
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Fall 2019

Extension of a Penalty Method for Numerically Solving Extension of a Penalty Method for Numerically Solving

Constrained Multibody Dynamic Problems Constrained Multibody Dynamic Problems

Troy Newhart
Old Dominion University, tsn5048@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Newhart, Troy. "Extension of a Penalty Method for Numerically Solving Constrained Multibody Dynamic
Problems" (2019). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion
University, DOI: 10.25777/381b-8d56
https://digitalcommons.odu.edu/mae_etds/304

This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital
Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/304?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

EXTENSION OF A PENALTY METHOD FOR NUMERICALLY

SOLVING CONSTRAINED MULTIBODY DYNAMIC PROBLEMS

by

Troy S. Newhart
B.S. May 2015, The Pennsylvania State University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY
December 2019

 Approved by:

 Gene Hou (Advisor)

 Brett Newman (Member)

 Miltos Kotinis (Member)

ii

ABSTRACT

EXTENSION OF A PENALTY METHOD FOR NUMERICALLY
SOLVING CONSTRAINED MULTIBODY DYNAMIC PROBLEMS

Troy Newhart
Old Dominion University, 2019

Director: Dr. Gene Hou

 Numerical analysis of constrained static and multibody dynamic systems has become an

integral part of engineering analysis with the continued improvements in technology and

software availability. Many methods currently exist for numerically solving constrained static

and dynamic systems. The applicability of a penalty method for constrained static solutions is

observed in many academic texts and papers. The appeal for using a penalty method in statics

pertains to its ease of implementation, computational suitability, and accuracy. This thesis

extends a static penalty method for use with constrained multibody dynamics to observe if the

penalty method’s benefits are similar for a dynamics solution.

 This thesis discusses formulations that are used in extending the static penalty method

for use with constrained multibody dynamics. Example problems are then solved using the

static penalty method and compared with a projection method. Example problems are selected

to provide a solid foundation for implementing the static penalty method with many other

constrained multibody systems. Constraints are purely holonomic for simplification of problem

statements.

 The goal of this thesis was met, in that the static penalty method is successfully applied

to constrained multibody systems with favorable results. In comparing the penalty method with

a projection method for each example, computational time and accuracy are comparable.

iii

Coding of the penalty method is found to be no more difficult than that of the projection

method. The static penalty method is shown to be useful in solving constrained multibody

dynamics. Application of the penalty method was not tested with non-holonomic constraints.

Future work is necessary to assess the penalty method’s applicability with non-holonomic

constraints, as well as increasingly complex multibody dynamic systems.

iv

Copyright, 2019, by Troy S. Newhart, All Rights Reserved.

v

 This thesis is dedicated to my friends and family. It is your love and support that has made me

who I am today. To my wife who motivates me to be a better person each and every day. In

memory of my mom, your words of encouragement were thought of through the tough times.

You are loved and missed.

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Gene Hou for his guidance and patience throughout this

research. Dr. Hou’s commitment to teaching has been inspirational and motivating toward

completing this work. I would also like to thank Dr. Brett Newman and Dr. Miltos Kotinis for

their help with this research. All of these gentlemen deserve a thank you for taking the time to

review and edit this thesis.

vii

NOMENCLATURE

a Known static displacement

A Transformation matrix

α Baumgarte velocity weighting coefficient

𝜶′ Angular accelerations in body-fixed reference frame

b Body thickness

B Static body constraint matrix

β Static body constraints

C Static penalty factor

C Dynamic constraint vector

Cc Static attachment constraint vector

𝑪,𝒒 Dynamic constraint Jacobian

𝑪,𝒒𝑡 Dynamic constraint Jacobian time derivative

𝑪,𝑡, 𝑪,𝑡𝑡 Dynamic constraint first- and second-time derivatives

dt Change in time

e0, e1, e2, e3 Euler parameters

E Euler E matrix

𝒇𝒃 Body force vector

𝑭 Force vector

g Gravitational constant

G Euler G matrix

𝜸 DAE index constraint formulation

viii

h Runge-Kutta time step

I Identity matrix

J’ Mass moment of inertia in body-fixed coordinates

k Runge-Kutta parameter

𝑲 Static stiffness matrix

𝑲𝒄 Constrained static stiffness matrix

L Body length

𝝀 Lagrange multiplier

m Body mass

𝑴 Mass matrix

μ Dynamic penalty factor

𝝎′, �̃�′ Angular velocity vector, skew matrix in body-fixed reference frame

𝒑 Euler parameter vector

𝑷 Projection Formulations

Π Potential Energy

𝒒, 𝒒,̇ �̈� Dynamic motion displacement, velocity, and acceleration

Q Static displacement vector

𝒓, �̇�, �̈� Position, velocity, and acceleration in global coordinates

𝒓′ Position from body-fixed origin to point of interest

𝑹 Position of body-fixed origin from global origin

𝑹𝒄
′ , �̃�𝒄

′ Position to point from body-fixed centroid vector, skew matrix

t Time

ix

tfinal Final time

tinit Initial time

𝑻𝒓′ External torques in the body-fixed reference frame

𝑻𝑹 External forces in global coordinates

𝝉 Torque

U Strain energy

ζ Baumgarte displacement weighting coefficient

x, y, z Cartesian coordinates

𝜃,𝜙, 𝜓 Euler angles

x

TABLE OF CONTENTS

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

CHAPTER 1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 LITERATURE REVIEW .. 4

1.2.1 EQUATION OF MOTION FORMULATION.. 4

1.2.2 ORDINARY DIFFERENTIAL EQUATIONS .. 6

1.2.3 DIFFERENTIAL-ALGEBRAIC EQUATIONS AND CONSTRAINT FORMULATION 8

1.2.4 INDEX-3 DAE SOLUTION METHODS ... 13

1.2.5 INDEX-2 DAE SOLUTION METHODS ... 17

1.2.6 FINITE ELEMENT STATIC PENALTY METHOD .. 19

CHAPTER 2. PENALTY METHOD IMPLEMENTATION.. 24

2.1 EXTENDED STATIC PENALTY METHOD DERIVATION .. 24

2.2 SOFTWARE AND FUNCTIONS .. 26

2.3 EFFECTS OF THE PENALTY FACTOR ... 27

2.4 EXAMPLE PROBLEMS.. 30

2.4.1 SIMPLE PENDULUM .. 31

2.4.2 SCOTCH MECHANISM ... 43

2.4.3 SLIDER-CRANK MECHANISM ... 50

CHAPTER 3. CONCLUSION AND FUTURE WORK .. 57

REFERENCES .. 61

APPENDIX A. COMPUTER CODES ... 63

A.1. Static Multipoint Constraint .. 63

A.2. Simple Pendulum ... 63

A.2.a. Simple Pendulum Penalty Function ... 70

A.2.b. Simple Pendulum Penalty Function, Baumgarte Stabilization .. 71

A.2.c. Simple Pendulum Projection Function ... 72

A.2.d. Simple Pendulum Projection Function, Baumgarte Stabilization .. 73

A.2.e. Simple Pendulum Goicolea and Orden Function ... 74

A.2.f. Simple Pendulum Index-2 Penalty Function .. 74

A.2.g. Simple Pendulum Direct Integration Function .. 75

xi

A.3. Scotch Mechanism ... 76

A.3.a. Scotch Mechanism Penalty Function ... 77

A.3.b. Scotch Mechanism Projection Function ... 78

A.4. Slider-Crank Mechanism .. 78

A.4.a. Slider-Crank Mechanism Penalty Function... 80

A.4.b. Slider-Crank Mechanism Projection Function .. 81

VITA .. 82

xii

LIST OF TABLES

1: Computational Time Over Varying Penalty Factor .. 30

2: Simple Pendulum Initial Conditions.. 33

3: Scotch Mech. Initial Conditions .. 46

4: Slider-Crank Initial Conditions .. 53

xiii

LIST OF FIGURES

Figure Page

1: Static Multipoint Constraint ... 21

2: Static Penalty without Stabilization .. 28

3: Static Penalty with Stabilization ... 29

4: Alternate Penalty ... 29

5: Simple Pendulum... 32

6: Simple Pendulum Motion Plots .. 34

7: Simple Pendulum Penalty Error ... 35

8: Pendulum Penalty vs. Projection .. 37

9: Static Penalty Baumgarte Comparison ... 38

10: Projection Baumgarte Comparison .. 39

11: Static Penalty Error Stabilization Comparison... 40

12: Alternate Penalty Error .. 41

13: Index-2 Penalty Error ... 42

14: Scotch Mechanism ... 43

15: Scotch Mech. Body 1 ... 44

16: Scotch Mech. Body 2 ... 44

17: Scotch Penalty Motion ... 47

18: Scotch Projection Motion .. 48

19: Scotch Penalty vs. Projection ... 49

20: Slider-Crank Mechanism .. 50

21: Slider-Crank Body 1 ... 51

22: Slider-Crank Body 2 ... 51

xiv

23: Slider-Crank Body 3 ... 52

24: Slider-Crank Penalty Motion .. 54

25: Slider-Crank Projection Motion .. 55

26: Slider-Crank Penalty vs. Projection ... 56

1

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

The application of a penalty method is commonly utilized for the analysis of static

mechanisms where penalty factors are applied to constraint parameters of motionless systems.

Large penalties are placed on parameters associated with the constraints of a system, and

these modified parameters result in calculated values that have been restricted at the

boundary conditions as intended. Using a penalty method for static analysis is beneficial due to

its simplicity, ease of application, and computational suitability.

Although the use of a penalty method is beneficial for static analysis, its application for

constrained multibody dynamics is infrequent. There are cases where a penalty method is

utilized with ordinary differential equations (ODE) to solve system kinematics, but formulating

constrained multibody dynamic equations of motion (EOM) as an ODE is not always possible or

optimal. For constrained EOMs, differential algebraic equations (DAE) are generally formulated.

A DAE has characteristics of both algebraic and differential equations that must be solved in

tandem to ensure constraints are adhered to. Due to these algebraic constraints, solutions

cannot be found by strictly using ODE methods.

There are numerous methods for solving DAEs [2, 7, 8, 10, 12]. To the knowledge of the

author, the application of a penalty method to the constraints of a DAE is one that has not been

tried against other more popular methods. Although there are various methods, all have their

own restrictions and assumptions that must be considered. In the event that this penalty

2

method does not result in faster or more accurate solutions than current methods, there is

always the potential that its application is for a special case that befuddles common methods.

It is also possible that this method may be easier to implement within computer code.

The modelling of dynamic systems has become an integral part of industry as

computational technology continues to advance along with the development of accurate and

affordable software suites. The use of computational modelling for dynamic systems provide

users with data and graphics that are expected by consumers in most industries. Accuracy and

speed of solution will be expected to progress even though problems being computationally

modelled continue to increase in complexity and size. This is especially true in the analysis of

constrained multibody dynamics. As the need for computationally stable, accurate, and

efficient solutions grow, it is necessary to ensure that adequate research has been conducted

towards developing a toolbox composed of various methods that can be utilized to solve

increasingly complex problems of the future.

The objective of this thesis is to apply an extension of a penalty method commonly used

with static analysis to constrained multibody dynamic systems. The ease with which this

method may be applied to constrained multibody dynamic systems will be examined, as coding

solutions for such problems can be difficult. The first chapter covers the background and will

discuss the literature review of this topic. Equations of motion, ordinary differential equations,

and differential-algebraic equation literature is reviewed first. Literature is then presented on

solution methods for multibody dynamics that solve ordinary differential equations and

differential algebraic equations numerically. Literature on penalty methods used for static and

ODE solutions is then presented. Chapter two begins with the derivation of a penalty method

3

for solving differential-algebraic equations (DAEs), followed by an overview of MATLAB®

software used to perform the penalty method analysis on example problems. Example

problems are then illustrated to compare the penalty method with a projection method [12].

Example problems include a problem statement, initial conditions, formulation of Equations of

Motion (EOM), formulation of DAEs, and results using the penalty method. The example

problems depict the use of a penalty method with a simple pendulum, a Scotch mechanism,

and a slider-crank mechanism. Chapter three provides a brief discussion of results from the

example problems. An overview of the penalty methods limitations and uses for multibody

dynamics is then explained. Future work required on this topic concludes the paper.

The penalty method used in this work for dynamic situations is an extension of a penalty

method that is commonly utilized for static analysis. The application of the penalty method in

static scenarios is useful in that it is easily applied to a variety of static problems, accurately

models desired parameters, and is easily programmable for computational modelling. Given

these attributes for static problems, it was expected that applying a similar method for dynamic

scenarios would have coincidental benefits. Ultimately, the author pursued a method that

could be implemented more easily in coding such that modelling constrained multibody

dynamic problems requires less work for both the computer and user. It was foreseen that

additional research would be required to apply this method to other transient events (i.e. heat

transfer, fluid flow) given the scope of this paper. Future work may also be performed to apply

the presented method to advancing levels of dynamic complexity, as additional bodies and

constraints may be added to model more involved systems than those examined in this work.

4

1.2 LITERATURE REVIEW

1.2.1 EQUATION OF MOTION FORMULATION

The equations of motion (EOMs) represent the dynamics of a system mathematically.

The EOMs are composed of variables that relate physical aspects of a system to each other as a

function of time. For a kinematic approach, the common variables used to explain a system’s

motion with respect to time are the spatial displacements, velocities, and accelerations. The

formulation of the kinematic equations can be done for multibody systems that contain relative

coordinate systems. In all dynamic systems, a global reference frame is applied to define

absolute coordinates. Each body (if multiple bodies exist) can then be assigned its own body-

fixed coordinates. Kinematic equations are then applied to relate the body-fixed coordinates to

the global coordinates. Ongoing research in determining a method for optimal placement of

coordinates describing multibody dynamics is illustrated in [1].

 The position of a point in global coordinates can be described by equation (1).

 𝒓 = 𝑹 + 𝐴𝒓′ (1)

 Once the position vectors are formulated, velocity and acceleration can be found by

differentiating equation (1) with respect to time. After obtaining the kinematic equations, the

kinetic equations can be derived. The kinetic equations formulate a system’s EOMs. Using

Newton’s 2nd Law the EOMs of a single lumped mass are:

 𝑭 = 𝑚�̈� (2)

 𝝉 = 𝐽𝜶′ (3)

5

For simplicity, individual bodies will be assumed as rigid. The EOMs of an unconstrained free

rigid body can then be formulated from [2] as equations (4) and (5) where the body-fixed

coordinates are not necessarily at the rigid body’s centroid.

𝑴 = [

𝑚𝐼 (−𝑚𝐴�̃�𝒄
′)𝑇

(−𝑚𝐴�̃�𝒄
′) 𝐽′

] (4)

𝑭 = [

𝑻𝑹 + 𝒇𝒃 − 𝑚𝐴�̃�′�̃�′𝑹𝒄
′

𝑻𝒓′ + �̃�𝒄
′ 𝐴𝑇𝒇𝒃 − �̃�′𝐽′𝝎′] (5)

It is important to note that the force terms for translation of the system are expressed in the

global coordinate frame, whereas the rotational components are in the body-fixed reference

frames. If the acceleration terms for translation and rotation are denoted as �̈� = [
�̈�
𝜶
],

combining equations (4) and (5) with (2) yields the final EOM for an unconstrained free rigid

body:

 𝑭 = 𝑴�̈� (6)

 The above EOMs can be extended to a system of unconstrained free rigid bodies

characterized by its translational and rotational motion. As additional unconstrained free

bodies are considered, the matrices are combined to depict the EOMs of an entire

unconstrained multibody system. The multibody components of equation (6) become

𝑴 = [

𝑴1 0 ⋯ 0

0 𝑴2 ⋮

⋮ ⋱
0 ⋯ 𝑴𝑛

] (7)

6

�̈� = [

�̈�𝟏

�̈�𝟐

⋮
�̈�𝒏

] (8)

𝑭 = [

𝑭𝟏

𝑭𝟐

⋮
𝑭𝒏

] (9)

The EOMs’ defining physical parameters of an unconstrained free multibody system can now be

formulated. These EOMs are composed of differential variables with respect to time.

Formulations containing such differentials are known as Ordinary Differential Equations (ODEs).

1.2.2 ORDINARY DIFFERENTIAL EQUATIONS

Ordinary differential equations are commonly formulated to describe the dynamics of a

system. The derivation and application of ODEs cover a wide range of topics not limited to

multibody dynamics and are explained in numerous academic texts. Even when the topic range

is narrowed to multibody dynamics, many references are available to interested readers. An

ODE is classified as a differential equation containing derivatives with respect to a single

dependent variable [3, 4]. The dependent variable tends to be time when defining an ODE for

physical processes. ODEs can be classified by their “order” where the order is equal to the

number associated with the highest derivative.

 �̇� − 𝐶𝑦 = 0 (10)

 �̈� + 𝐾�̇� − 𝐶𝑦 = 0 (11)

Equations (10) and (11) depict the form of a first order and second order ODE

respectively, where y is an arbitrary variable that is a function of time. C and K are arbitrary

7

constants. In this work, all example problems will be given initial conditions at time equal to

zero. Initial value ODEs are commonly defined due to practical formulations that do not have

closed-form solutions.

 It is always ideal to find a closed-form solution to an ODE that allows for exact analytical

calculations to be derived. In practical applications, this is seldom possible and numerical

methods are necessary. Numerical methods estimate the parameters of an ODE over a

specified time span given a time step. One ODE numerical method of particular interest for this

research is the Runge-Kutta Method. The Runge-Kutta method has multiple approaches that

may be utilized. Selecting an approach is based on the order of the ODE, desired computational

time, and stiffness [5] of the problem. In general, the Runge-Kutta method is an explicit

numerical ODE solving algorithm that can be derived for higher-order systems. A solution

method of particular interest for this research is the Bogacki-Shampine Runge-Kutta method

[15] depicted in equations (12-17).

 𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛) (12)

 𝑘2 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1) (13)

 𝑘3 = 𝑓(𝑡𝑛 +
3ℎ

4
, 𝑦𝑛 +

3ℎ

4
𝑘2) (14)

 𝑦𝑛+1
(1)

= 𝑦𝑛 +
2

9
ℎ𝑘1 +

1

3
ℎ𝑘2 +

4

9
ℎ𝑘3 (15)

8

 𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛+1) (16)

 𝑦𝑛+1
(2)

= 𝑦𝑛 +
7

24
ℎ𝑘1 +

1

4
ℎ𝑘2 +

1

3
ℎ𝑘3 +

1

8
ℎ𝑘4 (17)

where 𝑦𝑛+1
(1)

 is the third-order approximation of the ODE and 𝑦𝑛+1
(2)

 is the second-order

approximation. The difference between the third-order and second-order is utilized to change

step size accordingly. The next 𝑘1 is then set equal to 𝑘4 at the start of the next sequence.

Given a set of initial conditions, Runge-Kutta methods are utilized for integration of a

specified ODE. This integration provides robust and adapted solutions to an ODE. The Bogacki-

Shampine Runge-Kutta method will be utilized computationally for subsequent example

problems in this thesis via the MATLAB® ODE23 three stage, third order Runge-Kutta function.

Unfortunately, not all physical processes can be completely described using an ODE. When

dealing with constrained multibody dynamics, it is common that resulting formulations are in

the form of differential-algebraic equations (DAEs). DAEs cannot be solved using only ODE

techniques [6].

1.2.3 DIFFERENTIAL-ALGEBRAIC EQUATIONS AND CONSTRAINT FORMULATION

Differential-Algebraic Equations have properties of both differential equations and

algebraic equations, both of which must be solved simultaneously to accurately model the

system. DAEs are commonly derived for constrained multibody dynamics due to the differential

nature of the EOMs and the algebraic nature of enforcing constraint equations. Although DAEs

will be formulated explicitly for constrained multibody dynamics in this paper, DAEs appear in

many other disciplines as well.

9

Constraint equations are imposed to ensure that the dynamics adhere to specified

parameters that are otherwise not captured in the EOMs. Constraints can be defined as

holonomic or non-holonomic and rheonomous or scleronomous [7]. Holonomic constraints are

defined as equality constraints applied to system displacements and will be solely used in this

research for simplicity of DAE formulations. Constraints can also explicitly contain time as a

variable (rheonomous) or expressed with variables other than time (scleronomous). DAEs are

also defined by the number of derivations required to convert a DAE to an ODE. For the

duration of this paper, index 3 DAEs will be the primary focus of the research due to their

frequency of appearance in constrained multibody dynamics [8].

Once a holonomic constraint has been defined, it must be applied with the EOM of the

system to accurately model the dynamics. The DAE is formulated using equations (7), (8), and

(9) as [2, 8, 9, 10]:

 𝑴�̈� − 𝑭 + 𝑪,𝒒
𝑇𝝀 = 𝟎 (18)

 𝑪(𝒒, 𝒕) = 𝟎 (19)

where 𝑪,𝒒 is the Jacobian matrix of the constraint equations, illustrated as equation (20), and 𝝀

is unknown Lagrange multipliers used to enforce constraints. The Lagrange multipliers in

equation (18) are more commonly referred to as the generalized constraint forces. These

generalized constraint forces are the link between the forces acting on constraints and the

forces acting externally on the bodies. If no constraints are present, we see that the equation

reverts back to its unconstrained form depicted in equation (6).

10

 𝑪,𝒒 ≡
𝜕𝑪

𝜕𝒒
 (20)

The DAE can then be presented in matrix form as

 [
𝑴 𝑪,𝒒

𝑇

𝑪,𝒒 𝟎
] [

�̈�
𝝀
] = [

𝑭
𝜸
] (21)

which enforces a constraint on the second order derivative of the constraints, or

mathematically 𝑪,𝒒�̈� = 𝜸, where 𝜸 is

 𝜸 ≡ −(𝑪,𝒒�̇�)
,𝒒
�̇� − 2𝑪,𝒒𝑡�̇� − 𝑪,𝑡𝑡 (22)

Since equation (21) only enforces a constraint on �̈� = 𝟎, the conditions of �̇� = 𝟎 and 𝑪 = 𝟎

may not be met. Therefore, the solution to equation (21) must also satisfy the following hidden

constraints of equations (23) and (24):

 𝑪 = 0 (23)

 𝑪,𝒒�̇� + 𝑪,𝑡 = 0 (24)

Another formulation of an Index-3 DAE that allows for computation without explicitly solving

the hidden constraints is presented in [17]. The Baumgarte stabilization method presents

additional terms in the force vector that correct constraint errors as the DAE is solved. Equation

(25) depicts an Index-3 DAE with the Baumgarte constraint applied, where 𝛼 and 𝜁 are user

applied weighting coefficients.

11

 [
𝑀 (𝑪,𝒒)

𝑇

𝑪,𝒒 0
] {

�̈�
𝝀
} = {

𝑭
−𝜸 − 𝟐𝛼�̇� − 𝜁2𝑪

} (25)

In special cases of spatial multibody dynamics, it may be necessary (or more

computationally efficient) to employ the use of Euler parameters as opposed to Euler angles

when avoiding transformation matrix singularities [8]. The use of Euler parameters is

advantageous in that four parameters are utilized to formulate the transformation matrix of

rotation, eliminating the potential for singular transformation matrices that can occur when

using Euler Angles. The major disadvantage of Euler parameters is the required constraint that

must be adhered to when applying these parameters to the EOMs. Euler parameters are

obtained from either the Euler angles, or from a rotation about a unit vector that formulates

the rotations into a single rotation about said unit vector. Given the Euler angles, the

transformation matrix of a system is a combination of direction cosine matrices (DCM). The

DCMs can be combined in various ways to represent a systems transformation matrix so long as

a single representation is used for the duration of a problem.

 𝐴1 = [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0

0 0 1

] (26)

 𝐴2 = [
cos (𝜙) 0 −sin (𝜙)

0 1 0
sin (𝜙) 0 cos (𝜙)

] (27)

 𝐴3 = [
1 0 0
0 cos (𝜓) −sin (𝜓)
0 sin (𝜓) cos (𝜓)

] (28)

12

𝐴 = 𝐴1𝐴2𝐴3

= [

𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛 (𝜓) − 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛 (𝜃)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜓) + 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) − 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) − 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜙)

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛 (𝜓) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜓) 𝑐𝑜𝑠 (𝜃)

]

 (29)

The above Equations (26)-(28) depict three DCMs where equation (29) is one of many possible

DCM combinations that create a transformation matrix for the system. With this

transformation matrix, it can be seen that a singularity results when 𝑠𝑖𝑛(𝜃) = 0. A different

combination of DCMs, or switching algorithm [11], can be implemented in an attempt to

eliminate the singularity. The use of Euler parameters instead ensures no singularity will occur,

but it introduces constraints that must be adhered to.

 One approach [2] suggests that the Euler parameters replace the angles, angular

velocity, and angular acceleration subject to a constraint.

 𝒑 = [𝑒0 𝑒1 𝑒2 𝑒3]𝑇 (30)

 𝑪 = 𝒑′𝒑 − 1 (31)

where 𝒑 is a vector of Euler parameters. The formulation of a DAE using Euler parameters is

then [2]:

 4𝐺𝑇𝐽𝐺�̈� = 2𝐺𝑇𝒏′ + 8�̇�𝑇𝐽�̇�𝒑 (32)

where G is

13

 𝐺 = [

−𝑒1 𝑒0 𝑒3 −𝑒2

−𝑒2 −𝑒3 𝑒0 𝑒1

−𝑒3 𝑒2 −𝑒1 𝑒0

] (33)

Another parameter, E, is then defined in order to calculate the transformation matrix as a

function of Euler parameters.

 𝐸 = [

−𝑒1 𝑒0 −𝑒3 𝑒2

−𝑒2 𝑒3 𝑒0 −𝑒1

−𝑒3 −𝑒2 𝑒1 𝑒0

] (34)

The transformation matrix is then defined as

 𝐴 ≡ 𝐸𝐺𝑇 (35)

The rotation of a system in global coordinates can now be found with a transformation matrix

derived using either Euler angles or parameters, as long as it is consistent for the duration of a

problem. Numerical methods may now be implemented on a formulated DAE to solve for

translation and rotation of a constrained multibody dynamic system.

1.2.4 INDEX-3 DAE SOLUTION METHODS

Various numerical solution methods exist for DAEs. This paper will focus on using the

projection method [12] and an alternate penalty method [16] on index-3 DAEs for comparison

with the static penalty method in subsequent chapters.

The projection method has been selected due to its ease of implementation and

solution accuracy. The projection method is derived from the DAE formulation in equation (21).

Provided that the mass matrix, 𝑴, is nonsingular, equation (21) can be rewritten using the 𝐿𝑈

decomposition [12]:

14

 [
𝑴 𝑪,𝒒

𝑇

𝑪,𝒒 𝟎
] = [

𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇] [

𝑰 𝑴−1𝑪,𝒒
𝑇

𝟎 𝑰
] (36)

Thus equation (21) can be rewritten as

 [
𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇] [

𝑰 𝑴−1𝑪,𝒒
𝑇

𝟎 𝑰
] [

�̈�
𝝀
] = [

𝑭
𝜸
] (37)

defining two intermediate variables

 [
�̈�∗

𝝀∗] ≡ [
𝑰 𝑴−1𝑪,𝒒

𝑇

𝟎 𝑰
] [

�̈�
𝝀
] (38)

which can be illustrated explicitly as

 �̈�∗ = �̈� + 𝑴−1𝑪,𝒒
𝑇 𝝀 (39)

and

 𝝀∗ = 𝝀 (40)

Equation (37) can then be rewritten as

 [
𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇] [

�̈�∗

𝝀∗] = [
𝑭
𝜸
] (41)

From the first row of equation (41), 𝑴�̈�∗ = 𝑭, so

 �̈�∗ = 𝑴−1𝑭 (42)

15

From the second row of equation (41)

 𝑪,𝒒�̈�
∗ − 𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 𝝀∗ = 𝜸 (43)

which, upon solving for 𝝀∗ and substituting the result of equation (42), yields

 𝝀∗ = (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇)
−1

(𝑪,𝒒𝑴
−1𝑭 + 𝜸) (44)

Now, from equation (39),

∴ �̈� = �̈�∗ − 𝑴−1𝑪,𝒒

𝑇 𝝀∗

= 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 𝝀

(45)

Thus, the first row of equation (41) is,

 𝑴�̈� = 𝑭 − 𝑪,𝒒
𝑇 𝝀 (46)

However, at this point, based upon equation (44), one can calculate 𝝀

 𝝀 = (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇)
−1

(𝑪,𝒒𝑴
−1𝑭 + 𝜸) (47)

One may also substitute the values for both �̈�∗ and 𝝀∗ from equations (42) and (44) to obtain

16

�̈� = 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
(𝑪,𝒒𝑴

−1𝑭 − 𝜸)

= 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝑪,𝒒𝑴

−1𝑭

+ 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝜸

= 𝑴−1 (𝑰 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝑪,𝒒𝑴

−1)𝑭 + 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝜸

= 𝑴−1 (𝑭 − 𝑪,𝒒
𝑇 [(𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝑪,𝒒𝑴

−1𝑭 − (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇)
−1

𝜸])

= 𝑴−1 (𝑷𝑭 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝜸)

 (48)

where

 𝑷 ≡ 𝑰 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇)

−1
𝑪,𝒒𝑴

−1

(49)

The projection method here only satisfies the constraints specified for �̈�. Hidden

constraints must also be adhered to for the displacements and velocities. These hidden

constraints are the same specified in equations (23) and (24). The complexity of the projection

method should be noted here, as it is equations (48) and (49) that must be implemented within

a computer program.

An alternate penalty method derived in [16] is selected to show that other penalty

methods exist in literature and provide a more direct comparison with the static penalty

method. For an index-3 DAE, the alternate penalty method treats q as unknown. In the

subsequent chapter, it is seen that for the static penalty method �̈� is unknown. Using virtual

work and estimating Lagrange multipliers with the penalty method, [16] depicts

 (𝑀�̈� + 𝑪,𝒒
𝑇 𝜇𝑪 − 𝑭)

𝑇
𝛿𝒒 = 𝟎 (50)

where 𝛿𝒒 is an arbitrary constant. This results in

17

 𝑀�̈� + 𝑪,𝒒
𝑇 𝜇𝑪 − 𝑭 = 𝟎 (51)

which can be approximated as

 �̈� = 𝑴−𝟏(𝑭 − 𝑪,𝒒
𝑇 𝜇𝑪) (52)

where 𝜇 is the penalty coefficient.

The illustrated projection method (equations 48 and 49) and an alternate penalty

method (equation 52) can now be utilized to numerically solve an index-3 DAE. Both methods

are solved for at each time step to ensure the EOMs adhere to the body and hidden constraints.

The updated variables may then be integrated numerically for the resulting ODEs using

methods described in Section 1.2.2.

1.2.5 INDEX-2 DAE SOLUTION METHODS

Although the primary focus of this thesis is on Index-3 DAEs, a solution method for an

Index-2 DAE is presented for completeness. The static penalty method derived in Chapter 2 will

also contain formulations for both an Index-3 and Index-2 DAE.

In order to formulate an Index-2 DAE, a set of first order ODEs are observed as

𝑀�̇� = 𝑭

�̇� = 𝒚

These ODEs can be combined into a matrix illustrated as equation (53) and are subject

to a constraint matrix, as depicted in equation (54).

[
𝑀 0
0 𝐼

] [
�̇�
�̇�
] = [

𝒇(�̇�, 𝒒, 𝑡)
𝑦

] (53)

18

[
𝑪,𝒒 0

0 𝑪,𝒒
] [

�̇�
�̇�
] = − [

𝜸(�̇�, 𝒒, 𝑡)

𝑪,𝑡
] (54)

Upon application of Lagrange multipliers and combination of equations (53) and (54),

the Index-2 DAE is represented as

[

 𝑀 0

0 𝐼

(𝑪,𝒒)
𝑇

0

0 (𝑪,𝒒)
𝑇

𝑪,𝒒 0

0 𝑪,𝒒

0 0
0 0]

[

�̇�
�̇�
𝝀𝒚

𝝀𝒈]

= [

𝑭
𝒚

−𝜸
−𝑪,𝑡

] (55)

From [16], the formulation for an alternative Index-3 DAE penalty method was

illustrated in the previous section. This reference also contains the derivation for an alternative

Index-2 DAE. Applying virtual work to equation (53) results in equation (56) where the

variations must satisfy equation (57).

([

𝑀 0
0 𝐼

] [
�̇�
�̇�
] − [

𝑭
𝑦
])

𝑻

[
𝜹𝒚
𝜹𝒒

] = 𝟎 (56)

[
𝑪,𝒒 0

0 𝑪,𝒒
] [

𝜹𝒚
𝜹𝒒

] = 𝟎 (57)

Combining equations (56) and (57) and introducing the alternate penalty factor as an

estimate for the Lagrange multipliers, the final alternate Index-2 penalty formulation is [16]

[
𝑀 0
0 𝐼

] [
�̇�
�̇�
] = [

𝑭(�̇�, 𝒒, 𝑡) − 𝑪,𝒒
𝑇 𝜇(𝑪,𝒒�̇� + 𝑪,𝒒)

𝒚 − 𝑪,𝒒
𝑇 𝜇𝑪

] (58)

19

Equation (58) can now be utilized to numerically solve an Index-2 DAE. This method will

be utilized with an example problem presented in Chapter 2 as a comparison with the static

Index-3 penalty formulation.

1.2.6 FINITE ELEMENT STATIC PENALTY METHOD

In statics, analysis is performed on objects that are in static equilibrium. Similarly to

dynamic problems, there are various methods for solving constrained static problems. One such

method is a static penalty approach [13] that handles boundary conditions for a wide array of

static problems. The appeal of utilizing this penalty method stems from its ease of application,

computational suitability, and accuracy.

In statics, the displacements are of interest for analysis of structures. It is typical to

constrain a static system to a wall where no displacement is allowed. This connection can be

modelled as a spring with a large stiffness. The large spring stiffness will then act as a penalty

for variables interacting with this point on the wall. From [13], the constraint can be applied

directly at the node interacting with a wall.

 𝑄1 = 𝑎1 (59)

The strain energy in the spring of large stiffness is

 𝑈 =
1

2
𝐶(𝑄1 − 𝑎1)

2 (60)

Making the potential energy of the system

 Π =
1

2
𝑄𝑇𝐾𝑄 +

1

2
𝐶(𝑄1 − 𝑎1)

2 − 𝑄𝑇𝐹 (61)

20

In order to minimize the potential energy, the derivative of Π is set equal to zero resulting in

 [

𝐾11 + 𝐶 𝐾12 ⋯ 𝐾1𝑛

𝐾21 𝐾22 ⋮

⋮ ⋱
𝐾𝑛1 ⋯ 𝐾𝑛𝑛

] [

𝑄1

𝑄2

⋮
𝑄𝑛

] = [

𝐹1 + 𝐶𝑎1

𝐹2

⋮
𝐹𝑛

] (62)

where

 𝐶 = 𝑚𝑎𝑥|𝐾𝑖𝑗| × 104 (63)

Equation (62) illustrates a system constrained at a single node. The constraint penalty (C) is

added to the diagonal of the stiffness matrix that represents the node being restricted.

Concurrently, the force at the constrained point is then summed with the constraint and

displacement product. A single point constraint can be expanded to capture multipoint

constraints. In order to implement multipoint constraints, the single point constraints are first

applied as

 𝑪𝑪 = 𝐶 [

𝐶11 𝐶12 ⋯ 𝐶1𝑛

𝐶22 ⋮

⋮ ⋱
𝐶𝑛𝑛

] (64)

Where 𝐶𝑖𝑗 = 0 if i does not equal j, and 𝐶𝑖𝑗 = 1 if i is equal to j. Boundary conditions of the

following form of equation (65) may then be utilized to formulate a boundary constraint vector

in equation (66) for n number of boundary conditions.

 𝛽𝑛𝑖𝑄𝑛𝑖 + 𝛽𝑛𝑗𝑄𝑛𝑗 = 𝛽0 (65)

21

 𝑩 =

[

𝛽11 𝛽12 ⋯ 𝛽1𝑄

𝛽21 𝛽22 ⋮

⋮ ⋱
𝛽𝑛1 ⋯ 𝛽𝑛𝑄]

 (66)

The constrained stiffness matrix can then be formulated as

 𝑲𝒄 = 𝑲 + 𝐶(𝑩𝑇𝑩 + 𝑪𝑪) (67)

 Figure (1) illustrates an example of a static multipoint constraint problem [13]. Body 1 is

defined with a cross sectional area of 1200 mm2, modulus of elasticity of 200*10^3 N/mm2, and

length of 4.5 m. Body 2 is defined with a cross sectional area of 900 mm2, modulus of elasticity

of 70*10^3 N/mm2, and length of 3 m. The load placed on the end of the beam is 30*103 N.

Application of the above penalty method using a MATLAB® computer script depicted in

Appendix A.1 results in calculated values for the evaluated displacement parameters.

Figure 1: Static Multipoint Constraint

22

𝑲 =

[

5.333 0 −5.333 0 0
0 2.1 0 −2.1 0

−5.333 0 5.333 0 0
0 −2.1 0 2.1 0
0 0 0 0 0]

104

𝑭 =

[

0
0
0
0
30]

103

Displacements at Node 1 and Node 2 are constrained by the rigid bar rotation. This results in

each node displacement equaling the displacement at the end of the bar (Q5) multiplied by the

ratio of the node length to total bar length. The boundary conditions can then be defined as

𝑄1 −
2

6
𝑄5 = 0

𝑄2 −
5

6
𝑄5 = 0

Applying equations (66), (63), and (64), the constraining equations are

𝑩 = [
1 0 0 0 −

2

6

0 1 0 0 −
5

6

]

𝐶 = 5.333 × 108

𝑪𝑪 = 𝐶

[

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0]

Substituting these values into equation (67) calculates the constrained stiffness matrix as

23

𝑲𝒄 =

[

5.3339 0 −0.0005 0 −1.7778
0 5.3335 0 −0.0002 −4.4444

−0.0005 0 5.3339 0 0
0 −0.0002 0 5.3335 0

−1.7778 −4.4444 0 0 4.2963]

108

The displacements are then calculated by replacing the stiffness matrix in equation (62) with

the constrained stiffness matrix to find

𝑸 =

[

0.4876
1.2191

0
0

1.4629]

 [𝑚𝑚]

It is seen that by applying the penalty method to this problem, the displacements are

significantly diminished at the constraint points. Comparatively, displacements in the above

static scenario have the potential to correlate with the displacements specified in equation (21)

of the multibody dynamic DAE. It is the objective for the remainder of this thesis to

quantitatively extend the static penalty method for use with constrained multibody dynamic

DAEs.

24

CHAPTER 2. PENALTY METHOD IMPLEMENTATION

In this chapter, the formulation of a linear multipoint static penalty method from Section

1.2.6 will be modified to encompass the EOMs of a constrained multibody dynamic system. A

stabilization method derived in [17] and illustrated as equation (25) is then incorporated with

the penalty method as an alternative for solving the hidden constraints. A brief overview of

coding software and applicable functions in MATLAB® will follow. Code will apply an algorithm

to subsequent example problems, comparing the static penalty method of Section 1.2.6 to the

projection method from equations (47) to (58) and an alternate penalty method from equation

(51). Example problems presented for examining the static penalty method are a simple

pendulum, a Scotch mechanism, and a slider-crank mechanism.

2.1 EXTENDED STATIC PENALTY METHOD DERIVATION

 The static penalty method applies a constraint (modelled as a spring with large stiffness)

to the stiffness matrix and force vector of equation (62). The constrained stiffness matrix of

equation (67) replaces the K matrix for multipoint constraints. Comparing equations (6) and

(62) it is observed that direct correlations exist between the mass and stiffness matrix,

displacement vectors, and force vectors when formulating the potential energy of a system.

The penalized quadratic constraint of the static system must then be formulated in terms of

multibody dynamics. This constraint for the static system was formulated from the fact that

displacement at an attached point must equal the attachment displacement. The linear

algebraic equation of �̈� can then be evaluated from equation (18) by setting 𝝀 equal to zero

resulting in equation (68) which must satisfy equation (69).

25

 𝑴(𝒒)�̈� − 𝒇(𝒒, �̇�, 𝑡) = 𝟎 (68)

 𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡) = 𝟎 (69)

Static variables of equation (61) can then be replaced by their multibody dynamic counterparts,

where the displacement constraint of equation (59) is replaced by the linear acceleration

constraint above (equation (69)). Reformulating equation (69) with dynamics variables for a

constrained multibody system results in equation (70) where �̈� is considered as the unknown.

 Π =
1

2
�̈�𝑻𝑴(𝒒)�̈� +

1

2
𝜇(𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡))𝑇(𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡)) − �̈�𝑇

𝑭 (70)

 Differentiating equation (70) with respect to �̈� provides a solution formulated as equation (71).

 (𝑴 + 𝜇𝑪,𝒒
𝑇 𝑪,𝒒)�̈� = 𝑭 − 𝜇𝑪,𝒒

𝑇 𝛾 (71)

Comparing equation (71) to equation (18) shows that the Lagrangian multiplier (𝝀) has been

successfully eliminated. This equation can now provide solutions for acceleration components

of the constrained multibody dynamic system through direct solutions at each time step of the

problem. Additional hidden constraints described in section 1.2.3 must also be adhered to as

integrations are computed at each time step for �̇� and 𝒒. Hidden constraints for the system are

depicted in equations (23) and (24). The Baumgarte stabilization may also be applied to the DAE

solved for in equation (71). If the Baumgarte stabilization from equation (25) is utilized, the

hidden constraints are implicitly solved for at each time step and equation (71) is now equation

(72).

26

 (𝑴 + 𝜇𝑪,𝒒
𝑇 𝑪,𝒒)�̈� = 𝑭 − 𝜇𝑪,𝒒

𝑇 (−𝛾 − 𝟐𝛼�̇� − 𝜁𝑪) (72)

 The formulation of equations (71) and (72) depict extensions of the static penalty

method for use with constrained multibody dynamics. Following the static penalty formulation,

an estimate for the dynamic penalty factor can be calculated using the maximum mass

component time 105. In order to implement these formulations with practical problems, an

algorithm was developed. This algorithm allows for computational modelling of constrained

multibody dynamic problems using the static penalty method. In order to computationally

implement this algorithm, MATLAB® by mathworks was utilized as the base coding platform.

Computations were run on an Intel® Core™ i5-2410M CPU @ 2.30 GHz with 8.0 GB of RAM. The

MATLAB® version utilized is R2014a.

2.2 SOFTWARE AND FUNCTIONS

 MATLAB® is a computer coding platform utilized academically and industrially by

engineers and scientists as a highly robust data analysis tool [14]. MATLAB® will be utilized

frequently throughout the remainder of this paper for calculations and models of constrained

multibody dynamics. All MATLAB® scripts created in support of this research are illustrated in

Appendix A.

 When using MATLAB®, a suite of functions are available to users that create shortcuts

for implementing algorithms. One such function that is widely used in this research is “ODE23”,

a three stage, third order Runge-Kutta ordinary differential solver [15]. In order to solve a DAE

using MATLAB®, the following algorithm was implemented:

27

1. Define the initial conditions at time equal to zero.

2. Define the time span and time step for integrations.

3. Reference initial parameters and time step for ODE 23.

4. ODE23 then refers to a function containing the system constraints and EOMs.

5. Within the ODE23 function, the body constraints and hidden constraints are solved

simultaneously.

6. The acceleration variables are then solved for using a specific DAE solution method.

7. ODE23 steps through the timespan at the specified time step.

8. Numerical parameters are returned to the original script.

9. Parameters are then utilized for post-processing.

This algorithm will be implemented for subsequent example problems. MATLAB® scripts are

illustrated in Appendix A.

2.3 EFFECTS OF THE PENALTY FACTOR

 A penalty factor of μ = 105 is utilized for the following example problems. This penalty

factor was chosen due to its implementation; it resulted in static penalty solutions that are

comparable to projection method solutions in both computational time and solution accuracy

for the initial simple pendulum example. An analysis of varying μ from 10 to 108 is depicted in

Figures (2)-(4) for static penalty without stabilization, static penalty with stabilization, and

alternate penalty methods, respectively. This analysis was done using the simple pendulum

example due to the use of a direct numerical approach as a baseline for all other solution

methods. In this case the maximum mass component is one. Computational times for each

28

method over the span of penalty factors is depicted in Table (1). Small changes in both

computational time and solution accuracy are observed for the static penalty with stabilization.

Large deviations in solution accuracy and small variation of computation time is observed for

the static penalty without stabilization. Large variations in both solution accuracy and

computational time are observed for the alternate penalty method. In all three penalty

methods, it is obvious that solutions are more accurate as penalty factors increase. Since the

stabilization handles hidden constraints more precisely, there is significantly less error when

the penalty factor is applied. This results in solutions that are more dependent on the

Baumgarte weighting when analyzing accuracy and computational time.

Figure 2: Static Penalty without Stabilization

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Error: x-position

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

3
Error: y-position

0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4
Error: x-velocity

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5
Error: y-velocity

mu = 101

mu = 102

mu = 103

mu = 104

mu = 105

mu = 106

mu = 107

mu = 108

29

Figure 3: Static Penalty with Stabilization

Figure 4: Alternate Penalty

0 1 2 3 4 5 6
-0.02

-0.01

0

0.01

0.02

0.03

0.04
Error: x-position

0 1 2 3 4 5 6
-0.02

0

0.02

0.04

0.06

0.08
Error: y-position

0 1 2 3 4 5 6
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Error: x-velocity

0 1 2 3 4 5 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Error: y-velocity

mu = 101

mu = 102

mu = 103

mu = 104

mu = 105

mu = 106

mu = 107

mu = 108

0 1 2 3 4 5 6
-0.02

-0.01

0

0.01

0.02

0.03

0.04
Error: x-position

0 1 2 3 4 5 6
-0.02

0

0.02

0.04

0.06

0.08
Error: y-position

0 1 2 3 4 5 6
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Error: x-velocity

0 1 2 3 4 5 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Error: y-velocity

mu = 101

mu = 102

mu = 103

mu = 104

mu = 105

mu = 106

mu = 107

mu = 108

30

Table 1: Computational Time Over Varying Penalty Factor

μ
Static

Penalty*
Static Penalty,
Baumgarte**

Goicolea and
Orden

10 1.1112 0.9679 0.8816
10^2 0.9061 0.9441 0.9254
10^3 0.9291 0.9461 0.9874
10^4 0.9457 0.9825 1.1233 [seconds]

10^5 0.9365 1.0045 1.6363
10^6 0.9418 0.9546 2.7658
10^7 0.9555 0.9673 6.8599
10^8 0.9373 0.9409 19.3364

*Projection = 1.0887 **Projection Baumgarte = 0.9484

It is also observed that as the mass becomes significant when compared with the penalty

factor, additional error is introduced. In order to mitigate this, the penalty factor should be five

orders of magnitude higher than the largest factor within the mass matrix. This will result in

solutions that are comparable in error to those presented in Figure 3.

2.4 EXAMPLE PROBLEMS

The following example problems were chosen as a means to verify that application of a

static penalty method was feasible. Problems of increasing complexity are then used to

evaluate the static penalty method as well as its computational efficiency. The first example

problem depicts a simple pendulum strictly meant for validation purposes. This problem was

selected due to its simplicity for evaluating the effectiveness of implementing the static penalty

method as compared with a projection and an alternate penalty method. The use of Baumgarte

stabilization [17] is also assessed using this problem. For completeness, the simple pendulum is

also examined using an Index-2 DAE. The next example problem implements the static penalty

method with a Scotch mechanism. The Scotch mechanism is a relatively simple problem, but it

31

demonstrates applicability towards a constrained multibody dynamic system. A slider-crank

mechanism is then observed in the final problem. Slider-crank mechanism formulations can be

extrapolated to encompass a variety of other constrained multibody systems, making this an

ideal problem for testing the applicability of the derived penalty method. For both the Scotch

and slider-crank mechanisms, the static penalty method is compared against projection and

alternate penalty method solutions.

2.4.1 SIMPLE PENDULUM

The single body problem chosen for this research is that of a simple pendulum, as illustrated

in Figure (5). The mass of the system is concentrated on a point length (L) from the fixed origin.

Gravity is acting uniformly over the system in the positive y direction with no external torques

or forces. Damping is not present in the system; therefore, results are expected to represent a

simple harmonic oscillator.

32

Figure 5: Simple Pendulum

Formulations for the equations of motion are then derived from Equations (4) and (5) as

𝑴 = [

𝑚 0 0
0 𝑚 0
0 0 𝑚

]

𝑭 = [

0
𝑚𝑔
0

]

Constraints in Cartesian coordinates for the simple pendulum must ensure that the mass stays

on a circular path and does not deviate in the z direction. The holonomic constraint from

Equation (19) is then formulated as

 𝑪 = [𝑥
2 + 𝑦2 − 1

𝑧
]

The Jacobian of the C matrix is then found using equation (20).

33

 𝑪,𝒒 = [
2𝑥 2𝑦 0
0 0 1

]

Equation (22) is then used to calculate 𝜸:

 𝜸 = − [2�̇�2 2�̇�2 0
0 0 0

]

These variables are then substituted into Equation (21) to formulate the DAE of the constrained

simple pendulum, where

�̈� = [

�̈�
�̈�
�̈�

]

Initial conditions for the simple pendulum are listed in Table 2. Initial conditions and variables

are then substituted into the MATLAB® algorithm described in Section 2.2. The MATLAB® script

for this problem is depicted in Appendix A.2 and calls ODE23 functions seen in Appendix A.2.a,

A.2.b, A.2.c, A.2.d, A.2.e, A.2.f, and A.2.g.

Table 2: Simple Pendulum Initial Conditions

g [m/s2] m [kg] x0 [m] y0 [m] z0 [m] �̇�0 [m/s] �̇�0 [m/s] �̇�0 [m/s]

9.81 1 1 0 0 0 0 0

tinit [s] dt [s] tfinal [s]
Constraint
Tolerance

0 0.0001 5 1-10

Figure (6) illustrates the pendulum motion as a result of the penalty method equation (71). For

this case, a penalty factor (μ) of 105 is implemented on the constraints. The simulation is run for

a period of five seconds. Figure (7) depicts the error between the static penalty solution and a

direct numerical integration of equation (72) using ODE23.

34

Figure 6: Simple Pendulum Motion Plots

0 1 2 3 4 5
-1

-0.5

0

0.5

1

Time [s]

x
1

Penalty: x-position

0 1 2 3 4 5
0

0.5

1

Time [s]

y
1

Penalty: y-position

0 1 2 3 4 5
-5

0

5

Time [s]

x
1
d
o
t

Penalty: x-velocity

0 1 2 3 4 5
-4

-2

0

2

4

Time [s]

y
1
d
o
t

Penalty: y-velocity

35

Figure 7: Simple Pendulum Penalty Error

Solution accuracy is compared against a direct numerical integration of a simple pendulum

illustrated as equation (73). ODE23 was also utilized for this direct numerical approach and is

depicted in Appendix A.2.g. One hundred computations were performed for each method in

order to calculate a reasonable mean of the computational time. The static penalty method

averaged a computational time of 0.9365 seconds, whereas the direct numerical approach has

a mean computational time of 0.8391 seconds over 100 computations.

 �̈� = −
𝑔

𝐿
sin (𝜃) (73)

0 2 4 6
-5

0

5
x 10

-3

Time [s]

x
1

Error: x-position

0 2 4 6
-10

-5

0

5
x 10

-3

Time [s]

y
1

Error: y-position

0 2 4 6
-0.04

-0.02

0

0.02

Time [s]

x
1
d
o
t

Error: x-velocity

0 2 4 6
-0.04

-0.02

0

0.02

Time [s]

y
1
d
o
t

Error: y-velocity

36

Since the direct numerical approach provides an output of 𝜃 and �̇�, position and velocity are

calculated using equation (74) through (77).

 𝑥 = 𝐿𝑠𝑖𝑛(𝜃) (74)

 𝑦 = 𝐿𝑐𝑜𝑠(𝜃) (75)

 �̇� = 𝐿𝜔𝑐𝑜𝑠(𝜃) (76)

 �̇� = −𝐿𝜔𝑠𝑖𝑛(𝜃) (77)

In order to determine if the error between the static penalty method and direct numerical

approach is acceptable, the static penalty method solution is compared with the projection

method from equation (48) in Figure (8).

37

Figure 8: Pendulum Penalty vs. Projection

From Figure (8), it is observed that with a penalty factor of 105, there is no discernable

difference between the two methods. A mean computational time for the projection method

was found to be 1.0887 seconds measured over 100 computations. Comparatively, both

computational times are reasonably low. The static penalty method was therefore verified as a

reasonable approach for solving dynamic systems.

 Baumgarte stabilization is then applied to both the static penalty and projection

methods. This stabilization method performs the displacement and velocity corrections

0 1 2 3 4 5
-4

-2

0

2

4

6
x 10

-3

Time [s]

x
1

Error: x-position

0 1 2 3 4 5
-8

-6

-4

-2

0

2
x 10

-3

Time [s]

y
1

Error: y-position

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

x
1
d
o
t

Error: x-velocity

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

y
1
d
o
t

Error: y-velocity

Penalty

Projection

38

implicitly, reducing the amount of code required for each function. The motion plots for both

methods containing the Baumgarte stabilization are not discernable from Figure (6). The

difference between the static penalty and projection methods with and without the Baumgarte

stabilization are represented in Figures (9) and (10) respectively. The static penalty method with

stabilization averaged 1.0045 seconds over 100 computations. The projection averaged 0.9484

seconds. Weighting coefficients of α = 20 and β = 4.4721 are utilized per [17]. A penalty factor

of μ = 105 is kept.

Figure 9: Static Penalty Baumgarte Comparison

0 1 2 3 4 5
0

1

2

3

4
x 10

-3

Time [s]

x
1

Baumgarte Penalty x-position Difference

0 1 2 3 4 5
0

2

4

6

8
x 10

-3

Time [s]

y
1

Baumgarte Penalty y-position Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

Time [s]

x
1
d
o
t

Baumgarte Penalty x-velocity Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Time [s]

y
1
d
o
t

Baumgarte Penalty y-velocity Difference

39

Figure 10: Projection Baumgarte Comparison

 Comparing the static penalty method errors with and without Baumgarte stabilization

demonstrates a slight increase in accuracy when stabilization is used. This comparison is

illustrated in Figure (11). From these observations, the static penalty and projection methods

utilized for subsequent example problems will have hidden constraints enforced using

Baumgarte stabilization, as significantly less coding is required.

0 1 2 3 4 5
0

1

2

3

4

5
x 10

-3

Time [s]

x
1

Baumgarte Projection x-position Difference

0 1 2 3 4 5
0

2

4

6

8
x 10

-3

Time [s]

y
1

Baumgarte Projection y-position Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

Time [s]

x
1
d
o
t

Baumgarte Projection x-velocity Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Time [s]

y
1
d
o
t

Baumgarte Projection y-velocity Difference

40

Figure 11: Static Penalty Error Stabilization Comparison

An alternate penalty method depicted as equation (52) is then utilized to provide an

additional comparator with the static penalty method. The alternate penalty method from [16]

also demonstrates that additional methods have been derived that implement a penalty factor

on constraints to solve dynamic problems. Motion solutions using the alternate penalty method

are not discernable from Figure (6). Error, as compared with the direct numerical approach, is

slightly more accurate than that of the previous methods but contains much more noise in the

results. The noise is especially dominant in the velocity error comparisons. Computational time

0 1 2 3 4 5
-4

-2

0

2

4

6
x 10

-3

Time [s]

x
1

Error: x-position

0 1 2 3 4 5
-8

-6

-4

-2

0

2
x 10

-3

Time [s]

y
1

Error: y-position

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

x
1
d
o
t

Error: x-velocity

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

y
1
d
o
t

Error: y-velocity

with Stabilization

Without

41

for the alternate method is found to be 1.6363 seconds averaged over 100 runs. The alternate

error is depicted with the static error in Figure (12).

Figure 12: Alternate Penalty Error

For completeness, the static penalty method is compared with an Index-2 penalty approach

derived in [17] and represented as equation (58). Motion solutions using the Index-2 penalty

method are not discernable from Figure (6). Error as compared with the direct numerical

approach is slightly less accurate than that of the previous methods. Computational time for

the alternate method is found to be 1.1308 seconds averaged over 100 runs. The Index-2 error

is depicted with the static error in Figure (13).

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1
x 10

-3

Time [s]

x
1

Error: x-position

0 1 2 3 4 5
-1

-0.5

0

0.5

1

1.5
x 10

-3

Time [s]

y
1

Error: y-position

0 1 2 3 4 5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time [s]

x
1
d
o
t

Error: x-velocity

0 1 2 3 4 5
-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time [s]

y
1
d
o
t

Error: y-velocity

Penalty Baum

Alternate

42

Figure 13: Index-2 Penalty Error

It is observed from all of the comparisons that the static penalty method applied to a

dynamic problem is computationally feasible and accurate when compared with other proven

methods. This holds true for both scenarios with and without the Baumgarte stabilization

applied. The simple pendulum demonstrates this capability for a constrained single body

system. The following examples illustrate the static penalty methods applicability with

constrained multibody systems. In the following examples, only the projection method with

Baumgarte stabilization will be utilized for comparison against the static penalty method with

Baumgarte stabilization, since results for all methods are similar. Codes for the alternate

0 1 2 3 4 5
-4

-2

0

2

4

6
x 10

-3

Time [s]

x
1

Error: x-position

0 1 2 3 4 5
-8

-6

-4

-2

0

2
x 10

-3

Time [s]

y
1

Error: y-position

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

x
1
d
o
t

Error: x-velocity

0 1 2 3 4 5
-0.03

-0.02

-0.01

0

0.01

0.02

Time [s]

y
1
d
o
t

Error: y-velocity

Penalty Baum

Index-2

43

penalty and index-2 penalty can be easily manipulated to solve additional problems for

interested readers.

2.4.2 SCOTCH MECHANISM

The first multibody problem chosen for this research is the Scotch mechanism illustrated in

Figure (14). Gravity is acting uniformly over the system in the negative y direction. The problem

is separated into two distinct bodies. An external force is applied to this system on body 2. The

body-fixed reference frames for each body are depicted in Figures (15)-(16).

Figure 14: Scotch Mechanism

44

Figure 15: Scotch Mech. Body 1

Figure 16: Scotch Mech. Body 2

The external force applied to body 2 will be defined as

𝑓 = − sin(
𝜋

4
𝑡)

45

Use of equation (4) and (5) yield

𝑴 = [
(4𝐿1

2 + 𝑏1
2)

12
𝑚1 0

0 𝑚2

]

𝑭 = [−

1

2
𝑚1𝑔𝐿1 cos 𝜃1

−𝑓
]

 Constraints in Cartesian coordinates for the Scotch mechanism constrain body two to move

only in the x-direction and body one to move within the slot on body 2. Holonomic constraints

from Equation (19) are formulated as

 𝑪 = [𝑥2−𝐿1 cos(𝜃1)]

The Jacobian of the C matrix is then found using equation (20).

 𝑪,𝒒 = [𝐿1 sin(𝜃1) 1]

Equation (22) is then used to calculate 𝜸:

 𝜸 = [−𝐿1 cos(𝜃1) �̇�1
2]

These variables are then substituted into Equation (21) to formulate the DAE of the constrained

Scotch mechanism, where

�̈� = [

�̈�1

�̈�2
]

Initial conditions for the Scotch mechanism are listed in Table 3. Initial conditions and variables

are then substituted into the MATLAB® algorithm described in Section 2.2. The MATLAB® script

46

for this problem is depicted in Appendix A.3 and calls ODE23 functions seen in Appendix A.3.a

and A.3.b. Solutions are compared with the example problem solution.

Table 3: Scotch Mech. Initial Conditions

g [in/s2] m1 [lbf] m2 [lbf]

386.4 0.5 5

L1 [in] 𝜃1[rad] 𝑥2[in]

25 1 13.5076

b [in] �̇�1[rad/s] �̇�2[in/s]

2 0 0

tinit [s] dt [s] tfinal [s]
Constraint
Tolerance

0 0.0001 4 1-10

Figures (17) illustrates Scotch mechanism motion as a result of the penalty method. For this

case, a penalty factor (μ) of 107 is implemented on the constraints due to the maximum mass

matrix component equaling 104. Figure (18) depicts Scotch mechanism motion using the

projection method. The simulation is run for 4 seconds.

47

Figure 17: Scotch Penalty Motion

0 1 2 3 4
-5

0

5

10

15

20

25

30

Time [s]

q

Penalty: Displacements

Theta1

X2

0 1 2 3 4
-50

-40

-30

-20

-10

0

10

20

30

40

50

Time [s]

q
d
o
t

Penalty: Velocities

Theta1dot

X2dot

48

Figure 18: Scotch Projection Motion

The difference between the two methods is indistinguishable when comparing the above

figures. Therefore, the difference between the two methods for each parameter is evaluated

separately in Figure (19).

0 1 2 3 4
-5

0

5

10

15

20

25

Time [s]

q

Projection: Displacements

Theta1

X2

0 1 2 3 4
-50

-40

-30

-20

-10

0

10

20

30

40

50

Time [s]

q
d
o
t

Projection: Velocities

Theta1dot

X2dot

49

Figure 19: Scotch Penalty vs. Projection

Mean computational times over 100 runs were also found as 0.7528 seconds for the penalty

method and 0.7214 for the Projection method. Since there is minimal deviation between the

two methods in both solutions and computational time, the static penalty method is shown as a

viable method for use with constrained multibody dynamics. To further assess the applicability

of the penalty method for use with multibody dynamics, a more complex problem is analyzed.

0 1 2 3 4
0

2

4

6

8
x 10

-6 Method Difference: Theta1

Time

D
if
fe

re
n
c
e

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3
x 10

-5 Method Difference: X2

Time

D
if
fe

re
n
c
e

0 1 2 3 4
0

1

2

3

4
x 10

-4 Method Difference: Theta1dot

Time

D
if
fe

re
n
c
e

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
x 10

-3 Method Difference: X2dot

Time

D
if
fe

re
n
c
e

50

2.4.3 SLIDER-CRANK MECHANISM

The slider-crank mechanism illustrated in Figure (20) provides a more complex system than

that of the Scotch mechanism. Much like the Scotch mechanism, the slider-crank mechanism is

commonly used in constrained multibody dynamics due to its variety of components and

applicability towards formulations that can be used for other systems. Gravity is acting

uniformly over the system in the negative y direction with no external torques or forces. The

problem is separated into three distinct bodies and two constraints yielding one degree of

freedom. Each symbol depicts its corresponding body with a subscript. The body-fixed

reference frames for each body are depicted in Figures (21)-(23).

Figure 20: Slider-Crank Mechanism

51

Figure 21: Slider-Crank Body 1

Figure 22: Slider-Crank Body 2

52

Figure 23: Slider-Crank Body 3

 Use of equation (4) and (5) with the known inertia of rods at bodies 1 and 2 yields

𝑴 =

[

4

12
𝑚1𝐿1

2 0 0

0
4

12
𝑚2𝐿2

2 0

0 0 𝑚3]

 𝑭

= [
2𝑚2 sin(𝜃2)(�̇�2

2 + 2�̇�1�̇�2) − 𝑚2𝑔(2 sin(𝜃1) + sin(𝜃1 + 𝜃2)) − 𝑚1𝑔 sin(𝜃1)

−2𝑚2 sin (𝜃2) �̇�1
2 − 𝑚2𝑔 sin(𝜃1 + 𝜃2)

0

]

Constraints in Cartesian coordinates for the slider-crank mechanism restrict body three to move

only in the x-direction. Holonomic constraints from Equation (19) are then formulated as

𝑪 = [

𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2) − 𝑥3

−𝐿1 cos(𝜃1) − 𝐿2 cos(𝜃1 + 𝜃2)
]

The Jacobian of the C matrix is then found using equation (20).

53

𝑪,𝒒 = [

𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2) 𝐿2 cos(𝜃1 + 𝜃2) −1

𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2) 𝐿2 sin(𝜃1 + 𝜃2) 0
]

Equation (22) is then used to calculate 𝜸:

𝜸 = − [

(𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2))�̇�1
2 + 𝐿2 sin(𝜃1 + 𝜃2) (2�̇�1�̇�2 + �̇�2

2)

−(𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2))�̇�1
2 − 𝐿2 cos(𝜃1 + 𝜃2) (2�̇�1�̇�2 + �̇�2

2)
]

These variables are then substituted into Equation (21) to formulate the DAE of the constrained

slider-crank mechanism, where

�̈� = [
�̈�1

�̈�2

�̈�3

]

Initial conditions for the slider-crank mechanism are listed in Table 4. Initial conditions were

selected to match conditions from [8] for comparison to the literature. Initial conditions and

variables are then substituted into the MATLAB® algorithm described in Section 2.2. The

MATLAB® script for this problem is depicted in Appendix A.4 and calls ODE23 functions seen in

Appendix A.4.a and A.4.b.

Table 4: Slider-Crank Initial Conditions

g [m/s2] m1 [kg] m2 [kg] m3 [kg]

9.81 1 1 1

L1 [m] 𝜃1[rad] 𝜃2[rad] 𝑥3 [m]

2 2.3562 -1.5708 2.8284

L2 [m] �̇�1[rad/s] �̇�2[rad/s] �̇�3 [m/s]

2 0 0 0

tinit [s] dt [s] tfinal [s]
Constraint
Tolerance

0 0.0001 1.8 1-10

54

Figures (24) illustrates slider-crank motion as a result of the penalty method. For this case, a

penalty factor (μ) of 105 is implemented upon the constraints. Figure (25) depicts slider-crank

motion using the projection method. The simulation is run for 1.8 seconds.

Figure 24: Slider-Crank Penalty Motion

0 0.5 1 1.5 2
-2

-1

0

1

2

3

4

5

Time [s]

q

Penalty: Displacements

Theta1

Theta2

X3

0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6

Time [s]

q
d
o
t

Penalty: Velocities

Theta1dot

Theta2dot

X3dot

55

Figure 25: Slider-Crank Projection Motion

Computational times are again averaged over 100 computations for the two methods, yielding

0.3085 for the Projection method and 0.3141 for the penalty method. Solution difference

between each method is illustrated in Figure (26).

0 0.5 1 1.5 2
-2

-1

0

1

2

3

4

5

Time [s]

q

Projection: Displacements

Theta1

Theta2

X3

0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6

Time [s]

q
d
o
t

Projection: Velocities

Theta1dot

Theta2dot

X3dot

56

Figure 26: Slider-Crank Penalty vs. Projection

These differences are small comparatively. This demonstrates continued accuracy of the

penalty method and computational efficiency that is nearly equivalent to the projection

method.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-6 Method Difference: Theta1

Time

D
if
fe

re
n
c
e

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-6 Method Difference: Theta2

Time

D
if
fe

re
n
c
e

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-6 Method Difference: X3

Time

D
if
fe

re
n
c
e

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

-5 Method Difference: Theta1dot

Time

D
if
fe

re
n
c
e

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

-5 Method Difference: Theta2dot

Time

D
if
fe

re
n
c
e

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

-5 Method Difference: X3dot

Time

D
if
fe

re
n
c
e

57

CHAPTER 3. CONCLUSION AND FUTURE WORK

The objective of this study was to extend a static penalty method for use with constrained

multibody dynamics and examine its ease of implementation within computer coding. The

static penalty method was applied to example problems to verify its feasibility for use with

constrained multibody dynamics. Example problems were selected with the intent to

encompass a variety of multibody dynamic aspects. Chapter 2 examples illustrate the feasibility

of extending the static penalty method presented in [13] for application with constrained

multibody dynamic systems. Due to the complex and numerical nature of multibody dynamic

systems, an algorithm was developed which solves a system using the static penalty method.

Penalty solutions were compared with direct numerical solutions, projection solutions [12], an

alternate penalty solution [16], an Index-2 penalty solution, and literature. Favorable results

were obtained for the penalty method based on solution accuracy and computational time. A

Baumgarte stabilization [17] was applied to the static penalty method as an alternate

enforcement of hidden constraints. It was found that the Baumgarte stabilization does not

negatively impact accuracy or computational time. Using the stabilization results in significantly

less code required for solution algorithms. Implementation of the penalty method within

MATLAB® is relatively simple, especially with Baumgarte stabilization. It is also shown that the

ideal penalty factor is 5 orders of magnitude greater than the largest value observed in a

formulated mass matrix. The applicability of the static penalty method was demonstrated for

systems that can easily be extrapolated to solve many other dynamic DAEs. Overall, the

objective of this thesis was met.

58

Example problems were selected with the intent to encompass a variety of multibody

dynamic aspects. In making these selections, the presented penalty method can be

manipulated to solve any DAE multibody system with holonomic constraints. A projection

method was used to compare solutions. The projection method was chosen for comparison due

to its similarity with implementation in coding and its proven solution accuracy [12].

The first example illustrates the feasibility of using the penalty method for constrained

dynamic analysis. In comparing the static penalty, projection [12], alternate penalty [16], and

Index-2 penalty methods with a direct numerical solution, similar accuracies and computational

times are observed. Additionally, a Baumgarte constraint is applied to the static penalty and

projection methods as an alternate way of enforcing the system’s hidden constraints. The two

methods are then compared with and without this stabilization, resulting in nearly

indistinguishable results. MATLAB® code is significantly reduced when using the Baumgarte

stabilization, leading to its use for subsequent example problems. These results prove that it is

feasible to use the presented static penalty method for constrained dynamics.

In order to test the static penalty method with a constrained multibody system, the Scotch

mechanism was chosen due to its significance in multibody dynamics and component variety.

The static penalty method for this problem is compared directly with the projection method,

both of which have the hidden constraints enforced using Baumgarte stabilization. It is

observed that the static penalty solution is well within an acceptable tolerance of the projection

solution and requires similar computational time. This analysis shows that the static penalty

method is feasible for use with constrained multibody dynamics.

59

The final problem depicts solutions for a slider-crank mechanism. The static penalty method

for this problem is compared directly with the projection method and solutions presented by

[8]. Again, the Baumgarte stabilization is utilized by both methods to enforce hidden

constraints. It is observed that the static penalty solution is well within an acceptable tolerance

of the projection solution and requires similar computational time. This analysis shows the

robustness of the static penalty method, even as problem complexity increases.

In comparing the static penalty and projection method, it is seen from the example

problems that computational times and accuracies are similar. The derivation for the projection

method is a much more rigorous process, and its implementation within MATLAB® code more

difficult than that of the penalty method. The ease with which the penalty method can be

implemented and understood in MATLAB® code is beneficial, especially as increasingly complex

systems are observed.

Although the static penalty method proves useful for constrained multibody systems,

additional research is required to determine its applicability and overall performance with

increasingly complex systems. Increasingly complex systems may contain additional bodies,

non-holonomic constraints, Euler parameters, etc. Computationally, the performance of any

method is going to diminish as the number of bodies and constraints increase. This is simply

due to the number of calculations that must be performed. Based on the limited number of

examples presented in this research, there is evidence that the deviation between penalty and

projection method does not change. This insinuates that the penalty method could be used in

lieu of the projection method. Lastly, the DAE solutions for this research encompass

constrained multibody dynamics. DAE formulations are not limited to this field of study.

60

Solutions of DAEs for other disciplines (i.e. fluid dynamics, heat transfer) has yet to be assessed

using the presented static penalty method.

61

REFERENCES

[1] Yang, Yinping and Peter Betsch. "On the Choice of Coordinates forComputational

Multibody Dynamics." Proceedings in Applied Mathematics & Mechanics (2011): 75-76.

[2] Haug, Edward J. Intermediate Dynamics. Englewood Cliffs, NJ: Prentice-Hall Inc., 1992.

[3] Greenber, Michael D. Advanced Engineering Mathematics. Upper Saddle River, NJ:

Pearson Prentice Hall, 1998.

[4] Weisstein, Eric W. "Ordinary Differential Equations." n.d. Wolfram.

<http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html>.

[5] Moler, Cleve. "Stiff Differential Equations." 2003. MathWorks.

<https://www.mathworks.com/company/newsletters/articles/stiff-differential-

equations.html>.

[6] Petzold, Linda. "Differential/Algebraic Equations Are Not ODE's." SIAM Journal on

Scientific Computing, 1982: 367-384.

[7] Goldstein, Herbert, Charles Poole and John Safko. Classiscal Mechanics. Addison-

Wesley, 2000.

[8] Haug, Edward J. "Computational Methods in Mechanical System Dynamics." June 2019.

Research Gate. <www.researchgate.net>.

[9] Negrut, Dan. On the Implicit Integration of Differential-Algebraic Equations of Multibody

Dynamics. PhD Thesis. Iowa City, Iowa: University of Iowa, 1998.

[10] Hibbeler, R.C. Engineering Mechanics: Dynamics. Upper Saddle River, NJ: Pearson

Prentice Hall, 2013.

[11] Okasha, M. and B. Newman. "Switching Principles to Circumvent Euler Angle

Singularity." AIAA/AAS Astrodynamics Specialist Conference. Toronto, Canada, 2010.

[12] Heaney, Patrick S. and Gene Hou. "Projection Method with Minimal Correction

Procedure for Numerical Simulation of Constrained Dynamics." ASME 2017 Dynamic

Systems and Control Conference. Tysons Corner, VA, 2017: 1-10.

 [13] Chandrupatla, Tirupathi R. and Ashok D. Belegundu. "Penalty Approach." Introduction.

Upper Saddle River, NJ: Pearson Prentice Hall, 2012: 76-85.

 [14] Shampine, L.F. and M.W. Reichelt. "The MATLAB ODE Suite." SIAM Journal on Scientific

Computing (1997): 1-22.

62

[15] Bogacki, P. and Shampine, L.F. "A 3(2) Pair of Runge-Kutta Formulas" Appl. Math. Lett.,

1989: Vol. 2, 321-325.

[16] Goicolea, J. M. and Garcia Orden J. C. , “Dynamic Analysis of Rigid and Deformable

Multibody Systems with Penalty methods and Energy-Momentum Schemes”, Computer

Methods in Applied Mechanics and Engineering , 2000: Vol. 188, 789-804.

[17] Hajzman, M. and Polach, P., “Application of stabilization techniques in the dynamic

analysis of multibody systems”, Applied and Computational Mechanics, 2007: Vol. 1,

479-488.

63

APPENDIX A. COMPUTER CODES

A.1. Static Multipoint Constraint

close all; clear all;
set(0,'defaultlinelinewidth',2);

%% Static Penalty Method

E1 = 200*10^3; E2 = 70*10^3; % Modulus of elasticity [N/mm^2]
A1 = 1200; A2 = 900; % Cross sectional area [mm^2]
L1 = 4500; L2 = 3000; % Length [mm]
P = 30*10^3; % Applied load [N]

F = [0;0;0;0;P]; % External forces on the bar [N]

k1 = E1*A1/L1*[1 -1;-1 1]; % Body 1 stiffness matrix
k2 = E2*A2/L2*[1 -1;-1 1]; % Body 2 stiffness matrix

K = [k1(2,2) 0 k1(2,1) 0 0;
 0 k2(2,2) 0 k2(2,1) 0;
 k1(1,2) 0 k1(1,1) 0 0;
 0 k2(1,2) 0 k2(1,1) 0;
 0 0 0 0 0]; % Global stiffness matrix

MK = max(K);

mu = MK(1)*10^4; % Constraint

C = [1 0 0 0 -2/6;0 1 0 0 -5/6]; % Constraints keeping bar straight
CC = [0 0 0 0 0;0 0 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 0]; % Attachment

Constraints
PF = mu*((C'*C)+CC);

K_pen = K+PF;

Q = K_pen\F; % Calculated Displacements [mm]

A.2. Simple Pendulum

close all; clear all;
set(0,'defaultlinelinewidth',2);
% Simple pendulum motion

%% Parameters
% Time span parameters [seconds]
tinit = 0;
tstep = 0.0001;
tfinal = 5;

% Model
global g m1 tp mu alpha beta

64

g = 9.81; % [m/s^2] gravitational constant
m1 =1; % [kg] mass of the pendulum
tp = tinit:tstep:tfinal; % [sec] Time span for evaluation
mu = 10^5; % Finite Element Penalty Factor
alpha = 20; % Baumgarte Weighting Coefficient
beta = 20; % Baumgarte Weighting Coefficient

% Initial Conditions
x1initial = 1; y1initial = 0; zinitial = 0; % [m] Length is 1
x1dotinitial = 0; y1dotinitial = 0; zdotinitial = 0; % [m/s]

q0(1) = x1initial;
q0(2) = y1initial;
q0(3) = zinitial;
q0(4) = x1dotinitial;
q0(5) = y1dotinitial;
q0(6) = zdotinitial;

%% Projection Method
tic
disp('Solution Method: Projection');
[t,qp]=ode23(@Pendulum_ProjectionFunc, tp, q0);
Projtimer = toc

% Process and Plot Solution for Projection method

figure;
subplot(2,2,1); plot(t,qp(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Projection: x-position');
subplot(2,2,2); plot(t,qp(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Projection: y-position');
subplot(2,2,3); plot(t,qp(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid

on;
xlim([0 5]); ylim([-5 5]);
title('Projection: x-velocity');
subplot(2,2,4); plot(t,qp(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid

on;
xlim([0 5]); ylim([-4 4]);
title('Projection: y-velocity');

%% Projection Method Baumgarte Stabilization
tic
disp('Solution Method: Projection Baumgarte');
[t,qpb]=ode23(@Pendulum_ProjectionBaum, tp, q0);
ProjBaumTimer = toc

% Process and Plot Solution for Projection method

figure;
subplot(2,2,1); plot(t,qpb(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Projection Baum: x-position');
subplot(2,2,2); plot(t,qpb(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;

65

xlim([0 5]); ylim([0 1]);
title('Projection Baum: y-position');
subplot(2,2,3); plot(t,qpb(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid

on;
xlim([0 5]); ylim([-5 5]);
title('Projection Baum: x-velocity');
subplot(2,2,4); plot(t,qpb(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid

on;
xlim([0 5]); ylim([-4 4]);
title('Projection Baum: y-velocity');

%% Finite Element Penalty Method
tic
disp('Solution Method: Static Penalty');
[t,q]=ode23(@Pendulum_PenaltyFunc, tp, q0);
PenaltyFiniteTimer = toc

% Process and Plot Solution for Finite Element Penalty Method

figure;
subplot(2,2,1); plot(t,q(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Static Penalty: x-position');
subplot(2,2,2); plot(t,q(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Static Penalty: y-position');
subplot(2,2,3); plot(t,q(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid on;
xlim([0 5]); ylim([-5 5]);
title('Static Penalty: x-velocity');
subplot(2,2,4); plot(t,q(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid on;
xlim([0 5]); ylim([-4 4]);
title('Static Penalty: y-velocity');

%% Finite Element Penalty Method with Baumgarte Stabilization
tic
disp('Solution Method: Static Penalty Baumgarte');
[t,qb]=ode23(@Pendulum_FinitePenaltyBaum, tp, q0);
BaumFiniteTimer = toc

% Process and Plot Solution for Finite Element Penalty Method Baumgarte

figure;
subplot(2,2,1); plot(t,qb(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Static Baumgarte: x-position');
subplot(2,2,2); plot(t,qb(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Static Baumgarte: y-position');
subplot(2,2,3); plot(t,qb(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid

on;
xlim([0 5]); ylim([-5 5]);
title('Static Baumgarte: x-velocity');
subplot(2,2,4); plot(t,qb(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid

on;
xlim([0 5]); ylim([-4 4]);
title('Static Baumgarte: y-velocity');

66

%% Goicolea and Garcia-Orden Penalty Method
tic
disp('Solution Method: Goicolea Penalty');
[t,qg]=ode23(@Pendulum_GOPenaltyFunc, tp, q0);
PenaltyGoicoleaTimer = toc

% Process and Plot Solution for Finite Element Penalty Method

figure;
subplot(2,2,1); plot(t,qg(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Goicolea Penalty: x-position');
subplot(2,2,2); plot(t,qg(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Goicolea Penalty: y-position');
subplot(2,2,3); plot(t,qg(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid

on;
xlim([0 5]); ylim([-5 5]);
title('Goicolea Penalty: x-velocity');
subplot(2,2,4); plot(t,qg(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid

on;
xlim([0 5]); ylim([-4 4]);
title('Goicolea Penalty: y-velocity');

%% Goicolea and Garcia-Orden Penalty Method
tic
disp('Solution Method: Index-2 Penalty');
[t,qi2]=ode23(@Pendulum_Index2Penalty, tp, q0);
PenaltyIndex2Timer = toc

% Process and Plot Solution for Finite Element Penalty Method

figure;
subplot(2,2,1); plot(t,qi2(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Index 2 Penalty: x-position');
subplot(2,2,2); plot(t,qi2(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Index 2 Penalty: y-position');
subplot(2,2,3); plot(t,qi2(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid

on;
xlim([0 5]); ylim([-5 5]);
title('Index 2 Penalty: x-velocity');
subplot(2,2,4); plot(t,qi2(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid

on;
xlim([0 5]); ylim([-4 4]);
title('Index 2 Penalty: y-velocity');

%% Direct Integration

% Initial Condition
theta0 = pi/2;
omega0 = 0;
L = 1;

67

disp('Solution Method: Direct');

qe0(1) = theta0;
qe0(2) = omega0;

tic
disp('Solution Method: Exact Penalty');
[t,qe]=ode23(@Pendulum_Direct, tp, qe0);
DirectTimer = toc

x = L.*sin(qe(:,1));
y = L.*cos(qe(:,1));
xdot = L.*qe(:,2).*cos(qe(:,1));
ydot = -L.*qe(:,2).*sin(qe(:,1));

figure;
subplot(2,2,1); plot(tp,x); xlabel('Time [s]'); ylabel('x1'); grid on;
xlim([0 5]); ylim([-1 1]);
title('Exact: x-position');
subplot(2,2,2); plot(tp,y); xlabel('Time [s]'); ylabel('y1'); grid on;
xlim([0 5]); ylim([0 1]);
title('Exact: y-position');
subplot(2,2,3); plot(tp,xdot); xlabel('Time [s]'); ylabel('x1dot'); grid on;
xlim([0 5]); ylim([-5 5]);
title('Exact: x-velocity');
subplot(2,2,4); plot(tp,ydot); xlabel('Time [s]'); ylabel('y1dot'); grid on;
xlim([0 5]); ylim([-4 4]);
title('Exact: y-velocity');

%% Calculate the error compared with the direct solution

Prox_error = (qp(:,1)-x);
Proy_error = (qp(:,2)-y);
Proxdot_error = (qp(:,4)-xdot);
Proydot_error = (qp(:,5)-ydot);

ProBaumx_error = (qpb(:,1)-x);
ProBaumy_error = (qpb(:,2)-y);
ProBaumxdot_error = (qpb(:,4)-xdot);
ProBaumydot_error = (qpb(:,5)-ydot);

Penx_error = (q(:,1)-x);
Peny_error = (q(:,2)-y);
Penxdot_error = (q(:,4)-xdot);
Penydot_error = (q(:,5)-ydot);

PenBaumx_error = (qb(:,1)-x);
PenBaumy_error = (qb(:,2)-y);
PenBaumxdot_error = (qb(:,4)-xdot);
PenBaumydot_error = (qb(:,5)-ydot);

PenGOx_error = (qg(:,1)-x);
PenGOy_error = (qg(:,2)-y);
PenGOxdot_error = (qg(:,4)-xdot);
PenGOydot_error = (qg(:,5)-ydot);

68

PenI2x_error = (qi2(:,1)-x);
PenI2y_error = (qi2(:,2)-y);
PenI2xdot_error = (qi2(:,4)-xdot);
PenI2ydot_error = (qi2(:,5)-ydot);

% Plot Errors with the direct solution

figure;
subplot(2,2,1); plot(t,Penx_error,t,Prox_error,'--',t,ProBaumx_error,'--

',t,PenBaumx_error,':',t,PenGOx_error,'-.'); xlabel('Time [s]');

ylabel('x1'); grid on;
title('Error: x-position');
subplot(2,2,2); plot(t,Peny_error,t,Proy_error,'--',t,ProBaumy_error,'--

',t,PenBaumy_error,':',t,PenGOy_error,'-.'); xlabel('Time [s]');

ylabel('y1'); grid on;
title('Error: y-position');
subplot(2,2,3); plot(t,Penxdot_error,t,Proxdot_error,'--

',t,ProBaumxdot_error,'--',t,PenBaumxdot_error,':',t,PenGOxdot_error,'-.');

xlabel('Time [s]'); ylabel('x1dot'); grid on;
title('Error: x-velocity');
subplot(2,2,4); plot(t,Penydot_error,t,Proydot_error,'--

',t,ProBaumydot_error,'--',t,PenBaumydot_error,':',t,PenGOydot_error,'-.');

xlabel('Time [s]'); ylabel('y1dot'); grid on;
title('Error: y-velocity');
legend('Finite Penalty','Projection','Projection Baumgarte','Penalty

Baumgarte','Goicolea Penalty');

figure;
subplot(2,2,1); plot(t,PenBaumx_error,':',t,ProBaumx_error); xlabel('Time

[s]'); ylabel('x1'); grid on;
title('Error: x-position');
subplot(2,2,2); plot(t,PenBaumy_error,':',t,ProBaumy_error); xlabel('Time

[s]'); ylabel('y1'); grid on;
title('Error: y-position');
subplot(2,2,3); plot(t,PenBaumxdot_error,':',t,ProBaumxdot_error);

xlabel('Time [s]'); ylabel('x1dot'); grid on;
title('Error: x-velocity');
subplot(2,2,4); plot(t,PenBaumydot_error,':',t,ProBaumydot_error);

xlabel('Time [s]'); ylabel('y1dot'); grid on;
title('Error: y-velocity');
legend('Penalty Baumgarte','Projection Baumgarte');

%% Difference between methods
% Finite Penalty with and without Baumgarte Stabilization
Baumx_diff = abs(q(:,1)-qb(:,1));
Baumy_diff = abs(q(:,2)-qb(:,2));
Baumxdot_diff = abs(q(:,4)-qb(:,4));
Baumydot_diff = abs(q(:,5)-qb(:,5));

figure;
subplot(2,2,1); plot(tp,Baumx_diff); xlabel('Time [s]'); ylabel('x1'); grid

on;
title('Baumgarte Penalty x-position Difference');
subplot(2,2,2); plot(tp,Baumy_diff); xlabel('Time [s]'); ylabel('y1'); grid

on;

69

title('Baumgarte Penalty y-position Difference');
subplot(2,2,3); plot(tp,Baumxdot_diff); xlabel('Time [s]'); ylabel('x1dot');

grid on;
title('Baumgarte Penalty x-velocity Difference');
subplot(2,2,4); plot(tp,Baumydot_diff); xlabel('Time [s]'); ylabel('y1dot');

grid on;
title('Baumgarte Penalty y-velocity Difference');

% Projection with and without Baumgarte Stabilization
Projx_diff = abs(qpb(:,1)-qp(:,1));
Projy_diff = abs(qpb(:,2)-qp(:,2));
Projxdot_diff = abs(qpb(:,4)-qp(:,4));
Projydot_diff = abs(qpb(:,5)-qp(:,5));

figure;
subplot(2,2,1); plot(tp,Projx_diff); xlabel('Time [s]'); ylabel('x1'); grid

on;
title('Baumgarte Projection x-position Difference');
subplot(2,2,2); plot(tp,Projy_diff); xlabel('Time [s]'); ylabel('y1'); grid

on;
title('Baumgarte Projection y-position Difference');
subplot(2,2,3); plot(tp,Projxdot_diff); xlabel('Time [s]'); ylabel('x1dot');

grid on;
title('Baumgarte Projection x-velocity Difference');
subplot(2,2,4); plot(tp,Projydot_diff); xlabel('Time [s]'); ylabel('y1dot');

grid on;
title('Baumgarte Projection y-velocity Difference');

% Finite Penalty and Projection with Baumgarte Stabilization
Methodx_diff = abs(qpb(:,1)-qb(:,1));
Methody_diff = abs(qpb(:,2)-qb(:,2));
Methodxdot_diff = abs(qpb(:,4)-qb(:,4));
Methodydot_diff = abs(qpb(:,5)-qb(:,5));

figure;
subplot(2,2,1); plot(tp,Methodx_diff); xlabel('Time [s]'); ylabel('x1'); grid

on;
title('BaumPen-BaumProj x-position Difference');
subplot(2,2,2); plot(tp,Methody_diff); xlabel('Time [s]'); ylabel('y1'); grid

on;
title('BaumPen-BaumProj y-position Difference');
subplot(2,2,3); plot(tp,Methodxdot_diff); xlabel('Time [s]');

ylabel('x1dot'); grid on;
title('BaumPen-BaumProj x-velocity Difference');
subplot(2,2,4); plot(tp,Methodydot_diff); xlabel('Time [s]');

ylabel('y1dot'); grid on;
title('BaumPen-BaumProj y-velocity Difference');

% Finite Penalty with Baumgarte and Goicolea Penalty
Methodx_diff = abs(qb(:,1)-qg(:,1));
Methody_diff = abs(qb(:,2)-qg(:,2));
Methodxdot_diff = abs(qb(:,4)-qg(:,4));
Methodydot_diff = abs(qb(:,5)-qg(:,5));

figure;

70

subplot(2,2,1); plot(tp,Methodx_diff); xlabel('Time [s]'); ylabel('x1'); grid

on;
title('Finite and GO x-position Difference');
subplot(2,2,2); plot(tp,Methody_diff); xlabel('Time [s]'); ylabel('y1'); grid

on;
title('Finite and GO y-position Difference');
subplot(2,2,3); plot(tp,Methodxdot_diff); xlabel('Time [s]');

ylabel('x1dot'); grid on;
title('Finite and GO x-velocity Difference');
subplot(2,2,4); plot(tp,Methodydot_diff); xlabel('Time [s]');

ylabel('y1dot'); grid on;
title('Finite and GO y-velocity Difference');

A.2.a. Simple Pendulum Penalty Function

function dqdt = Pendulum_PenaltyFunc(t,q) % Single Pendulum
% Static Penalty Method with corrections for hidden constraints
 constraintTolerance = 1e-10; % Tolerance for displacement and velocity

constraints
 global g m1 mu
 % Read current state
 x1 = q(1);
 y1 = q(2);
 z = q(3);
 x1dot = q(4);
 y1dot = q(5);
 zdot = q(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];

 %% Correct displacement constraint
 while abs(C) > constraintTolerance

 Q_delta = -Cq'*inv(Cq*Cq')*C;

 for i = 1:3
 q(i) = q(i) + Q_delta(i);
 end

 % Update displacement state
 x1=q(1); y1 = q(2); z = q(3);

 C = [x1^2+y1^2-1;0];
 Cq = [2*x1 2*y1 0;0 0 1];
 end

 C_dot = Cq*q(4:6);

 %% Correct velocity constraint
 while abs(C_dot) > constraintTolerance

71

 Q_dot_delta = -Cq'*inv(Cq*Cq')*C_dot;

 for i = 1:3
 q(i+3) = q(i+3) + Q_dot_delta(i);
 end

 % Update velocity state
 x1dot=q(4); y1dot = q(5); zdot = q(6);

 % Update velocity constraint
 C_dot = Cq*q(4:6);
 end

 %% Update acceleration
 M = [m1 0 0;0 m1 0;0 0 m1];

 gamma = [-2*x1dot^2-2*y1dot^2;0];

 f = [0;m1*g;0];

 qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);

 lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma);

 dqdt = [q(4:6);qddot];
end

A.2.b. Simple Pendulum Penalty Function, Baumgarte Stabilization

function dqdt = Pendulum_FinitePenaltyBaum(t,qb) % Single Pendulum
% Static Penalty Method with Baumgarte Stabilization
 global g m1 mu alpha beta
 % Read current state
 x1 = q(1);
 y1 = q(2);
 z = q(3);
 x1dot = q(4);
 y1dot = q(5);
 zdot = q(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];
 C_dot = Cq*q(4:6);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration
 M = [m1 0 0;0 m1 0;0 0 m1];

 gamma = [-2*x1dot^2-2*y1dot^2;0]+B;

72

 f = [0;m1*g;0];

 qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);

 lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma);

 dqdt = [q(4:6);qddot];
end

A.2.c. Simple Pendulum Projection Function

function dqdt = Pendulum_ProjectionFunc(t,qp) % Single Pendulum
% Projection Method with corrections for hidden constraints
 constraintTolerance = 1e-10; % Tolerance for displacement and velocity

constraints
 global g m1
 % Read current state
 x1 = qp(1);
 y1 = qp(2);
 z = qp(3);
 x1dot = qp(4);
 y1dot = qp(5);
 zdot = qp(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];

 %% Correct displacement constraint
 while abs(C) > constraintTolerance

 Q_delta = -Cq'*inv(Cq*Cq')*C;

 for i = 1:3
 qp(i) = qp(i) + Q_delta(i);
 end

 % Update displacement state
 x1=qp(1); y1 = qp(2); z = qp(3);

 C = [x1^2+y1^2-1;0];
 Cq = [2*x1 2*y1 0;0 0 1];
 end

 C_dot = Cq*qp(4:6);

 %% Correct velocity constraint
 while abs(C_dot) > constraintTolerance

 Q_dot_delta = -Cq'*inv(Cq*Cq')*C_dot;

 for i = 1:3
 qp(i+3) = qp(i+3) + Q_dot_delta(i);
 end

73

 % Update velocity state
 x1dot=qp(4); y1dot = qp(5); zdot = qp(6);

 % Update velocity constraint
 C_dot = Cq*qp(4:6);
 end

 %% Update acceleration
 invM = inv([m1 0 0;0 m1 0;0 0 m1]);

 f = [0;m1*g;0];

 gamma = [-2*x1dot^2-2*y1dot^2;0];

 qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma));

 lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma);

 dqdt = [qp(4:6);qddot];
end

A.2.d. Simple Pendulum Projection Function, Baumgarte Stabilization

function dqdt = Pendulum_ProjectionBaum(t,qpb) % Single Pendulum
% Projection Method with Baumgarte Stabilization

 global g m1 alpha beta
 % Read current state
 x1 = qpb(1);
 y1 = qpb(2);
 z = qpb(3);
 x1dot = qpb(4);
 y1dot = qpb(5);
 zdot = qpb(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];
 C_dot = Cq*qpb(4:6);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration
 invM = inv([m1 0 0;0 m1 0;0 0 m1]);

 f = [0;m1*g;0];

 gamma = [-2*x1dot^2-2*y1dot^2;0]-B;

 qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma));

74

 lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma);

 dqdt = [qpb(4:6);qddot];
end

A.2.e. Simple Pendulum Goicolea and Orden Function

function dqdt = Pendulum_GOPenaltyFunc(t,qg) % Single Pendulum
% Goicolea and Garcia-Orden Penalty Method
 constraintTolerance = 1e-10; % Tolerance for displacement and velocity

constraints
 global g m1 mu
 % Read current state
 x1 = qg(1);
 y1 = qg(2);
 z = qg(3);
 x1dot = qg(4);
 y1dot = qg(5);
 zdot = qg(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];

 %% Update acceleration
 M = [m1 0 0;0 m1 0;0 0 m1];

 f = [0;m1*g;0];

 qddot = inv(M)*(f-mu*Cq'*C);

 dqdt = [qg(4:6);qddot];
end

A.2.f. Simple Pendulum Index-2 Penalty Function

function dqdt = Pendulum_Index2Penalty(t,qi2) % Single Pendulum
% Index-2 Penalty Method
constraintTolerance = 1e-10; % Tolerance for displacement and velocity

constraints
global g m1 mu
 % Read current state
 x1 = qi2(1);
 y1 = qi2(2);
 z = qi2(3);
 x1dot = qi2(4);
 y1dot = qi2(5);
 zdot = qi2(6);

 C = [x1^2+y1^2-1;z];
 Cq = [2*x1 2*y1 0;0 0 1];

 qdot = qi2(4:6);

75

 %% Correct displacement constraint
 while abs(C) > constraintTolerance

 Q_delta = -Cq'*inv(Cq*Cq')*C;

 for i = 1:3
 qi2(i) = qi2(i) + Q_delta(i);
 end

 % Update displacement state
 x1=qi2(1); y1 = qi2(2); z = qi2(3);

 C = [x1^2+y1^2-1;0];
 Cq = [2*x1 2*y1 0;0 0 1];
 end

 C_dot = Cq*qi2(4:6);

 %% Update acceleration

 y = qdot;

 M = [m1 0 0;0 m1 0;0 0 m1];

 gamma = [-2*x1dot^2-2*y1dot^2;0];

 f = [0;m1*g;0];

 qddot = inv(M+mu*(Cq'*Cq))*(f+mu*Cq'*gamma);
 qdot = inv(eye(3)+mu*(Cq'*Cq))*(y+mu*Cq'*C_dot);

 dqdt = [qi2(4:6);qddot];
end

A.2.g. Simple Pendulum Direct Integration Function

function dqdt = Pendulum_Direct(t,qe) % Single Pendulum
% Static Penalty Method with Baumgarte Stabilization
 global g
 % Read current state
 theta = qe(1);
 omega = qe(2);

 %% Update acceleration

 dqdt = zeros(2,1);
 dqdt(1)=qe(2);
 dqdt(2)=-(g*sin(qe(1)));

end

76

A.3. Scotch Mechanism

close all; clear all; clear global;
set(0,'defaultlinelinewidth',2);
% Scotch Mechanism

%% Parameters
% Simulation
tfinal = 4; tstep = 0.0001;

% Model
global g m1 m2 tp L b mu alpha beta
g = 386.4; % [in/s^2] gravitational constant
m1 = 0.5/g; % [slug] mass of rod
m2 = 5/g; % [slug] mass block
tp=0:tstep:tfinal;
L = 25; % [inches] length of rod
b = 0.05; % [inches] width of rod
mu = 10^5;
alpha = 20;
beta = 20;

% Initial Conditions
th1init = 1; x2init = L*cos(th1init);
th1dotinit = 0; x2dotinit = 0;

q0(1) = th1init;
q0(2) = x2init;
q0(3) = th1dotinit;
q0(4) = x2dotinit;

%% Projection Method
%for i = 1:100
tic
disp('Solution Method: Projection');
[t,qp]=ode23(@Scotch_ProjectionFunc, tp, q0);
%timer1(i)=toc;
%end
%mean(timer1)

% Process and Plot Solution
figure;
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--');
xlabel('Time [s]'); ylabel('q'); grid on;
title('Projection: Displacements'); legend('Theta1','X2')
subplot(1,2,2); plot(t,qp(:,3),'-',t,qp(:,4),'--');
xlabel('Time [s]'); ylabel('qdot'); grid on;
title('Projection: Velocities'); legend('Theta1dot','X2dot')

%% Penalty Method
%for i = 1:100
tic

77

disp('Solution Method: Penalty');
[t,q]=ode23(@Scotch_PenaltyFunc, tp, q0);
%timer2(i)=toc;
%end
%mean(timer2)

% Process and Plot Solution
figure;
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--');
xlabel('Time [s]'); ylabel('q'); grid on;
title('Penalty: Displacements'); legend('Theta1','X2')
subplot(1,2,2); plot(t,qp(:,3),'-',t,qp(:,4),'--');
xlabel('Time [s]'); ylabel('qdot'); grid on;
title('Penalty: Velocities'); legend('Theta1dot','X2dot')

diff = abs(q-qp);
figure;
subplot(2,2,1);plot(t,diff(:,1));title('Method Difference: Theta1');
xlabel('Time');ylabel('Difference');
subplot(2,2,2);plot(t,diff(:,2));title('Method Difference: X2');
xlabel('Time');ylabel('Difference');
subplot(2,2,3);plot(t,diff(:,3));title('Method Difference: Theta1dot');
xlabel('Time');ylabel('Difference');
subplot(2,2,4);plot(t,diff(:,4));title('Method Difference: X2dot');
xlabel('Time');ylabel('Difference');

A.3.a. Scotch Mechanism Penalty Function

function dqdt = Scotch_PenaltyFunc(t,q) % Slider Crank Mechanism

 global g m1 m2 L b mu alpha beta
 F = -sin(t*pi/4);
 % Read current state
 th1 = q(1);
 x2 = q(2);
 th1dot = q(3);
 x2dot = q(4);

 C = [x2-L*cos(th1)];
 Cq = [sin(th1)*L 1];
 C_dot = Cq*q(3:4);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration
 M = [m1*(4*L^2+b^2)/12 0;0 m2];

 f = [-m1*g*L*cos(th1)/2;-F];

 gamma = [-cos(th1)*L*th1dot^2]-B;

 qddot = inv(M+mu*(Cq'*Cq))*(f+mu*Cq'*gamma);

78

 lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma);

 dqdt = [q(3:4);qddot];
end

A.3.b. Scotch Mechanism Projection Function

function dqdt = Scotch_ProjectionFunc(t,qp) % Scotch Mechanism

 global g m1 m2 L b alpha beta
 F = -sin(t*pi/4);
 % Read current state
 th1 = qp(1);
 x2 = qp(2);
 th1dot = qp(3);
 x2dot = qp(4);

 C = [x2-L*cos(th1)];
 Cq = [sin(th1)*L 1];
 C_dot = Cq*qp(3:4);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration
 invM = inv([m1*(4*L^2+b^2)/12 0;0 m2]);

 f = [-m1*g*L*cos(th1)/2;-F];

 gamma = [-cos(th1)*L*th1dot^2]-B;

 qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma));

 lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma);

 dqdt = [qp(3:4);qddot];
end

A.4. Slider-Crank Mechanism

close all; clear all; clear global;
set(0,'defaultlinelinewidth',2);
% Slider-crank Mechanism

%% Parameters
% Simulation
tfinal = 1.8; tstep = 0.0001;

% Model
global g m1 m2 m3 tp L1 L2 alpha beta mu

79

g = 9.81; % [m/s^2] gravitational constant
m1 = 1; % [kg] mass of the driving bar
m2 = 1; % [kg] mass of the connector bar
m3 = 1; % [kg] mass of the piston
tp=0:tstep:tfinal;
L1 = 2;
L2 = 2;
mu = 10^5;
alpha = 20;
beta = 20;

% Initial Conditions
th1init = 3*pi/4; th2init = acos(-cos(th1init))-(th1init);
x3init = 2*sin(th1init)+2*sin(th1init+th2init); % [m] Length is 2 for each

beam
th1dotinit = 0; th2dotinit = 0; x3dotinit = 0; % [m/s]

q0(1) = th1init;
q0(2) = th2init;
q0(3) = x3init;
q0(4) = th1dotinit;
q0(5) = th2dotinit;
q0(6) = x3dotinit;

%% Projection Method
tic
disp('Solution Method: Projection');
[t,qp]=ode23(@SliderCrank_ProjectionFunc, tp, q0);
toc

% Process and Plot Solution
figure;
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--',t,qp(:,3),':');
xlabel('Time [s]'); ylabel('q'); grid on;
title('Projection: Displacements'); legend('Theta1','Theta2','X3')
subplot(1,2,2); plot(t,qp(:,4),'-',t,qp(:,5),'--',t,qp(:,6),':');
xlabel('Time [s]'); ylabel('qdot'); grid on;
title('Projection: Velocities'); legend('Theta1dot','Theta2dot','X3dot')

%% Penalty Method
tic
disp('Solution Method: Penalty');
[t,q]=ode23(@SliderCrank_PenaltyFunc, tp, q0);
toc

% Process and Plot Solution
figure;
subplot(1,2,1); plot(t,q(:,1),'-',t,q(:,2),'--',t,q(:,3),':');
xlabel('Time [s]'); ylabel('q'); grid on;
title('Penalty: Displacements'); legend('Theta1','Theta2','X3')
subplot(1,2,2); plot(t,q(:,4),'-',t,q(:,5),'--',t,q(:,6),':');
xlabel('Time [s]'); ylabel('qdot'); grid on;
title('Penalty: Velocities'); legend('Theta1dot','Theta2dot','X3dot')

diff = abs(q-qp);

80

figure;
subplot(2,3,1);plot(t,diff(:,1));title('Method Difference: Theta1');
xlabel('Time');ylabel('Difference');
subplot(2,3,2);plot(t,diff(:,2));title('Method Difference: Theta2');
xlabel('Time');ylabel('Difference');
subplot(2,3,3);plot(t,diff(:,3));title('Method Difference: X3');
xlabel('Time');ylabel('Difference');
subplot(2,3,4);plot(t,diff(:,4));title('Method Difference: Theta1dot');
xlabel('Time');ylabel('Difference');
subplot(2,3,5);plot(t,diff(:,5));title('Method Difference: Theta2dot');
xlabel('Time');ylabel('Difference');
subplot(2,3,6);plot(t,diff(:,6));title('Method Difference: X3dot');
xlabel('Time');ylabel('Difference');

A.4.a. Slider-Crank Mechanism Penalty Function

function dqdt = SliderCrank_PenaltyFunc(t,q) % Slider Crank Mechanism

 global g m1 m2 m3 L1 L2 alpha beta mu
 % Read current state
 th1 = q(1);
 th2 = q(2);
 x3 = q(3);
 th1dot = q(4);
 th2dot = q(5);
 x3dot = q(6);

 C = [L1*sin(th1)+L2*sin(th1+th2)-x3; -L1*cos(th1)-L2*cos(th1+th2)];
 Cq = [L1*cos(th1)+L2*cos(th1+th2) L2*cos(th1+th2) -1;
 L1*sin(th1)+L2*sin(th1+th2) L2*sin(th1+th2) 0];
 C_dot = Cq*q(4:6);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration

 M = [(4*m1*L1^2/12) 0 0;
 0 4*m2*L2^2/12 0;
 0 0 m3];

 f = [2*m2*sin(th2)*(th2dot^2+2*th1dot*th2dot)-

m2*g*(2*sin(th1)+sin(th1+th2))-m1*g*sin(th1);
 -2*m2*sin(th2)*th1dot^2-m2*g*sin(th1+th2);
 0];

 gamma =

[((2*sin(th1)+2*sin(th1+th2))*th1dot^2)+(2*sin(th1+th2)*(2*th1dot*th2dot+th2d

ot^2));
 (-(2*cos(th1)+2*cos(th1+th2))*th1dot^2)-

(2*cos(th1+th2)*(2*th1dot*th2dot+th2dot^2))]-B;

 qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);

81

 lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma);

 dqdt = [q(4:6);qddot];
end

A.4.b. Slider-Crank Mechanism Projection Function

function dqdt = SliderCrank_ProjectionFunc(t,qp) % Slider Crank Mechanism

 global g m1 m2 m3 L1 L2 alpha beta
 % Read current state
 th1 = qp(1);
 th2 = qp(2);
 x3 = qp(3);
 th1dot = qp(4);
 th2dot = qp(5);
 x3dot = qp(6);

 C = [L1*sin(th1)+L2*sin(th1+th2)-x3; -L1*cos(th1)-L2*cos(th1+th2)];
 Cq = [L1*cos(th1)+L2*cos(th1+th2) L2*cos(th1+th2) -1;
 L1*sin(th1)+L2*sin(th1+th2) L2*sin(th1+th2) 0];
 C_dot = Cq*qp(4:6);

 % Baumgarte Stabilization
 B = 2*alpha*C_dot + beta^2*C;

 %% Update acceleration
 invM = inv([(4*m1*L1^2/12) 0 0;
 0 4*m2*L2^2/12 0;
 0 0 m3]);

 f = [2*m2*sin(th2)*(th2dot^2+2*th1dot*th2dot)-

m2*g*(2*sin(th1)+sin(th1+th2))-m1*g*sin(th1);
 -2*m2*sin(th2)*th1dot^2-m2*g*sin(th1+th2);
 0];

 gamma =

[((2*sin(th1)+2*sin(th1+th2))*th1dot^2)+(2*sin(th1+th2)*(2*th1dot*th2dot+th2d

ot^2));
 (-(2*cos(th1)+2*cos(th1+th2))*th1dot^2)-

(2*cos(th1+th2)*(2*th1dot*th2dot+th2dot^2))]-B;

 qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma));

 lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma);

 dqdt = [qp(4:6);qddot];
end

82

VITA

Troy S. Newhart

Mechanical & Aerospace Engineering
Old Dominion University

214A Kaufman Hall, Norfolk, VA 23529

Email:
 tsn5048@gmail.com

Education:
 M.S. Aerospace Engineering, Old Dominion University, December 2019
 B.S. Aerospace Engineering, The Pennsylvania State University, May 2015

	Extension of a Penalty Method for Numerically Solving Constrained Multibody Dynamic Problems
	Recommended Citation

	tmp.1580826487.pdf.R3d6v

