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ABSTRACT 

THROUGH-THICKNESS REINFORCEMENT AND REPAIR OF CARBON FIBER BASED HONEYCOMB 

STRUCTURES UNDER FLEXURE AND TENSION OF ADHESIVELY BONDED JOINTS 

 

Aleric Alden Sanders 

Old Dominion University, 2020 

Director: Dr. Oleksandr G. Kravchenko 

 

 

 Repair and reinforcement of composite honeycomb structures is an area of concern as 

higher demands are being placed on high strength, lightweight structural materials, such as 

carbon fiber reinforced plastics and corresponding honeycomb structures.  A common issue with 

these structures is when a delamination in the facesheet may form and spread, leading to a 

failure scenario.  An investigation of adding a through thickness reinforcement (TTR) to these 

structures at the sample level that undergo four-point-bending, tension, and joining methods is 

conducted throughout this thesis.  The embedding of pultruded carbon fiber rods is found to be 

an ideal addition to composite honeycomb structures, not only in terms of reinforcement but 

also for repair and damage isolation.  Facesheet thickness is found to play and important role in 

the effectiveness of TTR in four-point-bending.  Adhesively bonded joints are tested to failure 

and the addition of defects and TTR are used to further analyze the potential failures of double 

lap joints in composite structures and how TTR may help to minimize damage in those scenarios. 
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INTRODUCTION 

 

 The demand for strong, lightweight materials and structures is on the rise. With new 

advancements in materials and technology, the limit of what is physically possible continues to 

be questioned and taken to the next level.  One of these technologies is composite structures, 

which is relatively new when considering man’s understanding of other materials for thousands 

of years.  For example, the use of concrete dates to 6500 BC, and mankind has since advanced 

the formulations, shapes of structures, and combination with other materials, namely rebar, to 

build structures that weren’t imaginable only 100 years ago.[1]  Concrete, however, is not a 

lightweight material, and it is only ideal when used in compression.  It is an excellent example of 

a composite material that has been around for a long time and has had the opportunity to be 

advanced to what it is today. 

 A relatively new composite that has excelled in many industries recently is carbon fiber 

reinforced polymers.  This class of materials is found to perform very well under tensile and 

compressive loads for many industry applications.  It is also lightweight, making it an ideal 

material for many scenarios where mass, efficiency, or acceleration is a concern.  Because carbon 

fiber has not been around nearly as long as concrete, there are still many questions regarding its 

capabilities.  Carbon fiber may seem like an ideal material for many of today’s engineering 

problems; however, the questions regarding the repair of composite structures must be further 

understood. 

 It was not until 1860 that the first carbon fibers were produced.[2] These fibers were 

primarily used in lightbulbs, as a much lower carbon percentage was present in these fibers 
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compared to the fibers of today.  It would be another 100 years until this material was primarily 

used the way we know it to be today in the reinforcement of composite structures.[3]  

 The use of carbon fiber in composite structures primarily began in the aerospace industry, 

as supply was low and cost was high.[4]  As is the case with most modern technology, there is a 

trickle-down effect, where the consumer demand goes up, driving the supply up and the cost 

down.  Advancements in manufacturing methods also affect the cost, as many companies 

research the best ways to produce carbon fiber composite structures at a competitive cost for 

the consumer market.  Once considered to be spaceship technology, carbon fiber is finding its 

way to products that everyday people use, from automobiles to eyeglasses. 

 With the expansion of uses of any material comes the desire to not only manufacture the 

product cheaper but to also enhance the quality and properties of the given product.  With more 

uses of carbon fiber comes more challenges for the material.  The limits are explored more 

frequently and to a greater extent in the name of efficiency and design optimization.  While basic 

material properties of carbon fiber composite structures are greatly understood and can be 

accurately modeled in computer simulation software, there is still the need for experimentation 

of some of the material’s weak points.  Attempts have been made to eliminate some of carbon 

fiber’s shortcomings, primarily in its tendency to fail at lower loads when in bending and to 

fracture beyond repair. 

 A great way to increase the bending stiffness and reduce the bending stresses on a carbon 

fiber laminate structure is to design the layup into a sandwich, where the carbon fiber laminate 

will be present on the outsides of the sandwich (often called a facesheet) and the center will be 

composed of a lightweight solid material that allows for easy bonding (often foam or a 



 
3 

honeycomb structure of aluminum or aramid with phenolic resin material known as Nomex).[5]  

Chemical and heat resistance can also play a factor in core material selection, as composite 

sandwich structures are often exposed to harsh environments.[6]  The thicker the core, the 

higher the capable bending stiffness due to the I-beam effect.[7]  This configuration allows for 

one side of the structure to be in compression while the other side is in tension, both of which 

are properties that carbon fiber excels in.[8] 

While sandwich panels help in keeping the loads in the axial direction of the fibers, there 

are still issues with disbonds and delaminations that can occur either in the fabrication or loading 

phases, especially after many cycles.[9]  There have been a few proposed methods to help 

mitigate this problem and to repair or reinforce troublesome regions on composite honeycomb 

parts.  This thesis will look into these methods in the background section and will more 

specifically investigate the through thickness reinforcement (TTR) method of repair and 

reinforcement for structures exposed to four-point bending and tension loads.  



 
4 

BACKGROUND OF THE STUDY 

 

 In February of 1992, the Boeing Military Airplanes Division published a paper on z-pinning 

of composite laminates at the Aerospace Design Conference in Irvine, California.  The study 

placed graphite / epoxy pins (z-pins) in a foam core sandwich layup, perpendicular and through 

the planes of the facesheet before the curing process.  Once cured by an autoclave, the samples 

were tested in harsh environments designed to simulate elements that an airplane wing and body 

would be exposed to.  A double cantilever beam (DCB) test was also conducted to understand 

the enhanced resistance to fracture that z-pinning added to the composite.  The conclusions of 

the study were positive, in that there was an increase in fracture resistance in the DCB test and 

the delaminations were fewer and of smaller magnitude in tests that simulated hail and ballistic 

rounds.[10]  The intention of this investigation was to come up with a lightweight solution to the 

reinforcement of aviation composite structures and was deemed successful, but it never seemed 

to take off in production, likely due to the increased complexity of the manufacturing process. 

 Another study on this topic was conducted in 2005 on the fabrication of composite T-

joints, where the addition of z-pins and tufting was performed on the samples in order to study 

the difference in loading capabilities and crack propagation.  For the pinning method of 

reinforcement, T-joints were made of unidirectional carbon fiber prepreg and the z-pins were 

inserted by careful placement of the cured carbon fiber rods in a foam, then pushed into the 

prepreg through the use of an ultrasonic horn.  In the tufting method, a dry fabric was used in 

the making of the T-joints due to the ease of running the joint through a stitching machine 

avoiding the mess and stickiness of resin, which was infused into the fibers following the tufting 
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process.  While testing and modeling proved the tufting method to be more effective than z-

pinning due to the tendency for the thread to hold the fibers together better without pulling out, 

both methods were deemed effective in that their capable loads were significantly higher than 

that of the unreinforced control.  Tufting was also praised for its ease of manufacturability 

compared to z-pinning.[11]  

 A revised method to z-pinning is through thickness reinforcement (TTR), where instead of 

adding the cured carbon fiber rods before the laminate curing process, tiny holes are drilled into 

the composite post-cure and the rods are inserted along with resin.  A published paper by Dr. 

Kravchenko from 2013 investigates this idea and tests the fracture resistance in mode I DCB 

testing, just as Boeing did in its paper previously discussed.  The use of this alternate method 

over z-pinning was desirable for ultimately improving fiber alignment.  Due to this reinforcement 

method taking place on a sample that would be considered pristine initially, the fibers are aligned 

as best as possible in the manufacturing process; then some fibers are drilled through where the 

reinforcement is to be present.  This allows for the fibers around the reinforcement to be ideally 

aligned.  Through the increase in critical possible load and corresponding displacement, it was 

found that the effective fracture toughness of composite laminate can double in mode I DCB 

testing before sample failure and crack propagation.  Different placement of reinforcement from 

the edge was also tested and found to be significant in terms of stiffness, response, and load 

improvement.[12]  Further studies conducted by Dr. Kravchenko also look into the aspect ratio 

(AR) of the embedded rod and analyze the increase of resiliency with the increase of the AR.[13]  

 In an effort to apply through thickness reinforcement to common composite structures, 

a 2019 study applies TTR to carbon fiber honeycomb structures and tests them in four- point 
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bending.  Defects were also applied to these samples, as PTFE (Teflon) inserts to simulate 

delaminations and disbonds were added into the layups in the region of maximum bending 

moment.  Some crack propagation was observed in the defected samples, which was suppressed 

when TTR was applied to the area of concern.  This study not only focused on the reinforcement 

aspect of the TTR method but also the repair aspect.  Testing showed that the defected samples 

were significantly weaker than the pristine samples, but when TTR was added, either in repair or 

in reinforcement, the load capacity was on par with or surpassed that of the pristine samples.[14]  

This paper will look closely into this specific problem and will change the facesheet material to a 

unidirectional prepreg in order to have an enhanced crack propagation in need of suppressing. 

 Then this paper will investigate a problem introduced by enabling damage tolerance to 

adhesively bonded joints.  The adhesive joints for composite structures have been considered by 

the National Aeronautics and Space Administration (NASA) in one of its future space structures 

design of Space Launch System.  Specifically, a large conical structure made of a carbon fiber 

honeycomb construction was designed to take up the entire diameter of a spaceship and allow 

for a strong, stiff, and lightweight separation between the upper exploratory stage and the 

payload (Figure 1).  This structure is ideally manufactured as one piece in an autoclave; however, 

due to limitations in manufacturability and fabrication, this structure will be made in eight 

separate pieces and joined together through use of a double lap joint method.  The idea is to set 

a small gap between two of the pieces and join that gap with layers of adhesively bonded carbon 

fiber plies, connecting the facesheets on both sides of the honeycomb composite structures.  

NASA conducted many tests on this fabrication method, making these joints at the sample level 

and testing them in tension while also validating the results with computer models.  Results 
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proved to be successful, as the designed joint was capable of withstanding loads more than five 

times the design limit and the computer models were able to accurately predict the failure load 

within 10 to 15 percent.[15] 

 

 

Figure 1: NASA's exploded view of the payload attachment fitting and joints 

 

 Regarding lap joints and their effectiveness in joining, extensive research has been 

conducted in the design of the joint and the amount of adhesive that is required for maximized 

strength and stress distribution.  A 2015 study performed in Portugal concludes that there are 

four key attributes to a lap joint that will enhance its performance: the adhesive must have a low 

modulus of strength and high ductility, similar materials should also be used on both sides of the 

bond, the adhesive layer should be thin, and the surface area for adhesion should be 

maximized.[16] 

 Other methods of joining and repair include scarfing and a stepped lap.  In a scarf repair, 

a diagonal of the cross section of the composite structure is cut, where a complementing diagonal 
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is adhesively bonded to the cut.  A stepped lap joint combines the attributes of a lap joint and a 

scarf repair, where the “steps” are formed by overlapping composite plies and are adhered to 

matching steps at the location of repair (Figure 2).  These two methods of repair are more 

predominate in composite structures with a significant thickness that will allow for a sizable 

surface area for adhesion.[17] 

 

 

Figure 2: Design parameters for (a) tapered scarf joint, and (b) stepped-lap joint 
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FOUR-POINT BENDING METHODOLOGY 

 

 As an extension of Manjukrishna Suresh’s research, there was particular interest in the 

effect of TTR in pristine, disbonded, and delaminated samples in four-point bending with a 

unidirectional layup.  The important difference is in the change of properties between a weave 

and unidirectional ply of carbon fiber.  The unidirectional ply is more brittle and is therefore more 

likely to fail in a manner with significant crack propagation when compared to the weave pattern.  

Another area of interest was in the thickness of the facesheet and how that might change the 

effectiveness of the TTR repair or reinforcement. 

 The design and fabrication of the unidirectional carbon fiber honeycomb samples shares 

an almost identical design with Mr. Suresh’s samples, as each sample will be cut from a plate, 

where a cured plate allows for fabrication of five samples.  Four or eight plies make up a facesheet 

(two versions of samples were made), as these facesheets are bonded to a 0.460” thick Nomex 

honeycomb core with an adhesive film (Figure 3).  Each sample will measure approximately one 

inch wide by 21 inches in length.  The span of the four-point bending test is 20 inches, and the 

rollers will allow for a maximum bending moment at the center three inches (Figure 4).  The 

disbond and delamination defects are formed by a thin polytetrafluoroethylene (PTFE) Teflon 

strip in the top facesheet, applied to the center inch of the sample lengthwise and inserted either 

between the adhesive film and bottom ply or between the second and third plies, respectively. 
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Figure 3: Four-point-bending sample configuration 3D model 

 

 

Figure 4: Four-point-bending test dimensions 

 

 The materials required for fabrication included two aluminum plates to be used as tools 

(top and bottom tools), tacky tape, vacuum bagging sheet, high temperature peel ply, breather 

material, flash tape, a vacuum port, and the raw supplies (unidirectional carbon fiber prepreg 

from Fibreglast, Nomex honeycomb from Rock West Composites, Loctite EA 9696 epoxy adhesive 

film, and teflon) (Figure 5).  The equipment used in fabrication included a vacuum pump and 

Wabash Genesis series heat press. (Figures 6) 
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(a)     (b) 

Figure 5: Fabrication process: (a) layup of sandwich panel and (b) vacuum bagged panel 

 

   

(a)      (b) 

Figure 6:  Curing process: (a) Heat press (front) and (b) heat press (rear) 

 

 The curing process included multiple steps, where temperatures and pressures were 

chosen from literature and product data sheets.  The first curing stage goes up to a temperature 
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of 80˚C and a pressure of 15psi while under vacuum.  This is to decrease the viscosity of the resin 

and allow excess resin to bleed while removing voids and volatiles.[18]  The second stage curing 

temperature was chosen to be 130˚C due to the data of both the adhesive film and prepreg 

having overlapping curing temperatures.[19][20] 

 There were three different types of manufactured plates, as each plate was either 

pristine, disbonded, or delaminated.  Each plate was then cut into five samples lengthwise, as the 

center 6.2” x 21” were of concern and the edge effect on all four sides were cut off, as the plates 

were oversized.  Cutting was performed through the use of an OMAX ProtoMAX waterjet cutting 

machine.  A 1.040” separated each cut, as the machine is accurate with position to the 

thousandth of an inch, and 40 thousandths of an inch was found through experimentation to be 

the cut thickness (Figure 7).  Waterjet cutting provided many benefits in this stage of fabrication, 

as opposed to other conventional methods.  Low heat, CNC capabilities, cleanliness, and safety 

are among the top reasons for this method of cutting.  A disadvantage with this specific machine 

is that its cutting limitations are on a 12” x 12” platform.  This did not prove to be too great of an 

issue, given the size of an object that could be laid flat in the machine is approximately 24” x 14”.  

Once all the cutting was performed from one side to just over the half-way point, the plate was 

simply flipped around and aligned with the cutting path so that the five samples could have the 

second half of the cutting completed. 
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Figure 7: Waterjet cutting of a panel 

 

 Following the cutting process, the samples are then allowed to dry in an oven at 110˚C 

and then cleaned with acetone to wipe off an abrasive dust left by the waterjet.  At this point TTR 

is applied to the necessary samples.  For the first round of testing of a given batch, three samples 

are tested in an “as is” condition and the remaining two have TTR reinforcement.  The samples 

without TTR for the disbonded and delaminated batches are tested to initial failure, meaning the 

test concludes if there is a sudden drop in load or propagation of a crack.  The goal is to catch the 

sample in its “failed, but repairable” state and apply TTR as a repair, rather than reinforcement 

before loading.  See Figure 8 for the testing plan of the different samples.  This plan was 

implemented for both four ply facesheet and eight ply facesheet versions of samples. 
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Figure 8: Fabrication and testing plan for four-point bending samples 

 

 The process of conducting through thickness reinforcement, either in a manner of repair 

or reinforcement is the same.  In the center three inches of the sample, a grid pattern of 0.75mm 

holes are drilled through the facesheet in the area of concern with a rotary tool attached to a 

press, acting like a traditional drill press (Figure 9).  Once these holes are drilled, the sample is 

cleared of the carbon / epoxy dust by blowing it off and then wiping it with acetone so that the 

epoxy can have an effective cure in a future step.  At this point, 0.5mm pultruded carbon rods 

are cut to approximately 3/4” so that they may be placed in the drilled holes and allowed to stick 

out (it is better for the rods to be too long rather than too short).  A good visualization of the 

placement of these rods is shown in Figure 10, where the carbon rods are acting as a repair on 

an eight ply facesheet sample with a delamination and propagated crack.  Once the cut rods are 

in place, a two part epoxy is mixed and applied to the region, allowing for the bonding of the rod 

to the facesheet and honeycomb core (Figure 11).  Once fully cured, the excess carbon rods and 

resin above the top surface of the facesheet are sanded down so that the repair may be better 

analyzed. 
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Figure 11: TTR curing process 

 

Prior to testing, a thin paint layer should be applied to all samples to measure strain via 

use of a digital image correlation (DIC) setup.  When prepping the samples for use of the DIC, a 

light coating of matte black is sprayed onto the samples.  If sprayed too thin, the sample is too 

reflective due to epoxy glare.  If sprayed too thick, the top surface of the paint could be deforming 

in a different manner than the facesheet of the sample.  On top of this matte black layer is a 

dusting of white paint.  This dusting allows for a speckled pattern to be observed.  The DIC 

software uses these speckles to create a surface and track its movement throughout the test.  

This allows for strain measurements to be made without the use of a traditional strain gauge.  

Figure 9: TTR applied to critical area Figure 10: Drilling setup for TTR 



 
16 

Another advantage of the DIC is that more than one point is analyzed, in that continuous strain 

profiles on the surface can be observed and recorded.  More capabilities of this equipment will 

be explained and visualized in the results section of this thesis. 

At this point, the samples are ready to be tested.  A Tinus Olsen tension / compression 

testing machine is used and an aluminum beam with supports for the samples is centered 

diagonally through the machine.  This orientation allows for a DIC camera to be appropriately 

positioned for recording strain.  With a 50mm lens on the DIC camera, the operating distance is 

480mm.  The camera should also be carefully positioned so that the image is as flat as possible 

at the region of concern, without allowing the four-point bend attachment to cast a shadow, as 

the DIC operates using light (Figure 12). 

Testing was performed at a crosshead rate of 4mm per minute to achieve a static loading 

simulation.  The data from the Tinus Olsen machine and the DIC software were recorded at a rate 

of 1Hz until sample failure occurred. 

 

  

Figure 12: Four-point bending test setup 
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FOUR-POINT BENDING RESULTS 

 

 From the research of the woven facesheet samples of Mr. Suresh’s study of the non-TTR 

samples, the pristine samples proved to have a higher load capacity, followed by the delaminated 

and then the disbonded samples.  When TTR was applied to the weaker samples in the form of a 

repair, the results found that the delaminated and disbonded samples were able to have 

maximum load capabilities close to that of the pristine samples (Figure 13).  To take matters a 

step further, TTR was applied to all sample types as a form of reinforcement (before being 

loaded), to which there was further improvement across all samples (Figure 14).  The reinforced 

delaminated samples were even able to out-perform the reinforced pristine samples.  Similar 

trends were to be expected in this experiment with unidirectional carbon fiber facesheets. 

 

 

Figure 13: Mr. Suresh's comparison of non-repaired and repaired samples 
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Figure 14: Mr. Suresh’s comparison of non-reinforced and reinforced samples 

 

 After fabricating the four ply facesheet samples, conducting loading tests, and analyzing 

the data, a familiar trend that was different in magnitude was found.  See Figures 15 and 16 for 

a direct comparison of the four ply facesheet samples to Mr. Suresh’s charts.  A very high pristine 

failure load value was found while all the other results remained much lower than the woven 

counterparts.  The reason for this difference when compared to the woven prepreg isn’t only in 

the orientation of the fibers but also in the thickness of the plies themselves, as a unidirectional 

ply used in this work is half the thickness of a woven ply. 
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Figure 15: Comparison of unidirectional non-repaired and repaired four ply samples 

 

 

Figure 16: Comparison of unidirectional non-reinforced and reinforced four ply samples 

 

This test was a success in that four ply facesheet samples had half the facesheet thickness 

as Mr. Suresh’s study and were able to exert the same load carrying abilities in the pristine state.  
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The disbonded and delaminated samples had an enhanced failure mode, as the crack 

propagation not only began sooner but also spread across the region of maximum moment 

between the upper load application points. 

Among the four ply delaminated and disbonded samples, a lower loading capability was 

observed, when compared to the woven defected samples.  Additionally, the effectiveness of 

TTR dropped.  Mr. Suresh observed a 57.1% and a 183.7% increase in load from the delaminated 

and disbonded samples, respectively, after repair.  This test observed a 19.1% and a 63.5% 

increase, respectively, after repair.  As predicted, the effectiveness of the repair was decreased 

as the thickness of the facesheet was decreased.  In other words, the aspect ratio of the TTR rod 

was found to be an important factor as expected from previous studies. 

To further explore the aspect ratio effect, the same lower percentages should be 

observed in the TTR Reinforced samples.  Mr. Suresh observed a 58.4% and a 208.1% increase in 

load from the delaminated and disbonded samples, respectively, after reinforcement.  This test 

observed a 12.7% and a 150.5% increase, respectively, after reinforcement.  There was little 

change to the effectiveness of TTR in the repaired and reinforced delaminated samples while 

there was a noticeable increase in effectiveness of TTR in the repaired and reinforced disbonded 

samples.  All four ply unidirectional effectiveness values were below that of Mr. Suresh’s 

effectiveness values in both the repaired and reinforcement scenarios.  The importance of this 

will be addressed in the conclusions section. 

In regard to stiffness of the unidirectional samples, there was little deviation in the rate 

at which the force was applied at the set crosshead rate.  This was true for all samples: pristine, 

defected, and with TTR.  Across the board, the average stiffness value for each sample type was 
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between 22.7 and 25.4 N/mm.  These readings were obtained through use of a built-in linear 

regression tool in Microsoft Excel and was applied to the most linear region of data in the Load 

vs Displacement graph of each sample.  The stiffness of each sample can be determined and 

visualized by the slope of the load vs displacement curve.  For reference, Mr. Suresh’s samples 

were stiffer, at approximately 40 N/mm, as the facesheets of those samples were thicker.  See 

Figures 17 and 18 for the load vs displacement curves of Mr. Suresh’s studies and compare them 

to the results in this experiment as shown in Figures 19 and 20.  A noticeable difference in slope 

and TTR effectiveness will be easy to identify. 

 

 

Figure 17: Mr. Suresh's graph comparison of TTR repaired samples to controls 
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Figure 18: Mr. Suresh's graph comparison of TTR reinforced samples to controls 

 

 

Figure 19: Graph comparison of 4 ply unidirectional TTR repaired samples to controls 

 

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

Lo
a

d
 (

N
)

Displacement (mm)

Load vs Displacement: Woven Facesheet Reinforced 4 Point Bending

Pristine

Delaminated

Disbonded

Pristine & TTR

Reinforced

Delaminated & TTR

Reinforced

Disbonded & TTR

Reinforced

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

Lo
a

d
 (

N
)

Displacement (mm)

Load vs Displacement: 4 Ply Uni Controls and TTR Repaired 

Pristine

Delaminated

Disbonded

Delaminated &

TTR Repaired

Disbonded & TTR

Repaired



 
23 

 

Figure 20: Graph comparison of 4 ply unidirectional TTR reinforced samples to controls 

 

 The data in Tables 1, 2, and 3 show an overview of all unidirectional four ply samples, 

including their failure loads, obtained stiffness values, and failure types.  Following these tables, 

images of these samples during and after failure help to visualize the different failure types. 
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Table 1: Unidirectional 4 Ply Bending – Pristine Data 

Pristine 4-Ply Unidirectional Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-PRI-1 671 22.381 Facesheet Failure Under Roller 

4U-PRI-2 707 23.353 Facesheet Failure Under Roller 

4U-PRI-3 599 22.215 Facesheet Failure Between Rollers 

4U-PRI-4 666 23.025 Facesheet Failure Between Rollers 

Average 660.75 22.7435  

Standard Deviation 39.002 0.464  

 

 

Figure 21: Failure of 4 ply unidirectional pristine sample under roller 
 

 

Figure 22: Failure of 4 ply unidirectional pristine sample between rollers 
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Table 2: Unidirectional 4 Ply Bending – Delaminated Data 

Delaminated 4-Ply Unidirectional Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DEL-1 250 23.311 Crack Propagation 

4U-DEL-2 266 24.186 Crack Propagation 

4U-DEL-3 264 23.857 Crack Propagation 

Average 260 23.785   

Standard Deviation 7.12 0.36  

    
Delaminated 4-Ply Unidirectional Repaired Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DEL-1-TTR_Repaired 289 24.814 Facesheet Failure Between Rollers 

4U-DEL-2-TTR_Repaired 316 26.153 Facesheet Failure Between Rollers 

4U-DEL-3-TTR_Repaired 324 25.23 Facesheet Failure Between Rollers 

Average 309.67 25.40  

Standard Deviation 14.97 0.56  

Percent Effectiveness 19.1% 6.8%  

    
Delaminated 4-Ply Unidirectional Reinforced Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DEL-4-TTR_Reinforced 292 24.899 Facesheet Failure Between Rollers 

4U-DEL-5-TTR_Reinforced 294 25.017 Facesheet Failure Between Rollers 

Average 293 24.958  

Standard Deviation 1 0.059  

Percent Effectiveness 12.7% 4.9%  
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Figure 23: Failure of 4 ply unidirectional delaminated sample 

 

 

Figure 24: Failure of 4 ply unidirectional delaminated & TTR repaired sample 

 

 

Figure 25: Failure of 4 ply unidirectional delaminated & TTR reinforced sample 
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Table 3: Unidirectional 4 Ply Bending – Disbonded Data 

Disbonded 4-Ply Unidirectional Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DIS-1 129 23.9 Facesheet Failure / Crack Propagation 

4U-DIS-2 125 25.732 Facesheet Failure / Crack Propagation 

4U-DIS-3 128 25.255 Facesheet Failure / Crack Propagation 

Average 127.333 24.962  

Standard Deviation 1.700 0.776  

    
Disbonded 4-Ply Unidirectional Repaired Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DIS-1-TTR_Repaired 186 23.349 Facesheet Failure Between Rollers 

4U-DIS-2-TTR_Repaired 238 24.558 Facesheet Failure Between Rollers 

4U-DIS-3-TTR_Repaired 216 24.643 Facesheet Failure Between Rollers 

Average 213.33 24.18  

Standard Deviation 21.31 0.59  

Percent Effectiveness 67.5% -3.1%  

    
Disbonded 4-Ply Unidirectional Reinforced Samples 

Sample Max Load (N) Stiffness (N/mm) Failure Type 

4U-DIS-4-TTR_Reinforced 318 24.412 Facesheet Failure Between Rollers 

4U-DIS-5-TTR_Reinforced 320 23.74 Facesheet Failure Between Rollers 

Average 319.00 24.08  

Standard Deviation 1.00 0.34  

Percent Effectiveness 150.5% -3.6%  
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Figure 26: Failure of 4 ply unidirectional disbonded sample 

 

 

Figure 27: Failure of 4 ply unidirectional disbonded & TTR repaired sample 

 

 

Figure 28: Failure of 4 ply unidirectional disbonded & TTR reinforced sample 
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 While TTR provided a noticeable increase in load carrying capabilities, along with an 

increase in displacement until failure, this only presents half of the story.  In Dr. Kravchenko’s 

study, a test of TTR aspect ratio was conducted, finding a greater aspect ratio improves the 

effectiveness of the reinforcement or repair.  As mentioned in the methods section, an eight ply 

unidirectional facesheet design was made to test this theory.  These samples had a facesheet 

thickness twice that of the four ply facesheet version and were constructed of the same 

unidirectional material with the fibers also going lengthwise of the specimens. 

 Upon testing of the eight ply facesheet samples, a noticeable difference in stiffness and 

load carrying capacities was observed.  Figures 29 through 32 show the loading charts and graphs 

of the different sample types within the eight ply facesheet design and can be used in comparison 

to the previously shown charts and figures. 

 

 

Figure 29: Comparison of unidirectional non-repaired and repaired eight ply samples 
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Figure 30: Comparison of unidirectional non-reinforced and reinforced eight ply samples 

 

 

Figure 31: Graph comparison of 8 ply unidirectional TTR repaired samples to controls 
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Figure 32: Graph comparison of 8 ply unidirectional TTR reinforced samples to controls 
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delaminated repaired and delaminated reinforced samples had increasing positive values 

respectively, the disbonded reinforced samples had a negative effectiveness value.  Further 

analysis of this data can be made in the tables and figures below. 

 

Table 4: Unidirectional 8 Ply Bending – Pristine Data 

Pristine 8-Ply Unidirectional Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-PRI-1 751 51.569 Shearing of Core 

8U-PRI-2 734 51.711 Facesheet Failure 

8U-PRI-3 733 52.661 Shearing of Core 

Average 739.333 51.980  

Standard Deviation 8.260 0.485  

    
Pristine 8-Ply Unidirectional Reinforced Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-PRI-4_TTR-Reinforced 753 52.541 Shearing of Core 

8U-PRI-5_TTR-Reinforced 748 52.672 Shearing of Core 

Average 750.5 52.607  

Standard Deviation 2.5 0.066  

Percent Effectiveness 1.5% 1.2%  
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Figure 33: Failure of 8 ply unidirectional pristine sample – facesheet failure 

 

 

Figure 34: Failure of 8 ply unidirectional pristine sample – core failure 

 

 

Figure 35: Failure of 8 ply unidirectional pristine TTR reinforced sample 
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Table 5: Unidirectional 8 Ply Bending – Delaminated Data 

Delaminated 8-Ply Unidirectional Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-DEL-1 603 51.149 Crack Propagation 

8U-DEL-2 582 51.013 Crack Propagation 

8U-DEL-3 547 49.581 Crack Propagation 

Average 577.333 50.581  

Standard Deviation 23.099 0.709  

    
Delaminated 8-Ply Unidirectional Repaired Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-DEL-1_TTR-Repaired 702 50.892 Shearing of Core 

8U-DEL-2_TTR-Repaired 649 50.953 Facesheet Failure Under Roller 

8U-DEL-3_TTR-Repaired 508 49.531 Facesheet Failure Between Rollers 

Average 619.667 50.459  

Standard Deviation 81.871 0.656  

Percent Effectiveness 7.3% -0.2%  

    
Delaminated 8-Ply Unidirectional Reinforced Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-DEL-4_TTR-Reinforced 704 50.616 Facesheet Failure Between Rollers 

8U-DEL-5_TTR-Reinforced 724 52.345 Shearing of Core 

Average 714 51.481  

Standard Deviation 10 0.865  

Percent Effectiveness 23.7% 1.8%  

 

 

Figure 36: Failure of 8 ply unidirectional delaminated sample 
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Figure 37: Failure of 8 ply unidirectional delaminated TTR repaired sample (1) 

 

 

Figure 38: Failure of 8 ply unidirectional delaminated TTR repaired sample (2) 

 

 

Figure 39: Failure of 8 ply unidirectional delaminated TTR repaired sample (3) 
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Figure 40: Failure of 8 ply unidirectional delaminated TTR reinforced sample (1) 

 

 

Figure 41: Failure of 8 ply unidirectional delaminated TTR reinforced sample (2) 

 

 

Table 6: Unidirectional 8 Ply Bending – Disbonded Data 

Disbonded Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-DIS-1 708 51.028 Shearing of Core 

8U-DIS-2 759 52.407 Shearing of Core 

8U-DIS-3 749 51.762 Shearing of Core 

Average 738.667 51.732  

Standard Deviation 22.066 0.563  

    
Disbonded Reinforced Samples 

Sample Failure Load (N) Stiffness (N/mm) Failure Type 

8U-DIS-4_TTR-Reinforced 647 50.74 Facesheet Failure Between Rollers 

8U-DIS-5_TTR-Reinforced 699 50.646 Shear Core Failure 

Average 673 50.693  

Standard Deviation 26 0.047  

Percent Effectiveness -8.9% -2.0%  
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Figure 42: Failure of 8 ply unidirectional disbonded sample 

 

 

Figure 43: Failure of 8 ply unidirectional disbonded TTR reinforced sample (1) 

 

 

Figure 44: Failure of 8 ply unidirectional disbonded TTR reinforced sample (2) 
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FOUR-POINT BENDING DISCUSSION 

 

 As this study was a continuation of Mr. Suresh’s research, many of the same 

characteristics from his experimentation were found here.  From the knockdown effects of the 

delaminated and disbonded samples to the improvement in load carrying capacity in the TTR 

repaired and reinforced samples, the trends were for the most part expected from prior 

experimentation. 

 This study was not only to further the four-point bending data from Mr. Suresh but to also 

investigate the concept of aspect ratio from Dr. Kravchenko’s studies on this design.  As expected, 

a facesheet with more plies holds more load.  The unexpected result was in the shearing of the 

core.  The three pound density Nomex honeycomb was unable to handle the higher compressive 

and tensile loads between the upper and lower facesheets and became the weak point for many 

samples. 

 One portion of the eight ply facesheet study that showed promising results was in the 

delaminated data.  While the pristine and disbonded samples proved to be a too-strong design 

and failed the core prior to the facesheet, the weak point of the delaminated samples was the 

facesheet in all configurations.  This allowed for an accurate investigation of the effectiveness of 

TTR.  Further investigation with a different core thickness and density would be necessary to gain 

back the data of the pristine and disbonded samples, as a study performed in 2018 looked into 

maximizing the three-point bend loading of aluminum core composites for automobile 

manufacturing.[21]  Core supports could also be an option in order to keep the same sample 

geometry and material.[22] 
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 When comparing the effectiveness of TTR between the four ply and eight ply 

configurations of delaminated samples, the repair effectiveness values were 19.1% and 7.3%, 

respectively.  While this may almost disprove the aspect ratio theory, a low sample size was 

obtained, and the third delaminated eight ply sample had a much lower than average failure load 

than the other two samples like it.  Moving on to the effectiveness of TTR as a reinforcement 

method, the effectiveness values were 12.7% and 23.7% for the four ply and eight ply 

configurations, respectively.  Unlike the repaired and delaminated samples, both delaminated 

and reinforced data sets had small standard deviation values, providing a greater confidence in 

the obtained percentages. 

 Not only did the TTR in the eight ply configuration prove itself by increasing failure load 

and effectiveness in reinforcement, but it also had to overcome the problem of increased crack 

propagation.  The images below are taken from the DIC and help to show the failure of the four 

and eight ply delaminated samples.  While a good surface was obtained for the four ply facesheet 

samples, there were difficulties with lighting for the eight ply facesheet samples; however, crack 

propagation can be clearly identified. 
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Figure 45: DIC image of delaminated 4-ply unidirectional sample at failure 

 

 

Figure 46: DIC image of delaminated 8-ply unidirectional sample at failure 

 

 Once the failures in the above images were observed, the samples were unloaded and 

TTR was applied in the form of repair.  The goal of TTR in the four ply facesheet samples with the 

delamination was to allow for a higher load to be obtained while preventing further propagation 
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of the crack.  In the eight ply facesheet samples with the delamination, the TTR repair was to 

keep the crack closed and the fibers aligned in the facesheet, given the crack couldn’t propagate 

beyond the rollers. 

Figures 47 and 48 show DIC images of visualized strain for the TTR repaired delaminated 

samples of the four ply and eight ply facesheet configurations, respectively.  Both samples were 

resprayed for DIC image clarity following the TTR process.  During testing of the eight ply 

facesheet samples with the delamination and TTR repair, the samples start with a full strain 

visualized surface which shrinks in size as the top surface of the sample moves outside of the 

region where the DIC can pick up the surface. 

 

 

Figure 47: DIC image of delaminated 4-ply unidirectional sample with TTR repair at failure 
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Figure 48: DIC image of delaminated 8-ply unidirectional sample with TTR repair at failure 

 

 While the carbon rods in the TTR repair cannot be easily seen in the DIC imaged, the 

locations of the rods become apparent as localized spots of lower stress show up and begin to 

form a “band” of stress across the width of the facesheet surface prior to failure of the sample.  

Figure 49 helps to show this phenomenon the instant before failure of the same sample as shown 

in Figure 47. 
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Figure 49: DIC image of sample with TTR repair prior to failure 

 

 Additional work may be required to further prove the increase in TTR effectiveness in 

four-point bending as a function of facesheet thickness; however, a noticeable trend in this data 

was obtained.  Future experimentation in this specific problem may be worthwhile with a higher 

density core that is more resilient to shear forces, as 6 lb and 9 lb densities are available from 

Rock West Composites.[23]  An increase in the number of samples would be beneficial as well, 

as a quicker and more effective fabrication method would ideally be used (and will be discussed 

towards the end of the next section).  
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DOUBLE LAP JOINT METHODOLOGY 

 

 As was introduced in the background section, the joining of composites has become an 

area of interest in the engineering world, specifically with large honeycomb composite 

structures.  To further explore this area and to see where possible improvement could take place, 

experimentation of through thickness reinforcement to this type of joint seemed like a 

worthwhile investigation. 

 The investigation of applying TTR to adhesively bonded joints begins at the sample design.  

NASA’s test specimens are cured as one big carbon fiber honeycomb plate in an autoclave and 

measure 3” wide by 22” long when cut.  The core used for their samples was a 1” thick aluminum 

honeycomb material and had to be milled out of each end of every sample for a machined 

aluminum adaptor to be cured into the structure for tension testing. (Figures 50 and 51) 

 

 

Figure 50: NASA's double lap joint sample design 

 

      

Figure 51: NASA's manufacturing of a panel 
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  To best maximize time, materials, and available tools, a variation of this design was 

proposed.  The new dimensions of the composite structure would be 2.5” by 18” to allow for 

proper fitment on the 12” by 24” aluminum plate tool lengthwise.  Another reason for these 

revised dimensions was for the co-curing of the end adaptors during the curing of the honeycomb 

composite structure, adding another 1.5” on each end of the plate. This method could save time, 

and there would be fewer concerns in regard to possible alignment issues.  The reduction in width 

was made in an effort to maintain a similar length to width ratio as NASA’s samples and to have 

a constant far field stress across the width of the sample in the location of the joint.  A Solidworks 

CAD model was made to visualize the sample to be made (Figure 52). 

 

 

Figure 52: Solidworks model of sample design for this experiment 

 

 As for materials, a Nomex honeycomb core of 0.460” was chosen, as it was in stock from 

the previous experiment discussed.  The same Fibreglast unidirectional carbon fiber prepreg was 

used from the four-point bending samples for the same reason.  While NASA used an eight ply 

quasi-isotropic [45/90/-45/0]S layup for their facesheets, a simple [0]6 layup was chosen.  This 

facesheet design would allow for high stiffness and strength while decreasing fracture toughness, 

which would allow for crack propagation to occur and would put TTR to the test.  For the 
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adhesively bonded joint, Fibreglast’s carbon fiber woven prepreg was used with the direction of 

the fibers going length-wise and width-wise, as opposed to NASA’s [45]4 layup.  The chosen 

orientations for the facesheets and the joints helped to reduce material waste and to simplify 

the fabrication process. 

 Since all facesheet plies were to be unidirectional and the joint area was oriented in a 0˚ 

manner, a very high load and stiffness was expected.  In response, an end adaptor made of 4140 

steel, rather than aluminum, was chosen.  This would help increase critical load of the sample 

(should it approach the limits of the selected end adaptor material), decrease deflection within 

the end adaptor, and reduce material cost.  Due to the size of our chosen aluminum plate tool, it 

was only feasible to manufacture a plate that could only make two samples at a time.  An end 

adaptor was designed that would allow for at least two samples to be made from it, have a pinned 

connection, and have at least 1” by 2.5” of adhesive bond. The ODU machine shop machined 

these adaptors (Figures 53 and 54). 

 

 

Figure 53: CAD drawing of end adaptor plate 
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Figure 54: Machining of end adaptor plate in ODU's machine shop 

 

For construction of the plates, a traditional layup method was used, as a full plate without 

a gap or joint was initially made.  As mentioned before, the facesheets on each side were six plies, 

all with a 0˚ orientation.  Just as in the four-point bending samples, the same 0.460” thick Nomex 

honeycomb material was used for the core, as was the Loctite EA 9696 adhesive film.  An added 

element to the layup was the insertion of the steel end adaptors.  Careful consideration of the 

alignment of the steel end adaptors was taken. Figure 55 shows the basic layup procedure with 

separate plies of carbon fiber prepreg laid underneath the adaptors with a teflon layer between 

to prevent curing to the adaptors. 

 

 

Figure 55: Fabrication of a double lap joint panel 
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 Three different types of panels were manufactured: pristine, 0.25” teflon defect, and 0.5” 

teflon defect.  The pristine sample had a six ply facesheet with no manufactured defects, which 

was the simplest layup of all the samples.  The 0.25” defected panels had a half inch wide strip 

of teflon between the fifth and sixth plies outward from the core that was laid across the width 

of the panel, centered length-wise.  The 0.5” defected panels would use the same principal but 

with an inch wide teflon strip instead.  The question that arose with these defects was if this 

would lead to an increase or decrease in ultimate load.  On one hand, you have a crack of bigger 

and bigger magnitude that is susceptible to growth, leading to a failure before that of a pristine 

sample.  On the other hand, there could be a question regarding compliance in the joint region 

possibly helping to hold the crack propagation off until a higher load is achieved.  Another 

question that arises is the effectiveness in through thickness reinforcement in this scenario and 

if it would help to increase the peak loading of samples, prevent crack propagation, or neither. 

 Once the plate was laid up and the vacuum bag was sealed, the process then moved to 

the heat press, where the sample was cured at 80˚C and 20psi for two hours, then 130˚C and 

80psi for four hours, all under vacuum.  The plate was then cut in half width-wise in the OMAX 

ProtoMAX waterjet machine.  After drying and cleaning of the cut plate pieces, a 0.1” gap was 

set and filled with Lord 310 A/B epoxy (Figure 56). Once the epoxy in the gap was cured, any 

excess was scraped or sanded off. Then the bonding surface was prepared with sandpaper and 

acetone for the addition of the adhesive film and carbon fiber woven prepreg plies for the joining 

of the plate pieces.[24]  Just as in NASA’s design, the layers of carbon fiber were cut to the width 

of the plate and stacked in the following lengths: 3.0”, 2.4”, 3.6”, and 4.2” (Figure 57). 
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Figure 56: Cut panel with epoxy filled gap 

 

 

Figure 57: NASA's doubler joint layup procedure 

 

 For the lap joints, layup and curing was performed one side at a time, as a flat surface is 

ideal when pressure is applied.  Curing of the joints retained the same temperature settings and 

time intervals in the heat press; however, no hydraulic pressure was applied to the joint.  This 

was to prevent the crushing of the core and weakening of the facesheet.  When it came to flipping 

the plate over and curing the joint on the other side, a layered cardboard bed was used to help 

keep the top of the sample flat, given the bottom side of the plate in this cure cycle was not flat 

as it had the first joint cured to it.  The main concern in this step was that under vacuum, the 
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pressure alone without the cardboard bed would crack the epoxy filled gap open, causing a 

misalignment at the joint. 

 Once the joints are cured, the plate has a second round of cutting in the waterjet machine 

(Figure 58).  A line is carefully drawn up the center of the plate length-wise, where the plate is 

cut up the center and +/- 2.540” offset from that center line.  Due to the non-uniformity of the 

materials in the plate, a shorter 2.75” cutting path was made to cut through the steel end section 

while a quicker 12” cutting path did the rest of the cutting past the center of the plate.  Just like 

the four-point bending samples, the plate was longer than 12”, which required the plate to be 

flipped around, lined up, and cut from the other side. 

 

 

Figure 58: Cutting of double lap joint panel with waterjet machine 

 

 Once the samples were cut, they were then dried in an oven at 110˚C and cleaned of 

cutting abrasive.  The samples were then painted for the DIC and tested in tension on an MTS 

tension / compression testing machine (Figure 59).  During testing, both samples were loaded to 
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8,000 lbf, where the steel end adaptor pulled out of the samples.  Under further analysis, it was 

found that the steel end adaptor section of the plate when being cured under pressure was not 

as forgiving or reluctant to compress as the honeycomb section was, which allowed the adhesive 

to squeeze out from between the facesheets and the end adaptors.  While the average pressure 

across the entire plate may be 80psi, the actual pressure at the steel ends could be much higher.  

This realization meant that a uniform displacement method of curing (heat press) would not work 

for a composite structure with a nonuniform core.  This brings us to a common, more expensive 

piece of equipment found in the composites industry, the autoclave. 

 

 

Figure 59: Testing setup for double lap joint samples 

 

 Up until this point, the refurbished autoclave had been delivered to Kaufman 128, and 

electricity had been run to it, but air and water had not been supplied to the machine, and the 

pressure vessel door had not yet been opened.  In order to make this project successful, the 

autoclave had to be up and running.  A few days to get familiar with the machine, its 
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documentation, and the operation of machines similar to it were required.  Then, hoses, fittings, 

and other items were ordered.  Figure 60 shows a schematic diagram that was drawn to display 

the required hoses and fittings. 

 

 

Figure 60: Schematic diagram of air and water sources for autoclave 

 

 Once the parts came in and were installed, testing of the autoclave could be conducted.  

Two of the three phase wires were then swapped, and the autoclave was up and running.  

Another panel of the same manner as before was manufactured with the same temperature and 
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pressure parameters, which were programmed to the curing cycle.  Unfortunately, this panel did 

not turn out so well, due to a lack of autoclave fabrication experience (Figure 61).  This led to 

research of the caving in problem, where a solution in tapering was brought to my attention.  

From a study performed by the Hexcel Corporation, a tapered angle of 30 degrees or less to the 

tool side was found to be ideal and to prevent caving in of the composite panel. [25]  Some 

disadvantages of this tapering method include the amount of material waste, the time and 

tooling required to make the tapered cuts, and the amount of space that would be taken up on 

the 12” by 24” tool plate.  There was simply not going to be enough room for a sample with a 

tapered core.  This theory was tested with a core cut by hand (it wasn’t pretty), and it was clear 

that another solution had to be devised (Figure 62). 

 

 

Figure 62: Tapered cutting attempt of honeycomb core 

  

Figure 61: First fabrication attempt with autoclave 
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 In an effort to reduce or eliminate the caving in of the honeycomb core at its width, a 0.5” 

by 0.5” tube stock of steel would be cured in at the sides of the panel.  These tubes would help 

to support the sides, acting as a tool that becomes a part of the composite structure (Figure 63).  

This method proved successful by saving time, money, space, and this project as a whole.  Figure 

64 shows the results of this method, where a slight bow in the tubing (or small caving in) 

occurred; however, this still leaves the structure very rectangular in shape and allows for the 

center 5.04” to be used in this experiment. 

 

 

Figure 64: Successful curing of a panel in the autoclave   

 

 Over the next few weeks, many panels were manufactured until the autoclave 

experienced a short in its heating element.  At this point, only half of the necessary samples had 

been made.  The initial sign of this problem was when a fuse for the heating side of the controller 

blew.  With limited support from the manufacturer due to the out of warranty status of the 

machine, a local electrician from Volt Electrical Service was hired and was helpful in identifying 

Figure 63: Panel with steel side supports 
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what could be the root cause of the issue.  A wire had come loose from one of the top four posts 

on the heating element and had welded itself to the top of the element, creating a short circuit 

(Figure 65).  A new fuse was ordered, along with new high temperature 8 gauge wire.  What 

would seem like a simple wire replacement would soon become more complicated. 

 

 

Figure 65: Wiring issue with autoclave 

 

 Once the necessary parts were taken out of the autoclave in order to access the heating 

element, another access problem became apparent.  The inside diameter of this machine is 

approximately 18.25”, and the heating element is rectangular on all sides with a front face 

diagonal dimension very close to this 18.25”.  This makes it very difficult to put a hand in, much 

less turn a wrench, as the heating element could not be easily moved out due to its connection 

to the water pipes, which had fittings on the other side of an insulated aluminum wall. 

After many hours of frustration with wrenches and being waist deep horizontal in the 

pressure vessel, cutting through the insulated aluminum wall became an appealing option.  As it 

would not be a good idea to modify the length of the pipes by cutting them before the fittings, 
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the solution to cut through the wall around the pipe with a hole saw, although a very brute 

approach, was determined to be the best solution.  A repair for the hole being made was thought 

out well in advance of the first cut, as it was important to also improve the machine’s future 

serviceability.  As the insulated wall was very thick, a special tool had to be made in order to make 

this cut.  Three Milwaukee hole saws were machined in necessary places and then welded 

together to form one long hole saw (Figure 66).  This hand-made tool was successful in making 

the cut through the wall without touching the pipes connected to the heating element (Figure 

67).  This allowed the heating element to then be able to come out of the autoclave, and the 

remaining material of the insulated wall that clung around the pipes was cut off with an angle 

grinder. 

 

 

Figure 67: Heating element removed from autoclave 

 

Now a repair was to be made to the structure, as permanent damage was done.  The wall 

contains a fiberglass insulation, held in place by material similar to chicken wire and sandwiched 

Figure 66: Custom tool made for repairing of autoclave 
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between two aluminum walls, the first almost half an inch thick, with the other being much 

thinner.  It is important to note that the insulation was isolated from the chamber pressure 

because when pressure comes into contact with fiberglass, it gets compressed and loses its 

effectiveness for thermal insulation.  Another important aspect is the original size of the hole.  

Two half inch outer diameter pipes went through the insulated wall via 0.75” inner diameter 

holes that sealed off the insulation.  This dimension would be critical, in that all mass air flow into 

the curing chamber goes through these two holes.  It would also be important to maintain the 

original manufacturer specifications to minimize the hot air allowed back in past the insulation 

wall, as that area houses a fan that must be kept cool. 

The solution was to fill the hole with a 1.5” threaded rod with the center 1.0625” bored 

out to allow for the pipes and fittings to pass through their holes.  On each end of the rod would 

be a washer and two nuts compressing high temperature JB Weld putty that would help to seal 

off the insulation from the pressurized chamber.  On the side of the wall where the fittings were 

present, two aluminum inserts would wrap around each pipe and press into the bored threaded 

rod to allow for air flow that was choked to the manufacturer specifications, having an inner 

diameter of 0.75” (Figure 68). 
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Figure 68: Repair of Autoclave 

 

Once the repair was made, wiring was redone, and all components were set back in place, 

the autoclave was tested and found to be in full working order.  Fabrication of the double lap 

joint samples was then able to continue.  In an attempt to make up for time lost while the 

autoclave was down, an increased rate of fabrication was introduced, using a bigger aluminum 

plate than before as a tool.  This new plate was cut to 17.5” by 30” and would allow for four 

samples to be made in one panel.  Due to the width of the plate and the bottom table in the 

autoclave only being able to support plates that are 12” wide, 2” x 2” square stock steel tubing 

pieces were cut to length and used as risers of the bottom table of the autoclave.  Cutting of this 

panel was not the easiest task, as the X and Y dimensions of the panel both surpassed the 

limitations of the cutting head and completely covered the cutting table (Figure 69).  Overall, this 

attempt at an increase in production rate was successful, as the autoclave and waterjet machines 

could be used to their full capacities. 
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(a)      (b) 

  

 

The testing plan is shown in Figure 70, as samples with and without through thickness 

reinforcement were manufactured.  For the TTR reinforced samples, 4 rows of holes were drilled 

in a 5mm spaced grid pattern, starting approximately 5mm away from the gap.  The same 

methods were used in this process as in the four-point bending samples; however, both sides of 

the double lap joint samples were reinforced as opposed to one side.  The reasoning for this is 

due to the symmetry in the geometry of the sample and the stresses that occur on both sides. 

 

 

Figure 70: Fabrication and testing plan for double lap joint samples 

 

Figure 69: Fabrication of DLJ large panel: (a) autoclave curing and (b) waterjet cutting 
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As for the testing of the autoclave cured samples, experimentation went flawlessly.  All 

of these samples broke where expected (at the double lap joint), rather than failing prematurely 

and at the wrong location.  The same testing setup was used as displayed in Figure 58.  Further 

discussion with regard to testing will be discussed in the results section.  
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DOUBLE LAP JOINT RESULTS 

 

 In NASA’s study of this configuration of joining two composite structures together, a 

result that was five times the design limit was obtained before failure of their samples.  The idea 

of a double lap joint method had been proven already; however, the addition of through 

thickness reinforcement had not been applied to this design.  The results of this experiment 

primarily look into the possible enhancement of loading characteristics and suppression of crack 

propagation in a double lap joint sample design loaded in tension. 

 Due to NASA’s difference in layup design, materials, and number of plies, the baseline of 

this experiment is of the pristine sample design mentioned earlier in the methods section.  All 

successful samples were cured in the autoclave, as panel A was cured in the heat press and had 

failure in the adaptor ends, as they pulled out prematurely.  Panel C also experienced fabrication 

issues, as the adaptor ends were cured in a mis-aligned manner.  Table 7 and Figures 71, 72, and 

73 show the data obtained from the pristine samples and images of the corresponding samples.  

The data in red is rejected due to its defects obtained in the manufacturing process. 

 

Table 7: Double Lap Joint Tension – Pristine Data 

Pristine 

Sample Maximum Load (lbf) Stiffness (lbf/in) Failure Type 

TB1 14168 88444 Net Section Failure 

TB2 15680 89283 Net Section Failure 

TC1 11924 105800 Net Section Failure 

TC2 10967 103720 Net Section Failure 

Average 13185 96812  

Accepted Average 14924 88864  

Standard Deviation 756 420  
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Figure 71: Failure of a double lap joint pristine sample (front) 

 

 

Figure 72: Failure of a double lap joint pristine sample (side) 

 

 

Figure 73: Misalignment of the end adaptor in sample TC2 

 

 Following the pristine samples, panels with a 1/4” crack between the fifth and sixth 

facesheet plies at the joint were fabricated and tested.  Some samples would be reinforced with 

rows of through thickness reinforcement while others would be tested non-reinforced and 



 
63 

containing the defect.  When loaded, some non-reinforced samples showed crack propagation 

while others had a net section failure similar to that of the pristine samples.  The samples with 

the TTR reinforcement showed signs of crack propagation up to the first row of inserted rods.  

Failure load values were noticeably lower than the non-defected samples.  Stiffness also changed 

but in the other direction than expected.  See the table and figures below for 1/4” crack double 

lap joint sample data and images. 

 

Table 8: Double Lap Joint Tension – 1/4" Teflon Crack Defect Data 

1/4" Teflon Crack 

Sample Maximum Load (lbf) Stiffness (lbf/in) Failure Type 

TD1 13623 105696 Net Section Failure 

TD2 10037 109592 Net Section Failure 

TE1 13566 104392 Mixed Failure Type 

TE2 13750 104395 Major Delamination 

Average 12744 106019  

Accepted Average 13646 104828  

Standard Deviation 77 614  

% Difference to Pristine -8.6% 18.0%  

    
1/4" Teflon Crack with TTR 

Sample Maximum Load (lbf) Stiffness (lbf/in) Failure Type 

TF1 13103 103029 Prevented Delamination 

TF2 11666 103627 Prevented Delamination 

Average 12384 103328  

Standard Deviation 718 299  

% Difference to 1/4" Crack -9.2% -1.4%  
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Figure 74: Mixed mode of failure of a double lap joint 1/4” defect sample (front view) 

 

 

Figure 75: Mixed mode of failure of a double lap joint 1/4” defect sample (side) 

 

 

Figure 76: Crack propagation failure of a double lap joint 1/4” defect sample (front) 
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Figure 77: Crack propagation failure of a double lap joint 1/4” defect sample (side) 

 

 

Figure 78: Prevented delamination of a double lap joint 1/4" defected sample (front) 

 

 

Figure 79: Prevented delamination of a double lap joint 1/4" defected sample (side) 

 

 In order to improve the chances of crack propagation and of the prevention of crack 

propagation through use of TTR, a 1/2” crack defect sample design was deemed to be necessary. 
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All non-reinforced 1/2” crack defected samples showed major crack propagation.  Furthermore, 

signs of prevented crack propagation were present in the TTR reinforced 1/2” crack defected 

samples.  Further knockdown in load capacity and a fairly constant stiffness were observed when 

compared to the 1/4” crack defected samples with and without TTR reinforcement.  The recorded 

data and images of the failure types for these samples are in the table and figures below. 

 

Table 9: Double Lap Joint Tension Data – 1/2" Teflon Crack Defect Data 

1/2" Teflon Crack 

Sample Maximum Load (lbf) Stiffness (lbf/in) Failure Type 

TG1 11297 101470 Major Delamination 

TG2 12513 101045 Major Delamination 

Average 11905 101258  

Standard Deviation 608 213  

% Difference to Pristine -20.2% 13.9%  

    
1/2" Teflon Crack with TTR 

Sample Maximum Load (lbf) Stiffness (lbf/in) Failure Type 

TG3 12787 100212 Prevented Delamination 

TG4 11999 92214 Prevented Delamination 

Average 12393 96213  

Standard Deviation 394 3999  

% Difference to 1/2" Crack 4.1% -5.0%  

 

 

Figure 80: Crack propagation failure of a double lap joint 1/2” defect sample (front) 
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Figure 81: Crack propagation failure of a double lap joint 1/2” defect sample (side) 
 

 

Figure 82: Crack propagation failure of a double lap joint 1/2” defect sample (back) 

 

 

Figure 83: Prevented delamination of a double lap joint 1/2" defected sample (front) 
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Figure 84: Prevented delamination of a double lap joint 1/2" defected sample (side) 

 

 When combining the loading data together across all sample types, Figures 85 and 86 are 

obtained.  In the load vs displacement graphs, a small deviation in the stiffness among samples 

is shown, in addition to the differing peak load values.  The bar chart displays the average failure 

loading values of each group of samples, along with their standard deviations. 

 

 

Figure 85: Load vs displacement curves for double lap joint samples 
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Figure 86: Bar chart load comparison of double lap joint samples with standard deviations 
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DOUBLE LAP JOINT DISCUSSION 

 

 To briefly speak to the performance of TTR on double lap joints, there were pros and cons 

of this method. In regard to the pros, crack propagation was suppressed and the 

manufacturability of the reinforced double lap joint was proven.  Some cons include the extra 

time and effort involved in reinforcement of the area surrounding the joint and in the lack of 

adding any additional load carrying capabilities. 

 Overall, a general downward trend in failure loads was observed, as seen in Figure 87.  

One outlier of this trend was in the 1/2” teflon crack defected samples, as the average seemed 

to be on par with that of the 1/4” teflon crack defected samples.  Further investigation using 

another crack length would be worthwhile in proving whether this was an anomaly or the TTR 

helps to prevent further knockdown in loading capacity. 

 Another observation that was not expected was in the deviation of stiffnesses among the 

sample types.  This may be due to the manufacturing of multiple batches, as NASA’s approach in 

the manufacturing of one panel for all samples in a larger autoclave would be a more ideal route. 

 When looking at the strain images, a few interesting findings came from the DIC.  Figures 

87 through 91 show the visualized strain for all different sample types in this study.  Prior to 

failure of the pristine sample, the strain appears to build up on each side of the 0.1” gap.  This 

could be explained by the sudden geometry changes that occur in this region and how the sample 

goes from ten plies of thickness to four and back to 10 at this joint section. 
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Figure 87: DIC strain image a pristine DLJ sample 

 

 

Figure 88: DIC strain image of a DLJ sample with a 1/4" delamination before failure 
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Figure 89: DIC strain image of a DLJ sample with a 1/4" delamination and TTR before failure 

 

 In Figures 88 and 89, a comparison between double lap joint samples with a 1/4” defect 

can be made. 

 

 

Figure 90: DIC strain image of a DLJ sample with a 1/2" delamination before failure 
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Figure 91: DIC strain image of a DLJ sample with a 1/2" delamination and TTR before failure 
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CONCLUSIONS 

 

 The use and the effectiveness of through thickness reinforcement (TTR) in four-point 

bending samples not only was brought up in Mr. Suresh’s experimentation but also was further 

proven in this study.  TTR is an excellent method of repair and reinforcement for composite 

honeycomb structures, especially when exerted to the composite’s limits in four-point bending.  

Not only is a higher failure load achieved, but a higher allowed displacement before structure 

failure is obtained.  While a confident conclusion in the increase of TTR effectiveness as a function 

of the increase in facesheet thickness cannot be determined at this point, the data was certainly 

steering that way.  Further experimentation using this design for the delaminated samples or 

with a new core would be recommended for future work. 

 As for the use of TTR in adhesively bonded joints when loaded in tension, the 

reinforcement was helpful in isolating the damage to the weaker part of the structure and 

preventing delamination across the facesheet.  TTR proved only to be good in suppressing crack 

growth and added no additional loading capabilities to the structure.  
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