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ABSTRACT 

 
OPTIMAL SHIP MAINTENANCE SCHEDULING UNDER RESTRICTED CONDITIONS 

AND CONSTRAINED RESOURCES 
 

Vi Hong Nguyen 
Old Dominion University, 2017 

Director: Dr. Han Bao 
 
 
 

The research presented in this dissertation addresses the application of evolution 

algorithms, i.e. Genetic Algorithm (GA) and Differential Evolution algorithm (DE) to scheduling 

problems in the presence of restricted conditions and resource limitations. This research is 

motivated by the scheduling of engineering design tasks in shop scheduling problems and ship 

maintenance scheduling problems to minimize total completion time.  The thesis consists of two 

major parts; the first corresponds to the first appended paper and deals with the computational 

complexity of mixed shop scheduling problems. A modified Genetic algorithm is proposed to 

solve the problem. Computational experiments, conducted to evaluate its performance against 

known optimal solutions for different sized problems, show its superiority in computation time 

and the high applicability in practical mixed shop scheduling problems. The second part 

considers the major theme in the second appended paper and is related to the ship maintenance 

scheduling problem and the extended research on the multi-mode resource-constrained ship 

scheduling problem. A heuristic Differential Evolution is developed and applied to solve these 

problems. A mathematical optimization model is also formulated for the multi-mode resource-

constrained ship scheduling problem. Through the computed results, DE proves its effectiveness 

and efficiency in addressing both single and multi-objective ship maintenance scheduling 

problems. 

 



 
 

 

Keywords: Mixed job shop scheduling, Mixed integer linear programming (MILP), 

Makespan, Preventive maintenance, Priority rules, Evolution Algorithm, Genetic Algorithm, 

Differential Evolution algorithm, Multi-objective optimization, Multi-mode resource-constrained 

scheduling problem. 
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This thesis is dedicated to the proposition that the harder you work, the luckier you get. 
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NOMENCLATURE 

 

GA    Genetic Algorithm 

DE    Differential Evolution 

PDE   Pareto Differential Evolution 

PMS    Preventive Maintenance System 

MRO    Maintenance-Repair-Operation 

CSP    Constraint Satisfaction Problem 

CBR   Constraint -Based Reasoning 

MOPs   Multi-objective Optimization Problems 

MRCSSP  Multi-mode Resource-Constrained Ship Scheduling Problem 

MSU   Maintenance Scheduling Utility 

OBJ   Objective 

ops    Operations  

mtn    Maintenance activities  

P      Total number of ships in the squadron/fleet  

stc(p)   Start time of the 1st maintenance activity in each cycle for ship 

st(p,i)    The start time of the ith maintenance activity 

et(p,i)    The end time of the ith maintenance activity 

dop(p,i)   The duration of the ith operation activity ship p 

dm(p,i)    The duration of the ith maintenance activity ship p 

SAv(p,st_c (p),t) Availability of ship p at any time t during the scheduling horizon 

QAv(q,t)             Availability of squadron q 
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FAv(t)              Availability of a fleet consisting of Q squadrons   

F    The mutation scaling factor  

Cr   The crossover rate  

randp    Randomly selected decision variable. 

t   Type of maintenance activity 

m   Mode 

dtm    Maintenance duration time type t mode m 

S1tm, S2tm, S3tm  Resources S1, S2, S3 type t mode m 

C1, C2, C3  Cost for resources S1, S2, S3 

dma (p,i,m,t)   Maintenance duration time of ship p, activity i, type t, mode m 

S1(p,w)   Required resources S1 for ship p at week w 

S2(p,w)   Required resources S2 for ship p at week w 

S3(p,w)   Required resources S3 for ship P at week w 

Makespan(p)   Required time to complete one cycle of ship p 

Makespan   Required time to complete all ship actives of a squadron 

T    The maximum planning makespan 

M    A large number 

Ua   Utility of ship availability,  

Um   Utility of makespan,  

Uc   Utility of cost  

wj   The weight 
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CHAPTER 1 

INTRODUCTION 

 

Ships play a critical role in the development of commerce, both national and 

international, and in national defense.  They have developed alongside the human race and are 

major means of transportation over water. Historically, ships have been used for such purposes 

as colonization and slave trade, and have served scientific, cultural, and humanitarian needs. 

Nowadays, the development of the shipbuilding industry makes water transportation cheaper and 

more popular than ever. Ships can easily carry thousands of customers, capital goods, heavy 

machinery, and bulk raw and finished goods and so on from one place to another, between the 

same ports at time intervals based on a given schedule. They can also travel long distances or 

transport from and out of the country to foreign countries. According to the International 

Chamber of Shipping (ICS), over 90% of world trade is carried out by the international shipping 

industry. As of 2016, there were around 50,000 merchant ships trading internationally, 

transporting every kind of cargo [1]. The import and export of goods on the scale necessary for 

the modern world would not be possible without shipping.  In addition, the continuous expansion 

of seaborne trade brings low and decreasing freight costs for consumers across the world, and 

shipping also is the safest and most environmentally benign form of commercial transport. Some 

types of ships are classified for commercial usage such as: tankers, cargo ships, carriers, ferries, 

and cruise ships [2]. Some are designed as naval vessels for combatant, auxiliary, coastal patrol 

and interdiction, carrier, and research. There are three categories of Modern naval vessels: 

surface warships, submarines, and support and auxiliary vessels. Modern surface warships 
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include aircraft carriers, frigates, cruisers, corvettes, destroyers, and amphibious assault ships. 

Submarines are watercrafts capable of independent operation underwater. They have a wide 

range of types and capabilities for different attacking and protection tasks.  Support and auxiliary 

vessels also have many types, such as offshore patrol vessels, patrol boats, replenishment ships, 

minesweepers, and hospital ships, which are designated medical treatment facilities. Clearly, the 

quantity and quality of naval ships exert a tremendous influence over the power of combat and 

defense of a nation; therefore, nations with sea access consistently attempt to strengthen their 

naval fleet. 

Besides the major role of ships as described above, some types of ships are designed for 

specialized usage such as: drill ships, which incorporate ship technology and sea plant 

technology; anchor handling and supply vessels for the offshore oil industry; salvage tugs; ice 

breakers; fishing ships; research vessels. 

 In the marine shipping industry, in order to maximize operating time during the ship’s 

service life and to avoid breakdown and deterioration, effective maintenance scheduling is 

essential. In addition, due to its complexity and the obligations on shipping organizations to 

comply with certain regulations and requirements, ship maintenance scheduling has distinctive 

characteristics unlike the maintenance planning found in other industries. This chapter will 

review the need for maintenance, maintenance strategies, and key factors that affect maintenance 

scheduling. The ship maintenance scheduling will be discussed in detail to provide an 

understanding of its characteristics and the need for applying optimization in this type of 

scheduling. 
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1.1 Maintenance Scheduling Problem 

Maintenance is a vitally important feature of the national economy. Each year, 

industrialized nations allocate large amounts of money to maintenance (Guignier and Madanat 

1999) [3]. Poor or failed maintenance planning can result in serious incidents and high penalty 

costs arising from operation downtime (Dekker 1996) [4]. Maintenance not only keeps any 

mechanical equipment or machinery going but also can help with prolonged life and a favorable 

outcome.  For a ship, maintenance is the one thing that keeps machinery in smooth running 

condition.  White, E. N.  (1979) [5] categorized maintenance by different strategies as indicated 

in Figure 1. 

 

 

Figure 1.  Maintenance Options (White 1979) [5]  

There are two types of maintenance planning: scheduled (planned) maintenance and 

unscheduled (unplanned) maintenance. 

Maintenance 

Planned 
Maintenance 

Unplanned 
Maintenance 

Preventive 
Maintenance 

Corrective 
Maintenance 

Condition 
Based 

Maintenance

Periodic 
Maintenance 
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1.1.1 Unscheduled (Unplanned) Maintenance 

This type of maintenance is defined as breakdown maintenance or run to failure 

maintenance. Simply put, the repair or replacement is performed only when failure occurs. 

Before World War II (1945) when industry was not highly mechanized and downtime 

had less serious effects, this approach was the standard approach [11]. However, analysis of 

maintenance costs indicates that repairs cost of this type average about three times higher than 

repairs made within a scheduled or preventive model because it results in high overtime labor, 

high machine downtime, low production, and high inventory costs for spare parts (Mobley 2002) 

[6]. Therefore, unscheduled maintenance is only suitable for a system with a low hazard rate and 

no serious cost or safety consequences. 

1.1.2 Scheduled (Planned) Maintenance 

Scheduled maintenance became more common after World War II (1945). In 

maintenance scheduling or planning, all necessary activities such as detecting failure and 

repairing or replacement are planned, controlled, and recorded in connection with keeping an 

installation to an acceptable standard (White 1979) [5] . Regular inspections and maintenance 

can prevent equipment failure, high costs and loss of time due to repair failing assets.  

To protect the reliability and safety of a system, scheduled maintenance includes four 

basic task types (Nowlan and Heap 1978) [7]:  

1. Inspection of a component to detect failure;  

2. Failure detection;  

3. Reworking and discarding of a component before its maximum age;  

4. Inspecting an item to assess unseen failures.  
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For most systems, there are two classes of maintenance scheduling: preventive maintenance and 

corrective maintenance, one or both of which may be applied.  

1.1.3 Corrective maintenance: 

Corrective maintenance is carried out due to a breakdown and could be either planned or 

unplanned. Planned corrective maintenance is likely to be the result of a run-to-failure 

maintenance plan. The advantage of this system is that machinery parts are used to their full life 

or until they break. Unplanned corrective maintenance could be due to breakdown not stopped 

by preventative maintenance or a breakdown due to a lack of a maintenance plan. Unplanned 

maintenance, like reactive maintenance, is much more costly than planned maintenance because 

the unexpected breakdown may also damage other parts, especially in situations when a 

breakdown cannot be tolerated. 

1.1.4 Preventive maintenance: 

It is famously known as the PMS or Preventive Maintenance System. Scheduling repair 

or replacement time in preventive maintenance usually is built based on the manufacturer’s 

recommendations and experience. In this case, the maintenance is performed within scheduled 

intervals like monthly, yearly, etc. or is carried out per the running hours like 4000 hours, 8000 

hours etc. Maintenance is carried out irrespective of the condition of the machinery. The parts 

must be replaced if it is written in the schedule, even if they can be still used. Because parts are 

lubricants changed, adjustments, or replaced made before failure occurs, the objective is to 

increase the reliability of the system over the long term by staving off the age effects of wear, 

corrosion, fatigue, and relate phenomena. Preventive maintenance can be time-based or 

condition-based maintenance. Time-based preventive maintenance, as described above, is run 



6 
 

 

according to a certain time schedule. Condition-based preventive maintenance depends upon the 

monitoring of a given condition, for example the normal vibration arising from the operation of a 

piece of equipment. Whenever the vibration exceeds a certain threshold value then the equipment 

must be applied. 

1.2 General ship maintenance practice 

Ship maintenance is normally considered in the early stages of ship design (Shields et al. 

1996) [8]. During the life cycle of a ship, configuration conversion, overhaul, and major repair 

work can be applied to maximize its operational readiness. While conversion/modernization 

change ships' configurations so that they can do better jobs or different jobs, the goal of overhaul 

is generally to bring them back to an almost like-new condition. The goal of repair is to maintain 

hull integrity of the ship and its equipment and to repair or replace damaged and worn parts. 

Figure 2 illustrates the basic actions carried out during maintenance that are significant during a 

ship’s service life. 

 

 

Figure 2. Maintenance/repair life of a ship (Richard Lee Storch 2007) [9] 
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Repair and maintenance of a ship generally falls into three categories discussed below. 

1. Unscheduled voyage repairs. There can be many unscheduled repairs which become 

necessary whenever there is an unexpected equipment failure or fouling, a storm damage, a 

collision damage, a fire, or any other possibilities resulting in damage or breakdown occurring 

during operations. The size and complexity of unscheduled voyage repairs can range from very 

small and simple to very large and complex. 

2. Planned maintenance is a regular maintenance program run by the owner based in his 

or her own maintenance philosophy, statistical information on equipment failure rates, or 

predictive data collection [9]. Planned maintenance can involve repair, replacement, or 

conversion/modernization for many different aspects of the ship, such as the ship’s body or 

ship’s surface, engine machinery, deck machinery, electrical equipment, navigation and 

communication systems, etc. All of these programs are designed to keep ships operating safely 

with a minimum of downtime, to significantly extend the life of the ship, and meet the latest 

safety standards. 

3. Overhaul is a special larger-scale type of planned maintenance. Its purpose is to bring 

the overall operating condition of a ship back to good-as-new. Overhaul is a large and complex 

undertaking, lasting from a few months to a year for many military ships [9]. 

At the end of the economical service life of a ship, the owner has to determine how to 

dispose of it (deactivation/scrapping). Some ships, especially in the military, are deactivated and 

stored for possible later use. Others are broken up for the scrap or resale value of their materials 

and equipment [9]. 

Ship maintenance can be conducted in different locations as is presented in Figure 3. 
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Figure 3. Locality of Ship Maintenance (Yousef Alhouli 2011) [11] 

The maintenance can be conducted in the shipyard, where the ship must be dry docked, 

when major overhaul is needed. The use of different shipyards may be required by different 

types and sizes of ships (Deris et al. 1999) [12]. In the shipyard, typically 75% of the work 

involves routine ship maintenance, and the remaining 25% is for damage repair and ship 

conversion (Mackenzie 2004) [13]. It also can be conducted at anchorage and in the harbor (non-

dry dock) when medium maintenance is needed. Minor maintenance can be done during a ship’s 

daily operations. Non-dry dock can be pier-side inspection and repair involving topside work 

where a dry dock is not needed for access. This kind of maintenance is done frequently (usually 

annually). Dry-dock maintenance is a major maintenance involving inspection and repair of the 

underwater hull, propellers and shafts, rubber, thrusters, hull coatings, cathodic protection, sea 

chests, and other underwater items; usually it also includes all the work done in a non-dry dock 

maintenance and small to medium sized configuration changes planned for the ship (including 

overhauls) [9]. Non-dry dock maintenance is done periodically. 

 

Ship Maintenance 

In Shipyard In Operation 

Dry-Docks Berths In Ports At Sea 
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1.3 Motivation of dissertation 

Minimizing the out-of-service time for a ship is extremely important for its owner 

because out-of-service time is very expensive. Rapid completion of repair work may be more 

important than a low repair cost for a business. In the highly competitive business of ship repair 

and modernization, a good maintenance plan can bring many advantages. 

Firstly, it increases the availability of ships. Every ship is provided with a maintenance 

cycle and every component in the ship is scheduled to be maintained within the maintenance 

scheduling plan to maximize the ship’s availability. The ship is considered available if all its 

major systems, such as propulsion, power, air-conditioning, and cargo machines, is in full 

operational readiness. The ship will be classified as unavailable, if any one of the major 

components is defective, and maintenance will be required. Maintaining high availability can 

only be achieved by effective maintenance management of which maintenance scheduling is 

considered as one of the main factors (Deris et al. 1999) [12]. 

Secondly, it optimizes use of resources. Resource allocation is a key for efficient 

management and operation. Planning of maintenance helps with the use of available resources 

such as labor, equipment, and shipyards, avoid overload, re-work, or waste resources. Moreover, 

maintenance teams have less unplanned maintenance and can respond quicker to new problems. 

This decreases MRO (Maintenance-Repair-Operation) cost, and increases profit. 

Thirdly, it facilitates meeting deadlines and requirements. Ship maintenance is scheduled 

in the order of priority of time and importance for each ship. This avoids delay in deploying the 

project or meeting the requirement of customers. 

Fourthly and finally, it leads to maintaining the proper quality of ships. For regular 

maintenance, each kind of ship has its own maintenance cycle. To ensure extending the useful 
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lifecycle of ship and decreasing the need for capital replacements, it is maintained through its 

maintenance cycle. During the regular maintenance, small problems can often be detected before 

they become large problems with expensive repairs; technicians can anticipate failures or 

identify problems early that have potentially hazardous conditions in the future. This not only 

enhances efficiency and reliability of ships but also improves the performance of ship: increasing 

uptime, reducing downtime but also reducing repair cost and avoiding overhaul operations. 

Understanding the extremely important role of ship maintenance scheduling so that 

operations remain safe over a long-time cycle, the application of any optimization scheme to this 

problem is well worth the effort and has been a fertile field for researchers in recent years.  

In the remainder of this dissertation, chapter 2 provides a brief review of the literature of 

maintenance scheduling and the research foundation for this dissertation. Chapter 3 deals with 

the problem of mixed shop scheduling. Chapter 4 provides the foundation for applying the 

Differential Evolution (DE) approach to the Navy Ship Maintenance Scheduling Problem 

including details on the programming aspects and solution. Chapter 5 presents an overall 

conclusion for this dissertation and suggestions for future work. 
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CHAPTER 2 

LITERATURE REVIEW AND RESEARCH FOUNDATION 

 

This chapter gives a brief literature review of the optimization of maintenance 

scheduling. It also gives a summary of fundamentals of genetic algorithm (GA) and differential 

evolution (DE), and their applications based algorithms and limitations are outlined. Some basic 

concepts of GA and DE are presented. After that, general block diagrams of GA and DE are 

provided to indicate how the optimization problems can be solved. 

2.1 Maintenance scheduling optimization literature review 

Maintenance scheduling optimization has been studied extensively from the early 1960s 

with the development of many maintenance optimization models. Among these models, the 

integer linear programming technique was found to be the most commonly used model. 

Mukerji et al. (1991) [14] discussed a number of different optimization goals and 

optimization techniques in their maintenance schedules for the Wisconsin Power and Light 

Company. They used a mixed-integer program to solve the maintenance scheduling problem that 

attempted to level the generating reserves throughout the planning horizon. 

A mixed-integer linear programming model was developed by Ashayeri et al. (1996) [15] 

to simultaneously plan preventive maintenance and production in a process industry 

environment, where maintenance planning is extremely important. The paper schedules 

production jobs and preventive maintenance jobs, while minimizing costs associated with 

production, backorders, corrective maintenance and preventive maintenance 

Deris et al. (1999) [12] modeled ship maintenance scheduling as a constraint satisfaction 

problem (CSP). The variables used in the model were based on the start times, and the domain 
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values were the start and the horizon of the schedule. These authors applied their model to the 

Royal Malaysian Navy. They adopted a constraint-based reasoning (CBR) together with a 

genetic algorithm (GA) to find the start times of the first maintenance activity of each ship to 

maximize its availability or the availability of a squadron of ships, or an entire fleet for 

operations that satisfied maintenance requirements, dockyard availability, and operational 

requirements. 

Baliwangi et al. (2006) [16] presented a ship maintenance scheduling management 

system integrated with a risk evaluation and lifecycle cost (LCC) assessment approach. The 

approach improves upon existing practices in arranging an optimal maintenance schedule by 

modeling operational and economical risks. It analyzed risks associated with some operational 

problems such as operating schedule, routes, ship position, resource availability, and 

achievement of reliability-availability-maintainability (RAM) of system, determining component 

function, generating the time predicted and possible component combinations, and selecting the 

best alternative based on LCC. 

Charles-Owaba et al. (2008) [17] established a new approach for evaluating the 

sensitivity of a preventive maintenance scheduling model which is based on an integrated 

operations maintenance activity schedule in a resource-constrained environment, and they tested 

it on a shipping company. Their results show that some shipping maintenance scheduling 

parameters are sensitive and therefore could be manipulated for the best performance of 

maintenance scheduling models 

This thesis adopts the premise of the ship maintenance scheduling problem from the 

paper “Theory and Methodology of Ship maintenance scheduling by genetic algorithm and 

constraint-based reasoning” by Safaai Deris, Sigeru Omatu, Hiroshi Ohta, Lt. Cdr Shaharudin 
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Kutar, Pathiah Abd Samat [12]. In the next chapter, a modified genetic algorithm (GA) is 

developed to find the optimal start times of ship maintenance activities that maximize the 

availability of different squadron of ships and the utility of given shipyards. The problem is 

further expanded to multi objective optimization with a limited number of dockyards and is 

solved by a differential Evolution (DE) algorithm. A continuation of the DE solutions for the 

more practical problems involving resources constraints and mode assignments is also a part of 

this dissertation. 

2.2 Genetic algorithm 

2.2.1 Genetic algorithm literature review 

Genetic algorithms were first proposed by Fraser [18], [19]  and later expanded by 

Bremermann and Reed et al [20] and are considered possibly be the first algorithmic models 

developed to simulate genetic systems. Some basic concepts have been proposed and applied to 

engineering systems in their work. It was the extensive work done by Holland [21] that concepts 

of chromosomes, genes and fitness functions have now become standard features in GA. 

Because of his work, Holland is nowadays considered as the father of GA. In recent years, GA's 

population-based approach [22], [23] have a significant contribution in optimization problems in 

which the ability to make pair-wise comparison in tournament selection is exploited to devise a 

penalty function approach that does not require any penalty parameter. Feasible and infeasible 

solution comparisons are made so as to provide a search direction towards the feasible region. 

Once sufficient feasible solutions are found, a niching method [23] (along with a controlled 

mutation operator) is used to maintain diversity among feasible solutions. This allows a real-

parameter GA's crossover operator to continuously find better feasible solutions which gradually 

lead the search near the true optimum solution. GAs with this constraint handling approach [23] 
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have been tested on many problems commonly used in the literature, including engineering 

design problems. With the rapid development of digital computers in recent years, the genetic 

algorithm has continued to have a major impact on optimization problems and intelligent system 

design problems. For example, Aytekin Bagis (2007) [24]  used it as the optimization algorithm 

to combine a classical genetic algorithm structure with a systematic neighborhood structure.  

2.2.2 Applications and Limitations of Genetic Algorithms 

Genetic algorithms can be applied to a wide variety of optimization problems such as 

modern automation engineering, scheduling, computer games, stock market trading, 

transportation networks, vehicle routing, and medical applications. 

Although the generic algorithm is able to find a good solution to a problem where the 

iterative solution is too prohibitive in time and the mathematical solution is not attainable in a 

fast manner, many limitations are encountered in the use of this approach such as robustness and 

convergence. For example, stop criterion is not clear in every problem, GA is sensitive to the 

initial population used or GAs may have a tendency to converge towards local optima or even 

arbitrary points rather than the global optimum of the problem. However, with the rapid 

development of digital computer, the applications of the GA get much attention and have 

achieved many important outcomes in solving the engineering problem. 

2.2.3 General genetic algorithm 

Being motivated by the principles of natural genetics and natural selection, GA is a 

stochastic global search method that works on populations of individuals instead of single 

solutions. It starts with the initial population that has no knowledge of the correct solution. Then 

GA searches in parallel and depends completely on responses from its evolution operators, i.e. 



15 
 

 

crossover, mutation, and reproduction, to arrive at the best solution. Figure 4 shows the basic 

structure of a genetic algorithm. 

 

 

 

Figure 4. Block diagram of GA 

2.2.3.1 Initial Population  

The candidate solution to a problem is called a chromosome. The first step on applying a 

GA optimization is to generate an initial population (a collection of chromosomes). The standard 

way of generating an initial population is random selection. Initial population should be a 

uniform representation of the entire search space. Otherwise, there are regions of the search 

space that are not covered by the initial population. Consequently, they can be neglected by the 

search process. The size of the initial population depends on the computational complexity and 
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exploration abilities. Then GA evolves the population through multiple generations by using the 

genetic operators, i.e. reproduction, crossover, and mutation, in the search for a good solution. 

Some definitions are provided to introduce the block diagram of the GA for engineering system 

applications. 

2.2.3.2 Objective function/Fitness Function  

A mathematical function is used to quantify how good the solution represented by a chromosome 

is. This is to determine the ability of an individual of a GA to survive because individuals with 

the best characteristics have the best chance to survive and to reproduce according to the 

Darwinian model of evolution.  The fitness function measures the quality of the represented 

solution by mapping a chromosome representation into a scalar value or represents the objective 

function that describes the optimization problem.  

2.2.3.3 Selection 

 Selection is one of the main operators in GA that emphasizes the creation of a better 

generation and reproduction of chromosomes. There are two main steps of a GA selection: 

 Selection of the new population:  This occurs at the end of each generation. There a new 

population of candidate solution is selected from both the parents and the offspring, or 

from only the offspring to serve as the population of the next generation.  

 Selection of parents for reproduction: The process of producing offspring from selected 

parents by applying crossover and/or mutation operators is also very important.  To 

ensure that offspring contain genetic materials of the best individuals, better individuals 

should have more opportunities to reproduce. However, weak individuals can also 

increase their chances of survival by mutation, which may result in introducing better 

traits to weak individuals. Many selection operators have been developed for GA such as 
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random selection, proportion selection, tournament selection, rank - based selection, 

Elitism, Hall of Fame, Boltzmann Selection, etc. This part will discuss three of the most 

popular selection operators. 

Random Selection: No fitness information is used in random selection. Each individual 

has the same probability to be selected which means that the best and the worse individuals have 

the same probability of surviving to the next generation. 

Proportional Selection: Biased selection towards the most fit individuals.  A probability 

distribution proportional to the fitness is created, and individuals are selected by sampling the 

distribution. The popular sampling methods used in proportional selection is roulette wheel 

sampling [25]. In roulette-wheel sampling, the implementation of the proportionate selection is 

thought of a roulette-wheel mechanism. The wheel is divided into N (population size) divisions, 

where the size of each is marked in proportion to the fitness of each population member [26]. 

The wheel is spun N times, each time choosing the solution indicated by a pointer. In this way, 

the individual with higher fitness value has a higher probability of being copied into the mating 

pool or surviving to the next generation. 

Tournament Selection: In the tournament selection, a group of n individuals randomly 

is selected from the population, where n< N (N is the total number of individuals in the 

population). The fitness values of the selected n individuals are compared, and the best 

individual from this group is chosen and placed in the mating pool for reproduction or to the next 

generation. 

2.2.3.4 Crossover 

 After selection is finished, the crossover procedure is initiated. Crossover is a genetic 

operator that produces a new chromosome (offspring) by combining (mating) two chromosomes 
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(parents). Crossover occurs during evolution according to a user-definable crossover probability. 

The idea behind crossover is that if the new chromosome takes the best characteristics from each 

of the parents, it may be better than both parents. However, the selection pressure may cause 

premature convergence due to reduced diversity of the new populations if selection focuses on 

the most-fit individuals [12]. There exists a number of crossover operators in the GA literature. 

They can be divided into three main categories [25]: 

• Asexual, where an offspring is generated from one parent. 

• Sexual, where two parents are used to produce one or two offspring. 

• Multi-recombination, where more than two parents are used to produce one or more 

offspring. 

Three basic crossover operators are presented below. 

• One-point crossover: A one-point crossover operator was developed that randomly 

selects a crossover point and the segments after that point are swapped between the two parents. 

One-point crossover is illustrated in Figure 5. 

 

 

Figure 5.  One-point Crossover 
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• Two-point crossover: A crossover operator that randomly selects two crossover points 

within a chromosome then interchanges the two parent chromosomes between these points to 

produce two new offspring. In this case two bit positions are randomly selected, and the 

segments between these points are swapped as illustrated in Figure 6.  

 

 

 

Figure 6. Two-point Crossover 

• Uniform crossover: Uniform Crossover uses a fixed mixing ratio between two parents. 

Unlike one- and two-point crossover, the Uniform Crossover enables the parent chromosomes to 

contribute the gene level rather than the segment level. Uniform crossover is illustrated in Figure 

7. 
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Figure 7. Uniform Crossover 

2.2.3.5 Mutation  

Mutation is an important operator of the genetic search as it helps to prevent the 

population from premature convergence at any local optima. Selection and crossover can create 

better solutions in the population. However, there may not be enough diversity in the initial 

population to ensure that the GA searches the entire problem space if GA only uses reproduction 

and crossover operators. Moreover, a bad choice of initial population can also make GA 

converge on sub-optimum. In mutation, the values of genes in a chromosome are randomly 

changed. This can result in the introduction of new genetic materials into the population, 

therefore increasing genetic diversity. With these new gene values, individuals may become 

better than the previous ones. Mutation probability, also referred to as the mutation rate, is 

defined by a user and should usually be set fairly low to ensure that good solutions are not 
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distorted too much. The high mutation probability can lead the search turn into a primitive 

random search.  

2.2.3.6 Termination 

 The GA operators are iteratively applied until the stopping criterion is satisfied. There 

are many criterions for terminations. The simplest is to limit the number of generations that GA 

is allowed to execute. This limit should be big enough; otherwise, the GA will not have sufficient 

time to explore the entire search space. Another criterion that can be used is population 

convergence. If there is no change or small change in genotypic information of the population 

over a number of consecutive generations, GA can be stopped. 

From all above concepts, the GA for programming is as follows: 

Genetic Algorithm: 

Initiate the strategy parameters 

Create and initialize the initial gains 

For each gain 

Evaluate the objective function J 

End 

While stopping condition(s) not true do 

    For i =1, n do 

Choose i ≥ 2, new gains at random 

Create offspring through application of crossover operator 

Mutate offspring strategy parameters 

Evaluate the objective function of new gains 

If value of objective function is less than epsilon 



22 
 

 

        Best gains 

End  

    End 

Select the new population 

t = t +1 

End 

2.3 Differential Evolution 

2.3.1 Differential Evolution literature review 

Differential evolution (DE) is another kind of evolutionary algorithm developed by Storn 

and Price in 1995. At the First International Contest on Evolutionary Optimization in May 1996, 

the success of DE was demonstrated. Unlike GA, DE does not require the transformation of 

variables into binary strings, and it usually takes less computational time than GA. DE requires 

fewer parameter settings and is able to solve high-dimensional complex optimization problems. 

Since 1996, many researchers have tried to improve the performance of the basic differential 

evolution algorithm in several scientific problems and applications. The DE inventors, Storn and 

Price, wrote several papers about the basis of DE, highlighting the advantages of DE in solving 

difficult optimization problems including global optimization problems which subject to multiple 

nonlinear constraints [[30], [31], [32], [33], [34], [35]]. Lampinen (2002) proposed a constraint 

handling approach for the differential evolution algorithm. An extension for the Differential 

Evolution algorithm for handling nonlinear constraint functions was performed. He modified the 

replacement criterion of the original algorithm by applying a new replacement criterion for 

handling the constraints. The approach was demonstrated by solving ten well-known test 

problems [36]. Gamperle et al. (2002) studied different parameter settings for DE on several uni-
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modal and multi-modal test functions. The article guided and provided the appropriate control 

parameters: the mutation scale factor F, the crossover constant Cr, and the population size Np. 

They concluded that the choice of control parameters Np, F, and Cr have a strong effect on the 

capability of finding the global optimized point and the convergence of DE [37]. Liu and 

Lampinen (2005) introduced a new version of Differential Evolution algorithm with adaptive 

control parameters – the fuzzy adaptive differential evolution algorithm. In fuzzy adaptive 

differential evolution algorithm, fuzzy logic controllers are used to adapt the search parameters 

for the mutation operation and crossover [38]. Mezura-Montes et al. (2006) presented a 

Differential-Evolution based approach to solve constrained optimization problems. The approach 

allowed each solution to generate more than one offspring but using a different mutation operator 

which combines information of the current parent and information of the best solution in the 

population to find new search directions. This increased the probability of each parent to 

generate a better offspring. Three selection criteria based on feasibility are used to deal with the 

constraints of the problem, and a diversity mechanism is added to maintain infeasible solutions 

located in promising areas of the search space [39]. Mallipeddi and Suganthan (2008) investigate 

the effect of population size on the quality of solutions and the computational effort required by 

the DE Algorithm. They used a set of five benchmark problems to study the effect of population 

sizes on the performance of the DE. The study showed a significant influence of the population 

size on the performance of DE, interactions between mutation strategies, population size as well 

as dimensionality of the problems [40]. Qin et al. (2009) propose a self-adaptive DE (SaDE) 

algorithm. In the proposed algorithm both trial vector generation strategies and their associated 

control parameter values are gradually self-adapted by learning from their previous experiences 

in generating promising solutions [41]. An alternative differential evolution algorithm for solving 



24 
 

 

unconstrained global optimization problems was presented by Mohamed et al. (2012).  They 

introduced a new directed mutation rule based on the weighted difference vector between the 

best and the worst individuals of a particular generation to enhance the local search ability of the 

basic of the basic DE and to increase the convergence rate, and two new scaling factors as 

uniform random variables to improve the diversity of the population and to bias the search 

direction. A dynamic non-linear increased crossover probability scheme is utilized to balance the 

global exploration and local exploitation. They merge a random mutation scheme and a modified 

Breeder Genetic Algorithm mutation scheme to avoid stagnation and/or premature convergence 

[42].  

2.3.2 Applications and Limitations of Differential Evolution  

Differential evolution has been successfully applied in many applications on various 

domains such as neural network learning, digital signal processing, image processing, 

aerodynamic shape optimization, automated mirror design, and mechanical engineering design, 

physics, computer science, shape, control science, traffic control, manufacturing, management 

and even economics.  

Although by running several vectors simultaneously, DE runs more stable than GA, DE 

is still easy to drop into a regional optimum. As GA, DE also cannot guarantee an optimal 

solution. The performance and results of the algorithm depend on the parameter settings (the 

mutation scale factor, the crossover constant, and the population size), and their configuration is 

sometimes an art rather than a science. 
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2.3.3 Basic Differential Evolution 

Although DE shares similarities with GA, it differs significantly in the sense that distance 

and direction information from the current population is used to guide the search process. For 

GA covered in the previous part, variation from one generation to the next is achieved by 

applying crossover and/or mutation operators. If both of these operators are used, crossover is 

applied first, after which the generated offspring is mutated. DE differs from GA in that mutation 

is applied first, then crossover operator is used to produce an offspring; while for GA, mutation 

step sizes are sampled from some probability distribution function, mutation step sizes in DE are 

influenced by differences between individuals of the current population (Andries P.Engelbrecht 

2007). 

The basic components of the DE algorithm are explained below using Figure 8 as a block 

diagram to link these components together. 
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Figure 8. Block diagram of the DE 

Initialization 

DE is a population-based optimizer that creates the initial population by multiple, 

randomly chosen initial points.  The population, symbolized by Px, is composed of the Np 

vectors, xi,g . The index, g = 0, 1, ..., gmax, indicates the generation to which a vector belongs. In 

addition, each vector is assigned a population index, i, which runs from 0 to Np – 1, where Np is 
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the number of vectors in the population. Parameter bounds must be specified before the 

population can be initialized to define the domain from which the Np vectors in the initial 

population are chosen.  

Mutation 

Once initialized, DE mutates and recombines the population to produce a population of 

Np trial vectors. The DE create a mutant vector giv , by combining three different, randomly 

chosen vectors as follows: for each parent, xi,g, select a target vector xr0  from the population 

such that 0ri  . Then, randomly select two individuals, xr1 and xr2 from the population such that 

the indices 2,1,0, rrri  are distinct ( 210 rrri  ) 

Then adding the weighted difference of two of the vectors to the third as the equation 

below: 

 
grgrgrgi xxFxv ,2,1,0, .   

The scale factor, F ∈ (0,1), is a positive real number that controls the rate at which the 

population evolves. While there is no upper limit on F, effective values are seldom greater than 

1.0 [32]. 

Crossover 

The DE crossover operator implements a uniform crossover, sometimes referred to as 

discrete recombination of the mutant vector; giv , and the parent vector; xi,g,  to to build a trial 

vector giu , as follows: 
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where xj,i,g refers to the j-th element of the vector xi,g, Cr is the crossover probability. It is 

a user-defined value, Cr ∈ [0,1], that controls the fraction of parameter values that are copied 

from the mutant. To determine which source contributes a given parameter, uniform crossover 

compares Cr to the output of a uniform random number generator, randj (0,1). If the random 

number is less than or equal to Cr, the trial parameter is inherited from the mutant, giv , ; 

otherwise, the parameter is copied from the vector, xi,g. In addition, the trial parameter with 

randomly chosen index, jrand, is taken from the mutant to ensure that the trial vector does not 

duplicate xi,g. 

Selection 

To determine which parent or offspring will survive to the next generation, the target 

(parent) vector xi,g is compared with the trial (offspring) vector giu , .If the trial vector has an 

equal or lower objective function value than that of its target vector, it replaces the target vector 

in the next generation; otherwise, the target is admitted to the next generation.  

 

   
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General DE algorithm 

Set the generation counter, t=0 

Initialize the control parameters, F and Cr; 

Create and initialize the population, G(g), of Np individuals; 

While stopping condition(s) not true do 

for each individual, xi,g ∈ G do 
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      Evaluate the fitness, f(xi,g); 

                  Create the mutant vector, giv , by applying the mutation operator; 

                  Create a trial (offspring) vector giu ,  by applying the crossover operator; 

                  if  
giuf , is better than  

gixf , then 

Add giu , to G (g+ 1); 

                  end 

                  else 

Add xi,g to G(g+ 1); 

                  end 

          end 

end 

The solution is the individual with the best fitness. 

2.4 Research approach of dissertation 

The aim of this thesis is to develop and apply a combination of GA and DE procedures 

directly to scheduling problems in order to efficiently solve them. The strength of GA and DE 

lies in their ability to find a good solution to a problem where the mathematical solution is not 

attainable.  They can find the solution in a fast manner and very effectively. A number of recent 

studies comparing DE with GA indicate that DE displays better and more stable results than GA 

[[43], [44], [45], [46], [47]]. In contrast to GA, where parent solutions are selected based on 

fitness, every solution in DE takes turns being a target vector (one of the parents). Therefore, all 

vectors play a role as one of the parents with certainty. The second parent is the mutant vector, 

which is formed from at least three different vectors. Thus, the trial vector is formed from at least 
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four different vectors and would replace the target vector only if this new vector is better than the 

target vector; otherwise, it would be ejected. This replacement takes place immediately without 

having to wait for the whole population to complete the iteration. Then, this improved vector 

would immediately be available for random selection of vectors to form the next mutant vector. 

Moreover, in DE, a new solution would be selected only if it has better a fitness. Therefore, the 

average fitness of the population would be equal or better than the average fitness of the previous 

population from iteration to iteration. Any improvement in the solution is immediately available 

to be randomly selected for the next target vector. This is different from GA where an 

improvement would take effect only after all the solutions have completed the iteration.  

While DE is proved to be much more robust in many experiments, many researchers also 

mentioned that GA can produce as good results for small sized problem as DE and the running 

time of GA is comparable and in many cases better than DE [[43], [44], [45], [46], [47]]. 

Therefore, both GA and DE will be studied in this thesis through two case studies: a mixed shop 

scheduling problem and a maintenance scheduling problem specific to Navy ships and their 

particular requirements. The mixed shop scheduling is introduced, and a modified GA is 

proposed to solve it in chapter 3. When compared with previous methods, the proposed GA has 

achieved solutions with good accuracy, stable convergence characteristics, and lesser 

computation time. Chapter 3 also presents the MATLAB code using the modified GA procedures 

and a detailed comparison. In chapter 4, the Navy Ship Maintenance Scheduling Problem is 

presented and a DE approach is applied to solve it. 
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CHAPTER 3 

AN EFFICIENT SOLUTION TO THE MIXED SHOP SCHEDULING PROBLEM 

USING A MODIFIED GENETIC ALGORITHM 

 

The shop scheduling problem (SSP) is one of the most complex scheduling problems, is a well-

known NP-hard problem of combinatorial optimization and has a very wide engineering 

background. In the static shop scheduling problem, finite jobs are to be processed by finite 

machines such that a specific optimization criterion is satisfied. According to the restrictions on 

the technological routes of the jobs, a general shop is indicated by a flow shop (each job is 

characterized by the same technological route), a job shop (each job has a specific route) and an 

open shop (no technological route is imposed on the jobs). The mixed job shop scheduling 

problem is one in which some jobs have fixed machine orders and other jobs may be processed 

in arbitrary orders. In past literature, optimal solutions have been proposed based on adaptations 

of classical solutions such as by Johnson, Thompson and Giffler among many others, by 

pseudopolynomial algorithms, by simulation, and by Genetic Algorithms (GA). GA based 

solutions have been proposed for flexible Job shops. This chapter proposes a GA algorithm for 

the mixed job shop scheduling problem. The chapter starts with an analysis of the characteristics 

of the so-called mixed shop problem. Based on those properties, a modified GA is proposed to 

minimize the makespan of the mixed shop schedule. In this approach, sample instances used as 

test data are generated under the constraints of shop scheduling problems. A comparison of the 

results based on benchmark data indicate that the modified GA provides an efficient solution for 

the mixed shop scheduling problem. 
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3.1 Definition of mixed –shop scheduling problem and proposed modification to the general 

GA algorithm 

Let 

฀

J  Ji 
1iN

 be a set of N jobs to be scheduled where each job 

฀

Ji  consists of 

฀

ni  

operations. Let 

฀

Oi, j
be the jth operation of

฀

Ji . Let 

฀

M  Mk 
1km

 be a set of m machines and let

ijp  be the processing time of

฀

Oi, j
 on machine MM ji ,  . The set N is split into two subsets: 

OJ NNN  .  The jobs of the set JN have to be processed as in the job-shop; for any job 

Ji NJ  , there is a given machine order  
niikiki MMl ,...,

1
  which determines a sequence of 

operations of that job:  
inii OO .1, ,..., , where operation 

฀

Oi, j
 has to be processed after operation 

1, jiO with j=2,…, in . The jobs of the set ON  have to be processed as in the open-shop; each job 

Oi NJ   has to be processed exactly once on each machine, and the machine order of this job is 

not fixed before scheduling. Given a schedule, we denote by ijst  and ijC  the starting time and 

completion time of operation 

฀

Oi, j
(1≤i≤N,1≤j≤ni), respectively. The objective is to find a 

schedule having minimum completion time (or, makespan), denoted by 

฀

Cmax  max
i1..N

(Ci), where 

฀

Ci max1 jni
(Ci, j ) is the completion time of job 

฀

Ji  [28]. 

An example of mixed-shop scheduling with 3 jobs and 3 machines is shown in table 1 

below. 
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Table 1: 3 jobs by 3 machines scheduling problem 

 

  Sequence of operations 

  1 2 3 

J1 (Job Shop) (1,3) (2,1) (3,2) 

J3 (Job Shop) (2,3) (3,2) (1,3) 

J2 (Open Shop) 
Any order Any order Any order 

(3,1) (1,5) (2,3) 

 

Notation: (m,p) or (machine, processing time). For example, (2, 3) means machine 2 with 

processing time 3. 

The following assumptions apply for the mixed-shop problem: 

- Each machine can only execute one operation at a time and, once started, the operation 

cannot be interrupted; 

- All jobs are released at time t = 0; 

- There is no transportation time between machines. 

Let us give each operation a task ID. Table 2 lists the jobs and operations in each job with 

the corresponding task ID. 

Table 2: Task IDs 

 

  Job Op. 
Task 
ID 

  Job Op. 
Task 
ID 

  Job Op. 
Task 
ID 

1 

1 1 

2 

1 4 

3 

1 7 

2 2 2 5 2 8 

3 3 3 6 3 9 

 

In the mixed shop scheduling problem, there are two kinds of constraints: precedence 

constraints and non-simultaneous constraints.  Precedence constraints (call set ) applied for jobs 
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that belong to the job-shop set. Non-simultaneous constraints – called set   - are for the set of 

pairs of tasks that cannot be performed simultaneously because of sequence requirement, 

belonging to the same job or requiring the same machine. One of the key features of this paper is 

the swapping technique as explained below. The modified G.A. algorithm is presented in figure 

9 below. 



35 
 

 

 

 

Figure 9. Modified GA flow chart 

One of the key features of this paper is the swapping technique as explained in the next sections. 
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3.2 Chromosome representation 

A chromosome of the GA represents a sequence of tasks in which a gene is a task ID.  

 

Chromosome 1 5 3 4 9 8 6 2 7 

Sequence consideration 1 2 3 4 5 6 7 8 9 

 

Figure 10. A sample chromosome 

In this chromosome, the 5th gene has a value of 9; this means that the 5th task (indicated 

in the sequence consideration) is task ID 9, which is operation 3 of job 3.  

3.3 Precedence requirement 

Check the chromosome to see if it satisfies the precedence constraint o. If it does not 

satisfy the constraint, then swap the position to make it satisfy. 

In the example, 𝟇= {(1, 2, 3), (7, 8, 9)} by observation, and there are clear violations between 

task IDs 3 and 2, and task ID 9 and 7. Therefore, the sample chromosome is modified as follows: 

 

Modified chromosome 1 5 2 4 7 8 6 3 9 

Sequence handling 1 2 3 4 5 6 7 8 9 

 

Figure 11. Modified sample chromosome in figure 10 

Based on the task IDs, we have the information on job, processing time and required 

machine as follows: 
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Modified chromosome 1 5 2 4 7 8 6 3 9 

Sequence considering 1 2 3 4 5 6 7 8 9 

Job 1 2 1 2 3 3 2 1 3 

Processing time 3 5 1 1 3 2 3 2 3 

Required machine 1 1 2 3 2 3 2 3 1 

Operation _of job_ 1 of 1 Open 2 of 1 Open 1 of 3 2 of 3 Open 3 of 1 3 of 3 

 

Figure 12. Job, processing time required machine and operation number information 

corresponding to the modified chromosome in figure 11. 

3.4 Objective function and fitness evaluation 

Based on the sequence of operations represented by the chromosome, the objective 

function (makespan) can be calculated through the following procedure. 

Step 1: Operation is considered based on the order in the sequence. Determine the ready 

time for each machine. Check type of operation. 

Step 2:  If operation is open shop type, then its start time is the maximum value of its 

machine ready time and the complete time of its non-simultaneous operations. 

If operation is job shop type, its starting time is the maximum value of its machine ready 

time and the complete time of its precedence operation. 

The complete time of the operation is the sum of start time and processing time. 

Update the ready time of the machine by the completion time. 

Step 3: Steps 1–2 are repeated for the next operation in sequence until the last is 

considered. The makespan is the maximum value of the complete time of the operation in the 

sequence. 
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For fitness evaluation, we apply a simple definition for the fitness, i.e. 

Fitness=1/makespan. 

3.5 Tournament selection 

Tournament selection provides selection pressure by holding a tournament among S 

competitors, with S being the tournament size. The winner of the tournament is the individual 

with the highest fitness of the S tournament competitors. The winner is then inserted into the 

mating pool.  

The mating pool, being comprised of tournament winners, has a higher average fitness 

than the average population fitness. This fitness difference provides the selection pressure, which 

drives the GA to improve the fitness of each succeeding generation.  

Increased selection pressure can be provided by simply increasing the tournament sizes, 

as the winner from a larger tournament will, on average, have a higher fitness than the winner of 

a smaller tournament. 

3.6 Order Crossover (OX) 

For order crossover and inverse mutation, we apply the following steps: 

1. Given two parent chromosomes, two random crossover points are selected from one 

parent, partitioning it into a left, middle and right substring.   

2. Produce the child chromosome by copying the middle substring of the first parent into 

the corresponding positions  

3. Delete the tasks from the 2nd parent which have the same value with the middle 

substring of the first parent. The remaining tasks in the 2nd parent are transferred in sequence 

from left to right into the empty slots of the child’s chromosome.  
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Figure 13. Illustration of OX operation 

3.7 Inverse Mutation 

 Inverse mutation is performed on the child’s chromosome by selecting 2 inverse points; 

then, reverse the task order in between these two points. 

For example, let the selected inverse points in permutation Parent be in positions 3 and 7, 

and then the mutated permutation child is shown as follows. 

Parent   7 9 3 4 5 6 1 2 8 

           

child   7 9 1 4 5 6 3 2 8 

 

Figure 14. Illustration of inverse mutation 
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3.8 Selection of new generations 

For the selection of new generations, we apply the Steady-State Method which consists of 

deleting n worst old members and replacing them with n best new members. n is a parameter to 

be experimented with. 

3.9 Implementation and results 

3.9.1 Optimum result for a 3 jobs x 3 machines mixed-shop 

Table 3: A 3x3 sample mixed shop scheduling problem 

 

Job 

Sequence of operation (Mij, Pij)  

1 2 3 

J1 (Job Shop) (1,3) (2,1) (3,2) 

J3 (Job Shop) (2,3) (3,2) (1,3) 

J2 (Open 

Shop) 

Any order Any order Any order 

(3,1) (1,5) (2,3) 

 

The results are presented in the Gantt chart in figure 15 where Oxy means operation y for 

job x. For example, O32 means Operation 2 for job 3  
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Figure 15.  Gantt chart for optimal schedule 1 of mixed-shop 3 jobs 3 machines 

The makespan is 11, which is equivalent to the optimum result from a Giffler Thompson 

solution.  

3.9.2 Optimum result for a 6 jobs x 6 machines mixed-shop schedule 

3.9.2.1 Benchmark problem FT06 (jobshop)  

Job-shop is one special case of mixed-shop problems. FT06 is a common benchmark 

problem by Fisher and Thompson (1960) that has been tested by many researchers. The details of 

problem FT06 are described in table 4.  
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Table 4: The FT06 scheduling problem 

 

Job 

Sequence of operation (Mij, Pij) 

1 2 3 4 5 6 

J1 (3,1) (1,3) (2,6) (4,7) (6,3) (5,6) 

J2 (2,8) (3,5) (5,10) (6,10) (1,10) (4,4) 

J3 (3,5) (4,4) (6,8) (1,9) (2,1) (5,7) 

J4 (2,5) (1,5) (3,5) (4,3) (5,8) (6,9) 

J5 (3,9) (2,3) (5,5) (6,4) (1,3) (4,1) 

J6 (2,3) (4,3) (6,9) (1,10) (5,4) (3,1) 

 

The optimal solution for the FT06 problem is 55 as obtained from the paper by Klemmt, 

Horn, Weigert, and Wolter [50]. They used exact methods to solve the problem. 

The optimum makespan is 55, and the Gantt chart detailing the assignments of operations to 

machines is shown in figure 16 below. 
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  Job1   Job2   Job3   Job4   Job5   Job6 

 

 

Figure 16. Gantt chart for optimal schedule of FT06 problem 

Now we are going to modify this FT06 problem to make it a mixed shop problem, as 

indicated in table 5 below. 

3.9.2.2 Modified benchmark problem FT6 (jobshop) by assuming job 2 and job 5 to be open-

shop 
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Table 5: The modified FT06 scheduling problem 

 

Job 

Sequence of operation (Mij, Pij)  

1 2 3 4 5 6 

J1(job shop) (3,1) (1,3) (2,6) (4,7) (6,3) (5,6) 

J2 (open shop) 
Any order 

(2,8) 

Any order 

(3,5) 

Any order 

(5,10) 

Any order 

 (6,10) 

Any order 

 (1,10) 

Any order 

 (4,4) 

J3 (job shop) (3,5) (4,4) (6,8) (1,9) (2,1) (5,7) 

J4 (job shop) (2,5) (1,5) (3,5) (4,3) (5,8) (6,9) 

J5 (open shop) 
Any order 

(3,9) 

Any order 

(2,3) 

Any order 

(5,5) 

Any order 

(6,4) 

Any order 

(1,3) 

Any order 

(4,1) 

J6 (job shop) (2,3) (4,3) (6,9) (1,10) (5,4) (3,1) 

 

Applying our task swapping algorithm, we obtain an optimum makespan of 47. The 

Gantt chart indicating the assignments of operations to machine is shown in figure 17 below.  
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  Job1   Job2   Job3   Job4   Job5   Job6 

 

 

Figure 17. Gantt chart for optimal schedule of modified FT06 problem 

To illustrate the effectiveness of the proposal approach, Table 6 summarizes the results 

based on the available bench mark problems.  The bench mark problems with 3 x 3, 6 x 6, 10 x 

10,15 x 15 and 20 x 20 jobs x machines are used [[48],[49]].  Note that not all bench mark 

problems for all three categories of job scheduling, e.g. job shop, open shop, and mixed shop, 

and their “optimum” solutions are available in the literature. For the cases where no optimum 

solution exists, the data is arbitrarily modified so that we can proceed toward solutions for all 

three categories of job shop, open shop and mixed shop.  
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Table 6: Results of proposed GA algorithm 

 

Population 

Size 

Job Shop Open Shop Mixed Shop 

Bench 

Mark? 

Optimum 

result [#] 

Our 

result 

(%) 

Bench 

Mark 

? 

Optimum 

result [#] 

Our 

result 

(%) 

Bench 

Mark 

? 

Optimum 

result [#] 

Our 

result 

(%) 

3 x 3 Yes 11[62] 11 

(0%) 

No NA 11  No NA 11  

6 x 6 Yes 55 [63] 55 

(0%) 

No NA 47 No NA 47 

10 x 10 Yes 930 [63] 960 

(3.2%) 

No NA 739 No NA 848 

15 x 15    Yes 937 [64] 972 

(3.7%) 

   

20 x 20    Yes 1155 

[64] 

1200 

(3.8%) 

   

 

#  Reference where optimum result was obtained 

%  Percentage difference between optimum result and our result 

Looking at table 6, it is clear that our modified GA algorithm provides equivalent results 

with the optimum results if the population size is 6 x 6 or below. For larger populations, i.e. 10 x 

10 and above, our solutions appear to be not as good as the optimum results. Nevertheless, in all 

cases our results are off by no more than 4%. Considering that the optimum results were 

obtained by analytical techniques such as Branch and Bound, and Simulated Annealing which 
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require substantial and complicated formulation as well as sophisticated programming skills, our 

straightforward modification of the GA algorithm provides a relatively easy approach and yields 

similar results. This feature can be considered beneficial for practicing engineers who may lack 

the time or the programming knowledge to write sophisticated programming code for their 

scheduling problems. 

In the case of the 6 x 6 and 10 x 10 mixed shop problems, it is interesting to further 

explore the differences between our results and the ones available in [51]. Figures 18 and 19 are 

plots of the makespan for 10 trials and Figures 20 and 21 are plots of the processing times for 10 

trials. From these figures, it is clear that the modified GA solution yields not only better and 

more steady results, e.g. smaller and steady make span, but also shorter processing times too. 

 

 

 

Figure 18. Comparison between the existing, modified GT-GA in [51] and our GA in makespan 

objective (FT 06) 
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Figure 19. Comparison between the existing, modified GT-GA in [17] and our GA in makespan 

objective (FT10) 

 

 

Figure 20. Comparison between the existing, modified GT-GA in [17] and our GA in processing 

time (FT 06) 



49 
 

 

 

 

Figure 21. Comparison between the existing, modified GT-GA in [17] and our GA in processing 

time (FT 10) 

3.10 Conclusion 

The results (table 6) show that converting each operation for each job into individual task 

ID in combination with the classic Giffler Thompson algorithm in a general G.A. framework 

works very well as demonstrated in the five bench mark examples shown in table 6 above. For 

problem size of 6 x 6 or less, the algorithm matches the optimum solutions available in the 

literature, but for larger problem sizes, the results are off by no more than 4%. While the 

algorithm did not achieve the optimum results, it highlights the benefit of straightforward GA 

modification for practicing engineers who may lack the time or the programming knowledge to 

write sophisticated programming code for their scheduling problems. This reformulation 

approach together with conventional GA has allowed us to tackle the problem of machine 

scheduling for job shop, open shop and mixed shop requirements in an efficient manner 
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(computer time) and scope (type of job scheduling) (comparison results shown in Figures 18 – 

21).  

Although this chapter has focused on shop scheduling constrained by machines only, 

which is a single-resource-constrained shop scheduling problem, in a real manufacturing 

environment, practical SSP often needs many resources such as machine, labor, auxiliary 

resources (namely, maintenance equipment and tooling) each of which has a limitation, 

restriction or regulation that impacts shop performance. Thus, it is a multi-resources-constrained 

shop scheduling problem. Therefore, in the next chapter, multi-resources-constrained scheduling 

problem is studied with Navy ship maintenance scheduling case. The Navy ship maintenance 

scheduling problem was also researched with multi-mode resource constraints and multi-

objective. In addition, in the next chapter, the mix-integer math formulation for the Navy ship 

maintenance scheduling problem is proposed. Then a mixed-integer linear program and 

differential evolution are applied to solve the problems to compare accurate solutions and a 

computation time.  
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CHAPTER 4 

DIFFERENTIAL EVOLUTION FOR THE NAVY SHIP MAINTENANCE 

SCHEDULING PROBLEM 

 

Ships play a very important role in the Navy. Naval ships are designed for combat, 

auxiliary duties, coastal and interdiction patrol, aircraft carriers and research purposes.  Modern 

naval ships can be broken down into three categories: surface warships, submarines, and support 

and auxiliary vessels [2]. Surface warships are designed for warfare on the surface of the water 

and are the mainstay of naval forces. Submarines are watercraft capable of underwater operations 

and are designed to carry out research, rescue, or specific wartime missions. Support and 

auxiliary vessels are designed to support combatant ships and other naval operations such as 

replenishment, transport, repair, harbor, research, minesweepers, patrol, and floating hospital. 

Because the quality of naval ships has a big influence on the power of combat and 

defense of a nation, ship maintenance must be managed and optimized carefully to increase 

availability, safety, reliability to increase the equipment life on ships. For any ship, maintenance 

activities normally must follow a maintenance cycle. A maintenance cycle represents the 

operation and maintenance requirements of a ship and plays an important role in keeping ships in 

squadrons up to date and in smooth operating condition. The activities of the maintenance cycle 

must be in a sequence and are usually specified for each kind of ship for different locations, 

weather, and operating conditions. Different ship types require different types of maintenance 

and different maintenance periods. The locations and availabilities of the shipyards also affect 

the decisions of maintenance scheduling. An efficient maintenance schedule with adequate usage 

of manpower and properties is necessary to maintain the ships at minimum cost. 
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In this chapter, the ship maintenance scheduling problem is adopted from the paper 

“Theory and Methodology of Ship maintenance scheduling by genetic algorithm and constraint-

based reasoning” by Safaai Deris, Sigeru Omatu, Hiroshi Ohta, Lt. Cdr Shaharudin Kutar, 

Pathiah Abd Samat [12]. Deris, et al. state that one of the most important problems in ship 

maintenance scheduling is to ensure a high rate of availability. The availability and readiness of a 

fleet of ships determine the strength of a navy. Ship availability depends on the implementation 

of a Preventive Maintenance System. There is an overall desire to maintain a certain level of ship 

readiness year in and year out. For instance, the Royal Malaysian Navy insists on having 70% of 

its ships available for operations at any time. The goal of Deris’ paper is to maximize ship 

availability while satisfying dockyard limitations. However, in Deris’ paper, the number of 

dockyards is more than required, thus eliminating this constraint from the initial problem. The 

paper worked with two types of ships with different lengths of the maintenance cycles and 

solved for only one period cycle. To be more practical, this thesis will modify the ship 

maintenance cycles and limit the available dockyards. Section 4.1 will provide some concepts 

and a description of the optimization problem description of the ship maintenance activities. The 

Differential Evolution algorithm (DE) in Section 4.2 is used to search for the optimal start time 

of each ship maintenance activity for two case studies to maximize fleet availability. The results 

of numerical simulations will also be provided and analyzed to prove the reliability of the 

proposed algorithm. Section 4.3 will deal with the multi-mode assignment for given ship 

maintenance scheduling to minimize the total maintenance cost and minimize the makespan, 

which is the time to complete all maintenance tasks. The strategy was also developed based on 

DE, and the programming code and model formulation was written in Matlab. Finally, some 

conclusions and discussion are presented in section 4.4. 
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4.1 Problem Statement 

The maintenance cycles utilized in both case studies investigated in this chapter consist 

of tasks that require a dockyard in order to be performed. Two ship classes are considered, class 

A and class B, and the corresponding maintenance cycles are listed in Table 7. These numbers 

are largely based on ship maintenance scheduling data from the Royal Malaysian Navy [12]. The 

time interval unit is one week. In this section, a scheduling horizon of 288 weeks is considered; 

this corresponds to two maintenance cycles for ships of class A and three maintenance cycles for 

ships of class B. A cycle of n weeks consists of weeks when maintenance activities are 

performed (mtn) and also weeks when the ship is available for operations (ops). 

Table 7: Maintenance cycle of class A and class B ships. 

 

Class 

Number of weeks 

mtn1 ops1 mtn2 ops2 mtn3 ops3 mtn4 ops4 mtn5 ops5 mtn6 ops6 

A 24 16 4 16 4 16 8 16 4 16 4 16 

B 16 16 4 16 0 0 8 16 4 16 0 0 

 

Figure 22 shows the model of maintenance scheduling of ship p with start and end times 

of each maintenance activity. As already mentioned, a maintenance cycle represents the 

operation and maintenance requirements of a ship over a fixed period of time. The activities of 

the cycle must follow the specified sequence, which is typically determined based on operational 

requirements, dockyard availability, and running hours of the ship. Performing maintenance 

activities or being available for operations during the ith week implies starting from the first day 

of that week until the last day, e.g. if ship p is available for operations from the 4th until the 8th 
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week, this implies that ship p is available from the first day of the 4th week to the last day of the 

8th week. 

Let 𝑠𝑡(𝑝, 𝑖) be the start time of the ith maintenance activity (1 ≤ i ≤ I, with I being the 

total number of activities during one maintenance cycle) for ship p (1 ≤ p ≤ P, with P being the 

total number ships in the squadron/fleet). Let also 𝑒𝑡(𝑝, 𝑖) be the end time of the ith maintenance 

activity for ship p, 𝑑𝑚(𝑝, 𝑖) be the duration of the ith maintenance activity, and 𝑑𝑜𝑝(𝑝, 𝑖) be the 

duration of the ith operation activity. The formula to express the start time of the ith maintenance 

activity of ship p in terms of the start time of the maintenance cycle (𝑠𝑡𝑐(𝑝) = 𝑠𝑡(𝑝, 1)) is as 

follows: 𝑠𝑡(𝑝, 𝑖) = 𝑠𝑡𝑐(𝑝) +  ∑ {𝑑𝑚(𝑝, 𝑗) + 𝑑𝑜𝑝(𝑝, 𝑗)}𝑖−1𝑗=1 , where 𝑖 ≥ 2                   (1)   

 

 

 

Figure 22. A maintenance cycle with precedence constraints for ship p (adapted from [12]). 

The start time of the maintenance cycle, 𝑠𝑡𝑐(𝑝), must satisfy the following constraint: 𝑡𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ≤ 𝑠𝑡𝑐(𝑝) ≤ 𝑡𝑙𝑎𝑡𝑒𝑠𝑡                                                     (2) 
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where tearliest = 1st week and tlatest =  ∑ {𝑑𝑚(𝑝, 𝑖) + 𝑑𝑜𝑝(𝑝, 𝑖)}.𝐼𝑖=1  Considering the fact that 

the order in which the activities during one maintenance cycle must be performed is fixed, the 

decision variable corresponds to the start time of the first maintenance cycle for ship p, 𝑠𝑡𝑐(𝑝). 

Denoting the availability of ship p at any time t during the scheduling horizon as 𝑆𝐴𝑣(𝑝, 𝑠𝑡𝑐(𝑝), 𝑡), the latter can be computed as: 

𝑆𝐴𝑣(𝑝, 𝑠𝑡𝑐(𝑝), 𝑡) =    {        1   𝑒𝑡(𝑝, 𝑖) < 𝑡 < 𝑠𝑡(𝑝, 𝑖 + 1)0   𝑠𝑡(𝑝, 𝑖) ≤ 𝑡 ≤ 𝑒𝑡(𝑝, 𝑖)         (3) 

The performance metrics correspond to the availability of each squadron and the 

availability of the fleet at time t. The availability of squadron q, 𝑄𝐴𝑣(𝑞, 𝑡), and the availability of 

a fleet consisting of Q squadrons, 𝐹𝐴𝑣(𝑡),  can be computed as:  𝑄𝐴𝑣(𝑞, 𝑡) = ∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡)1≤𝑝≤𝑃𝑝∈𝑞                                                 (4)    

 𝐹𝐴𝑣(𝑡) = ∑ 𝑄𝐴𝑣(𝑞)1≤𝑞≤𝑄                                  (5) 

where: 𝑚𝑡𝑛       Weeks when maintenance activities are performed 𝑜𝑝𝑠    Weeks when the ship is available for operations  

P      Total number of ships in the squadron/fleet  𝑠𝑡(𝑝, 𝑖)               Start time of the ith maintenance activity for ship p 𝑒𝑡(𝑝, 𝑖)       End time of the ith maintenance activity for ship p 𝑑𝑜𝑝(𝑝, 𝑖)       Duration of the ith operation activity for ship p 𝑠𝑡𝑐(𝑝)          Start time of the 1st maintenance activity in each cycle for ship p 𝑆𝐴𝑣(𝑝, 𝑠𝑡𝑐(𝑝), 𝑡) Availability of ship p at any time t during the scheduling horizon 𝑄𝐴𝑣(𝑞, 𝑡)             Availability of squadron q 𝐹𝐴𝑣(𝑡)             Availability of a fleet consisting of Q squadrons 
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4.2 Differential Evolution solution for Ship maintenance scheduling 

4.2.1 Optimization problem formulation for first case study, single-objective optimization 

In the 1st case study, two squadrons (𝑄 = 2) are considered: the 1st squadron comprises 

four class A ships and the 2nd squadron comprises eight class B ships, 𝑝𝑞 = {4, 8}. The goal is to 

find the optimal start time of the first maintenance cycle for each ship in each squadron so that 

the number of weeks, during the scheduling horizon (tf =288 weeks), with fleet availability of at 

least 75% is maximized.  

The first constraint corresponds to the requirement that each squadron has at least 50% of 

its ships available during any of the 288 weeks. In addition to that, a resource constraint is 

imposed, which specifies that a single dockyard with five lines (nl = 5) is the only available 

resource for maintenance activities. Following the formulation used in [12], the decision-variable 

vector corresponds to the vector of start times, stc, of the first maintenance activity (mtn1) for 

each ship in a fleet of two squadrons. The corresponding optimization problem is formulated as 

follows: Maximize 𝐹𝐴𝑣 = ∑ 𝐹𝑙(𝑡)1≤𝑡≤𝑡𝑓       (6) 

where: 

𝐹𝑙(𝑡) = {   1,   if  (∑ (∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡)1≤𝑝≤𝑝𝑞 )1≤𝑞≤𝑄 ) ≥ 0.75 ∙ ∑ 𝑝𝑞1≤𝑞≤𝑄0,  else                                                                                                    

 

subject to: 

∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡) ≥ 0.50 ∙ 𝑝𝑞1≤𝑝≤𝑝𝑞 , ∀ (𝑞 ∈ {1, 2} ∧   𝑡 ∈ {1,2, … , 𝑡𝑓}) 
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( ∑ ∑ (1 − 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡))1≤𝑝≤𝑝𝑞1≤𝑞≤𝑞𝑠 ) ≤ 𝑛𝑙, ∀  𝑡 ∈ {1,2, … , 𝑡𝑓} 

4.2.2 Optimization problem formulation for second case study, Multi-objective optimization 

In the 2nd case study, two squadrons with each squadron consisting of two class A and 

four class B ships: 𝑝𝑞 = {6, 6} are considered. The goal is to find the optimal start times of the 

first maintenance cycle for each ship in each squadron so that the number of weeks, during the 

scheduling horizon, with squadron availability of at least 75% is maximized. Therefore, the 

maintenance scheduling problem becomes a multi-objective optimization problem, where each 

squadron competes for the available resources. The same constraints as the ones utilized in the 1st 

case study are also employed here. In this case though, the corresponding optimization problem 

is formulated as follows: Maximize 𝑄𝐴𝑣1 = ∑ 𝑄𝑙1(𝑡)                                                                                         (7)1≤𝑡≤𝑡𝑓  

Maximize 𝑄𝐴𝑣2 = ∑ 𝑄𝑙2(𝑡)1≤𝑡≤𝑡𝑓  

where: 

𝑄𝑙1(𝑡) = { 1,   if  ∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡)1≤𝑝≤𝑝𝑞(1) ≥ 0.75 ∙ 𝑝𝑞(1)                        0,  else                                                                                                    
𝑄𝑙2(𝑡) = { 1,   if  ∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡)1≤𝑝≤𝑝𝑞(2) ≥ 0.75 ∙ 𝑝𝑞(2)                        0,  else                                                                                                    
subject to: ∑ 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡) ≥ 0.50 ∙ 𝑝𝑞1≤𝑝≤𝑝𝑞 , ∀ (𝑞 ∈ {1, 2} ∧   𝑡 ∈ {1,2, … , 𝑡𝑓}) 
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( ∑ ∑ (1 − 𝑆𝐴𝑣(𝑠𝑡𝑐(𝑝), 𝑡))1≤𝑝≤𝑝𝑞1≤𝑞≤𝑞𝑠 ) ≤ 𝑛𝑙, ∀  𝑡 ∈ {1,2, … , 𝑡𝑓} 

4.2.3 Differential Evolution Algorithm for Single- and Multi-Objective Optimization 

The differential evolution (DE) algorithm is a population-based, stochastic optimization 

algorithm, which was originally developed by Storn and Price [33]. The population members, 

i.e., decision-variable vectors that correspond to solutions of the optimization problem, are 

updated through an iterative scheme that utilizes typical evolutionary operators, e.g., mutation 

and discrete recombination (crossover). Specifically, a randomly selected population member 

serves as a basis vector (𝐬𝐭𝑐,𝑏) and is perturbed by a scaled difference of two other, randomly 

selected population members, 𝐬𝐭𝑐,𝑟1 and 𝐬𝐭𝑐,𝑟2, in order to form a trial vector (𝐬𝐭𝑐,𝑡𝑟𝑙). The 

decision-variable values of the trial vector can either come from the perturbed base vector or 

from a fourth vector, 𝐬𝐭𝑐,𝑡𝑟𝑔, called the target vector. Each population member serves as a target 

vector once in every iteration. In the original version of DE, DE/rand/1/bin the number of 

vectors contributed by the perturbed base vector closely follows a binomial distribution (bin);  

thus, it is considered a form of uniform crossover. Furthermore, a single vector difference, i.e., 

1/bin, is utilized to perturb the base vector and rand denotes random selection of individuals. 

More details on DE and its variants can be found in [31]. The generation of the trial vector is 

performed using the following scheme: 

𝑠𝑡𝑐,𝑡𝑟𝑙,𝑝 = {𝑠𝑡𝑐,𝑏,𝑝 + 𝐹 ∙ (𝑠𝑡𝑐,𝑟2,𝑝 − 𝑠𝑡𝑐,𝑟1,𝑝),  if 𝑟𝑎𝑛𝑑𝑝  ≤ 𝐶𝑟 ˅ 𝑝 = 𝑝𝑟 𝑠𝑡𝑐,𝑡𝑟𝑔,𝑝, 𝑒𝑙𝑠𝑒                                                                                     (8) 

𝑝 ∈ {1, 2, … , ∑ 𝑝𝑞1≤𝑞≤𝑞𝑠 }  

where  st𝑐,𝑏              Basis vector 
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st𝑐,𝑟             Randomly selected population member st𝑐,𝑡𝑟𝑙                           Trial vector  st𝑐,𝑡𝑟𝑔    Target vector 

F     The mutation scaling factor,  

Cr    The crossover rate  

randp     Randomly selected decision variable.  

The latter is utilized is order to ensure that the trial vector differs from the target vector in at least 

one decision variable. The vector indices b, r1, r2, trg are mutually exclusive, i.e., b ≠ r1 ≠ r2 ≠ 

trg. Based on the recommendations provided in [52], F ∈ [0, 2] and Cr ∈ [0, 1]. 
The trial vector is subsequently compared with the target vector by means of feasibility and 

objective function value. In constrained problems, such as the ones considered in this paper, the 

trial vector replaces the target vector in the population if any of the following conditions are true 

[23]: 

1. The trial vector corresponds to a feasible solution while the target vector corresponds 

to an infeasible solution. 

2. Both vectors are infeasible and the trial vector has a smaller total amount of constraint 

violation. 

3. Both vectors are feasible and the trial vector has a better (in this case, larger) 

objective function value than the target vector. 

It needs to be mentioned that the total amount of constraint violation is calculated as the sum of 

the amount of constraint violation of each of the normalized optimization problem constraints 

listed in the previous section. In the 2nd case study, the existence of multiple, conflicting 
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objectives produces a set of optimal solutions, called the Pareto-optimal set, that correspond to 

tradeoffs between those objectives. In this case, condition 3 is replaced by the following: 

3a. If both vectors are feasible and the trial vector dominates the target vector using the 

following criteria for Pareto dominance (both conditions must be satisfied): 

a. The trial vector is no worse than the target vector in all objectives. 

b. The trial vector is better than the target vector in at least one objective.  

The representation of the set of Pareto-optimal solutions in the objective-function space is 

termed the Pareto-optimal front. The concept of Pareto optimality is illustrated in Figure 23. 

 

 

Figure 23. Concept of Pareto optimality. 
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4.2.4 Results and Discussion 

Considering the stochastic nature of the DE algorithm, 20 runs were performed for each 

case study using a randomly initialized population of 120 solution vectors; the initialization of 

each run was based on a different random seed. The values of the parameters F and Cr were set 

equal to 0.5 and 0.1, respectively, and were kept fixed throughout each run. A small value of Cr 

results in trial vectors with decision-variable values mainly obtained from the target vector and,, 

thus, promotes exploitation of the search space region near the current position of the target 

vector. Through experimentation with different values of F, it was determined that the 

algorithmic performance is not affected significantly by the choice of its value; therefore, a value 

of 0.5 was utilized in all runs. The number of iterations per run was set equal to 1,000, which 

corresponds to 120,000 problem evaluations, and was utilized as the termination criterion. The 

same parameters were used for both case studies. 

4.2.4.1 First case study 

For the 1st case study, the optimization problem formulated in Eq. (6) was solved and the 

10 best solutions obtained, all of which are feasible, and are listed in Table 8. The global optimal 

solution that was found is the solution listed as solution no. 5 in Table 8. This solution provides 

the highest number of weeks with fleet availability of at least 75%. Specifically, it provides 88 

weeks with 75% fleet availability (9 ships) and 12 weeks with 83.3% availability (10 ships). The 

results listed in Table 2 also reveal that there exist many local optima for this particular 

optimization problem, nevertheless, the optimal start time of mtn1 of certain ships, e.g., ships # 

3, # 6, and # 7 in the 2nd squadron seems to be the same regardless of the start time values of 

mtn1 of the other ships in the squadron. The maintenance schedule of the two squadrons based 



62 
 

 

on solution no. 5 is shown in Figs. 24 and 25, respectively. The corresponding availability charts 

are plotted in Figs. 26 and 27. 

The fact that the objective function formulation is not biased towards any specific value 

of the fleet availability over 75% allowed the algorithm to find a diverse set of solutions. For 

instance, solution no. 3 provides two weeks with fleet availability of 11 ships. This is due to the 

fact that the maintenance schedule of the 1st squadron based on solution no. 3 provides several 

weeks with squadron availability of 100% (4 ships), as shown in Figure 28.  

Table 8: Computed optimal solutions for the 1st case study – optimal start time of mtn1 for each 

ship. 

 

 

 

                     
    Ship #  
 
 
 
 
Solution 
# 

1st Squadron 2nd Squadron Fleet availability 

1 2 3 4 1 2 3 4 5 6 7 8 

# of weeks 

with 
9 
ships 

with 
10 
ships 

with
11 
ships 

𝐹𝐴𝑣 

1 65 1 16 52 65 69 1 17 49 33 81 53 80 16 0 96 

2 65 1 15 51 65 68 1 17 49 33 81 52 79 16 0 95 

3 85 69 36 21 65 9 1 16 45 32 81 57 83 8 2 93 

4 89 105 41 57 69 77 1 17 29 37 81 53 80 16 0 96 

5 89 1 37 53 65 25 1 21 49 29 81 37 88 12 0 100 

6 89 1 37 53 65 67 1 77 51 29 81 35 82 14 0 96 

7 88 100 36 52 65 9 1 17 49 33 81 45 81 13 0 94 

8 94 80 30 44 65 35 1 17 48 32 81 51 78 16 0 94 

9 121 65 13 29 61 45 1 14 49 29 37 50 85 8 0 93 

10 121 105 13 25 65 65 1 17 49 33 81 29 84 12 0 96 
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Figure 24. Optimal maintenance schedule of the 1st squadron (solution no. 5 in Table 8). 

 

 

Figure 25. Optimal maintenance schedule of the 2nd squadron (solution no. 5 in Table 8). 
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Figure 26. Availability of the 1st squadron using solution no. 5 (from Table 8). 

 

 

Figure 27. Availability of the 2nd squadron using solution no. 5 (from Table 8). 
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Figure 28. Availability of the 1st squadron using solution no. 3. 

4.2.4.2 Second case study 

In the 2nd case study, two squadrons, each consisting of two class A and four class B 

ships, are competing for maintenance resources. This is a typical situation of destroyer squadrons 

consisting of destroyers and frigates of various classes. The multi-objective problem formulation 

presented in Eq. (7) was solved using the DE algorithm. 

 The computed Pareto-optimal front is shown in Figure 29. It can be observed that the 

computed solutions correspond to tradeoffs between objectives, i.e., increasing the 

number of weeks with availability of at least 75% of one squadron results in decreasing 

the number of weeks with availability of at least 75% of the other. It needs to be noted 

that the Pareto-optimal front allows the decision maker to select a maintenance schedule 

that fits their preferences based on the available solutions and fleet operating 

requirements. 
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Figure 29. Pareto-optimal front for number of weeks with squadron availability of at least 75%. 

In this session, variants of the ship maintenance scheduling optimization problem were 

formulated and solved using the differential evolution (DE) algorithm. In the first case study, the 

DE optimizer was able to find a unique global optimal solution and also, being a population-

based algorithm, provide a set of suboptimal, but diverse solutions, which could potentially be 

viable alternatives if the fleet availability requirements changed during the considered scheduling 

horizon. In the second case study, it was shown that the DE algorithm can successfully solve the 

ship maintenance scheduling optimization problem when this is formulated as a multi-objective 

problem, e.g., when multiple squadrons ‘compete’ for the same dockyard resources. In this way, 

it allows the decision maker to consider tradeoffs between the conflicting objectives some 

posteriori and select the solution that best matches their preferences.   

4.3 Differential Evolution for the multi-mode resource-constrained ship scheduling 
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problem 

In section 4.2, Pareto Differential Evolution (PDE) is employed to create new solutions. 

And the results showed the competence of PDE for solving multi-objective optimization 

problems (MOPs) in scheduling field. In this section, the studies are continuously concentrated 

on DE for MOPs, with the multi-mode resource-constraints. In the multi-mode resource-

constrained ship scheduling problem (MRCSSP), the ship maintenance schedule is given. 

However, now each maintenance activity has a set of execution modes with different duration 

time-resource alternatives. Each type of resource has given cost rate and a quantity limitation per 

week. This problem aims at minimizing the total duration or makespan of a maintenance 

schedule and total maintenance cost subject to precedence relations between the maintenance 

activities, and at least 50% of ships must be available per week subject to limited renewable 

resource availabilities. 

4.3.1 Problem statement 

We adopt the maintenance cycle of the four ships belonging to class A from the paper 

“Ship maintenance scheduling by genetic algorithm and constraint-based reasoning” by Safaai 

Deris, Sigeru Omatu, Hiroshi Ohta, Lt. Cdr Shaharudin Kutar, Pathiah Abd Samat [12] as 

follow: 

Table 9: Maintenance cycle for ships in class A 

Class 

Number of weeks 

mtn1 

majo

r 

ops1 

mtn2 

minn

or 

ops2 

mtn3 

mino

r 

ops3 
mtn4 

mid 
ops4 

mtn5 

mino

r 

ops5 

mtn6 

mino

r 

ops6 

A 24 16 4 16 4 16 10 16 4 16 4 16 
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The maintenance schedule is given. For example, figure 30 is a given maintenance 

scheduling for four ships class A in which the start times of the major maintenances of the four 

ships are respectively on week 123th, week 92th, week 1st, and week 32th  

 

 

Figure 30. Given maintenance schedule for four ships class A 
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Figure 31. Total ships class A is available for operation on specific week 

There are three types of maintenance activities: major, mid-range and minor. Each type 

of ship maintenance activity can be executed in various modes. Each mode affects the activity's 

duration, resource requirements and cost. The data is given as follows, where S1, S2, and S3 are 

respectively the three types of resources. Now the problem is expanded with introduction of 3 

modes of operation shown in table below: 
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Table 10: Different modes of maintenance type 

 

Type of  

maintenance 
Mode 1 Mode 2 Mode 3 

Major 

24 weeks using 20weeks using 18 weeks using 

20 of S1 20 of S1 20 of S1 

10 of S2 15 of S2 20 of S2 

5 of S3 10 of S3 15 of S3 

Mid-range 

10 weeks using 8 weeks using 6 weeks using 

10 of S1 10 of  S1 10 of  S1 

5 of  S2 10 of  S2 15 of  S2 

5 of  S3 10 of  S3 15 of  S3 

Minor 

4 weeks using 3 weeks using 2 weeks using 

5 of  S1 5 of  S1 5 of  S1 

2 of  S2 5 of  S2 10 of  S2 

2 of  S3 5 of  S3 10 of  S3 

 

The cost rates for the resources are given as follows: 

Table 11: Rate for resources 

 

Resource type Cost per week 

S1 $1,000 

S2 $1,500 

S3 $2,000 
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The resources have limitations per week: 

Table 12: Resource limitation, per week. 

 

Resource Number 

S1 35 

S2 30 

S3 20 

 

The objective of the MRCSSP is to schedule maintenance activities to minimize the total 

duration or makespan of a maintenance schedule and the total maintenance cost, subject to the 

fixed sequence of maintenance types, the specific quantity of possibly several renewable 

constrained resources, and the operating availability constraints. In next paragraph, a mix-integer 

linear math model for MRCSSP is formulated. Then DE will be analyzed to show its advantages 

to solve the MRCSSP. 

4.3.2 Math formulation for multi-mode resource-constrained ship scheduling problem 

Notation: 

t    Type of maintenance activity 

m    Mode 𝑑𝑡𝑚     Maintenance duration time type t mode m 𝑆1𝑡𝑚, 𝑆2𝑡𝑚, 𝑆2𝑡𝑚   Resources S1, S2, S3 type t mode m 𝐶1, 𝐶2, 𝐶3    Cost for resources S1, S2, S3 
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𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡)     Maintenance duration time of ship p, activity i, type t, 

mode m 𝑑𝑜𝑝(𝑝, 𝑖)    The operation duration time of ship p activity i 𝑠𝑡𝑐(𝑝)     Start time of first maintenance activity of ship p 𝑠𝑡(𝑝, 𝑖)    Start time of maintenance activity i of ship p 𝑆1(𝑝, 𝑤)     Required resources S1 for ship P at week w 𝑆2(𝑝, 𝑤)     Required resources S2 for ship p at week w 𝑆3(𝑝, 𝑤)    Required resources S3 for ship p at week w 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑝)   Required time to complete one cycle of ship p 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛    Required time to complete all ship actives of a squadron 

T     The maximum planning makespan 

M     A large number, say M= 10000 

Variables: 𝑥𝑝𝑖𝑚 =  {1 𝑖𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 𝑜𝑓 𝑠ℎ𝑖𝑝 𝑝 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑚𝑜𝑑𝑒 𝑚0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           

𝑆𝑝𝑖𝑚𝑤 =  {1 𝑖𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 𝑜𝑓 𝑠ℎ𝑖𝑝 𝑝 𝑖𝑠 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑜𝑛 𝑚𝑜𝑑𝑒 𝑚 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑤0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           
 

Objective functions: minimize the makespan (Makespan) and minimize the total 

maintenance cost (Total cost) 

Makespan= max(makespan(p)), Where p = 1 to q 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑝) = ∑ ∑ (𝑥𝑝𝑖𝑚 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡))3
𝑚=1

𝐼
𝑖=1 + 96  

96 is the total operation time per cycle 
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𝑻𝒐𝒕𝒂𝒍 𝒄𝒐𝒔𝒕 =  ∑ (∑ ∑ 𝑥𝑝𝑖𝑚3
𝑚=1 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡) ∗ 𝑆1𝑡𝑚 ∗ 𝐶1𝐼

𝑖=1
𝑞

𝑝=1
+ ∑ ∑ 𝑥𝑝𝑖𝑚3

𝑚=1 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡) ∗ 𝑆2𝑡𝑚 ∗ 𝐶2𝐼
𝑖=1

+ ∑ ∑ 𝑥𝑝𝑖𝑚3
𝑚=1 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡) ∗ 𝑆3𝑡𝑚 ∗ 𝐶3𝐼

𝑖=1 ) 

 

Subject to: ∑ 𝑥𝑝𝑖𝑚3𝑚=1 = 1          (1) ∑ 𝑆𝑝𝑖𝑚𝑤𝑇𝑤=1 = 𝑥𝑝𝑖𝑚 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡)       (2) 𝑠𝑡(𝑝, 𝑖) ≤ 𝑆𝑝𝑖𝑚𝑤 ∗ 𝑤 + 𝑀(1 − 𝑆𝑝𝑖𝑚𝑤)       (3) 𝑒𝑡(𝑝, 𝑖) ≥ 𝑆𝑝𝑖𝑚𝑤 ∗ 𝑤          (4) 𝑠𝑡(𝑝, 1) = 𝑠𝑡𝑐(𝑝)          (5) 𝑠𝑡(𝑝, 𝑖) = 𝑠𝑡𝑐(𝑝) +  ∑ {∑ (𝑥𝑝𝑗𝑚 ∗ 𝑑𝑚𝑎(𝑝, 𝑗, 𝑚, 𝑡))3𝑚=1 + 𝑑𝑜𝑝(𝑝, 𝑗)}𝑖−1𝑗=1 ,   

where 𝑖 ≥ 2           (6) 𝑒𝑡(𝑝, 𝑖) = 𝑠𝑡(𝑝, 𝑖) +  ∑ (𝑥𝑝𝑖𝑚 ∗ 𝑑𝑚𝑎(𝑝, 𝑖, 𝑚, 𝑡))3𝑚=1      (7) ∑ ∑ 𝑆𝑝𝑖𝑚𝑤 ∗ 𝑆1𝑡𝑚3𝑚=1 ≤  35𝑞𝑝=1         (8) ∑ ∑ 𝑆𝑝𝑖𝑚𝑤 ∗ 𝑆2𝑡𝑚3𝑚=1 ≤  30𝑞𝑝=1         (9) ∑ ∑ 𝑆𝑝𝑖𝑚𝑤 ∗ 𝑆3𝑡𝑚3𝑚=1 ≤  20𝑞𝑝=1         (10) ∑ ∑ 𝑆𝑝𝑖𝑚𝑤3𝑚=1 ≤  0.5 ∗ 𝑞𝑞𝑝=1          (11) 

Constraint (1) makes sure that each activity can only be processed in one mode. 
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Constraint (2) shows the relationship between Spimw and xpim. If activity i of ship p is 

assigned mode m, i.e xpim =1, then the total maintenance week of activity i on mode m is equal to 

the duration maintenance time of mode m type t (t is type of maintenance activity i-known). If 

activity i of ship p is not assigned for mode m, then xpim=0, and the total maintenance week of 

activity i on mode m is 0. 

Constraint (3) and Constraint (4) force Spimw =1 if ),(),( ipetwipst   

Constraint (5) forces the start time of the first maintenance activity of ship p to be equal 

to the start time of the maintenance cycle, known 

Constraint (6) and Constraint (7) are used to calculate start time and end time of activities 

in the sequence. 

Constraint (8), (9), (10) are limitations of resource S1, S2, and S3 at week w, where 

w=1,…,T 

Constraint (11) guarantees that each week has at least 50% of all ships available for 

operation. 

Although, the problem is a mixed integer linear problem, the large number of variables 

and constraints make the problem a very difficult problem to solve. For example, let’s consider a 

small-size problem with only 4 ships. Each ship has six maintenance activities. Each type of 

maintenance activity has three different modes. The length of the maintenance cycle is 146 

weeks. The total number of variables for this problem is therefore 10584 variables. Attempting to 

develop a solution using the mixed integer linear model is prohibitive due to the large number of 

variables. Therefore, this attempt was abandoned in favor of a DE solution as explained in the 

section below. 

4.3.3 Differential Evolution Algorithm for the multi-mode resource-constrained ship scheduling 
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problem 

This part will introduce two methods of calculating the fitness value used in the DE 

algorithm to solve MRCSSP. The first method, which is the simplest and most widely-used 

method, is the weighted sum method. The weighted sum method transforms multiple objectives 

into an aggregated objective function by multiplying each objective function by a user supplied 

weight and summing up all weighted objective functions. The multi-objective problem (MOP) 

then becomes a single-objective optimization and the decision for DE to create a new generation 

of feasible solutions is easy: the candidate replaces the parent only when the candidate is better 

than the parent.  

The second method is Pareto Differential Evolution (PDE). PDE will use the concept of 

dominance of pareto selection to create the new population: the candidate replaces the parent if it 

dominates its parent or if both candidate and parent are non-dominated regarding each other. If 

the parent dominates the candidate, the candidate is discarded. This step is repeated until the 

targeted population size is reached.  

4.3.3.1 Weighted Sum method 

In MOPs, different objectives can take different orders of magnitude or be calculated 

with different units. For example, the total cost of maintenance activities may vary between 

80,000 dollars to 100,000 dollars while the makespan may vary from 130 days to 146 days. 

When such objectives are weighted to form a composite objective function, normalization the 

objectives is necessary which scale objectives appropriately so that each objective can be 

assessed equivalently with respect to any other objective.  

The Maintenance scheduling utility, MSU, is introduced as the objective function for 

MRCSSP. Optimal mode assignment means maximizing average availability percentage, 
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minimizing the average makespan, and minimizing total cost. The formulation of MSU is shown 

as: 

     cma UwUwUwMSU 321   

Where: aU  is utility of ship availability, mU  is utility of makespan, cU is utility of cost, 

and jw  is the weight respectively of availability, makespan and cost. 

Although the weighted sum method simple and easy to use, finding the optimal weighted 

value is non-simple. It depends on the relative importance of each objective and a scaling factor 

which we will address later. In this section, we assume that based on customer’s preferences, the 

weight values as follows: 

 

Weight 

Availability 0.45 

Makespan 0.20 

Cost 0.35 

 

Therefore, the objective function is 

     cma UUUMSU 35.02.045.0   

In the conventional utility theory [53], 

𝑈 = 1 − 𝑒−𝑟𝑠1 − 𝑒−𝑟  

 

With: 𝑠 = 𝑥 − 𝑥𝑤𝑜𝑟𝑠𝑒𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑤𝑜𝑟𝑠𝑒 
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Where:  

r is a measure of the risk attitude of the customer 

s is a normalized form of the outcome x 

In this research, we apply the risk neutral approach meaning that r=0. Applying 

L’Hospital’s rule [54], this leads to U = s 

𝑈𝑎 =  𝑠𝑎 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑤𝑜𝑟𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐵𝑒𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑤𝑜𝑟𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

𝑈𝑚 =  𝑠𝑚 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑤𝑜𝑟𝑠𝑡 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝐵𝑒𝑠𝑡 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑤𝑜𝑟𝑠𝑡 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛  

𝑈𝑐 =  𝑠𝑐 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 − 𝑤𝑜𝑟𝑠𝑡 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝐵𝑒𝑠𝑡 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 − 𝑤𝑜𝑟𝑠𝑡 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡  

A determination of best and worst case scenarios reveal that: 

Best Availability = 75% 

Worst Availability = 65.75% 

Best Makespan = 128 weeks 

Worst Makespan = 146 weeks 

Best Total cost =4x $ 1547000=6188000 

Worst Total cost =4x $ 2135000=8540000 

The constraints are: 

351
4

1


i

ikS  

302
4

1


i

ikS  



78 
 

 

 203
4

1


i

ikS  

qp
i

ik *5.0
4

1




 

Where k is the week number k. 

Differential Evolution for MRCSSP: 

A mode vector represents a solution. The length of the vector is equal to the number of 

ships multiplied by the number of maintenance activities for each ship for example, there are 4 

ships and each ship has six maintenance activities, then the length of the mode vector is 4x6=24 

where 4 represents the 4 ships, and 6 represents the 6 maintenances required in a maintenance 

cycle. 

 

 

 

Figure 32. Mode vector for MRCSSP 

The values in locations 1 to 6 of vector represent the mode assignments for ship 1 

The value in locations 7 to 12 of vector represent the mode assignments for ship 2 

The value in locations 13 to 18 of vector represent the mode assignments for ship 3 

The value in locations 19 to 24 of vector represent the mode assignments for ship 4 

 

Pseudo code: 
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While stopping conditions not true do 

 for each target vector, Gix ,  (where G is the generation number, i=1, …, NP), )(, GCx Gi 
do 

Evaluate the fitness values f1(xi), f2(xi), and f3(xi), and check the constraint 

satisfaction. If it is violated the constraints, give the fitness value a penalty 

Randomly select three vectors GrGrGr xxx ,3,2,1 ,, x such that the indices i, r1, r2 and 

r3 are distinct 

Generate scaling vector iV :  GrGrGrGi xxFxV ,3,2,11,   

Check boundary for all iV  to ensure it within the range 

Recombine each target vector Gix ,  with scaling vector iV  to generate a trial 

vector iU using equation:  



 

 
 Otherwisex

CrandifV
U

Gij

rjGij

Gij

,,

1,,

1,,
   

Check whether each variable of the trial vector is within range and make it within 

range 

Calculate the objective function value for trial vector iU . 

Choose better of the two (function value at target and trial point) for next 

generation C(G+1) using equation: 

   


 

 


otherwisex

xfUfifU
x

Gi

GiGiGi

Gi

,

,1,1,

1,
 

end 

end 

Parameter selections: 

The selection of the best f value and Cr value is based on the Golden Section Search 

Method [55] as explain below: 

First, a random Cr value is chosen. Then MSU results for various F value are obtained as 

shown in table below: 
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Table 13: MSU results for fixed Cr equal to 0.9 

 

F 0 0.1 0.05 0.15 0.075 0.125 0.9 

MSU 0.5528 0.6726 0.6648 0.6648 0.6593 0.6593 0.6593 

 

Second, the best result from table 13, i.e F=0.1, is selected and the MSU results are 

obtained for various Cr values as shown in table 14: 

Table 14: MSU results for fixed F equal 0.1 

 

Cr 0.8 0.7 0.9 0.85 0.5 0.1 

MSU 0.6648 0.6593 0.6726 0.6648 0.6648 0.6593 

 

The previous 2-steps process in repeated until no further improvement in MSU is 

observed. In conclusion, the best results for MRCSSP are obtained when Cr=0.9 and F=0.1. 

Constraint-Handling techniques: 

There are a number of efficient methods for handling constraints. In this thesis, three 

methods are tested for their stability and robustness for MRCSSP. The first proposed algorithm 

is a differential evolution (DE) algorithm using death penalty functions for constraint handling. 

The second method is penalty functions. The third algorithm is using Deb’s constraint handling 

method. 

1. Death penalty: 

When a certain solution violates a constraint, it is considered as meeting the death penalty 

and is rejected and generated again. Thus, no further calculations are necessary to estimate the 
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degree of infeasibility of such a solution. Table 15 shows the results of 5 runs using the death 

penalty constraint-handling technique. 

Table 15: Optimal results of 5 runs DE with death penalty handling constraint method 

 

Run MSU 

1st  0.622 

2nd  0.6087 

3rd  0.6141 

4th  0.622 

5th  0.6044 

 

Note: with death penalty, results are not stable or uniform. 

Table 16 shows the best results for scheduling the maintenance of 4 ships. 

Table 16: Best solutions of DE with death penalty handling constraint method 

 

Input: start time of ship major 

maintenances 
Opt 

MSU 

value 

Number of weeks 

in violation 

Average 

Makespan 

Total 

cost Average 

availability  Ship 

1 

Ship 

2 

Ship 

3 

Ship 

4 

(>50% ship 

maintain/week) 
(days) 

(million 

USD) 

119 7 103 69 0.622 0 132.5 7.478 72.4528302 

Mode assignment with same optimal MSU value 

1st mode assignment: 1   3   1   3   3   2   1   3   3   3   3   3   3   3   3   3   2  3   3   3   3   2   3   3 

2nd mode assignment: 3   1   1   3   3   2   1   3   3   3   3   3   3   3   3   3   2  3   3   3   3   2   3   3 
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Figure 33 shows a Gantt chart for the maintenance schedule of the 4 ships. The following 

explanation is provided to help the understanding of figure 12. The mode assignment is indicated 

as 1, 3, 1, 3, 3, 2, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3. this means that the 1st 6 digits, i.e. 

1, 3, 1, 3, 3, 2 are the respective modes fir ship 1’s series of maintenances shown on the figure 12 

for ship 1, i.e. minor, minor, mid-range, minor, minor, and major maintenance. 

 

 

Figure 33. Graph correspond with 1st mode assignment in table 16 

Figure 34 shows the 2rd mode assignments for the same 4 ships. 
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Figure 34. Graph correspond with 2nd mode assignment in table 16 

2. Penalty function 

We handled the volume constraints by adding a penalty proportional to the constraints 

violation to the objective function value. Penalty function is formulated based on the number of 

constraints violated: 

Fitness= MSU - Rj* Penalty 

Where: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑚𝑎𝑥 (0, ∑ 𝑉𝑖𝐶𝑚𝑎𝑥
𝑖=1 ) 

𝑉𝑖 = { 0 𝑖𝑓 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑖 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 𝑠𝑎𝑠𝑡𝑖𝑠𝑓𝑦1 𝑖𝑓 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑖 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 
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Rj = 10, a chosen quantity. 

Table 17 show the optimal results of five DE runs using the penalty function constraint 

handling method. 

Table 17: optimal results of 5 DE runs with penalty function constraint handling method 

 

Run MSU 

1st  0.622 

2nd  0.622 

3rd  0.622 

4th  0.622 

5th  0.622 

  

It is noted that the MSU results are uniform for all 5 runs. Using the data for the first run 

the optimal modes are 3, 1, 1, 3, 3, 2, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3 and 3 for 

respectively a minor, minor, mid-range, minor, minor, and major maintenance. 

3. Deb’s constraint handling method: 

This proposes to use a tournament selection operator, where two solutions are compared 

at a time, and the following criteria are always enforced [23]: 

1. Any feasible solution is preferred to any infeasible solution. 

2. Among two feasible solutions, the one having better objective function value is 

preferred. 

3. Among two infeasible solutions, the one having smaller constraint violation is 

preferred. 

Table 18 shows the MSU results of five DE runs using Deb’s constraint handling method 
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Table 18: optimal results of 5 DE runs with Deb’s constraint handling method 

 

Run MSU 

1st  0.6726 

2nd  0.6648 

3rd  0.6593 

4th  0.6726 

5th  0.6593 

 

From table 18, the first run yields the best MSU result. Table 19 shows the optimal 

conditions for this method. 

Table 19: Best result of DE with Deb’s constraint handling method 

 

Input: start time of ship 

major maintenances 
Opt 

MSU 

value 

Number of 

weeks in 

violation 

Average 

Makespan 

Total 

cost Average 

availability  

Ship 

1 

Ship 

2 

Ship 

3 

Ship 

4 

(>50% ship 

maintain/week) 
(days) 

(million 

USD) 

119 7 103 69 0.6726 0 130 7.78 73. 8461 

Mode assignment with same optimal MSU value 

3   3   3   3   3   2   2   3   3   3   3   3   3   3   3   3   2   3   3   3    3    2    3     3 
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Figure 35. Graph correspond with the mode assignment in table 19 

Base on the results above, we can conclude that the Deb’s constraint handling method is 

more effective and more stable than the other methods, e.g. death penalty and penalty function 

methods.  

4.3.3.2 PDE for Multi objective optimization 

Although the weighted sum method applied in DE is very simple and easy to use, there 

are some disadvantages that led us to consider other methods. The first disadvantage is the 

difficulties in setting the weighted vectors to obtain a Pareto-optimal solution in a desired region 

in the objective space. Different weighted vectors need not necessarily lead to different Pareto-

optimal solutions. If a single –objective optimization algorithm cannot find all optimal solution 

for a weighted vector, some Pareto-optimal solutions cannot be found. This part, PDE will be 

applied to solve the MRCSSP. PDE use the concept of dominance in its search. Unlike the 
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weighted sum method where the optimal solution is unique, the solutions of MOPS by PDE is a 

set solution for which any improvement in one objective results in the worsening of at least one 

other objective. 

Objective functions: 

Objective 1: Maximize the average availability of n ships. This is equivalent to 

minimizing the negative of the average availability of the n ships. 

𝑂𝐵𝐽1 = − ∑ 𝑎𝑣𝑎𝑖𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠ℎ𝑖𝑝 𝑖𝑛𝑖=1𝑛 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒  

 

Objective 2: Minimize total cost of the n ships. 

𝑂𝐵𝐽2 = (∑(𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑠ℎ𝑖𝑝 𝑖)𝑛
𝑖=1 ) 

Objective 3: Minimize the average makspan of the n ships. 

𝑂𝐵𝐽3 = ∑ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑠ℎ𝑖𝑝 𝑖𝑛𝑖=1 𝑞  

Constraints: 

∑ 𝑆1𝑖,𝑡 ≤ 35𝑛
𝑖=1  

∑ 𝑆2𝑖,𝑡 ≤ 30𝑛
𝑖=1  

∑ 𝑆3𝑖,𝑡 ≤ 20𝑛
𝑖=1  

qP
i

ik *5.0
4

1




 

Where: 
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 𝑆1𝑖,𝑡 = consumption of resource 1 by ship i in week t 𝑆2𝑖,𝑡 = consumption of resource 2 by ship i in week t 𝑆3𝑖,𝑡 = consumption of resource 3 by ship i in week t 

q is the total number of ships 

t is week and t run from 1st  to 146th  week 

Parero – Optimality: 

1. Definitions 

- The search space or design space is the set of all possible combinations of the design 

variables. 

- The Pareto optimal solutions achieve a tradeoff between objectives. They are solutions 

for which any improvement in one objective result in the worsening of at least one other 

objective. 

- Pareto frontier: a plot of the entire Pareto set in the design objective space (with design 

objective plotted along each axis) gives a Pareto frontier. 

- A dominated design point, is the one for which there exists at least one feasible design 

point that is better than it in all design objectives. 

- Non-dominated point is the one where there does not exist any other feasible design 

point better than it. Pareto optimal points are non-dominated and hence are also known as non-

dominated points. 

2. Procedure for finding a non- dominated set, i.e. Pareto optimal points in this 

thesis. 

The flow diagram shown below illustrates the procedure for finding the Pareto optimal 

design point for a given multi-objective scheduling problem. 
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Figure 36. Non-dominated set or Pareto-optimal set P’ flow chart 

The notations used in this flow diagram are: 

P’=set of non-dominated points 

P= set of all design points. 

i= a solution counter, which is essentially a distinct solution. 

j= a solution counter different from i 

N= total number of solutions. 

 i=i+1 

i <=N 

j = j+1, 𝑗 ∈ 𝑃,  𝑗 ≠ 𝑖 

Counter i=1 

Stop, P’ 

Yes 

No 

Set P, 𝑃′ = {∅} 

Solution 𝑗 ∈ 𝑃,  𝑗 ≠ 𝑖 

j <=N? 

Yes 

No 

j dominates i? 

No 

Yes 
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Solution j dominates solution I if three parameters, i.e. total cost, average makespan, and 

availability of solution j are superior to the corresponding parameters of solution i, or solution j 

is no worse than solution I in all objectives and solution j is strictly better than solution I in at 

least one objective. 

To illustrate the above procedure, consider the following example. Table 20 lists 11 

solutions for the problem previously discussed in section 4.3.1  

Table 20: Solution set for Pareto frontier determination 

 

Solution 
Total cost 

(USD) 

Average makespan 

(weeks) 

Negative average percentage 

availability (%) 

1 7029500 136.25 -0.704587156 

2 7172000 136 -0.705882353 

3 7100500 135.25 -0.709796673 

4 7273500 135.25 -0.709796673 

5 7264500 136.25 -0.704587156 

6 7119000 136 -0.705882353 

7 7144500 136.75 -0.702010969 

8 7304000 134.5 -0.713754647 

9 7386500 134.25 -0.715083799 

10 7258000 134.5 -0.713754647 

11 7290000 134 -0.71641791 

 

The recurring procedure for each initial solution as indicated in the major loop of the 

flow diagram in figure 36 works as follows: 



91 
 

 

Step 1: Begin with first solution, i.e.  i=1 and P’=0 

Step 2: Compare all remaining solutions for domination, i.e. j=2 to 11 with ith solution. If 

none of these solutions dominate solution i then solution i become a member of set P’. If there is 

a solution j that dominates solution I then skip to the end of the procedure and restart it with 

another initial solution and repeat steps 1 and 2 above.  

For example, when solution 1 is the reference solution, then none of the other solutions, 

i.e. j=2, 3 …, 11, dominate solution 1. Consequently, P’= {1} meaning the solution 1 becomes a 

member of P’, and solution 1 is a member of the Pareto optimal frontier. The result of the above 

procedure is shown as table 21. 

Table 21: Results of Pareto Optimal Point Procedure 

 

Iteration 
Reference 

solution i 

None of the other solution 

dominate reference solution 
P’ 

1 1 Yes {1} 

2 2 No {1} 

3 3 Yes {1, 3} 

4 4 No {1, 3} 

5 5 No {1, 3} 

6 6 No {1, 3} 

7 7 No {1, 3} 

8 8 No {1, 3} 

9 9 No {1, 3} 

10 10 Yes {1, 3, 10} 

11 11 Yes {1, 3, 10, 11} 
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From the above procedure, the 4 design points that belong to the Pareto frontier as 

solutions. 

Further experiments were run to investigate the impact of, first the population size, 

second, the scaling factor F, third, the cross-over probability Cr, and fourth the stability of the 

above procedure. The results of these experiments are shown respectively in Figures 37 – 40. 

 

 

Figure 37. Impact of different population size 
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Figure 38. Impact of different scaling factor for constant crossover probability Cr=0.9 

 

Figure 39. Impact of different crossover probability for constant scaling factor, F=0.2 
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Figure 40. Stability of Pareto frontier procedure with population size 120, Cr=0.9, F=0.2 
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Figure 41. Include all 300 design points with those belonging to the Pareto frontier indicated by 

the black diamond symbols 

Table 22 shows a list of the 23 optimal design points. 

Table 22: List of the 23 optimal design points 
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Assigned Mode 
Total 
cost 

Make
span 

 Avg % 
availabi
lity 

1 3 1 3 3 2 1 3 3 3 3 3 3 3 3 3 2 3 3 3 1 1 3 3 
7276
000 134 

71.642
% 

3 3 1 1 3 1 1 3 3 3 1 3 3 3 3 3 2 3 3 3 3 1 3 3 
7106
000 135 

71.111
% 

1 3 1 1 3 2 1 3 3 3 3 2 3 3 3 3 2 3 3 3 3 1 3 3 
7263
500 

134.2
5 

71.508
% 

3 3 1 1 3 1 1 3 3 3 3 3 3 3 3 3 2 3 3 3 3 1 3 3 
7138
000 134.5 

71.375
% 

3 1 1 3 3 1 1 3 3 3 3 3 3 3 3 3 2 3 3 3 2 1 3 3 
7125
500 

134.7
5 

71.243
% 

1 3 1 2 3 2 1 3 3 3 3 3 3 3 3 3 2 3 3 3 3 1 3 3 
7295
500 

133.7
5 

71.776
% 

3 3 1 1 3 1 1 3 3 3 1 3 3 3 3 3 2 2 3 3 3 1 3 3 
7093
500 

135.2
5 

70.980
% 

3 3 1 1 3 1 1 3 3 1 3 3 3 3 3 3 2 3 3 3 3 1 3 2 
7025
500 

135.7
5 

70.718
% 

3 1 1 3 3 2 1 3 3 3 3 3 3 3 3 3 2 3 3 3 3 1 3 3 
7308
000 133.5 

71.910
% 

3 1 1 3 3 2 1 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 
7465
500 

132.7
5 

72.316
% 

3 1 1 2 1 1 1 3 3 1 3 3 3 3 3 3 2 3 3 3 3 1 3 3 
6993
500 

136.2
5 

70.459
% 

3 1 1 3 3 1 1 3 3 1 3 2 3 3 3 3 2 3 3 3 3 1 3 2 
7013
000 136 

70.588
% 

2 3 1 2 2 1 1 3 3 1 2 3 3 3 3 3 2 1 1 3 3 1 2 3 
6875
500 

137.7
5 

69.691
% 

1 3 1 3 3 2 1 3 3 3 3 3 3 3 3 3 2 1 3 3 3 2 3 3 
7446
000 133 

72.180
% 

2 3 1 1 3 1 1 3 3 1 3 3 3 3 3 3 2 3 1 3 3 1 3 3 
6925
500 

136.7
5 

70.201
% 

1 1 1 1 3 1 1 3 3 1 2 3 3 3 2 2 2 3 1 3 3 1 1 3 
6804
500 

138.7
5 

69.189
% 

3 1 1 1 3 1 1 3 3 1 3 3 3 3 3 3 2 2 1 3 3 1 3 3 
6893
500 

137.2
5 

69.945
% 

1 1 1 2 1 1 1 3 1 2 2 2 2 3 2 1 2 2 1 3 2 1 1 1 
6743
500 

140.7
5 

68.206
% 

3 1 1 1 2 1 1 1 2 1 2 3 3 3 3 3 2 1 1 2 2 1 3 3 
6779
500 

139.2
5 

68.941
% 

1 1 1 1 3 1 1 2 2 3 3 3 3 3 3 3 1 2 3 3 2 1 1 3 
6822
000 138 

69.565
% 

3 3 1 2 2 1 1 3 3 1 2 3 3 3 3 3 2 1 1 3 3 1 2 3 
6888
000 137.5 

69.818
% 

3 3 1 1 3 1 1 3 3 1 3 3 3 3 3 3 2 3 1 3 3 1 3 3 
6938
000 136.5 

70.330
% 

3 3 1 1 3 1 1 3 3 1 3 3 3 3 3 3 2 3 3 3 3 1 3 3 
7038
000 135.5 

70.849
% 
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4.4 Conclusion and discussion 

In this chapter, some concepts of ship operation and maintenance activities are 

introduced, and their problem descriptions and model formulations are provided for optimizing 

the start times of each maintenance activity. A DE algorithm was developed to maximize the 

ship availability for two case studies, one involving single-objective optimization and the other 

involving multi-objective optimization. Besides ship availability, the makespan and total cost of 

maintenance activities are very important. Therefore, the chapter introduced a new problem for 

maintenance scheduling with mode assignment and resources constraints. The goal of this 

problem is to minimize the makespan and total maintenance cost. Over conventional 

mathematical methods for numerical simulation the results in Matlab proved superior to those of 

the DE algorithms in solving the complex scheduling problem. 

  



98 
 

 

CHAPTER 5 

SUMMARY AND DIRECTION FOR FUTURE RESEARCH 

Task sequencing and scheduling in manufacturing and service industries is one of the 

most critical activities to preserve the well-being and even survival of the organization in 

question. An effective scheme for task sequencing and scheduling means project time and cost 

under control and promises to the customer kept. This dissertation is an attempt to demonstrate 

the viability of the Genetic Algorithm (GA) and its related solution known as Differential 

Evolution (DE) to providing the best practical solutions to some of the most intractable 

scheduling problems in the industrial world. Both GA and DE are optimization algorithms 

inspired by natural phenomena and generally belong to the general class of direct search 

methods. However, they do not require the differentiability of problem functions and rely solely 

on stochastic idea and random numbers of search for the optimum design point or set of design 

points known as the Pareto frontier. 

In this dissertation, there are two major studies being undertaken: mixed shop scheduling, 

and ship maintenance under constrained conditions. 

5.1 Mixed shop scheduling 

In this research, we studied the scheduling environment of job-shop (jobs with fixed 

technological routes) and open shop (jobs have an arbitrary machine order). In real-life, shop 

scheduling problems are more complicated than "pure" shop problems, i.e. job-shop, open shop 

and flow shop. A practical problem may be a mixture of different pure problems and is usually 

much more difficult. The research proposed a modified GA method to deal easily with this 

complex shop scheduling problem.  With a new way of creating chromosomes and the method to 
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calculate the objective function, the proposed algorithm can handle the constraints effectively. 

Solutions are always in feasible regions. In addition, the proposed method is also very flexible 

when it can apply to both pure shop problems, such as pure open-shop and pure job-shop, and 

combined shop problems. The effectiveness of the proposed algorithm is tested in various 

benchmark problems, both in the categories of pure problems and mixed problems. The 

computation results showed that the proposed method obtains the optimal solutions for small size 

problems and demonstrates faster computed processing time, more robust than the compared 

methods.  The near optimal solutions for bigger size benchmark problems proved that it is also 

practicable for a large number of jobs and machines problems. Therefore, it can be a viable 

alternative method to solve shop scheduling problems. 

5.2 Ship maintenance scheduling 

The second major part of this thesis focuses on ship maintenance scheduling problems 

with a Differential Evolution algorithm application. In the first two case studies, both single 

objective and multi-objectives optimization for scheduling problems in the presence of constraint 

requirements are analyzed with the DE algorithm. The goal is to find the optimal start time of the 

first maintenance cycle for each ship so that the number of weeks over the scheduling horizon, 

with fleet availability of at least 75% is maximized. In the first case study, the unique global 

optimal solution was found by the DE optimizer, and a set of suboptimal results were provided. 

In the second case study, when the ship maintenance scheduling optimization problem is 

formulated as a multi-objective problem, the DE algorithm can successfully solve it. The DE 

optimizer for multi objectives optimization problems allows the decision maker to consider 

tradeoffs between the conflicting objectives, then decide on the solution that best matches their 

preferences. The computation time of both case studies is very reasonable. 
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The second part also extended the ship maintenance scheduling problems to multi-mode 

resource-constrained ship scheduling problems (MRCSSP) by considering different execution 

modes of ship maintenance activities under the constraints of resources and ship availability per 

week requirements. The goal of the problem is to select the execution modes of ship maintenance 

activities to minimize the total duration or makespan of a maintenance schedule and total 

maintenance cost. A mix integer linear mathematic model for MRCSSP was developed but was 

not carried out to its end results due to the complexity of the model. The multi-objective 

optimization for MRCSSP were solved with two different methods in combination with the DE 

algorithm. The first method, the weighted sum method, transforms multiple objectives into an 

aggregated objective function by introducing the summation of maintenance scheduling utilities, 

MSUs as the objective function for MRCSSP, then applied DE to solve the problem. This 

method relies on the user supplied weights for each objective function to define their important 

level. The second method is the Pareto Differential Evolution (PDE) which applied Pareto 

selection to create the new population for DE and use the concept of dominance and non-

dominance in its search and to define the Pareto optimal solution set. To obtain suitable 

parameter values (i.e. mutation and crossover probability) for the proposed algorithm, a testing 

process was implemented with the Golden key method. DE was also tested with different size 

initial populations and with three different methods for the DE to handle constraints, notably 

death penalty, penalty function and Deb’s constraint handling method to solve the constraint 

global optimization problem. The results from computational experiments prove the applicability 

of the proposed method to the scheduling of a Navy maintenance activities. They also show that 

the method can be used to schedule effectively for larger projects. 
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5.3 Direction for Future Research 

Although the research shows the advantages of evolution algorithms, i.e. GA and DE for 

scheduling problems, its results point to the following research possibilities to increase its 

robustness and to expand their capabilities: 

For the mixed-shop scheduling problem: The thesis considers the mixed shop scheduling 

which is a combination of pure shop scheduling types, i.e. open shop and job shop. To increase 

the complexity of the mixed shop scheduling problem, there are several types of shop scheduling 

problems that can be combined, such as flow shop, dynamic shop, and flexible shop scheduling. 

The inclusion of the scheduling of personnel and the limited time availability for particular 

machines are also areas for future research. 

For the maintenance scheduling problem: This research only considers one type of 

resource which is renewable resources, i.e. dockyard and human resources. Future research can 

include other types of resources, including non-renewable resource and/or partially renewable 

resource. In this thesis, a maintenance activity, once started, must be implemented to completion. 

Considering different types of maintenance activities that can be split depending on some types 

of cost penalties may be a subject for future research. 

For GA and DE: Testing and analyzing different methods for choosing suitable 

parameters is necessary. Constraint handling methods is needed to increase the reliability and 

robustness for the algorithms. Developing the techniques for the traditional method for handling 

big size problems with the proposed math formulation model may be investigated. Comparing 

the results with a more traditional method is a more effective way to evaluate the performance of 

the proposed heuristics. 
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