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ABSTRACT 

 

ROTORCRAFT BLADE ANGLE CALIBRATION METHODS 
 

Brian David Calvert Jr.  
Old Dominion University, 2020 

Director: Dr. Drew Landman  
 

 

The most vital system of a rotorcraft is the rotor system due to its effects on the overall 

flight quality of the vehicle. Therefore, it is of importance to be able to accurately determine 

blade position during flight so that fine adjustments can be made to ensure a safe and efficient 

flight. In this study, a current calibration method focusing on the pitch, flap, and lead-lag blade 

angles is analyzed and found to have larger than acceptable error associated with the sensor 

calibrations. A literature review is conducted which reveals four novel methods that can 

potentially increase the accuracy of the sensor calibrations. An uncertainty analysis is conducted 

aiding in the decision of which of the four methods would best improve the calibration accuracy. 

The results conclude that a simpler method can be applied and calibration times can greatly be 

reduced while increasing the accuracy of the calibration. Finally, a new calibration method is 

proposed utilizing the newly chosen sensor that can be later implemented into the system.  
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NOMENCLATURE 

 

SMR   Spherically Mounted Retroreflector 

IFM   Interferometer  

ADM   Absolute Distance Meter  

CCD  Charged Coupled Device 

CMOS  Complementary Metal Oxide Semiconductor 

CMA  Coordinate Measurement Arm  

MEMS  Micromechanical Systems  

FOG  Fiber Optic Gyroscope  

RLG  Ring Laser Gyroscope 

ANN  Artificial Neural Network  

ARW  Angle Random Walk  

IMU  Inertial Measurement Unit  

CMM  Coordinate Measurement Machine  

AR  Rotational Axis  

OH  Hub Origin  

OW  World Origin  

Ψ   Yaw  

ɵ  Pitch  

φ  Roll  

d  Distance  

Θ  Azimuth angle  𝛷  Elevation angle  

f   Focal length  𝛾  Viewing angle  

u  X pixel coordinate  

v  Y pixel coordinate  
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σx  Uncertainty in x component  

σY  Uncertainty in y component  

σZ  Uncertainty in z component  𝜀𝑏𝑖𝑎𝑠  Bias error  𝜀𝐴𝑅𝑊  Angle random walk error  

ωE  Earth rotation rate  

Og  Gyroscope origin  𝛹  X-Axis offset 

 𝜑  Gyroscope latitude location 

RX  X rotation matrix  

RY  Y rotation matrix  

RZ  Z rotation matrix  

RXYZ  Combined rotation matrix  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

 

Rotorcraft vehicles are a complex and dynamic means of transportation. Being complex, 

it is vital that the aerodynamic characteristics of the vehicle are well understood to ensure safe 

and efficient flight. More importantly, knowing rotor blades’ positions throughout flight is 

crucial since they are responsible for generating the necessary lift needed for flight. Not only do 

these blades provide lift, they provide flight control aiding in the pitching, rolling, and lateral 

movement of the aircraft. To better understand these properties, precise measurement systems 

must be implemented. Therefore, a series of sensors are used to determine the blade pitch, blade 

lag angle, and the blade flap angle during flight. Given the importance of these blade positions, 

these sensors need proper calibration.  

 

1.1 PROBLEM STATEMENT  

 

Currently, the calibration method used for rotor hubs at NASA Langley contains 

inconsistencies in the provided sensor data that may contribute to larger errors than the specified 

allowed tolerances. These large errors negatively affect the computational fluid dynamic models 

that simulate the flight characteristics of the helicopter rotor assembly since the calibration data 

is used to build these models. In order to address this problem, I was hired on as an intern to 

evaluate the system and come up with a solution to mitigate these errors. Upon further 

investigation I discovered that not only is the current calibration method potentially causing 

undesirable uncertainty, it also takes an average of 3 hours per blade to calibrate the pitch, flap, 

and lead-lag sensors. This equates to a total average calibration time of 12 hours over multiple 
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days per hub resulting in higher operation costs. Since the calibration time is long, if any 

problems occur related to these sensors during hub use, all tests must be stopped and another 

daunting calibration must take place. This characteristic of the system is undesirable since blade 

analysis usually takes place in expensive wind tunnels that charge an occupancy rate whether or 

not the system is operating.  

 

1.2 OBJECTIVES 

 

Given the problems associated with the current calibration process, the objective of this 

thesis is to determine a new calibration method that satisfies the following criteria:  

 Shorten calibration time  

 Increase calibration accuracy (±0.1 degree tolerance) 

 Simplify the calibration process  

 

1.3 ROTORCRAFT BACKGROUND 

 

 1.3.1 Hub Assembly Components 

 

A rotary-wing aircraft is a type of aircraft that relies on lift and thrust to propel it through 

the air, but different from a traditional fixed wing, tractor propeller aircraft that uses a set of 

lifting surfaces fixed to the fuselage. The main difference between the two is that the 

conventional aircraft relies on the wings to produce lift and a fixed set of propellers to produce 

the thrust, while the rotorcraft generates thrust and lift using a only a set of rotating blades. 

Generally, the power plant drive shaft angular velocity of the rotorcraft is held constant and the 
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movement of the blades determines the amount of lift force generated, therefore blade position is 

crucial when controlling a rotorcraft. All of the input flight controls are relayed through the main 

hub assembly of the rotorcraft using a series of push rods seen in Figure 1.  

 

 

 

Figure 1: Helicopter Hub [1] 

 

 

Push rods mounted to the swashplate translate the control inputs from the pilot to the 

blades. The swash plate is made up of two sections: an upper plate that rotates with the blades 

and a lower plate that stays stationary with the fuselage. The lower section of the swash plate is 

connected to the fuselage using a scissor link. This link is mounted to the lower section of the 

swash plate using a pin joint and is then attached to the fuselage using a ball joint. In between the 

ball joint and the pin joint is a hinge that allows for vertical movement of the plate. The purpose 

of the ball joint is to allow for the tilting motion of the plate when desired blade angles are 

required. The upper plate is mounted in a similar fashion using a second scissor link that is fixed 
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to the rotor mast. Since it is fixed to the rotor mast, it allows the upper plate to stay in sync with 

the angular velocity of the blades. Again, the scissor link used for the upper plate is comprised of 

pin joints, hinges, and ball joints to allow for full articulation of the plate. Attached to the upper 

swashplate are the pitch links that are also connected to the pitch horn seen in Figure 2.  

 

 

 

Figure 2: Pitch Link connected to pitch horn and blade grip 

 

 

Figure 2 depicts three major components of the hub assembly: the pitch link (yellow), the 

pitch horn (blue), and the blade grip (green). The lower half of the pitch link is connected to the 

upper swashplate while the upper half of the pitch link is connected to the pitch horn. The 

purpose of the pitch link is to translate the swashplate motion to the pitch horn. The pitch horn is 

an offset lever that is mounted to the blade grip responsible for translating the pitch link motion 
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to the blade. As the pitch horn moves up and down, the blade will pitch in either the positive or 

negative direction. The blade grip holds the blade in place via a series of bolts to ensure the blade 

stays attached to the hub during flight.  

All of these components work together to determine flight path and speed of the 

rotorcraft. To better understand how the components within the system work together, a brief and 

simplified flight simulation will be explained. The rotorcraft starts on the take-off pad with the 

engines set at the optimal speed for the particular aircraft. As mentioned earlier, the engine speed 

will typically remain the same during flight, meaning the blade angles will control aircraft 

motion. When the aircraft is ready to take-off, the pilot sends controls to the hub assembly via 

the control links. To produce lift for the aircraft to begin flying, the blade pitch must be changed, 

which is done by moving the swashplate equally in the vertical direction – called collective. By 

applying an equal vertical motion to the swash plate, all of the pitch links move simultaneously, 

thus pitching each blade the same amount. The pitching motion of the blade generates the lift 

needed for the aircraft to rise. Once the aircraft is hovering above land the next step is to propel 

the aircraft in the forward direction, which is done by applying a tilting motion to the swash plate 

– cyclic control. When the hub assembly is tilted in the forward direction the blades produce 

forward thrust, which propels the aircraft forward. Likewise, when the hub assembly is tilted 

rearward the blades produce rearward thrust which propels the aircraft backwards (Figure 3).  
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Figure 3: Illustration of forward, hover, and reward flight [2] 

 

 

1.3.2 Blade Position During Flight 

 

There are three types of rotor systems seen on rotorcraft: a rigid rotor, a semi-rigid rotor, 

and a fully articulated rotor [3]. The rigid rotor system is a design that rigidly attaches the blade 

roots to the rotor hub without any type of hinges that allow for flapping or lagging of blades. 

Therefore, elastomeric bearings are used to allow for these motions of blades during flight to 

prevent damage to the blades [3]. The next type of system used is the semi-rigid design, which is 

attached to the rotor hub using one set of hinges that allows for blade flap. This system is 

generally used on a two blade rotor setup that allows the blades to have a “teetering” effect to 

reduce the stress within the blades during flight [4]. The last system, most commonly used with a 

three or more blade setup, is the fully articulated rotor. This design consists of two sets of hinges 

per blade allowing the blades to flap, lag, and pitch independently from each other (Figure 4). 
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This system proves to be superior in reducing stresses on the blades as well as increasing flight 

control [4].  

 

 

Figure 4: Fully Articulated Rotor System [5] 

 

 

1.3.2.1 Pitch 

 

The rotational movement of the blade about its feathering axis is commonly referred to as 

blade pitch. The pitching of the blade is directly related to the angle between the chord line of the 

blade and the rotational plane of the blades seen in Figure 5 [5].  
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Figure 5: Blade Pitch Angle [5] 

 

 

The blade pitch is responsible for determining the amount of lift generated by the blades 

during flight. Given the wing-like structures of the blades, as air flows over the blades the 

airspeed is faster on top and slower on the bottom. This difference in airspeed over the blades 

causes a difference in pressure, with the top of the airfoil being the lowest due to its higher 

velocity [5]. This difference in pressure results in a lifting force. This lifting force can then be 

manipulated through the pitch control of the rotor blades. To generate more lift, the pitch angle is 

increased also resulting in a greater drag force on the blades. Consequently, when the pitch angle 

of the blade is decreased, the drag on the blade is decreased as well. 

  

1.3.2.2 Flap 

 

The vertical movement of the blade as it follows the azimuth during blade rotation is 

known as blade flap. This motion of the blade is used to compensate for the dissymmetry of lift 

the helicopter experiences during flight. Dissymmetry of lift is the theory that the lifting forces 

on the left and right side of the helicopter are not equal during forward flight, therefore this 

imbalance would cause the aircraft to constantly want to roll. The difference in the lift is 
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modeled by splitting the rotors into two sides: the advancing half and the retreating half (Figure 

6).  

 

 

Figure 6: Dissymmetry of Lift Diagram [6] 

 

 

As the helicopter begins to move through the air, the relative airflow across the 

advancing and retreating half begin to differ. During forward flight the advancing half of the 

rotors experience an increase in airspeed since the rotors are moving against the flow of the 

oncoming air. Consequently, the retreating half of the rotors experience a decrease in airspeed 

since the rotors are moving with the flow of the oncoming air. Given the nature of lifting 

properties of airfoils having more lift as the speed increases, the amount of lift generated on the 

advancing side of the rotors is greater than then retreating half. This imbalance in lifting force 

must be compensated for to prevent instabilities during flight. This is done by allowing the 

blades to flap during flight by implementing a horizontal hinge on the hub. This hinge enables 
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the blades to move freely in the vertical direction, thus changing the pitch of the blades as they 

rotate about the azimuth. Since the advancing half of the rotors experience more lift, the blades 

are forced in an upward direction with the highest position being at the 3 O’clock position as 

viewed from above. By flapping the blades upwards, the blade pitch is reduced, thus generating 

less lift when compared to a rigid system. Adversely, since the retreating half of the blades 

experience less lift the blade is in a more downward position compared to the advancing half, 

with the lowest position being at the 9 O’clock position. This downward position increases the 

angle of attack of the blades, thus generating more lift. Therefore, the act of flapping the blades 

creates an overall balance of lift among the rotors which prevents a constant rolling motion in the 

aircraft.  

 

1.3.2.3 Lead-Lag 

 

The horizontal movement of the blade as it follows the azimuth during blade rotation is 

known as blade lead-lag. When the blade is in the leading position, the blade position is 

advanced with respect to its center line. Adversely, when the blade is lagging the blade position 

is retarded with respect to its center line (Figure 7).  
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Figure 7: Lead-lag positions of blade [7] 

 

 

These motions of the blades are used to compensate for the Coriolis Effect the helicopter 

blades experience during flight. The Coriolis Effect is the phenomena that an object’s rotational 

speed increases or decreases as its center of gravity moves closer or further away from its 

rotational axis [8]. This effect is caused by the flapping motion of the blades during flight. 

Therefore, as the blade flaps up the center of gravity of the blade moves closer to the rotational 

axis. This movement causes the blades rotational speed to increase, thus placing the blade in the 

leading position. Consequently, as the blade flaps down the center of gravity moves further from 

the rotational axis. Since the center of gravity is further from the rotational axis the blade slows 

down, putting it in the lagging position. Due to the blades being able to lead and lag, vibrations 

and blade stress is significantly reduced [9].  
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CHAPTER 2 

CURRENT SYSTEM 

 

Currently, there are a total of 5 sensors measuring the pitch, flap, and lead-lag position of 

the blades during flight. The flap and lead-lag position are each measured with a single-turn 

inductive potentiometer manufactured by P3 America. The flap and lead-lag angle is measured 

by placing a potentiometer on the center line of the flap pin and lead-lag pin. As the blade pivots, 

the potentiometer stud spins about its axis, changing resistance which in turn allows a bridge 

circuit to create a varying voltage that can be related to angles using a calibration equation. The 

pitch angle is currently being measured using a series of three Honeywell SS496A1 sensors 

mounted to an offset bracket that cradles the cuff link. Attached to the cuff link is a custom 

polarized magnet that generates magnetic forces as the magnet passes the series of Honeywell 

sensors. These magnetic forces are then transformed into degrees using the provided sensor 

calibration equation. All of these sensors can be seen via a CAD model in Figure 8 below. 
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Figure 8: CAD Model of mounted sensors 

 

 

2.1 Current Calibration Process 

 

The current calibration process begins by leveling the swashplate of the hub so that each 

blade can be properly zeroed. This process is done by placing an inclinometer on the four 

quadrants of the swash plate and making micro adjustments on the swashplate pitch and roll 

pushrods until the rotating plane is level. Once the plane is level, the first degree of freedom 

calibrated is the rotor’s motion of pitch. This process begins by ensuring the lead-lag and the flap 

of the blade is set to the zero reference which is achieved by aligning two centering marks: one 

on the cuff link and the other on the hub itself. Once the lead-lag is set the focus is shifted 

towards zeroing out the flap position of the blade. This is done by pitching the blade until it is 

relatively level and then the inclinometer is placed on the blade in a parallel configuration. The 

calibrator then progressively raises the blade until the inclinometer reads zero. A shim is then 

placed between the hub and the physical stop on the flap hinge to ensure the blade does not move 
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from its current flap position. Once the flap and lead-lag positions are set, the inclinometer is 

placed on the rotor perpendicularly to measure the pitch angle. The blade is then pitched by a 

defined angle generated using statistical software with built in redundancies to ensure the full 

range of motion is captured. Once the blade reaches the specified pitch angle the sensor voltage 

is recorded and the blade is then moved to a new angle. This process continues until all data 

points are successfully recorded. After completing the pitch sensor calibration, the flap sensor is 

the next sensor to be calibrated.  

The process of calibrating the flap sensor begins by zeroing out the pitch and lead-lag 

position of the blade. The lead-lag position should still be zeroed from the pitch calibration, 

however, it is still verified to ensure the blade has not moved. Once the lead-lag position is 

verified, the blade pitch is adjusted back to zero. This is verified again by placing the 

inclinometer on the blade perpendicularly and ensuring it reads zero degrees. The blade is then 

supported by a small scissor jack that will be adjusted incrementally until the desired flap 

position is reached. To ensure the jack remains level and makes full contact with the blade at all 

times, a ball bearing is placed at the base of the scissor jack. This technique allows the scissor 

jack to rotate with the blade is it moves vertically about its range of motion. After the scissor 

jack is placed the shims are removed from the blade stop and the inclinometer is placed parallel 

on top of the blade. A series of blade positions are then presented and the blade is moved to each 

position using the scissor jack. Once the blade reaches the desired flap angle, the sensor output 

voltage is recorded and the calibrator adjusts the blade to the next position. This process 

continues until all the data points are taken and successfully recorded. After calibrating the flap 

sensor, the final part of the blade calibration is focused on the lead-lag sensor.  
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The lead-lag sensor is the final sensor that is calibrated during the process using a 

different calibration device. As mentioned earlier, the pitch and flap sensors are calibrated using 

an inclinometer, but the lead-lag sensor is calibrated using a machined angle indicator plate as 

seen in Figure 9.  

 

 

Figure 9: Mounted Machined Angle Indicator Plate 

 

 

This plate consists of ten marks ranging from negative five degrees to positive five degrees along 

the contour of the hub. This mounted plate allows the operator to align the mark on the rotor cuff 

link with the desired angle on the angle indicator plate. Before this method of calibration is 

performed, the flap angle is shimmed back to its zero position and the pitch angle is toggled back 

to its zero position. After both flap and pitch are at zero, the calibrator proceeds to incrementally 

adjust the lead-lag position of the blade. This process is done by having the calibrator align the 

mark on the rotor cuff link with the specified lead-lag calibration angle by eye. Once the 

calibrator has determined the rotor is in proper position the sensor voltage output is recorded and 
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the calibrator moves onto the next data point. This process is continued until all calibration 

points are successfully recorded.  

Once the pitch, flap, and lead-lag sensors are calibrated, the recorded sensor output 

values are then compiled and a calibration equation is generated. This calibration equation 

translates the sensor voltage output to an angle output with a desired tolerance of ±0.1 degrees. 

However, due to the nature of the calibration process for the lead-lag sensor it was decided that 

further investigation of the current blade angle measurements should be done given the desired 

tolerance specification.  

 

2.2 Data Analysis of Blade Calibration 

 

Since the current calibration method relies on the human eye to establish blade position 

with an acceptance tolerance of ±0.1 degrees, it is of concern that this method is not capable of 

meeting the overall accuracy. Therefore, it was justified that an analysis should be conducted 

focusing on the associated error with each blade sensor. This analysis involves applying a first 

order calibration math model, converting blade angle predictions to degrees for interpretation, 

determining any nonlinear characteristics, and subsequently increasing model order to account 

for any non-linear behavior in order to reduce any residual errors.  

 

2.2.1 Blade Pitch  

 

Currently, the blade pitch angle is measured with an angle indicator, accurate out to a 

hundredth of a degree. Given this information it could be assumed that the calibration accuracy 
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should fall within the desired tolerance of ±0.1 degrees, however, upon further investigation this 

assumption is not valid. Each of the four blades were analyzed individually and then compared at 

the end of the analysis. Each blade also goes through a randomized series of calibration angles 

generated by a statistical program. At each data point provided, a nominal voltage is produced by 

each sensor and this is then converted to the associated blade angle using a calibration equation. 

The sensors being used are linear sensors, therefore a linear fit model was the first model used to 

analyze the system. The run order and associated output angles can be seen in Table 1.  
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BLADE  

CALIBRATION 

ANGLE  

PREDICTED 

1st Order Model 

1 -5 -5.138 
1 0 -0.117 
1 10 10.187 
1 20 19.981 
1 30 29.688 
1 20 20.254 
1 10 10.157 
1 0 0.034 
1 -5 -5.047 
2 -5 -5.203 
2 0 -0.028 
2 10 10.392 
2 20 20.096 
2 30 29.420 
2 20 20.264 
2 10 10.352 
2 0 -0.106 
2 -5 -5.187 
3 0 -0.191 
3 10 10.128 
3 20 20.151 
3 30 29.515 
3 20 20.306 
3 10 10.283 
3 0 -0.022 
3 -4.3 -4.471 
4 0 0.080 
4 10 10.135 
4 20 19.887 
4 30 30.047 
4 20 19.924 
4 10 10.063 
4 0 -0.064 
4 -3.9 -3.974 

 

Table 1: Blade Pitch Sensor Run Order 
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Using Ordinary Least Squares regression [10], a first order model is fit using sensor output 

voltage as the dependent variable and blade angle as the independent variable in the calibration 

model seen in Figure 10 through 13.     

 

 

Figure 10: Linear fit model blade 1 

 

 

 

Figure 11: Linear fit model blade 2 
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Figure 12: Linear fit model blade 3 

 

 

 

Figure 13: Figure 13: Linear fit model blade 4 

 

 

The ANOVA tables for the blade pitch sensors with a linear fit applied are then evaluated 

and seen in Table 2 through 5. These tables are used to determine significant terms within the 

generated models. After reviewing the associated ANOVA tables, it was found that all of the 
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terms had an alpha value of less than 0.05 meaning that all the terms are deemed to be 

significant. 

 

 

Table 2: ANOVA table blade 1 

 

 

 

Table 3: ANOVA table blade 2 

 

 

 

Table 4: ANOVA table blade 3 
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Table 5: ANOVA table blade 4 

 

 

After determining that all of the parameters are significant, the models were then 

evaluated to determine if the lack of fit was significant or not. The lack of fit model utilizes the 

F-test which compares the two variances, s1 and s2, to determine if they are equal [10]. Upon 

further analysis of the pitch sensors in blades 1 through 4, it was found that blades 1 and 4 were 

insignificant while blades 2 and 3 were significant as seen in table 6 through 9. 

 

 

Table 6: Lack of Fit table blade 1 
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Table 7: Lack of Fit table blade 2 

 

 

 

Table 8: Lack of Fit table blade 3 

 

 

 

Table 9: Lack of Fit table blade 4 

 

 

After determining that there was a significant in lack of fit in blades 2 and 3, it was 

imperative to evaluate the residual error within the measurements. From JMP statistical software, 

the residuals are taken and a graph depicting the calibration angle versus the residual error is 
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created (Figure 14). Residuals are the difference of observed values and calibration model 

predicted values.  

 

 

Figure 14: Pitch Calibration Angle Vs Linear Residual Error 

 

 

Upon further investigation of blade one, it was found that the maximum residual error 

was 0.31 degrees at the 30 degree calibration angle. This value is already three times larger than 

the accepted tolerance. It is also important to note that when the calibration angle is repeated, the 

variance is rather large. For example, at the 20 degree calibration angle blade one reads 19.98 

degrees and then reads 20.25 degrees when repositioned. This variance in the data is undesirable 

since it is nearly triple the accepted tolerance range. Another major influence to the non-linear 

behavior of the calibration data is the 30 degree calibration angle. This calibration point skews 

the data tremendously by increasing the variance from roughly ±0.2 degrees to ±0.4 degrees. 
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This trend of data spread and large variance continues through blades one through three with 

blade two having the largest residual error of 0.57 degrees. However, blade four was determined 

to have an insignificant lack of fit with very little variance in the repeated calibration angles. For 

example, when comparing the 20 degree calibration to blade one it was found that blade one had 

a variance of approximately 0.27 degrees whereas blade four only had a variance of 0.04 

degrees. This disparity in the data suggests that the method being used to calibrate blade four 

could be inconsistent with blades one through three. In order to verify this assumption, the 

summary of fit tables are evaluated. More specifically, the mean square error is of main focus in 

determining the spread of the variance between the actual value and the predicted value of the 

linear model [10]. After reviewing the values seen in table 10 through 13, blades 1 through 3 

exceeded 0.1 degrees while blade 4 barely remained under 0.1 degrees given a value of 0.099 

degrees.  

 

 

Table 10: Summary of fit table blade 1 
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Table 11: Summary of fit table blade 2 

 

 

 

Table 12: Summary of fit table blade 3 

 

 

 

Table 13: Summary of fit table blade 4 

 

 

Since there is such a large variance within the calibration of the pitch angles using a linear fit 

model, a polynomial regression was applied to mitigate some of the residual error (Figure 15).  
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Figure 15: Pitch Calibration Angle Vs Quartic Residual Error 

 

 

With a quartic fit, the residual error is significantly reduced, and the data is 

conceptualized as having a more linear form. However, though the residual error has been 

reduced, there is still the same large variance discrepancy in similar calibration angles when 

compared to the linear fit model. Focusing on blade one, specifically on the 20 degree calibration 

angle, there is still a total variance of 0.28 degrees, but the curvature is significantly reduced. 

This data may suggest that using a quartic fit may be the best way to represent the system, 

however, with such a large variance between certain data points it is difficult to justify the 

repeatability of the system. Therefore, the data is suggesting that there may be a problem in the 

calibration method rather than the sensor itself given the information that blade four was 

significantly different from blades one through three. Therefore, the flap and lead-lag sensors 
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need an evaluation to better understand the errors associated within the sensors during the 

calibration process. 

 

2.2.2 Blade Flap:    

 

The flap sensors are also classified as linear sensors, therefore, a linear fit model is used 

to analyze the system similarly to the pitch sensor analysis. The run order and associated output 

angles with this linear fit can be seen in Table 14. 
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BLADE  CALIBRATION ANGLE (deg) PREDICTED 1st Order (deg) 

1 -3.1 -3.336 

1 -3 -3.163 
1 0 0.268 
1 6 6.422 
1 12 11.961 
1 13.9 13.532 
1 12 11.838 
1 6 6.355 
1 0 0.217 
1 -3 -3.130 
1 -3.1 -3.266 
2 -3.6 -3.546 
2 -3 -2.920 
2 0 0.001 
2 6 5.744 
2 12 12.050 
2 14 14.215 
2 12 12.000 
2 6 5.746 
2 0 0.006 
2 -3 -2.949 
2 -3.6 -3.548 
3 -4.2 -4.207 
3 -3 -2.896 
3 0 0.097 
3 6 5.891 
3 12 12.036 
3 14 14.186 
3 12 11.883 
3 6 5.817 
3 0 0.047 
3 -3 -2.982 
3 -4 -4.075 
4 -3.9 -4.069 
4 -3 -3.010 
4 0 0.219 
4 6 6.301 
4 12 11.936 
4 14.6 14.350 
4 12 11.875 
4 6 6.259 
4 0 0.237 
4 -3 -3.197 
4 -3.9 -4.103 

Table 14: Flap Sensor Run Order 
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The first order models are fit using ordinary least square regression similarly to the pitch sensors 

and can be seen in Figure 16 through 19.  

 

 

Figure 16: Linear fit model blade 1 

 

 

 

Figure 17: Linear fit model blade 2 
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Figure 18: Linear fit model blade 3 

 

 

 

Figure 19: Linear fit model blade 4 

 

 

The ANOVA tables for the blade pitch sensors with a linear fit applied are then evaluated 

and seen in Table 15 through 18. After reviewing the tables, it was determined that all of the 

terms were classified as significant due to an alpha value of less than 0.05.  
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Table 15: ANOVA table blade 1 

 

 

 

Table 16: ANOVA table blade 2 

 

 

 

Table 17: ANOVA table blade 3 

 

 

 

Table 18: ANOVA table blade 4 
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After determining that all of the parameters are significant, the models were then 

evaluated to determine if the lack of fit was significant or not utilizing the F-test again. Upon 

further analysis of the flap sensors in blades 1 through 4, it was found that the lack of fit for 

blades 1, 2, and 4 were significant while blade 3 was insignificant as seen in Table 19 through 

22.  

 

 

Table 19: Lack of Fit table blade 1 

 

 

 

Table 20: Lack of Fit table blade 2 
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Table 21: Lack of Fit table blade 3 

 

 

 

Table 22: Lack of Fit table blade 4 

 

 

After determining that there was a significance in lack of fit in blades 1, 2, and 4, it was 

imperative to evaluate the residual error within the measurements. From JMP statistical software, 

the residuals are taken and a graph depicting the calibration angle versus the residual error is 

created seen in Figure 20.  
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Figure 20: Flap Calibration Angle Vs Linear Residual Error 

 

 

Focusing on blades 1 and 4, it is seen that there is a relatively large error beginning from 

the 0 degree calibration angle to the 6 degree calibration angle. Blade one has an error as large as 

0.42 degrees in the negative direction, which is four times larger than the accepted 0.1 degree 

tolerance. Even though the variance between the data points is much smaller, each blade does not 

follow a similar trend. For example, blades one and four have a significant amount of error from 

0 to 6 degrees in the negative direction whereas blade two has a significant amount of error at 6 

degrees in the positive direction. Also, when compared to the pitch sensors, the troubled blade 

has shifted from blade four to blade three again suggesting that the current calibration process 

could be flawed. Again, these large variances were realized by evaluating the summary of fit 

tables seen in Table 23 through 26. 

 



36 

 

 

Table 23: Summary of fit table blade 1 

 

 

 

Table 24: Summary of fit table blade 2 

 

 

Table 25: Summary of fit table blade 3 

 

 

 

Table 26: Summary of fit table blade 4 
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 In order to mitigate the residual error for the flap sensors, a polynomial regression of the 5th 

order was applied (Figure 21).    

 

 

Figure 21: Flap Calibration Angle Vs Polynomial Residual Error 

 

  

With a polynomial regression applied to the flap sensor data, it is much easier to visualize 

the variance within the data set. The variance stays within the ±0.1 degree tolerance for each 

blade, suggesting that the sensor output would be acceptable for accurate data collection. 

However, even though the sensor outputs stay within the desired tolerance there is an 

inconsistency with the variance between each blade. Blades one and three follow a similar 

pattern of having a large variance at the 12 degree calibration angle while blades two and four 

share the pattern of having a small variance at the 12 degree calibration angle. Again, this 

inconsistency would suggest that the method of calibrating the flap sensor could be inconsistent 
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in terms of placing the blade at the exact location of the first data point since the blades follow a 

similar trend. Based on the calibration data it can be assumed that the flap sensor calibration is 

successful, therefore the focus of the analysis is shifted towards the lead-lag sensor. 

 

2.2.3 Blade Lead-Lag   

 

The lead-lag sensors are also classified as linear sensors, therefore, a linear fit model is 

used to analyze the system similarly to the pitch sensor analysis. The run order and associated 

output angles with this linear fit can be seen in Table 27.  
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BLADE 
CALIBRATION 

ANGLE 
PREDICTED 

LINEAR 
1 -16 -15.808 
1 -8 -8.063 
1 -4 -4.134 
1 0 -0.162 
1 4 4.778 
1 0 -0.559 
1 -4 -4.243 
1 -8 -8.009 
1 -16 -15.797 
2 -16 -15.779 
2 -8 -7.766 
2 -4 -4.106 
2 0 -0.478 
2 5 5.873 
2 0 -0.482 
2 -4 -4.379 
2 -8 -8.064 
2 -16 -15.815 
3 -16 -15.760 
3 -8 -7.698 
3 -4 -4.294 
3 0 -0.645 
3 7 7.972 
3 0 -0.670 
3 -4 -4.266 
3 -8 -7.900 
3 -16 -15.737 
4 -12 -12.294 
4 -8 -7.497 
4 -4 -3.492 
4 0 -0.096 
4 7 7.028 
4 0 -0.440 
4 -4 -4.137 
4 -8 -7.975 
4 -12 -12.094 

Table 27: Lead-Lag Run Order 

 

 

The first order models are fit using ordinary least square regression similarly to the pitch and flap 

sensors and can be seen in Figures 22 through 25.  
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Figure 22: Linear fit model blade 1 

 

 

 

Figure 23: Linear fit model blade 2 
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Figure 24: Linear fit model blade 3 

 

 

 

Figure 25: Linear fit model blade 4 

 

 

The ANOVA tables for the blade lead-lag sensors with a linear fit applied are then 

evaluated and seen in Table 28 through 31. After reviewing the tables, it was determined that all 

of the terms were classified as significant due to an alpha value of less than 0.05.  
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Table 28: ANOVA table blade 1 

 

 

 

Table 29: ANOVA table blade 2 

 

 

 

Table 30: ANOVA table blade 3 

 

 

 

Table 31: ANOVA table blade 4 
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After determining that all of the parameters are significant, the models were then 

evaluated to determine if the lack of fit was significant or not utilizing the F-test once again. 

Upon further analysis of the sensors in blades 1 through 4, it was found that the lack of fit for 

blades 1 through 3 were significant while blade 4 was insignificant as seen in Table 32 through 

35.  

 

 

Table 32: Lack of Fit table blade 1 

 

 

 

Table 33: Lack of Fit table blade 2 
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Table 34: Lack of Fit table blade 3 

 

 

 

Table 35: Lack of Fit table blade 4 

 

 

After determining that there was a significance in lack of fit in blades 1 through 3, it was 

imperative to evaluate the residual error within the measurements. From JMP statistical software, 

the residuals are taken and a graph depicting the calibration angle versus the residual error is 

created seen in figure 26.  
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Figure 26: Lead-Lag Calibration Angle Vs Linear Residual Error 

  

 

Blades 1 through 3 follow a similar trend that the residual error is the highest at the 0 

degree calibration angle and the highest calibration angle for each run. Since these sensors are 

calibrated by eye mentioned above, the data suggest that whoever is calibrating at the time may 

have trouble aligning the marks in the positive direction. This translates to having an error of 

0.67 degrees at the 7 degree calibration angle seen in blade 3. This error is almost 7 times outside 

of the accepted tolerance deeming the linear fit to be unusable when trying to accurately 

represent the system with minimal error. However, blade 4 stands out in that even though the 

lack of fit is insignificant it still carries a large variance between calibration angles -8 degrees 

and -4 degrees. This variance is as large as 0.37 degrees at the -4 degree calibration angle, again 

suggesting that the repeatability of the calibration is questionable. The large variance trend is 

then confirmed by comparing the RMSE found in the summary of fit tables, Table 36 through 

39.  
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Table 36: Summary of fit table blade 1 

 

 

 

Table 37: Summary of fit table blade 2 

 

 

 

Table 38: Summary of fit table blade 3 

 

 

 

Table 39: Summary of fit table blade 4 
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Given the ill effects of a linear regression model, a 4th order polynomial fit is applied to the data 

to decrease the residual error (Figure 27).  

 

 

Figure 27: Lead-Lag Calibration Angle Vs Linear Residual Error 

 

 

This model greatly reduced the residual error, however, each blade still contains residual 

error larger than the accepted tolerance at certain calibration angles. Blade 4 has the most error 

of 0.34 degrees with a variance of 0.69 degrees. This large variance trend continues throughout 

the data once again suggesting that there may be a problem with the calibration method being 

used.  
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2.3 Summary  

 

  After analyzing each blade and its 3 degrees of freedom a consistent trend of large 

variance found by analyzing the RMSE suggests that the current methods being used to calibrate 

these sensors could be flawed. It can be assumed that a non-linear model would best represent 

each system, but the non-linear models still do not bring all of the sensors within the desired 

tolerance range. This assumption is supported with the analysis of the standard deviation for each 

system. The standard deviation, one sigma, for each degree of freedom was compiled into one 

data set per sensor and represented in Table 40.  

 

Axis Standard Deviation (1σ) 

Blade 1 Blade 2 Blade 3 Blade 4 

Linear 
model 

Non-
linear  
model 

Linear 
model 

Non-
linear 
model 

Linear 
model 

Non-
linear 
model 

Linear 
model 

Non-
linear 
model 

Pitch 0.10 0.05 0.17 0.03 0.14 0.04 0.03 0.03 

Flap 0.12 0.02 0.10 0.01 0.06 0.02 0.09 0.03 

Lead-Lag 0.25 0.08 0.25 0.08 0.28 0.05 0.2 0.12 

 

Table 40: Standard Deviation of Sensors 

 

 

It can be seen that all of the standard deviations are out of the desired tolerance for the 

linear models with the highest being 0.28 degrees for the lead-lag. The non-linear model was 

able to bring the pitch and flap within the desired tolerance, but was still unable to satisfy the 

specifications for the lead-lag. These large variances and non-linear behaviors imply that the 



49 

 

current calibration process may not be repeatable and the most accurate. Therefore, it has been 

decided that a new course of action is needed when calibrating these sensors.   
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CHAPTER 3 

LITERATURE REVIEW 

 

 

After determining the current calibration method is possibly causing nonlinear and 

inaccurate data, a new method was proposed. The new method will focus on reducing the time it 

takes to calibrate each blade as well as increase the accuracy and repeatability of the blade 

calibration. To aid in the decision of what method to use, a literature study was conducted 

focusing on different measurement techniques used to measure blade displacement on helicopter 

rotors. From the literature study, it was found that the four most recognized techniques were the 

use of interferometry, photogrammetry, coordinate measurement arms, and inertial measurement 

units (IMU).  

 

3.1 LASER TRACKER 

 

3.1.1 Historic Background 

 

The first laser tracker was invented by Lau et al. in 1987 at the National Institute of 

Standards and Technology (NIST) in an effort to increase the accuracy of robot metrology [11]. 

During this time, the use of robotics was increasing in the manufacturing industry to streamline 

the assembly process. These simple robotic machines consisted of an arm that performed a task 

commanded by a small controller. However, during this time period robotics were not very 

sophisticated resulting in poor accuracy. This problem stemmed Lau to come up with a design 

that allowed the robot to “know” where its arm was at all times during its movement.  The first 

prototype design consisted of a device that was mounted to a rotary table with a laser beam that 
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tracked a reflective target. As the target moved, the rotary table would make small adjustments 

allowing the beam to stay in contact with the reflective target and record the targets position 

[12]. The prototype transformed into the first laser tracking that encompassed a distance 

measuring interferometer and a set of encoders analyzing the azimuth and elevation angles. This 

new technology allowed for easier transportation, faster measurements, and more accurate static 

and dynamic measurements [13]. Since the success of the first laser tracker, many improvements 

have been implemented into the original design aiding in the overall performance of the trackers 

themselves. With the modern day laser tracker having tolerances as small as 0.7 microns [14], it 

has become a popular measurement tool within the metrology field. 

 

3.1.2 Concepts of Operation 

 

Generally, the measurement of the X, Y, and Z coordinate positions are sufficient when 

there is a need to measure position of a system. Therefore, a 3-D laser tracker system can be used 

to accommodate the need to obtain precise measurements on a system of particular interest. A 

reflective target, also referred to as a retroreflector, is used as the measurement point when using 

this style laser tracker system. The concept behind the retroreflector is that if a beam is off center 

with respect to the reflector, the reflected beam will be offset as well [15]. Consequently, if the 

beam were to strike the center of the reflector, the returned beam would follow the same path as 

the transmitted beam [15]. Given the properties of the retroreflector, a mechanism such as the 

laser tracker can be devised to track specified targets by keeping the returning beam on the same 

path as the transmitted beam.  
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To accommodate the characteristics of these reflective targets, various components are 

combined to develop a 3-D laser tracker.  The tracker is comprised of angle encoders with beam 

steering technology, an interferometer, a laser light source, a reflective source, a control module, 

and other miscellaneous components [16]. A schematic of a laser tracker can be seen in Figure 

28.  

 

 

Figure 28: Schematic of Laser Tracker [16] 
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The general functional process of a laser tracker starts by placing a retroreflective target on the 

item being measured. This targets typically consist of a cat eye reflector or a spherically mounted 

retroreflector (SMR) seen in Figure 29. 

 

Figure 29: Cat Eye and SMR Reflectors [18] 

 

 

The SMR is the general target of choice due to its lower cost and it availability to the 

common consumer. The SMR consists of three variations that can be used when taking 

measurements, each with its own properties. These configurations consist of the solid glass 

SMR, the open air SMR, and the open air with a window covering SMR [18]. Each configuration 

contains its own acceptance angle; the angle in which the reflector can accept and reflect the 

beam to stay within the tolerances of the tracker. Generally, the SMR can be condensed into only 

two configurations when it comes to the associated acceptance angle, the solid glass and the open 

air. The solid glass SMR has a larger acceptance angle of ±40° while the open air SMR only has 

an acceptance range of ±25°. With the low cost and durable, precise performance the SMR is a 

very common reflector used in industry. However, if a wider acceptance range is needed a cat 

eye reflector is generally the reflector of choice. This reflector is typically more expensive, but 

the higher costs allows for the reflector to have a larger acceptance angle. This angle is increased 

from ±40° to ±120° due to its geometry during the manufacturing process. These reflectors are 
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generally made up of two solid glass hemispheres that are fused together to become a cat eye 

reflector. The front hemisphere is the smaller of the two with a purpose of refracting the light to 

the center of the sphere. Once the light has entered the center of the sphere, the light then moves 

through the rear hemisphere. The rear hemisphere is larger thus projecting a smaller beam to the 

rear surface of the hemisphere. The smaller beam projection is then reflected off the rear surface 

of the hemisphere and parallels the transmitted beam back to the tracker. [18] However, since the 

light is being refracted from one hemisphere to another, the beam wavelength must be 

considered when choosing a cat eye reflector. This wavelength is determined by two factors: the 

laser tracker’s interferometer (IFM) and the laser tracker’s absolute distance meter (ADM). The 

IFM is measured by splitting a beam and measuring its incremental time cycles as it is reflected 

off a retroreflector, and the ADM uses beam flight time to determine the absolute distance from 

the target [19]. Problems occur when using a cat eye reflector if the IFM and ADM wavelength 

are not close enough to each other when a laser tracker contains both measuring systems. If the 

wavelengths differ too much, then one wavelength may refract in a different way, not allowing 

the source to be reflected back to the tracker [20]. After the retroreflector is chosen, the process 

of tracking the target with a laser tracker can begin.  

The laser tracker is typically mounted to a portable tripod stand that can be placed at 

various stations around the object being analyzed. Once the reflector is mounted to the target, the 

laser tracker is turned on and starts the measurement process by searching for and locking onto 

the retroreflector. The measurements are taken by measuring three components of the system: the 

azimuth angle, the elevation angle, and the measured distance. The first measurement taken is 

the distance measurement using solely IFM or IFM with ADM technology.  
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The idea behind IFM technology is the motion of merging two or more sources of light 

that come together to create an interference pattern. This pattern is then analyzed by summing 

the heights and depths of the separate waves to generate the interference pattern [20]. These 

waves are classified as being constructive or destructive waves seen in Figure 30.  

 

Figure 30: Constructive and Destructive Waves [22] 

 

 

The theory behind inspecting the interference patterns from these constructive and 

destructive waves stems from the Michelson Interferometer. Originally, this technique was used 

to prove the existence of ether, however, the theory behind it has been implemented into laser 

tracker technology [22]. The Michelson Interferometer consists of a light source that is split into 

two beams that are reflected off two targets, one being a reference target and the other being the 

measured target seen in Figure 31.  
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Figure 31: Basic depiction of Michelson Interferometer [23] 

 

These two beams are then combined and create an interference pattern, also known as an 

interference fringe. This interference fringe provides information that resembles the combined 

wavelength height and depth. These fringes are counted and a measured displacement of distance 

is determined [24]. Although the interferometer is an accurate, robust system it does have its 

drawbacks. As a result of the general operation of the interferometer, if the beam is broken 

during measurement the tracker must be returned to a reference location to reorient itself to the 

target. This process can cause increased measurement time and complexity, therefore, the 

industry has introduced ADM technology.  

To aid in the measurement process when the IFM is interrupted, the ADM was developed 

to prevent the laser tracker from having to be reset if the beam was broken. This technology 

determines distance by analyzing the amount of time it takes for the beam to be reflected back 

from the target [24]. This process begins by projecting a beam to the reflective target then 

waiting for the beam to be reflected back. Once the beam is reflected back the ADM integrates 

the time of flight of the beam to determine the target distance [24]. Since this does not rely on 

knowing the current position of the laser tracker, this system allows the tracker to reorient itself 
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with its current location from the target. From there, the IFM within the tracker takes over again 

to continue the measurement process, since it is the superior measurement technique [24].  

The laser tracker outputs a frequency-stabilized, helium-neon laser into a beam splitter 

that directs one beam into the interferometer and the other beam onto the retroreflective target to 

initiate the distance measurement. The beam that is directed towards the interferometer is used as 

a reference beam while the other beam is used as the measurement beam. The measurement 

beam passes from the beam splitter to a steering mirror and then to the target. The beam steering 

mirror consists of two axes, the horizontal (azimuth) axis and the vertical (elevation) axis. To 

measure the azimuth and elevation angle displacement an angle encoder is mounted coaxially 

along the horizontal axis and another is mounted coaxially along the vertical axis [25]. Once the 

beam is reflected back to the tracker, a portion of that beam is directed to a position sensor 

detector and the other portion is directed back to the interferometer for fringe counting to occur. 

After the interferometer determines the distance by the method of fringe counting, the 

position sensor begins its process to determine the azimuth and elevation of the target. The 

integrated position sensor detects the amount of offset the laser beam is experiencing from the 

reflective target and initializes micro adjustments within the encoders to mitigate the measured 

offset. Once the encoders steer the beam back to the center of the reflective target, position 

coordinates are recorded to define the position of the target. These coordinates are then 

transformed from spherical coordinates to Cartesian coordinates utilizing the distance and two 

angles measured by the laser tracker. As the target moves through its range of motion, this 

process incrementally records the data to obtain an accurate measurement of the total movement 

of the target. With the collaboration of each component within the laser tracker, seen in Figure 

32, accuracy as small as 0.7 micrometers can be obtained [14].  
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Figure 32: Laser Tracker Components [26] 

 

 

3.1.3 Case Study 

 

With the given background information from the literature review pertaining to the laser 

tracker system, an example application of this system was desired. This would better explain 

how the system will measure the blade angles as well as highlight problematic areas to address in 

the method used by previous researchers. Therefore, the article “Laser and Vision-Based 

Measurements of Helicopter Blade Angles” by Emmanuel et al. was analyzed [27]. The article 

discusses the method of using a laser system to measure the pitch, flap, and lead-lag angles of 

helicopter rotors during flight.  

The study focuses on using 2D laser triangulation on a 3D target that is mounted to the 

tension link of the blade grip. This is done by fixing the laser sensor to the top of the hub so that 

it will spin at the same rate as the 3D target. The laser then analyzes the orientation of the 3D 
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target by projecting a beam onto the target surface that analyzes the designed sharp corners and 

ridges of the target (Figure 33).  

 

Figure 33: Laser projection on target [27] 

 

 

Once the target is analyzed in the laser sensor coordinate system, it is transformed into 

the hub-fixed coordinate system to determine blade orientation using the pseudoinverse 

algorithm [27]. However, before the measurement can begin, the sensor must be calibrated to the 

target. This calibration process involves tilting the target in various ways to measure three 

assigned points that aid in determining the parameters needed to transform the data from laser 

sensor coordinate system to the hub-fixed coordinate system. After calibrating the sensor to the 

3D target, a rotation and vibration analysis was conducted to ensure there was no influence in 

measurements from the sensor movement. The vibration analysis utilized an electromechanical 

shaker that was driven at a frequency simulating the vibrations induced by an Agusta Westland 

AW139 rotor hub. The vibration test concluded that the vibrations had no effect on the sensor in 

terms of gathering data. The sensor was then placed through a vibration test coupled with a 
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rotation test using a ground-tied fuselage housing an AW139 gearbox and simplified rotor hub. 

This allowed the sensors to experience the vibrations and centrifugal forces generated by the hub 

during flight. Again, these tests concluded that the rotational forces and vibrations induced by the 

hub had no effect on sensor data collection. Therefore, after verifying the sensor is sustainable in 

the testing environment, the experiment was conducted.  

The test setup used in the experiment utilized the AW139 endurance rig at the Leonardo 

Helicopters laboratories [27]. This rig contained the subassembly of the AW139 main rotor 

allowing the system to model real world applications. The rig allowed the blades to be moved 

one axis at a time or by fully coupling the flap, pitch, and lead-lag blade movements generated 

realistic blade movements experienced during flight. During the experiment, the rotor was spun 

at 4.94 revolutions per second sampling at 247 Hz, which equates to 50 samples per revolution 

[27]. Realistic blade motion was evaluated by analyzing the system with the 3 axes of motion 

fully coupled at the rotational speed mentioned. The blades were then trimmed at four different 

levels during the flight simulation with an incremental increase of freestream airspeed values v1, 

v2, v3, and v4. While in motion, the range of motion applied to the blades were as follows:  

 Pitch angle: -22 to 22 degrees  

 Flap angle: -2 to 12 degrees  

 Lead-Lag angle: -3.5 to 6 degrees 

After conducting the experiment, it was determined that the laser system had 

discrepancies as large as 1 degree in the lead-lag measurement, but had much smaller errors in 

the pitch and flap measurement. The high error in the lead-lag measurement was probably caused 

by only having small changes in the target profile when measuring that axis. Due to the operating 

principle of the laser system, it depends on profile changes of the 3D target. Since the lead-lag 
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only measures side to side movement, the target does not experience a rotation or depth change 

during measurement, hindering its ability to detect a change in angle when compared to the pitch 

and flap measurement. Also, as the pitch angle approached the maximum and minimum values it 

acquired larger error as well, attributable to the operating principle. As the target rotated to these 

steeper angles the laser sensor was unable to detect the measurement points due to the 

disappearance of the points within the valleys of the target. During this experiment, the author 

sanitizes the paper by not including specific velocity values during the four tests as well as the 

standard deviation associated with the values. Therefore, these four velocities will be referred to 

as V1, V2, V3, and V4. The following table summarizes the mean errors associated with each 

blade axis at the four given velocities:  

 

 
Velocity 1 (V1) Velocity 2 (V2) Velocity 3 (V3) Velocity 4 (V4) 

Lead-Lag (deg) 1.05 0.795 -0.828 -0.67 

Flap (deg) -0.031 -0.00721 0.0159 0.0309 

Pitch (deg) -0.269 -0.209 -0.273 -0.29 

Table 41: Summary of Results 

 

 

The results concluded that the laser system was able to measure the blade motions during 

flight even though some axes had large error. However, this system is being analyzed 

dynamically, whereas the new calibration method discussed in this thesis will be analyzed 

statically. Also, the laser sensor used is a low cost 2D sensor while the new calibration method 

will be using a higher quality 3D laser tracking system. Therefore, it can be assumed that the 

new calibration method will be superior in accuracy when compared to the analyzed 2D 
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measurement system. Based on the success discussed in the paper, it is determined that the laser 

tracker system could be a candidate to implement in the new calibration method. 

 

3.2 PHOTOGRAMMETRY  

 

3.2.1 History/ Background 

 

The method of photogrammetry was first used by a French geodesist by the name of 

Francois Arago in 1840 in an effort to determine the position of an object in space without prior 

knowledge of its position using triangulation. A few years later a Frenchman by the name of 

Laussedat, bestowed with the name “father of photogrammetry”, created topographic maps using 

terrestrial photographs for the French Army [28]. Since then, photogrammetry has gone through 

four development cycles: Plane table photogrammetry, Analog photogrammetry, Analytical 

photogrammetry, and Digital photogrammetry [28].  Throughout these phases photogrammetry 

has evolved into a metrology tool that has the ability to capture the static and dynamic geometry 

of various systems. These images allow engineers to analyze critical information of the systems 

being evaluated such as material deformation, displacement, and position. Photogrammetry can 

be broken down into three major types: Aerial photogrammetry, Land photogrammetry, and 

Satellite photogrammetry [29]. Aerial photogrammetry is typically used to create topographic 

maps of new locations. This is done by mounting cameras to an aircraft that flies over unknown 

areas to record the geographic features. Satellite photogrammetry is similar to aerial, however, 

this method is done by mounting cameras to satellites that are used to triangulate an object or 

area on the Earth [29]. Land photogrammetry, also known as close range photogrammetry, 

typically consists of placing a camera on the ground mounted to some type of tripod or pole. This 
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photogrammetric method is typically used to create 3D models, obtain desired measurements, or 

create point clouds.  

 

3.2.2 Concepts of Operation  

 

Digital photogrammetry has been perceived as being an accurate way to capture crucial 

measurements of an object where traditional measurement tools are unable. These measurements 

are obtained by taking a series of photographs that are used to determine point coordinates, 

define features and patterns of an object, or to determine the boundaries of the object being 

measured [30]. Two of the most common types of cameras used for photogrammetry are the 

Charged Coupled Devices (CCD) and the Complementary Metal Oxide Semiconductors 

(CMOS). The CCD camera utilizes a chipset that converts the analog light to digital pixels with 

high resolution and low distortion. The CMOS camera, however, utilizes transistors that 

transport the charges generated by the pixels through a traditional wire set. Since the data is 

moved through a wire set the images from a CMOS camera tend to have higher noise making 

them a lower resolution compared to the CCD cameras [31]. These cameras are generally set up 

in two configurations to obtain data: a single camera setup or a stereo camera setup. The single 

camera setups allow for two dimensional measurements such as measuring the displacement of 

an object, whereas the stereo camera setup allows for three dimensional measurements involving 

point coordinate measurements using the method of triangulation seen in Figure 34.  
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Figure 34: Stereo Camera Triangulation 

 

 

The measurement process begins by calibrating the camera(s) to reduce distortion and 

increase the accuracy of the photographs being taken. This calibration process typically follows 

the method of bundle adjustments, which examines all system parameters and correlates them 

with the interior and exterior orientation parameters. These parameters include principal distance 

and offset, three coefficients of radial distortion, and two coefficients of decentering distortion 

[31]. These parameters are adjusted by placing the cameras on a scale bar of known length and 

aiming them at a coded target to analyze. The camera begins taking the measurement and each 

parameter is adjusted until the measured valued falls into the specified desired tolerance. Once 

the cameras are calibrated, accurate measurements are taken using one of two most common 

methods: a target or a target-less approach.  

The target approach consists of placing a target on the object being measured for the 

camera to “follow”. These targets are typically some form of retroreflective sticker with a 

circular pattern that is classified as being coded or non-coded seen in Figure 35.  

 

Object 

Camera 2Camera 1 
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Figure 35: Photogrammetry pattern target [32] 

 

 

The non-coded targets are placed throughout the structure to identify the geometry of the 

object being measured. Once the geometry is defined, coded targets are then used to obtain more 

precise measurements. The coded style retroreflectors allow the camera system to identify the 

target easier at various angles as well as increase the accuracy of the measurement. These coded 

targets are made with a solid circle in the center that is a minimum of 10 pixels across in the 

photos [33].  The advantage of using these coded targets is that the user is able to precisely place 

the target on the exact point desired for measurement as well as having the flexibility of being 

able to control the measurement density. Therefore, the user is able to adjust the measurement 

tolerances based on the density of targets placed. Another advantage of using these coded targets 

is that when two targets are placed close together and the camera offset is large, the coded targets 

allow identification of a third point in space that the camera is unable to capture. 

Another method of taking measurements with photogrammetry is using a target-less 

approach. These types of measurements include edge detection and pattern recognition within 

the structures being observed. The most common algorithm used with this approach is edge 

detection due to its speed and low computational demand [30]. This method is commonly used in 

situations where reflective targets cannot be mounted such as on thin, long cables or low-profile 

edges. The method greatly reduces the setup complexity while still producing quality results.  
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Once the measurement approach is chosen, the cameras are placed around the object 

being measured and photos are taken. These photographs are then analyzed through proprietary 

software that translates the analog images to associated numeric values. During this 

transformation, coordinate positions are determined as discussed in a later section and the object 

distance is calculated. Since the stereo cameras are on the same plane as each other and at a 

specified distance apart, image correlation is used to determine the objects distance [34].  

            This is done by evaluating the image overlap of the two cameras being used during 

measurement. More specifically, the x coordinate of the image plane of the left and right camera 

are compared to the baseline, the horizontal distance between the two cameras, and scaled by the 

focal length to determine the object distance. This is done in the following manner [34]:  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑥𝑙𝑒𝑓𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 − 𝑋𝑟𝑖𝑔ℎ𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 

 

3.2.3 Case Study  

 

To better understand how the photogrammetry technique could be applied, a case study 

was found applying this metrology technique. The case study “An optoelectronic system for the 

in-flight measurement of helicopter rotor blades motions and strains” by Huang et al. discusses 

the use of a single CCD camera to measure the flap, lead-lag, and pitch angle of a helicopter 

blade during flight [35].  

The study focuses on using the technique of optical triangulation to determine the blade 

angles during operation. This is done by placing the flight test system on the rotor hub containing 

the required measurement sensors. This unit is comprised of three CCD cameras that 

independently monitor the position of the three blades attached to the hub and onboard 
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processing equipment that translate the measured coordinates into blade angles. Once the flight 

system is mounted to the rotating hub, two light emitting diodes (LED) are placed on each blade. 

These LED’s allow the CCD cameras to determine blade position based on the position of the 

LED. The flap and lead-angles are derived from a single LED, and the pitch is derived from 

combining the positions of the two LED’s (Figure 36).  

 

  

Figure 36: Experimental Test System [35] 

 

 

Once the sensors are fixed to the experimental testing rig, the model is spun at an 

unknown rpm utilizing three stepper motors to aid in the actuation of the blade angles. The input 

angles for each blade axis are as follows:  

 Flap: -7 to 20 degrees 

 Lead-Lag: -7 to approximately 11 degrees  

 Pitch: 0 to approximately 22 degrees  
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Upon experimental investigation, it was found that each measurement axis had an error of 

approximately 1% of the measurement range. This equates to roughly a 0.27 degree error in flap, 

a 0.18 degree error in lead-lag, and a 0.22 degree error in pitch. These results correlate well with 

the study discussed in the laser tracker section. The study involving the laser sensor by Emanuele 

et al. also utilized a single and stereo optic set up in a similar manner to analyze blade angles 

during operation [27]. The setup and sensor analysis was conducted similarly to the laser sensor, 

therefore, the reader can refer to that section to recall the experiment configuration. The 

following figure is a representation of the single and dual camera setup:  

 

                     

Figure 37: Single camera setup (left) and dual camera setup (right) [27] 

 

 

This test concluded that the single camera setup at airspeed velocity one had similar 

results to the study conducted using the three CCD cameras [27]. Once the stereo camera setup 

was implemented and analyzed, it was found to be superior to the single camera setup. Due to 

the data representation in [27], approximations of error are determined based on the provided 
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plots. Therefore, the data will be presented using the plot from [27] as table 3. Unfortunately, the 

author does not specify the velocity values as well as if the data is one standard deviation.  

 

 Single Camera Vision  Stereo Camera Vision  

Flap (deg) 0.08 0.1 
Lead-Lag (deg) 0.05 0.01 
Pitch (deg) 0.35 0.25 

Table 42: Single Vs Stereo Camera Measurement Uncertainty 

 

 

 

Figure 38: Plot of errors [27] 
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All of these results are generated using a dynamic platform making it challenging for the 

sensors to obtain accurate measurements. Even though the system is dynamic, the sensors are 

still capable of generating accurate measurements within 0.3 degrees. Therefore, it can be 

assumed that the data collection is successful and when applied to a static model it can be much 

more accurate making it a candidate for use in the new calibration method.  

 

3.3 Coordinate Measurement Arm  

 

3.3.1 Historic Background 

 

Coordinate measurement machines have been around for the past 60 years becoming 

more precise after each design iteration [36]. Before these machines were invented, 

measurements relied on humans to measure parts up to the thousandth of an inch using analog 

technology. These types of measurements were relatively accurate for small scale building, 

however during large scale manufacturing the quality control varied greatly due to inconsistent 

human measuring [36]. To overcome these problems, coordinate measurement machines were 

invented in the 1950’s and early 1960’s with 2 and 3 axis measurement capability [36]. These 

machines were operated manually with the ability to measure in the X, Y, and Z coordinate 

system using a series of micrometer fine adjustments that measured the position of a solid probe 

mounted to the machine. As time progressed, Sir David McMurtry invented the first touch 

trigger probe in 1972 allowing for over travel after contact of the probe was automatically 

detected [36]. This device allowed Olympus engines to pass specific requirements needed when 

building their Concorde aircraft [36]. Since then, 3D measurement has further progressed into 
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digital systems and it is now allowing engineers to take measurements that have high accuracy 

and are repeatable.  

 

3.3.2 Concept of Operation  

 

The coordinate measurement arm (CMA) has become more popular in the metrology 

industry due to its portability, high accuracy, and its ease of use. This type of coordinate 

measurement machine allows the user to place the arm around or on the object to be measured at 

virtually any desired location seen in Figure 39.  

 

 

Figure 39: Coordinate Measurement Arm in use [37] 

 

 

This is done by using two different style mounts: a tripod setup or a fixed base mounted 

to the object being measured. The tripod setup consist of a prefabricated base that the 

measurement arm is affixed to allowing the arm to be steadily placed about the subject. The 
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other style mounting system is a base mount that is fixed to the object being measured. This is 

done by placing a mounting base, usually magnetic, to the object being measured (Figure 40). 

The magnetic base allows the measurement arm to be securely attached to the machine being 

measured while still maintaining the versatility of easily removing the CMA. This style mount 

allows the user to place the arm in locations not reachable by the tripod stand allowing for full 

range of motion during the measurement sequence. Once the desired mount is chosen, the 

measurement process can take place.   

 

 

Figure 40: Mounting styles of CMA [38] 

 

 

The CMA uses a series of articulating joints to allow for full range of motion during the 

measurement process. Attached to the end of the series of joints is a “pistol” like device with a 

measuring probe on the end of the “barrel”. The operator uses this tool to place the tip on the 

surface of the object being measured. Once the probe is in position the operator presses a button 

on the machine that documents each joint position. Within these joints are rotary encoders that 

measure the movement angle of each joint while the system is being measured. The information 

from the encoders is compiled into the proprietary software associated with the CMA and 
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translated to a coordinated position. The accuracy associated with the determined position is 

generally in the 0.002 inch to 0.004 inch range per 12 feet of arm used [39]. Once the 

measurement is taken, the operator simply places the probe at the next measurement point and 

the process repeats. However, before any type of measurement is taken the machine must be 

calibrated once it is placed in its measurement position. This process is done by using a 

calibration plate provided with the CMA. This plate consists of three dished contact points with a 

known location that the CMA uses to orient itself (Figure 41). The operator places the probe on 

each point and captures the position by pressing the measurement button on the CMA. After the 

CMA is calibrated, the measurement process can begin.  

 

 

Figure 41: CMA calibration plate [40] 

 

 

Sometimes, the CMA must be repositioned to make all measurements needed to fully 

capture the system being evaluated. In this case, the arm must “jump” to the next position to be 

able to reach the desired measurement points. This action of moving the arm to another position 
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requires the arm to be calibrated again. This is done in a similar manner mentioned previously, 

however, an added step of measuring the previous location of the arm is need. This allows the 

arm to “know” its previous position to maintain consistency throughout the measurements.  

 

3.3.3 Case Study  

 

Given the ease of use of the FARO Arm, a case study was found that evaluated the 

overall operation of the metrology device to aid in better understanding how the system could be 

applied to the new calibration method. The study “Use of a Faro Arm for optical alignment” by 

Crause, A et al. discusses the use of a 1.8 meter, 6-axis platinum Faro Arm to correct the poor 

image quality of the Southern African Large Telescope (SALT) [41]. The purpose of using the 

Faro arm was to measure the focal gradient across the focal plane and adjust the gradient to 

increase the image quality of the telescope. However, the test turned into highlighting 

characteristics of the Faro Arm itself. Before the measurements were done, accuracy and 

repeatability tests were conducted. The repeatability test was done by doing a single point 

articulation test and the accuracy test was conducted by measuring traceable length artifacts at 

different locations within the working volume [41]. These tests concluded that the probe had to 

be calibrated regularly due to the software losing track of the probe. Also, if a new probe was 

used it must be recalibrated. After performing the accuracy and repeatability test, it was found 

that there was an overall spread of 100 microns based off the 1000 measurements taken 

concluding that the initial calibration done at the factory is rather poor seen in Figure 42 [41].  
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Figure 42: Accuracy and Repeatability Measurement Spread [41] 

 

 

            After concluding the poor factory calibration, the measurement process proceeded in 

evaluation by investigating the error when the Faro Arm “jumps”. The “jump” refers to moving 

the faro arm from one base position to another to fully capture the system being measured when 

a single base station is not sufficient to reach all points [41]. This process is done by measuring 3 

fixed points at the initial location, moving the arm to the next location, and re-measuring the 

same base location points. The software then reorients the arm’s coordinate system based on the 

new location. This test determined that the arm contains a RMS deviation of less than 20 microns 

when measuring the three jump points [41]. During the measurement process, some 

complications arose interfering with the repeatability of the system. Therefore, Invar buttons 

were created to aid in measurement repeatability as seen in Figure 43.  
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Figure 43: Invar buttons [41] 

 

          These buttons contained pyramid-like indentions that were fixed to the object being 

measured so that the measuring probe could be placed on the object in a repeatable manner. The 

device was also used to aid in keeping the probe in position during movement. Overall, it was 

determined that the Faro Arm was user friendly, effective when operating without much 

articulation, and contained live feedback making it easier to interpret fine adjustments. Despite 

the poor calibration done at the factory, it is still considered to be a feasible option to apply to the 

new calibration method.  

 

3.4 GYROSCOPE  

 

3.4.1 Historic Background  

 

Gyroscopes have been used over many years to aid in determining orientation of an 

object in motion. The first gyroscope was invented by John Serson in 1743 which was 

nicknamed the whirling speculum designed to identify the horizon by using it as a level [42]. 

Since then, gyroscopes have evolved into navigational devices that were first used in 1904 by 

militaries across the world [42]. Through the generations, gyroscopes have evolved into complex 



77 

 

devices that aid in piloting aircraft and determine position and orientation of devices such as cell 

phones. These devices have become vital components of current technology today, evolving 

from single axis setups to three axes setups and able to determine angular velocities as small as 

0.5 milliarcseconds [43].  

 

3.4.2 Concept of Operation  

 

The gyroscope has been a crucial inertial measurement device used in systems such as 

aircraft, automobiles, and other systems that move. The main objective of the gyroscope is to 

determine the angular velocity the system is moving with respect to its surrounding environment. 

These angular measurements help determine the RPM at which the system is operating or the 

relative angle the system has moved with respect to its reference point. There are three main 

categories of gyroscopes that are used to take these measurements: the ring laser gyroscope 

(RLG), the fiber optic gyroscope (FOG), and the micromechanical systems (MEMS) gyroscope.  

The ring laser gyroscope contains no moving parts and is capable of measuring one 

degree of freedom at a time. Since there are no moving parts, the amount of gyroscopic drift is 

greatly reduced as a result of the frictionless environment which increases its accuracy [44]. The 

theory behind the RLG is that it is capable of measuring a rotation about its sensitive axis, 

therefore, the orientation of the RLG must be known at all times. The concept behind the 

operation of an RLG is that there is a laser beam within the gyroscope that is split into two 

beams. Both beams travel the same path, however, the beams travel in opposite directions [44]. 

These beams are steered within the cavity of the gyroscope using a series of mirrors and are 

directed into a photo detector that analyzes the two beam wavelengths. In the absence of rotation 
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the wavelengths remain the same, therefore when the interference pattern is analyzed, there is no 

interruption. As a result of the wavelength not changing, the RLG interprets the data as zero 

movement. However, as the gyroscope begins to spin the beam phase begins to diverge from the 

opposing beam. This phase shift creates an interference pattern that is translated via a diode into 

a rotation rate [45].    

 

  

Figure 44: Representation of RLG [46] 

 

 

The FOG follows a similar process to the RLG, however instead of steering a beam of 

light with mirrors the gyroscope utilizes fiber optics to direct the beam path. The process begins 

by directing a laser beam into a fiber optic bundle that splits the beam in two. The two beams 

travel within the same fiber, but they travel in opposing directions. Once the beams travel 

through the fiber, they are directed to a photo detector that analyzes the time differential between 
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the two beams. Therefore, when the gyroscope is not spinning the beam travel time will be the 

same resulting in a zero time differential. However, as the gyroscope begins to spin the beam 

traveling against the rotation will experience a shorter path delay, known as the Sagnac effect 

[47]. The Sagnac effect causes a phase shift between the two beams due to the rotation of the 

gyroscope resulting in different travel times [47] from which angular velocity is determined.  

 

 

Figure 45: Representation of FOG [48] 

 

 

The MEMS gyroscope uses a different approach over the RLG and FOG to obtain 

angular velocity information. These newer style gyroscopes incorporate the ability to measure 

angular rates in a much smaller, more affordable platform over the RLG and FOG style systems. 

Typically the MEMS gyroscope uses a tuning fork configuration comprised of two proof masses 

that move within the body of the gyroscope [49]. As the gyroscope begins to spin, these masses 

begin to oscillate in opposing directions due to the Coriolis Effect explained in an earlier section. 

Since these masses move in opposing directions, there is a differential in capacitance between 
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the two masses [49]. This capacitance is directly related to the angular velocity via a 

transformation equation unique to the sensor being used. This angular velocity is then translated 

to an analog or digital output that becomes an input to the analysis software being used. One 

important characteristic to consider when using these style gyroscopes is their inability to detect 

linear acceleration. Due to the inherent nature of how these sensors work, linear acceleration 

would cause both proof masses to accelerate in the same direction at the same rate. This would 

result in a zero differential in capacitance between the two masses thus giving a zero read out. 

This proves to be an advantage to the sensor since this characteristic mitigates effects from 

shocks or vibrations during use [49].  

 

 

Figure 46: Representation of MEMS Gyroscope [50] 

 

 

3.4.3 Case Study  

 

To obtain a better understanding how the gyroscope would be used to measure the lead-

lag angles of the rotors, an example application was researched.  The article “MEMS Gyroscope 
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Sensors for Wind Turbine Blade Tip Deflection Measurement” was analyzed [51]. This paper 

discusses mounting a MEMS based gyroscope onto a wind turbine to determine the blade 

deflection experienced during rotation. Though this study does not directly involve a helicopter 

rotor, the blade displacement motion measured by the gyroscope is similar to the lead-lag motion 

experienced by the helicopter rotor later discussed.  

The study focusses on utilizing a MEMS based gyroscope coupled with a laser distance 

sensor to determine the blade deflection experienced by the wind turbine blade during operation. 

The data from the sensors is coupled using an artificial neural network (ANN) to determine the 

blade deflection. The inputs into the ANN are the angular rate measurement from the gyroscope 

in the three dimensions, the turbine yaw angle, and the blade pitch angle from current sensors 

[51]. The experiment utilizes three ADXRS620 gyroscopes that are mounted orthogonally onto a 

printed circuit board to capture each axis of the blade. The circuit board is then mounted 20 

meters from the blade root and the laser distance finder is mounted 2 meters higher than the 

blade tip horizon [51]. Once the sensors are positioned on the turbine, the data is collected using 

an independent data acquisition system known as the down-tower DAQ system. The sensor 

positioning can be seen in the following figure:  
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Figure 47: Sensor position on Wind Turbine [51] 

 

 

Upon data analysis, it was found that the blade tip deflection measurement accuracy was 

± 0.4 meters which equates to approximately ± 1.146 degrees. Though the measurement 

accuracy is fairly large, it proves that the gyroscope will successfully measure the blade 

deflection directly correlating to the lead-lag measurement of the rotor blade. The large error 

associated with this experiment is more than likely due to sensor quality rather than testing 

configuration. Upon further investigation of the sensor being used, it has a larger angle random 

walk (ARW) value of 0.05 deg/√ℎ𝑟 when compared to the sensor proposed for the new 

calibration method in a later section. It also does not specify the gyroscope bias, therefore, it is 
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possible that the lower quality gyroscope is causing the poor accuracy within the measurement. 

Another study done by Allred et al. utilizes a series of accelerometers and gyroscopes to 

determine rotorcraft blade position during a flight simulation.  

A series of 8 MEMS based accelerometers and 4 MEMS based gyroscopes are used to 

determine the blade positions. These sensors are placed on a 3D printed puck around the 

circumference of the circle with 4 pairs of accelerometers opposing each other and a gyroscope 

is placed between each pair of accelerometers (Figure 48).  

 

 

Figure 48: Test stand [52] 

 

 

The purpose of pairing the accelerometers is to negate the centrifugal force of the spinning 

hub so that the blade angles are the measurement concentration [52]. The data from the sensors 

are collected and an artificial neural network (ANN) is used to translate the sensor output to 
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angle measurement. A series of servo motors are used to control the blade position during 

rotation and provide blade angle positions in the following manner:  

 Pitch: 0 to 20 degrees  

 Flap: -1 to 9 degrees  

 Lag: 3 to 5 degrees  

      After concluding the test, it was found that using a single-output ANN is superior to a 

three-output ANN translating the data. A summary of the results can be seen in the following 

table:  

 

 Three-Output ANN 
(%FS) 

Single-Output 
ANN (%FS) 

Three (deg) Single (deg) 

Pitch  1.57 0.72 0.314 0.144 
Flap  1.03 0.80 0.103 0.08 
Lead-Lag 7.76 6.23 0.1552 0.1246 

Table 43: Test results [52] 

 

 

Based on the results of the two studies, it can be seen that sensor choice and application 

has a key role in measurement accuracy. However, the results from the two studies show that the 

application of a gyroscope can be successfully used to measure blade angles. Therefore, the 

gyroscope is determined to be a contender when deciding what sensor type to use when applying 

the new calibration method.  
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CHAPTER 4 

UNCERTAINTY ANALYSIS 

 

The literature review revealed several methods for calibrating the pitch, flap, and lead-lag 

angles including a laser tracker, photogrammetry equipment, coordinate measurement machine 

(CMM), and an inertial measurement unit (IMU). These four methods would allow the 

calibration to be conducted in a timely and accurate manner, staying within the desired ±0.1 

degree tolerance. To ensure each calibration technique would produce results that fall within 

these tolerances, an uncertainty analysis was conducted.  

 

4.1 Propagation of Error 

 

The method of propagation of error was used to define the uncertainties associated with 

each calibration method being evaluated. This method is defined as the “Statistical Tolerance” 

within the engineering world in which it focuses on how a component within a system is 

behaviorally related to the system as a whole [553]. This process involves identifying each 

component of the system that contributes to the overall error and summing them together to 

determine the total error of the system being evaluated. The propagation of error theory can be 

derived using a second order Taylor series expansion assuming the variables within the system 

are statistically independent [54]. To aid in understanding this method let the system be defined 

as follows:  

 𝑌 = 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑛) (1) 
 

Since each component within the defined system is independent, the system can be 

broken up into separate independent systems when applying the Taylor series. Assuming this, the 
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second order expansion term is derived by summating the first derivative of each component and 

squaring it. This value is then multiplied by the variance associated with it to give the total 

expanded term [54].  

 𝜎𝑌2 = ∑(𝜕𝑓(𝑥)𝜕𝑥𝑖 )2 ∗ 𝜎𝑥𝑖2 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠𝑛
𝑖=1  (2) 

 

The variance associated with the measured values are broken into two classifications: 

systematic error (Br) and random error (Pr) [55]. The systematic error is the error characteristic of 

the system that remains constant while the random error is typically distributed normally and due 

to chance [61]. Therefore, when applying the propagation of error the method must analyze each 

contribution separately.  

𝐵𝑟 = √∑(𝜕𝑓(𝑥)𝜕𝑥𝑖 )2 ∗ 𝜎𝐵𝑖2𝑛
𝑖=1  (3) 

𝑃𝑟 = √∑(𝜕𝑓(𝑥)𝜕𝑥𝑖 )2 ∗ 𝜎𝑃𝑖2𝑛
𝑖=1  (4) 

 

The final step is to take the square root of the sum of the two types of variance associated with 

the system to find the total uncertainty:  

 𝑈𝑡𝑜𝑡𝑎𝑙 = √𝐵𝑟2 + 𝑃𝑟2 (5) 
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4.1.1 Laser Tracker 

 

The first calibration method evaluated was the laser tracker, specifically focusing on the 

Leica AT960 laser tracker. This laser tracker would be placed at a determined distance away 

from the rotor hub and used to track the motion of the blade. Once the laser tracker is placed, 

three reference points must be attached for the laser tracker to read. These three points will 

define the plane on which the blade lies with respect to the rotor hub. Two reference points will 

be placed on the top edge of each blade with the other adjacent to it. The third reference point 

will then be placed on the center of the hub. Once these three points are acquired, two vectors 

can be formed using the hub reference point as the origin of the two vectors. The cross product 

can then be taken to determine the axis of rotation of the blade seen in Figure 49. If needed, a 

confirmation point can be added to verify the accuracy of the newly defined hub coordinate 

system.  
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Figure 49: Hub coordinate system defined by laser tracker 

 

 

Once the hub coordinate system is defined, a target would be placed on the blade for the 

laser tracker to follow. The blade would then be moved through its range of motion and data 

would be collected. However, post processing of the data must be done to acquire the correct 

angles being expressed by the blade throughout its motion. Since the laser tracker is defined as 

being in the world coordinate system and the target is defined in the hub coordinate system, a 

coordinate transformation must be done to properly determine the incremental change in the 

blade angles seen in Figure 50.  

 



89 

 

 

Figure 50: Defined coordinate system of laser tracker and target 

 

 

This transformation from the world coordinate system to the blade coordinate system can 

be done using the method of Euler angles or quaternions [56]. For simplicity, the method of 

Euler angles will be used and the angle transformations can be seen in Figure 51.  

 

 

Figure 51: Rotation visual from local to world coordinate system 
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The rotation sequence being used is the XYZ sequence, meaning that the system will first 

be rotated about the X-axis, then the Y-axis, and finally about the Z-axis [57]. The rotation 

sequence is directly related to the yaw (ψ), pitch (ɵ), and roll (φ) of the system, therefore, these 

values are used to generate the rotation matrix. These rotation matrices are then applied to the 

coordinates to fully transform the local coordinates to the world coordinates. Following the XYZ 

sequence, the first rotation matrix is applied to the coordinates corresponding to the rotation 

about the x-axis:  

 

[𝑋′𝑌′𝑍′] =  [1 0 00 cos(𝛷) sin(𝛷)0 − sin(𝛷) cos(𝛷)] [𝑋𝑌𝑍] 
(6) 

 

Once the point is rotated about the x-axis, the point is then rotated about the y-axis:  

 

[𝑋′′𝑌′′𝑍′′] =  [cos(ɵ) 0 − sin(ɵ)0 1 0sin(ɵ) 0 cos(ɵ) ] [𝑋′𝑌′𝑍′] (7) 

 

After the rotation about the y-axis, the point is rotated about the z-axis to complete the 

transformation:  

 [𝑋′′′𝑌′′′𝑍′′′] =  [ cos(ψ) sin(ψ) 0− sin(ψ) cos(ψ) 00 0 1] [𝑋′′𝑌′′𝑍′′] (8) 

 

After defining how the system will work and the world coordinates will be generated, the 

uncertainty analysis was conducted focusing on the three dimensional output from the laser 

tracker. The X, Y, and Z components of the tracker will be defined in the following manner 

based on determining a point position in 3D space (Figure 52):  
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Figure 52: 3D point in space 

 

 

 𝑋 = 𝑑 ∗ cos(𝛩) ∗ sin (𝛷) (9) 
   

 𝑌 = 𝑑 ∗ sin (𝛩) ∗ sin (𝛷) 
(10) 

 
 𝑍 = 𝑑 ∗ cos(𝛷) (11) 

 

Note that d corresponds to the distance from the target, 𝛩 corresponds to the azimuth 

angle, and 𝛷 corresponds to the elevation angle of the rotor blade. The partial derivative of each 

dimension is then taken with respect to the distance, azimuth, and elevation angle of the blade.  

Partial derivatives of X:  

 
𝜕𝑋𝜕𝑑  =  cos(𝛩) sin(𝛷) 

 
(12) 

 
𝜕𝑋𝜕𝛩  =  −d ∗ sin(𝛩) sin(𝛷)  

 
(13) 

 
𝜕𝑋𝜕𝛷  =  d ∗ cos(𝛩) cos(𝛷) (14) 

d 
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Partial derivatives of Y:  𝜕𝑌𝜕𝑑  =  sin(𝛩) sin(𝛷) 

 
(15) 𝜕𝑌𝜕𝛩  = (d ∗ cos(𝛩) sin(𝛷)  

 
(16) 𝜕𝑌𝜕𝛷  =  sin(𝛩)cos (𝛷) 

 
(17) 

 

Partial derivatives of Z:  𝜕𝑍𝜕𝑑  =  cos(𝛷) 

 
(18) 𝜕𝑍𝜕𝛩  = 0  

 
(19) 𝜕𝑍𝜕𝛷  =  −d ∗ sin(𝛷) 

 
(20) 

 

Since there are no systematic uncertainties associated with the current analysis, only 

random uncertainty will be considered. Therefore, once the partial derivatives are taken, the 

results are applied to equation (3) and become:  

 
𝛿𝑋= √(cos(𝛩) sin(𝛷) 𝜎𝑑)2 + (−d ∗ sin(𝛩) sin(𝛷) 𝜎𝛩)2 + (d ∗ cos(𝛩) cos(𝛷) 𝜎𝛷)2 

(21) 

 

 𝛿𝑌 = √(sin(𝛩) sin(𝛷) 𝜎𝑑)2 + (d ∗ cos(𝛩) sin(𝛷) 𝜎𝛩)2 + (sin(𝛩) cos (𝛷)𝜎𝛷)2 (22) 

 

 𝛿𝑍 = √(cos(𝛷) 𝜎𝑑)2 + (−d ∗ sin(𝛷) 𝜎𝛷)2 (23) 

 

The total uncertainty for the laser tracker is then calculated by taking the sum of squares of the 

uncertainties in the X, Y, and Z axis. This is done in the following manner:  
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 𝑈𝑚𝑒𝑡𝑒𝑟 = √𝛿𝑋2 + 𝛿𝑌2 + 𝛿𝑍2 
 

(24) 

The total uncertainty is given in the units of meters, however, the focus of this analysis is 

to define the uncertainties associated with the blade angles of the rotor. Therefore, the total 

uncertainty is converted from meters to degrees providing there is a defined distance from the 

measured target to the laser tracker seen in Figure 53. This conversion is done in the following 

manner:  

 

 

Figure 53: Representation of conversion from meters to degrees 

 

 

 
𝑈𝑑𝑒𝑔 = tan−1( 𝑈𝑚𝑒𝑡𝑒𝑟𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑)) 

 
(25) 

The analysis is then conducted given the following assumptions based on calculation simplicity 

and manufacturer specifications:  

Distance (d) 

Udeg 

Umeter 
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 The laser tracker is on the same plane as the rotor 

 The rotor is at zero reference (flap and lag angles at zero) 

 The tracker is placed 5 meters from the target 

 The distance error is 0.0000005 meters 

 The flap angle and lag angle error is 0.000015 meters + 0.000006 meters * distance 

With the assumptions made and the manufacture specifications defined, the total uncertainty 

associated with the laser tracker was found to be 7.58E-7 degrees. Distance was found to be the 

driving factor for the uncertainty of the laser tracker as seen in Figure 54. 

 

 

Figure 54: Graph representing laser tracker uncertainty driving factor 
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4.1.2 Stereo Vision Camera 

 

The next method of calibration being evaluated for its uncertainty is the system utilizing 

photogrammetric techniques, specifically the use of an Optotrak Certus. This system is similar to 

the laser tracker for the rotor plane must be defined in the same way using 3 reference points. 

The cross product of the two vectors is taken and the rotation axis is defined. Once the hub 

reference system is defined, the Optotrak tracks the target as it moves through its full range of 

motion. The data is then transformed from the hub reference frame to the world reference frame 

similarly to the laser tracker and the delta angles are determined. Since the Optotrak uses the 

method of triangulation, there is no need to use Euler angles or quaternions to define the 

calculated angles from the 3D coordinates. This method of calibration is illustrated in Figure 55.  

 

 

Figure 55: Optotrak with respect to hub and world coordinate system 
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The Optotrak system will be modeled as a stereo optic system being analyzed using the 

pinhole method. A pinhole camera is defined as a camera that has no lens, therefore, they 

produce an image using the principle of rectilinear theory of light [58]. Essentially this is relying 

on the light traveling in a straight line. The camera is comprised of a dark box containing a small 

hole in the middle where the light enters. When the light enters the hole, the image is projected 

onto the back of the box in an inverted manner. The hole size plays a role in picture quality, 

meaning that if the hole is too small the picture may become distorted due to the light scattering 

at the edges [58]. Since the pinhole method is being used, there is no need to account for any 

type of lens distortion during the evaluation [59]. The analysis of the photogrammetric system 

follows [60] closely, therefore refer to the reference for further detail. The evaluation system is 

comprised of determining the relationship of the world coordinate system to the camera 

coordinate system seen in Figure 56.  

 

  

Figure 56: Representation of World Vs Camera Coordinate System [60] 
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Since the point is in the world coordinate system, the point must be projected onto the image 

plane of the camera. To simplify the camera model, the following assumptions will be made: 

 The principal point is exactly on center 

 The pixels are perfectly square 

 The skewness (distortion between pixels) will be neglected  

Applying these assumptions, where the variables are the target distance (d), focal length (f), 

viewing angle (𝛾), and the pixel coordinates for camera one (u1, v1) and camera two (u2 and v2), 

the following projection matrix is formed for the first camera [60]:  

 
[𝑈𝑉𝑆] =  [−𝑓 0 0 00 −𝑓 0 00 0 1 0] [𝑥𝑦𝑧𝑡] 

 

(263) 

The basic projection of the 3D world points onto the 2D image points is done in the following 

manner where S is defined as the projection of the image plane, u, onto the world plane, U [60]:  

 𝑢 =  𝑈𝑆  

 
(27) 

 𝑣 =  𝑉𝑆  

 
(28) 

Once the projection matrix for the first camera is defined, the second camera is evaluated. 

There are two reference points during this calculation, the left camera frame and the right camera 

frame. For this evaluation, the left camera frame will be analyzed as being true and the right 

camera frame will be projected onto the left camera frame. This will be done using a 

translational and rotational vector. Before the projection can be applied, the orientation of the 

cameras must be defined. The left and right cameras will be oriented in the XZ plane and rotated 
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about the y-axis [66] (Figure 6). Therefore the rotation matrix (R) and the right camera position 

matrix (PR) become:  

 
𝑅 =  [ cos (𝛾) 0 sin (𝛾)0 1 0−sin (𝛾) 0 cos (𝛾)] 

 

(29) 

 
𝑃𝑅 = [ 𝑑 ∗ sin(𝛾)0𝑑 − 𝑑 ∗ cos(𝛾)] 

 

(304) 

The two matrices are then multiplied together to translate the world coordinates seen in 

the right camera frame onto the left camera frame. Once this is achieved, the next step is to 

combine the world coordinate transformations from the right and left camera, matrix T, and 

project them onto the image plane of the two cameras. This is done in the following manner [60]:  

 
𝑇 = [ cos (𝛾) 0 sin (𝛾) − sin(𝛾) ∗ (𝑑 − 𝑑 ∗ cos(𝛾)) − 𝑑 cos(𝛾) sin(𝛾)0 1 0 0−sin (𝛾) 0 cos (𝛾) 𝑑 ∗ sin(𝛾)2 − cos(𝛾) ∗ (𝑑 − 𝑑 ∗ cos(𝛾))0 0 0 1 ] 

 

(31) 

 

 
[𝑈𝑉𝑆] =  [−𝑓 0 0 00 −𝑓 0 00 0 1 0] [𝑇] [𝑥𝑦𝑧𝑡] 

 

(32) 

As mentioned earlier, the stereo vision camera is being solved using the method of triangulation 

to determine the 3D coordinates. Therefore, the coordinates are solved in a linear fashion using 

the following equation [60]:  

 
𝐴𝑋 =  0 

 
(33) 

where  
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𝐴 =  [   

 𝑢1𝑃13𝑇 − 𝑃11𝑇𝑣1𝑃13𝑇 − 𝑃12𝑇𝑢2𝑃23𝑇 − 𝑃21𝑇𝑣2𝑃23𝑇 − 𝑃22𝑇]   
 
 

 

(34) 

The superscripts in equation A refer to the row of the camera matrix T and the subscripts refer to 

the left and right camera. The subscript 1 refers to the left camera and the subscript 2 refers to the 

right camera [60]. Due to the size of matrix A, it will not be shown. The solution to the linear 

equation solving for the XYZ coordinates becomes [66]:  

𝑋 =  𝑑𝑢1(𝑢2 − 𝑓 sin(𝛾) − 𝑢2 cos(𝛾))(𝑢1𝑢2 + 𝑓2) sin(𝛾) + 𝑓( 𝑢2 − 𝑢1) cos(𝛾) (35) 

  𝑌 = 𝑑𝑣2(𝑢1 + 𝑓 sin(𝛾) − 𝑢1 cos(𝛾))(𝑢1𝑢2 + 𝑓2) sin(𝛾) + 𝑓( 𝑢2 − 𝑢1) cos(𝛾) 
(36) 

 

  𝑍 = 𝑓𝑑(𝑢2 − 𝑓 sin(𝛾) − 𝑢2 cos(𝛾))(𝑢1𝑢2 + 𝑓2) sin(𝛾) + 𝑓( 𝑢2 − 𝑢1) cos(𝛾) (37) 

 

The theory of propagation of error can then be applied to these equations to determine the 

measurement uncertainty of the camera system. The variances associated with the camera will be 

modeled as systematic for the focal length and target distance, while the rest will be modeled as 

random. To begin, the partial derivatives of each coordinate position are taken with respect to 

each variable within the equations. Due to the size of each partial derivative of the X, Y, and Z 

components, only the partial derivatives associated with the random variables of the X-axis will 

be shown. However, the other two are taken in a similar manner.  

 
𝜕𝑋𝜕𝑢1  =  − 𝑑𝑓(𝑓2 sin(𝛾)2 + 2𝑓𝑢2 cos(𝛾) sin(𝛾) − 𝑓𝑢2 sin(𝛾) + 𝑢22 cos(𝛾)2 −𝑢22  cos(𝛾)2(𝑓2 sin(𝛾) − 𝑓𝑢1 cos(𝛾) + 𝑓 𝑢2 cos(𝛾) + 𝑢1𝑢2 sin(𝛾))2  

 
(38) 

 
𝜕𝑋𝜕𝑢2  =  𝑑𝑓𝑢1(𝑢1 − 𝑢1 cos(𝛾) + 𝑓 sin(𝛾)(𝑓2 sin(𝛾) − 𝑓𝑢1 cos(𝛾) + 𝑓 𝑢2 cos(𝛾) + 𝑢1𝑢2 sin(𝛾))2  

 
(39) 

 
𝜕𝑋𝜕𝑑  =  𝑢1(𝑢2 cos(𝛾) − 𝑢2 + 𝑓 sin(𝛾)𝑓2 sin(𝛾) − 𝑓𝑢1 cos(𝛾) + 𝑓 𝑢2 cos(𝛾) + 𝑢1𝑢2 sin(𝛾) (40) 
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𝜕𝑋𝜕𝑓  =  𝑑𝑢1(cos(𝛾) − 1)( 𝑢22 cos(𝛾) + 𝑢1𝑢2 −𝑓2 − 𝑓2 cos(𝛾) + 2𝑓𝑢2 sin(𝛾)(𝑓2 sin(𝛾) − 𝑓𝑢1 cos(𝛾) + 𝑓 𝑢2 cos(𝛾) + 𝑢1𝑢2 sin(𝛾))2  

 
(41) 

 

𝜕𝑋𝜕𝛾  =  𝑑𝑢1(𝑓2𝑢1 + 𝑢1𝑢22 − 𝑓2𝑢2 cos(𝛾) − 𝑢1𝑢22 cos(𝛾) + 𝑓𝑢22 sin(𝛾) − 𝑓𝑢1𝑢2 sin(𝛾)(𝑓2 sin(𝛾) − 𝑓𝑢1 cos(𝛾) + 𝑓 𝑢2 cos(𝛾) + 𝑢1𝑢2 sin(𝛾))2  

 
 

(42) 

Once the partial derivatives are taken, the random uncertainties are applied to the 

derivatives to determine the uncertainty of each coordinate position in a similar fashion to the 

laser tracker discussed previously. The sum of squares of the three coordinate position 

uncertainties are then taken to determine the total uncertainty of the 3D coordinate position 

associated with the camera position:  

 𝑈𝑐𝑎𝑚𝑒𝑟𝑎 (𝑚) = √𝛿𝑋2 + 𝛿𝑌2 + 𝛿𝑍2 

 
(43) 

The analysis is then conducted given the following assumptions and uncertainty specifications:  

 

 

Variable  Estimated True Value  Random Uncertainty Systematic 
Uncertainty 

Left pixel 
coordinate(u1) 

0 0.68E-6 (m) 0 

Right pixel coordinate 
(u2) 

0 0.68E-6 (m) 0 

Left pixel coordinate 
(v1) 

0 0.68E-6 (m) 0 

Right pixel coordinate 
(v2) 

0 0.68E-6 (m) 0 

Target Distance (d) 1.5, 7 (m) 0 24E-9 (m) 
Focal Length (f) 30, 50, 70 (mm) 0 24E-9 (m) 

Camera angle (𝛾) 30, 40, 50 (deg) 1.3889E-6 (deg) 0 
Table 44: Estimated Values and their uncertainty 

 

 

Note, the uncertainties given to each variable come from [60] since the Optotrak Certus 

data sheet does not provide these values. Also, according to the Optotrak Certus data sheet the 
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working distance for the camera is a minimum of 1.5 meters and a maximum of 7 meters. 

Therefore, the analysis includes both distances to capture the minimum and maximum error the 

Optotrak Certus is capable of. With a focal length of 40 mm a viewing angle of 30 degrees, and a 

distance of 1.5 meters, the camera system achieves an uncertainty of 0.0721 mm which is very 

close to the claimed 0.1 mm accuracy of the sensor. However, when the distance is increased to 7 

meters the uncertainty increases to 0.4488 mm meaning that target distance plays a role in 

measurement uncertainty. Another trend found was that the uncertainty was determined by the 

focal length of the camera. The ideal focal length was found to be around 30 mm with an 

increase of uncertainty as you increased or decreased the focal length from the ideal 30 mm. 

Lastly, the verge angle (ψ) played a key role in determining the uncertainty of the system. As the 

verge angle (ψ) decreased and the viewing angle increased (𝛾), the overall system uncertainty 

decreased. This trend is caused by the error ellipse from the triangulation method becoming 

smaller as the verge angle of the cameras decrease [60]. The following figure below represents 

the trends found during this analysis:  
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Figure 57: Uncertainty trend of Optotrak Certus 

 

 

4.1.3 Coordinate Measurement Arm  

 

The method of using a CMM will now be evaluated with a focus on using a Faro Arm 

Quantum E VS 2.5m 7-axis. This system uses 7 angle encoders within the faro arm to determine 

the distance and angle associated with each recorded point. To obtain the desired angles, the 

CMM will be mounted on the rotation axis of the hub using a temporary mounted base. A 

calibration plate will then be attached to the blade with three measurement points. The Faro arm 

is then be calibrated and the rotor plane will be defined in a similar manner to the laser tracker 

and photogrammetric system. Once calibrated, the blade will be moved through its range of 

motion and data points will be taken using the probe tip of the Faro arm. With the measurement 

process defined, the uncertainty analysis is conducted to ensure proper measurement tolerances.  
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Two factors influence the uncertainty associated with the use of the Faro arm: the distance 

measurement and the encoder angle measurement [61]. The uncertainty associated with the 

distance measurement was defined by using the distance formula between two 3-D points seen in 

Figure 58 and equation 8.  

 

 

Figure 58: Distance between two 3D points 

 

 

 𝑑 =  √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 (44) 

                                                      

The partial derivatives with respect to the distance equation and its variables are taken presented 

in the following manner:   

 

𝜕𝑑𝜕𝑋1  =  (𝑋1 − 𝑋2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 

 

(45) 
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𝜕𝑑𝜕𝑌1  =   (𝑌1 − 𝑌2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 

 

(46) 

 

𝜕𝑑𝜕𝑍1  =  (𝑍1 − 𝑍2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 

 

(47) 

 

𝜕𝑑𝜕𝑋2  =   −(𝑋1 − 𝑋2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 

 

(48) 

 

𝜕𝑑𝜕𝑌2  =  −(𝑌1 − 𝑌2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2  
 

(49) 

 

𝜕𝑑𝜕𝑍2  =  −(𝑍1 − 𝑍2)√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 

 

(50) 

 

After taking the partial derivatives, the theory of propagation of error is applied and each 

derivative is multiplied by its associated variance and squared. For this model, only random error 

will be evaluated based on the uncertainty of the measured components from the Faro Arm 

datasheet. The following equation represents the uncertainty in distance measurement between 

two points in space in condensed form:  

 

 𝑈𝑑 = √(𝑋2 − 𝑋1)2(𝑋1𝜎𝑋 + 𝑋2𝜎𝑋)2 + (𝑌2 − 𝑌1)2(𝑌1𝜎𝑌 + 𝑌2𝜎𝑌)2 + (𝑍2 − 𝑍1)2(𝑍1𝜎𝑍 + 𝑍2𝜎𝑍)2(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2  

 

(51) 

 

Since there was little information on the Faro Arm Quantum being evaluated in terms of 

the uncertainty associated with the measurement capability, the specifications from the Faro 

Gage Arm were used. Therefore, the specifications of the X, Y, and Z components are as follows 

[62]:  

 Error in X (σx): 0.000005 m + (working distance) * 0.000008 m/ meter  
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 Error in Y (σY): 0.000005 m + (working distance) * 0.000008 m/ meter 

 Error in Z (σZ): 0.000005 m + (working distance) * 0.000008 m/ meter 

Using these specifications and the assumption that the arm is on the same plane as the rotor at a 

working distance of 1.5 meters, the distance uncertainty was calculated to be 3.40E-5 meters 

with a trend of uncertainty increasing as the distance increases seen in Figure 59.  

 

 

Figure 59: Distance Uncertainty Trend 

 

 

To keep the units consistent, the uncertainty of the distance needs to be converted to the units of 

degrees. This is done in a similar manner to the laser tracker and Optotrak (Figure 3).  
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𝑈𝑑 = tan−1( 𝑈𝑚𝑒𝑡𝑒𝑟𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

 
(52) 

Therefore the uncertainty transformation given a working distance of 1.5 meters becomes 1.97E-

5 degrees.  

Once the distance uncertainty is modeled, the focus can shift to evaluating the uncertainty 

associated with the vector angles measured by the Faro Arm. To simplify the uncertainty model, 

the two vectors will be assumed to be on the same plane (Y and Z coordinate are the same) as 

each other. This method involves calculating the angle between two vectors formed about the 

same axis of rotation as seen in Figure 60.  

 

 

Figure 60: Cosine method to determine angle between 2 vectors 

 

 

 
𝐶𝑜𝑠(𝛩) =   𝑉1⃑⃑  ⃑ ⋅  𝑉2⃑⃑  ⃑‖𝑉1⃑⃑  ⃑‖ ⋅ ‖𝑉2⃑⃑  ⃑‖ 

 

(53) 
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For the method of cosines to be applied, three points must be generated to form an angle 

between the two vectors. Therefore, P1 will be defined as (X1,Y1,Z1), P2 will be defined as 

(X2,Y2,Z2), and P0 will be the origin of the circle at (X3,Y3,Z3). Now that the three points are 

defined, vectors 1 and 2 can be generated and V1 becomes (X1-X3,Y1-Y3,Z1-Z3) while V2 

becomes (X2-X3,Y2-Y3,Z2-Z3). The propagation of error theory is then applied and the partial 

derivatives are taken with respect to each component of the system. Due to the length of the 

partial derivatives and derived data reduction equation it will not be presented, therefore, refer to 

the appendix for the MATLAB script to review these calculations. It was found that as the delta 

angle increased the uncertainty decreased seen in Figure 61.   

 

 

Figure 61: Angle Uncertainty Trend 
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The uncertainty associated with the angle was found to be 1.91E-6 degrees. After 

determining the uncertainty associated with the distance and vector angle, the total uncertainty 

can be found by combining the two.  

 
𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑑 + 𝑈𝜃 

 
(54) 

The two uncertainties are then combined to determine the overall uncertainty of the Faro Arm 

Quantum found to be 5.31E-5 degrees. Since distance is the driving factor for the uncertainty of 

the Faro Arm, the overall trend of the uncertainty increases as the distance and delta angle 

increase seen in Figure 62.  

 

 

Figure 62: Total Uncertainty of Faro Arm Trend 
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4.1.4 Gyroscope 

 

The final method evaluated was the use of an IMU with the main focus of analyzing the 

gyroscope within the measurement unit. The specifications used for this evaluation are obtained 

from the Honeywell HG4930-CA1 data sheet. This system would consist of mounting the IMU 

to the fabricated NASA Langley Angle Measurement System (AMS) package mount already in 

use. With the AMS and IMU package mounted, the pitch and flap angle will be measured by the 

AMS package and the lead-lag angle will be measured by the IMU. These two sensors combined 

will allow for a dynamic calibration which will decrease calibration time as well as increase 

calibration accuracy. Since the AMS package is well documented within the NASA archives, 

only the IMU package needed to be evaluated. To model the IMU, the method outlined in [63] 

was largely followed, therefore, more details can be found there. This method models the 

gyroscope within the IMU as being placed at the latitude it will be used with respect to Earth 

seen in Figure 63.  
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Figure 63: Modeling Gyroscope to Determine Uncertainty 

 

 

Once the location of the gyro is known with respect to the Earth, the rotation rate of the sensor at 

the specified latitude,𝜑, must correspond with the rotation rate, 𝜔𝐸, of the Earth. This is 

performed in the following manner:  

 𝜔0 = [ 0𝜔𝐸 cos𝜑𝜔𝐸 sin𝜑] (55) 

Once the gyroscope axis is aligned with the Earth’s rotation axis, the right-hand rule can be used 

to define the rotation matrix of the gyroscope about the Z-axis of the Earth [63].  

 
𝑅(𝛹) = [cos𝛹 − sin𝛹 0sin𝛹 cos𝛹 00 0 1] 

 

(56) 
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The rotation matrix is then applied to the angular velocity of the gyroscope since the Earth’s 

coordinate system is fixed [63], this now defines the angular velocity of the gyroscope with 

respect to the Earth:  

 
𝜔𝐺 = [cos𝛹 −sin𝛹 0sin𝛹 cos𝛹 00 0 1] [ 0𝜔𝐸 cos𝜑𝜔𝐸 sin 𝜑] =  [−𝜔𝐸 cos𝜑 sin𝛹𝜔𝐸cos𝜑cos𝛹𝜔𝐸sin𝜑 ] 

 

(57) 

The vector WG is then projected onto the XY-plane of the Earth so that the lag angle can be 

calculated:  

 𝜔𝐺𝑝 = [1 0 00 1 00 0 0] [−𝜔𝐸 cos𝜑 sin𝛹𝜔𝐸cos𝜑cos𝛹𝜔𝐸sin𝜑 ] = [−𝜔𝐸 cos𝜑 sin𝛹𝜔𝐸cos𝜑cos𝜓0 ] (58) 

 

For calculation simplicity, the reference point of the gyroscope will be aligned with the x-axis 

offset by the specified Ψ angle [63] seen in Figure 64. 

 

Figure 64: Projection of Gyroscope onto XY-plane 
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The errors of gyro bias drift and angle random walk (ARW) are then added to model the sensor 

more accurately. Therefore, the gyroscope velocity projected onto the XY-plane becomes:  

 
𝜔𝐺𝑝 = 𝜔𝐸cos𝜑cos𝜓 + 𝜀𝑏𝑖𝑎𝑠 + 𝜀𝐴𝑅𝑊 

 
(59) 

Since desired measured value is the delta angle the gyroscope travels, the angular velocity must 

be multiplied by time to produce the delta angle seen in the following equation:  

 
ɵ𝐺 = (𝜔𝐸cos𝜑cos𝜓 + 𝜀𝑏𝑖𝑎𝑠 + 𝜀𝐴𝑅𝑊) ∗ 𝑡𝑖𝑚𝑒 

 
(60) 

Note, the data reduction equation does not include the turn on bias value and only 

includes the bias in run instability, 𝜀𝑏𝑖𝑎𝑠 , and the ARW uncertainty, 𝜀𝐴𝑅𝑊. The turn on bias value 

is not needed for this analysis due to it being a constant known value each time the gyroscope is 

initialized. During the data analysis, this value is subtracted out to obtain the true measured 

value.  Now that the data reduction equation is formed, the theory of propagation of error can be 

applied to determine the uncertainty with the gyroscope. Therefore, the partial derivatives of 

each component with respect to the data reduction equations were taken except with respect to 

time. Time was neglected due to its minuscule effect on the systems uncertainty.   

 

𝜕ɵ𝐺𝜕𝜔𝐸  =  cos𝜑cos𝜓  
 
 

(61) 

 𝜕ɵ𝐺𝜕𝜑  =  −𝜔𝐸 cos(𝜓) sin(𝜑) 
(62) 

 

 

 
𝜕ɵ𝐺𝜕𝜓  =  −𝜔𝐸 cos(𝜑) sin(𝜓) (63) 
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𝜕ɵ𝐺𝜕Ɛ𝐵𝑖𝑎𝑠  =  1 (64) 

 

 
𝜕ɵ𝐺𝜕Ɛ𝐴𝑅𝑊  =  1 (65) 

 

Now that the partial derivatives are taken, the systematic error is evaluated by applying equation 

(3) to each partial derivative. Therefore, the systematic error becomes:  

 𝐵𝜔𝐺2 = (𝜕ɵ𝐺𝜕𝜔𝐸 ∗ 𝐵𝜔𝐸)2 +(𝜕ɵ𝐺𝜕𝜑 ∗ 𝐵𝜑)2+ (𝜕ɵ𝐺𝜕𝜓 ∗ 𝐵𝜓)2 + ( 𝜕ɵ𝐺𝜕Ɛ𝐵𝑖𝑎𝑠 ∗ 𝐵Ɛ𝐵𝑖𝑎𝑠)2 + ( 𝜕ɵ𝐺𝜕Ɛ𝐴𝑅𝑊 ∗ 𝐵Ɛ𝐴𝑅𝑊)2 (66) 

 

Once the systematic error is calculated, the random error can be calculated by applying equation 

(4) to the partial derivatives. Therefore, the random error becomes:  

 𝑃𝜔𝐺2 = (𝜕ɵ𝐺𝜕𝜔𝐸 ∗ 𝑃𝜔𝐸)2 +  (𝜕ɵ𝐺𝜕𝜑 ∗ 𝑃𝜑)2+ (𝜕ɵ𝐺𝜕𝜓 ∗ 𝑃𝜓)2 + ( 𝜕ɵ𝐺𝜕Ɛ𝐵𝑖𝑎𝑠 ∗ 𝑃Ɛ𝐵𝑖𝑎𝑠)2 + ( 𝜕ɵ𝐺𝜕Ɛ𝐴𝑅𝑊 ∗ 𝑃Ɛ𝐴𝑅𝑊)2 (67) 

 

The estimated true values and their associated uncertainties can then be applied to the 

uncertainty equations to generate the systematic and random uncertainty. The values for the 

ARW and Bias of the gyroscope are based off the data sheet for the Honeywell IMU. A study 

conducted by John Wahr evaluating the rotation rate of the Earth determined that the classical 

astronomical techniques are accurate to about 0.2 to 0.4 msec [64]. Therefore, this nominal value 

equates to an average uncertainty of 5.020833E-08 degrees per hour associated with rotational 

rate of the Earth. Next, the location of the gyroscope with respect to Earth must be known to 

estimate the rate at which the gyroscope is spinning with Earth’s rotation. To determine the 

location of the gyroscope, Google Earth was used to provide the latitude and longitude of the 

sensor location. However, Google Earth does not provide the uncertainties associated with the 

coordinate positions generated by the program. Therefore, a literature search was conducted and 

an article by Mohammed et. al was found discussing the uncertainties associated with these 
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measurements. Their findings concluded that the average height difference observed from the 

supplied Google Earth value was 1.73 meters [65]. This value is then translated into the 

uncertainty associated with the latitude which was found to be 2.71543E-07 degrees. These 

values can then be broken down into estimated true values, systematic uncertainty, and random 

uncertainty as seen in Table 45.  

 

Variable Estimated True Value Systematic 
Uncertainty 

Random Uncertainty 

Earth’s Rotation (𝜔𝐸) 15.041 (deg/hr) 0 (deg/hr) 5.20E-8 (deg/hr) 

Latitude Location (𝜑) 37.086 (deg) 0 (deg) 2.71543E-7 (deg) 

X-Axis Offset (𝜓) 0 deg 0 (deg) 2.71543E-7 (deg) 

Bias Error (Ɛ𝐵𝑖𝑎𝑠) 0.25 (deg/hr) 0.25 (deg/hr) 0 (deg/hr) 

ARW Error (Ɛ𝐴𝑅𝑊) 0.04 degrees/√ℎ𝑜𝑢𝑟 0 (deg/hr) 0.04 degrees/√ℎ𝑜𝑢𝑟) 

Table 45: True and Uncertainty Values of Gyroscope 

 

 

The quantified values can then be applied to equations 3 and 4 to determine the systematic and 

random error within the gyroscope. The values are then summed together and the square root is 

taken, seen in equation 5, to calculate the total uncertainty of the gyroscope. The uncertainty of 

the gyroscope is then multiplied by the coverage factor of 2 to achieve a 1 sigma deviation in the 

following manner [55]: 

 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (68) 
 

Therefore, to achieve an uncertainty of ±0.1 degrees within a 95% confidence interval the 

gyroscope must be operated for no longer than 11 minutes as seen in Figure 65. 
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Figure 65: Gyroscope Uncertainty over time 

 

 

4.2 Monte Carlo Method  

 

The Monte Carlo Method is a powerful tool used to analyze the uncertainties associated 

with systems containing complex equations as an alternative method to propagation of error and 

where correlation among error sources may exist. This analysis begins by inputting the assumed 

true values of each variable used to model the system into the simulator. Once the assumed true 

values are entered, the associated random and elemental systematic uncertainties pertaining to 

these values must be entered into the simulation. Typically, these values use a Gaussian 

distribution, however, other distributions can be used to represent the uncertainties [55]. After 

determining the parent distribution of the uncertainties, the simulation can begin. Each estimated 

true value is given an associated uncertainty from the parent Gaussian distribution. Once the 
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uncertainty is added to the estimated true value, the model uses this value in the system’s 

equations to produce a result that represents the calculated system output. The process is 

repeated N number of times until the desired sample size is obtained. Ideally, 10,000 iterations is 

usually a sufficient sample size when analyzing the uncertainties associated with the system, 

however, more iterations may be needed for the system to properly converge [55]. Once the 

values are calculated within the simulator, the mean and standard deviation of the values are used 

to determine the uncertainty associated with the system. The direct Monte Carlo Method can be 

summarized in a simple flow chart for visual interpretation of the process as seen in Figure 66.  
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Figure 66: Direct Monte Carlo Method Flowchart [55] 

 

 

4.2.1 Gyroscope 

 

Given the ease of application of the Monte Carlo Method, it was in the best interest of the 

sensor analysis to analyze the IMU using the Monte Carlo Method. Not only will this provide a 

better understanding of the uncertainty associated with sensor, but it will also aid in the 

justification of choosing the IMU over the other techniques. This analysis will begin using 

equation 60 derived previously:  

 ɵ𝐺 = (𝜔𝐸cos𝜑cos𝜓 + 𝜀𝑏𝑖𝑎𝑠 + 𝜀𝐴𝑅𝑊) ∗ 𝑡𝑖𝑚𝑒 (60) 
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The estimated true values associated with the variables in equation 67 are as follows:  

 WE = 15.041 deg/hour (Earth’s rotation rate) 

 𝜑 = 37.086 degrees (Latitude position of Gyroscope) 

 𝜓 = 0 degrees (X-Axis Offset of Gyroscope) 

 𝛼𝑖 = 10 degrees (Incremental change in angle) 

 𝜀𝑏𝑖𝑎𝑠 = 0.25 degrees/hour (Bias error in gyroscope) 

 𝜀𝐴𝑅𝑊 = 0.04 degrees/√ℎ𝑜𝑢𝑟 (angle random walk of gyroscope) 

     Note, the uncertainty associated with time is very small therefore it will not be accounted 

when applying uncertainties to each value. Following the procedure of the Monte Carlo Method, 

the uncertainties of each variable must be generated to continue the analysis. These values will 

remain the same to keep the analysis consistent with the propagation of error analysis. For this 

simulation, the sample size used was 10,000 and the amount of time the gyroscope was 

simulated to be on for was 12 minutes. After the simulation was conducted, the expanded 

uncertainty associated with the gyroscope was found to be 0.0996 degrees. 
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Figure 67: Gyroscope uncertainty over time 

 

 

When compared to the propagation of error technique, the results coincide with each other only 

differing by 1 minute. Therefore, the confidence in choosing the IMU over the other three 

methods is greater and better justified.  
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CHAPTER 5 

PROPOSED CALIBRATION METHOD 

 

 

The new calibration method will involve mounting the modified AMS bracket 

accommodating the IMU to the blade grip. This will be achieved by drilling and tapping four 

precise holes on the bottom of the current AMS bracket that will allow for the IMU to be 

securely attached. By utilizing the current AMS bracket, the production time and cost will be 

reduced and fitment issues should not be present when mounting the newly modified bracket to 

the blade grips.  The IMU being used for the new calibration method will be the Honeywell 

HG4930 due to its low drift of 0.04 
𝑑𝑒𝑔𝑟𝑒𝑒𝑠√ℎ𝑟  and small bias error of 0.25 

𝑑𝑒𝑔𝑟𝑒𝑒𝑠ℎ𝑟 . These values are 

used during the uncertainty analysis conducted in the previous section determining that this 

sensor will be able to accurately measure the blade positions.  

Once the modified AMS brackets are mounted to each blade grip the new calibration 

process can be conducted. This process begins by ensuring the swashplate is completely level 

utilizing the four AMS packages individually mounted to each blade. By integrating an AMS 

package on each blade, the operator is able to see the swashplate angle in each quadrant 

simultaneously. This method is superior to the previous method since multiple measurements 

and movement of equipment position are not needed. Therefore, all the operator has to do is 

adjust the control inputs of the swashplate until all AMS packages read zero degrees. Once the 

swashplate is level, the focus is shifted towards calibrating the blades attached to the hub. This 

process begins by ensuring the blade is set to a zero reference, meaning that the pitch, flap, and 

lead-lag angles are all set to zero. The zeroing of the pitch and flap will be done using the 

attached AMS package and the lead-lag position will be zeroed using the existing marks on the 
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hub and rotor cuff link. Once the blades are in their respective zero position, the blades will be 

ready for calibration to begin. The calibrator will then move the blade in the maximum positive 

pitch, flap, and lag angle desired and data will be taken. The blade should then be moved back to 

the zero reference to reorient the IMU. After the IMU is reoriented, the blade will then be moved 

to the maximum negative pitch, flap, and lag angle desired and data will be taken. The blade will 

then be moved back to the reference position so the IMU is reoriented once again. After each of 

the three data points are taken, the blade sensors will be zeroed, assuming there are no 

interactions between each degree of freedom.  

Data acquisition will be done with the current open channels in the National Instruments 

(NI) server being used. The data from the AMS package and the IMU will be coupled together 

for full system evaluation. To ensure that both sensors capture similar data, they will be sampled 

at the same rate and initialized at the same time. The AMS package will provide a direct angle 

output using its transformation equations relating the inertial movements the sensor experiences 

to blade orientation. The IMU package will require a set of transformation equations as well that 

associate its inertial and gyroscopic movements. The inertial movements will be transformed 

using the XYZ Euler sequence in the following manner:  

This process begins by combining equations 6-8 from the uncertainty analysis section with the z-

axis aligned downward [57]:  

 
𝑅𝑥𝑦𝑧 = 𝑅𝑥(𝜙)𝑅𝑦(ɵ)𝑅𝑧(𝜓) (001) 

 

(69) 

 

This is then simplified to [57]:  
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𝑅𝑥𝑦𝑧 = ( −sin(ɵ)cos(ɵ) sin(𝜙)cos(ɵ) cos(𝜙)) 

 

(70) 

 

Equation (63) is then rewritten to relate the roll and pitch angles to the accelerometer readings 

Ai:  

where 

 

𝑖 =  𝑥, 𝑦, 𝑧 
 𝐴𝑖‖𝐴𝑖‖ =  ( − sin(ɵ)cos(ɵ) sin(𝜙)cos(ɵ) cos(𝜙)) 

 

(71) 

 

The roll and pitch angles are then solved from equation 70 [57]:  

 (roll) tan(𝜙) =  𝐴𝑦𝐴𝑧  

 

(72) 

 

(pitch) tan(ɵ) =  −𝐴𝑥√𝐴𝑦2 + 𝐴𝑧2 

 

(73) 

 

Note, the sensor output will be in millivolts therefore the sensitivity of the sensor must be taken 

into consideration to convert the voltage output to an experienced sensor acceleration. This is 

done by dividing the voltage output by the sensor sensitivity: 

 
𝐴𝑖 = 𝑚𝑉𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔) 

 
(74) 

  

The gyroscopic movements will be transformed into real-time angle measurements using time 

integration. Time integration must be used to determine the delta angle the gyroscope moved 
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since the output is an angular velocity. Therefore, the gyroscope output will be modeled in the 

following manner:  

 
𝛩(𝑡) = ∫ 𝑑𝛩𝑑𝑡 𝑑𝑡𝑡

0   
 

(75) 

where 

 

 

 

𝑑𝛩𝑑𝑡 = 𝑚𝑉𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑑𝑒𝑔𝑠 )  
 

(76) 

Similar to the accelerometer data, the gyroscope indirectly outputs the angular velocity through a 

voltage signal. This voltage is then divided by the sensitivity of the sensor deriving the angular 

velocity the sensor is experiencing.  

This proposed method has the potential to reduce the current calibration time of three 

hours per blade to approximately thirty minutes or less per blade. This drastic time reduction 

would result in user satisfaction as well as reduced operating costs. Also, if problems arise 

during testing, the blades should be able to be calibrated within the same day of operation. 

Another advantage of using the new proposed method is having the ability to compare the data 

from the AMS package and the IMU. Not only will this aid in the accuracy and repeatability of 

the calibration process, it allows a comparison study to be conducted between the two sensors. If 

the two sensors are found to be in agreement with each other, there is the potential to only use 

the IMU for the full calibration. This will reduce the calibration equipment cost as well as 

increase the robustness of the calibration itself. 

 

 



124 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 

During investigation of the current calibration method, the rotorcraft testing hub was 

analyzed and deemed to have a larger error than the desired ±0.1 degree tolerance. This 

discovery lead to a literature review analyzing various new methods that could be used to 

increase the accuracy of the system. These included using a laser tracker system, a 

photogrammetry system, a coordinate measurement arm, or an inertial based measurement 

device. Upon discovering these four new methods, an uncertainty analysis was conducted to aid 

in choosing the best option of the four. During this analysis it was found that the laser tracker 

system and the photogrammetry system had the best accuracy, however, they were the most 

sophisticated systems in terms of set up and data analysis. Therefore, due to the ease of 

integration and simplicity of data reduction, the Honeywell IMU was the chosen sensor to 

conduct the new calibration. Once the sensor was chosen, a new calibration method was 

proposed providing the necessary equations for converting the sensor outputs to angle outputs. 

This new method suggests that the calibration time can be reduced to 30 minutes or less per 

blade versus 3 hours as well as increase user friendliness of the calibration operation by being 

able to calibrate all factors at one time. Unfortunately, the new calibration method was unable to 

be implemented in time to test and report results for this thesis due to resource constraints.  

Given the resource constraints, future work involving implementing the new calibration 

method is needed to verify that it will be an improvement over the current method. After 

implementing the new method, data collection and analysis will be performed of the system. This 

data will then be compared to the current calibration method to determine if the new method 
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contains less error. Also, a comparison study between the AMS package and the IMU can be 

conducted to determine if they are in agreement. If they are in agreement, there is a potential to 

only use the IMU for the full calibration of the pitch, flap, and lead-lag sensors. Furthermore, it 

would be of interest to implement the new calibration method for leveling of the swashplate 

using the onboard IMU sensors to reduce the swashplate leveling time.  
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APPENDIX 

 

Camera Uncertainty  

clc; clear all; close all; 

 

syms d f u v s x y z theta u1 u2 v1 v2 su1 su2 sv1 sv2 sd sf stheta 

 

R = [cos(theta),0,sin(theta);0,1,0;-sin(theta),0,cos(theta)]; 

 

C = [d*sin(theta);0;d-d*cos(theta)]; 

 

T = -R*C; 

 

A = [-f,0,0,0;0,-f,0,0;0,0,1,0]; 

 

 

RR =  [- sin(theta)*(d - d*cos(theta)) - d*cos(theta)*sin(theta); 

                                                         0; 

            d*sin(theta)^2 - cos(theta)*(d - d*cos(theta));1]; 

 

LL = [cos(theta),0,sin(theta);0,1,0;-sin(theta),0,cos(theta);0,0,0]; 

 

b = [LL,RR]; 

 

comb = A*b; 

 

R1 = u1*A(3,:)-A(1,:); 

R2 = v1*A(3,:)-A(2,:); 

R3 = u2*comb(3,:)-comb(1,:); 

R4 = v2*comb(3,:)-comb(2,:); 
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% R1 = u1*(A(3,:)-A(1,:)); 

% R2 = v1*(A(3,:)-A(2,:)); 

% R3 = u2*(comb(3,:)-comb(1,:)); 

% R4 = v2*(comb(3,:)-comb(2,:)); 

 

AA = [R1;R2;R3;R4]; 

 

Cart = [x;y;z;1]; 

 

eq = AA*Cart==0; 

 

solx = solve(eq); 

 

X = simplify(solx.x); 

Y = simplify(solx.y); 

Z = simplify(solx.z); 

 

% partial derivatives of X 

 

dx1 = simplify(diff(X,u1)); 

dx2 = simplify(diff(X,u2)); 

dx3 = simplify(diff(X,d)); 

dx4 = simplify(diff(X,f)); 

dx5 = simplify(diff(X,theta)); 

 

Ux = sqrt((dx1*su1)^2+(dx2*su2)^2+(dx3*sd)^2+(dx4*sf)^2+(dx5*stheta)^2); 

 

% partial derivatives of Y 

dy1 = simplify(diff(Y,u1)); 

dy2 = simplify(diff(Y,u2)); 

dy3 = simplify(diff(Y,d)); 
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dy4 = simplify(diff(Y,f)); 

dy5 = simplify(diff(Y,theta)); 

dy6 = simplify(diff(Y,v2)); 

 

Uy = sqrt((dy1*su1)^2+(dy2*su2)^2+(dy3*sd)^2+(dy4*sf)^2+(dy5*stheta)^2)+(dy6*sv2)^2; 

 

% partial derivatives of Z 

dz1 = simplify(diff(Z,u1)); 

dz2 = simplify(diff(Z,u2)); 

dz3 = simplify(diff(Z,d)); 

dz4 = simplify(diff(Z,f)); 

dz5 = simplify(diff(Z,theta)); 

 

Uz = sqrt((dz1*su1)^2+(dz2*su2)^2+(dz3*sd)^2+(dz4*sf)^2+(dz5*stheta)^2); 

 

 

% define variables 

Utotal = zeros(7,1); 

for i = 1:7 

u1 = 0; 

su1 = 0.68E-6; %micrometers 

u2 = u1; 

su2 = su1; 

v1 = 0; 

sv1 = su1; 

v2 = v1; 

sv2 = sv1; 

f = 70; 

sf = 24E-9; %m 

d = i*1000; %mm 

sd = sf; %m 
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theta = deg2rad(30); 

stheta = deg2rad(0.005/3600); 

 

UX = double(subs(Ux)); 

 

UY = double(subs(Uy)); 

 

UZ = double(subs(Uz)); 

 

Utotal(i) = sqrt(UX^2+UY^2+UZ^2) 

end 

Published with MATLAB® R2019b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab
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Laser Tracker Uncertainty  

syms d theta phi dd dtheta dphi 

% Define functions that model laser tracker 

 

X = d*cosd(theta)*sind(phi); 

Y = d*sind(theta)*sind(phi); 

Z = d*cosd(phi); 

 

% Take partial derivatives 

 

dX = sqrt((diff(X,d)*dd)^2+(diff(X,theta)*dtheta)^2+(diff(X,phi)*dphi)^2); 

dY = sqrt((diff(Y,d)*dd)^2+(diff(Y,theta)*dtheta)^2+(diff(Y,phi)*dphi)^2); 

dZ = sqrt((diff(Z,d)*dd)^2+(diff(Z,theta)*dtheta)^2+(diff(Z,phi)*dphi)^2); 

 

% 

% Define values 

distance = 60; %meters 

for d = 1:distance 

%d = 5; % meters 

dd = .0000005; %meters 

theta = 0; % degrees (max pitch) 

dtheta = 0.000015+(0.000006*d); %meters + 6 microm/m 

% convert dtheta from m/m to deg/deg 

step1 = d*sind(theta); 

step2 = step1+dtheta; 

step3 = asind(step2/d); 

dtheta = step3-theta; 

 

phi = 0; %degrees (max yaw) 

dphi = dtheta; %meters 
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% plug variables in 

 

dX1 = double(subs(dX)); 

dY1 = double(subs(dY)); 

dZ1 = double(subs(dZ)); 

 

% Total Uncertainty 

 

Ulaser(d) = dX1+dY1+dZ1; %meters 

 

Ulaserd(d) = atan(Ulaser(d)/distance); %degrees 

end 

Published with MATLAB® R2019b 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab
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Coordinate Measurement Arm Uncertainty  

Count = 10; 

P1 = [1 2 3]; 

a = 0.01; 

%b = 2; 

D = 1.5; 

 

UFarom = zeros(Count,1); 

UFarod = zeros(Count,1); 

 

for k = 1:Count 

    a = a+0.19; 

    %b = b+1; 

% Define givens 

P2 = [a 2 3]; 

 

dx1 = 0.000005; 

dx2 = dx1; 

dy1 = 0.000005; 

dy2 = dy1; 

dz1 = 0.000005; 

dz2 = dz1; 

 

% Determine uncertainty in distance 

Udd(k) = sqrt(((P2(1)-P1(1))^2*(P1(1)^2*dx1^2+P2(1)^2*dx2^2)+... 

     (P2(2)-P1(2))^2*(P1(2)^2*dy1^2+P2(2)^2*dy2^2)+... 

     (P2(3)-P1(3))^2*(P1(3)^2*dz1^2+P2(3)^2*dz2^2))/... 

     ((P2(1)-P1(1))^2+(P2(2)-P1(2))^2+(P2(3)-P1(3))^2)); %meters 

UDD(k) = atan(Udd(k)/D); 

 

syms ax ay az bx by bz dax day daz dbx dby dbz 
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Theta = acos((ax*bx + ay*by + az*bz)/(sqrt(ax^2+ay^2+az^2)*sqrt(bx^2+by^2+bz^2))); 

 

Utheta = sqrt((diff(Theta,ax)*dax)^2+(diff(Theta,ay)*day)^2+(diff(Theta,ay)*day)^2+... 

        (diff(Theta,bx)*dbx)^2+(diff(Theta,by)*dby)^2+(diff(Theta,bz)*dbz)^2); 

 

% substitue values in 

ax = P1(1);ay = P1(2);az = P1(3); 

bx = P2(1);by = P2(2);bz = P2(3); 

 

dax = 0.000005; 

day = dax; 

daz = dax; 

 

dbx = 0.000005; 

dby = dbx; 

dbz = dbx; 

 

UTheta(k) = double(subs(Utheta)); %degrees 

 

% % Combine both uncertainties in degrees 

 

UFarod(k) = UTheta(k) + UDD(k); %degrees 

 

theta(k) = tan(a/D); 

end 
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Gyroscope Uncertainty 

clc; clear all; close all; 

 

% Define variables in data reduction equation 

 

syms We sWe rWe Psi sPsi rPsi Phi sPhi rPhi ebias sbias rbias earw sarw rarw t st rt 

 

% Define data reduction equation 

 

Utheta = (We*cos(Phi)*cos(Psi)+ebias+earw)*t; 

 

% Take partial derivatives of data reduction equation 

 

partWe = diff(Utheta,We); % partial derivative with respect to We 

 

partPsi = diff(Utheta,Psi); % partial derivative with respect to Psi 

 

partPhi= diff(Utheta,Phi); % partial derivative with respect to Phi 

 

partebias = diff(Utheta,ebias); % partial derivative with respect to Bias error 

 

partearw = diff(Utheta,earw); % partial derivative with respect to ARW error 

 

partt = diff(Utheta,t); % partial derivative with respect to time 

 

% Application of Systematic and Random Error 

errortype = 1; 

 

if errortype==1 % Error without time uncertainty 

 

BUtheta = sqrt((partWe*sWe)^2 + (partPsi*sPsi)^2 + (partebias*sbias)^2 +... 
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    (partearw*sarw)^2) + (partPhi*sPhi)^2; % Systematic Error 

 

PUtheta = sqrt((partWe*rWe)^2 + (partPsi*rPsi)^2 + (partebias*rbias)^2 +... 

    (partearw*rarw)^2) + (partPhi*rPhi)^2; % Random Error 

 

elseif errortype==2 % Error with time uncertainty 

 

BUtheta = sqrt((partWe*sWe)^2 + (partPsi*sPsi)^2 + (partebias*sbias)^2 +... 

    (partearw*sarw)^2 + (partt*st)^2); % Systematic Error 

 

PUtheta = sqrt((partWe*rWe)^2 + (partPsi*rPsi)^2 + (partebias*rbias)^2 +... 

    (partearw*rarw)^2 + (partt*rt)^2); % Random Error 

end 

 

% Apply values to propagation of error 

 

time = 12; % Time gyro on  (min) 

 

for t = 1:time 

% Define Variables and Uncertainties 

We = 15.041/60; % Earth rotation (deg/min) 

sWe = 0; 

rWe = 5.2E-8; % Earth rotation uncertainty (deg/min) 

Phi = 37.086; % Latitude location of gyroscope (deg) 

sPhi = 0; 

rPhi = 2.71543E-7; %Latitude location uncertainty (deg) 

Psi = 0; % X-Axis offset  (deg) 

sPsi = 76.38; 

rPsi = 2.71543E-7; % X-Axis offset uncertainty (deg) 

ebias = 0.25; 

sbias = 0.25/60; % Gyro bias error (deg/min) 
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rbias = 0; 

earw = 0.0016; 

sarw = 0; 

rarw = 0.0016/60; % Gyro ARW error (deg/min) 

%t = 23; % Time gyro on  (min) 

st = 0; % Time uncertainty (min) 

rt = 0.001; % Time uncertainty (min) 

 

BUTheta(t) = double(simplify(subs(BUtheta))); 

PUTheta(t) = double(simplify(subs(PUtheta))); 

 

 

UTheta(t) = BUTheta(t) + PUTheta(t); 

end 

 

Ugyro = UTheta(time) 

Published with MATLAB® R2019b 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab


145 

 

Gyroscope Monte Carlo  

clc; clear all; close all; 

 

nsamples = 10000; % Sample size 

time = 12; % Amount of time the gyro is on (min) 

We = 15.041/60; % Rotation of Earth in deg/min 

Phi = 37.086; % Latitude of Gyroscope (deg) 

Psi = 0; % X-Axis Offset (deg) 

se = 0 + 0.25/60*randn(nsamples,1); % Bias error and ARW in deg/min 

sarw = 0 + 0.04/60*randn(nsamples,1); % ARW error deg/sqrt(min) 

sWe = We + (5.20*10^-8)*randn(nsamples,1); % Rotation of Earth with uncertainty (deg/min) 

sPsi = Psi + (2.71543*10^-7)*randn(nsamples,1); % X-Axis Offset (deg) 

sPhi = Phi + (2.71543*10^-7)*randn(nsamples,1); % Latitude with uncertainty (deg) 

stime = time + (0.001)*randn(nsamples,1); % Time with uncertainty (min) 

 

 

% Data Reduction Equation 

 

Wge = (sWe.*cosd(sPhi).*cosd(sPsi)+se+sarw).*time; % Without time uncertainty 

 

Wget = (sWe.*cosd(sPhi).*cosd(sPsi)+se+sarw).*stime; % With time uncertainty 

 

% Data distribution plots 

 

figure(1) 

histogram(Wge) 

xlabel('Angular Velocity (deg/min)') 

ylabel('Frequency') 

title('Normal Distribution without Time Uncertainty') 

figure(2) 

histogram(Wget) 
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xlabel('Angular Velocity (deg/min)') 

ylabel('Frequency') 

title('Normal Distribution with Time Uncertainty') 

 

% Confidence Interval (without time uncertainty) 

 

Wgesort = sort(Wge,'ascend'); %Reorder values from small to large 

Wgelow = Wgesort(0.025*nsamples); % Left tail of distribution 

Wgehigh = Wgesort(0.975*nsamples); % Right tail of distribution 

 

% Confidence Interval (with time uncertainty) 

Wgetsort = sort(Wget,'ascend'); % Reorder values from small to large 

Wgetlow = Wgetsort(0.025*nsamples); % Left tail of distribution 

Wgethigh = Wgetsort(0.975*nsamples); % Right tail of distribution 

 

% Uncertainty 

 

Uw = (Wgehigh-Wgelow)/4 

 

Uwt = (Wgethigh-Wgetlow)/4 

 

figure(3) 

 

Ud = [0.004,0.008,0.012,0.0163,0.0202,0.0242,0.0286,... 

0.0324,0.0373,0.0408,0.0452,0.0498]; 

 

tt = linspace(1,12,12); 

plot(tt,Ud) 

xlabel('Time (min)') 

ylabel('Angle Uncertainty (deg)') 

title('Gyroscope Uncertainty Vs Time') 
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