulation using a confined disc in shear flow [31].  Other reasons may be affecting the results 

such as the grid resolution may have been too course.  Though the simulation may need some 

improvements to get a more accurate power coefficient, there appears to be a clear trend of the 

turbines being able to extract more wind energy in ABL conditions up until it reaches its rated 

limit. 
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Figure 5-46.  Power Generated over time 

 

 

Table 5-2 

Inflow Velocity 
Average Wind 

Power (MW) 

Average Generated 

Power (MW) 
Cp 

V0 = 3.4 m/s 0.56 0.29 0.52 

V0 = 5.2 m/s 1.95 1.1 0.56 

V0 = 9.6 m/s 11.8 4.94 0.42 
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5.3.6 Wake Profiles 

The wake in the wind plant simulations have a similar trend to the ones in the turbine 

simulations.  Common trends are that for the slower wind speed the wake expands at a faster rate 

than that of ones with faster wind speeds.  They also follow the turbine simulations in that as the 

wind speed increases the velocity deficit of the wake also decreases. 

 

 

Figure 5-47.  Wake profile with velocity of 3.4 m/s with an elevation of 27.9 m 

 

The difference with Figure 5-47, Figure 5-48, and Figure 5-49 from the turbine 

simulation is that they all seem to reach a Gaussian like distribution by 6 radii downstream.  This 

is mostly like caused from the ABL being more turbulent than the turbine simulation in the 

constant inflow.  This means that the stream-tube will dissipate closer to the rotor plane and 

allow trailing turbines to gather more energy. 
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Figure 5-48.  Wake profile with velocity of 5.2 m/s with an elevation of 27.9 m 

 

 

 

Figure 5-49.  Wake profile with velocity of 9.6 m/s with an elevation of 27.9 m 
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CONCLUSION 

  

With Virginia Beach looking toward using offshore wind as a possible way of generating 

electricity it is useful to know how much energy a turbine.  This gives an idea of how cost 

effective an offshore wind turbine may be.  The study also gives a general idea of the forces 

acting on the turbine and how the turbine affects the wake.  Using local wind conditions can give 

a more precise estimate than using other test cases of gathered data from other sites. 

Gathering local wind data has allowed a better understanding of the wind conditions in 

the area and can be used to create and estimate for power generation without the use of 

simulation data.  Knowing this can be very helpful in deciding if installing a wind turbine would 

be reasonable. 

Creating the simulations gave a better understanding what was happening at the blades 

and the types of forces acting on it.  It has shown how lift and drag are determined and how they 

may differ between a turbine in a wind tunnel versus one in an atmospheric boundary layer.  

Also, seeing the decrease in wind speed in the wake showed how trailing turbines may be 

affected. An important takeaway is that the simulations created agree with current models and 

data.  Confirming the simulation works in the basic form allows for a move to improve the 

parameters and create even more specific simulations to the area.  

 

 Improvements 

The axial velocity of the wake is important in understanding how leading turbines will 

create less energy for trailing turbines.  A closer look of wake characteristic such as how the tip 
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vortices and turbulence affect wake and trailing turbines.  Trailing turbines not only gather less 

energy but also deal with more stress from the turbulence caused by the leading turbine. So, in 

general, knowing more about the wake and its properties would be useful information to 

understand. 

There was also collected data on local gust conditions, which could have been used to 

create better simulation local to the area 

 

 Suggestions for Future Work 

These simulations have a lot of areas that they could expanded and be more specific to 

the local conditions.  For example, the atmospheric boundary layer can use exact data that 

changes over time.  Also, the turbine used was a generic turbine created by NREL and does not 

simulate the specific turbine that will be used in Virginia Beach.  So, in future work, creating an 

airfoil and blade design that more resembles the planned turbine will generate more accurate 

data. Additional suggestions for future work include adding more turbine and using variable 

wind direction.   
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APPENDIX A 

Airfoil properties 

 

Table A-1.  Cylinder1 

alpha C_l C_d 

-180 0 0.5 

0 0 0.5 

180 0 0.5 

 

Table A-2  Cylinder2 

alpha C_l C_d 

-180 0 0.35 

0 0 0.35 

180 0 0.35 

 

The remaining airfoils have similar tables that go from -180 to 180 but have a large amount of 

reference points.  The remaining airfoils can be shown in Figure A-1 through Figure A-6 
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Figure A-1.  DU40_A17 

 

 

 

 
Figure A-2.  DU35_A17 
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Figure A-3.  DU30_A17 

 

 

 
Figure A-4.  DU25_A17 
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Figure A-5.  DU21_A17 

 

 

 
Figure A-6.  NACA64_A17 
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