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ABSTRACT 

Coupling of physics in large-scale complex engineering systems must be correctly 

accounted for during the systems engineering process to ensure no unanticipated behaviors or 

unintended consequences arise in the system during operation. Structural vibration of large 

segmented solid rocket motors, known as thrust oscillation, is a well-documented problem 

that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger 

than anticipated vibrations were recorded during late stage flight that propagated from the 

engine chamber to the Orion crew module. Upon investigation engineers found the root cause 

to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this 

paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design 

Optimization to identify the major impacts that caused the Thrust Oscillation event in the 

Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty 

based optimization technique is used to identify the likelihood of occurrence for these strong 

or weak interactions to take place.
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CHAPTER 1 

 INTRODUCTION 

  During the operational lifecycle, engineering systems may have unanticipated 

behaviors or unintended consequences affecting the outcome of its objective. Depending of 

the scale of the system the number of unexpected behaviors or consequences may increase as 

the systems increases in complexity. Typically, with Large Scale Complex Engineered 

Systems (LSCES), (i.e. Space Launch Systems, Joint Strike Fighter, Aircraft Carriers), these 

number of unexpected behaviors increase due to their complexity and the large amount of 

interactions between the systems lower level subsystems. The development of LSCES is 

highly demanding on time and resources, typically one system takes nearly a decade to finish 

and may have multiple budget overruns. If an unexpected behavior occurs during testing, 

methods are put into place to fix the behavior and ensuring that the system is operating as 

intended. Adding these fixes adds time and cost towards the program and may delay the 

release of the LSCES.  However, if the behaviors of the system are identified and captured 

properly during the design and development phase, the probability of resource overrun 

decreases. Instead of fixing unknown issues that occur during the operational lifecycle of the 

system, capturing the system behaviors allows the designer to find the root causes and can 

prevent multiple unintended behaviors before testing. [1]  

 The intent of this research is to replicate the Ares 1 rocket, identify all known design 

characteristics and system behaviors, and perform an analysis on the system using the 

coupling strength approach from the field of Multidisciplinary Design Optimization (MDO) 
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[13]. By using this approach unintended behaviors can be identified and addressed before 

reaching the testing phase. In addition, uncertainty is used to identify the probability of the 

unintended behaviors affecting the value of the Ares 1 by understanding how each subsystem 

interaction changes with respect to new design inputs. The primary focus is to understand a 

specific phenomenon that occurred during the operation of the Ares 1-X, a prototype to the 

Ares 1, and analyzing how this phenomenon affects the value of the Ares 1. 

          The Ares 1 is a launch vehicle design part of the constellation program, intended to use 

the Ares 1 to launch the Orion, a crew module, into orbit for missions to the International 

Space Station (ISS) and later a manned mission to Mars. [2] During a test launch of the Ares 

1-X large vibrations and perturbations were recorded within the engine chamber of the first 

stage rocket. These vibrations propagated from the first stage rocket to the crew module 

presenting possible hazardous operating conditions for the crew onboard the Orion. After the 

test launch NASA ran an investigation which pointed to Thrust Oscillation (T/O) as being the 

major contributing factor toward the vibrations and perturbations recorded. 

 Thrust oscillation is a well-known phenomenon caused by combustion instabilities 

within the combustion chamber of a Solid Rocket Motor (SRM). During combustion, 

turbulent flow is produced from geometric changes inside the combustions chamber, 

typically caused by a change in wall sizing or any bluff objects protruding into the flow [3].  

Downstream of the bluff object vortex shedding occurs causing vortices to separate and 

interact with the propellant flow and surface of the engine chamber. This interaction creates a 

cause a surge which increases the pressure inside the combustion chamber and exerting a 

force along the surface of the chamber. If the vortex shedding procedures a frequency 
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corresponding to the acoustic modes of the rocket, the pressure is oscillating and increases 

the energy inside the combustion chamber. This oscillation may travel upstream and interact 

with the flow and increasing the instability rate [4]. The rocket’s structure will interact with 

the energy created by the turbulent flow, if the structure’s natural response is close to the 

vortex shedding frequency the excitation of energy generated by pressure oscillation will not 

dampen out [3]. If not dampened out pressure oscillation will increase in magnitude and 

therefore thrust oscillation will increase, causing an increase in instability in the propellant 

flow, and increase in vibrational forces interacting with the structure. If T/O is not mitigated, 

the flow inside the engine chamber may be highly instable, affecting the rocket structure, and 

eventually propagating up to the crew module as was in the case with the Ares 1-X [2]. 

 Engineers at NASA conducted numerous investigations, and formed a T/O mitigation 

team to tackle the T/O phenomena recorded on the Ares 1-X. Multiple mitigation methods 

were investigate and proposed, but ultimately two additions were implemented to mitigate 

T/O [5]. The first method to mitigate T/O was placing C-spring isolators between the 

segments of the rocket, acting as a shock absorber to dampen out some of the energy created 

by T\O. The second method is using a LOX damper to leverage the kinetic energy of the 

liquid oxygen tank to dampen out the vibrations caused by the propellant flow. With the 

addition of the C-spring and LOX damper, the T/O team had a higher confidence factor in 

mitigating the T\O forces that were recorded during the Ares 1-X test launch [5]. 

 Typically, the modeling and design for LSCES is decomposed into its subsystems and 

designated to teams to work on. In many cases these subsystems are distributed between 

different organizations and discomposed more and components are assigned to design teams. 



4 

 

 

This can cause problems in the long run, mainly when the development phase begins to 

integrate all the subsystem. In the case of the Ares 1 the subsystems such as fluids and 

structures were distributed to teams and their form of communication was using interface 

control documentation. Here the effects of direct inputs on one subsystem to another is 

captured. The initial analysis of the system showed an inconsequential feedback from 

structures onto fluids and was ignored to save on computational/analysis time. However, the 

T/O mitigation team found that the structure of the rocket does interact with the fluids inside 

the rocket chamber and that T/O has a higher impact than earlier predications showed. If a 

means existed to identifying the importance of the coupling and feedbacks in the system 

physics during the design phase, maybe modifications to the design could have prevented the 

T/O event. 

 In this research, an investigation of the T/O event that occurred on the Ares 1-X will 

be made to understand how uncertainty in each of the subsystem interactions can effect each 

other and the overall value of the system. This thesis proposes using a Multidisciplinary 

Coupling Analysis with the addition of uncertainty generated by taking multiple samples of 

certain design variables within the design space. This analysis will aid in understanding how 

the T/O event is effect by each design variable and how a change in the design effects each 

coupling strength propagating that change to the value model. This investigation will focus 

on the key contributors to the T/O event and the design space in isolated around the extrema 

of the T/O event which is around the 1L acoustic mode. The value model will be used to 

determine the impact each coupling has on the overall system value of the Ares 1. 
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CHAPTER 2 

 RESEARCH QUESTIONS 

 This chapter contains the research questions this thesis aims to answer and were 

formed by an unforeseen behavior found in the Thrust Oscillation event of the Ares 1 and 

how it impacted NASA and congressional support. 

Research Question 1 

“Can Monte Carlo Simulations be used to predict the magnitude of each coupling due to the 

uncertainty of design and behavior variables and predict the overall system value?” 

 

Research Question 2 

“Can a lower fidelity model be developed to simulation the Thrust Oscillation event that 

occurred on the Ares 1 with a reduction in computation time but maintaining accurate 

results?” 

Research Question 3 

“How can government influences impact the overall value of our system and any future 

programs?” 

Organization of Thesis 

The thesis is broken down by stating the research questions this paper aims to answer 

with the proposed approach to address them. Next, a detailed background of the physics 

associated with the Thrust Oscillation event will be covered as well as each of the disiplines 

that drive this event this was the major unforeseen behavior in the Ares 1, as well as the 

proposed methodology model Thrust Oscillation and use the model to find any uncertainty. 
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CHAPTER 3 

BACKGROUND 

            Thrust Oscillation 

During combustion, a sudden transitional change occurs within the SRM’s chamber 

causing unstable shear layers, turbulent flow, and more specifically vortex shedding [4]. 

These vortices created by vortex shedding begin to develop after the flow has interacted with 

a bluff body. Once created the vortices travel downstream interacting with the SRMs nozzle 

causing pressure waves, known as pressure oscillation, to propagate upstream through the 

SRM’s chamber [5]. Causing an increase of energy within the SRM’s cavity this energy is 

translated into a force interacting with the chamber walls. Typically, the excited energy 

created by pressure oscillation is dampened out, causing no harm or instability to the SRM. 

However, in some cases pressure oscillation due to vortex shedding has a greater excitation 

in energy, which causes a greater structural response, known as T/O. Not mitigated properly, 

T/O causes unstable vibrations within the SRM’s chamber propagating through the rocket, 

affecting both the crew on-board and the structural supports. The T/O phenomenon is linked 

to coupling interactions between the acoustic modes, fluid flow, and structural mode 

responses [4]. Ideally, the SRM’s natural resonance should be a prescribed distance apart 

from pressure oscillation frequencies to avoid a major T/O event [1]. 
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Figure 1:  Diagram of solid rocket motor with inhibitor cross-section 

 

Ares 1 Subsystem Physics 

SRMs have multiple subsystems interacting with one another to complete the 

system’s intended design objective. While there are many disciplines that interact in a SRM 

system analysis, this paper focuses on three key subsystems that have been previously 

identified to be the underlying drivers of T/O. The five main subsystems investigated in this 

paper are propulsion, damping systems, acoustics, fluids dynamics, and structures. How these 

are coupled is discussed later in this paper. In this section, we will provide an overview of the 

physics associated with each that drive the T/O event. 

Solid-propellant rockets can be broadly classified as one of two types, either end 

burning or erosive burning. End burning only burns at the end, the sidewall propellant is 

inhibited to prevent the flame front from traveling into the propellant along the sidewall. In 

an erosive-burning rocket, the grain is inhibited on the end and the propellant burns in a 

direction perpendicular to the gas glow. Erosive-burn rockets are higher thrust, shorter 

duration rockets because the large burning area leads to large mass flow rate. In the example, 
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an erosive-burn rocket is considered for the coupling strength analysis. Here, the propellant 

grain size is assumed to be a ‘star grain’ keeping the burn rate constant as time passes. [6] 

Figure 2: Diagram of solid rocket propellant with cross-section 

Acoustics is a subsystem that monitors the interactions of acoustics waves within a 

medium. Typically, these waves are created within a duct or in our cause the combustion 

chamber of the SRM. As the fluid propagates through the chamber, the sound produces 

changes with respect to any geometry changes and changes in the fluid's velocity. With the 

case of SRMs, three types of acoustic waves occur in the combustion chamber: longitudinal, 

tangential and radial acoustic modes [7]. These modes are shown in Figure. For this study, 

the longitudinal mode and its interaction with pressure oscillation is the key point of interest. 

 

Figure 3: Diagram of solid rocket motor with inhibitor cross-section 

In the fluids subsystem, pressure oscillations are generated from turbulent flow within 

a rocket engine (e.g. from vortex shedding). There are three types of vortex shedding that can 
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occur within an SRM: obstacle vortex shedding; surface vortex-shedding; and parietal 

vortex-shedding [8]. This paper will focus on obstacle vortex shedding as this was the major 

contributor to the T/O event on the Ares 1. Shearing layers that form around any blunt object 

that protrudes into the flow, the inhibitors in this case, generate obstacle vortex shedding. 

When these shear layers’ form, low-pressure vortices detach and flow downstream causing 

pressure oscillations [5]. 

Once pressure oscillations are generated within the rocket chamber, the structure then 

responds to these cyclical loads by dampening out the excited energy in the system. The 

effectiveness for a structure to dampen out these cyclical loads is mostly determined by its 

geometry and material properties. If dampening overcomes the forces exerted onto it by 

pressure oscillation, the system will return to its stable state. However, in the instance of the 

Ares 1, excitation was larger than the dampening, leading to structural resonance of the 

system. These vibrations within the engine were not sufficiently dampened and propagated 

throughout the system, eventually affecting the crew module sufficiently as to impact 

potential health and function of the crew. 

Systems Engineering 

 Large-Scale Complex Engineered Systems are complex, multidisciplinary, and 

involve multiple organizations to develop. To tackle complexity of designing and certifying 

these types of systems, systems engineering was introduced in the 1950s. Over time 

development of LSCES has grown in both time and cost at unsustainable rates compared to 

other engineering systems, the cost is too high and the program gets discontinued [7]. 

Currently, systems are being designed using requirements-driven Systems Engineering (SE), 
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where the stakeholder(s) define the needs and wants in the form of requirements. There 

requirements represent the expected behavior of a system based on how the stakeholder have 

written a statement based on their needs, and essentially state what is not desired in the 

system. Typically, the stakeholders define customer requirements (L0) which flows to the 

designers. Once the designers get the L0s they define top-level requirements (L1) and these 

requirements flow down to subsystem design engineers who define their subsystem 

requirements (L2) to satisfy the L1 requirement. This flow continues until the stakeholder 

and design agree that all system requirements are captured and implement correctly [8]. Once 

the requirements are defined and implemented at the component level, the system goes 

through integration, verification and validation process. This flow can be visualized using the 

systems engineering model known as the “Vee” model represented in Figure 4 [9].  

  

 

Figure 4: Systems Engineering Vee-Model 
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 The requirements defined by the stakeholder act as proxies to their true preferences. 

To improve the capturing of the stakeholder’s true preference the use of Value Based Design 

(VBD) is proposed, by using value functions to capture the true preferences of stakeholders 

[9,10,40,49]. Value functions are mathematical representations of the stakeholder’s true 

preference and breakdowns a system design in terms of a value, typically in the form of 

monetary value [45,50]. 

In traditional requirements-based systems engineering a hierarchical description of the 

system is used to address interactions between subsystems [12,52,54]. This type of 

description arranges the system into levels, like a tree structure where each subsystem of the 

tree cannot communicate with each other until they reach the top level. This type of 

description works well for descripting the system architecture but it not the best way to show 

how the subsystems interaction with each other. A level four hierarchical decomposition of 

the Ares 1 is presented in  

 

 

Figure 5 below as an example to show how the system architecture. As show in  

 

 

Figure 5 there are multiple subsystems that can interaction with each other, typically 

LSCES can contain multiple couplings and be highly complexed. The use of a hierarchical 

decomposition alone is not enough to capture the highly complex coupling between the 
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subsystem. This is where Multidisciplinary Design Optimization (MDO) can be introduced to 

aid the designer in understanding these highly complex couplings that occur in LSCES. 

 

 

 

Figure 5: Hierarchical Decomposition of the Ares 1 

Multidisciplinary Design Optimization  

Multidisciplinary Design Optimization (MDO) was developed in the 1980’s to 

address interactions between subsystems during the design of LSCES. MDO captures 

couplings between subsystems during analysis and optimization of a system’s design [51,54]. 

With the use of computer simulations MDO is a powerful tool which can be used to improve 

a system design. By incorporating MDO with today’s technology LSCES composed of 

multiple subsystems and couplings can go with the optimization process while maintaining 

consistency in physics [13]. To better understand how this process works an example is 

presented. 

A typical engineered system can be broken down into disciplines or subsystems 

where individuals focus on the area their expertise best suit the project [16]. Once each team 



13 

 

 

is creating each team begins designing their components. Once each team has a design they 

integration each subsystem design together to see if the design satisfies the customer 

requirement, if there are any issues in the integration the design is reevaluated and updated 

accordingly. This is done until the system has satisfied the customer requirements and has 

reach system convergence [13]. Figure 6 shows the flow of this process for a simple rocket 

design. An analysis is performed within each discipline, where design variables are varied to 

find the optimum design within each discipline. An “optimal” design can be found using the 

traditional method however the interactions between the subsystems is lost. To capture the 

interactions convergence must occur in each subsystem every time a design variable is 

changed or every time optimization program reaches its next iteration. Perform system 

convergence using the traditional method requires an enormous amount of computational 

hours which would not be feasible for designing LSCES. 
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Figure 6:Traditional Optimization Method 

Jaroslaw Sobieszczanski-Sobieski developed a way to address the loss of coupling 

information in hierarchical models, where subsystems are separate and not coupled together 

[14]. This approach focuses on capturing system couplings, analyzing how each subsystem 

affects the outputs of other subsystem they feed information into. The subsystem outputs are 

known as behavior variables, by capturing the behavior variables a subsystem a local 

linearized optimization problem can be used to determine how a change in one subsystem 

affects other subsystems. This approach can take advantage of sequential linear optimization 

of the system without losing information of subsystem couplings, shown in Figure 7. 
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Figure 7:MDO Flowchart 

The optimization problem begins with initialization of the system, then the 

information is categorized into its respective subsystems and sent through the system 

analysis. The subsystems are calculated using an iterative process until system analysis 

convergence, where the hierarchic sequence of the subsystems determines the CPU time until 

convergence. For instance, in the case where no subsystem feedbacks exist, the sequence 

only needs to be executed once for the system analysis to converge. However, is the system 

containing multiple subsystem feedbacks the CPU time required until convergence increase 

proportionally with the number of feedbacks. A simplistic way to view the number of 

feedbacks and feedforwards in the subsystem analysis is to use a Design Structure Matrix 
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(DSM) which will be explained in the next section. Once the system analysis is converged, a 

finite difference calculation is used to perturb the design and behavior variables within each 

subsystem and is sent through an optimization method to update the system design to a more 

preferred design. Approximations for the total impact these variables have on the system are 

then needed to account for the subsystem interactions, which would later be used to update 

the design. This process is done until an optimal design that satisfies the system design 

convergence is found.  

Design Structure Matrix 

A Design Structure Matrix (DSM) is a simplistic way to represent subsystem interactions 

within a complex system by showing the feedforwards and feedbacks of each subsystems 

using a matrix structure [17]. Here the feedforwards and feedbacks are represented by 

connecting lines feeding from one subsystem to the next. The feedforwards shown in the top 

right and feedback is shown in the bottom left. Depending on the size of the DSM the 

visualization technique for displaying the interactions can vary. In the case of LSCES with 

many coupled subsystems the matrix can be represented with markers representing each 

coupling. Figure 8 and Figure 9 shows different ways to visualize a coupled system with five 

subsystems. �̅�𝑖,  in the figure represents the design variables which are independent variables 

used to define the subsystem. The �̅�𝑖, represents the behavior variables which are the outputs 

of the subsystem with respect to a particular design. The system shown in Figure 8 shows 

how a fully coupled system, meaning that the behavior variables of each subsystem impact 

their neighboring subsystems. The DSM takes the fully coupled system representing each 

coupling as dots which connects the lines that feed from one subsystem to the next, and the 
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design variables are arrows directly feeding into the subsystems. By using a DSM, the 

designer can easily visualize a LSCES, consisting of multiple subsystems with unique 

coupling patterns. Not only does DSMs make visualization easier, the designer can use a 

DSM to reorder which subsystems are calculated first in the optimization process to reduce 

the amount of CPU time needed[18].  

 

 

Figure 8: Coupled System (Spaghetti Graph) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Design Structure Matrix of Coupled System 
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Global Sensitivity Equations  

To determine overall system impact, sensitivities of subsystem couplings are 

analyzed through the implementation of a coupling strength analysis. The local and global 

derivatives are analyzed using the Global Sensitivity Equations GSE), which provides an 

efficient approach to obtain first order sensitivity of the systems behavioral response with 

respect to design variables [9-11]. This is done by decomposing the larger system into 

smaller subsystems and evaluating the subsystem behavioral responses. These system 

sensitivities are (
𝑑𝑌𝐴

𝑑𝑋𝐴
,

𝑑𝑌𝐴

𝑑𝑋𝐵
,

𝑑𝑌𝐵

𝑑𝑋𝐴
,

𝑑𝑌𝐵

𝑑𝑋𝐵
) for the 2-subsystem example in Figure 10. These 

sensitivities are based on subsystem behavioral response sensitivities, (
𝜕𝑌𝐴

𝜕𝑋𝐴
,

𝜕𝑌𝐴

𝜕𝑋𝐵
,

𝜕𝑌𝐵

𝜕𝑋𝐴
,

𝜕𝑌𝐵

𝜕𝑋𝐵
) . 

The approach is aimed at solving the total derivative matrix of the system, which gives 

information on the influence of changes in one subsystem’s output, due to changes in design 

variables within another subsystem.  

 

Figure 10: Coupled Subsystem Example 

Here subsystem A and subsystem B are coupled together, where  �̅�𝐴 and �̅�𝐵 represent 

the design variables going into each respective subsystem and �̅�𝐴 and �̅�𝐵 represent the 

behavior variables of its respective subsystem. The behavior variables also act as inputs to 

the opposite subsystems, i.e. �̅�𝐴 will feed into subsystem B and �̅�𝐵will feed into subsystem A. 
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To find the total derivatives of the design variables a Taylor Series expansion is used shown 

by Eq. 1 and 2: 

                                        
𝑑𝑌𝐴

𝑑𝑋𝐴
=

𝜕𝑌𝐴

𝜕𝑋𝐴
+

𝜕𝑌𝐴

𝜕𝑌𝐵

𝜕𝑌𝐵

𝜕𝑋𝐴
                          (1) 

     
𝑑𝑌𝐵

𝑑𝑋𝐵
=

𝜕𝑌𝐵

𝜕𝑋𝐵
+

𝜕𝑌𝐵

𝜕𝑌𝐴

𝜕𝑌𝐴

𝜕𝑋𝐵
         (2) 

When the chain rule is applied, the last total derivatives are found using Eqs. 3 and 4:  

𝑑𝑌𝐵

𝑑𝑋𝐴
=

𝜕𝑌𝐵

𝜕𝑌𝐴

𝑑𝑌𝐴

𝑑𝑋𝐴
      (3) 

     
𝑑𝑌𝐴

𝑑𝑋𝐵
=

𝜕𝑌𝐴

𝜕𝑌𝐵

𝑑𝑌𝐵

𝑑𝑋𝐵
      (4) 

Once the equations are derived they can be represented in matrix form shown by Eq. 

5 below: 

[
1

−𝜕𝑌𝐴

𝜕𝑌𝐵

−𝜕𝑌𝐵

𝜕𝑌𝐴
1

] [

𝑑𝑌𝐴

𝑑𝑋𝐴

𝑑𝑌𝐴

𝑑𝑋𝐵

𝑑𝑌𝐵

𝑑𝑋𝐴

𝑑𝑌𝐴

𝑑𝑋𝐵

] = [

𝜕𝑌𝐴

𝜕𝑋𝐴
0

0
𝜕𝑌𝐴

𝜕𝑋𝐵

]    (5) 

The left-hand side of the equations represents the sensitivity matrix, where the local 

behavior variables impact on a subsystem is captured. If a behavior variable changes in 

subsystem A its impact on subsystem B is captured with this matrix. The far-right hand side 

matrix represents the sensitivity of the subsystem behavior variables with respect to the 

subsystems design variables i.e. changes in design variables �̅�𝐴’s impact on behavior variable 

�̅�𝐴. The total local derivatives are then solved for using matrix math to obtain the matrix 

shown in the center of the equation above. This matrix represents the total local sensitivity of 

a subsystem’s behavior variables with respect to the design variables, including the coupling 
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sensitivity captured in the left-hand side matrix [52,53]. The local sensitivities within these 

matrices are typically found using a finite difference method.  

The outputs found in the matrices can also vary highly by magnitude, as the units for 

most of the coupled systems won’t match up. To get an accurate comparison of the strength 

these sensitivities have with respect to each other a normalization technique is used to 

normalize the left-hand side matrix. Below is an Eq. 6 which represents the normalized 

coupling sensitivity equation of the 2 subsystem example shown above:  

  
𝜕𝑌𝐴

′

𝜕𝑌𝐵
=

𝑑𝑌𝐴

𝑑𝑌𝐵

 𝑌𝐵

𝑌𝐴
       (6) 

Once normalized, the inverse of the matrix can be multiplied with the right-hand equation to 

calculate the total derivatives. To recover the true total derivative information, the 

normalization process should be reversed as shown below with Eq. 7. 

 
𝑑𝑌𝐴

𝑑𝑋𝐵
=

𝑑𝑌𝐴
′

𝑑𝑋𝐵

𝑌𝐴

𝑋𝐵
     (7) 

Local Sensitivity Coupling Strength Analysis 

Once the local sensitivity information is captured a comparison of coupling strengths 

can be made. This information can be important to determining strong and weak interactions 

within the localized design space. Once solved the GSE equations shown above provide the 

normalized sensitivity information. A method to analyze the sensitivity of these couplings is 

by measuring the normalized local sensitivity information and running a comparative study 

where a larger number represents a stronger coupling. By comparing the couplings, the 

designer can get a general idea of the relative strength of each coupling within the local 

design space [19,53]. The designer can then select the couplings that are weak with little 
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impact on the problem and consider elimination or suspension to save on computation time. 

This method is used later to determine the coupling strengths that impacted T/O on the Ares 

1.  
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CHAPTER 4 

DEVELOPMENT AND VERIFICATION OF ARES 1 META-MODEL 

 

         Initial methods for recreating the thrust oscillation event included the use of coupling 

a CFD program known as Star CCM+ with a FEA program known as ANSYS Workbench. 

The idea was to use Star CCM+ to gather pressure data and create a forcing function that can 

be placed on the structures of the rocket in ANSYS. The structures program would then 

calculate our deflections and we would then take these deflections and reiterate them back 

into the CFD Program. This approach turned out to be heavily taxing on time and riddled 

with numerous errors, such as meshing errors when placing the deformed ANSYS model 

back into the Star-CCM program. A new approach was proposed by using a meta-model 

based on numerical approach to determine the values of pressure along the walls of a RSRM 

during a certain range of time [36]. The following equation is used in creating a numerical 

model for the pressure oscillations.  

𝑝𝑖(𝑡) = ∑ 𝑝𝑖𝑗 sin(2𝜋𝑓𝑖𝑗𝑡) + 𝑟𝑎𝑛𝑑([0: 1]) ∗ (𝑃ℎ𝑖𝑔ℎ − 𝑃𝑙𝑜𝑤)𝑗   (8) 

Where,   𝑓𝑖𝑗 =
𝑆𝑖𝑗𝑈𝑖

𝐿𝑖
 

Where 𝑝𝑖𝑗 is the initial pressure on a grid 𝑖 by 𝑗, 𝑓𝑖𝑗 is the vortex shedding frequency, and 𝑡 is 

time. The vortex shedding frequency is determined using the 2nd part of the equation, where 

𝑆𝑖𝑗 a value that determines how oscillatory the flow is, 𝐿𝑖 is the length of the obstacle 

protruding into the flow, and 𝑈𝑖 is the velocity of the fluid. Here we added randomize to 

achieve output similar the output from Star CCM since it was not a perfect sinusoidal wave. 
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A random pressure between a range of 𝑃ℎ𝑖𝑔ℎhigh pressure and 𝑃𝑙𝑜𝑤 low pressure outputted 

by Star CCM. 

It is desirable to determine the impact that pressure oscillations have on the thrust 

produced by the solid rocket motor. So a mathematical model presented in research 

conducted by Dr. Fred S. Blomshield to approximate Thrust Oscillation due to multiple 

rocket instabilities is used to relate pressure oscillations to T/O [37]. In the past it was 

assumed that to approximate thrust oscillation due to pressure oscillation, one needs to 

multiply the nozzle area by the peak-to-peak pressure oscillation [37]. These methods yield 

smaller oscillations than what occurs inside the solid rocket motor. Using the following 

equation assuming that longitudinal oscillations have a higher impact on thrust oscillation 

and the transverse modes cause no thrust oscillations the magnitude of T/O can be found. 

[37] 

Δ𝐹 = 2𝐴𝑐Δ𝑃        (9) 

Δ𝐹 = [𝐹 + 𝑃𝐴𝐴𝐸 − (𝑃𝑁 + 𝑃𝐻)𝐴𝐶
Δ𝑃

𝑃𝑁
     (10) 

The first equation is a simplified version only considering the peak-to-peak pressure 

oscillation and the motor’s chamber area. The second equation considers not only the peak-

to-peak pressure oscillation but also motor’s chamber area, ambient pressure, head-end 

pressure, nozzle pressure, nozzle exit area and the thrust produced by the solid rocket motor.  

Using the initial simulation, we can determine the vortex shedding frequency along 

with the initial pressures that occurs within the SRM at time 0. With the initial data the meta-

model can be created to calculate the behaviors of each discipline that is effected by T/O or 

effect T/O. The meta-model structure is shown by Figure 11, where the main drive is the 
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“Fluid Dynamics” section of the meta model. This section acts are the driver for the other 

sections as it receives and sent out data to the other sections of the model. 

 

Figure 11: Metamodel Diagram 

  

 In order to understand how the Metamodel functions, it is important to understand the 

mathematical calculations that lead up to the calculation of T/O. Each subsystem is broken 

into disciplines, which are “Propulsion”, “Acoustics”, “Fluids”, “Structures”, and “Controls”, 

with additional subsystems that help calculate T/O. In Chapter 3 Propulsion, Acoustics, 

Fluids, Structures, and Controls were discussed in detail at the system level, here will 

introduce the mathematical formulae used to model each subsystem. 

The propulsion subsystem is modeled as a SRM with a star grain for the burn area. 

This is used to make the analysis simple as a star grain gives a constant burn over time. 
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Since, the foucs of the subsystem is to determine the effects of the changing changing 

pressure and the burn rate the model will use the following equations. These equations 

produce 𝑃𝑐 pressure in the chamber and 𝑟 burn rate which can be used in understand how 

propulsion properties of the SRM effect T/O. Here the equations used are assuming that the 

rocket is an end-burning rocket instead of an erozive burning rocket. 

𝑟 = 𝑎𝑝𝑛      (11) 

𝑃𝑐 = [𝑎𝐶∗𝜌𝑝
𝐴𝑏

𝐴𝑡
]

1

1−𝑛 
     (12) 

Here, 𝑝, 𝜌𝑝, 𝐴𝑏 , and 𝐴𝑡 is the fluid pressure, propellent density, burn area, and area at the 

throat of the nozzle, and 𝑎, and 𝑛 are empirically determined constants. Also, 𝐶∗ is defined 

by the following equation. 

𝐶∗ = (
𝛾+1

2
)

𝛾+1

2(𝛾−1)
√

𝑅𝑇𝑡

𝛾
      (13) 

Where, 𝑅 and 𝛾 are gas parameter constants, and 𝑇𝑡 is the total temperature inside the SRM’s 

chamber. 

 The controls subsystem  is modeled as a spring-dampener system, where the spring is 

placed at the end of the first stage SRM. Here, the spring is attached to a fixed end and to the 

first stage SRM while a forcing function represented by 𝐹(𝑡) is applied to the first stage 

SRM. The spring’s objective is to damped out the forces being applied to the structre, the 

amount of force being damped is determined by the spring constant  𝑘 and the dampener 𝑐. 

Figure 12 shows a simple example of a spring-mass system, where the mass is subjected to a 
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force and moves towards the left side. The spring wants to prevent the mass from touching 

the wall and wants the mass to reach its equilibrium state without causing more oscillations.  

 

Figure 12: Simple Spring-Mass System 

Based on the design of the spring, the damping ratio of the spring can be calculated using the 

following equation. 

𝜁 =
𝑐

2√𝑚𝑘
      (14) 

Once the damping ratio is known transmissibility can be used to calculate damped 

force that is applied to the structure. Transmissibility is the capability of an external force to 

impact an oscillatory response of a system through the proximity to its resonance frequency 

[24]. Eq. 12  below describes this processes and shows how frequencies close to the 

resonance of a system can have a significant impact to the creation of a large amplitude 

response. 

𝑇 =
𝐹𝑇

𝐹𝑂
=

√1+(2𝜁
𝜔𝑖
𝜔𝑛

)
2

(1−(
𝜔𝑖
𝜔𝑛

)
2

)
2

+(2𝜁
𝜔𝑖
𝜔𝑛

)
2
      (15) 
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Where 𝐹𝑇 represents the force as a function of frequency, 𝐹𝑂 is the original force 

magnitude, 𝜁 is the damping coefficient, 𝜔𝑖 is the vortex shedding frequency, and 𝜔𝑛 is the 

acoustic mode. 

As the frequency generated by an external force approaches the resonance frequency 

of the system its transmissibility goes to infinity, this is where the system will have the 

greatest oscillatory responses. 

 

 Modeling of the acoustic subsystem is done numerically determining the acoustic 

mode frequencies of the SRM. The analysis is done by assuming the cavity of the SRM is 

acoustically closed despite the exit area coming into contact with the external environment 

[20]. The assumption needs to be made for the theoretical method to be used. As mentioned 

before there are three main acoustic modes within a closed environment, they are the 

longitudinal, tangential and radial modes shown in Figure 3. All three acoustic modes may 

contribute to acoustic instabilities within engines, however the longitudinal modes are the 

main focus. To note even though the focus is the longitudinal mode, the tangential and radial 

modes show higher instabilities at higher frequencies [21]. The Ares 1 was shown to have 

had very low acoustic and resonance frequencies associated within the  

SRM [48,49]. To simplify the problem the radial and tangential acoustic modes will be 

neglected in the model as they are more associated with higher frequencies, which did not 

show any contribution to T/O in the Ares 1.  The  longitudinal frequencies of the SRM are 

calculated using  Eq. 17 [22].  

𝑓𝑙𝑚𝑛 =
𝑐

2𝜋
√

𝑘2𝜋2

𝐿𝑐
2       (16) 
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In Eq. 11 c is defined as the speed of sound, LC is the length of engine chamber, and 

k is the longitudinal acoustic modes. Speed of sound is dependent on the temperature and 

properties of the surrounding gas and is described by Eq. 18 below. 

𝑐 =  √𝛾𝑅𝑇       (17) 

Here in Eq. 12 is defined as gamma, which represents the ratio of specific heats, Represents 

the gas constant, and T represents the temperature of the gas.  

Higher temperatures and density play a major role in determining the speed of sound 

in a specific medium [24]. In this case a temperature of 20 degrees Celsius and gas constant 

of 1.4 is used to give a speed of sound of 343 m/s. With all variables accounted for, Table 1 

showcases the natural frequencies of the Ares 1 meta-model:  

Table 1: Acoustic Mode Frequencies for Ares 1 SRM chamber 

Acoustic Modes SRM Acoustic Frequency 

1L 19.7937 Hz 

2L 39.5875 Hz 

3L 59.3812 Hz 

 

Structures Modeling 

With the acoustic mode frequencies captured and compared with the vortex shedding 

frequencies, pressure oscillations can then be generated and placed onto the interior walls of 

the SRM as forcing function. Originally, the structures model was simulated in ANSYS 

workbench [33]. However, to save on computational time, a meta-model was created using 

sampled data collected by running the ANSYS analysis multiple times. This was done by 

changing the loading and material properties applied to the model. A total of nine variations 
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were used to create a forcing function that fits the structural behaviors of the system. Eq. 19 

shows how the pressure oscillation loads on the SRM were captured [24]. 

𝑓(𝑡) = 𝐹𝑜𝑠𝑖𝑛(𝜔𝑡)       (18) 

In Eq. 19 𝐹𝑜 represents the magnitude of the force, 𝜔 represents the driving frequency 

and 𝑡 represents time. Here, the magnitude of the force is calculated in the “Fluids” section of 

the meta-model shown in Figure 11.  

Now that all of the disciplines were model numerical and placed inside the 

metamodel, it was tested against the Star-CCM+ to ensure accuracy. Figure 13 below 

showcases the loads captured by the numerical metamodel compared with the loads captured 

in a simplified Star-CCM+ model. 

Figure 13: Pressure Oscillation Star CCM (left), Pressure Oscillation meta-model (right) 
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CHAPTER 5 

UNCERTAINTY COUPLING ANALYSIS 

During operation, some LSCES may have unstable behaviors during operation, (i.e. 

turbulent flow, abnormal vibrations, etc.) this makes it challenging to understand how all the 

subsystems will interact with each other under these unstable behaviors. To investigate these 

issues uncertainty is added to the coupling strengths analysis, to provide more detail on how 

subsystems interact with each other based on unstable behaviors and uncertainty in the MDO 

process[56]. Here, the T/O event that occurred during the operation of the Ares 1X will be 

should to show how uncertainty and instability can affect the couplings between subsystems.  

Before uncertainty coupling analysis is introduced, it is important to understand 

uncertainty based optimization. It has been around since the 1950s and continues to grow 

within multiple research areas [56,57]. Focusing in aerospace engineering the main disciples 

examined were, structures, aerodynamics, and controls each closely coupled together where 

uncertainty impacts are cross propagated [58]. With the desire to take a holistic approach in 

solving multidisciplinary uncertainty design problems, UMDO was introduced into 

academia. UMDO improves the design process by benefiting from the synergistic effects of 

coupling disciplinary optimization. By taking uncertainties into consideration in the design 

phase, UMDO can closely simulate a realistic system. To closely represent a system UMDO 

utilizes both system modeling and uncertainty modeling. Where system modeling includes 

the mathematical modeling of the system and its disciplines. Within this model the design 

variables, objective function and behavior variables are defined. This model captures the 

underlying physics, ensuring the design does not violate any laws of physics or violate any 
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constraints. The uncertainty modeling involves the quantification of uncertainties within the 

system design.  There are many mathematical theories and method already developed to 

model uncertainty [59], there is probability theory, evidence theory, etc. Throughout the 

lifecycle of any aerospace system there exist a vast number of uncertainties. Therefore, to 

minimize unacceptable calculation burdens it is necessary to use sensitivity analysis to filter 

out factors that have no significant influence on the system design [2]. Combining both 

systems modeling and uncertainty modeling, UMDO is developed. However, the UMDO 

procedure is about how efficiently organized and realized UMDO computer scripts created 

by the designer [60]. However, for this research the main area of interest is the uncertainty 

within the system’s disciplines so a modified flowchart is shown below, the major steps 

include sampling the design variable in the design space, perturbing that variable and 

performing a coupling analysis to determine how each coupling changed with the change in 

the design variable. 

 

 

 

 

 

 

 

 

Figure 14: Uncertainty Analysis Flowchart   
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 Using a coupling analysis with uncertainty the impact of unknown oscillations in behavior 

variables can be approximated to provide a better understanding of how the subsystem 

interactions of a large-scaled complex engineered system behave under unstable phenomena 

such as thrust oscillation. The analysis presented in this paper produced six Monte Carlo 

simulations, which contains the same logic but samples one design variable. Each Monte 

Carlo simulation samples the design variable, perturbs that samples and calculates each 

subsystem’s behavior variable based on the original sample and the perturbed sample. Once 

the behavior of the sampled and perturb design variable is known, forward finite difference is 

used to determine how each coupling changes with respect to the interactions of the 

subsystems. Along with the calculations of see how each coupling changes, the change in 

subsystem variables and design variables is also calculated. To produce accurate results each 

Monte Carlo analysis takes one million samples uses forward finite difference and feeds the 

information into Global Sensitivity Equations (GSE) and plotted the vitality of each coupling 

in the 𝐴 matrix to see how the sensitivity of each coupling showing the varying uncertainty in 

the model. Once all the Monte Carlo simulations finished all of the samples were stored and 

the trends of each coupling were captured as histogram plots. This is shown in Figure 15, it 

was noticed that each coupling shared a similar trend while changing each design variable 

independently. Therefore, the plots shown in Figure 15 are focused around the length of the 

inhibitor which is a design variable which displayed high levels of impact on T/O due to 

changes in the vortex shedding magnitude. If a plot was not shown in Figure 15, it was 

because the trend of the coupling was either focused around zero or a certain value. The trend 

of each of the four couplings presented in Figure 15 show that zero has the highest 
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frequency, however if the each plot is examined the coupling has a higher tendency of being 

strong or weak. To better understand if the coupling is strong or weak Figure 15 show the 

average coupling strength values for each subsystem interaction based on the samples used in 

the each of the Monte Carlo simulations. Based on the information in Table 2 every 

subsystem that interactions with the fluids subsystem in strong in magnitude meaning that 

little changes in each subsystem has a major impact on T/O. However, the interactions from 

T/O back to the other subsystems is weak, meaning that T/O is not driving any changes in the 

system, it is driven by all subsystem interactions. All the zeros in Table 2 represents no 

coupling change with the changes in the design variable. As show any subysytem that 

interations with the acoustic subsystem has a zero, this is do to the fact that acoustics in 

determined based on the geometry properties of  a closed system. In this case that closed 

system the is the solids rocket motor’s chamber . There is one coupling that is only affected 

by a change in the length of chamber design variable and that is acoustics feedback on 

structures, this is due to the fact the analysis is only focused on the longitudinal modes.  
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Figure 15: Uncertainty in coupling with change in length of inhibitor 

 

 

 

 

 

 

 



35 

 

 

Table 2: Coupling measurements for each design variable 

 

Average coupling strength measurement 

 𝐿𝑖 𝑈 𝑅𝑐 𝐿𝑐 𝑅𝑒 𝑅𝑏 

𝑇/0

𝐷
 -1.1E+13 

-1.07E+13 
-1.1E+13 

-1.32E+13 
-1.1E+13 -1.1E+13 

𝑇/0

𝑓𝑎
 -1.3E+14 

-6.34E+14 
-1.1E+14 0 -9.4E+13 -1.5E+15 

𝑇/0

𝑃𝑐
 -7.0E+22 

-2.12E+22 

 
-9.78E+21 0 -9.7E+21 -2.75E+23 

𝑇/0

𝜁
 -5.0E+26 

-1.17E+26 

 
-3.87E+25 0 -1.2E+26 -1.67E+25 

𝑇/0

𝑟
 -4.5E+35 

-1.34E+35 

 
-6.19E+34 0 -6.2E+34 -4.6E+35 

𝐷

𝑇/𝑂
 

-3.67E-09 

 

-4.17E-09 

 
-4.40E-09 0 -4.59E-09 

-4.0E-09 

 

𝐷

𝑓𝑎
 0 

0 
0 

-0.0035 
0 0 

𝑃𝑐

𝑇/𝑂
 

-5.16E-16 

 

-7.10E-17 

 
-2.73E-16 0 -3.55E-17 

-3.11E-15 

 

𝑟

𝑇/𝑂
 

-8.15E-29 

 

-1.12E-29 

 
-4.31E-29 0 -5.61E-30 

-3.31E-28 

 

𝐷

𝑃𝑐
 

-3.40E-07 

 

-1.95E-07 

 
-2.26E-06 0 -4.60E-07 

-1.65E-05 

 

𝐷

𝑟
 

-5.37E-20 

 

-3.08E-20 

 
-3.57E-19 0 -7.26E-20 

-1.20E-18 
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To visualize how each coupling compares to one another Figure 16 gives a visual 

representation of all system couplings and their relative impact, this plot is indented to 

compare each coupling together. Therefore, each coupling value was rescaled to a value from 

zero to five. Here, the x-axis is the coupling strengths’ measured value while the y-axis is the 

probability of the value occurring during system operation. Comparing each coupling the 

system designer can determine which couplings need to be further analyzed to improve 

overall system behavior. In this example the system designer would want to focus on 

couplings that range between the magnitudes of 2 to 6, trying to update the system design to 

decrease the probability of T/O from occurring. The trends and probability of each coupling 

are presented in Figure 16. By analyzing the likelihood of the coupling being strong or weak 

an approximation can be made on the ‘true’ impact of that coupling and a more accurate 

behavior of the subsystem can be modeled. Therefore, the value of the system can be 

calculated with uncertainty included. 

 

Figure 16: Uncertainty coupling analysis 
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CHAPTER 6 

VALUE MODEL ANALYSIS WITH UNCERTAINTY  

Ares 1 Value Model 

To determine how much value, the 1st stage T/O event effects the overall mission 

success a resupply mission to the ISS is developed. The mission is broken down into two 

segments, the first being the first stage rocket motor that has been the main focus of this 

research, and the second being the J-2X upper stage rocket engine. The design of the J-2X 

will remain a constant, where the mass of the engine is 2470 kilograms and thrust is 1310 

kilonewtons [41,45]. Since, this design is treated as a 3 stage rocket the total velocity need to 

get to the ISS needs to be calculated. Once the total velocity is known the velocity produced 

by the J-2X engine can be subtracted from the total velocity and the 1st stage SRM required 

velocity to complete the mission can be calculated. Once known the required velocity can be 

compared with the current design to see if the mission will be successful. 

To determine the value of the 1st stage SRM design the key design and behavior 

variables impacting mission success are identified. Once mission success rate is found, the 

cost associated with the mass of the structure and the propellant can be found. The value 

function is now in terms of dollars and the mission success rate. To capture the mission 

success in terms of dollars the mission success rate will be used as a  multiplicative term to 

capture the revenue made from delivering the payload safely. For the case presented in this 

paper delivering 1 kilogram to the ISS returns $22,000. The initial design and behavior 

variables shown in Table 16 will be used to calculate the Ares 1 value. 
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Table 3: Design and Behavior Variables of the Value Function 

 Design Variables Behavior Variables 

 𝑳𝒊𝒕 Length of Inhibitor 𝑇/𝑂 Thrust Oscillation 

 𝑼𝒇 Velocity of Fluid Δ𝑉 1st Stage velocity 

 𝑹𝒄 Radius of Chamber 𝑀𝑠 Mass of Structure 

 𝑹𝒆 Exit Radius 𝑀𝑝 Mass of Propellant 

 𝑷𝒄 Pressure of Chamber 𝐴1 First Acoustic Mode 

 𝑳𝒄 Length of Chamber   

 

Since, profit is the true preference of the stakeholders and dollars can be understood 

across multiple areas the value function is represented as profit, where higher the mission 

success rate and lower the cost, the greater the profit. [42,46]. This function is a combination 

of mission success rate, analysis time, and T/O. Where the value function is captured by the 

revenue and cost defined by the following equations: 

𝑉𝑎𝑙𝑢𝑒 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙     (14) 

Where, 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑃(𝑀𝑆) ∗ 𝑀𝑎𝑠𝑠𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝑃𝑟𝑖𝑐𝑒𝑝𝑎𝑦𝑙𝑜𝑎𝑑    (15) 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑇𝑖𝑚𝑒𝐷&𝐷 ∗ 𝑊𝑎𝑔𝑒𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟   (16) 

Here, revenue is the multiplication of the mission success rate, mass of payload and 

the price charged to the customer to launch the payload, while the cost is the cost of system 

materials added with the amount of time spent in design and development multiple with the 

current engineering wage. Once the general basis and understanding of the value function is 

known, the Ares 1 value information can be added with the Congressional value model to 

determine the overall profit. 
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Congressional Value Model 

While missions to space play an important role in the development of current 

economical and technology develops the government needs to justify which programs get 

funded. In this case the government is simplified using a model called the JFK model talked 

about in “The Case For Mars”[61], where the data from the race to the moon help determine 

if investing a mission to Mars benefits the economy. In regards to the Ares 1 project 

investors, where the investors is the government, are investing towards the cost of the Ares 1 

system itself along with any additional cost needed during the development process of the 

system which is used towards the mitigation any unintended consequences. This test case 

focuses on the Thrust Oscillation event as the major consequence that occurred during 

operation. The Thrust Oscillation mitigation team was developed to mitigate the event and 

added additional cost towards NASA overall budget during 2006-2010. The cost of the Ares 

1 system is around 6.445 Billion USD, this includes design and development costs. To 

determine the return of investment the total cost is calculated by adding the cost of the Ares 1 

along with the T/O mitigation cost. Since there is a probability of the rocket surviving the 

T/O event without additional cost required to design and develop mitigation devices such as 

(example) the mitigation cost can be assumed zero. This can be expressed by the following 

equation. 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑠𝑦𝑠𝑡𝑒𝑚 + 𝐶𝑜𝑠𝑡𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ∗ 𝑃(𝑇𝛰)    (17) 

 Knowing the cost, we can determine the possible return on investment assuming 

investors are willing to invest their assets to equal that of the project’s total cost. The investor 

is expecting a 7$ return for every dollar invest into the project[61,62]. The investor is 
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gratitude the minimum return rate however, if the systems fails the return rate may decrease 

and there is a probability that if he/she is willing to invest more assets towards additional cost 

their return rate can increase. Let’s examine the Ares 1 T/O issue, if the T/O event occurs and 

there is a need for additional cost then investors might invest more assets expecting a higher 

return on investment. However, if the mitigation cost is needed and the mitigation 

devices/plan fails then an assumption is made that the investor does not receives any 

additional return on investment due to failure. This information can be used to determine that 

if T/O does not occur then there is no need for additional resources and the return on 

investment remains the same. However, if the additional resources is needed and there is 

failure then the return on investment only includes half of the return rate of the Ares 1 

system’s value. This is due to return investment impacting education. This can be expressed 

by the following equation. 

𝑉𝑎𝑙𝑢𝑒 = 𝑉𝑎𝑙𝑢𝑒𝑇𝑒𝑐ℎ𝑜𝑙𝑜𝑔𝑦 + 𝑉𝑎𝑙𝑢𝑒𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛+𝑉𝑎𝑙𝑢𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛+𝑉𝑎𝑙𝑢𝑒𝑓𝑢𝑡𝑢𝑟𝑒  (18) 

𝑉𝑎𝑙𝑢𝑒𝑇𝑒𝑐ℎ𝑜𝑙𝑜𝑔𝑦 = 0.  1 ∗ 𝑅𝑂𝐼     (19) 

𝑉𝑎𝑙𝑢𝑒𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 = 0.2 ∗ 𝑅𝑂𝐼     (20) 

𝑉𝑎𝑙𝑢𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛 = (0.6 − 0.4 ∗ 𝑃(𝑀𝑆)) ∗ 𝑅𝑂𝐼    (21) 

𝑉𝑎𝑙𝑢𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = (0.1 − 0.05 ∗ 𝑃(𝑀𝑆)) ∗ 𝑅𝑂𝐼   (22) 

where, 𝑅𝑂𝐼 = (𝑅𝑒𝑡𝑢𝑟𝑛𝑟𝑎𝑡𝑒 ∗ 𝑃𝑢𝑏𝑙𝑖𝑐𝑜𝑝𝑖𝑛𝑖𝑜𝑛) − 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙  
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Where congress is broken down into four categories; education, technology, Mission 

Success, and future programs. Each category provides a unique value gain to the overall 

congress value, and they are broken down as follows[62]: 

 Education  Value gained by developing the system and R/D work 

 Technology  Value gained by the any technological spin-offs  

 Mission Success  Value gained by the success of the system 

 Future programs  Value gained by using the current program to plan future 

programs 

 

Uncertainty within Value Function 

 

 While the uncertainty of within each coupling strength was calculated, each of the two value 

models proposed was analysis to see how uncertainty effected the overall system value. The 

goal of the analysis is to determine the average value of the system. Therefore, the one 

million samples that was used to calculate the coupling strength information is propagated 

into the value function. Each sample determines the systems value and once all the samples 

are collected an overall system value can be determined. This overall system value is an 

approximation based on all the data collected during the analysis, mainly determined by the 

average value among all of the samples. This is shown in Figure 17: Ares 1  Value model with 

uncertainty  analysis (left) Congress  value model with uncertainty  analysis (right) where the graph 

to the left is the Ares 1 value model and the graph to the right represents the congressional 

value model. The two graphs shows the value of the Ares 1 system along with how much 

congress benefits from investing in the Ares 1 mission.  Based on Figure 17: Ares 1  Value 
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model with uncertainty  analysis (left) Congress  value model with uncertainty  analysis (right) a 

summary of results is shown in. 

Table 4: Value Model Summary 

 

 

 

 

 

 

 

Here the results show what the expected profit is for the overall program along with what the 

return on investment is for Congress. To infer on the data the Ares 1 program is expected to 

produce a value around 270 million USD, this is the value that had the highest frequency. 

With the Ares 1 producing a value of 270 USD million congress is expected to get a return of 

140 million USD. To note that the total value of the system is the addition of the 

congressional and Ares 1 value, therefore the total value is 410 million USD. This result 

shows the total benefit each party gains from the success of the Ares 1 program. 

Table 5: Summary of Congress Breakdown 

 

 

 

 

 

 

 

 

Parameter Expected Value 

Total value($M) 300 to 690 

Total value with the highest Frequency ($M) 410 

Congress return on investment ($M) 100 to 200 

Congress return on investment with the highest 

Frequency ($M) 

140 

Ares 1 Value ($M) 300 to 690  

Ares 1 Value with the highest Frequency ($M) 270 

Area of Interest Expected Value 

Education value ($M) 25 

Technology ($M) 18 

Mission Success ($M) 82 

Future Programs ($M) 15 
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Figure 17: Ares 1  Value model with uncertainty  analysis (left) Congress  value model with 

uncertainty  analysis (right) 

To further understand the benefit congress gains from investing into the Ares 1 program the 

congressional value function is broken down into four categories; education, technology, 

Mission Success, and future programs. To keep the units of the value model consistent and to 

provide a model that can be easily understood the congressional values above are represented 

in USD. Figure 18 shows the max, min and average values each area of interest produces 

based on Congress investing into the Ares 1 program. Here, the focus is on the average 

values, since this value has the highest likelihood of occurring. To infer on Figure 18 the four 

Ares of interest produce different amounts of value based on the success of the Ares 1 

mission. Some of this values are held at a fixed minimum, stating that each area produces a 

certain amount of value even if the mission fails [62]. Based on the previous statement an 

assume of minimum funding for each area is assumed. Here education produces a minimum 

of 20%, technology a minimum of 10%. However, mission success and future programs are 

determined by the success of the mission 
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Figure 18: Congress’s return on investment breakdown 

 

With the overall value of both the Congress model and the Ares 1 model known, the 

value change can be determined using the average changing in each coupling strengths. To 

perform this analysis all other couplings are held fixed besides the coupling of interested. By 

doing this the change in value can be isolated with the change in coupling strength 

measurement. Similar, to the analysis to find the uncertainty in each coupling strength 

measurement, six Monte Carlo simulations were used to determine how each coupling 

affected the value with respect to their design variables. The results from each simulation are 

shown in Table 6, where the value in each cell is the value measurement change with respect 

to each coupling shown in the far left column, the rows represent each Monte Carlo 

simulation ran for each design variable. Based on the results from Table 6 the main couplings 

that impact value are  
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 when changing the length of the inhibitor. However, when change the chamber 

dimensions 
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Table 6: Average change in value with respect to average coupling measurement 

Average change in value with respect to average coupling measurement $M (USD) 

 𝐿𝑖 𝑈 𝑅𝑐 𝐿𝑐 𝑅𝑒 𝑅𝑏 

𝑇/0

𝐷
 212.64 

-16.19 
26.065 

0 
6.57 216.94 

𝑇/0

𝑓𝑎
 21.18 

26.82 
-82.858 0 12.019 -62.87 

𝑇/0

𝑃𝑐
 -48.665 -26.106 33.802 

-0.9135 
 

16.73 -11.114 

𝑇/0

𝜁
 4.513 9.11 -10.36 0 3.533 4.5687 

𝑇/0

𝑟
 -48.67 -26.106 33.802 0 16.7299 0.9483 

𝐷

𝑇/𝑂
 

-215.349 
 

13.477 
 

-28.7823 
 

0 
-9.2886 

 

-219.6558 
 

𝐷

𝑓𝑎
 0 

0 
0 57.149 

 

0 0 

𝑃𝑐

𝑇/𝑂
 45.958 

23.3967 

-36.519 
 

0 
-19.448 

 

-7.288 
 

𝑟

𝑇/𝑂
 45.958 

23.3967 
 

-36.5193 
 

0 
-19.447 

 

-2.4688 
 

𝐷

𝑃𝑐
 -12.114 6.027 15.771 0 -31.812 -51.3258 

𝐷

𝑟
 -12.1136 6.02704 15.7715 0 -31.8117 -12.3117 
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CHAPTER 7 

CONCLUSION 

Summary and Conclusion 

 This research takes the concepts of a coupling strength analysis from MDO and 

applies it to a real event that occurred on the Ares 1. An uncertainty approach is conducted to 

determine if there is any uncertainty while modeling the T/O event that occurred on the Ares 

1. These uncertainties are within each subsystem itself as the T/O event is a turbulent event 

on itself cause unknown random phenomena to occur. To capture where the uncertainty 

realized the analysis focused to determine the coupling strength values under uncertainty. 

This gives a more accurate measurement of how the coupling interaction can be gaged while 

designing the system. Through the breakdown of the system three major disciples where 

analyzed in the beginning then two more disciples were found to have some impact on the 

T/O event. It was shown that any displacement of the length of the inhibitor has a strong 

effect on the T/O event based on how it effects the coupling interactions between structures 

and fluids. This held true with the uncertainty analysis, even though the coupling had the 

highest frequency of being zero the average coupling was strong and has a huge impact on 

the T/O event therefore effecting the value. This research paper is an advocate of capture 

uncertainty with the use of coupling strength analysis to determine a more accurate result for 

how the couplings behave under turbulent phenomena. 

 To understand how the uncertainty of each coupling strength measurement effected 

the overall value of the system a value function was developed from the field of VBD. This 

value function is a combination of both the Ares 1 and Congressional value functions. The 
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value function presented his a flexible for multiple mission profiles and can be adapted to 

different mission. The analysis aids the designer in make decisions based on the overall value 

of the system instead of it the design means the minimum specifications. By doing this the 

project value can be predicted and the value of the system can be used to determine the 

impact it has on future programs. To tie the value function with the coupling analysis a 

suspension of each coupling was made to evaluate how the change in coupling measurement 

captured in the Monte Carlo simulation had an effect on the overall system value. It was 

noticed that the interactions of structures and fluids had the largest impact on the overall 

value even under uncertainty. It is important to capture uncertainty as it aids in understanding 

how the subsystems interact with each other under turbulent conditions. 
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