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ABSTRACT 

EXTENSION OF A PENALTY METHOD FOR NUMERICALLY 
SOLVING CONSTRAINED MULTIBODY DYNAMIC PROBLEMS 

Troy Newhart 
Old Dominion University, 2019 

Director: Dr. Gene Hou 

 

 Numerical analysis of constrained static and multibody dynamic systems has become an 

integral part of engineering analysis with the continued improvements in technology and 

software availability. Many methods currently exist for numerically solving constrained static 

and dynamic systems. The applicability of a penalty method for constrained static solutions is 

observed in many academic texts and papers. The appeal for using a penalty method in statics 

pertains to its ease of implementation, computational suitability, and accuracy. This thesis 

extends a static penalty method for use with constrained multibody dynamics to observe if the 

penalty method’s benefits are similar for a dynamics solution. 

 This thesis discusses formulations that are used in extending the static penalty method 

for use with constrained multibody dynamics. Example problems are then solved using the 

static penalty method and compared with a projection method. Example problems are selected 

to provide a solid foundation for implementing the static penalty method with many other 

constrained multibody systems. Constraints are purely holonomic for simplification of problem 

statements.  

 The goal of this thesis was met, in that the static penalty method is successfully applied 

to constrained multibody systems with favorable results. In comparing the penalty method with 

a projection method for each example, computational time and accuracy are comparable. 
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Coding of the penalty method is found to be no more difficult than that of the projection 

method. The static penalty method is shown to be useful in solving constrained multibody 

dynamics. Application of the penalty method was not tested with non-holonomic constraints. 

Future work is necessary to assess the penalty method’s applicability with non-holonomic 

constraints, as well as increasingly complex multibody dynamic systems. 
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NOMENCLATURE 

 

a Known static displacement 

A Transformation matrix 

α Baumgarte velocity weighting coefficient 

𝜶′ Angular accelerations in body-fixed reference frame 

b Body thickness 

B Static body constraint matrix 

β Static body constraints 

C Static penalty factor 

C Dynamic constraint vector 

Cc Static attachment constraint vector 

𝑪,𝒒 Dynamic constraint Jacobian 

𝑪,𝒒𝑡  Dynamic constraint Jacobian time derivative 

𝑪,𝑡, 𝑪,𝑡𝑡  Dynamic constraint first- and second-time derivatives 

dt Change in time 

e0, e1, e2, e3 Euler parameters 

E Euler E matrix 

𝒇𝒃 Body force vector 

𝑭 Force vector 

g Gravitational constant 

G Euler G matrix 

𝜸 DAE index constraint formulation 
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h Runge-Kutta time step 

I Identity matrix 

J’ Mass moment of inertia in body-fixed coordinates 

k Runge-Kutta parameter 

𝑲 Static stiffness matrix 

𝑲𝒄 Constrained static stiffness matrix 

L Body length 

𝝀 Lagrange multiplier 

m Body mass 

𝑴 Mass matrix 

μ Dynamic penalty factor 

𝝎′, �̃�′ Angular velocity vector, skew matrix in body-fixed reference frame 

𝒑 Euler parameter vector 

𝑷 Projection Formulations 

Π Potential Energy 

𝒒, 𝒒,̇ �̈� Dynamic motion displacement, velocity, and acceleration 

Q Static displacement vector 

𝒓, �̇�, �̈� Position, velocity, and acceleration in global coordinates 

𝒓′ Position from body-fixed origin to point of interest 

𝑹 Position of body-fixed origin from global origin 

𝑹𝒄
′ , �̃�𝒄

′  Position to point from body-fixed centroid vector, skew matrix 

t Time 
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tfinal Final time 

tinit Initial time 

𝑻𝒓′  External torques in the body-fixed reference frame 

𝑻𝑹 External forces in global coordinates 

𝝉 Torque 

U Strain energy 

ζ Baumgarte displacement weighting coefficient 

x, y, z Cartesian coordinates 

𝜃,𝜙, 𝜓 Euler angles 
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CHAPTER 1. INTRODUCTION 

 

1.1 BACKGROUND 

The application of a penalty method is commonly utilized for the analysis of static 

mechanisms where penalty factors are applied to constraint parameters of motionless systems. 

Large penalties are placed on parameters associated with the constraints of a system, and 

these modified parameters result in calculated values that have been restricted at the 

boundary conditions as intended. Using a penalty method for static analysis is beneficial due to 

its simplicity, ease of application, and computational suitability.  

Although the use of a penalty method is beneficial for static analysis, its application for 

constrained multibody dynamics is infrequent. There are cases where a penalty method is 

utilized with ordinary differential equations (ODE) to solve system kinematics, but formulating 

constrained multibody dynamic equations of motion (EOM) as an ODE is not always possible or 

optimal. For constrained EOMs, differential algebraic equations (DAE) are generally formulated. 

A DAE has characteristics of both algebraic and differential equations that must be solved in 

tandem to ensure constraints are adhered to. Due to these algebraic constraints, solutions 

cannot be found by strictly using ODE methods.  

There are numerous methods for solving DAEs [2, 7, 8, 10, 12]. To the knowledge of the 

author, the application of a penalty method to the constraints of a DAE is one that has not been 

tried against other more popular methods. Although there are various methods, all have their 

own restrictions and assumptions that must be considered. In the event that this penalty 
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method does not result in faster or more accurate solutions than current methods, there is 

always the potential that its application is for a special case that befuddles common methods.  

It is also possible that this method may be easier to implement within computer code.   

The modelling of dynamic systems has become an integral part of industry as 

computational technology continues to advance along with the development of accurate and 

affordable software suites. The use of computational modelling for dynamic systems provide 

users with data and graphics that are expected by consumers in most industries. Accuracy and 

speed of solution will be expected to progress even though problems being computationally 

modelled continue to increase in complexity and size. This is especially true in the analysis of 

constrained multibody dynamics.  As the need for computationally stable, accurate, and 

efficient solutions grow, it is necessary to ensure that adequate research has been conducted 

towards developing a toolbox composed of various methods that can be utilized to solve 

increasingly complex problems of the future. 

The objective of this thesis is to apply an extension of a penalty method commonly used 

with static analysis to constrained multibody dynamic systems. The ease with which this 

method may be applied to constrained multibody dynamic systems will be examined, as coding 

solutions for such problems can be difficult. The first chapter covers the background and will 

discuss the literature review of this topic. Equations of motion, ordinary differential equations, 

and differential-algebraic equation literature is reviewed first. Literature is then presented on 

solution methods for multibody dynamics that solve ordinary differential equations and 

differential algebraic equations numerically. Literature on penalty methods used for static and 

ODE solutions is then presented. Chapter two begins with the derivation of a penalty method 
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for solving differential-algebraic equations (DAEs), followed by an overview of MATLAB® 

software used to perform the penalty method analysis on example problems. Example 

problems are then illustrated to compare the penalty method with a projection method [12]. 

Example problems include a problem statement, initial conditions, formulation of Equations of 

Motion (EOM), formulation of DAEs, and results using the penalty method.  The example 

problems depict the use of a penalty method with a simple pendulum, a Scotch mechanism, 

and a slider-crank mechanism. Chapter three provides a brief discussion of results from the 

example problems. An overview of the penalty methods limitations and uses for multibody 

dynamics is then explained. Future work required on this topic concludes the paper. 

The penalty method used in this work for dynamic situations is an extension of a penalty 

method that is commonly utilized for static analysis. The application of the penalty method in 

static scenarios is useful in that it is easily applied to a variety of static problems, accurately 

models desired parameters, and is easily programmable for computational modelling. Given 

these attributes for static problems, it was expected that applying a similar method for dynamic 

scenarios would have coincidental benefits. Ultimately, the author pursued a method that 

could be implemented more easily in coding such that modelling constrained multibody 

dynamic problems requires less work for both the computer and user. It was foreseen that 

additional research would be required to apply this method to other transient events (i.e. heat 

transfer, fluid flow) given the scope of this paper. Future work may also be performed to apply 

the presented method to advancing levels of dynamic complexity, as additional bodies and 

constraints may be added to model more involved systems than those examined in this work. 
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1.2 LITERATURE REVIEW 

1.2.1 EQUATION OF MOTION FORMULATION 

The equations of motion (EOMs) represent the dynamics of a system mathematically. 

The EOMs are composed of variables that relate physical aspects of a system to each other as a 

function of time.  For a kinematic approach, the common variables used to explain a system’s 

motion with respect to time are the spatial displacements, velocities, and accelerations. The 

formulation of the kinematic equations can be done for multibody systems that contain relative 

coordinate systems. In all dynamic systems, a global reference frame is applied to define 

absolute coordinates. Each body (if multiple bodies exist) can then be assigned its own body-

fixed coordinates. Kinematic equations are then applied to relate the body-fixed coordinates to 

the global coordinates. Ongoing research in determining a method for optimal placement of 

coordinates describing multibody dynamics is illustrated in [1]. 

 The position of a point in global coordinates can be described by equation (1).  

 𝒓 =  𝑹 + 𝐴𝒓′ (1) 

 

 Once the position vectors are formulated, velocity and acceleration can be found by 

differentiating equation (1) with respect to time. After obtaining the kinematic equations, the 

kinetic equations can be derived. The kinetic equations formulate a system’s EOMs. Using 

Newton’s 2nd Law the EOMs of a single lumped mass are: 

 𝑭 = 𝑚�̈� (2) 

 

 𝝉 = 𝐽𝜶′ (3) 
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For simplicity, individual bodies will be assumed as rigid. The EOMs of an unconstrained free 

rigid body can then be formulated from [2] as equations (4) and (5) where the body-fixed 

coordinates are not necessarily at the rigid body’s centroid. 

 
𝑴 = [

𝑚𝐼 (−𝑚𝐴�̃�𝒄
′ )𝑇

(−𝑚𝐴�̃�𝒄
′ ) 𝐽′

] (4) 

 

 
𝑭 = [

𝑻𝑹 + 𝒇𝒃 − 𝑚𝐴�̃�′�̃�′𝑹𝒄
′

𝑻𝒓′ + �̃�𝒄
′ 𝐴𝑇𝒇𝒃 − �̃�′𝐽′𝝎′] (5) 

 

It is important to note that the force terms for translation of the system are expressed in the 

global coordinate frame, whereas the rotational components are in the body-fixed reference 

frames.  If the acceleration terms for translation and rotation are denoted as  �̈� =  [
�̈�
𝜶
], 

combining equations (4) and (5) with (2) yields the final EOM for an unconstrained free rigid 

body: 

 𝑭 = 𝑴�̈� (6) 

 

 The above EOMs can be extended to a system of unconstrained free rigid bodies 

characterized by its translational and rotational motion.  As additional unconstrained free 

bodies are considered, the matrices are combined to depict the EOMs of an entire 

unconstrained multibody system. The multibody components of equation (6) become 

 

𝑴 = [

𝑴1 0 ⋯ 0

0 𝑴2 ⋮

⋮ ⋱
0 ⋯ 𝑴𝑛

] (7) 
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�̈� = [

�̈�𝟏

�̈�𝟐

⋮
�̈�𝒏

] (8) 

 

 

𝑭 = [

𝑭𝟏

𝑭𝟐

⋮
𝑭𝒏

] (9) 

 

The EOMs’ defining physical parameters of an unconstrained free multibody system can now be 

formulated. These EOMs are composed of differential variables with respect to time. 

Formulations containing such differentials are known as Ordinary Differential Equations (ODEs). 

1.2.2 ORDINARY DIFFERENTIAL EQUATIONS 

Ordinary differential equations are commonly formulated to describe the dynamics of a 

system. The derivation and application of ODEs cover a wide range of topics not limited to 

multibody dynamics and are explained in numerous academic texts. Even when the topic range 

is narrowed to multibody dynamics, many references are available to interested readers. An 

ODE is classified as a differential equation containing derivatives with respect to a single 

dependent variable [3, 4]. The dependent variable tends to be time when defining an ODE for 

physical processes.  ODEs can be classified by their “order” where the order is equal to the 

number associated with the highest derivative.   

 �̇� − 𝐶𝑦 = 0 (10) 

 

 �̈� + 𝐾�̇� − 𝐶𝑦 = 0 (11) 

 

Equations (10) and (11) depict the form of a first order and second order ODE 

respectively, where y is an arbitrary variable that is a function of time. C and K are arbitrary 
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constants. In this work, all example problems will be given initial conditions at time equal to 

zero. Initial value ODEs are commonly defined due to practical formulations that do not have 

closed-form solutions. 

 It is always ideal to find a closed-form solution to an ODE that allows for exact analytical 

calculations to be derived. In practical applications, this is seldom possible and numerical 

methods are necessary. Numerical methods estimate the parameters of an ODE over a 

specified time span given a time step. One ODE numerical method of particular interest for this 

research is the Runge-Kutta Method. The Runge-Kutta method has multiple approaches that 

may be utilized. Selecting an approach is based on the order of the ODE, desired computational 

time, and stiffness [5] of the problem. In general, the Runge-Kutta method is an explicit 

numerical ODE solving algorithm that can be derived for higher-order systems. A solution 

method of particular interest for this research is the Bogacki-Shampine Runge-Kutta method 

[15] depicted in equations (12-17). 

 

 𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛) (12) 

 

 𝑘2 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1) (13) 

 

 𝑘3 = 𝑓(𝑡𝑛 +
3ℎ

4
, 𝑦𝑛 +

3ℎ

4
𝑘2) (14) 

 

 𝑦𝑛+1
(1)

= 𝑦𝑛 +
2

9
ℎ𝑘1 +

1

3
ℎ𝑘2 +

4

9
ℎ𝑘3 (15) 
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 𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛+1) (16) 

 

 𝑦𝑛+1
(2)

= 𝑦𝑛 +
7

24
ℎ𝑘1 +

1

4
ℎ𝑘2 +

1

3
ℎ𝑘3 +

1

8
ℎ𝑘4 (17) 

 

where 𝑦𝑛+1
(1)

 is the third-order approximation of the ODE and 𝑦𝑛+1
(2)

 is the second-order 

approximation. The difference between the third-order and second-order is utilized to change 

step size accordingly. The next 𝑘1 is then set equal to 𝑘4 at the start of the next sequence. 

Given a set of initial conditions, Runge-Kutta methods are utilized for integration of a 

specified ODE. This integration provides robust and adapted solutions to an ODE. The Bogacki-

Shampine Runge-Kutta method will be utilized computationally for subsequent example 

problems in this thesis via the MATLAB® ODE23 three stage, third order Runge-Kutta function. 

Unfortunately, not all physical processes can be completely described using an ODE. When 

dealing with constrained multibody dynamics, it is common that resulting formulations are in 

the form of differential-algebraic equations (DAEs). DAEs cannot be solved using only ODE 

techniques [6]. 

1.2.3 DIFFERENTIAL-ALGEBRAIC EQUATIONS AND CONSTRAINT FORMULATION 

Differential-Algebraic Equations have properties of both differential equations and 

algebraic equations, both of which must be solved simultaneously to accurately model the 

system. DAEs are commonly derived for constrained multibody dynamics due to the differential 

nature of the EOMs and the algebraic nature of enforcing constraint equations. Although DAEs 

will be formulated explicitly for constrained multibody dynamics in this paper, DAEs appear in 

many other disciplines as well.  
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Constraint equations are imposed to ensure that the dynamics adhere to specified 

parameters that are otherwise not captured in the EOMs. Constraints can be defined as 

holonomic or non-holonomic and rheonomous or scleronomous [7]. Holonomic constraints are 

defined as equality constraints applied to system displacements and will be solely used in this 

research for simplicity of DAE formulations. Constraints can also explicitly contain time as a 

variable (rheonomous) or expressed with variables other than time (scleronomous).  DAEs are 

also defined by the number of derivations required to convert a DAE to an ODE. For the 

duration of this paper, index 3 DAEs will be the primary focus of the research due to their 

frequency of appearance in constrained multibody dynamics [8].  

Once a holonomic constraint has been defined, it must be applied with the EOM of the 

system to accurately model the dynamics. The DAE is formulated using equations (7), (8), and 

(9) as [2, 8, 9, 10]: 

 𝑴�̈� − 𝑭 + 𝑪,𝒒
𝑇𝝀 = 𝟎 (18) 

 

 𝑪(𝒒, 𝒕) = 𝟎 (19) 

 

where 𝑪,𝒒 is the Jacobian matrix of the constraint equations, illustrated as equation (20), and 𝝀 

is unknown Lagrange multipliers used to enforce constraints. The Lagrange multipliers in 

equation (18) are more commonly referred to as the generalized constraint forces. These 

generalized constraint forces are the link between the forces acting on constraints and the 

forces acting externally on the bodies. If no constraints are present, we see that the equation 

reverts back to its unconstrained form depicted in equation (6).  
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 𝑪,𝒒 ≡
𝜕𝑪

𝜕𝒒
 (20) 

 

The DAE can then be presented in matrix form as 

 [
𝑴 𝑪,𝒒

𝑇

𝑪,𝒒 𝟎
] [

�̈�
𝝀
] = [

𝑭
𝜸
] (21) 

 

which enforces a constraint on the second order derivative of the constraints, or 

mathematically 𝑪,𝒒�̈� = 𝜸, where 𝜸 is 

 𝜸 ≡ −(𝑪,𝒒�̇�)
,𝒒
�̇� − 2𝑪,𝒒𝑡�̇� − 𝑪,𝑡𝑡  (22) 

 

Since equation (21) only enforces a constraint on �̈� = 𝟎, the conditions of �̇� = 𝟎 and 𝑪 = 𝟎 

may not be met. Therefore, the solution to equation (21) must also satisfy the following hidden 

constraints of equations (23) and (24): 

 𝑪 = 0 (23) 

 

 𝑪,𝒒�̇� + 𝑪,𝑡 = 0 (24) 

 

Another formulation of an Index-3 DAE that allows for computation without explicitly solving 

the hidden constraints is presented in [17]. The Baumgarte stabilization method presents 

additional terms in the force vector that correct constraint errors as the DAE is solved. Equation 

(25) depicts an Index-3 DAE with the Baumgarte constraint applied, where 𝛼 and 𝜁 are user 

applied weighting coefficients.  



11 
 

 [
𝑀 (𝑪,𝒒)

𝑇

𝑪,𝒒 0
] {

�̈�
𝝀
} = {

𝑭
−𝜸 − 𝟐𝛼�̇� − 𝜁2𝑪

} (25) 

   

In special cases of spatial multibody dynamics, it may be necessary (or more 

computationally efficient) to employ the use of Euler parameters as opposed to Euler angles 

when avoiding transformation matrix singularities [8]. The use of Euler parameters is 

advantageous in that four parameters are utilized to formulate the transformation matrix of 

rotation, eliminating the potential for singular transformation matrices that can occur when 

using Euler Angles. The major disadvantage of Euler parameters is the required constraint that 

must be adhered to when applying these parameters to the EOMs. Euler parameters are 

obtained from either the Euler angles, or from a rotation about a unit vector that formulates 

the rotations into a single rotation about said unit vector. Given the Euler angles, the 

transformation matrix of a system is a combination of direction cosine matrices (DCM). The 

DCMs can be combined in various ways to represent a systems transformation matrix so long as 

a single representation is used for the duration of a problem.  

 𝐴1 = [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0

0 0 1

] (26) 

 

 𝐴2 = [
cos (𝜙) 0 −sin (𝜙)

0 1 0
sin (𝜙) 0 cos (𝜙)

] (27) 

 

 𝐴3 = [
1 0 0
0 cos (𝜓) −sin (𝜓)
0 sin (𝜓) cos (𝜓)

] (28) 
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𝐴 = 𝐴1𝐴2𝐴3

= [

𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛 (𝜓) − 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛 (𝜃)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜓) + 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) − 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜓) − 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜙)

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛 (𝜓) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜓) 𝑐𝑜𝑠 (𝜃)

] 

            (29) 

The above Equations (26)-(28) depict three DCMs where equation (29) is one of many possible 

DCM combinations that create a transformation matrix for the system. With this 

transformation matrix, it can be seen that a singularity results when 𝑠𝑖𝑛(𝜃) = 0. A different 

combination of DCMs, or switching algorithm [11], can be implemented in an attempt to 

eliminate the singularity. The use of Euler parameters instead ensures no singularity will occur, 

but it introduces constraints that must be adhered to. 

 One approach [2] suggests that the Euler parameters replace the angles, angular 

velocity, and angular acceleration subject to a constraint. 

 𝒑 = [𝑒0 𝑒1 𝑒2 𝑒3]𝑇 (30) 

 

 𝑪 = 𝒑′𝒑 − 1 (31) 

 

where 𝒑 is a vector of Euler parameters. The formulation of a DAE using Euler parameters is 

then [2]: 

 4𝐺𝑇𝐽𝐺�̈� = 2𝐺𝑇𝒏′ + 8�̇�𝑇𝐽�̇�𝒑 (32) 

 

where G is 
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 𝐺 = [

−𝑒1 𝑒0 𝑒3 −𝑒2

−𝑒2 −𝑒3 𝑒0 𝑒1

−𝑒3 𝑒2 −𝑒1 𝑒0

] (33) 

 

Another parameter, E, is then defined in order to calculate the transformation matrix as a 

function of Euler parameters. 

 𝐸 = [

−𝑒1 𝑒0 −𝑒3 𝑒2

−𝑒2 𝑒3 𝑒0 −𝑒1

−𝑒3 −𝑒2 𝑒1 𝑒0

] (34) 

 

The transformation matrix is then defined as 

 𝐴 ≡ 𝐸𝐺𝑇 (35) 

 

The rotation of a system in global coordinates can now be found with a transformation matrix 

derived using either Euler angles or parameters, as long as it is consistent for the duration of a 

problem. Numerical methods may now be implemented on a formulated DAE to solve for 

translation and rotation of a constrained multibody dynamic system. 

1.2.4 INDEX-3 DAE SOLUTION METHODS 

Various numerical solution methods exist for DAEs. This paper will focus on using the 

projection method [12] and an alternate penalty method [16] on index-3 DAEs for comparison 

with the static penalty method in subsequent chapters.  

The projection method has been selected due to its ease of implementation and 

solution accuracy. The projection method is derived from the DAE formulation in equation (21). 

Provided that the mass matrix, 𝑴, is nonsingular, equation (21) can be rewritten using the 𝐿𝑈 

decomposition [12]: 
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 [
𝑴 𝑪,𝒒

𝑇

𝑪,𝒒 𝟎
] = [

𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 ] [

𝑰 𝑴−1𝑪,𝒒
𝑇

𝟎 𝑰
] (36) 

 

Thus equation (21) can be rewritten as 

 [
𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 ] [

𝑰 𝑴−1𝑪,𝒒
𝑇

𝟎 𝑰
] [

�̈�
𝝀
] = [

𝑭
𝜸
] (37) 

  

defining two intermediate variables 

 [
�̈�∗

𝝀∗] ≡ [
𝑰 𝑴−1𝑪,𝒒

𝑇

𝟎 𝑰
] [

�̈�
𝝀
] (38) 

which can be illustrated explicitly as 

 �̈�∗  =  �̈� + 𝑴−1𝑪,𝒒
𝑇 𝝀 (39) 

 

and 

 𝝀∗ = 𝝀 (40) 

 

Equation (37) can then be rewritten as 

 [
𝑴 𝟎
𝑪,𝒒 −𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 ] [

�̈�∗

𝝀∗] = [
𝑭
𝜸
] (41) 

  

From the first row of equation (41),  𝑴�̈�∗ = 𝑭, so 

 �̈�∗ = 𝑴−1𝑭 (42) 
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From the second row of equation (41) 

 𝑪,𝒒�̈�
∗ − 𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 𝝀∗ = 𝜸 (43) 

  

which, upon solving for 𝝀∗ and substituting the result of equation (42), yields 

 𝝀∗ = (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇 )
−1

(𝑪,𝒒𝑴
−1𝑭 + 𝜸) (44) 

Now, from equation (39),  

 
∴ �̈� = �̈�∗ − 𝑴−1𝑪,𝒒

𝑇 𝝀∗ 

= 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 𝝀 

(45) 

  

Thus, the first row of equation (41) is,  

 𝑴�̈� = 𝑭 − 𝑪,𝒒
𝑇 𝝀 (46) 

 

However, at this point, based upon equation (44), one can calculate 𝝀 

 𝝀 = (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇 )
−1

(𝑪,𝒒𝑴
−1𝑭 + 𝜸) (47) 

 

One may also substitute the values for both �̈�∗ and 𝝀∗ from equations (42) and (44) to obtain 
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�̈� = 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
(𝑪,𝒒𝑴

−1𝑭 − 𝜸)

= 𝑴−1𝑭 − 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝑪,𝒒𝑴

−1𝑭

+ 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝜸

= 𝑴−1 (𝑰 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝑪,𝒒𝑴

−1)𝑭 + 𝑴−1𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝜸

= 𝑴−1 (𝑭 − 𝑪,𝒒
𝑇 [(𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝑪,𝒒𝑴

−1𝑭 − (𝑪,𝒒𝑴
−1𝑪,𝒒

𝑇 )
−1

𝜸])

= 𝑴−1 (𝑷𝑭 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝜸) 

 

    (48) 

where 

 𝑷 ≡ 𝑰 − 𝑪,𝒒
𝑇 (𝑪,𝒒𝑴

−1𝑪,𝒒
𝑇 )

−1
𝑪,𝒒𝑴

−1 
   

(49) 

 

The projection method here only satisfies the constraints specified for �̈�. Hidden 

constraints must also be adhered to for the displacements and velocities. These hidden 

constraints are the same specified in equations (23) and (24). The complexity of the projection 

method should be noted here, as it is equations (48) and (49) that must be implemented within 

a computer program. 

An alternate penalty method derived in [16] is selected to show that other penalty 

methods exist in literature and provide a more direct comparison with the static penalty 

method. For an index-3 DAE, the alternate penalty method treats q as unknown. In the 

subsequent chapter, it is seen that for the static penalty method  �̈� is unknown. Using virtual 

work and estimating Lagrange multipliers with the penalty method, [16] depicts 

 (𝑀�̈� + 𝑪,𝒒
𝑇 𝜇𝑪 − 𝑭)

𝑇
𝛿𝒒 = 𝟎 (50) 

 

where 𝛿𝒒 is an arbitrary constant. This results in 
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 𝑀�̈� + 𝑪,𝒒
𝑇 𝜇𝑪 − 𝑭 = 𝟎 (51) 

 

which can be approximated as 

 �̈� = 𝑴−𝟏(𝑭 − 𝑪,𝒒
𝑇 𝜇𝑪) (52) 

 

where 𝜇 is the penalty coefficient. 

The illustrated projection method (equations 48 and 49) and an alternate penalty 

method (equation 52) can now be utilized to numerically solve an index-3 DAE. Both methods 

are solved for at each time step to ensure the EOMs adhere to the body and hidden constraints. 

The updated variables may then be integrated numerically for the resulting ODEs using 

methods described in Section 1.2.2.  

1.2.5 INDEX-2 DAE SOLUTION METHODS 

Although the primary focus of this thesis is on Index-3 DAEs, a solution method for an 

Index-2 DAE is presented for completeness. The static penalty method derived in Chapter 2 will 

also contain formulations for both an Index-3 and Index-2 DAE. 

In order to formulate an Index-2 DAE, a set of first order ODEs are observed as 

𝑀�̇� = 𝑭 

�̇� = 𝒚 

These ODEs can be combined into a matrix illustrated as equation (53) and are subject 

to a constraint matrix, as depicted in equation (54). 

 
[
𝑀 0
0 𝐼

] [
�̇�
�̇�
] = [

𝒇(�̇�, 𝒒, 𝑡)
𝑦

] (53) 
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[
𝑪,𝒒 0

0 𝑪,𝒒
] [

�̇�
�̇�
] = − [

𝜸(�̇�, 𝒒, 𝑡)

𝑪,𝑡
] (54) 

 

Upon application of Lagrange multipliers and combination of equations (53) and (54), 

the Index-2 DAE is represented as 

 

[
 
 
 
 𝑀 0

0 𝐼

(𝑪,𝒒)
𝑇

0

0 (𝑪,𝒒)
𝑇

𝑪,𝒒 0

0 𝑪,𝒒

0 0
0 0 ]

 
 
 
 

[
 
 
 
�̇�
�̇�
𝝀𝒚

𝝀𝒈]
 
 
 

= [

𝑭
𝒚

−𝜸
−𝑪,𝑡

] (55) 

 

From [16], the formulation for an alternative Index-3 DAE penalty method was 

illustrated in the previous section. This reference also contains the derivation for an alternative 

Index-2 DAE. Applying virtual work to equation (53) results in equation (56) where the 

variations must satisfy equation (57). 

 
([

𝑀 0
0 𝐼

] [
�̇�
�̇�
] − [

𝑭
𝑦
])

𝑻

[
𝜹𝒚
𝜹𝒒

] = 𝟎 (56) 

 

 
[
𝑪,𝒒 0

0 𝑪,𝒒
] [

𝜹𝒚
𝜹𝒒

] = 𝟎 (57) 

 

Combining equations (56) and (57) and introducing the alternate penalty factor as an 

estimate for the Lagrange multipliers, the final alternate Index-2 penalty formulation is [16] 

 
[
𝑀 0
0 𝐼

] [
�̇�
�̇�
] = [

𝑭(�̇�, 𝒒, 𝑡) − 𝑪,𝒒
𝑇 𝜇(𝑪,𝒒�̇� + 𝑪,𝒒)

𝒚 − 𝑪,𝒒
𝑇 𝜇𝑪

] (58) 
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Equation (58) can now be utilized to numerically solve an Index-2 DAE. This method will 

be utilized with an example problem presented in Chapter 2 as a comparison with the static 

Index-3 penalty formulation. 

1.2.6 FINITE ELEMENT STATIC PENALTY METHOD 

In statics, analysis is performed on objects that are in static equilibrium.  Similarly to 

dynamic problems, there are various methods for solving constrained static problems. One such 

method is a static penalty approach [13] that handles boundary conditions for a wide array of 

static problems.  The appeal of utilizing this penalty method stems from its ease of application, 

computational suitability, and accuracy.   

In statics, the displacements are of interest for analysis of structures. It is typical to 

constrain a static system to a wall where no displacement is allowed. This connection can be 

modelled as a spring with a large stiffness. The large spring stiffness will then act as a penalty 

for variables interacting with this point on the wall. From [13], the constraint can be applied 

directly at the node interacting with a wall. 

 𝑄1 = 𝑎1 (59) 

 

The strain energy in the spring of large stiffness is 

 𝑈 =
1

2
𝐶(𝑄1 − 𝑎1)

2 (60) 

 

Making the potential energy of the system 

 Π =
1

2
𝑄𝑇𝐾𝑄 +

1

2
𝐶(𝑄1 − 𝑎1)

2 − 𝑄𝑇𝐹 (61) 
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In order to minimize the potential energy, the derivative of Π is set equal to zero resulting in 

 [

𝐾11 + 𝐶 𝐾12 ⋯ 𝐾1𝑛

𝐾21 𝐾22 ⋮

⋮ ⋱
𝐾𝑛1 ⋯ 𝐾𝑛𝑛

] [

𝑄1

𝑄2

⋮
𝑄𝑛

] = [

𝐹1 + 𝐶𝑎1

𝐹2

⋮
𝐹𝑛

] (62) 

 

where 

 𝐶 = 𝑚𝑎𝑥|𝐾𝑖𝑗| × 104 (63) 

 

Equation (62) illustrates a system constrained at a single node. The constraint penalty (C) is 

added to the diagonal of the stiffness matrix that represents the node being restricted. 

Concurrently, the force at the constrained point is then summed with the constraint and 

displacement product. A single point constraint can be expanded to capture multipoint 

constraints. In order to implement multipoint constraints, the single point constraints are first 

applied as 

 𝑪𝑪 = 𝐶 [

𝐶11 𝐶12 ⋯ 𝐶1𝑛

𝐶22 ⋮

⋮ ⋱
𝐶𝑛𝑛

] (64) 

 

Where 𝐶𝑖𝑗  = 0 if i does not equal j, and 𝐶𝑖𝑗  = 1 if i is equal to j. Boundary conditions of the 

following form of equation (65) may then be utilized to formulate a boundary constraint vector 

in equation (66) for n number of boundary conditions. 

 𝛽𝑛𝑖𝑄𝑛𝑖 + 𝛽𝑛𝑗𝑄𝑛𝑗 = 𝛽0 (65) 
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 𝑩 =

[
 
 
 
 
𝛽11 𝛽12 ⋯ 𝛽1𝑄

𝛽21 𝛽22 ⋮

⋮ ⋱
𝛽𝑛1 ⋯ 𝛽𝑛𝑄 ]

 
 
 
 

 (66) 

 

The constrained stiffness matrix can then be formulated as 

 𝑲𝒄 = 𝑲 + 𝐶(𝑩𝑇𝑩 + 𝑪𝑪) (67) 

 

 Figure (1) illustrates an example of a static multipoint constraint problem [13]. Body 1 is 

defined with a cross sectional area of 1200 mm2, modulus of elasticity of 200*10^3 N/mm2, and 

length of 4.5 m. Body 2 is defined with a cross sectional area of 900 mm2, modulus of elasticity 

of 70*10^3 N/mm2, and length of 3 m. The load placed on the end of the beam is 30*103 N. 

Application of the above penalty method using a MATLAB® computer script depicted in 

Appendix A.1 results in calculated values for the evaluated displacement parameters.  

 

Figure 1: Static Multipoint Constraint 
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𝑲 =

[
 
 
 
 

5.333 0 −5.333 0 0
0 2.1 0 −2.1 0

−5.333 0 5.333 0 0
0 −2.1 0 2.1 0
0 0 0 0 0]

 
 
 
 

104 

𝑭 =

[
 
 
 
 
0
0
0
0
30]

 
 
 
 

103 

Displacements at Node 1 and Node 2 are constrained by the rigid bar rotation. This results in 

each node displacement equaling the displacement at the end of the bar (Q5) multiplied by the 

ratio of the node length to total bar length. The boundary conditions can then be defined as 

𝑄1 −
2

6
𝑄5 = 0 

𝑄2 −
5

6
𝑄5 = 0 

Applying equations (66), (63), and (64), the constraining equations are 

𝑩 = [
1 0 0 0 −

2

6

0 1 0 0 −
5

6

] 

𝐶 = 5.333 × 108 

𝑪𝑪 = 𝐶

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0]

 
 
 
 

 

Substituting these values into equation (67) calculates the constrained stiffness matrix as 
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𝑲𝒄 =

[
 
 
 
 

5.3339 0 −0.0005 0 −1.7778
0 5.3335 0 −0.0002 −4.4444

−0.0005 0 5.3339 0 0
0 −0.0002 0 5.3335 0

−1.7778 −4.4444 0 0 4.2963 ]
 
 
 
 

108 

The displacements are then calculated by replacing the stiffness matrix in equation (62) with 

the constrained stiffness matrix to find 

𝑸 =

[
 
 
 
 
0.4876
1.2191

0
0

1.4629]
 
 
 
 

 [𝑚𝑚] 

It is seen that by applying the penalty method to this problem, the displacements are 

significantly diminished at the constraint points. Comparatively, displacements in the above 

static scenario have the potential to correlate with the displacements specified in equation (21) 

of the multibody dynamic DAE. It is the objective for the remainder of this thesis to 

quantitatively extend the static penalty method for use with constrained multibody dynamic 

DAEs.  
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CHAPTER 2. PENALTY METHOD IMPLEMENTATION 

 

In this chapter, the formulation of a linear multipoint static penalty method from Section 

1.2.6 will be modified to encompass the EOMs of a constrained multibody dynamic system. A 

stabilization method derived in [17] and illustrated as equation (25) is then incorporated with 

the penalty method as an alternative for solving the hidden constraints. A brief overview of 

coding software and applicable functions in MATLAB® will follow. Code will apply an algorithm 

to subsequent example problems, comparing the static penalty method of Section 1.2.6 to the 

projection method from equations (47) to (58) and an alternate penalty method from equation 

(51). Example problems presented for examining the static penalty method are a simple 

pendulum, a Scotch mechanism, and a slider-crank mechanism.  

2.1 EXTENDED STATIC PENALTY METHOD DERIVATION 

 The static penalty method applies a constraint (modelled as a spring with large stiffness) 

to the stiffness matrix and force vector of equation (62). The constrained stiffness matrix of 

equation (67) replaces the K matrix for multipoint constraints. Comparing equations (6) and 

(62) it is observed that direct correlations exist between the mass and stiffness matrix, 

displacement vectors, and force vectors when formulating the potential energy of a system. 

The penalized quadratic constraint of the static system must then be formulated in terms of 

multibody dynamics. This constraint for the static system was formulated from the fact that 

displacement at an attached point must equal the attachment displacement. The linear 

algebraic equation of �̈� can then be evaluated from equation (18) by setting 𝝀 equal to zero 

resulting in equation (68) which must satisfy equation (69).  
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 𝑴(𝒒)�̈� − 𝒇(𝒒, �̇�, 𝑡) = 𝟎 (68) 

 

 𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡) = 𝟎 (69) 

 

Static variables of equation (61) can then be replaced by their multibody dynamic counterparts, 

where the displacement constraint of equation (59) is replaced by the linear acceleration 

constraint above (equation (69)). Reformulating equation (69) with dynamics variables for a 

constrained multibody system results in equation (70) where �̈� is considered as the unknown. 

 Π =
1

2
�̈�𝑻𝑴(𝒒)�̈� +

1

2
𝜇(𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡))𝑇(𝑪,𝒒�̈� + 𝜸(𝒒, �̇�, 𝑡)) − �̈�𝑇

𝑭 (70) 

 

 Differentiating equation (70) with respect to �̈� provides a solution formulated as equation (71). 

 (𝑴 + 𝜇𝑪,𝒒
𝑇 𝑪,𝒒)�̈� = 𝑭 − 𝜇𝑪,𝒒

𝑇 𝛾                                                 (71) 

 
  

Comparing equation (71) to equation (18) shows that the Lagrangian multiplier (𝝀 ) has been 

successfully eliminated. This equation can now provide solutions for acceleration components 

of the constrained multibody dynamic system through direct solutions at each time step of the 

problem. Additional hidden constraints described in section 1.2.3 must also be adhered to as 

integrations are computed at each time step for �̇� and 𝒒. Hidden constraints for the system are 

depicted in equations (23) and (24). The Baumgarte stabilization may also be applied to the DAE 

solved for in equation (71). If the Baumgarte stabilization from equation (25) is utilized, the 

hidden constraints are implicitly solved for at each time step and equation (71) is now equation 

(72). 
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 (𝑴 + 𝜇𝑪,𝒒
𝑇 𝑪,𝒒)�̈� = 𝑭 − 𝜇𝑪,𝒒

𝑇 (−𝛾 − 𝟐𝛼�̇� − 𝜁𝑪)                                                 (72) 

 

 The formulation of equations (71) and (72) depict extensions of the static penalty 

method for use with constrained multibody dynamics. Following the static penalty formulation, 

an estimate for the dynamic penalty factor can be calculated using the maximum mass 

component time 105. In order to implement these formulations with practical problems, an 

algorithm was developed. This algorithm allows for computational modelling of constrained 

multibody dynamic problems using the static penalty method. In order to computationally 

implement this algorithm, MATLAB® by mathworks was utilized as the base coding platform. 

Computations were run on an Intel® Core™ i5-2410M CPU @ 2.30 GHz with 8.0 GB of RAM. The 

MATLAB® version utilized is R2014a. 

2.2 SOFTWARE AND FUNCTIONS 

 MATLAB® is a computer coding platform utilized academically and industrially by 

engineers and scientists as a highly robust data analysis tool [14]. MATLAB® will be utilized 

frequently throughout the remainder of this paper for calculations and models of constrained 

multibody dynamics. All MATLAB® scripts created in support of this research are illustrated in 

Appendix A.  

 When using MATLAB®, a suite of functions are available to users that create shortcuts 

for implementing algorithms. One such function that is widely used in this research is “ODE23”, 

a three stage, third order Runge-Kutta ordinary differential solver [15]. In order to solve a DAE 

using MATLAB®, the following algorithm was implemented: 
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1. Define the initial conditions at time equal to zero. 

2. Define the time span and time step for integrations. 

3. Reference initial parameters and time step for ODE 23. 

4. ODE23 then refers to a function containing the system constraints and EOMs. 

5. Within the ODE23 function, the body constraints and hidden constraints are solved 

simultaneously.  

6. The acceleration variables are then solved for using a specific DAE solution method. 

7. ODE23 steps through the timespan at the specified time step. 

8. Numerical parameters are returned to the original script. 

9. Parameters are then utilized for post-processing. 

This algorithm will be implemented for subsequent example problems. MATLAB® scripts are 

illustrated in Appendix A. 

2.3 EFFECTS OF THE PENALTY FACTOR 

 A penalty factor of μ = 105 is utilized for the following example problems. This penalty 

factor was chosen due to its implementation; it resulted in static penalty solutions that are 

comparable to projection method solutions in both computational time and solution accuracy 

for the initial simple pendulum example. An analysis of varying μ from 10 to 108 is depicted in 

Figures (2)-(4) for static penalty without stabilization, static penalty with stabilization, and 

alternate penalty methods, respectively. This analysis was done using the simple pendulum 

example due to the use of a direct numerical approach as a baseline for all other solution 

methods. In this case the maximum mass component is one. Computational times for each 
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method over the span of penalty factors is depicted in Table (1). Small changes in both 

computational time and solution accuracy are observed for the static penalty with stabilization. 

Large deviations in solution accuracy and small variation of computation time is observed for 

the static penalty without stabilization. Large variations in both solution accuracy and 

computational time are observed for the alternate penalty method. In all three penalty 

methods, it is obvious that solutions are more accurate as penalty factors increase. Since the 

stabilization handles hidden constraints more precisely, there is significantly less error when 

the penalty factor is applied. This results in solutions that are more dependent on the 

Baumgarte weighting when analyzing accuracy and computational time.  

 

Figure 2: Static Penalty without Stabilization 
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Figure 3: Static Penalty with Stabilization 

 

Figure 4: Alternate Penalty 
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Table 1: Computational Time Over Varying Penalty Factor 

μ 
Static 

Penalty* 
Static Penalty, 
Baumgarte** 

Goicolea and 
Orden  

10 1.1112 0.9679 0.8816  
10^2 0.9061 0.9441 0.9254  
10^3 0.9291 0.9461 0.9874  
10^4 0.9457 0.9825 1.1233 [seconds] 

10^5 0.9365 1.0045 1.6363  
10^6 0.9418 0.9546 2.7658  
10^7 0.9555 0.9673 6.8599  
10^8 0.9373 0.9409 19.3364  

*Projection  = 1.0887    **Projection Baumgarte = 0.9484  

 

It is also observed that as the mass becomes significant when compared with the penalty 

factor, additional error is introduced. In order to mitigate this, the penalty factor should be five 

orders of magnitude higher than the largest factor within the mass matrix. This will result in 

solutions that are comparable in error to those presented in Figure 3.   

2.4 EXAMPLE PROBLEMS 

The following example problems were chosen as a means to verify that application of a 

static penalty method was feasible. Problems of increasing complexity are then used to 

evaluate the static penalty method as well as its computational efficiency. The first example 

problem depicts a simple pendulum strictly meant for validation purposes. This problem was 

selected due to its simplicity for evaluating the effectiveness of implementing the static penalty 

method as compared with a projection and an alternate penalty method. The use of Baumgarte 

stabilization [17] is also assessed using this problem. For completeness, the simple pendulum is 

also examined using an Index-2 DAE. The next example problem implements the static penalty 

method with a Scotch mechanism. The Scotch mechanism is a relatively simple problem, but it 
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demonstrates applicability towards a constrained multibody dynamic system. A slider-crank 

mechanism is then observed in the final problem. Slider-crank mechanism formulations can be 

extrapolated to encompass a variety of other constrained multibody systems, making this an 

ideal problem for testing the applicability of the derived penalty method. For both the Scotch 

and slider-crank mechanisms, the static penalty method is compared against projection and 

alternate penalty method solutions. 

2.4.1 SIMPLE PENDULUM 

The single body problem chosen for this research is that of a simple pendulum, as illustrated 

in Figure (5). The mass of the system is concentrated on a point length (L) from the fixed origin. 

Gravity is acting uniformly over the system in the positive y direction with no external torques 

or forces. Damping is not present in the system; therefore, results are expected to represent a 

simple harmonic oscillator.  
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Figure 5: Simple Pendulum 

 

Formulations for the equations of motion are then derived from Equations (4) and (5) as 

 
𝑴 = [

𝑚 0 0
0 𝑚 0
0 0 𝑚

]  

 

 
𝑭 = [

0
𝑚𝑔
0

]  

Constraints in Cartesian coordinates for the simple pendulum must ensure that the mass stays 

on a circular path and does not deviate in the z direction. The holonomic constraint from 

Equation (19) is then formulated as 

 𝑪 = [𝑥
2 + 𝑦2 − 1

𝑧
]  

The Jacobian of the C matrix is then found using equation (20). 
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 𝑪,𝒒 = [
2𝑥 2𝑦 0
0 0 1

]  

Equation (22) is then used to calculate 𝜸: 

 𝜸 = − [2�̇�2 2�̇�2 0
0 0 0

]  

These variables are then substituted into Equation (21) to formulate the DAE of the constrained 

simple pendulum, where 

 
�̈� = [

�̈�
�̈�
�̈�

] 
 

 

Initial conditions for the simple pendulum are listed in Table 2. Initial conditions and variables 

are then substituted into the MATLAB® algorithm described in Section 2.2. The MATLAB® script 

for this problem is depicted in Appendix A.2 and calls ODE23 functions seen in Appendix A.2.a, 

A.2.b, A.2.c, A.2.d, A.2.e, A.2.f, and A.2.g. 

Table 2: Simple Pendulum Initial Conditions 

g [m/s2] m [kg] x0 [m] y0 [m] z0 [m] �̇�0 [m/s] �̇�0 [m/s] �̇�0 [m/s] 

9.81 1 1 0 0 0 0 0 

tinit [s] dt [s] tfinal [s] 
Constraint 
Tolerance 

    

0 0.0001 5 1-10     

 

Figure (6) illustrates the pendulum motion as a result of the penalty method equation (71). For 

this case, a penalty factor (μ) of 105 is implemented on the constraints. The simulation is run for 

a period of five seconds. Figure (7) depicts the error between the static penalty solution and a 

direct numerical integration of equation (72) using ODE23. 
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Figure 6: Simple Pendulum Motion Plots 
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Figure 7: Simple Pendulum Penalty Error  
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 �̈� = −
𝑔

𝐿
sin (𝜃) (73) 
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Since the direct numerical approach provides an output of 𝜃 and �̇�, position and velocity are 

calculated using equation (74) through (77).  

 𝑥 = 𝐿𝑠𝑖𝑛(𝜃) (74) 

 

 𝑦 = 𝐿𝑐𝑜𝑠(𝜃) (75) 

 

 �̇� = 𝐿𝜔𝑐𝑜𝑠(𝜃) (76) 

 

 �̇� = −𝐿𝜔𝑠𝑖𝑛(𝜃) (77) 

 

In order to determine if the error between the static penalty method and direct numerical 

approach is acceptable, the static penalty method solution is compared with the projection 

method from equation (48) in Figure (8).  
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Figure 8: Pendulum Penalty vs. Projection 
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implicitly, reducing the amount of code required for each function. The motion plots for both 

methods containing the Baumgarte stabilization are not discernable from Figure (6). The 

difference between the static penalty and projection methods with and without the Baumgarte 

stabilization are represented in Figures (9) and (10) respectively. The static penalty method with 

stabilization averaged 1.0045 seconds over 100 computations. The projection averaged 0.9484 

seconds. Weighting coefficients of α = 20 and β = 4.4721 are utilized per [17]. A penalty factor 

of μ = 105 is kept. 

 

Figure 9: Static Penalty Baumgarte Comparison 
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Figure 10: Projection Baumgarte Comparison 

 Comparing the static penalty method errors with and without Baumgarte stabilization 

demonstrates a slight increase in accuracy when stabilization is used. This comparison is 

illustrated in Figure (11). From these observations, the static penalty and projection methods 

utilized for subsequent example problems will have hidden constraints enforced using 

Baumgarte stabilization, as significantly less coding is required.  

0 1 2 3 4 5
0

1

2

3

4

5
x 10

-3

Time [s]

x
1

Baumgarte Projection x-position Difference

0 1 2 3 4 5
0

2

4

6

8
x 10

-3

Time [s]

y
1

Baumgarte Projection y-position Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

Time [s]

x
1
d
o
t

Baumgarte Projection x-velocity Difference

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Time [s]

y
1
d
o
t

Baumgarte Projection y-velocity Difference



40 
 

 

Figure 11: Static Penalty Error Stabilization Comparison 
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for the alternate method is found to be 1.6363 seconds averaged over 100 runs. The alternate 

error is depicted with the static error in Figure (12). 

 

Figure 12: Alternate Penalty Error 
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Figure 13: Index-2 Penalty Error 
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penalty and index-2 penalty can be easily manipulated to solve additional problems for 

interested readers. 

2.4.2 SCOTCH MECHANISM 

The first multibody problem chosen for this research is the Scotch mechanism illustrated in 

Figure (14).  Gravity is acting uniformly over the system in the negative y direction. The problem 

is separated into two distinct bodies. An external force is applied to this system on body 2. The 

body-fixed reference frames for each body are depicted in Figures (15)-(16). 

 

Figure 14: Scotch Mechanism 
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Figure 15: Scotch Mech. Body 1 

 

Figure 16: Scotch Mech. Body 2 

The external force applied to body 2 will be defined as 

𝑓 =  − sin(
𝜋

4
𝑡) 
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Use of equation (4) and (5) yield 

 

𝑴 = [
(4𝐿1

2 + 𝑏1
2)

12
𝑚1 0

0 𝑚2

]  

    

 
𝑭 = [−

1

2
𝑚1𝑔𝐿1 cos 𝜃1

−𝑓
]  

 

   Constraints in Cartesian coordinates for the Scotch mechanism constrain body two to move 

only in the x-direction and body one to move within the slot on body 2. Holonomic constraints 

from Equation (19) are formulated as 

 𝑪 = [𝑥2−𝐿1 cos(𝜃1)]  

The Jacobian of the C matrix is then found using equation (20). 

 𝑪,𝒒 = [𝐿1 sin(𝜃1) 1]  

Equation (22) is then used to calculate 𝜸: 

 𝜸 = [−𝐿1 cos(𝜃1) �̇�1
2]  

These variables are then substituted into Equation (21) to formulate the DAE of the constrained 

Scotch mechanism, where 

 
�̈� = [

�̈�1

�̈�2
]  

 

Initial conditions for the Scotch mechanism are listed in Table 3. Initial conditions and variables 

are then substituted into the MATLAB® algorithm described in Section 2.2. The MATLAB® script 
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for this problem is depicted in Appendix A.3 and calls ODE23 functions seen in Appendix A.3.a 

and A.3.b. Solutions are compared with the example problem solution. 

Table 3: Scotch Mech. Initial Conditions 

g [in/s2] m1 [lbf] m2 [lbf]  

386.4 0.5 5  

L1 [in] 𝜃1[rad] 𝑥2[in]  

25 1 13.5076  

b [in] �̇�1[rad/s] �̇�2[in/s]  

2 0 0  

tinit [s] dt [s] tfinal [s] 
Constraint 
Tolerance 

0 0.0001 4 1-10 

 

Figures (17) illustrates Scotch mechanism motion as a result of the penalty method. For this 

case, a penalty factor (μ) of 107 is implemented on the constraints due to the maximum mass 

matrix component equaling 104. Figure (18) depicts Scotch mechanism motion using the 

projection method. The simulation is run for 4 seconds. 
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Figure 17: Scotch Penalty Motion 
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Figure 18: Scotch Projection Motion 
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Figure 19: Scotch Penalty vs. Projection 
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2.4.3 SLIDER-CRANK MECHANISM 

The slider-crank mechanism illustrated in Figure (20) provides a more complex system than 

that of the Scotch mechanism. Much like the Scotch mechanism, the slider-crank mechanism is 

commonly used in constrained multibody dynamics due to its variety of components and 

applicability towards formulations that can be used for other systems. Gravity is acting 

uniformly over the system in the negative y direction with no external torques or forces. The 

problem is separated into three distinct bodies and two constraints yielding one degree of 

freedom. Each symbol depicts its corresponding body with a subscript. The body-fixed 

reference frames for each body are depicted in Figures (21)-(23). 

 

Figure 20: Slider-Crank Mechanism 
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Figure 21: Slider-Crank Body 1 

 

Figure 22: Slider-Crank Body 2 
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Figure 23: Slider-Crank Body 3 

 Use of equation (4) and (5) with the known inertia of rods at bodies 1 and 2 yields 

 

𝑴 =

[
 
 
 
 
4

12
𝑚1𝐿1

2 0 0

0
4

12
𝑚2𝐿2

2 0

0 0 𝑚3]
 
 
 
 

  

    

 𝑭

= [
2𝑚2 sin( 𝜃2)( �̇�2

2 + 2�̇�1�̇�2) − 𝑚2𝑔(2 sin(𝜃1) + sin(𝜃1 + 𝜃2)) − 𝑚1𝑔 sin(𝜃1)

−2𝑚2 sin ( 𝜃2) �̇�1
2 − 𝑚2𝑔 sin(𝜃1 + 𝜃2)

0

] 
 

 

Constraints in Cartesian coordinates for the slider-crank mechanism restrict body three to move 

only in the x-direction. Holonomic constraints from Equation (19) are then formulated as 

 
𝑪 = [

𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2) − 𝑥3

−𝐿1 cos(𝜃1) − 𝐿2 cos(𝜃1 + 𝜃2)
]  

The Jacobian of the C matrix is then found using equation (20). 
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𝑪,𝒒 = [

𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2) 𝐿2 cos(𝜃1 + 𝜃2) −1

𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2) 𝐿2 sin(𝜃1 + 𝜃2) 0
]  

Equation (22) is then used to calculate 𝜸: 

 
𝜸 = − [

(𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2))�̇�1
2 + 𝐿2 sin(𝜃1 + 𝜃2) (2�̇�1�̇�2 + �̇�2

2)

−(𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2))�̇�1
2 − 𝐿2 cos(𝜃1 + 𝜃2) (2�̇�1�̇�2 + �̇�2

2)
]  

These variables are then substituted into Equation (21) to formulate the DAE of the constrained 

slider-crank mechanism, where 

 

�̈� = [
�̈�1

�̈�2

�̈�3

]  

 

Initial conditions for the slider-crank mechanism are listed in Table 4. Initial conditions were 

selected to match conditions from [8] for comparison to the literature. Initial conditions and 

variables are then substituted into the MATLAB® algorithm described in Section 2.2. The 

MATLAB® script for this problem is depicted in Appendix A.4 and calls ODE23 functions seen in 

Appendix A.4.a and A.4.b. 

Table 4: Slider-Crank Initial Conditions 

g [m/s2] m1 [kg] m2 [kg] m3 [kg] 

9.81 1 1 1 

L1 [m] 𝜃1[rad] 𝜃2[rad] 𝑥3 [m] 

2 2.3562 -1.5708 2.8284 

L2 [m] �̇�1[rad/s] �̇�2[rad/s] �̇�3 [m/s] 

2 0 0 0 

tinit [s] dt [s] tfinal [s] 
Constraint 
Tolerance 

0 0.0001 1.8 1-10 
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Figures (24) illustrates slider-crank motion as a result of the penalty method. For this case, a 

penalty factor (μ) of 105 is implemented upon the constraints. Figure (25) depicts slider-crank 

motion using the projection method. The simulation is run for 1.8 seconds. 

 

Figure 24: Slider-Crank Penalty Motion 
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Figure 25: Slider-Crank Projection Motion 

Computational times are again averaged over 100 computations for the two methods, yielding 

0.3085 for the Projection method and 0.3141 for the penalty method. Solution difference 

between each method is illustrated in Figure (26). 
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Figure 26: Slider-Crank Penalty vs. Projection 

These differences are small comparatively. This demonstrates continued accuracy of the 

penalty method and computational efficiency that is nearly equivalent to the projection 

method.  
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CHAPTER 3. CONCLUSION AND FUTURE WORK 

The objective of this study was to extend a static penalty method for use with constrained 

multibody dynamics and examine its ease of implementation within computer coding. The 

static penalty method was applied to example problems to verify its feasibility for use with 

constrained multibody dynamics. Example problems were selected with the intent to 

encompass a variety of multibody dynamic aspects. Chapter 2 examples illustrate the feasibility 

of extending the static penalty method presented in [13] for application with constrained 

multibody dynamic systems. Due to the complex and numerical nature of multibody dynamic 

systems, an algorithm was developed which solves a system using the static penalty method. 

Penalty solutions were compared with direct numerical solutions, projection solutions [12], an 

alternate penalty solution [16], an Index-2 penalty solution, and literature. Favorable results 

were obtained for the penalty method based on solution accuracy and computational time. A 

Baumgarte stabilization [17] was applied to the static penalty method as an alternate 

enforcement of hidden constraints. It was found that the Baumgarte stabilization does not 

negatively impact accuracy or computational time. Using the stabilization results in significantly 

less code required for solution algorithms. Implementation of the penalty method within 

MATLAB® is relatively simple, especially with Baumgarte stabilization. It is also shown that the 

ideal penalty factor is 5 orders of magnitude greater than the largest value observed in a 

formulated mass matrix. The applicability of the static penalty method was demonstrated for 

systems that can easily be extrapolated to solve many other dynamic DAEs. Overall, the 

objective of this thesis was met. 



58 
 

Example problems were selected with the intent to encompass a variety of multibody 

dynamic aspects. In making these selections, the presented penalty method can be 

manipulated to solve any DAE multibody system with holonomic constraints. A projection 

method was used to compare solutions. The projection method was chosen for comparison due 

to its similarity with implementation in coding and its proven solution accuracy [12]. 

The first example illustrates the feasibility of using the penalty method for constrained 

dynamic analysis. In comparing the static penalty, projection [12], alternate penalty [16], and 

Index-2 penalty methods with a direct numerical solution, similar accuracies and computational 

times are observed. Additionally, a Baumgarte constraint is applied to the static penalty and 

projection methods as an alternate way of enforcing the system’s hidden constraints. The two 

methods are then compared with and without this stabilization, resulting in nearly 

indistinguishable results. MATLAB® code is significantly reduced when using the Baumgarte 

stabilization, leading to its use for subsequent example problems. These results prove that it is 

feasible to use the presented static penalty method for constrained dynamics.  

In order to test the static penalty method with a constrained multibody system, the Scotch 

mechanism was chosen due to its significance in multibody dynamics and component variety. 

The static penalty method for this problem is compared directly with the projection method, 

both of which have the hidden constraints enforced using Baumgarte stabilization.  It is 

observed that the static penalty solution is well within an acceptable tolerance of the projection 

solution and requires similar computational time. This analysis shows that the static penalty 

method is feasible for use with constrained multibody dynamics.  
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The final problem depicts solutions for a slider-crank mechanism. The static penalty method 

for this problem is compared directly with the projection method and solutions presented by 

[8]. Again, the Baumgarte stabilization is utilized by both methods to enforce hidden 

constraints.  It is observed that the static penalty solution is well within an acceptable tolerance 

of the projection solution and requires similar computational time. This analysis shows the 

robustness of the static penalty method, even as problem complexity increases. 

In comparing the static penalty and projection method, it is seen from the example 

problems that computational times and accuracies are similar. The derivation for the projection 

method is a much more rigorous process, and its implementation within MATLAB® code more 

difficult than that of the penalty method. The ease with which the penalty method can be 

implemented and understood in MATLAB® code is beneficial, especially as increasingly complex 

systems are observed. 

Although the static penalty method proves useful for constrained multibody systems, 

additional research is required to determine its applicability and overall performance with 

increasingly complex systems. Increasingly complex systems may contain additional bodies, 

non-holonomic constraints, Euler parameters, etc. Computationally, the performance of any 

method is going to diminish as the number of bodies and constraints increase. This is simply 

due to the number of calculations that must be performed. Based on the limited number of 

examples presented in this research, there is evidence that the deviation between penalty and 

projection method does not change. This insinuates that the penalty method could be used in 

lieu of the projection method. Lastly, the DAE solutions for this research encompass 

constrained multibody dynamics. DAE formulations are not limited to this field of study. 
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Solutions of DAEs for other disciplines (i.e. fluid dynamics, heat transfer) has yet to be assessed 

using the presented static penalty method.  
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APPENDIX A. COMPUTER CODES 

A.1. Static Multipoint Constraint  

close all; clear all; 
set(0,'defaultlinelinewidth',2); 

  
%% Static Penalty Method 

  
E1 = 200*10^3; E2 = 70*10^3; % Modulus of elasticity [N/mm^2] 
A1 = 1200; A2 = 900; % Cross sectional area [mm^2] 
L1 = 4500; L2 = 3000; % Length [mm] 
P = 30*10^3; % Applied load [N] 

  
F = [0;0;0;0;P]; % External forces on the bar [N] 

  
k1 = E1*A1/L1*[1 -1;-1 1]; % Body 1 stiffness matrix 
k2 = E2*A2/L2*[1 -1;-1 1]; % Body 2 stiffness matrix 

  
K = [k1(2,2) 0 k1(2,1) 0 0; 
    0 k2(2,2) 0 k2(2,1) 0; 
    k1(1,2) 0 k1(1,1) 0 0; 
    0 k2(1,2) 0 k2(1,1) 0; 
    0 0 0 0 0]; % Global stiffness matrix 

  
MK = max(K); 

  
mu = MK(1)*10^4; % Constraint 

  
C = [1 0 0 0 -2/6;0 1 0 0 -5/6]; % Constraints keeping bar straight 
CC = [0 0 0 0 0;0 0 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 0]; % Attachment 

Constraints 
PF = mu*((C'*C)+CC); 

  
K_pen = K+PF; 

  
Q = K_pen\F; % Calculated Displacements [mm] 

 

A.2.  Simple Pendulum 

close all; clear all; 
set(0,'defaultlinelinewidth',2); 
% Simple pendulum motion 

  
%% Parameters 
% Time span parameters [seconds] 
tinit = 0; 
tstep = 0.0001; 
tfinal = 5; 

  
% Model 
global g m1 tp mu alpha beta 
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g = 9.81; % [m/s^2] gravitational constant 
m1 =1; % [kg] mass of the pendulum 
tp = tinit:tstep:tfinal; % [sec] Time span for evaluation 
mu = 10^5; % Finite Element Penalty Factor 
alpha = 20; % Baumgarte Weighting Coefficient 
beta = 20; % Baumgarte Weighting Coefficient 

  
% Initial Conditions 
x1initial = 1; y1initial = 0; zinitial = 0; % [m] Length is 1 
x1dotinitial = 0; y1dotinitial = 0; zdotinitial = 0; % [m/s] 

  
q0(1) = x1initial; 
q0(2) = y1initial; 
q0(3) = zinitial; 
q0(4) = x1dotinitial; 
q0(5) = y1dotinitial; 
q0(6) = zdotinitial; 

  
%% Projection Method 
tic 
disp('Solution Method: Projection'); 
[t,qp]=ode23(@Pendulum_ProjectionFunc,  tp, q0);    
Projtimer = toc 

  
% Process and Plot Solution for Projection method 

     
figure;  
subplot(2,2,1); plot(t,qp(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Projection: x-position'); 
subplot(2,2,2); plot(t,qp(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Projection: y-position'); 
subplot(2,2,3); plot(t,qp(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid 

on; 
xlim([0 5]); ylim([-5 5]); 
title('Projection: x-velocity'); 
subplot(2,2,4); plot(t,qp(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid 

on; 
xlim([0 5]); ylim([-4 4]); 
title('Projection: y-velocity'); 

  
%% Projection Method Baumgarte Stabilization 
tic 
disp('Solution Method: Projection Baumgarte'); 
[t,qpb]=ode23(@Pendulum_ProjectionBaum,  tp, q0);    
ProjBaumTimer = toc 

  
% Process and Plot Solution for Projection method 

     
figure;  
subplot(2,2,1); plot(t,qpb(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Projection Baum: x-position'); 
subplot(2,2,2); plot(t,qpb(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
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xlim([0 5]); ylim([0 1]); 
title('Projection Baum: y-position'); 
subplot(2,2,3); plot(t,qpb(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid 

on; 
xlim([0 5]); ylim([-5 5]); 
title('Projection Baum: x-velocity'); 
subplot(2,2,4); plot(t,qpb(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid 

on; 
xlim([0 5]); ylim([-4 4]); 
title('Projection Baum: y-velocity'); 

  
%% Finite Element Penalty Method 
tic 
disp('Solution Method: Static Penalty'); 
[t,q]=ode23(@Pendulum_PenaltyFunc,  tp, q0);    
PenaltyFiniteTimer = toc 

  
% Process and Plot Solution for Finite Element Penalty Method 

     
figure; 
subplot(2,2,1); plot(t,q(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Static Penalty: x-position'); 
subplot(2,2,2); plot(t,q(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Static Penalty: y-position'); 
subplot(2,2,3); plot(t,q(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid on; 
xlim([0 5]); ylim([-5 5]); 
title('Static Penalty: x-velocity'); 
subplot(2,2,4); plot(t,q(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid on; 
xlim([0 5]); ylim([-4 4]); 
title('Static Penalty: y-velocity'); 

  
%% Finite Element Penalty Method with Baumgarte Stabilization 
tic 
disp('Solution Method: Static Penalty Baumgarte'); 
[t,qb]=ode23(@Pendulum_FinitePenaltyBaum,  tp, q0);    
BaumFiniteTimer = toc 

  
% Process and Plot Solution for Finite Element Penalty Method Baumgarte  

     
figure; 
subplot(2,2,1); plot(t,qb(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Static Baumgarte: x-position'); 
subplot(2,2,2); plot(t,qb(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Static Baumgarte: y-position'); 
subplot(2,2,3); plot(t,qb(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid 

on; 
xlim([0 5]); ylim([-5 5]); 
title('Static Baumgarte: x-velocity'); 
subplot(2,2,4); plot(t,qb(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid 

on; 
xlim([0 5]); ylim([-4 4]); 
title('Static Baumgarte: y-velocity'); 
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%% Goicolea and Garcia-Orden Penalty Method 
tic 
disp('Solution Method: Goicolea Penalty'); 
[t,qg]=ode23(@Pendulum_GOPenaltyFunc,  tp, q0);    
PenaltyGoicoleaTimer = toc 

  
% Process and Plot Solution for Finite Element Penalty Method 

     
figure; 
subplot(2,2,1); plot(t,qg(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Goicolea Penalty: x-position'); 
subplot(2,2,2); plot(t,qg(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Goicolea Penalty: y-position'); 
subplot(2,2,3); plot(t,qg(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid 

on; 
xlim([0 5]); ylim([-5 5]); 
title('Goicolea Penalty: x-velocity'); 
subplot(2,2,4); plot(t,qg(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid 

on; 
xlim([0 5]); ylim([-4 4]); 
title('Goicolea Penalty: y-velocity'); 

  
%% Goicolea and Garcia-Orden Penalty Method 
tic 
disp('Solution Method: Index-2 Penalty'); 
[t,qi2]=ode23(@Pendulum_Index2Penalty,  tp, q0);    
PenaltyIndex2Timer = toc 

  
% Process and Plot Solution for Finite Element Penalty Method 

     
figure; 
subplot(2,2,1); plot(t,qi2(:,1)); xlabel('Time [s]'); ylabel('x1'); grid on; 
xlim([0 5]); ylim([-1 1]); 
title('Index 2 Penalty: x-position'); 
subplot(2,2,2); plot(t,qi2(:,2)); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Index 2 Penalty: y-position'); 
subplot(2,2,3); plot(t,qi2(:,4)); xlabel('Time [s]'); ylabel('x1dot'); grid 

on; 
xlim([0 5]); ylim([-5 5]); 
title('Index 2 Penalty: x-velocity'); 
subplot(2,2,4); plot(t,qi2(:,5)); xlabel('Time [s]'); ylabel('y1dot'); grid 

on; 
xlim([0 5]); ylim([-4 4]); 
title('Index 2 Penalty: y-velocity'); 

  
%% Direct Integration 

  
% Initial Condition 
theta0 = pi/2; 
omega0 = 0; 
L = 1; 
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disp('Solution Method: Direct'); 

  
qe0(1) = theta0; 
qe0(2) = omega0; 

  
tic 
disp('Solution Method: Exact Penalty'); 
[t,qe]=ode23(@Pendulum_Direct,  tp, qe0);    
DirectTimer = toc 

  
x = L.*sin(qe(:,1)); 
y = L.*cos(qe(:,1)); 
xdot = L.*qe(:,2).*cos(qe(:,1)); 
ydot = -L.*qe(:,2).*sin(qe(:,1)); 

  
figure; 
subplot(2,2,1); plot(tp,x); xlabel('Time [s]'); ylabel('x1'); grid on;  
xlim([0 5]); ylim([-1 1]); 
title('Exact: x-position'); 
subplot(2,2,2); plot(tp,y); xlabel('Time [s]'); ylabel('y1'); grid on; 
xlim([0 5]); ylim([0 1]); 
title('Exact: y-position'); 
subplot(2,2,3); plot(tp,xdot); xlabel('Time [s]'); ylabel('x1dot'); grid on; 
xlim([0 5]); ylim([-5 5]); 
title('Exact: x-velocity'); 
subplot(2,2,4); plot(tp,ydot); xlabel('Time [s]'); ylabel('y1dot'); grid on; 
xlim([0 5]); ylim([-4 4]); 
title('Exact: y-velocity'); 

  
%% Calculate the error compared with the direct solution 

  
Prox_error = (qp(:,1)-x); 
Proy_error = (qp(:,2)-y); 
Proxdot_error = (qp(:,4)-xdot); 
Proydot_error = (qp(:,5)-ydot); 

  
ProBaumx_error = (qpb(:,1)-x); 
ProBaumy_error = (qpb(:,2)-y); 
ProBaumxdot_error = (qpb(:,4)-xdot); 
ProBaumydot_error = (qpb(:,5)-ydot); 

  
Penx_error = (q(:,1)-x); 
Peny_error = (q(:,2)-y); 
Penxdot_error = (q(:,4)-xdot); 
Penydot_error = (q(:,5)-ydot); 

  
PenBaumx_error = (qb(:,1)-x); 
PenBaumy_error = (qb(:,2)-y); 
PenBaumxdot_error = (qb(:,4)-xdot); 
PenBaumydot_error = (qb(:,5)-ydot); 

  
PenGOx_error = (qg(:,1)-x); 
PenGOy_error = (qg(:,2)-y); 
PenGOxdot_error = (qg(:,4)-xdot); 
PenGOydot_error = (qg(:,5)-ydot); 
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PenI2x_error = (qi2(:,1)-x); 
PenI2y_error = (qi2(:,2)-y); 
PenI2xdot_error = (qi2(:,4)-xdot); 
PenI2ydot_error = (qi2(:,5)-ydot); 

  
% Plot Errors with the direct solution 

  
figure; 
subplot(2,2,1); plot(t,Penx_error,t,Prox_error,'--',t,ProBaumx_error,'--

',t,PenBaumx_error,':',t,PenGOx_error,'-.'); xlabel('Time [s]'); 

ylabel('x1'); grid on;  
title('Error: x-position'); 
subplot(2,2,2); plot(t,Peny_error,t,Proy_error,'--',t,ProBaumy_error,'--

',t,PenBaumy_error,':',t,PenGOy_error,'-.'); xlabel('Time [s]'); 

ylabel('y1'); grid on; 
title('Error: y-position'); 
subplot(2,2,3); plot(t,Penxdot_error,t,Proxdot_error,'--

',t,ProBaumxdot_error,'--',t,PenBaumxdot_error,':',t,PenGOxdot_error,'-.'); 

xlabel('Time [s]'); ylabel('x1dot'); grid on; 
title('Error: x-velocity'); 
subplot(2,2,4); plot(t,Penydot_error,t,Proydot_error,'--

',t,ProBaumydot_error,'--',t,PenBaumydot_error,':',t,PenGOydot_error,'-.'); 

xlabel('Time [s]'); ylabel('y1dot'); grid on; 
title('Error: y-velocity'); 
legend('Finite Penalty','Projection','Projection Baumgarte','Penalty 

Baumgarte','Goicolea Penalty'); 

  
figure; 
subplot(2,2,1); plot(t,PenBaumx_error,':',t,ProBaumx_error); xlabel('Time 

[s]'); ylabel('x1'); grid on;  
title('Error: x-position'); 
subplot(2,2,2); plot(t,PenBaumy_error,':',t,ProBaumy_error); xlabel('Time 

[s]'); ylabel('y1'); grid on; 
title('Error: y-position'); 
subplot(2,2,3); plot(t,PenBaumxdot_error,':',t,ProBaumxdot_error); 

xlabel('Time [s]'); ylabel('x1dot'); grid on; 
title('Error: x-velocity'); 
subplot(2,2,4); plot(t,PenBaumydot_error,':',t,ProBaumydot_error); 

xlabel('Time [s]'); ylabel('y1dot'); grid on; 
title('Error: y-velocity'); 
legend('Penalty Baumgarte','Projection Baumgarte'); 

  
%% Difference between methods 
% Finite Penalty with and without Baumgarte Stabilization 
Baumx_diff = abs(q(:,1)-qb(:,1)); 
Baumy_diff = abs(q(:,2)-qb(:,2)); 
Baumxdot_diff = abs(q(:,4)-qb(:,4)); 
Baumydot_diff = abs(q(:,5)-qb(:,5)); 

  
figure; 
subplot(2,2,1); plot(tp,Baumx_diff); xlabel('Time [s]'); ylabel('x1'); grid 

on;  
title('Baumgarte Penalty x-position Difference'); 
subplot(2,2,2); plot(tp,Baumy_diff); xlabel('Time [s]'); ylabel('y1'); grid 

on; 
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title('Baumgarte Penalty y-position Difference'); 
subplot(2,2,3); plot(tp,Baumxdot_diff); xlabel('Time [s]'); ylabel('x1dot'); 

grid on; 
title('Baumgarte Penalty x-velocity Difference'); 
subplot(2,2,4); plot(tp,Baumydot_diff); xlabel('Time [s]'); ylabel('y1dot'); 

grid on; 
title('Baumgarte Penalty y-velocity Difference'); 

  
% Projection with and without Baumgarte Stabilization 
Projx_diff = abs(qpb(:,1)-qp(:,1)); 
Projy_diff = abs(qpb(:,2)-qp(:,2)); 
Projxdot_diff = abs(qpb(:,4)-qp(:,4)); 
Projydot_diff = abs(qpb(:,5)-qp(:,5)); 

  
figure; 
subplot(2,2,1); plot(tp,Projx_diff); xlabel('Time [s]'); ylabel('x1'); grid 

on;  
title('Baumgarte Projection x-position Difference'); 
subplot(2,2,2); plot(tp,Projy_diff); xlabel('Time [s]'); ylabel('y1'); grid 

on; 
title('Baumgarte Projection y-position Difference'); 
subplot(2,2,3); plot(tp,Projxdot_diff); xlabel('Time [s]'); ylabel('x1dot'); 

grid on; 
title('Baumgarte Projection x-velocity Difference'); 
subplot(2,2,4); plot(tp,Projydot_diff); xlabel('Time [s]'); ylabel('y1dot'); 

grid on; 
title('Baumgarte Projection y-velocity Difference'); 

  
% Finite Penalty and Projection with Baumgarte Stabilization 
Methodx_diff = abs(qpb(:,1)-qb(:,1)); 
Methody_diff = abs(qpb(:,2)-qb(:,2)); 
Methodxdot_diff = abs(qpb(:,4)-qb(:,4)); 
Methodydot_diff = abs(qpb(:,5)-qb(:,5)); 

  
figure; 
subplot(2,2,1); plot(tp,Methodx_diff); xlabel('Time [s]'); ylabel('x1'); grid 

on;  
title('BaumPen-BaumProj x-position Difference'); 
subplot(2,2,2); plot(tp,Methody_diff); xlabel('Time [s]'); ylabel('y1'); grid 

on; 
title('BaumPen-BaumProj y-position Difference'); 
subplot(2,2,3); plot(tp,Methodxdot_diff); xlabel('Time [s]'); 

ylabel('x1dot'); grid on; 
title('BaumPen-BaumProj x-velocity Difference'); 
subplot(2,2,4); plot(tp,Methodydot_diff); xlabel('Time [s]'); 

ylabel('y1dot'); grid on; 
title('BaumPen-BaumProj y-velocity Difference'); 

  
% Finite Penalty with Baumgarte and Goicolea Penalty 
Methodx_diff = abs(qb(:,1)-qg(:,1)); 
Methody_diff = abs(qb(:,2)-qg(:,2)); 
Methodxdot_diff = abs(qb(:,4)-qg(:,4)); 
Methodydot_diff = abs(qb(:,5)-qg(:,5)); 

  
figure; 
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subplot(2,2,1); plot(tp,Methodx_diff); xlabel('Time [s]'); ylabel('x1'); grid 

on;  
title('Finite and GO x-position Difference'); 
subplot(2,2,2); plot(tp,Methody_diff); xlabel('Time [s]'); ylabel('y1'); grid 

on; 
title('Finite and GO y-position Difference'); 
subplot(2,2,3); plot(tp,Methodxdot_diff); xlabel('Time [s]'); 

ylabel('x1dot'); grid on; 
title('Finite and GO x-velocity Difference'); 
subplot(2,2,4); plot(tp,Methodydot_diff); xlabel('Time [s]'); 

ylabel('y1dot'); grid on; 
title('Finite and GO y-velocity Difference'); 

  

 

A.2.a.  Simple Pendulum Penalty Function 

function dqdt = Pendulum_PenaltyFunc(t,q) % Single Pendulum 
% Static Penalty Method with corrections for hidden constraints 
    constraintTolerance = 1e-10; % Tolerance for displacement and velocity 

constraints 
    global g m1 mu 
    % Read current state 
    x1 = q(1); 
    y1 = q(2); 
    z = q(3); 
    x1dot = q(4); 
    y1dot = q(5); 
    zdot = q(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 

       
    %% Correct displacement constraint 
    while abs(C) > constraintTolerance 

         
        Q_delta = -Cq'*inv(Cq*Cq')*C; 

         
        for i = 1:3 
            q(i) = q(i) + Q_delta(i); 
        end 

         
        % Update displacement state 
        x1=q(1); y1 = q(2); z = q(3); 

         
    C = [x1^2+y1^2-1;0]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 
    end 

     
    C_dot = Cq*q(4:6); 

     
   %% Correct velocity constraint 
    while abs(C_dot) > constraintTolerance 
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        Q_dot_delta = -Cq'*inv(Cq*Cq')*C_dot; 

         
        for i = 1:3 
            q(i+3) = q(i+3) + Q_dot_delta(i); 
        end 

         
        % Update velocity state 
        x1dot=q(4); y1dot = q(5); zdot = q(6); 

         
        % Update velocity constraint 
        C_dot = Cq*q(4:6); 
    end  

     
    %% Update acceleration 
    M = [m1 0 0;0 m1 0;0 0 m1]; 

     
    gamma = [-2*x1dot^2-2*y1dot^2;0]; 

     
    f = [0;m1*g;0]; 

     
    qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);  

  
    lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma); 

     
    dqdt = [q(4:6);qddot]; 
end 

 

A.2.b.  Simple Pendulum Penalty Function, Baumgarte Stabilization 

function dqdt = Pendulum_FinitePenaltyBaum(t,qb) % Single Pendulum 
% Static Penalty Method with Baumgarte Stabilization 
    global g m1 mu alpha beta 
    % Read current state 
    x1 = q(1); 
    y1 = q(2); 
    z = q(3); 
    x1dot = q(4); 
    y1dot = q(5); 
    zdot = q(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 
    C_dot = Cq*q(4:6); 

     
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     

     
    %% Update acceleration 
    M = [m1 0 0;0 m1 0;0 0 m1]; 

     
    gamma = [-2*x1dot^2-2*y1dot^2;0]+B; 
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    f = [0;m1*g;0]; 

     
    qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);  

  
    lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma); 

     
    dqdt = [q(4:6);qddot]; 
end 

 

A.2.c.  Simple Pendulum Projection Function 

function dqdt = Pendulum_ProjectionFunc(t,qp) % Single Pendulum 
% Projection Method with corrections for hidden constraints 
    constraintTolerance = 1e-10; % Tolerance for displacement and velocity 

constraints 
    global g m1 
    % Read current state 
    x1 = qp(1); 
    y1 = qp(2); 
    z = qp(3); 
    x1dot = qp(4); 
    y1dot = qp(5); 
    zdot = qp(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 

       
    %% Correct displacement constraint 
    while abs(C) > constraintTolerance 

         
        Q_delta = -Cq'*inv(Cq*Cq')*C; 

         
        for i = 1:3 
            qp(i) = qp(i) + Q_delta(i); 
        end 

         
        % Update displacement state 
        x1=qp(1); y1 = qp(2); z = qp(3); 

         
    C = [x1^2+y1^2-1;0]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 
    end 

     
    C_dot = Cq*qp(4:6); 

     
   %% Correct velocity constraint 
    while abs(C_dot) > constraintTolerance 

  
        Q_dot_delta = -Cq'*inv(Cq*Cq')*C_dot; 

         
        for i = 1:3 
            qp(i+3) = qp(i+3) + Q_dot_delta(i); 
        end 
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        % Update velocity state 
        x1dot=qp(4); y1dot = qp(5); zdot = qp(6); 

         
        % Update velocity constraint 
        C_dot = Cq*qp(4:6); 
    end  

     
    %% Update acceleration 
    invM = inv([m1 0 0;0 m1 0;0 0 m1]); 

     
    f = [0;m1*g;0]; 

     
    gamma = [-2*x1dot^2-2*y1dot^2;0]; 

     
    qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma)); 

  
    lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma); 

     
    dqdt = [qp(4:6);qddot]; 
end 

 

A.2.d.  Simple Pendulum Projection Function, Baumgarte Stabilization 

function dqdt = Pendulum_ProjectionBaum(t,qpb) % Single Pendulum 
% Projection Method with Baumgarte Stabilization 

  
    global g m1 alpha beta 
    % Read current state 
    x1 = qpb(1); 
    y1 = qpb(2); 
    z = qpb(3); 
    x1dot = qpb(4); 
    y1dot = qpb(5); 
    zdot = qpb(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1];    
    C_dot = Cq*qpb(4:6); 

     
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     
    %% Update acceleration 
    invM = inv([m1 0 0;0 m1 0;0 0 m1]); 

     
    f = [0;m1*g;0]; 

     
    gamma = [-2*x1dot^2-2*y1dot^2;0]-B; 

     
    qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma)); 
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    lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma); 

     
    dqdt = [qpb(4:6);qddot]; 
end 

 

A.2.e. Simple Pendulum Goicolea and Orden Function 

function dqdt = Pendulum_GOPenaltyFunc(t,qg) % Single Pendulum 
% Goicolea and Garcia-Orden Penalty Method 
    constraintTolerance = 1e-10; % Tolerance for displacement and velocity 

constraints 
    global g m1 mu 
    % Read current state 
    x1 = qg(1); 
    y1 = qg(2); 
    z = qg(3); 
    x1dot = qg(4); 
    y1dot = qg(5); 
    zdot = qg(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 

     
    %% Update acceleration 
    M = [m1 0 0;0 m1 0;0 0 m1]; 

     
    f = [0;m1*g;0]; 

     
    qddot = inv(M)*(f-mu*Cq'*C);  

     
    dqdt = [qg(4:6);qddot]; 
end 

 

A.2.f. Simple Pendulum Index-2 Penalty Function 

function dqdt = Pendulum_Index2Penalty(t,qi2) % Single Pendulum 
% Index-2 Penalty Method 
constraintTolerance = 1e-10; % Tolerance for displacement and velocity 

constraints 
global g m1 mu 
    % Read current state 
    x1 = qi2(1); 
    y1 = qi2(2); 
    z = qi2(3); 
    x1dot = qi2(4); 
    y1dot = qi2(5); 
    zdot = qi2(6); 

     
    C = [x1^2+y1^2-1;z]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 

     
    qdot = qi2(4:6); 
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        %% Correct displacement constraint 
    while abs(C) > constraintTolerance 

         
        Q_delta = -Cq'*inv(Cq*Cq')*C; 

         
        for i = 1:3 
            qi2(i) = qi2(i) + Q_delta(i); 
        end 

         
        % Update displacement state 
        x1=qi2(1); y1 = qi2(2); z = qi2(3); 

         
    C = [x1^2+y1^2-1;0]; 
    Cq = [2*x1 2*y1 0;0 0 1]; 
    end 

     
    C_dot = Cq*qi2(4:6); 

     
    %% Update acceleration 

     
    y = qdot; 

     
    M = [m1 0 0;0 m1 0;0 0 m1]; 

     
    gamma = [-2*x1dot^2-2*y1dot^2;0]; 

     
    f = [0;m1*g;0]; 

     
    qddot = inv(M+mu*(Cq'*Cq))*(f+mu*Cq'*gamma); 
    qdot = inv(eye(3)+mu*(Cq'*Cq))*(y+mu*Cq'*C_dot); 

     
    dqdt = [qi2(4:6);qddot]; 
end 

 

A.2.g. Simple Pendulum Direct Integration Function 

function dqdt = Pendulum_Direct(t,qe) % Single Pendulum 
% Static Penalty Method with Baumgarte Stabilization 
    global g 
    % Read current state 
    theta = qe(1); 
    omega = qe(2); 

     
    %% Update acceleration 

     
    dqdt = zeros(2,1); 
    dqdt(1)=qe(2); 
    dqdt(2)=-(g*sin(qe(1))); 

  
end 
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A.3.  Scotch Mechanism 

close all; clear all; clear global; 
set(0,'defaultlinelinewidth',2); 
% Scotch Mechanism 

  
%% Parameters 
% Simulation 
tfinal = 4; tstep = 0.0001; 

  
% Model 
global g m1 m2 tp L b mu alpha beta 
g = 386.4; % [in/s^2] gravitational constant 
m1 = 0.5/g; % [slug] mass of rod 
m2 = 5/g; % [slug] mass block 
tp=0:tstep:tfinal; 
L = 25; % [inches] length of rod 
b = 0.05; % [inches] width of rod 
mu = 10^5;  
alpha = 20; 
beta = 20; 

  
% Initial Conditions 
th1init = 1; x2init = L*cos(th1init); 
th1dotinit = 0; x2dotinit = 0; 

  
q0(1) = th1init; 
q0(2) = x2init; 
q0(3) = th1dotinit; 
q0(4) = x2dotinit; 

  

  
%% Projection Method 
%for i = 1:100 
tic 
disp('Solution Method: Projection'); 
[t,qp]=ode23(@Scotch_ProjectionFunc,  tp, q0);    
%timer1(i)=toc; 
%end 
%mean(timer1) 

  
% Process and Plot Solution 
figure;  
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--');  
xlabel('Time [s]'); ylabel('q'); grid on; 
title('Projection: Displacements'); legend('Theta1','X2') 
subplot(1,2,2); plot(t,qp(:,3),'-',t,qp(:,4),'--');  
xlabel('Time [s]'); ylabel('qdot'); grid on; 
title('Projection: Velocities'); legend('Theta1dot','X2dot') 

  
%% Penalty Method 
%for i = 1:100 
tic 
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disp('Solution Method: Penalty'); 
[t,q]=ode23(@Scotch_PenaltyFunc,  tp, q0);    
%timer2(i)=toc; 
%end 
%mean(timer2) 

  
% Process and Plot Solution 
figure;  
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--');  
xlabel('Time [s]'); ylabel('q'); grid on; 
title('Penalty: Displacements'); legend('Theta1','X2') 
subplot(1,2,2); plot(t,qp(:,3),'-',t,qp(:,4),'--');  
xlabel('Time [s]'); ylabel('qdot'); grid on; 
title('Penalty: Velocities'); legend('Theta1dot','X2dot') 

  
diff = abs(q-qp); 
figure; 
subplot(2,2,1);plot(t,diff(:,1));title('Method Difference: Theta1'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,2,2);plot(t,diff(:,2));title('Method Difference: X2'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,2,3);plot(t,diff(:,3));title('Method Difference: Theta1dot'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,2,4);plot(t,diff(:,4));title('Method Difference: X2dot'); 
xlabel('Time');ylabel('Difference'); 

 

A.3.a.  Scotch Mechanism Penalty Function 

function dqdt = Scotch_PenaltyFunc(t,q) % Slider Crank Mechanism 

  
    global g m1 m2 L b mu alpha beta 
    F = -sin(t*pi/4); 
    % Read current state 
    th1 = q(1); 
    x2 = q(2); 
    th1dot = q(3); 
    x2dot = q(4); 

  
    C = [x2-L*cos(th1)]; 
    Cq = [sin(th1)*L 1]; 
    C_dot = Cq*q(3:4); 

     
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     
    %% Update acceleration 
    M = [m1*(4*L^2+b^2)/12 0;0 m2]; 

     
    f = [-m1*g*L*cos(th1)/2;-F]; 

     
    gamma = [-cos(th1)*L*th1dot^2]-B; 

     
    qddot = inv(M+mu*(Cq'*Cq))*(f+mu*Cq'*gamma);  



78 
 

  
    lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma); 

     
    dqdt = [q(3:4);qddot]; 
end 

 

A.3.b.  Scotch Mechanism Projection Function 

function dqdt = Scotch_ProjectionFunc(t,qp) % Scotch Mechanism 

  
    global g m1 m2 L b alpha beta 
    F = -sin(t*pi/4); 
    % Read current state 
    th1 = qp(1); 
    x2 = qp(2); 
    th1dot = qp(3); 
    x2dot = qp(4); 

     
    C = [x2-L*cos(th1)]; 
    Cq = [sin(th1)*L 1]; 
    C_dot = Cq*qp(3:4); 

     
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     
    %% Update acceleration 
    invM = inv([m1*(4*L^2+b^2)/12 0;0 m2]); 

     
    f = [-m1*g*L*cos(th1)/2;-F]; 

     
    gamma = [-cos(th1)*L*th1dot^2]-B; 

     
    qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma)); 

  
    lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma); 

     
    dqdt = [qp(3:4);qddot]; 
end 

 

A.4.  Slider-Crank Mechanism 

close all; clear all; clear global; 
set(0,'defaultlinelinewidth',2); 
% Slider-crank Mechanism 

  
%% Parameters 
% Simulation 
tfinal = 1.8; tstep = 0.0001; 

  
% Model 
global g m1 m2 m3 tp L1 L2 alpha beta mu 
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g = 9.81; % [m/s^2] gravitational constant 
m1 = 1; % [kg] mass of the driving bar 
m2 = 1; % [kg] mass of the connector bar 
m3 = 1; % [kg] mass of the piston 
tp=0:tstep:tfinal; 
L1 = 2; 
L2 = 2; 
mu = 10^5; 
alpha = 20; 
beta = 20; 

  
% Initial Conditions 
th1init = 3*pi/4; th2init = acos(-cos(th1init))-(th1init);  
x3init = 2*sin(th1init)+2*sin(th1init+th2init); % [m] Length is 2 for each 

beam 
th1dotinit = 0; th2dotinit = 0; x3dotinit = 0; % [m/s] 

  
q0(1) = th1init; 
q0(2) = th2init; 
q0(3) = x3init; 
q0(4) = th1dotinit; 
q0(5) = th2dotinit; 
q0(6) = x3dotinit; 

  
%% Projection Method 
tic 
disp('Solution Method: Projection'); 
[t,qp]=ode23(@SliderCrank_ProjectionFunc,  tp, q0);    
toc 

  
% Process and Plot Solution 
figure;  
subplot(1,2,1); plot(t,qp(:,1),'-',t,qp(:,2),'--',t,qp(:,3),':');  
xlabel('Time [s]'); ylabel('q'); grid on; 
title('Projection: Displacements'); legend('Theta1','Theta2','X3') 
subplot(1,2,2); plot(t,qp(:,4),'-',t,qp(:,5),'--',t,qp(:,6),':');  
xlabel('Time [s]'); ylabel('qdot'); grid on; 
title('Projection: Velocities'); legend('Theta1dot','Theta2dot','X3dot') 

  
%% Penalty Method 
tic 
disp('Solution Method: Penalty'); 
[t,q]=ode23(@SliderCrank_PenaltyFunc,  tp, q0);    
toc 

  
% Process and Plot Solution 
figure;  
subplot(1,2,1); plot(t,q(:,1),'-',t,q(:,2),'--',t,q(:,3),':');  
xlabel('Time [s]'); ylabel('q'); grid on; 
title('Penalty: Displacements'); legend('Theta1','Theta2','X3') 
subplot(1,2,2); plot(t,q(:,4),'-',t,q(:,5),'--',t,q(:,6),':');  
xlabel('Time [s]'); ylabel('qdot'); grid on; 
title('Penalty: Velocities'); legend('Theta1dot','Theta2dot','X3dot') 

  
diff = abs(q-qp); 
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figure; 
subplot(2,3,1);plot(t,diff(:,1));title('Method Difference: Theta1'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,3,2);plot(t,diff(:,2));title('Method Difference: Theta2'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,3,3);plot(t,diff(:,3));title('Method Difference: X3'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,3,4);plot(t,diff(:,4));title('Method Difference: Theta1dot'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,3,5);plot(t,diff(:,5));title('Method Difference: Theta2dot'); 
xlabel('Time');ylabel('Difference'); 
subplot(2,3,6);plot(t,diff(:,6));title('Method Difference: X3dot'); 
xlabel('Time');ylabel('Difference'); 

 

A.4.a.  Slider-Crank Mechanism Penalty Function 

function dqdt = SliderCrank_PenaltyFunc(t,q) % Slider Crank Mechanism 

  
    global g m1 m2 m3 L1 L2 alpha beta mu 
    % Read current state 
    th1 = q(1); 
    th2 = q(2); 
    x3 = q(3); 
    th1dot = q(4); 
    th2dot = q(5); 
    x3dot = q(6); 

     
    C = [L1*sin(th1)+L2*sin(th1+th2)-x3; -L1*cos(th1)-L2*cos(th1+th2)]; 
    Cq = [L1*cos(th1)+L2*cos(th1+th2) L2*cos(th1+th2) -1; 
        L1*sin(th1)+L2*sin(th1+th2) L2*sin(th1+th2) 0]; 
    C_dot = Cq*q(4:6); 

  
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     
    %% Update acceleration 

    
   M =  [(4*m1*L1^2/12) 0 0; 
       0 4*m2*L2^2/12 0; 
       0 0 m3]; 

    
    f = [2*m2*sin(th2)*(th2dot^2+2*th1dot*th2dot)-

m2*g*(2*sin(th1)+sin(th1+th2))-m1*g*sin(th1); 
        -2*m2*sin(th2)*th1dot^2-m2*g*sin(th1+th2); 
        0]; 

     
    gamma = 

[((2*sin(th1)+2*sin(th1+th2))*th1dot^2)+(2*sin(th1+th2)*(2*th1dot*th2dot+th2d

ot^2)); 
        (-(2*cos(th1)+2*cos(th1+th2))*th1dot^2)-

(2*cos(th1+th2)*(2*th1dot*th2dot+th2dot^2))]-B; 

     
    qddot = inv(M+mu*Cq'*Cq)*(f+mu*Cq'*gamma);  
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    lamda = inv(Cq*inv(M)*Cq')*(Cq*inv(M)*f-gamma); 

     
    dqdt = [q(4:6);qddot]; 
end 

 

A.4.b.  Slider-Crank Mechanism Projection Function 

function dqdt = SliderCrank_ProjectionFunc(t,qp) % Slider Crank Mechanism 

  
    global g m1 m2 m3 L1 L2 alpha beta 
    % Read current state 
    th1 = qp(1); 
    th2 = qp(2); 
    x3 = qp(3); 
    th1dot = qp(4); 
    th2dot = qp(5); 
    x3dot = qp(6); 

     
    C = [L1*sin(th1)+L2*sin(th1+th2)-x3; -L1*cos(th1)-L2*cos(th1+th2)]; 
    Cq = [L1*cos(th1)+L2*cos(th1+th2) L2*cos(th1+th2) -1; 
        L1*sin(th1)+L2*sin(th1+th2) L2*sin(th1+th2) 0]; 
    C_dot = Cq*qp(4:6); 

     
    % Baumgarte Stabilization 
    B = 2*alpha*C_dot + beta^2*C; 

     
    %% Update acceleration 
    invM = inv([(4*m1*L1^2/12) 0 0; 
       0 4*m2*L2^2/12 0; 
       0 0 m3]); 

     
    f = [2*m2*sin(th2)*(th2dot^2+2*th1dot*th2dot)-

m2*g*(2*sin(th1)+sin(th1+th2))-m1*g*sin(th1); 
        -2*m2*sin(th2)*th1dot^2-m2*g*sin(th1+th2); 
        0]; 

     
    gamma = 

[((2*sin(th1)+2*sin(th1+th2))*th1dot^2)+(2*sin(th1+th2)*(2*th1dot*th2dot+th2d

ot^2)); 
        (-(2*cos(th1)+2*cos(th1+th2))*th1dot^2)-

(2*cos(th1+th2)*(2*th1dot*th2dot+th2dot^2))]-B; 

     
    qddot = invM*(f-Cq'*inv(Cq*invM*Cq')*(Cq*invM*f-gamma)); 

  
    lamda = inv(Cq*invM*Cq')*(Cq*invM*f-gamma); 

     
    dqdt = [qp(4:6);qddot]; 
end 

 

 



82 
 

 

 

 

 

 

 

 

 

VITA 

Troy S. Newhart 

Mechanical & Aerospace Engineering 
Old Dominion University 

214A Kaufman Hall, Norfolk, VA 23529 

Email: 
 tsn5048@gmail.com 

Education: 
 M.S. Aerospace Engineering, Old Dominion University, December 2019 
 B.S. Aerospace Engineering, The Pennsylvania State University, May 2015 

 

 

 

 

 

 


	Extension of a Penalty Method for Numerically Solving Constrained Multibody Dynamic Problems
	Recommended Citation

	tmp.1580826487.pdf.R3d6v

