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ABSTRACT 

DEVELOPMENT OF AN ANALYSIS AND DESIGN OPTIMIZATION FRAMEWORK 

FOR MARINE PROPELLERS 

 

Ashish C. Tamhane 

Old Dominion University, 2017 

Director: Dr. Miltiadis Kotinis 

 

In this thesis, a framework for the analysis and design optimization of ship propellers is developed. 

This framework can be utilized as an efficient synthesis tool in order to determine the main 

geometric characteristics of the propeller but also to provide the designer with the capability to 

optimize the shape of the blade sections based on their specific criteria. 

 

A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional 

flow effects has been developed. The prediction of the correction factors is achieved using 

Artificial Neural Networks and Support Vector Regression. This approach results in increased 

approximation accuracy compared to existing methods and allows for extrapolation of the 

correction factor values. The effect of viscosity is implemented in the framework via the coupling 

of the lifting line method with the open-source RANSE solver OpenFOAM for the calculation of 

lift, drag and pressure distribution on the blade sections using a transition κ-ω SST turbulence 

model. 

 

Case studies of benchmark high-speed propulsors are utilized in order to validate the proposed 

framework for propeller operation in open-water conditions but also in a ship’s wake.



 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright, 2017, by Ashish C. Tamhane, All Rights Reserved. 
 

 

 

 

 

 

 

 

  



 

iv 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank all the people who have contributed to this endeavor. First of all, I would like 

to extend my gratitude to my advisor, Dr. Miltiadis Kotinis, without whose guidance and support 

this dissertation was simply not possible. I would also like to thank my committee members, Dr. 

Sushil Chaturvedi, Dr. Resit Unal, and Dr. Ayodeji Demuren for their time in serving on my 

dissertation committee. A special mention goes to Dr. Sebastian Bawab, our Department Chair, 

and Ms. Diane Mitchell. 

 

On a personal note, I would like to thank my parents and my wife, Neha Niphadkar, for their 

support and encouragement throughout this endeavor.  I would like to take this opportunity to 

thank all my friends who have made my stay at ODU such a memorable time of my life.

 

 

  



 

v 

 

 

 

TABLE OF CONTENTS 

  Page 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES ......................................................................................................................... ix 

 

Chapter 

1. INTRODUCTION .......................................................................................................................1 

1.1 Literature Survey ................................................................................................................2 

1.2 Summary and Objectives of the Proposed Research ..........................................................6 

 

2. A HYBRID LIFTING-LINE LIFTING-SURFACE MODEL FOR A MODERATELY 

LOADED PROPELLER .............................................................................................................9 

2.1 Introduction ........................................................................................................................9 

2.2 Calculation of the Induced Velocities ..............................................................................10 

2.3 Calculation of the Propeller Thrust and Torque ...............................................................17 

 

3. LIFTING SURFACE CORRECTION FACTORS ...................................................................22 

3.1 Introduction ......................................................................................................................22 

3.2 Deriving Surrogate Models for the Lifting Surface Correction Factors ...........................27 

 

4. PERFORMANCE EVALUATION OF BLADE SECTIONS USING CFD ............................42 

4.1 Introduction ......................................................................................................................42 

4.2 RANS Equations and Turbulence Modeling ....................................................................43 

4.3 Discretization of the Flow Domain for 2-D Blade Sections .............................................48 

4.4 Description of the CFD Simulation Settings ....................................................................50 

4.5 Grid Convergence Study ..................................................................................................52 

4.6 Experimental Validation ...................................................................................................54 

4.6.1 NACA 2410 Profile ............................................................................................54 

4.6.2 G1Profile .............................................................................................................55 

4.6.3 E817 Profile ........................................................................................................57 

4.7 Evaluation of Baseline Propeller Blade Sections .............................................................59 

 

5. DESIGN OF BLADE SECTIONS WITH GOOD CAVITATION PERFORMANCE AND 

LOW DRAG ..............................................................................................................................63 

5.1 Introduction ......................................................................................................................63 

5.2 Parameterization of the Blade Section Shape ...................................................................65 

5.3 Formulation of the Multi-Objective Shape Optimization Problem ..................................66 

5.4 Surrogate Models of Objective and Constraint Functions ...............................................67 

5.5 Description of the Multi-Objective Optimization Process ...............................................68 

5.6 Multi-Objective Shape Optimization Results ...................................................................71 

5.7 Comparison between the Pareto-Optimal and the E817 Profiles .....................................73 

 

6. VALIDATION OF PROPELLER ANALYSIS AND DESIGN FRAMEWORK ....................76 

6.1 Validation in Open-Water Tests .......................................................................................76 

6.1.1 DTMB 4119 Propeller ........................................................................................76 

6.1.2 DTNSRDC 4381 and 4382 Propellers ................................................................78 



 

vi 
 

 

 

Page 

 

6.2 KCS Propeller ...................................................................................................................80 

6.2.1 Open-Water Performance Characteristics with Original Blade Sections ...........81 

6.2.2 Open-Water Performance Characteristics with New Blade Sections .................82 

6.2.3 Operation at the Ship Self-Propulsion Point .......................................................82 

 

7. CONCLUSIONS........................................................................................................................85 

 

REFERENCES ..............................................................................................................................87 

 

APPENDICES ...............................................................................................................................95 

 

A. SCRIPT FOR THE LIFTING LINE METHOD .......................................................................96 

B. PROPELLER PARAMETERS INPUT ..................................................................................100 

C. AIRFOIL PARAMETERS INPUT .........................................................................................102 

D. FUNCTIONS FOR CALCULATING Kc ...............................................................................104 

E. FUNCTIONS FOR CALCULATING Kα ...............................................................................107 

F. FUNCTIONS FOR CALCULATING Kt ................................................................................110 

G. FUNCTION FOR CALCULATION OF SECTION CD .........................................................112 

H. SCRIPT FOR GENERATING OPENFOAM GRID ..............................................................113 

I. COORDINATES OF THE NEW PROPELLER BLADE SECTION .....................................121 

 

VITA ............................................................................................................................................126 
 

   

  



 

vii 
 

 

 

LIST OF FIGURES 

Figure  Page 

2.1: Velocities and Forces on Propeller Blade Section. .................................................................15 

2.2: Schematic Representation of the Inflow Angles. ....................................................................16 

3.1 Definition of Skew Angle. .......................................................................................................24 

3.2 Feedforward Artificial Neural Network with Two Hidden Layers. ........................................28 

3.3 Four-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 2.0 .............................................36 

3.4 Four-Bladed Propeller with Moderate Skew at x = 0.9 and π∙λ = 2.0. .....................................36 

3.5 Four-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 0.8. ............................................37 

3.6 Five-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 2.0. .............................................38 

3.7 Five-Bladed Propeller with Moderate Skew at x = 0.9 and π∙λ = 0.4. .....................................38 

3.8 Five-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 0.8. ............................................39 

3.9 Six-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 0.4. ...............................................39 

3.10 Six-Bladed Propeller with Moderate Skew, x = 0.9, and π∙λ = 0.4. .......................................40 

3.11 Six-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 1.2. ............................................40 

4.1 Fluid Flow Domain Used in CFD Simulations. .......................................................................49 

4.2 Grid with the Blade Section at 0o Angle of Attack. .................................................................49 

4.3 Grid with the Blade Section at -4o Angle of Attack.................................................................50 

4.4 Mesh Details in the Vicinity of the Blade Section. ..................................................................50 

4.5 The G1 Profile..........................................................................................................................55 

4.6 Convergence of CL with the Transition κ-ω SST Model for the G1 Profile. ...........................56 

4.7 Convergence of CD with the Transition κ-ω SST Model for the G1 Profile. ..........................56 

4.8 Pressure Coefficient Distribution on the Suction Side of E817 at 0°. .....................................58 



 

viii 
 

 

 

Figure  Page 

4.9 Pressure Coefficient Distribution on the Suction Side of E817 at 3°. .....................................59 

4.10 E817 Profile. ..........................................................................................................................60 

4.11 YS920 Profile.........................................................................................................................61 

4.12: Cavitation-Free Bucket Diagram of E817 Profile. ...............................................................62 

4.13 Cavitation-Free Bucket Diagram of YS920 Profile. ..............................................................62 

5.1 Schematic Illustration of Blade Section Bucket Diagram. ......................................................65 

5.2 Distribution of Control Points of Cubic B-Splines. .................................................................66 

5.3 Flowchart of Multi-Objective Shape Optimization Process. ...................................................70 

5.4 Computed Pareto-Optimal Front..............................................................................................72 

5.5 Pareto-Optimal Blade Section Profile. .....................................................................................72 

5.6 Bucket Diagram of Pareto-Optimal Profile. ............................................................................73 

5.7 Comparison between the Selected Pareto-Optimal and the E817 Profile................................74 

5.8 Bucket Diagrams of the Selected Pareto-Optimal and E817 Profiles......................................75 

6.1 Plot of KT vs. J for the KCS Propeller. ....................................................................................81 

6.2 Plot of KQ vs. J for the KCS Propeller. ....................................................................................82 

6.3 Performance Curves of the KCS Propeller with New Blade Section Profile. .........................83 

 

  



 

ix 

 

 

 

LIST OF TABLES 

Table  Page 

3.1 Values of the Coefficient C(x) at Different Radial Stations. ...................................................25 

3.2. Comparison of Kc Surrogate Models for Zero Skew. .............................................................31 

3.3. Comparison of Kc Surrogate Models for Moderate Skew. .....................................................31 

3.4. Comparison of Kc Surrogate Models for High Skew. .............................................................32 

3.5. Comparison of Kα Surrogate Models for Zero Skew. .............................................................32 

3.6. Comparison of Kα Surrogate Models for Moderate Skew. .....................................................33 

3.7. Comparison of Kα Surrogate Models for High Skew. ............................................................33 

3.8. Comparison of Kt Surrogate Models for Zero Skew. ..............................................................34 

3.9. Comparison of Kt Surrogate Models for Moderate Skew. ......................................................34 

3.10. Comparison of Kt Surrogate Models for High Skew. ...........................................................35 

4.1: Number of Cells and Expansion Ratio in Each Segment of the Grid. ....................................49 

4.2 Grid Convergence Index Calculation Results. .........................................................................53 

4.3 CFD Results and Experimental Data for the NACA 2410 Profile. .........................................54 

4.4 CFD Results and Experimental Data for the G1 Profile. .........................................................55 

4.5 Computed and Measured [59] Data for the E817 Hydrofoil Profile. ......................................58 

4.6 Analysis of Baseline Blade Sections........................................................................................61 

5.1 Ordinate Range of each Control Point of the Cubic B-Splines. ..............................................67 

5.2 Actual vs. Predicted Values of Objectives and Constraints. ....................................................71 

5.3 Geometric Characteristics of Selected Pareto-Optimal and E817 Profiles. .............................74 

5.4 Hydrodynamic Analysis of Selected Pareto-Optimal and E817 Profiles. ...............................74 

6.1 Geometric Characteristics of the DTMB 4119 Propeller. .......................................................76 



 

x 

 

 

 

Table  Page 

6.2 Computed and Experimental Data for the DTMB 4119 Propeller. .........................................78 

6.3 Geometric Characteristics of the DTNSRDC 4381 Propeller. ................................................78 

6.4 Geometric Characteristics of the DTNSRDC 4382 Propeller. ................................................79 

6.5 Computed and Experimental Data for the DTNSRDC 4381 Propeller. ..................................80 

6.6 Computed and Experimental Data for the DTNSRDC 4382 Propeller. ..................................80 

6.7 Geometric Characteristics of the KCS-SRI Propeller. .............................................................81 

6.8 KCS Propeller at Ship Self-Propulsion Point. .........................................................................84 

 

  

 



 

1 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

Ship propellers operate in the wake of the ship hull and, thus, in a flow field that is spatially non-

uniform and turbulent. The main design goal for a wake-adapted propeller is the maximization of 

its efficiency, which has been the subject of many theoretical and experimental investigations in 

the past. In recent years, increased global transportation demands have necessitated the design of 

high-speed cargo ships with speeds in excess of 25 knots, which typically poses an additional 

challenge to the propeller designer: Suppress or delay cavitation inception for the widest range of 

operating conditions.  

 

Theoretically, cavitation inception occurs when the local fluid pressure reaches the vapor pressure. 

The spatially non-uniform propeller inflow causes periodic formation, growth, and collapse of 

vapor-filled cavities; the latter phenomenon occurs when a cavity attached to a rotating propeller 

blade moves into a higher pressure region, which causes a sudden condensation of the vapor. The 

collapse of the cavities can produce very high pressures that can lead to surface pitting of the 

propeller blades. Additional undesirable effects of propeller cavitation include an increase in the 

propeller-induced pressure on the stern of the ship hull and a substantial increase in the noise 

emitted by the propeller, which in turn can have a detrimental effect on the signature of a naval 

vessel.   

 

The aforementioned ship propeller design goals, i.e. propeller efficiency and cavitation-free 

operation, or delayed inception, are often conflicting. The latter goal necessitates blades with large 
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area, which increases the frictional losses and, thus, reduces the propeller efficiency. Therefore, 

developing blade sections that address both objectives is of paramount importance for the design 

of a high-speed ship propeller. 

 

1.1 Literature Survey 

The traditional approach for a propeller blade section design is to use the thickness and camber 

distribution of blade sections with known good cavitation performance to find the appropriate 

angle of attack, maximum-thickness-to-chord ratio, and maximum-camber-to-chord ratio to satisfy 

the ship thrust requirements and obtain sections capable of operating cavitation-free over a broad 

range of angles [1].  

 

A different approach, which was originally proposed by Shen and Eppler [2, 3], is to design blade 

sections capable of operating cavitation-free over the widest possible range of inflow angles using 

a conformal mapping process where the section profile is designed based on a prescribed pressure 

distribution [4]. This approach has been applied by Kuiper and Jessup to the design of a wake-

adapted propeller for a frigate [5], and more recently by Yamaguchi et al. for the design of the 

propeller blade sections of a high-speed merchant vessel [6].  

 

The utilization of a parent (baseline) blade section as a starting design point, and a single-objective 

optimizer based on Lagrange multipliers combined with propeller flow analysis software have 

been successfully employed for the design of propeller blade sections [7, 8] and, more recently, 

using a multi-objective optimizer [9]. The inherent problem with classical constraint optimization 

methods, i.e. using gradient-based search methods, is that the foil performance characteristics, i.e. 
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lift and drag, need to be approximated as functions of the design variables. This issue can be 

overcome by employing optimizers based on evolutionary algorithms as demonstrated by Ouyang 

et al. [10]. 

 

Kawada [11] applied lifting line theory to a propeller by modeling each blade as a line of constant 

bound vorticity with a free vortex shed at the tip of the blade and an axial hub vortex with a strength 

equal to the sum of the strengths of the tip vortices. Lerbs’ seminal work presented in [12] was the 

first attempt to analyze a moderately loaded propeller using lifting line theory by considering 

bound vorticity radially varying along the lifting line. In this way, the axial and tangential induced 

velocity components can be evaluated independently, thus, removing the assumption that the 

vortex sheets emanating from each blade are of true helical form; an assumption applicable only 

to lightly loaded propellers. 

 

The lifting surface propeller analysis approach developed by Pien [13] models the propeller as an 

infinitely thin surface with a continuous distribution of vorticity along the spanwise direction but 

also along the chordal directions to account for the blade section camber. Later lifting surface 

models, like the one developed by Brockett [14], introduced a distribution of sources and sinks in 

the chordal directions at various radial positions to account for the blade section thickness.  

 

A subclass of the lifting surface method is the vortex lattice approach proposed by Kerwin [15]. 

The characteristic difference being that the vortex lattice method employs a set of discrete straight-

line segments of vortices of constant strength whose end points are located along the blade camber 

surface in order to form a system of vortex panels rather than the continuous distribution of 
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singularities used in the classical lifting surface approach. The method was developed further by 

Greeley and Kerwin [16] to account for viscous effects and cavitation inception. 

 

Griffin and Kinnas [17] coupled the aforementioned vortex lattice cavitating propeller analysis 

method with the nonlinear blade section optimization method developed in [7, 8] and utilized a 

cubic B-spline polygon net to represent the propeller blade in order to develop a design method 

for high-speed propulsor blades. More recently, boundary element methods (BEM) have been 

utilized to solve the unsteady cavitating flow around propellers subject to non-uniform inflow 

conditions [18]. 

 

A hybrid lifting-line lifting-surface method was introduced by van Oossanen [19], where Lerbs’ 

method [12] is supplemented by an additional iteration that takes into account the blade section 

geometry. The effects of a non-uniform inflow are incorporated into the model by determining the 

advance angle at each blade position within the propeller disc. The effect of viscosity is also 

implemented through the calculation of the boundary layer flow along the blade section, which 

increases the prediction accuracy at off-design conditions. Van Oossanen also utilized the lifting 

surface correction factors calculated by Morgan et al. [20] for propellers with moderate skew and 

by Cumming et al. [21] for highly-skewed propellers. These correction factors account for the 

impact of the three-dimensional flow to the camber and ideal angle of the blade section. They also 

include the effect of the blade thickness. Van Oossanen developed a polynomial representation of 

these correction factors, which is also available in [19]. A lifting line method combined with a 

Lagrange multiplier optimization method has recently been proposed as an efficient propeller 

design and analysis tool [22].  
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Choi and Kinnas [23] attempted to calculate the effective wake of a ship, i.e. the ship wake with 

an operating propeller; a task that requires the modeling of the ship-propeller interaction. They 

used a vortex lattice solver for the propeller analysis coupled with a solver for the Euler flow 

equations (the effect of the fluid viscosity is neglected). The coupling is achieved by representing 

the propeller impact on the ship wake via body forces computed by the vortex lattice solver and 

included in the Euler flow equations. A similar investigation, but using the vortex lattice method 

developed in [15] for the propeller calculations, coupled with a Reynolds-averaged Navier-Stokes 

equations (RANSE) solver was performed by Stern et al. [24, 25]. A detailed discussion regarding 

theoretical developments of ship propeller analysis and design methods can be found in [26]. 

 

In recent years, the coupling of cavitation prediction models with RANSE solvers has allowed 

researchers to obtain more accurate results regarding the cavitation inception of propeller blades. 

Singhal et al. [27] developed such a cavitation prediction model, named the “full cavitation 

model,” which is based on the bubble dynamics equation derived from the generalized Rayleigh-

Plesset equation [28]. The model has been used to predict the cavitation of a marine propeller by 

Arazgaldi et al. [29]. Huang et al. [30] have implemented the “full cavitation model” in the 

commercial Computational Fluid Dynamics (CFD) software FLUENT to solve the 2-D hydrofoil 

cavitating problem. Delgosha et al. [31] have developed cavitation prediction models based on the 

barotropic state law that links the fluid density to the local static pressure [32]. 

 

Scaling effects on cavitation inception and development have been investigated by Astolfi et al. 

[33] and Amromin [34]. Astolfi et al. also examined the impact of boundary layer separation on 

cavitation inception on a 2-D hydrofoil. 
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1.2 Summary and Objectives of the Proposed Research 

The main objectives of this dissertation are, first, to develop an efficient methodology for the 

analysis and design of propeller blades, and second, to develop a method for the design of blade 

sections with low drag and a wide range of cavitation-free operation.  

 

Regarding the first objective, the hybrid lifting-line lifting-surface method of van Oossanen is 

utilized as the baseline model and a number of improvements are implemented in order to increase 

its accuracy. Specifically, the lifting-surface correction factors were represented in [19] by 

polynomials derived via multiple regression analysis. In this work, artificial neural networks 

(ANNs) and support vector regression (SVR) are utilized to derive new surrogate models for the 

lifting-surface correction factors. It is demonstrated that these new models have superior 

performance compared to the polynomial representation and could be utilized not only for 

interpolation but also for extrapolation purposes.  

 

The effect of viscosity is implemented in the hybrid lifting-line lifting-surface method by 

calculating the lift, drag, and pressure coefficients of the blade sections using the open-source 

RANSE solver OpenFOAM [35]. In this way, an accurate prediction of the performance of the 

blade sections even at off-design operating conditions can be obtained. The proposed propeller 

analysis and design framework has been coded using the scientific programming language GNU 

Octave [36]. 

 

As already mentioned, the design goals for a high-speed ship propeller, i.e. propeller efficiency 

and cavitation-free operation, are often conflicting. The typical solution of increasing the blade 



 

7 

 

 

 

area to limit the extent of cavitation results in increased frictional losses and, thus, reduces the 

propeller efficiency.  

 

In this work, a design method for blade sections with low drag and wide range of cavitation free 

operation is proposed. The blade section is modeled using cubic B-splines and the corresponding 

control points are used as the design variables of a multi-objective constrained optimization 

problem. The optimizer is based on swarm intelligence principles; the objectives and constraints 

of the problem that correspond to the performance of the blade sections are calculated using 

OpenFOAM and modeled using ANNs. It is demonstrated that this approach provides the designer 

with a set of solutions that correspond to trade-offs between the design objectives. A selection can 

then be made based on the designer’s preferences.  

 

In Chapter 2, the development of the hybrid lifting-line lifting-surface model is described, followed 

by the derivation and validation of new models for the lifting-surface correction factors in Chapter 

3. The calculation of the blade section lift, drag, and pressure distribution is performed using a 

RANSE solver in OpenFOAM. The solver, the utilized turbulence model, and the corresponding 

computational grid are discussed in detail in Chapter 4. In that chapter, a grid verification study is 

included, as well as validation case studies, and a performance analysis of the baseline blade 

sections utilized in the blade design method. The latter is described in Chapter 5, including a brief 

description of the multi-objective optimizer and the utilization of cubic B-splines for the 

representation of the blade sections. The optimization results and the performance analysis of a 

selected optimal blade section are also discussed in that chapter. Validation of the propeller 

analysis method for a number of ship propellers operating in open-water conditions is provided in 
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Chapter 6 along with the results of a case study for operation of the propeller in the wake of a high-

speed container ship. The effectiveness of the optimal blade sections designed in Chapter 5 is also 

demonstrated as part of the case study. Conclusions and directions for future research are provided 

in Chapter 7.  
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CHAPTER 2 

A HYBRID LIFTING-LINE LIFTING-SURFACE MODEL FOR A MODERATELY 

LOADED PROPELLER 

 

2.1 Introduction 

The foundation of most mathematical models of propeller action is Prandtl’s lifting line theory. 

This theory states that the lift of a wing, or of a propeller blade, is due to the development of 

circulation around the section in accordance with the Kutta-Joukowski law for lifting surfaces. 

Therefore, the blade can be represented as a single line vortex whose strength varies in the radial 

direction. This lifting line is considered to pass through the aerodynamic centers of the blade 

sections on which the circulation is distributed and to coincide with the radial coordinate r of a 

cylindrical coordinate system with the axial coordinate being along the direction of the propulsion 

shaft. As the circulation is varied along this line, a free vortex is shed between radial stations r and 

r+dr. In order to satisfy Helmholtz’ vortex theorem, the shed vorticity is related to the bound 

vorticity of the lifting line as follows: 

 𝛤𝛤�(𝑟𝑟) = (
d𝛤𝛤d𝑟𝑟)dr (2.1) 

where 𝛤𝛤� is the circulation of the free vortex line and 𝛤𝛤 is the bound circulation. This free vortex 

line has a general helical shape. 

 

In this work, the lifting line theory is applied in the inverse sense, i.e. to determine the loading on 

the propeller when the geometric parameters of the propeller and the velocity field in which the 

propeller operates are given. The velocity field, which corresponds to the ship wake, can vary both 
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radially and circumferentially. The proposed method is based on the quasi-linear approach for a 

moderately loaded propeller introduced by van Oossanen [19]. 

 

2.2 Calculation of the Induced Velocities 

The utilization of Prandtl’s lifting line theory for the design and analysis of moderately loaded 

propellers was originally introduced by Lerbs [12]. A concise description of Lerbs’ proposed 

method is provided in this section. A GNU Octave script has been developed in order to implement 

the method and is available in Appendix A.  

 

The starting point of the method is Laplace’s equation, which can be utilized to obtain the velocity 

potential of the flow outside the vortex space. Kawada [11] considered a propeller with g 

symmetrically placed blades and a horseshoe vortex model. Each blade is represented by a line of 

constant bound vorticity from the hub to the tip. At the tip of each blade a free helical vortex 

emanates. Kawada also considered an axial hub vortex with strength equal to the sum of the tip 

vortex strengths. For the description of the flow, a cylindrical coordinate system is utilized with z: 

axial direction, θ: tangential direction, and r: radial direction, such that at the propeller disk, z = 0 

and the z-axis is positive in the direction of the flow. The tangential coordinate θ is zero at the first 

lifting line and is positive in the direction of rotation of the propeller. The velocity potential for an 

infinitely long symmetrical system of g helical vortices with constant radius r0 and pitch angle βi0, 

can be expressed as follows: 

 

For internal radial points (r < r0),  
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𝜑𝜑𝒾𝒾 =  
𝑔𝑔
2

 𝛤𝛤� +  
𝑔𝑔

2𝜋𝜋  𝛤𝛤�  � 𝑧𝑧𝓀𝓀𝜊𝜊 + 2
𝑟𝑟𝔬𝔬𝓀𝓀𝜊𝜊  �𝐼𝐼𝑛𝑛𝑛𝑛 �𝑛𝑛𝑔𝑔𝓀𝓀𝜊𝜊  𝑟𝑟�  𝐾𝐾𝑛𝑛𝑛𝑛𝜄𝜄  �𝑛𝑛𝑔𝑔𝓀𝓀𝜊𝜊  𝑟𝑟𝔬𝔬� sin(𝑛𝑛𝑔𝑔𝑛𝑛)

∞
𝑛𝑛=1  � 

  (2.2a) 

and for external points (r > r0),  

𝜑𝜑𝑒𝑒 =  
𝛤𝛤�

2𝜋𝜋 �𝑔𝑔𝑔𝑔 − 2𝜋𝜋 �𝑚𝑚− 1𝑔𝑔𝑛𝑛
𝑚𝑚=1 + 2𝑔𝑔 𝑟𝑟𝔬𝔬𝓀𝓀𝜊𝜊  �  𝐾𝐾𝑛𝑛𝑛𝑛∞

𝑛𝑛=1  �𝑛𝑛𝑔𝑔𝓀𝓀𝜊𝜊  𝑟𝑟� 𝐼𝐼𝑛𝑛𝑛𝑛𝜄𝜄  �𝑛𝑛𝑔𝑔𝓀𝓀𝜊𝜊  𝑟𝑟𝔬𝔬� sin(𝑛𝑛𝑔𝑔𝑛𝑛)� 
  (2.2b) 

where I and K are the modified Bessel functions of the first and second kind, respectively, and the 

prime means derivative with respect to the argument. Also, 

 

 𝓀𝓀𝜊𝜊 =  𝑟𝑟𝔬𝔬 tan𝛽𝛽𝑖𝑖𝑖𝑖 (2.3) 

 𝑛𝑛 =  𝑔𝑔 −  
𝑧𝑧𝓀𝓀𝜊𝜊 (2.4) 

 

The axial and tangential induced velocities can be calculated by differentiating this potential 

function. For ease of evaluation, the modified Bessel functions and their derivatives are replaced 

by Nicholson’s asymptotic functions [37]: 

 𝐼𝐼𝑛𝑛 (𝑛𝑛𝑛𝑛) =  � 12𝜋𝜋𝑛𝑛 �1+ 𝑦𝑦2�  𝑒𝑒𝑛𝑛𝑛𝑛 (2.5a) 

 𝐾𝐾𝑛𝑛 (𝑛𝑛𝑛𝑛) =  � 𝜋𝜋2𝑛𝑛 �1+ 𝑦𝑦2�  𝑒𝑒−𝑛𝑛𝑛𝑛 (2.5b) 

 𝑌𝑌 = �1 +  𝑛𝑛2 −  
12  log.

�1+ 𝑦𝑦2+1�1+ 𝑦𝑦2−1 (2.6) 

 

The potential function derived by Kawada satisfies Helmholtz’vortex theorem: the vortex 

filaments of the helical vortices must extend to infinity in both directions. However, in propeller 
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flows, the vortices start at z = 0 and extend to infinity only in the positive z-direction. Lerbs showed 

that the induced velocity expressions derived by Kawada are valid for points at the propeller disc 

(z = 0) provided that the induced axial and tangential velocity components are divided by two. 

Lerbs also removed Kawada’s assumption of constant bound vorticity and considered radially 

varying bound vorticity, which results in the production of a vortex sheet with varying strength 

(see Equation 2.1).  

 

 Considering points on the lifting lines (z = 0), the axial and tangential velocity components 

induced at a radial position r by a free helical vortex emanating at position r0  can be found to be, 

 𝑈𝑈𝑎𝑎𝑖𝑖 =
1𝓀𝓀𝜊𝜊 𝑛𝑛Γ�4𝜋𝜋 (1 + 𝐵𝐵2)           𝑈𝑈𝑎𝑎𝑒𝑒 = − 1𝓀𝓀𝜊𝜊 𝑛𝑛Γ�4𝜋𝜋𝐵𝐵2 (2.7a) 

 𝑈𝑈𝑡𝑡𝑖𝑖 = − 1𝓀𝓀𝜊𝜊 𝑛𝑛Γ�4𝜋𝜋𝐵𝐵1           𝑈𝑈𝑡𝑡𝑒𝑒 =
1𝓀𝓀𝜊𝜊 𝑛𝑛Γ�4𝜋𝜋 (1 + 𝐵𝐵1) (2.7b) 

where,  

 𝐵𝐵1,2 = �1+𝑦𝑦021+𝑦𝑦2 �0.25 � 1𝑒𝑒𝐴𝐴1,2−1∓ 12𝑛𝑛 𝑦𝑦02
(1+𝑦𝑦02)1.5 ln �1 +

1𝑒𝑒𝐴𝐴1,2−1�� 
 𝐴𝐴1,2 = ±��1 + 𝑛𝑛2 −�1 + 𝑛𝑛02� ∓ 12 ln ���1+𝑦𝑦02−1���1+𝑦𝑦2+1���1+𝑦𝑦02+1���1+𝑦𝑦2−1��  

 𝑛𝑛0 =
𝑟𝑟0𝓀𝓀𝜊𝜊 =

1tan𝛽𝛽𝑖𝑖0                                          𝑛𝑛 =
𝑟𝑟𝓀𝓀𝜊𝜊 =

𝑥𝑥𝑥𝑥0 tan𝛽𝛽𝑖𝑖0 
 𝑥𝑥 =

𝑟𝑟𝑅𝑅                                         𝑥𝑥0 =
𝑟𝑟0𝑅𝑅  

and x is the radial position r nondimensionalized by the propeller radius R. 

 

When applying those equations for the calculation of the induced velocities at r = r0, the velocity 

tends to infinity. This severely impairs the numerical results; in order to resolve this issue, Lerbs 

utilized the concept of the induction factor proposed by Kawada [38]. The induction factor is 
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defined as the ratio of velocity induced at a point r on the lifting line due to a helical vortex at r0 

and the velocity induced by a straight line vortex at r0 parallel to the z axis: 

 𝑖𝑖𝑎𝑎 =
𝑈𝑈𝑎𝑎 Γ�4𝜋𝜋(𝑟𝑟−𝑟𝑟0)

� ,       𝑖𝑖𝑡𝑡 =
𝑈𝑈𝑡𝑡 Γ�4𝜋𝜋(𝑟𝑟−𝑟𝑟0)

�  (2.8) 

where ia and it are the induction factors for the induced axial and tangential velocity, respectively. 

 

At r = r0, the velocity induced by the straight line vortex also tends to infinity and thus the ratio, 

i.e. the induction factor, remains finite. By combining Equations 2.7 and 2.8, the mathematical 

relations for the induction factors are found to be, 

 𝑖𝑖𝑎𝑎𝑖𝑖 = 𝑔𝑔 
𝑥𝑥𝑥𝑥0 tan𝛽𝛽𝑖𝑖𝑖𝑖  �𝑥𝑥0𝑥𝑥 − 1) (1 +  𝐵𝐵2) (2.9a) 

 𝑖𝑖𝑎𝑎𝑒𝑒 = −𝑔𝑔 
𝑥𝑥𝑥𝑥0 tan𝛽𝛽𝑖𝑖𝑖𝑖  �𝑥𝑥0𝑥𝑥 − 1) 𝐵𝐵1 (2.9b) 

 𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑔𝑔 �𝑥𝑥0𝑥𝑥 − 1) 𝐵𝐵2 (2.9c) 

 𝑖𝑖𝑡𝑡𝑒𝑒 = −𝑔𝑔 �𝑥𝑥0𝑥𝑥 − 1) (1 +  𝐵𝐵1) (2.9d) 

 

Since the propeller wake is a continuous sheet of helical vortices of radially varying strength 

emanating along the lifting line between the hub (with radial location xh) and the blade tip (x = 1), 

the total velocity induced by such a sheet at a radial location r is,  

 
𝑈𝑈𝑎𝑎,𝑡𝑡𝑉𝑉𝑎𝑎 =  

12  ∫ � 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥𝑖𝑖 1
(𝑥𝑥−𝑥𝑥0)

 𝑖𝑖𝑎𝑎,𝑡𝑡� 𝑑𝑑𝑥𝑥0 
1𝑥𝑥ℎ  (2.10) 

where Va is the average axial inflow velocity along the lifting line, and G is the non-dimensional 

circulation given by the formula, 

 𝐺𝐺 =
Γ𝜋𝜋𝜋𝜋𝑉𝑉𝑎𝑎 (2.11) 
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It is important to note that in a circumferentially varying inflow, Ua,t, Va, G, and βi are functions of 

r and θ. Therefore, the induction factors, being functions of the hydrodynamic pitch angle βi, are 

also functions of θ. 

 

Equation 2.10 is an improper integral and can be numerically evaluated using Glauert’s method 

[39]. The radial variable x is replaced by a new variable φ such that, 

 𝓍𝓍 =
12  (1 + 𝑥𝑥ℎ) −  

12  (1−  𝑥𝑥ℎ) cos𝜑𝜑 (2.12)  

 

It is observed from Equation 2.12 that at x = xh, φ = 0, and at x = 1, φ = π. Next, G is resolved into 

a Fourier series, 

 𝐺𝐺(𝜑𝜑,𝑔𝑔) = ∑  𝐺𝐺𝑚𝑚(𝑔𝑔) sin(𝑚𝑚𝜑𝜑) ∞𝑚𝑚=1  (2.13) 

As equilization of pressures takes place at the hub and at the tip, it is observed that this Fourier 

series correctly predicts G at both positions to be equal to zero. The induction factors are 

represented by an even Fourier series, 

 𝑖𝑖𝑎𝑎,𝑡𝑡(𝜑𝜑,𝜑𝜑0) = ∑  𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡
(𝜑𝜑) cos(𝑛𝑛𝜑𝜑0) ∞𝑛𝑛=0  (2.14) 

Substituting Equations 2.13 and 2.14 into Equation 2.10 we get, 

 
𝑈𝑈𝑎𝑎,𝑡𝑡(𝜑𝜑,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)

=
11− 𝑥𝑥ℎ∑  𝑚𝑚𝐺𝐺𝑚𝑚(𝑔𝑔)ℎ𝑚𝑚𝑎𝑎,𝑡𝑡

(𝜑𝜑)∞𝑚𝑚=1  (2.15) 

where,  

 ℎ𝑚𝑚𝑎𝑎,𝑡𝑡(𝜑𝜑) = ∫ 𝑖𝑖𝑡𝑡 (𝜑𝜑,𝜑𝜑0)cos𝑚𝑚 𝜑𝜑0cos𝜑𝜑0−cos𝜑𝜑𝜋𝜋0  𝑑𝑑𝜑𝜑0 =

                                           
12∑ 𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡(𝜑𝜑) �∫ cos(𝑚𝑚+𝑛𝑛)𝜑𝜑0cos𝜑𝜑0−cos𝜑𝜑 𝑑𝑑𝜑𝜑0𝜋𝜋0 +  ∫ cos(𝑚𝑚−𝑛𝑛)𝜑𝜑0cos𝜑𝜑0−cos𝜑𝜑 𝑑𝑑𝜑𝜑0𝜋𝜋0 �∞𝑛𝑛=0  (2.16) 

 

The integrals in this expression are called the Glauert integrals with the known principal value of, 
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 ℎ𝑚𝑚𝑎𝑎,𝑡𝑡
=

𝜋𝜋sin𝜑𝜑 �sin(𝑚𝑚𝜑𝜑)∑  𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡(𝜑𝜑) cos(𝑛𝑛𝜑𝜑)∞𝑛𝑛=0 + cos(𝑚𝑚𝜑𝜑)∑ 𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡
sin(𝑛𝑛𝜑𝜑)∞𝑛𝑛=𝑚𝑚+1 �  

  (2.17) 

Equation 2.17 becomes indefinite at the end points, i.e. φ = 0 and φ = π, and hence L’Hospital’s 

rule is used to evaluate ℎ𝑚𝑚𝑎𝑎,𝑡𝑡
 at these points, 

 ℎ𝑚𝑚𝑎𝑎,𝑡𝑡
 (0) =  𝜋𝜋 �𝑚𝑚 ∑  𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡

 (0)∞𝑚𝑚=1 +  ∑ 𝑛𝑛𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡
 (0)∞𝑛𝑛=𝑚𝑚+1 � (2.18a) 

 ℎ𝑚𝑚𝑎𝑎,𝑡𝑡
 (𝜋𝜋) =  −𝜋𝜋 cos(𝑚𝑚 180°)�𝑚𝑚 ∑ 𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡(𝜋𝜋) cos(𝑛𝑛𝜋𝜋)𝑚𝑚𝑛𝑛=0 +

 ∑ 𝑛𝑛𝐼𝐼𝑛𝑛𝑎𝑎,𝑡𝑡(𝜋𝜋)cos (𝑛𝑛𝜋𝜋)∞𝑛𝑛=𝑚𝑚+1 �  (2.18b) 

 

 

Figure 2.1: Velocities and Forces on Propeller Blade Section. 

 

The hydrodynamic pitch angle βi is calculated as follows (see Figure 2.1): 

 tan𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) =
𝑉𝑉�𝑎𝑎(𝑥𝑥,𝜃𝜃)+𝑈𝑈𝑎𝑎(𝑥𝑥,𝜃𝜃)𝑥𝑥𝜋𝜋𝑛𝑛𝜋𝜋−𝑉𝑉𝑡𝑡� (𝑥𝑥,𝜃𝜃)−𝑈𝑈𝑡𝑡(𝑥𝑥,𝜃𝜃)

  (2.19) 

where 𝑉𝑉�𝑎𝑎 and 𝑉𝑉�𝑡𝑡 are the average axial and tangential velocity components between the leading edge 

and the trailing edge of the blade section at (x, θ). 
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The angle of attack with respect to the chord line of the blade section is defined as: 

 𝑎𝑎𝑁𝑁𝑁𝑁 = tan−1 �𝑃𝑃(𝑥𝑥)𝑥𝑥𝜋𝜋𝜋𝜋� − 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) (2.20) 

A first value of βi can be estimated by Sontvedt’s empirical relation [40] : 

 𝛽𝛽𝑖𝑖(𝑥𝑥, 𝑔𝑔) = 𝛾𝛾0(𝑥𝑥,𝑔𝑔) − [𝛾𝛾0(𝑥𝑥,𝑔𝑔) − 𝛽𝛽(𝑥𝑥,𝑔𝑔)] �0.135 +
0.0531.093−𝑥𝑥� (2.21) 

where, 𝛽𝛽(𝑥𝑥, 𝑔𝑔) = tan−1 𝑉𝑉�𝑎𝑎(𝑥𝑥,𝜃𝜃)𝑥𝑥𝜋𝜋𝑛𝑛𝜋𝜋−𝑉𝑉𝑡𝑡� (𝑥𝑥,𝜃𝜃)
   (2.22) 

is the advance angle, 𝛾𝛾0(𝑥𝑥,𝑔𝑔) = tan−1 �𝑃𝑃(𝑥𝑥)𝑥𝑥𝜋𝜋𝜋𝜋�+ 𝑎𝑎0(𝑥𝑥,𝑔𝑔)  (2.23) 

is the effective pitch angle, defined schematically in Figure 2.2, 

P (x) : pitch of the propeller at x, 

D : diameter of the propeller, and 

α0 : the value of the angle of zero lift.  

 

 

Figure 2.2: Schematic Representation of the Inflow Angles. 
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With the initial values of βi calculated from Equation 2.21, the induction factors can then be 

calculated from Equation 2.9. These values are substituted into Equation 2.14, which produces a 

system of linear algebraic equations with the Fourier series coefficients as the unknown variables. 

The number of Fourier coefficients utilized depends on the number of radial stations considered 

in the analysis. Here, nine stations are considered and so the Fourier series expansion is truncated 

at n = 9. The solution of the aforementioned system of equations produces the values of the Fourier 

coefficients which are then substituted into Equation 2.18 to obtain the values of hm; those are then 

utilized in Equation 2.15. This equation still has two unknowns: the induced velocity and the non-

dimensional circulation, and thus an additional equation is required. 

 

Lerbs suggested using Equation 2.19 as the second equation in the following form: 

 
𝑉𝑉𝑎𝑎(𝜃𝜃)𝑉𝑉𝑎𝑎���(𝑥𝑥,𝜃𝜃)

𝑈𝑈𝑎𝑎(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)
+

𝑉𝑉𝑎𝑎(𝜃𝜃)𝑉𝑉𝑎𝑎���(𝑥𝑥,𝜃𝜃)

𝑈𝑈𝑡𝑡(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)
tan𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) =

tan𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)tan𝛽𝛽(𝑥𝑥,𝜃𝜃)
− 1 (2.24) 

which is combined with Equation 2.15 to provide the following system of equations: 

 
11−𝑥𝑥ℎ∑ 𝑚𝑚𝐺𝐺𝑚𝑚(𝑔𝑔)[ℎ𝑚𝑚𝐴𝐴 (𝜙𝜙) + tan𝛽𝛽𝑖𝑖(𝜙𝜙, 𝑔𝑔)ℎ𝑚𝑚𝑁𝑁 (𝜑𝜑)]

𝑉𝑉𝑎𝑎(𝜃𝜃)𝑉𝑉𝑎𝑎���(𝑥𝑥,𝜃𝜃)

∞𝑚𝑚=1 =

                                                                
tan𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)tan𝛽𝛽(𝑥𝑥,𝜃𝜃)

− 1  (2.25) 

from which the value of Gm at the nine radial stations can be calculated. The calculated values are 

then substituted into Equation 2.15 in order to obtain the induced velocities. 

 

2.3 Calculation of the Propeller Thrust and Torque 

Considering that the induced velocities were obtained with an estimated initial value from 

Equation 2.21, an iterative process is required in order to obtain the final values. Van Oossanen 
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suggested using an equation that incorporates the geometric parameters of the propeller blade 

sections. Starting with the Kutta-Joukowski law, 

 𝛤𝛤(𝑥𝑥, 𝑔𝑔) =
𝐿𝐿(𝑥𝑥,𝜃𝜃)𝜌𝜌𝑉𝑉(𝑥𝑥,𝜃𝜃)

 (2.26) 

where L(x, θ) : lift force of the blade section given by, 

 𝐿𝐿(𝑥𝑥,𝑔𝑔) = 𝐶𝐶𝐿𝐿(𝑥𝑥, 𝑔𝑔)
12𝜌𝜌𝑉𝑉2(𝑥𝑥,𝑔𝑔)𝑐𝑐(𝑥𝑥) (2.27) 

V(x, θ) : resultant velocity at the blade section (see Figure 2.1), and 

 ρ : density of water. 

 

Equation 2.27 is substituted into Equation 2.11,  

 𝐺𝐺(𝑥𝑥,𝑔𝑔) =
𝐶𝐶𝐿𝐿(𝑥𝑥,𝜃𝜃)𝑉𝑉(𝑥𝑥,𝜃𝜃)𝑐𝑐(𝑥𝑥)2𝜋𝜋𝜋𝜋𝑉𝑉𝑎𝑎(𝜃𝜃)

 (2.28) 

The resultant inflow velocity at each considered location can be expressed in terms of its 

components as, 

 𝑉𝑉(𝑥𝑥, 𝑔𝑔) =
𝑉𝑉𝑎𝑎���(𝑥𝑥,𝜃𝜃)+𝑈𝑈𝑎𝑎(𝑥𝑥,𝜃𝜃)sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)

 (2.29) 

and hence Equation 2.28 becomes,  

 𝐺𝐺(𝑥𝑥,𝑔𝑔) =
𝐶𝐶𝐿𝐿(𝑥𝑥,𝜃𝜃)𝑐𝑐(𝑥𝑥)�𝑉𝑉𝑎𝑎�����(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)

+𝑈𝑈𝑎𝑎(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)
�2𝜋𝜋𝜋𝜋 sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)
 (2.30) 

where CL is the three-dimensional lift coefficient value and is related to the two-dimensional lift 

coefficient by means of the corresponding lift-curve slopes, 

 
𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑𝑑𝑑 =

𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑𝑑𝑑2 1𝐾𝐾𝑐𝑐 (2.31) 

where,  

dCL/dα : three-dimensional lift-curve slope, which can be calculated as, 

 
𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑𝑑𝑑 (𝑥𝑥,𝑔𝑔) =

𝐶𝐶𝐿𝐿(𝑥𝑥,𝜃𝜃)𝛾𝛾0(𝑥𝑥,𝜃𝜃)−𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)
 (2.32) 
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dCL/dα2 : two-dimensional lift curve slope, and 

Kc : lifting surface correction factor for camber (obtained using the method described in Chapter 

III). In this work, the value of dCL/dα2 is calculated using the CFD method described in Chapter 

IV. Combining Equations 2.31 and 2.32, 

 𝐶𝐶𝐿𝐿(𝑥𝑥, 𝑔𝑔) =
𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑𝑑𝑑2 1𝐾𝐾𝑐𝑐 �𝛾𝛾0(𝑥𝑥,𝑔𝑔) − 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔)� (2.33) 

 

The value of the three-dimensional zero lift angle α0 needed to calculate the effective pitch angle 

(see Equation 2.23 and Figure 2.2) can be calculated as: 

 𝛼𝛼0(𝑥𝑥,𝑔𝑔) = 𝛼𝛼02(𝑥𝑥, 𝑔𝑔) + 𝛼𝛼𝑖𝑖(𝑥𝑥,𝑔𝑔) − 𝛼𝛼𝑖𝑖2(𝑥𝑥,𝑔𝑔) (2.34) 

where,  𝛼𝛼02: two-dimensional angle of zero lift, which is obtained using the CFD method described in 

Chapter 4, 𝛼𝛼𝑖𝑖: three-dimensional ideal angle of incidence, which is evaluated by employing the lifting surface 

correction factors (provided in Chapter 3) for the two-dimensional ideal angle of incidence and the 

correction factor for blade  thickness (Kα and Kt, respectively) via the following equation, 

 𝛼𝛼𝑖𝑖(𝑥𝑥,𝑔𝑔) = 𝐾𝐾𝑑𝑑𝛼𝛼𝑖𝑖2(𝑥𝑥,𝑔𝑔) + 𝐾𝐾𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥 (2.35) 𝛼𝛼𝑖𝑖2: two-dimensional ideal angle of incidence, and 

BTFx : blade thickness fraction which is given by, 

 𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥 =

[𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥]𝑥𝑥𝐷𝐷 −0.0031−𝑥𝑥 + 0.003 (2.36) 

in which, (tmax)x : maximum thickness of the blade at section x. 
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The calculation of the zero-lift angle, the ideal angle of incidence, and the lift-curve slope for 

various blade sections has been implemented in a GNU Octave function, which is available in 

Appendix C. 

 

Substituting Equation 2.33 into Equation 2.30, 

 𝐺𝐺(𝑥𝑥,𝑔𝑔) =

𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑𝛼𝛼2(𝑥𝑥,𝜃𝜃)
1𝐾𝐾𝑐𝑐[𝛾𝛾0(𝑥𝑥,𝜃𝜃)−𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)]𝑐𝑐(𝑥𝑥)�𝑉𝑉𝑎𝑎�����(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)

+𝑈𝑈𝑎𝑎(𝑥𝑥,𝜃𝜃)𝑉𝑉𝑎𝑎(𝜃𝜃)
�2𝜋𝜋𝜋𝜋 sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝜃𝜃)
 (2.37) 

 

Equation 2.37 can now be used to calculate a new value for the pitch angle and the iteration process 

is continued until convergence has been achieved. The iterative process is carried out at each radial 

position x and at each angular position θ of the propeller blade. At convergence, the resultant 

velocity is calculated as, 

 𝑉𝑉(𝑥𝑥, 𝑔𝑔) = �[𝑉𝑉𝑎𝑎� (𝑥𝑥,𝑔𝑔) + 𝑈𝑈𝑎𝑎(𝑥𝑥,𝑔𝑔)]2 + [𝑥𝑥𝜋𝜋𝑛𝑛𝑥𝑥 − 𝑉𝑉𝑡𝑡� (𝑥𝑥,𝑔𝑔) − 𝑈𝑈𝑡𝑡(𝑥𝑥,𝑔𝑔)]2 (2.38) 

 

The thrust and torque at (x, θ) will then be,  

 
𝑑𝑑𝑁𝑁𝑑𝑑𝑥𝑥 (𝑥𝑥, 𝑔𝑔) =

12𝜌𝜌𝑐𝑐(𝑥𝑥)𝑉𝑉2(𝑥𝑥,𝑔𝑔)[𝐶𝐶𝐿𝐿(𝑥𝑥,𝑔𝑔) cos𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) − 𝐶𝐶𝜋𝜋(𝑥𝑥,𝑔𝑔) sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔)] (2.39a) 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 (𝑥𝑥,𝑔𝑔) =

12𝜌𝜌𝑥𝑥𝜌𝜌𝑐𝑐(𝑥𝑥)𝑉𝑉2(𝑥𝑥,𝑔𝑔)[𝐶𝐶𝐿𝐿(𝑥𝑥,𝑔𝑔) sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) + 𝐶𝐶𝜋𝜋(𝑥𝑥,𝑔𝑔) cos𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔)] (2.39b) 

 

where 𝐶𝐶𝜋𝜋 is the value of the drag coefficient, which is calculated using the CFD method described 

in Chapter IV. The code of the GNU Octave function that is used to pass the values of 𝐶𝐶𝜋𝜋 to the 

lifting line script is available in Appendix G. 

 

The thrust and torque acting on a blade at each angular position θ can be calculated as follows,  



 

21 

 

 

 

 𝐵𝐵(𝑔𝑔) = ∫ 12𝜌𝜌𝑐𝑐(𝑥𝑥)𝑉𝑉2(𝑥𝑥,𝑔𝑔)[𝐶𝐶𝐿𝐿(𝑥𝑥, 𝑔𝑔) cos𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) − 𝐶𝐶𝜋𝜋(𝑥𝑥,𝑔𝑔) sin𝛽𝛽𝑖𝑖(𝑥𝑥, 𝑔𝑔)]𝑑𝑑𝑥𝑥1𝑥𝑥𝐻𝐻  (2.40a) 

 𝑄𝑄(𝑔𝑔) = ∫ 12𝜌𝜌𝑥𝑥𝜌𝜌𝑐𝑐(𝑥𝑥)𝑉𝑉2(𝑥𝑥,𝑔𝑔)[𝐶𝐶𝐿𝐿(𝑥𝑥,𝑔𝑔) sin𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔) + 𝐶𝐶𝜋𝜋(𝑥𝑥, 𝑔𝑔) cos𝛽𝛽𝑖𝑖(𝑥𝑥,𝑔𝑔)]𝑑𝑑𝑥𝑥1𝑥𝑥𝐻𝐻  (2.40b) 

   

The total thrust and torque on the propeller are then calculated as, 

 𝐵𝐵 =
𝑧𝑧2𝜋𝜋 ∫ 𝐵𝐵(𝑔𝑔)𝑑𝑑𝑔𝑔2𝜋𝜋0  (2.41a) 

 𝑄𝑄 =
𝑧𝑧2𝜋𝜋 ∫ 𝑄𝑄(𝑔𝑔)𝑑𝑑𝑔𝑔2𝜋𝜋0  (2.41b) 

where Z is the number of propeller blades. 

  



 

22 

 

 

 

CHAPTER 3 

LIFTING SURFACE CORRECTION FACTORS 

 

3.1 Introduction 

The lifting line theory described in Chapter 2 can address in a satisfactory manner the three-

dimensional character of the flow around propeller blades only along the spanwise direction. 

Unlike airplane propellers, ship propellers have broad blades with low aspect ratios, which are 

often skewed in order to reduce propeller-induced unsteady forces and moments, and also have 

fairly large maximum thickness-to-chord ratios in order to address strength requirements.  

 

All these geometric characteristics of ship propeller blades have a significant impact on the flow 

in the chordwise direction. The utilization of correction factors derived from systematic lifting 

surface calculations performed for a number of propellers by Morgan et al. [20] and Cumming et 

al. [21] can lead to significant improvements in a lifting-line-based propeller analysis method as 

has been demonstrated in [19, 22]. Three lifting surface correction factors are typically utilized:  

• The camber correction factor Kc accounts for the loss in lift due to the curvature of the induced 

velocity along the chord. 

• The ideal angle of incidence correction factor Kα accounts for the change in angle of incidence 

(angle that corresponds to shock-free entry) from its two-dimensional value. 

• The correction factor for thickness Kt accounts for the main effect of blade thickness. 
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The lifting surface correction factors for camber and ideal angle of attack are defined as the ratio 

of three-dimensional maximum camber and ideal angle to the two-dimensional section values. 

Morgan et al. [20] derived the following expressions for these factors: 

 𝐾𝐾𝑐𝑐(𝑟𝑟) =
𝑓𝑓𝑝𝑝(𝑥𝑥,𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥)𝑓𝑓𝑚𝑚𝑎𝑎𝑥𝑥 =

1𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥𝐶𝐶𝐿𝐿 × �∫ �𝑈𝑈𝑛𝑛(𝑥𝑥,𝑥𝑥𝑐𝑐)𝑉𝑉 − 𝑈𝑈(𝑟𝑟)𝑉𝑉 � 𝑑𝑑𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥𝛼𝛼𝑖𝑖(𝑥𝑥)
𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥0 � (3.1)   

   

 𝐾𝐾𝑑𝑑(𝑥𝑥) =
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖1.0𝐶𝐶𝐿𝐿 =

1𝑑𝑑𝑖𝑖1.0𝐶𝐶𝐿𝐿 × ∫ �𝑈𝑈𝑛𝑛𝑉𝑉𝑟𝑟 (𝑥𝑥, 𝑥𝑥𝑐𝑐)− 𝑈𝑈(𝑟𝑟)𝑉𝑉𝑟𝑟 � 𝑑𝑑𝑥𝑥𝑐𝑐10    (3.2) 

where, 

Cmax is the two-dimensional maximum mean line ordinate, 

xc is the chordwise section abscissa non-dimensionalized by the chord length c, 

xmax is the chordwise position of the maximum camber, and 

Un is the resultant induced velocity normal to the chord. 

 

The thickness correction factor is the ratio of the change in the ideal angle due to thickness (αt) 

and the blade thickness fraction (BTF), 

 𝐾𝐾𝑡𝑡(𝑟𝑟) =
𝑑𝑑𝑡𝑡(𝑥𝑥)𝐵𝐵𝑁𝑁𝐵𝐵 =

1𝐵𝐵𝑁𝑁𝐵𝐵 ∫ 𝑈𝑈𝑛𝑛𝑡𝑡𝑉𝑉𝑟𝑟 (𝑥𝑥, 𝑥𝑥𝑐𝑐)𝑑𝑑𝑥𝑥𝑐𝑐10  (3.3) 

where Unt is the velocity induced by thickness normal to the blade section chord line. 

 

The correction factors are independent of loading but depend on propeller parameters like the 

number of blades, the radial position, the hydrodynamic pitch angle, the expanded blade area ratio, 

and the skew angle. The definition of the propeller skew angle is shown in Figure 3.1.  



 

24 

 

 

 

 

Figure 3.1 Definition of Skew Angle. 

 

Morgan et al. [20] evaluated these integrals for specific values of the parameters: four, five and six 

blades, radial positions x from 0.3 to 0.9, expanded blade area ratios from 0.35 to 1.15, 

hydrodynamic pitch ratios from 0.4 to 2.0, and tip skew angles from 0 to 21 degrees. The tip skew 

angle θs is defined as the angle between two lines in the projected plane; one straight line from the 

shaft centerline through the mid-chord of the root section, which coincides with the blade generator 

line, and the other from the shaft centerline through the mid-chord of the blade tip section as shown 

in Figure 3.1. The two lines coincide, and thus θs = 0, for a blade with no skew (also shown in 

Figure 3.1). The radial distribution of skew used in [20] is given by, 

 
𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑅𝑅 = 𝜌𝜌𝑠𝑠 −�𝜌𝜌𝑠𝑠2 − (𝑟𝑟 − 0.2)2 (3.4) 

𝜌𝜌𝑠𝑠 =
0.32𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑝𝑝 +

𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑝𝑝2    

where 𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡 =
𝜃𝜃𝑠𝑠cos𝛽𝛽𝑖𝑖    
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The thickness distribution used for the sections is that of a NACA 66 (mod) hydrofoil section [1] 

with a chordwise load distribution corresponding to a NACA a = 0.8 camber line. The radial 

thickness distribution is given by, 

 
𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥)𝜋𝜋 = (𝐵𝐵𝐵𝐵𝐵𝐵 − 0.003)(1− 𝑥𝑥) + 0.003 (3.5) 

and the radial chord length distribution is given by, 

 
𝑐𝑐(𝑥𝑥)𝜋𝜋 =

𝐶𝐶(𝑥𝑥)𝑍𝑍 �𝐴𝐴𝑒𝑒𝐴𝐴0� (3.6) 

where the values of the coefficient C(x) [20] are listed in Table 3.1. 

 

x C(x) 

0.2 1.6338 

0.3 1.8082 

0.4 1.9648 

0.5 2.0967 

0.6 2.1926 

0.7 2.232 

0.8 2.1719 

0.9 1.8931 

 

Table 3.1 Values of the Coefficient C(x) at Different Radial Stations. 

 

Cumming et al. [21] expanded the range of skew to include highly-skewed propellers. They 

represented the skew as a percentage of the tip skew angle θs, 

 𝑔𝑔𝑠𝑠,𝑡𝑡𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡 =
𝜃𝜃𝑠𝑠360/𝑍𝑍 × 100 (3.7) 
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where the distribution of the skew angle in the radial direction is given by, 

 𝑔𝑔𝑠𝑠(𝑟𝑟) = 𝑔𝑔𝑠𝑠 �𝑟𝑟−0.2𝑅𝑅0.8𝑅𝑅 � (3.8) 

 

The tip skew values that they tested were 0%, 50%, 100%, and 150% with an expanded area ratio 

of 0.75, and hydrodynamic pitch ratios of 0.8 and 1.2 for propellers with four, five, and six blades. 

 

Van Oossanen used multiple regression analysis to derive polynomials to represent the lifting 

surface correction factors [19]. In this work, artificial neural networks (ANNs) and support vector 

regression (SVR) are utilized to derive surrogate models for the approximation of the lifting 

surface correction factors using the data sets from [20, 21]. For this purpose, the University of 

Waikato’s open source data mining software WEKA [41] was utilized. For the case of a propeller 

with zero skew, the input variables correspond to the number of propeller blades Z, the expanded 

area ratio of the propeller blades Ae/A0, the radial coordinate x, and the induced advance coefficient 

λ multiplied by π. The induced advance coefficient at each radial station r is defined as, 

 𝜆𝜆𝑖𝑖 = 𝑟𝑟 ∙ tan(𝛽𝛽𝑖𝑖) (3.9) 

 

The skew angle is also utilized as an input variable for propellers with moderate or high skew. 

Considering that the available data from [21] are given for a single value of the expanded area 

ratio Ae/A0, the latter is not utilized as an input variable for propellers with high skew. It is 

demonstrated later in this chapter that the derived surrogate models have superior performance 

compared to the polynomial representation and could be utilized not only for interpolation but also 

for extrapolation purposes.  
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3.2 Deriving Surrogate Models for the Lifting Surface Correction Factors 

Artificial neural networks have been utilized in various fields of scientific research as they 

represent a robust technique of statistical learning. A typical feedforward fully-connected ANN 

with two hidden layers is depicted in Figure 3.2. The input nodes provide a weighed input to the 

hidden layer nodes. That input is filtered using a sigmoid function and multiplied by a scaling 

coefficient (weight); the algebraic sum of the scaled output of the hidden nodes is then passed to 

the output node; that sum corresponds to the network prediction of the approximated function 

value.  

 

The goal is to determine the network parameters, i.e. number of hidden layers and number of nodes 

in each hidden layer that provide the optimal network architecture. A detailed description of the 

theoretical aspect of ANNs, along with application examples, is provided in [42]. As was shown 

by Cybenko [43], an artificial neural network consisting of a single hidden layer of sigmoid 

neurons (hidden nodes) and linear output nodes is a universal approximator given an adequate 

number of hidden nodes.  

 

The training of the ANN is performed using the backpropagation algorithm, which was originally 

proposed by Rumelhart et al. [44]. The network is trained by propagating forward the training 

dataset of points, calculating the prediction error, and then backpropagating the adjustments that 

need to be made to the network weights. This process is repeated a number of times (epochs) until 

there is no further improvement to the cumulative network prediction error evaluated on a 

validation data set. 

 



 

28 

 

 

 

 

Figure 3.2 Feedforward Artificial Neural Network with Two Hidden Layers. 

 

Support vector regression (SVR) is a machine learning technique based on the support vector 

machine (SVM) algorithm [45, 46]. Given a set of training points (features) SVR uses a nonlinear 

mapping function to map the data from the input variable space to the feature space. The algorithm 

attempts to find a regression function that predicts the training points within a specified distance 

from the actual values and also the function is as flat as possible. The trade-off between accuracy 

and flatness is controlled through a parameter C. The SVR training algorithm used in WEKA was 

proposed by Shevade et al. [47]. Two nonlinear mapping functions (kernels) were considered:  

 

• The radial basis function (RBF) kernel: 

 𝑠𝑠(𝐱𝐱,𝐱𝐱𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾‖𝐱𝐱 − 𝐱𝐱𝑖𝑖‖2) (3.10) 

• and the Pearson VII function-based universal kernel (PUK) [48]: 

Input 

Layer

Input 

Layer

Hidden 

Layer 1

Hidden 

Layer 2
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 𝑠𝑠(𝐱𝐱,𝐱𝐱𝑖𝑖) =
1

�1+�2��𝐱𝐱−𝐱𝐱𝑖𝑖�2�21 𝜔𝜔⁄ −1𝜎𝜎 �2�𝜔𝜔  (3.11) 

where, γ, σ, and ω are input parameters that control the shape of the function, x is the input variable 

vector, and xi is a training point.  

 

It was decided to generate a surrogate model for each of the aforementioned lifting surface 

correction factors for propellers with zero skew, moderate skew, and high skew. ANNs with one, 

two, and three hidden layers and with varying number of nodes in each layer were systematically 

tested. The parameters varied for SVR were the complexity constant, C, and the kernel parameters 

γ, σ, and ω. The result for the best performer for each ANN architecture and SVR kernel are 

reported.  

 

The learning effectiveness of each surrogate model was assessed by calculating the following 

statistical performance indicators: the root mean squared error (RMSE), the mean absolute error 

(MAE), and the correlation coefficient (R). The smaller the values of the RMSE and the MAE, the 

higher the accuracy of the surrogate model. The correlation coefficient can vary between zero and 

one. High R values, i.e. above 0.95, indicate that the function approximator is capable of explaining 

the variation in the training data set.   

 

Five-fold cross validation was utilized for the training/validation of each surrogate model: the 

training data are split into five sets and the model is evaluated five times using each set in turn for 

validation and the other four for training; the performance indicators were calculated as the average 
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of all five runs. In this way, the performance of the network on unseen data could be evaluated 

over the entire range of the available data.  

 

Even though cross validation is a good indicator of the surrogate model’s performance on unseen 

data, i.e. extrapolation capability, considering the fact that the available data sets are relatively 

small, and particularly the ones for highly-skewed propellers, it was deemed appropriate to use a 

second training/validation method. The 67-33% split method was utilized where 67% of the dataset 

is used for training and 33% is used for validation of the surrogate model.  

 

Tables 3.2 through 3.10 list the calculated statistical performance indicator values. The architecture 

of the network and the number of epochs used for its training are provided for the ANNs. The 

values of the C, γ, σ, and ω parameters are listed for the SVR surrogate models. The best values 

obtained for each performance indicator and for each of the training/validation methods are shown 

in bold font. The surrogate model selected to be utilized as the function approximator for each 

skew condition and lifting surface correction factor is also shown in bold font. Those surrogate 

models were coded in GNU Octave and the corresponding functions for Kc, Ka, and Kt are provided 

in Appendices D, E, and F, respectively. 
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  Five-fold cross validation 

  RMSE MAE R 

ANN-11 (N = 10000) 0.0427 0.0299 0.9958 

ANN-11-4 (N = 12000) 0.0238 0.0164 0.9987 

ANN-11-3-2 (N = 20000) 0.0251 0.0176 0.9986 

SMO-PUK (C = 70.0, ω = 2.0, σ = 2.0) 0.0293 0.0195 0.9980 

SMO-RBF (C = 55.0, γ = 1.8) 0.0280 0.0193 0.9982 

        

  67-33% split 

  RMSE MAE R 

ANN-11 (N=10000) 0.0506 0.0380 0.9939 

ANN-11-4 (N=12000) 0.0231 0.0131 0.9985 

ANN-11-3-2 (N=20000) 0.0230 0.0135 0.9985 

SMO-PUK (C=70.0, ω = 2.0, σ  = 2.0) 0.0270 0.0191 0.9979 

SMO-RBF (C = 55.0, γ = 1.8) 0.0272 0.0202 0.9979 

 

Table 3.2. Comparison of Kc Surrogate Models for Zero Skew. 

 

  Five-fold cross validation 

  RMSE MAE R 

ANN-12 (N = 10000) 0.0273 0.0203 0.9985 

ANN-10-3 (N = 15000) 0.0257 0.0195 0.9987 

ANN-11-3-2 (N = 15000) 0.0291 0.0219 0.9984 

SMO-PUK (C = 100.0, ω = 29.0, σ  = 1.6) 0.0301 0.0205 0.9982 

SMO-RBF (C = 70.0, γ = 1.3) 0.0313 0.0212 0.9981 

        

  67-33% split 

  RMSE MAE R 
ANN-12 (N = 10000) 0.0268 0.0199 0.9985 

ANN-10-3 (N = 15000) 0.0233 0.0178 0.9990 

ANN-11-3-2 (N = 15000) 0.0246 0.0183 0.9988 

SMO-PUK (C = 100.0, ω = 29.0, σ  = 1.6) 0.0340 0.0221 0.9975 

SMO-RBF (C = 70.0, γ = 1.3) 0.0354 0.0230 0.9973 

 

Table 3.3. Comparison of Kc Surrogate Models for Moderate Skew. 
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  Five-fold cross validation 

  RMSE MAE R 
ANN-14 (N = 40000) 0.0373 0.0264 0.9955 

ANN-10-3 (N = 40000) 0.0343 0.0223 0.9962 

ANN-10-4-2 (N = 35000) 0.0404 0.0246 0.9946 

SMO-PUK (C = 300.0, ω = 50.0, σ = 1.9) 0.0581 0.0372 0.9913 

SMO-RBF (C = 450.0, γ = 0.75) 0.0552 0.0358 0.9922 

  

  67-33% split 

  RMSE MAE R 
ANN-14 (N = 40000) 0.0378 0.0262 0.9953 

ANN-10-3 (N = 40000) 0.0391 0.0250 0.9952 

ANN-10-4-2 (N = 35000) 0.0333 0.0240 0.9963 

SMO-PUK (C = 300.0, ω = 50.0, σ = 1.9) 0.0617 0.0394 0.9887 

SMO-RBF (C = 450.0, γ = 0.75) 0.0634 0.0399 0.9884 

 

Table 3.4. Comparison of Kc Surrogate Models for High Skew. 

 

  Five-fold cross validation 

  RMSE MAE R 
ANN-12 (N = 10000) 0.0404 0.0291 0.9966 

ANN-11-3 (N = 10000) 0.0284 0.0209 0.9983 

ANN-11-3-2 (N = 15000) 0.0245 0.0183 0.9988 

SMO-PUK (C = 30.0, ω = 2.0, σ = 1.4) 0.0392 0.0241 0.9966 

SMO-RBF (C = 50.0, γ = 2.5) 0.0386 0.0241 0.9967 

        

  67-33% split 

  RMSE MAE R 
ANN-12 (N = 10000) 0.0287 0.0224 0.9978 

ANN-11-3 (N = 10000) 0.0233 0.0188 0.9986 

ANN-11-3-2 (N = 15000) 0.0222 0.0166 0.9989 

SMO-PUK (C = 30.0, ω = 2.0, σ = 1.4) 0.035 0.0212 0.9967 

SMO-RBF (C = 50.0, γ = 2.5) 0.0342 0.0214 0.9969 

 

Table 3.5. Comparison of Kα Surrogate Models for Zero Skew. 
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  Five-fold cross validation 

  RMSE MAE R 
ANN-12 (N = 10000) 0.1102 0.0834 0.9934 

ANN-12-3 (N = 15000) 0.1062 0.0804 0.9939 

ANN-12-3-2 (N = 16000) 0.0975 0.0705 0.9957 

SMO-PUK (C = 90.0, ω = 3.0, σ = 1.8) 0.1164 0.0823 0.9926 

SMO-RBF (C = 80.0, γ = 1.2) 0.1179 0.0794 0.9924 

        

  67-33% split 

  RMSE MAE R 
ANN-12 (N = 10000) 0.1284 0.0949 0.9924 

ANN-12-3 (N = 15000) 0.1081 0.0832 0.9958 

ANN-12-3-2 (N = 16000) 0.0889 0.0605 0.9962 

SMO-PUK (C = 90.0, ω = 3.0, σ = 1.8) 0.1338 0.0972 0.9915 

SMO-RBF (C = 80.0, γ = 1.2) 0.1432 0.0993 0.9906 

 

Table 3.6. Comparison of Kα Surrogate Models for Moderate Skew. 

 

  Five-fold cross validation 

  RMSE MAE R 

ANN-14 (N = 30000) 0.2243 0.1725 0.9984 

ANN-11-4 (N = 30000) 0.2585 0.2016 0.9979 

ANN-10-4-2 (N = 30000) 0.3434 0.2339 0.9962 

SMO-PUK (C = 1200.0, ω = 35.0, σ = 2.5) 1.3386 0.9199 0.9448 

SMO-RBF (C = 1200.0, γ = 1.55) 2.0430 1.2394 0.8563 

  

  67-33% split 

  RMSE MAE R 

ANN-14 (N = 30000) 0.2407 0.1806 0.9984 

ANN-11-4 (N = 30000) 0.4313 0.3374 0.9965 

ANN-10-4-2 (N = 30000) 0.4909 0.3907 0.9933 

SMO-PUK (C = 1200.0, ω = 35.0, σ = 2.5) 1.5884 1.0343 0.9312 

SMO-RBF (C = 1200.0, γ = 1.55) 1.9197 1.247 0.8958 

 

Table 3.7. Comparison of Kα Surrogate Models for High Skew. 
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  Five-fold cross validation 

  RMSE MAE R 
ANN-11 (N = 4000) 0.0451 0.0315 0.9848 

ANN-11-4 (N = 8000) 0.0213 0.0114 0.9966 

ANN-11-3-2 (N = 12000) 0.0209 0.0114 0.9967 

SMO-PUK (C = 10.0, ω = 2.0, σ = 1.7) 0.0192 0.0084 0.9973 

SMO-RBF (C = 35.0, γ = 1.1) 0.0199 0.0084 0.9971 

        

  67-33% split 

  RMSE MAE R 
ANN-11 (N = 4000) 0.0208 0.0146 0.9969 

ANN-11-4 (N = 8000) 0.0216 0.0137 0.9964 

ANN-11-3-2 (N = 12000) 0.0213 0.0130 0.997 

SMO-PUK (C = 10.0, ω = 2.0, σ =1.7) 0.0136 0.0070 0.9984 

SMO-RBF (C = 35.0, γ = 1.1) 0.0139 0.0071 0.9984 

 

Table 3.8. Comparison of Kt Surrogate Models for Zero Skew. 

 

  Five-fold cross validation 

  RMSE MAE R 

ANN-15 (N = 6000) 0.0199 0.0140 0.9973 

ANN-13-3 (N = 15000) 0.0174 0.0126 0.9980 

ANN-13-3-1 (N = 18000) 0.0175 0.0124 0.9979 

SMO-PUK (C = 7.0, ω = 8.0, σ = 1.2) 0.0146 0.0088 0.9986 

SMO-RBF (C = 8.0, γ = 2.1) 0.0148 0.0088 0.9985 

        

  67-33% split 

  RMSE MAE R 
ANN-15 (N = 6000) 0.0172 0.0118 0.9982 

ANN-13-3 (N = 15000) 0.0154 0.0104 0.9985 

ANN-13-3-1 (N = 18000) 0.0153 0.0102 0.9985 

SMO-PUK (C = 7.0, ω = 8.0, σ = 1.2) 0.0158 0.0100 0.9985 

SMO-RBF (C = 8.0, γ = 2.1) 0.0161 0.0101 0.9985 

 

Table 3.9. Comparison of Kt Surrogate Models for Moderate Skew. 

 

 

 



 

35 

 

 

 

  Five-fold cross validation 

  RMSE MAE R 
ANN-13 (N = 35000) 0.0066 0.0049 0.9996 

ANN-11-4 (N = 30000) 0.0069 0.0053 0.9995 

ANN-11-3-2 (N = 25000) 0.0067 0.0051 0.9996 

SMO-PUK (C = 100.0, ω = 10.0, σ = 1.8) 0.0128 0.0077 0.9984 

SMO-RBF (C = 100.0, γ = 0.95) 0.0127 0.0076 0.9984 

        

  67-33% split 

  RMSE MAE R 
ANN-13 (N = 35000) 0.0134 0.0093 0.9992 

ANN-11-4 (N = 30000) 0.0122 0.0082 0.9987 

ANN-11-3-2 (N = 25000) 0.0073 0.0057 0.9995 

SMO-PUK (C = 100.0, ω = 10.0, σ = 1.8) 0.0143 0.0097 0.9981 

SMO-RBF (C = 100.0, γ = 0.95) 0.0153 0.0094 0.9979 

 

Table 3.10. Comparison of Kt Surrogate Models for High Skew. 

 

In all cases, the surrogate models were able to explain the variation in the dataset, which is 

demonstrated by the fact that the computed correlation coefficient values are greater than 0.99. 

The main selection criterion was the RMSE value in the five-fold cross validation results as long 

as the MAE value was also low. RMSE is an indicator of the overall approximation capability of 

the model, whereas a high MAE value indicates large prediction errors for certain points in the 

dataset.  

 

Figures 3.3 through 3.11 present a comparison between the correction factor values computed 

using the derived surrogate models (‘ANN’), the corresponding values computed using Van 

Oossanen’s polynomials (‘VAN’), and the values reported in [20] ‘Morgan’ and in [21] 

‘Cumming’.  
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Figure 3.3 Four-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 2.0 

 

 

Figure 3.4 Four-Bladed Propeller with Moderate Skew at x = 0.9 and π∙λ = 2.0. 
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Figures 3.3 and 3.4 demonstrate the fact that the derived surrogate models are capable of 

approximating the Kc, Ka, and Kt correction factors over the entire range of propeller aspect-ratio 

values for four-bladed propellers. The ANN surrogate model for moderate skew used for Kc (see 

Table 3.3) shows excellent performance considering the wide range of Kc values; this is very 

important because the latter is used to scale the lift-curve slope (see Equation 2.31). Figure 3.5 

reveals that the surrogate models for all three correction factors remain very effective even when 

utilized for radial stations with high skew values. Similar conclusions can be drawn from Figures 

3.6 through 3.8 for five-bladed propellers and from Figures 3.9 through 3.11 for six-bladed 

propellers.  

 

 

Figure 3.5 Four-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 0.8. 
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Figure 3.6 Five-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 2.0. 

 

 

Figure 3.7 Five-Bladed Propeller with Moderate Skew at x = 0.9 and π∙λ = 0.4. 
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Figure 3.8 Five-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 0.8. 

 

 

Figure 3.9 Six-Bladed Propeller with Zero Skew at x = 0.6 and π∙λ = 0.4. 
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Figure 3.10 Six-Bladed Propeller with Moderate Skew, x = 0.9, and π∙λ = 0.4. 

 

 

Figure 3.11 Six-Bladed Propeller with High Skew at x = 0.3 and π∙λ = 1.2. 
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As is amply demonstrated in Figure 3.7, the utilized SMO-PUK surrogate model (see Table 3.9) 

is capable of capturing the nonlinearities present in the Kt values when the latter are plotted as a 

function of the expanded area ratio, unlike the multiple-regression-based polynomials. Figure 3.10 

shows that the ANN model (see Table 3.6) can provide very accurate values for Ka despite the 

nonlinearities present. The Ka and Kt correction factors have an impact on the calculation of the 

three-dimensional values of the zero-lift angle and the ideal angle of incidence through their 

implementation in Equation 2.35.  
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CHAPTER 4 

PERFORMANCE EVALUATION OF BLADE SECTIONS USING CFD 

 

4.1 Introduction 

The original lifting line model assumes inviscid flow around the propeller. Van Oossanen in [19] 

showed the significance of incorporating the effect of viscosity into the propeller analysis and 

utilized boundary layer flow solvers and empirical correlations with experimental data. Viscous 

effects on hydrodynamic loading and cavitation have also been investigated by Shen and 

Dimotakis [49]. In this work, the impact of viscosity is incorporated into the propeller analysis and 

design method by utilizing CFD to compute the lift, drag, and pressure distribution of the two-

dimensional blade sections. The computed values are then utilized in the thrust and torque 

calculation equations listed in Chapter 2, in addition to determining the cavitation-free range of 

the blade section based on the negative minimum pressure coefficient value. 

 

The RANS equations and the turbulence model utilized are described in Section 4.2. The flow 

domain discretization is discussed in Section 4.3; the boundary conditions that are applied to the 

flow domain are discussed in Section 4.4, in addition to a brief description of the RANSE solver 

used in OpenFOAM. The results of a grid verification study are reported in Section 4.5, and 

experimental validation results are provided in Section 4.6, followed by the presentation, in 

Section 4.7, of the hydrodynamic characteristics of the baseline blade sections utilized in the shape 

optimization application described in Chapter 5.      
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4.2 RANS Equations and Turbulence Modeling 

One of the most popular techniques employed in fluid flow computations involves the solution of 

the Reynolds-averaged Navier-Stokes (RANS) equations. The basic premise is that the fluid 

velocity and pressure can be expressed as the sum of mean and fluctuating parts as, 

 𝑢𝑢𝑖𝑖 = 𝑈𝑈𝑖𝑖 + 𝑢𝑢′𝑖𝑖 ,           𝑒𝑒 = 𝑃𝑃 + 𝑒𝑒′ (4.1) 

where the time-averaged mean and fluctuating parts satisfy 

 𝑢𝑢𝚤𝚤� = 𝑈𝑈𝑖𝑖,     𝑢𝑢′𝚤𝚤���� = 0   and   �̅�𝑒 = 𝑃𝑃,    𝑒𝑒′� = 0 (4.2) 

 

Inserting Equation 4.1 into the Navier-Stokes equations for steady fluid flow and taking a time 

average yields, 

 
𝜕𝜕𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖 = 0 (4.3) 

 𝜌𝜌 𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 �𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗� = − 𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝑖𝑖 +
𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 (2𝜇𝜇𝑆𝑆𝑖𝑖𝑗𝑗 − 𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������) (4.4) 

where Sij is the mean strain-rate tensor 

 𝑆𝑆𝑖𝑖𝑗𝑗 =
12 �𝜕𝜕𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 +

𝜕𝜕𝑈𝑈𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖� (4.5) 

and 𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� = −𝜏𝜏𝑖𝑖𝑗𝑗 is the Reynolds stress tensor. 

 

Combining Equations 4.3 and 4.4 we get, 

 𝑈𝑈𝑗𝑗 𝜕𝜕𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 = − 𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝑖𝑖 +
𝜕𝜕2𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 − 𝜕𝜕𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥���������𝜕𝜕𝑥𝑥𝑗𝑗  (4.6) 

The Reynolds stresses are modeled using the Boussinesq hypothesis, 

 −𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� = 2𝜈𝜈𝑁𝑁𝑆𝑆𝑖𝑖𝑗𝑗 − 23 𝜅𝜅𝛿𝛿𝑖𝑖𝑗𝑗 (4.7) 

where νT is the kinetic eddy viscosity and κ is the turbulence kinetic energy defined as, 
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 𝜅𝜅 =
12𝑢𝑢′𝚤𝚤𝑢𝑢′𝚤𝚤������� (4.8) 

 

A transport equation is typically employed to compute the turbulence kinetic energy. One of the 

most popular turbulence models is the κ-ω SST turbulence model. A detailed description of the 

variants of the κ-ω SST model is presented in [50]. The standard model that is available in 

OpenFOAM involves solving two transport equations; one for the turbulence kinetic energy κ and 

a second one for the specific turbulence dissipation rate ω as follows: 

 𝜌𝜌 𝜕𝜕�𝑈𝑈𝑗𝑗𝜅𝜅�𝜕𝜕𝑥𝑥𝑗𝑗 = 𝑃𝑃�𝜅𝜅 − 𝛽𝛽∗𝜌𝜌𝜅𝜅𝜌𝜌 +
𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 �(𝜇𝜇 + 𝜎𝜎𝜅𝜅𝜇𝜇𝑡𝑡) 𝜕𝜕𝜅𝜅𝜕𝜕𝑥𝑥𝑗𝑗� (4.9) 

 𝜌𝜌 𝜕𝜕�𝑈𝑈𝑗𝑗𝜔𝜔�𝜕𝜕𝑥𝑥𝑗𝑗 = 𝛼𝛼𝜌𝜌𝑆𝑆2 − 𝛽𝛽𝜌𝜌𝜌𝜌2 +
𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 �(𝜇𝜇 + 𝜎𝜎𝜔𝜔𝜇𝜇𝑡𝑡) 𝜕𝜕𝜔𝜔𝜕𝜕𝑥𝑥𝑗𝑗� + 2(1− 𝐵𝐵1)𝜌𝜌𝜎𝜎𝜔𝜔2 1𝜔𝜔 𝜕𝜕𝜅𝜅𝜕𝜕𝑥𝑥𝑗𝑗 𝜕𝜕𝜔𝜔𝜕𝜕𝑥𝑥𝑗𝑗 

  (4.10) 

The blending function F1 determines what model is used as it is equal to zero away from the surface 

(where the κ-ε turbulence model is utilized) and is equal to one inside the boundary layer (where 

the κ-ω model is employed). It is defined as: 

 𝐵𝐵1 = tanh ��𝑚𝑚𝑖𝑖𝑛𝑛 �𝑚𝑚𝑎𝑎𝑥𝑥 � √𝜅𝜅𝛽𝛽∗𝜔𝜔𝑦𝑦 ,
500𝜈𝜈𝑦𝑦2𝜔𝜔� ,

4𝜌𝜌𝜎𝜎𝜔𝜔2𝜅𝜅𝐶𝐶𝜋𝜋𝜅𝜅𝜔𝜔𝑦𝑦2��4� (4.11) 

where, 

 𝐶𝐶𝑥𝑥𝜅𝜅𝜔𝜔 = 𝑚𝑚𝑎𝑎𝑥𝑥 �2𝜌𝜌𝜎𝜎𝜔𝜔2 1𝜔𝜔 𝜕𝜕𝜅𝜅𝜕𝜕𝑥𝑥𝑗𝑗 𝜕𝜕𝜔𝜔𝜕𝜕𝑥𝑥𝑗𝑗 , 10−10� and y is the distance from the nearest wall. 

 

The turbulent eddy viscosity is defined as, 

 𝜈𝜈𝑡𝑡 =
𝑑𝑑1max (𝑑𝑑1𝜔𝜔,   |𝑆𝑆|𝐵𝐵2)

 (4.12) 

where |S| is the invariant measure of the strain rate and F2 is another blending function defined as, 
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 𝐵𝐵2 = tanh ��𝑚𝑚𝑎𝑎𝑥𝑥 � √𝜅𝜅𝛽𝛽∗𝜔𝜔𝑦𝑦 ,
500𝜈𝜈𝑦𝑦2𝜔𝜔��2� (4.13) 

 

For the production term in the κ transport equation (Equation 4.9), a limiter is used so as to avoid 

the build-up of turbulence in the stagnation regions, 

 𝑃𝑃𝜅𝜅 = 𝜇𝜇𝑡𝑡 𝜕𝜕𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 �𝜕𝜕𝑈𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗 +
𝜕𝜕𝑈𝑈𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖� ⟶ 𝑃𝑃�𝜅𝜅 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑃𝑃𝜅𝜅 , 10𝛽𝛽∗𝜌𝜌𝜅𝜅𝜌𝜌)  (4.14) 

 

The constants used in the equations are calculated via blending of the corresponding constants of 

the two turbulence models, for example, 

 𝛼𝛼 = 𝛼𝛼1𝐵𝐵 + 𝛼𝛼2(1− 𝐵𝐵) (4.15) 

The values of these constants are [50],  

β* = 0.09, α1 = 5/9, β1 = 3/40, ακ1 = 0.85, αω1 = 0.5, α2 = 0.44, β2 = 0.0828, ακ2 = 1, and  αω2 = 

0.856. 

 

In was decided to utilize the κ-ω SST turbulence model developed by Langtry and Menter [51, 

52], which has the capability to predict boundary layer flow transition from laminar to turbulent 

using two additional transport equations and empirical correlations. The version of the model 

utilized in this work corresponds to the one modified by Langtry and Menter in order to improve 

the prediction of natural transition [53]. As will be shown in later sections the utilized turbulence 

model increases the prediction accuracy of  integral variables, like the lift and drag coefficients, 

but also of flow field properties, like the pressure distribution on the blade section, compared to 

the standard κ-ω SST turbulence model.  
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In order to predict the flow transition, two additional transport equations are solved: one for the 

intermittency γ, and a second one for the transition momentum-thickness Reynolds number 𝜌𝜌𝑒𝑒�𝜃𝜃𝑡𝑡. 
According to the formulation presented in [53], the γ transport equation is given as, 

 𝜌𝜌 𝜕𝜕�𝑈𝑈𝑗𝑗𝛾𝛾�𝜕𝜕𝑥𝑥𝑗𝑗 = 𝑃𝑃𝛾𝛾 − 𝐸𝐸𝛾𝛾 +
𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 ��𝜇𝜇 +

𝜇𝜇𝑡𝑡𝜎𝜎𝑓𝑓� 𝜕𝜕𝛾𝛾𝜕𝜕𝑥𝑥𝑗𝑗� (4.16) 

where the source term is defined as 

 𝑃𝑃𝛾𝛾 = 𝐵𝐵𝑙𝑙𝑒𝑒𝑛𝑛𝑛𝑛𝑡𝑡ℎ𝑐𝑐𝑎𝑎1𝜌𝜌𝑆𝑆[𝛾𝛾𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡]0.5(1− 𝑐𝑐𝑒𝑒1𝛾𝛾) (4.17) 

Flength is an empirical correlation that controls the length of the transition region and Fonset controls 

the transition onset location. The destruction term is defined as 

 𝐸𝐸𝛾𝛾 = 𝑐𝑐𝑎𝑎2𝜌𝜌Ω𝛾𝛾𝐵𝐵𝑡𝑡𝑢𝑢𝑟𝑟𝑡𝑡(𝑐𝑐𝑒𝑒2𝛾𝛾 − 1) (4.18) 

where Ω is the vorticity magnitude. The transition onset is controlled by the correlation between 

the vorticity Reynolds number (Rev) and the momentum thickness Reynolds number (Reθ) as 

follows: 

 𝜌𝜌𝑒𝑒𝑣𝑣 =
𝜌𝜌𝑦𝑦2𝑆𝑆𝜇𝜇  (4.19) 

 𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡1 =
𝑅𝑅𝑒𝑒𝑣𝑣2.193𝑅𝑅𝑒𝑒𝜃𝜃𝑐𝑐 (4.20) 

 𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡2 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡1,𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡14 ), 2.0) (4.21) 

 𝜌𝜌𝑒𝑒𝑁𝑁 =
𝜌𝜌𝜅𝜅𝜇𝜇𝜔𝜔 (4.22) 

 𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡3 = 𝑚𝑚𝑎𝑎𝑥𝑥 �1 − �𝑅𝑅𝑇𝑇2.5�3 , 0� (4.23) 

 𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡2 − 𝐵𝐵𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡3, 0) (4.24) 

where ReθC is the critical Reynolds number where the intermittency first starts to increase in the 

boundary layer.  
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The transport equation for 𝜌𝜌𝑒𝑒�𝜃𝜃𝑡𝑡 is as follows: 

 𝜌𝜌 𝜕𝜕�𝑈𝑈𝑗𝑗𝑅𝑅𝑒𝑒�𝜃𝜃𝑡𝑡�𝜕𝜕𝑥𝑥𝑗𝑗 = 𝑃𝑃𝜃𝜃𝑡𝑡 +
𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗 �𝜎𝜎𝜃𝜃𝑡𝑡(𝜇𝜇 + 𝜇𝜇𝑡𝑡) 𝜕𝜕𝑅𝑅𝑒𝑒�𝜃𝜃𝑡𝑡𝜕𝜕𝑥𝑥𝑗𝑗 � (4.25) 

where,  

 𝑃𝑃𝜃𝜃𝑡𝑡 = 𝑐𝑐𝜃𝜃𝑡𝑡 𝜌𝜌𝑡𝑡 �𝜌𝜌𝑒𝑒𝜃𝜃𝑡𝑡 − 𝜌𝜌𝑒𝑒�𝜃𝜃𝑡𝑡�(1.0− 𝐵𝐵𝜃𝜃𝑡𝑡) (4.26) 

 𝜌𝜌𝑒𝑒𝜃𝜃𝑡𝑡 =
𝜌𝜌𝜃𝜃𝑡𝑡𝑈𝑈0𝜇𝜇  (4.27) 

 𝑡𝑡 =
500𝜇𝜇𝜌𝜌𝑈𝑈2  (4.28) 

t is a time scale which is present for dimensional reasons and Reθt is the transition Reynolds number 

based on the freestream conditions. Also, 

 𝐵𝐵𝜃𝜃𝑡𝑡 = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑚𝑚𝑎𝑎𝑥𝑥 �𝐵𝐵𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒𝑒𝑒−�𝑦𝑦𝛿𝛿�4 , 1.0 − 𝛾𝛾−1 𝑐𝑐𝑒𝑒2⁄1−1 𝑐𝑐𝑒𝑒2⁄ � , 1� (4.29) 

 𝑔𝑔𝐵𝐵𝐿𝐿 =
𝑅𝑅𝑒𝑒�𝜃𝜃𝑡𝑡𝜇𝜇𝜌𝜌𝑈𝑈 ;     𝛿𝛿𝐵𝐵𝐿𝐿 =

152 𝑔𝑔𝐵𝐵𝐿𝐿;     𝛿𝛿 =
50Ω𝑦𝑦𝑈𝑈 𝛿𝛿𝐵𝐵𝐿𝐿 (4.30) 

 𝜌𝜌𝑒𝑒𝜔𝜔 =
𝜌𝜌𝜔𝜔𝑦𝑦2𝜇𝜇 ;     𝐵𝐵𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒 = 𝑒𝑒−�𝑅𝑅𝑒𝑒𝜔𝜔1𝐸𝐸+5�2 (4.31) 

The values of the various constants in the model are [53], 

 𝑐𝑐𝑒𝑒1 = 1.0;  𝑐𝑐𝑎𝑎1 = 2.0;  𝑐𝑐𝑒𝑒2 = 50;  𝑐𝑐𝑎𝑎2 = 0.06; 𝜎𝜎𝑓𝑓 = 1.0; 𝑐𝑐𝜃𝜃𝑡𝑡 = 0.03; 𝜎𝜎𝜃𝜃𝑡𝑡 = 2.0  

 

The two additional transport equations are integrated into the standard κ-ω SST formulation by 

modifying the source and decay terms in the κ transport equation as, 

 𝑃𝑃�𝑠𝑠 = 𝛾𝛾𝑒𝑒𝑓𝑓𝑓𝑓𝑃𝑃𝑠𝑠;   𝑥𝑥�𝑠𝑠 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑚𝑚𝑎𝑎𝑥𝑥�𝛾𝛾𝑒𝑒𝑓𝑓𝑓𝑓, 0.1�, 1�𝑥𝑥𝑠𝑠 (4.32) 

and the blending function in the ω transport equation as,  

 𝜌𝜌𝑦𝑦 =
𝜌𝜌𝑦𝑦√𝜅𝜅𝜇𝜇 ;   𝐵𝐵3 = 𝑒𝑒𝑒𝑒−�𝑅𝑅𝑦𝑦120�8 ;  𝐵𝐵1 = 𝑚𝑚𝑎𝑎𝑥𝑥�𝐵𝐵1𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛,𝐵𝐵3� (4.33) 
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where Pk, Dk, and F1orig are the original source term, the decay term, and the blending function, 

respectively. The transition κ-ω SST model is available in the OpenFOAM-dev, the current 

development line of OpenFOAM. 

 

4.3 Discretization of the Flow Domain for 2-D Blade Sections 

The domain constructed for the evaluation of the blade sections is illustrated in Figure 4.1. It 

consists of a semicircular arc of radius 15∙c (where c is the section chord length) at the inlet and a 

rectangular block extending up to 50∙c in the downstream direction. In order to to allow for better 

control of the grid spacing in the boundary layer region, the domain was subdivided into a smaller 

semicircular arc of radius 2∙c around the blade section. The portion of this subdivision extending 

in the downstream direction aligns itself with the wake based on the angle-of-attack value as 

illustrated in Figures 4.2 and 4.3. The foil is divided into two sections near the mid-chord so as to 

have a denser distribution of cells in the vicinity of the leading and trailing edges. At least ten cells 

in the direction normal to the blade section surface are placed within the boundary layer in order 

to provide adequate flow resolution in that region, as shown in Figure 4.4. The number of cells in 

each segment and the corresponding expansion ratio are listed in Table 4.1. The total number of 

cells is 120,000; that number was decided upon after performing a grid verification analysis, which 

is discussed in Section 4.5. The GNU Octave script used to generate the OpenFOAM grid is 

available in Appendix H. 
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Segments Cells Expansion Ratio 

Foil (Front) 150 5 

Foil (Back) 100 0.2 

Downstream 250 600 

Transverse (Inner) 85 30000 

Transverse (Outer) 25 3 

 

Table 4.1: Number of Cells and Expansion Ratio in Each Segment of the Grid. 

 

 

Figure 4.1 Fluid Flow Domain Used in CFD Simulations. 

 

 

Figure 4.2 Grid with the Blade Section at 0o Angle of Attack. 
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Figure 4.3 Grid with the Blade Section at -4o Angle of Attack. 

 

   

 

Figure 4.4 Mesh Details in the Vicinity of the Blade Section. 

 

4.4 Description of the CFD Simulation Settings 

The RANS equations and the four transport equations of the turbulence model are solved in 

OpenFOAM using the geometric-algebraic multigrid (GAMG) solver, the Gauss-Seidel smoother, 

and the semi-implicit method for pressure-linked equations (SIMPLE). The relaxation factor was 

set equal to 0.3 for the pressure and to 0.7 for all the other transported flow properties. OpenFOAM 
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is based on finite volume discretization with Gaussian integration, which requires the interpolation 

of the cell center values to the cell face centers. For the advection terms, the advective field needs 

to be interpolated to the cell faces; it was decided to use a second order, upwind-biased scheme for 

the velocity, the intermittency γ, and for the transition momentum-thickness Reynolds number 𝜌𝜌𝑒𝑒�𝜃𝜃𝑡𝑡, and the ‘limitedLinear’ scheme for κ and ω, which limits towards the first-order upwind 

scheme in regions of rapidly changing gradient and towards the second-order linear scheme in all 

others. The diffusion terms are discretized using a central-differencing scheme. 

 

A fixed-velocity boundary condition was enforced at the inlet of the domain and a zero-gradient 

boundary condition was enforced at the outlet. For the pressure, the boundary conditions are zero-

gradient at the inlet and a fixed value of zero at the outlet. At the inlet, the value of γ was set equal 

to one and the value of Reθt was set following the guidelines provided in [53]. The inlet value of 

ω is set equal to five times the value of the ratio of the freestream velocity U∞ and the chord length 

c; the value of κ is set equal to 10-6∙U∞
2, which corresponds to a freestream turbulence intensity 

level of 0.08165% [54]. The boundary condition at the wall is zero-gradient for all transported 

properties. The blade sections were tested at a chord Reynolds number of 20 million with an 

average value of the dimensionless wall distance y+ ≃2 in order to resolve the flow all the way to 

the viscous sublayer without having to use wall functions. The CFD simulations were terminated 

when the scaled residuals of all the governing equations have been reduced by at least five orders 

of magnitude, provided that the values of the lift and drag coefficients had  also converged.  
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4.5 Grid Convergence Study 

A grid convergence study was carried out for the YS920 foil section [3] as per the guidelines 

prescribed in [55]. The transition κ-ω SST model was used at a chord Reynolds number of 20 

million. Three systematically refined grids with 30,000, 60,000, and 120,000 cells, respectively, 

were tested according to the procedure described in the following paragraphs. 

 

A representative cell size is first calculated using the formula, 

 ℎ = �1𝑁𝑁∑ 𝛥𝛥𝐴𝐴𝑖𝑖𝑁𝑁𝑖𝑖=1 �12 (4.34) 

where ΔAi is the area of the ith cell and N is the number of cells. The grid refinement factor r is 

then calculated. The summation of areas of individual cells yields the same value of the total 

domain area and so the r value is, 

 𝑟𝑟 =
ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑒𝑒ℎ𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑢𝑢𝑚𝑚 =

ℎ𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑢𝑢𝑚𝑚ℎ𝑐𝑐𝑖𝑖𝑎𝑎𝑟𝑟𝑠𝑠𝑒𝑒 = � 𝑁𝑁𝑓𝑓𝑖𝑖𝑛𝑛𝑒𝑒𝑁𝑁𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑢𝑢𝑚𝑚 = �𝑁𝑁𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑢𝑢𝑚𝑚𝑁𝑁𝑐𝑐𝑖𝑖𝑎𝑎𝑟𝑟𝑠𝑠𝑒𝑒 ≈ 1.414 (4.35) 

 

The variables φ chosen for this study are the drag coefficient of drag CD and the negative minimum 

pressure coefficient -CPmin. Their apparent order is calculated by, 

 𝑒𝑒 =
1ln 𝑟𝑟 ln|𝜀𝜀32 𝜀𝜀21⁄ | (4.36) 

where 𝜀𝜀32 = 𝜑𝜑3 –  𝜑𝜑2 and 𝜀𝜀21 = 𝜑𝜑2 –  𝜑𝜑1, with φk denoting the solution on the kth grid. 

 

The extrapolated values of the variables are calculated from the formula, 

 𝜑𝜑𝑒𝑒𝑥𝑥𝑡𝑡21 =
𝑟𝑟𝑝𝑝𝜑𝜑1−𝜑𝜑1𝑟𝑟𝑝𝑝−1   (4.37) 

The approximate relative error is, 
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 𝑒𝑒𝑎𝑎21 = �𝜑𝜑1−𝜑𝜑2𝜑𝜑1 � (4.38) 

the extrapolated relative error is, 

 𝑒𝑒𝑒𝑒𝑥𝑥𝑡𝑡21 = �𝜑𝜑𝑒𝑒𝑥𝑥𝑡𝑡12 −𝜑𝜑1𝜑𝜑𝑒𝑒𝑥𝑥𝑡𝑡12 � (4.39) 

and the grid convergence index is, 

 𝐺𝐺𝐶𝐶𝐼𝐼21 =
1.25𝑒𝑒𝑎𝑎21𝑟𝑟𝑝𝑝−1   (4.40) 

 

The results of the grid convergence study are tabulated in Table 4.2.  

 

  φ ε 

  Coarse Medium  Fine 21 32 

# of 

Cells 
30000 60000 120000 - - 

CD 6.94∙10-3 6.59∙10-3 6.60∙10-3 3.54∙10-4 -1.41∙10-5 

-CPmin 0.3982 0.3995 0.3997 -1.30∙10-3 -2.00∙10-4 

 

  21-32 

pCD 9.30 

pCPmin 5.40 

 

  φext ea% eext% GCI % 

  21 32 21 32 21 32 21 32 

CD 7.0∙10-3 6.6∙10-3 5.0948 0.2138 0.2109 0.0089 0.2642 0.0111 

-CPmin 0.3980 0.3995 0.3265 0.0501 0.0594 0.0091 0.0742 0.0114 

 

Table 4.2 Grid Convergence Index Calculation Results. 

 

The negative value of ε32 / ε21 for CD is an indication of oscillatory convergence, however, 

considering the very low value of ε32, we can presume that the ‘exact’ solution has been attained. 

The GCI values, which quantify the numerical uncertainty on the fine grid for CD and -CPmin are 
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0.0111% and 0.0114%, respectively, which imply that the solutions obtained with the fine grid are 

grid-independent. It was therefore decided to use the fine grid with 120,000 cells in all the CFD 

simulations that were performed. 

 

4.6 Experimental Validation  

The CFD solver was tested with both the standard (‘SST’) and the transition (‘SST-LM’) κ-ω SST 

models in order to validate the predictions with experimental data for three foil profiles.  

 

4.6.1 NACA 2410 Profile 

The NACA 2410 airfoil section was tested first for lift and drag calculations at angles of attack of 

2 and 4 degrees. The simulations were performed at a chord Reynolds number of 9 million in order 

to compare the CFD results with the experimental data provided in [56]. The results listed in Table 

4.3 show very good agreement for both models regarding the computation of the lift coefficient. 

However, the transition κ-ω SST model performs significantly better than the standard model in 

predicting the drag coefficient, mainly due to the inherent assumption in the standard κ-ω SST 

model that the flow is fully turbulent over the entire foil section.  

 

    CL CD CM Iterations y+ 

4 degrees 

Experiment 0.665 0.0070 -0.0485 -    

SST 0.660 0.0092 -0.0481 1590 1.11 

SST-LM 0.661 0.0079 -0.0476 2044 1.01 

2 degrees 

Experiment 0.450 0.0060 -0.0485 -    

SST 0.445 0.0080 -0.0492 1381 1.10 

SST-LM 0.445 0.0073 -0.0489 1884 1.03 

 

Table 4.3 CFD Results and Experimental Data for the NACA 2410 Profile. 
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4.6.2 G1Profile 

The validation process was continued with the G1 foil section, which has been tested 

experimentally by Bourgoyne et al. [57]. The G1 profile airfoil has a nearly flat pressure side and 

a NACA 16 suction side which is modified with a rounded trailing edge bevel of apex angle 44° 

(see Figure 4.5).  The simulations were performed at a chord Reynolds number of 8 million. The 

results reported in Table 4.4 show a much better agreement between the transition κ-ω SST model 

results and the experimental data for both lift and drag. The convergence of CL and CD is shown 

in Figures 4.6 and 4.7, respectively. 

 

 

Figure 4.5 The G1 Profile. 

 

    CL CD CM Iterations y+ 

0 degrees 

Experiment 0.52 0.0060  - -  -  

SST 0.47 0.0083 -0.1125 2072 1.56 

SST-LM 0.51 0.0064 -0.1202 2097 1.29 

 

Table 4.4 CFD Results and Experimental Data for the G1 Profile. 
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Figure 4.6 Convergence of CL with the Transition κ-ω SST Model for the G1 Profile. 

 

 

Figure 4.7 Convergence of CD with the Transition κ-ω SST Model for the G1 Profile. 
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4.6.3 E817 Profile 

The E817 foil section [58] was tested at a chord Reynolds number of 500,000 to check the validity 

of the computed negative minimum pressure coefficient values but also of the pressure distribution 

along the foil section. The experimental data reported here were obtained by Astolfi et al. [59]. 

The results listed in Table 4.5 demonstrate that the transition κ-ω SST model provides a more 

accurate prediction of the pressure coefficient on the suction side at higher values of the angle of 

attack. Similar to the conclusions drawn in Section 4.6.1, the predicted drag coefficient values are 

significantly lower than the values computed using the standard κ-ω SST model. 

 

Astolfi et al. [59] also performed a comparison between the experimental values of -CPmin, the 

minimum negative pressure coefficient, and σ, the vapor cavitation number. The latter is defined 

as: 

 𝜎𝜎 =
𝑡𝑡∞− 𝑡𝑡𝑣𝑣12𝜌𝜌𝑉𝑉2       (4.41) 

where 𝑒𝑒∞is the ambient pressure, 𝑒𝑒𝑣𝑣 is the fluid vapor pressure, and the term in the denominator is 

the dynamic stagnation pressure. The minimum pressure coefficient for the flow along a blade 

section can be written as: 

   − |𝐶𝐶𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛| =
𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛− 𝑡𝑡∞12𝜌𝜌𝑉𝑉2        (4.42) 

where 𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum pressure along the section. When the resultant local fluid velocity V 

becomes sufficiently great so that  𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 =  𝑒𝑒𝑣𝑣 , cavitation inception will occur at that location 

along the section. For a propeller blade section, the velocity V can be calculated from equation 

2.38. As shown in Table 4.5, there is fairly good agreement between the measured -CPmin values 

and the σ values at which cavitation inception was observed.  
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    CL CD -CPmin σ # of Iterations y+ 

0 degrees 

Measured  - -  0.52 0.51  - -  

SST 0.401 0.0121 0.50 - 1038 0.18 

SST-LM 0.404 0.0083 0.50 - 3000 0.13 

1 degree 

Measured  -  - 0.53 0.56  -  - 

SST 0.507 0.0126 0.55 - 1122 0.18 

SST-LM 0.512 0.0083 0.54 - 3000 0.13 

3 degrees 

Measured  - -  1.18 1.03  - -  

SST 0.644 0.0135 1.02 - 1027 0.18 

SST-LM 0.662 0.0082 1.13 - 3000 0.13 

 

Table 4.5 Computed and Measured [59] Data for the E817 Hydrofoil Profile. 

 

Figures 4.8 and 4.9 illustrate the plots of –CP over the suction side for 0° and 3°, respectively. As 

shown in Figure 4.8, the transition κ-ω SST model provides an accurate prediction of the 

characteristic rooftop-type pressure distribution on the suction side in the region between 0.7c and 

the trailing edge. 

 

 

Figure 4.8 Pressure Coefficient Distribution on the Suction Side of E817 at 0°. 
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The transition κ-ω SST model also provides a more accurate prediction of the negative minimum 

pressure coefficient value near the leading edge at the 3° angle of attack as shown in Table 4.5 and 

in Figure 4.9.  The standard κ-ω SST model significantly underpredicts the strong suction pressure 

peak at the leading edge. This is of particular significance as the negative minimum pressure 

coefficient is utilized as an indicator of cavitation inception in the investigation presented in 

Chapter 5. Similar to the 0°-angle-of-attack case, the two models predict a different pressure 

distribution in the region between 0.7c and the trailing edge.  

 

 

Figure 4.9 Pressure Coefficient Distribution on the Suction Side of E817 at 3°. 

 

 

4.7 Evaluation of Baseline Propeller Blade Sections 

The E817 profile [55], shown in Figure 4.10, and the YS920 profile [3, 60], shown in Figure 4.11, 

were chosen as the baseline foil sections to be utilized in the optimization procedure presented in 

Chapter 5 owing to their superior cavitation properties [34, 60]. Both profiles have a fairly thick 
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leading edge, which theoretically enables effective delay of the suction pressure peak [3]. The foils 

were tested at a chord Reynolds number of 2.0∙107, a typical operating value of a full-scale ship 

propeller, using the transition κ-ω SST model. The E817 has a maximum-thickness-to-camber 

ratio of approximately 11% while the YS920 maximum-thickness-to-camber ratio is 9%.  

 

Assuming a design lift coefficient CLd = 0.3 and a design cavitation number σd = 0.6, typical design 

values for propeller blade sections [1, 3], the angle of attack, the corresponding value of the drag 

coefficient, the value of -CPmin, and the cavitation-free angle range are listed in Table 4.6, in 

addition to the non-dimensional section modulus values (based on the chord length).  

 

The negative minimum pressure coefficient values for various angles of attack (bucket diagram) 

for the E817 and the YS920 profiles are plotted in Figures 4.12 and 4.13, respectively. Based on 

the plot shown in Figure 4.12, the lift coefficient value of 0.3 corresponds to an angle near the 

midpoint of the bottom segment of the cavitation bucket.  

 

 

 

Figure 4.10 E817 Profile. 

 

A comparison between the CFD results and the experimental data for the YS920 profile reported 

by Shen [60], albeit at a chord Reynolds number of 2.5∙106, shows that the computed value of -
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2.52° for the zero-lift angle is very close to the experimental value of 2.45°. The calculated lift-

curve slope is 0.106 per degree, which is also in good agreement with the experimentally measured 

value of 0.103. The computed cavitation-free angle range at the cavitation number σ = 0.45 is 

3.16° (see Figure 4.13), a value that is also very close to the experimental value of 3.20°. 

 

  (α°) CD -CPmin Bucket Width (°) Section Modulus 

E817 -1.40 6.66∙10-3 0.477 3.91 9.29∙10-4 

YS920 0.16 6.65∙10-3 0.405 3.85 6.98∙10-4 

 

Table 4.6 Analysis of Baseline Blade Sections. 

 

 

Figure 4.11 YS920 Profile. 
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Figure 4.12: Cavitation-Free Bucket Diagram of E817 Profile.  

 

 

Figure 4.13 Cavitation-Free Bucket Diagram of YS920 Profile.  
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CHAPTER 5 

DESIGN OF BLADE SECTIONS WITH GOOD CAVITATION PERFORMANCE AND 

LOW DRAG 

 

5.1 Introduction 

One of the most critical aspects of marine propeller design for high-speed applications corresponds 

to the design of the blade sections. The traditional formulation of the blade section design problem 

is to utilize a parent (baseline) foil section, e.g. the modified NACA 66 thickness form combined 

with the a = 0.8 mean line [1], and determine the angle of attack, the maximum-thickness-to-chord 

ratio and the maximum-camber-to-chord ratio that minimize the drag coefficient for a prescribed 

lift coefficient and cavitation number subject to constraints regarding the structural properties of 

the blade sections. For high-speed vessels, additional cavitation constraints can be imposed 

through the utilization of computational tools capable of predicting the characteristics of the cavity, 

i.e. volume and length. A successful application of this approach can be found in [7, 8].  

 

A different approach, which was originally proposed by Shen and Eppler [2, 3] is to design blade 

sections with the main design goal being to suppress or delay cavitation inception over the widest 

possible range of angles of attack. The design problem in that case is formulated as follows: For a 

prescribed value of the blade section lift coefficient find the shape, i.e., thickness and camber 

distribution, that allows the largest variation in the angle of attack without occurrence of surface 

cavitation at a given blade section cavitation number. This range, which can be measured in the 

minimum pressure envelope of the profile, is also termed the bucket width (see Figure 5.1). The 

solution to this problem is obtained through a conformal mapping process where the section profile 
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is designed based on a prescribed pressure, or velocity, distribution in a way that allows the 

designer to control certain performance characteristics, e.g., the extent of the constant pressure 

region and the starting point of the pressure recovery region on both the pressure and suction sides 

of the blade section [4].  

 

The YS920 [3] and E817 [58] profiles were designed using the aforementioned conformal mapping 

method. An additional successful application of this method for the design of a wake-adapted 

propeller for a frigate is demonstrated in [5]. The importance of considering two design goals, i.e., 

maximize the bucket width while maximizing the lift-to-drag ratio, was considered by Yamaguchi 

et al. [6] for the design of blade sections for the propeller of a high-speed vessel.  

 

In this work, the shape optimization problem is formulated in the following way.  For a given 

design lift coefficient CLd find the blade section that has the maximum cavitation-free range (CFR) 

at a given design cavitation number σd and minimum drag coefficient CD at the corresponding 

design angle αd while satisfying constraints regarding the section modulus (SM) and the minimum 

distance between the operating conditions and the bottom of the cavitation-free bucket. The design 

angle αd is defined as the angle at which the design lift coefficient CLd is obtained. The inherent 

assumption in this approach is that cavitation occurs when the fluid pressure falls below the vapor 

pressure. 

 

The section modulus of the blade section is utilized as a structural constraint in lieu of a blade 

section strength calculation. The minimum distance DM between the operating conditions, i.e. the 

given design cavitation number σd, and the bottom of the bucket, as illustrated in Figure 5.1, 
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corresponds to the margin against bubble (mid-chord) cavitation. The latter occurs for angles of 

attack in the vicinity of the ideal angle, i.e., the region at the bottom of the bucket. 

 

Figure 5.1 Schematic Illustration of Blade Section Bucket Diagram. 

 

As will be demonstrated later in this chapter, the two design objectives are conflicting, i.e., there 

is no single optimal solution but a set of optimal solutions that correspond to trade-offs between 

the objectives.  

 

5.2 Parameterization of the Blade Section Shape 

The blade section is parameterized using two cubic B-splines; one for the upper and one for the 

lower side. The B-splines are generated by utilizing eleven control points for each surface as shown 

in Figure 5.2. Assuming that the chord length is equal to one, the first control point, which is 

common to both sides, is placed on the leading edge with coordinates (0, 0). The last control point 
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is placed on the trailing edge with coordinates    (1, 0). Nine additional control points are placed 

at intermediate positions on each side. The abscissa of each of those points is kept fixed: [0, 0.1, 

0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95] and their ordinates are varied in order to generate different profiles.  

 

 

Figure 5.2 Distribution of Control Points of Cubic B-Splines. 

 

The range of the ordinate of each control point is given in Table 5.1. The ordinates of the 18 control 

points form the vector of design variables x; the ranges listed in Table 5.1 also correspond to the 

bound constraints of the optimization problem. Those ranges were based on the values that were 

used to generate the baseline designs (Profiles E817 and YS920). 

 

5.3 Formulation of the Multi-Objective Shape Optimization Problem 

The blade section shape optimization problem is defined as follows: 

                              Maximize:   f1(x) = (CFR) @ σd                     (5.1) 

Minimize    f2(x) = CD @ αd                     (5.2) 

Subject to:  g1(x) = DM ≥ 0.05                       (5.3) 

                               g2(x) = SM  ≥ 8.5∙10-4        (5.4)                      
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where the design lift coefficient CLd = 0.30 and the design cavitation number σd = 0.60. The vector 

of design variables x consists of the 18 control points, and the ranges listed in Table 5.1 are the 

corresponding lower and upper bound values of each design variable j, xjl and xju, respectively. 

The vector x is defined as: x = (x1, x2,…, x18),  xjl ≤ xj ≤ xju,  j = 1,…,18. 

 

Control 

Point 

Min 

Ordinate 

Max 

Ordinate 

1 0.0101 0.0133 

2 0.0350 0.0442 

3 0.0460 0.0565 

4 0.0560 0.0690 

5 0.0610 0.0762 

6 0.0530 0.0665 

7 0.0375 0.0505 

8 0.0200 0.0271 

9 0.0115 0.0142 

10 -0.0135 -0.0105 

11 -0.0400 -0.0309 

12 -0.0464 -0.0370 

13 -0.0454 -0.0355 

14 -0.0325 -0.0235 

15 -0.0195 -0.0047 

16 -0.0130 0.0019 

17 -0.0075 0.0070 

18 -0.0028 0.0073 

 

Table 5.1 Ordinate Range of each Control Point of the Cubic B-Splines. 

 

5.4 Surrogate Models of Objective and Constraint Functions 

The multi-objective shape optimization problem was solved using surrogate models of the 

objective and constraint functions. The open source data mining software WEKA [41] was utilized 

to obtain the surrogate models, which were based on ANNs. The ANNs were developed and 

trained using a data set of points selected from within the design variable space according to an 
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experimental design methodology, Uniform Design [61, 62], which is also applicable to numerical 

simulations. Uniform Design is a statistical technique that generates a fractional factorial design 

and has been shown [63] to be a very effective sampling strategy even when small data sets are 

available. Therefore, it was decided to use a U121(1118) uniform design for 121 runs with 18 factors 

(design variables) each having 11 discrete levels. Considering the continuous nature of the design 

variables, each one of the ranges listed in Table 5.1 was discretized into 11 equispaced values. The 

121 blade sections were analyzed using OpenFOAM at a chord Reynolds number of 20 million in 

order to obtain the corresponding values of f1(x),  f2(x),  and g1(x), and generate the data set of 

training points.  

 

5.5 Description of the Multi-Objective Optimization Process 

The multi-objective shape optimization problem formulated in Section 5.3 was solved using the 

Adaptive Coevolutionary Multi-Objective Particle Swarm Optimizer (ACMOPSO) [64, 65]. 

ACMOPSO explores the design variable space using the search mechanisms of particle swarm 

optimization [66]; a bio-inspired search algorithm that has been developed in the field of 

evolutionary computation [67]. As already mentioned in Section 5.1, when the optimization 

objectives are conflicting, there is no single optimal solution but a set of optimal solutions that 

correspond to trade-offs between the objectives. This set of feasible optimal solutions is termed 

the Pareto-optimal set, and its representation in the objective function space is termed the Pareto-

optimal front. 
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The concept of Pareto optimality is briefly described in this section. In unconstrained optimization 

problems, solution vector xA dominates solution vector xB, if and only if the following two 

conditions for Pareto dominance are both satisfied: 

• The objective vector that corresponds to solution xA is no worse than the objective vector that 

corresponds to solution xB in all objectives.  

• Solution xA is strictly better than solution xB in at least one objective. 

If solution xA is not dominated by any other solution, it is called a Pareto-optimal solution, and the 

corresponding objective function vector belongs to the set of vectors that comprise the Pareto-

optimal front. In constrained problems, like the problem formulated in section 5.3, xA constraint-

dominates xB if any of the following conditions are satisfied [68]: 

• Both xA and xB are feasible and xA dominates xB based on the aforementioned conditions for 

Pareto dominance. 

• Both xA and xB are infeasible but xA  has a smaller constraint violation.  

• Solution xA is feasible and solution xB is not. 

 

In the current work, a version of ACMOPSO with five swarms was employed for the solution of 

the optimization problem defined in Equations 5.1 through 5.4. It was shown in [64] that by 

applying ACMOPSO with five swarms to a number of benchmark problems, the search algorithm 

was able to converge to the true Pareto-optimal front in a very fast manner.  

 

ACMOPSO was run for 500 iterations per optimization cycle using five swarms with twenty 

particles, i.e. solution vectors, in each. At the end of the first cycle, six solutions were selected 

from the computed Pareto-optimal front. The corresponding blade section shapes were generated 
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using cubic B-splines, and their performance was evaluated using OpenFOAM. The results were 

added to the existing dataset of 121 blade sections and the surrogate models were reconstructed 

in WEKA. This iterative process was repeated until the computed optimal set showed minimal 

changes between two successive iterations. A total of three optimization cycles was required in 

order to obtain the final Pareto-optimal front. A flowchart of the optimization process is shown in 

Figure 5.3. 

 

 

Figure 5.3 Flowchart of Multi-Objective Shape Optimization Process. 
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5.6 Multi-Objective Shape Optimization Results 

The Pareto-optimal front that was obtained after performing three optimization cycles is shown in 

Figure 5.4. The trade-off between minimizing the drag coefficient at the design angle and 

maximizing the bucket width at the operating conditions is clearly illustrated. It needs to be noted 

that all the depicted solutions are feasible, i.e. satisfy the constraints listed in Equations 5.3 and 

5.4. It was decided to select one Pareto-optimal solution and analyze it using OpenFOAM in order 

to verify the prediction accuracy of the surrogate models, but also to compare the Pareto-optimal 

solution with the E817 profile and validate the claim that the implemented design optimization 

procedure can produce solutions with superior capabilities compared to the baseline profiles.  

 

Among the obtained Pareto-optimal solutions, a solution vector located in the ‘knee’ section of the 

front was selected; the ‘knee’ corresponds to the part of the front with solutions that provide a 

balanced trade-off between low drag and wide cavitation bucket width. The selected solution is 

highlighted in Figure 5.4 and the corresponding profile is shown in Figure 5.5. The coordinates of 

the profile are available in Appendix I. A comparison between the values predicted by the surrogate 

models and the actual values of the objectives and constraints is presented in Table 5.2. It can be 

observed that all the predicted values are fairly close to the actual values. The cavitation bucket 

diagram of the selected profile is shown in Figure 5.6. 

 

  CD DM Bucket Width (°) Section Modulus 

Actual 6.50∙10-3 0.108 4.25 9.27∙10-4 

Predicted 6.43∙10-3 0.112 4.21 9.23∙10-4 

 

Table 5.2 Actual vs. Predicted Values of Objectives and Constraints. 
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Figure 5.4 Computed Pareto-Optimal Front. 

 

 

Figure 5.5 Pareto-Optimal Blade Section Profile. 
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Figure 5.6 Bucket Diagram of Pareto-Optimal Profile. 

 

5.7 Comparison between the Pareto-Optimal and the E817 Profiles 

The two profiles are depicted in Figure 5.7, their geometric characteristics are listed in Table 5.3, 

and the results of their hydrodynamic performance analysis are listed in Table 5.4. The combined 

cavitation bucket diagrams are shown in Figure 5.8.   

 

A comparison between the geometric characteristics of the two profiles reveals that the maximum-

thickness-to-chord-length ratio of the selected Pareto-optimal profile is slightly smaller than the 

E817 profile value, however, the section modulus values of the two profiles are almost identical. 

The location of the maximum-thickness-to-chord-length ratio xt,max/c  and of the maximum-

camber-to-chord-length ratio xf,max/c along the new profile are both farther aft than the 

corresponding locations along the E817 profile. Lower camber near the leading edge can lead to a 
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widening of the cavitation bucket [6], which is evident from the data reported in Table 5.4. 

Furthermore, the lower drag coefficient value of the new profile at the design condition can be 

attributed to its relatively thinner forward part compared to that of the E817 profile, as shown in 

Figure 5.7.     

 

Even though the E817 profile has a slightly larger bucket width at lower cavitation numbers, the 

selected Pareto-optimal profile achieves the design goals of the formulated optimization problem 

at the prescribed operating conditions. The observed improvement in both design objectives 

demonstrates the effectiveness of the proposed design optimization method. 

 

  tmax/c (%) xt,max/c (%) fmax/c (%) xf,max/c (%) Section Modulus 

E817 11.1 32.5 2.90 69.0 9.29∙10-4 

Optimal 10.8 38.1 2.43 75.8 9.27∙10-4 

 

Table 5.3 Geometric Characteristics of Selected Pareto-Optimal and E817 Profiles. 

 

  ad (deg) CD -CPmin Bucket Width (°) DM 

E817 -1.40 6.66∙10-3 0.477 3.91 0.123 

Optimal -0.76 6.50∙10-3 0.492 4.25 0.108 

 

Table 5.4 Hydrodynamic Analysis of Selected Pareto-Optimal and E817 Profiles. 

 

 

Figure 5.7 Comparison between the Selected Pareto-Optimal and the E817 Profile. 
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Figure 5.8 Bucket Diagrams of the Selected Pareto-Optimal and E817 Profiles. 

 

  

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 0.2 0.4 0.6 0.8 1 1.2

α (°)

-C
Pmin

E817

Optimum



 

76 

 

 

 

CHAPTER 6 

VALIDATION OF PROPELLER ANALYSIS AND DESIGN FRAMEWORK 

 

6.1 Validation in Open-Water Tests 

The initial validation of the lifting line code was carried out for three propellers operating in open-

water conditions. All three propellers utilize blade sections with the modified NACA 66 thickness 

distribution [1] with the a = 0.8 camber line [56]. The experimental data available in the literature 

and the numerical results were obtained with the propellers operating in non-cavitating conditions.  

 

6.1.1 DTMB 4119 Propeller 

The DTMB 4119 is a three-bladed propeller with zero skew and design advance coefficient Jd = 

0.833 [69]. The geometric characteristics of the propeller are given in Table 6.1 as a function of 

the radial position. These characteristics are: the chord-length-to-diameter ratio c/D, the geometric-

pitch-to-diameter ratio P/D, the maximum-camber-to-chord-length ratio fmax/c, and the maximum-

thickness-to-chord-length ratio tmax/c.  

 

r/R c/D P/D fmax/c tmax/c 
0.2 0.3200 1.105 0.0143 0.2055 

0.3 0.3625 1.102 0.0232 0.1553 

0.4 0.4048 1.098 0.0230 0.1180 

0.5 0.4392 1.093 0.0218 0.0902 

0.6 0.4610 1.088 0.0207 0.0696 

0.7 0.4622 1.084 0.0200 0.0542 

0.8 0.4347 1.081 0.0197 0.0421 

0.9 0.3613 1.079 0.0182 0.0332 

0.95 0.2775 1.077 0.0163 0.0323 

1.0 0.0020 1.075 0.0118 0.0316 

 

Table 6.1 Geometric Characteristics of the DTMB 4119 Propeller. 
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The computed data correspond to the thrust and torque coefficients, KT and KQ, which are defined 

as follows: 

 𝐾𝐾𝑁𝑁 =
𝑁𝑁𝜌𝜌𝑛𝑛2𝜋𝜋4 (6.1) 

 𝐾𝐾𝑑𝑑 =
𝑑𝑑𝜌𝜌𝑛𝑛2𝜋𝜋5 (6.2) 

where the thrust T and torque Q are computed from equations 2.41a and 2.41b, respectively, n is 

the propeller rotational speed, D is the propeller diameter, and ρ is the water density. 

 

These are computed at the design advance coefficient Jd but also at off-design conditions. The 

advance coefficient is defined as: 

 𝐽𝐽 =
𝑉𝑉𝑛𝑛𝜋𝜋 (6.3) 

where V is the speed of the inflow to the propeller. As can be deduced from observing Figures 6.1 

through 6.3, but also from Figure 2.1, the advance coefficient is inversely proportional to the angle 

of attack of the blade section with respect to the chord line.  

 

The thrust and torque were computed using the proposed lifting line (‘LL’) method that was 

described in Chapter 2, with and without the lifting surface correction (‘LSC’) factors. The 

computed results, along with the experimental results obtained by Jessup [70], are listed in Table 

6.2.  

 

The lifting line code without the lifting surface correction factors significantly overestimates both 

thrust and torque at any given advance coefficient value. A similar outcome for the DTMB 4119 

propeller was demonstrated in [22]. On the other hand, the predictions including the lifting surface 
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corrections are in very good agreement with the experimental results at the design but also at off-

design conditions.  

 

  Experimental LL with LSC LL without LSC 

J KT KQ KT KQ KT KQ 

0.7 0.207 0.0363 0.2289 0.0396 0.4079 0.0760 

0.833 0.155 0.0280 0.1383 0.0274 0.2949 0.0583 

0.9 0.123 0.0243 0.0929 0.0208 0.2394 0.0492 

 

Table 6.2 Computed and Experimental Data for the DTMB 4119 Propeller. 

 

6.1.2 DTNSRDC 4381 and 4382 Propellers 

The DTNSRDC 4381 and 4382 propellers were developed and tested at the David Taylor Naval 

Ship Research and Development Center (DTNSRDC) and the experimental data were obtained by 

Boswell [71]. The geometric characteristics of the propellers (taken from [15]) are given in Tables 

6.3 and 6.4, respectively, and for the 4382 propeller include the skew angle θs. 

 

r/R c/D P/D fmax/c tmax/D 
0.2 0.174 1.332 0.0351 0.0434 

0.25 0.202 1.338 0.0369 0.0396 

0.3 0.229 1.345 0.0368 0.0358 

0.4 0.275 1.358 0.0348 0.0294 

0.5 0.312 1.336 0.0307 0.0240 

0.6 0.337 1.280 0.0245 0.0191 

0.7 0.347 1.210 0.0191 0.0146 

0.8 0.334 1.137 0.0148 0.0105 

0.9 0.280 1.066 0.0123 0.0067 

0.95 0.210 1.031 0.0128 0.0048 

1.0 0.0 0.995 - 0.0029 

 

Table 6.3 Geometric Characteristics of the DTNSRDC 4381 Propeller. 
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r/R c/D P/D fmax/c tmax/D θs (deg) 

0.2 0.174  1.455  0.0430 0.0434 0.00 

0.25 0.202 1.444 0.0395 0.0396 2.328 

0.3 0.229 1.433 0.0370 0.0358 4.655 

0.4 0.275 1.412 0.0344 0.0294 9.363 

0.5 0.312 1.361 0.0305 0.0240 13.948 

0.6 0.337 1.285 0.0247 0.0191 18.378 

0.7 0.347 1.200 0.0199 0.0146 22.747 

0.8 0.334 1.112 0.0161 0.0105 27.145 

0.9 0.280 1.027 0.0134 0.0067 31.575 

0.95 0.210 0.985 0.0140 0.0048 33.788 

1.0 0.0 0.942 - 0.0029 36.000 

 

Table 6.4 Geometric Characteristics of the DTNSRDC 4382 Propeller. 

 

The computed data at the design advance coefficient but also at off-design conditions using the 

proposed lifting line method with and without the lifting surface correction factors, and the 

experimental results obtained by Boswell [71] for the 4381 and 4382 propellers are listed in Tables 

6.5 and 6.6, respectively. The lifting line code without the lifting surface correction factors 

significantly overestimates both thrust and torque at any given advance coefficient value for both 

propellers. The lifting surface correction factors utilized for the 4381 propeller are provided by the 

surrogate models that were derived using the Morgan et al. [20] data. On the other hand, for the 

4382 propeller, the utilized surrogate models were the ones derived based on the Cumming et al. 

[21] data for highly-skewed propellers. The predictions with the LSC factors included are in very 

good agreement with the experimental data for both propellers, at the design but also at off-design 

conditions. For the 4381 propeller operating at the design condition, the error in KT is 4.3% and 

the error in KQ is 2.3%. The corresponding errors for the 4382 propeller are 1.0% and 2.4%, 

respectively. 

 



 

80 

 

 

 

  Experimental LL with LSC LL without LSC 

J KT KQ KT KQ KT KQ 

0.7 0.290 0.057 0.3076 0.0590 0.3661 0.0744 

0.8 0.245 0.050 0.2480 0.0499 0.3009 0.0635 

0.889 0.205 0.043 0.1959 0.0416 0.2451 0.0538 

 

Table 6.5 Computed and Experimental Data for the DTNSRDC 4381 Propeller. 

 

  Experimental LL with LSC LL without LSC 

J KT KQ KT KQ KT KQ 

0.7 0.285 0.0550 0.3351 0.0613 0.4036 0.0824 

0.8 0.245 0.0490 0.2634 0.0511 0.3298 0.0701 

0.889 0.198 0.0425 0.2001 0.0414 0.2668 0.0592 

 

Table 6.6 Computed and Experimental Data for the DTNSRDC 4382 Propeller. 

 

6.2 KCS Propeller 

The KCS propeller was specifically designed for a modern 3,600 TEU container ship that was 

conceived by the Korea Research Institute for Ships and Ocean Engineering (KRISO) in order to 

provide experimental data that could be utilized as benchmark for CFD validation purposes [72]. 

The KRISO container ship (KCS) has not been built in full scale. The KCS propeller has five 

blades, an expanded blade area ratio Ae/A0 = 0.80, zero rake, and a tip skew angle of 32°. The blade 

sections have the NACA 66 thickness distribution combined with the a = 0.8 camber line [56]. Its 

geometric characteristics are listed in Table 6.7. The propeller has been tested in both open-water 

and behind-the-ship-hull conditions at the Ship Research Institute (now NMRI) in Tokyo [73]. For 

the latter case, i.e with the propeller operating in the ship wake, it was determined that the self-

propulsion point of the KRISO container ship is at a KT value of 0.1703. Operation of the propeller 

in non-cavitating conditions has also been assumed for this part of the numerical investigation. 
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r/R P/D c/D fmax/c tmax/D 
0.18 0.8347 0.2313 0.02845 0.04585 

0.25 0.8912 0.2618 0.02964 0.04071 

0.3 0.9269 0.2809 0.02948 0.03712 

0.4 0.9783 0.3138 0.02677 0.03047 

0.5 1.0079 0.3403 0.02201 0.02459 

0.6 1.0130 0.3573 0.01732 0.01947 

0.7 0.9967 0.3590 0.01404 0.01492 

0.8 0.9566 0.3376 0.01199 0.01073 

0.9 0.9006 0.2797 0.01044 0.00693 

0.95 0.8683 0.2225 0.01007 0.00528 

1.0 0.8331 0.0001 - 0.00369 

 

Table 6.7 Geometric Characteristics of the KCS-SRI Propeller. 

 

6.2.1 Open-Water Performance Characteristics with Original Blade Sections 

The thrust and torque coefficients were computed, first, for open-water operating conditions. The 

computed values of KT and KQ over the range of advance coefficient values between 0.4 and 0.75 

are plotted against the experimental data [73] in Figures 6.1 and 6.2, respectively. The average 

error between the computed results and the experimental data is 5.1% and 2.7% for KT and KQ, 

respectively.  

 

 

Figure 6.1 Plot of KT vs. J for the KCS Propeller. 
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Figure 6.2 Plot of KQ vs. J for the KCS Propeller. 

 

6.2.2 Open-Water Performance Characteristics with New Blade Sections 

Considering that the experimentally determined self-propulsion point of the KRISO container ship 

is available, it was decided to evaluate the effectiveness of the optimal blade section profile that 

was developed in Chapter V. The first step is to compute the KT and KQ distribution using the KCS 

propeller geometry provided in Table 6.7 combined with the new blade section profile. This task 

required the scaling of the foil profile using the thickness and camber distributions from Table 6.7, 

the computation of the lift and drag of the two-dimensional blade sections, and finally the 

computation of KT and KQ via the lifting line code with the LSC factors. The results are displayed 

in Figure 6.3, including the propeller efficiency η, which is calculated as: 

 𝜂𝜂 =
𝐾𝐾𝑇𝑇 𝐽𝐽2𝜋𝜋𝐾𝐾𝑄𝑄 (6.4) 

 

6.2.3 Operation at the Ship Self-Propulsion Point  

As mentioned at the beginning of Section 6.2, the thrust requirement of the full-scale ship 

corresponds to the experimentally determined value of KT = 0.1703. The open-water curves that 
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were computed using the lifting line code for the KCS propeller with the original NACA sections 

and with the new blade sections developed in Chapter 5 can be utilized in order to find the 

corresponding advance coefficient, torque coefficient, and propeller efficiency. These results are 

reported in Table 6.8. When the new blade sections are utilized for the KCS propeller, the operating 

point is shifted to a higher advance coefficient, which can be attributed to the ability of the profile 

to produce the required lift at fairly small angles of attack, as evidenced in the results listed in 

Table 5.4. By employing the new blade section profile, an approximately 2.5% increase in the 

propulsion efficiency is observed. This number is obtained under the assumption that the effective 

wake is not affected by the utilization of a different section profile. The interaction between the 

propeller and the ship hull would have to be analyzed in order to obtain a more accurate estimate.  

 

 

Figure 6.3 Performance Curves of the KCS Propeller with New Blade Section Profile. 
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NACA66 with  

a=0.8 mean line  

profile 

New blade  

section profile 

Jd 0.715 0.847 

KT 0.1703 

KQ 0.0297 0.0344 

η 0.651 0.667 

 

Table 6.8 KCS Propeller at Ship Self-Propulsion Point. 
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CHAPTER 7 

CONCLUSIONS 

 

The research presented in this dissertation focuses on the development of a framework for the 

analysis and design optimization of marine propellers. The goal is to develop an efficient synthesis 

tool that can be utilized for the design of propellers but also to propose and validate a methodology 

for the design of blade section profiles with low drag and a wide range of cavitation-free operation.  

 

The propeller design framework is based on a hybrid lifting-line lifting-surface approach that can 

be used for the design of moderately-loaded propellers. One of the innovative elements of this 

research is the derivation of surrogate models to approximate the lifting surface correction factors 

using artificial neural networks and support vector regression. It is demonstrated that these new 

function approximation models have superior performance compared to polynomial 

representations and could be utilized not only for interpolation but also for extrapolation purposes.  

 

The effect of viscosity is implemented in the design framework via the coupling of the hybrid 

lifting-line lifting-surface method to the open-source RANSE solver OpenFOAM and the 

utilization of an existing transition κ-ω SST model for the prediction of the hydrodynamic 

performance of the two-dimensional blade sections.  

 

Another innovative aspect of this work is the formulation of the blade-section design task as a 

multi-objective problem with the goals being the design of blade sections with low drag but also 

with a wide range of cavitation-free operation. The blade sections are modeled using cubic B-

splines and the corresponding control points are used as the design variables of the multi-objective 
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constrained optimization problem. This approach provides the designer with a set of solutions that 

correspond to trade-offs between the design objectives. 

 

The effectiveness of the multi-objective design approach is validated through the analysis of the 

performance of a selected Pareto-optimal solution and subsequent comparison with the 

performance of a baseline profile. The observed improvement in both design objectives amply 

demonstrates the effectiveness of the proposed design optimization methodology. 

 

The framework has been validated using available benchmark data for a number of ship propellers 

operating in open-water conditions. A case study regarding the analysis of the propeller of a high-

speed container ship demonstrates that the proposed hybrid lifting-line lifting-surface approach is 

capable of computing the thrust and torque at the design operating point but also in a wide range 

of off-design conditions. The effectiveness of the selected optimal blade profile is also 

demonstrated as part of the case study, as it is shown that its utilization could lead to an increase 

in propulsion efficiency.  

 

In the near future, the framework will be developed further to include a nonlinear approach 

regarding the propeller analysis method, in addition to incorporating a new cavitation prediction 

model in the OpenFOAM solver. The capability of modeling the interaction between the propeller 

and the ship hull by coupling the OpenFOAM solver with the lifting line code is currently under 

consideration. Further integration of the design framework components will also be explored.  
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APPENDIX A 

SCRIPT FOR THE LIFTING LINE METHOD 

%Calculate induced velocities, thrust and torque for propellers using 

% the Lerbs' lifting line method and lifting surface corrections 

% Script developed by Miltos Kotinis and Ashish Tamhane 

% last updated on 3/29/2017 

 

clear; clc; 

global PropD PropB ch Nrps J GPitch x r th BTF VS Vp VA 

global PropM Foil skew phi IdealA2D ZLiftA LiftSl Rn 

global rho p_v mu p_atm grav pcsbm 

 

PropM = 'KCS'; 

Foil = 'NACA66a0_8'; % select blade section (check available blade sections in Blade_section.m) 

LSC = 'yes'; % 'yes': use lifting-surface correction factors, 'no': do not use lifting-surface 

correction factors 

NW = 'yes'; % 'yes': open-water propeller test, 'no': propeller operating in ship wake 

PropGeom; % read propeller geometry input 

 

J = 0.715; % ship advance coefficient 

VS = 1; % ship speed 

rho = 999.; % kg/m^3, water density 

mu = 1.003e-3; % N*s/m^2, water dynamic viscosity 

 

Nrps = VS/(J*PropD); % propeller operating speed (rps) 

Rn = rho*Nrps*PropD^2/mu; % Reynolds number 

 

phi_aug = repmat(linspace(0,r-1,r)',1,r-2).*repmat(phi(2:r-1),r,1); 

Blade_section; % read blade section data 

ZLiftA2D = ZLiftA*ones(1,r); % 2-D zero-lift angle 

LiftSl2D = LiftSl*ones(1,r); % 2-D lift-curve slope 

Ia = zeros(r,r); It = zeros(r,r); Iaf = zeros(r,r); Itf = zeros(r,r); 

Fr_cos = cos(phi'*linspace(0,r-1,r)); % compute cosines of even Fourier series for induction 

factors 

x0_x = repmat(x',1,r)./repmat(x,r,1); 

ha = zeros(r-2,r); ht = zeros(r-2,r); 

Bratio = zeros(r,th); H = zeros(r,r,th); 

Gm = zeros(r,th); 

if strcmp(NW,'yes') 

    VA = VS*ones(1,r); 

elseif strcmp(NW,'no') 

    Vp = [0.6 0.65 0.78 0.87 1.0 1.0 1.0 0.95 0.83 0.76 0.59]; 

    VA = VS*Vp; 

end 

Ua = VA; Ut = zeros(1,r); 

beta_0p = atan(Ua./(x*pi*Nrps*PropD-Ut)); 

gamma_0 = GPitch-ZLiftA2D; 

beta_ip = gamma_0-(gamma_0-beta_0p).*(0.135+0.053./(1.093-x)); 

ext = 0; delta = ones(length(x),1); 

while (max(delta) > 1e-10 && ext < 500) 
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    ext = ext + 1; 

    oldbetaip = beta_ip; 

    Br = (1-x(1))*(tan(beta_ip)./tan(beta_0p)-1).*(Ua./VA); Br = Br(2:r-1)'; 

    % Calculate of the induction factors (based on the Lerbs' method) 

    betai = repmat(beta_ip',1,size(x0_x,2)); 

    beta_0 = repmat(beta_0p',1,size(x0_x,2)); 

    y0 = 1./tan(betai); 

    y = (1./x0_x).*y0; 

    z = sqrt(1+y.^2); 

    z0 = sqrt(1+y0.^2); 

    A1 = (z-z0)-0.5*log((z0-1).*(z+1)./((z0+1).*(z-1))); 

    x1_m = x0_x<1; A1 = A1.*x1_m; 

    A2 = -(z-z0)+0.5*log((z0-1).*(z+1)./((z0+1).*(z-1))); 

    x2_m = x0_x>1; A2 = A2.*x2_m; 

    B1 = (((z0.^2)./(z.^2)).^0.25).*(1./(exp(PropB*A1)-1)-

(y0.^2./(2*PropB*(1+y0.^2).^1.5)).*log(1+1./(exp(PropB*A1)-1))); 

    B2 = (((z0.^2)./(z.^2)).^0.25).*(1./(exp(PropB*A2)-

1)+(y0.^2./(2*PropB*(1+y0.^2).^1.5)).*log(1+1./(exp(PropB*A2)-1))); 

    Ia = tril(PropB*y.*(x0_x-1).*(1+B2),-1) + triu(-PropB*y.*(x0_x-1).*B1,1) + 

diag(cos(betai(:,1))); 

    It = tril(PropB*(x0_x-1).*B2,-1) + triu(-PropB*(x0_x-1).*(1+B1),1) + diag(sin(betai(:,1))); 

    I_m = find(x0_x==0); Ia(I_m) = 0; It(I_m) = PropB; 

    I_m = isinf(x0_x); I_m = find(I_m==1); Ia(I_m) = PropB./tan(betai(I_m)); It(I_m) = 0; 

    Iaf = Fr_cos\Ia; Itf = Fr_cos\It; 

    % Expansion of the induction factors into an even Fourier series - calculation of the Glauert 

integrals 

    ha1 = sin(phi_aug).*cumsum(Iaf(:,2:r-1).*cos(phi_aug),1); ha2 = flip(cumsum(flip(Iaf(:,2:r-

1).*sin(phi_aug)),1)); 

    ha(:,2:r-1) = repmat(pi./sin(phi(2:r-1)),r-2,1).*(ha1(2:r-1,:) + cos(phi_aug(2:r-

1,:)).*ha2(3:r,:)); 

    ha1 = (0:r-1)'.*cumsum(Iaf(:,1),1); ha2 = flip(cumsum(flip(Iaf(:,1).*(0:r-1)'),1)); 

    ha(:,1) = pi*(ha1(2:r-1,:) + ha2(3:r,1)); 

    ha1 = (0:r-1)'.*cumsum(Iaf(:,r).*cos(pi*(0:r-1)'),1); ha2 = 

flip(cumsum(flip(Iaf(:,r).*cos(pi*(0:r-1)').*(0:r-1)'),1)); 

    ha(:,r) = (-pi*cos(pi*(1:r-2)')).*(ha1(2:r-1,1) + ha2(3:r,1)); 

    ht1 = sin(phi_aug).*cumsum(Itf(:,2:r-1).*cos(phi_aug),1); ht2 = flip(cumsum(flip(Itf(:,2:r-

1).*sin(phi_aug)),1)); 

    ht(:,2:r-1) = repmat(pi./sin(phi(2:r-1)),r-2,1).*(ht1(2:r-1,:) + cos(phi_aug(2:r-

1,:)).*ht2(3:r,:)); 

    ht1 = (0:r-1)'.*cumsum(Itf(:,1),1); ht2 = flip(cumsum(flip(Itf(:,1).*(0:r-1)'),1)); 

    ht(:,1) = pi*(ht1(2:r-1,1) + ht2(3:r,1)); 

    ht1 = (0:r-1)'.*cumsum(Itf(:,r).*cos(pi*(0:r-1)'),1); ht2 = 

flip(cumsum(flip(Itf(:,r).*cos(pi*(0:r-1)').*(0:r-1)'),1)); 

    ht(:,r) = (-pi*cos(pi*(1:r-2)')).*(ht1(2:r-1,1) + ht2(3:r,1)); 

    % Expansion of the circulation into an odd Fourier series - calculation of the circulation 

distribution 

    Gm = [0; (repmat((1:r-2)',1,r-2).*(ha(:,2:r-1) + tan(betai(2:r-1,2:r-1)).*ht(:,2:r-

1)./repmat(x(2:r-1),r-2,1)))'\Br; 0]; 

    G = sum(repmat(Gm,1,r).*sin(repmat(phi,r,1).*repmat((0:r-1)',1,r))); 

    % Calculation of the induced velocities 

    wa = (1/(1-x(1)))*VA.*sum(repmat(Gm(2:r-1,1),1,r).*(ha.*repmat((1:r-2)',1,r))); 

wt = (1/(1-x(1)))*VA.*sum(repmat(Gm(2:r-1,1),1,r).*(ht.*repmat((1:r-2)',1,r))); 
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    if strcmp(LSC,'yes') 

        if(skew==0) 

            Ka0 = arrayfun(@Ka_no_skew,tan(beta_ip),x); 

            Kt0 = arrayfun(@Kt_no_skew,tan(beta_ip),x); 

            Kc0 = arrayfun(@Kc_no_skew,tan(beta_ip),x); 

        else 

            if(skew(end)<=tan(pi*25/180)) 

                Ka0 = arrayfun(@Ka_skew,tan(beta_ip),x,skew); 

                Kt0 = arrayfun(@Kt_skew,tan(beta_ip),x,skew); 

                Kc0 = arrayfun(@Kc_skew,tan(beta_ip),x,skew); 

            else 

                Ka0 = arrayfun(@Ka_high_skew,tan(beta_ip),x,skew); 

                Kt0 = arrayfun(@Kt_high_skew,tan(beta_ip),x,skew); 

                Kc0 = arrayfun(@Kc_high_skew,tan(beta_ip),x,skew); 

            end 

        end 

    elseif strcmp(LSC,'no') 

        Ka0 = 1; Kc0 = 1; Kt0 = 0; 

    end 

    IdealA3D = Ka0.*IdealA2D + Kt0.*BTF; 

    ZLiftA3D = ZLiftA2D + IdealA3D - IdealA2D; 

    gamma_0 = GPitch-ZLiftA3D; 

    LiftSl3D = LiftSl2D./Kc0; 

    beta_ip = gamma_0-(2*pi*PropD*G./(LiftSl3D.*ch.*(Ua./VA+wa./VA))).*sin(beta_ip); 

    delta = abs(oldbetaip-beta_ip); 

end 

if strcmp(LSC,'yes')  % calculate lifting-surface corrections 

    if(skew==0) 

        Ka0 = arrayfun(@Ka_no_skew,tan(beta_ip),x); 

        Kt0 = arrayfun(@Kt_no_skew,tan(beta_ip),x); 

        Kc0 = arrayfun(@Kc_no_skew,tan(beta_ip),x); 

    else 

        if(skew(end)<=tan(pi*25/180)) 

            Ka0 = arrayfun(@Ka_skew,tan(beta_ip),x,skew); 

            Kt0 = arrayfun(@Kt_skew,tan(beta_ip),x,skew); 

            Kc0 = arrayfun(@Kc_skew,tan(beta_ip),x,skew); 

        else 

            Ka0 = arrayfun(@Ka_high_skew,tan(beta_ip),x,skew); 

            Kt0 = arrayfun(@Kt_high_skew,tan(beta_ip),x,skew); 

            Kc0 = arrayfun(@Kc_high_skew,tan(beta_ip),x,skew); 

        end 

    end 

 elseif strcmp(LSC,'no') 

    Ka0 = 1; Kc0 = 1; Kt0 = 0; 

 end 

 IdealA3D = Ka0.*IdealA2D + Kt0.*BTF; 

 ZLiftA3D = ZLiftA2D + IdealA3D - IdealA2D; 

 gamma_0 = GPitch-ZLiftA3D; 

 LiftSl3D = LiftSl2D./Kc0; 

 beta_ip = gamma_0-(2*pi*PropD*G./(LiftSl3D.*ch.*(Ua./VA+wa./VA))).*sin(beta_ip); 

 Cl = LiftSl3D.*(gamma_0-beta_ip); 

Cd = arrayfun(@CD,1:length(x),GPitch-beta_ip); 

 Vx = sqrt((Ua+wa).^2+(x*pi*Nrps*PropD-Ut-wt).^2); 
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 dT_x = 0.5*rho*ch.*(Vx.^2).*(Cl.*cos(beta_ip)-Cd.*sin(beta_ip)); 

 dQ_x = 0.25*rho*PropD*x.*ch.*(Vx.^2).*(Cl.*sin(beta_ip)+Cd.*cos(beta_ip)); 

 

 Thrust = PropB*trapz(x,dT_x); 

 Torque = PropB*trapz(x,dQ_x); 

 Kthrust = Thrust/(rho*Nrps^2*PropD^4); 

 Ktorque = Torque/(rho*Nrps^2*PropD^5); 

 eta = Kthrust*J/(2*pi*Ktorque); 

 if strcmp(NW,'no') 

    p_v = 1704; % N/m^2, water vapor pressure 

    p_atm = 101324; % N/m^2, atmospheric pressure 

    grav = 9.81; % m/s^2, acceleration of gravity 

    pcsbm = 6.7; % m, propeller center position relative to the free surface 

    sigma = (p_atm + rho*grav*(pcsbm-(PropD/2)*x) - p_v)./(0.5*rho*Vx.^2); % calculate the 

cavitation number 

    disp(sigma) 

 end 

 disp(Rn); disp(J); disp(Kthrust); disp(Ktorque); disp(eta); 
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APPENDIX B 

PROPELLER PARAMETERS INPUT 

% Specify propeller geometric characteristics 

 

global PropD PropB PropAeAo skew ch tmax; 

global GPitch x BTF r th PropM phi f0_c; 

 

if strcmp(PropM,'KCS') 

    PropB = 5; PropAeAo = 0.8; PropD = 1.5; 

elseif strcmp(PropM,'4381') 

    PropD = 1.4; PropB = 5; PropAeAo = 0.725; 

elseif strcmp(PropM,'4382') 

    PropD = 1.2; PropB = 5; PropAeAo = 0.725; 

elseif strcmp(PropM,'4119') 

    PropD = 1; PropB = 3; PropAeAo = 0.85; 

end 

 

if strcmp(PropM,'4119') 

    x = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1]; 

    phi = acos((1+x(1)-2*x)/(1-x(1))); phi = phi.*(1-(abs(phi)<1e-6)); 

else 

    x = [0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1]; 

    phi = acos((1+x(1)-2*x)/(1-x(1))); phi = phi.*(1-(abs(phi)<1e-6)); 

end 

r = length(x); th = 1; 

 

if strcmp(PropM,'KCS') 

    ch = [0.2313 0.2618 0.2809 0.3138 0.3403 0.3573 0.3590 0.3376 0.2797 0.2225 0.0001]; 

    tmax = [0.04585 0.04071 0.03712 0.03047 0.02459 0.01947 0.01492 0.01073 0.00693 0.00528 

0.00369]; 

    P_D = [0.8347 0.8912 0.9269 0.9783 1.0079 1.0130 0.9967 0.9566 0.9006 0.8683 0.8331]; 

    f0_c = [0.02845 0.02964 0.02948 0.02677 0.02201 0.01732 0.01404 0.01200 0.01044 0.01007 

0.0001]; 

    skew = [0 2.328 4.655 9.363 13.948 18.378 22.747 27.145 31.575 33.788 36.000]; 

elseif strcmp(PropM,'4119') 

    ch = [0.3200 0.3625 0.4048 0.4392 0.4610 0.4622 0.4347 0.3613 0.2775 0.0001]; 

    tmax = [0.2055 0.1553  0.1180  0.09016 0.06960 0.05418 0.04206 0.03321 0.03228 0.03160]; 

    P_D = [1.105 1.102 1.098 1.093 1.088 1.084 1.081 1.079 1.077 1.075]; 

    f0_c = [0.0143 0.0232 0.0230 0.0218 0.0207 0.0200 0.0197 0.0182 0.0163 0.0118]; 

    skew = zeros(length(x)); 

    tmax = tmax.*ch; 

elseif strcmp(PropM,'4381') 

    ch = [0.174 0.202 0.229 0.275 0.312 0.337 0.347 0.334 0.280 0.210 0.00001]; 

    tmax = [0.0434 0.0396 0.0358 0.0294 0.0240 0.0191 0.0146 0.0105 0.0067 0.0048 0.0029]; 

    P_D = [1.332 1.338 1.345 1.358 1.336 1.280 1.210 1.137 1.066 1.031 0.995]; 

    f0_c = [0.0351 0.0369 0.0368 0.0348 0.0307 0.0245 0.0191 0.0148 0.0123 0.0128 0.00001]; 

    skew = zeros(length(x)); 

elseif strcmp(PropM,'4382') 

    ch = [0.174 0.202 0.229 0.275 0.312 0.337 0.347 0.334 0.280 0.210 0.00001]; 

    tmax = [0.0434 0.0396 0.0358 0.0294 0.0240 0.0191 0.0146 0.0105 0.0067 0.0048 0.0029]; 
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    P_D = [1.455 1.444 1.433 1.412 1.361 1.285 1.200 1.112 1.027 0.985 0.942]; 

    skew = [0 2.328 4.655 9.363 13.948 18.378 22.747 27.145 31.575 33.788 36.000]; 

    f0_c = [0.0430 0.0395 0.0370 0.0344 0.0305 0.0247 0.0199 0.0161 0.0134 0.0140 0.00001]; 

end 

ch = ch*PropD; 

tmax = PropD*tmax; 

skew = tan(pi.*skew./180); 

GPitch = atan(P_D./(pi*x)); % in radians 

BTF = (tmax./PropD-0.003)./(1-x) + 0.003; % Calculate the blade thickness fraction for the 

lifting-surface corrections 

BTF(BTF==-Inf) = 0; BTF(BTF==Inf) = 0; 

BTF = ones(th,1)*BTF; 
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APPENDIX C 

AIRFOIL PARAMETERS INPUT 

function [] = Blade_section 

 

% Calculate the zero lift angle, the lift-curve slope, 

% and the ideal angle of attack 

 

global Foil IdealA ZLiftA LiftSl IdealA2D f0_c; 

 

if strcmp(Foil,'NACA66a0_8') 

    angle = [-3 -2 -1 0 1 2 3 4 5 6]; 

    Cl = [-0.0647766 0.0417483 0.137447 0.241413 0.34893 0.450893 0.555188 0.657501 0.763605 

0.859583]; 

    pCl = pchip(Cl,angle); 

    ZLiftA = ppval(pCl,0)*pi/180; % zero lift angle 

    pSl = pchip(angle,Cl); 

    LiftSl = (ppval(pSl,2)-ppval(pSl,1))*180/pi; % lift-curve slope 

    foil_coord = 'NACA66a0_8.dat'; 

elseif strcmp(Foil,'E817') 

    angle = [-5 -4 -3 -2 -1 0 1 2 3 4 5 6]; 

    Cl = [-0.108932 0.0049831 0.119575 0.236489 0.345426 0.458736 0.571127 0.681849 0.786122 

0.895762 0.989076 1.093120]; 

    pCl = pchip(Cl,angle); 

    ZLiftA = ppval(pCl,0)*pi/180; 

    pSl = pchip(angle,Cl); 

    LiftSl = (ppval(pSl,2)-ppval(pSl,1))*180/pi; 

    foil_coord = 'E817.dat'; 

elseif strcmp(Foil,'YS920') 

    angle = [-4 -3 -2 -1 0 1 2 3 4 5 6]; 

    Cl = [-0.160605 -0.0530828 0.0572873 0.1655529 0.2733595 0.3772970 0.4890894 0.595214 

0.700854 0.801731 0.902014]; 

    pCl = pchip(Cl,angle); 

    ZLiftA = ppval(pCl,0)*pi/180; 

    pSl = pchip(angle,Cl); 

    LiftSl = (ppval(pSl,3)-ppval(pSl,2))*180/pi; 

    foil_coord = 'YS920.dat'; 

elseif strcmp(Foil,'Optimal') 

    angle = [-3.5 -3 -2 -1 0 1 2 3 4 5 6]; 

    Cl = [-0.006518 0.049626 0.161169 0.271703 0.382361 0.494020 0.602857 0.712856 0.816406 

0.921012 1.02655]; 

    pCl = pchip(Cl,angle); 

    ZLiftA = ppval(pCl,0)*pi/180; 

    pSl = pchip(angle,Cl); 

    LiftSl = (ppval(pSl,2)-ppval(pSl,1))*180/pi; 

    foil_coord = 'Optimal.dat'; 

end 

coord = dlmread(foil_coord); 

a = size(coord,1); 

a = round(a/2); 

A(:,1) = coord(1:a,1); 
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A(:,2) = coord(1:a,2); 

A(:,3) = flip(coord(a:end,2)); 

A(:,4) = (A(:,2) + A(:,3))./2; 

A = flip(A,1); 

x_id = linspace(0.0001,0.9999,1500); 

y_c_h = pchip(A(:,1),A(:,4)); 

y_id = ppval(y_c_h,x_id); 

f_c = max(y_id); 

f3f = (1-2*x_id)./(2*pi*(x_id.*(1-x_id)).^(1.5)); 

y_id = y_id.*f3f; 

IdealA = trapz(x_id,y_id); 

IdealA2D = (IdealA/f_c)*f0_c; % ideal angle of attack 

end 
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APPENDIX D 

FUNCTIONS FOR CALCULATING Kc 

function [Kc_ns] = Kc_no_skew(lambda,xp) 

 

% Calculate the camber correction factor for propellers with zero skew 

global PropB PropAeAo; 

inp = [PropB pi*xp*lambda PropAeAo xp]; % Z, pi*lambda, Ae/Ao, r 

min_io = [4 0.4 0.35 0.3 0.888]; % Z, pi*lambda, Ae/Ao, r, Kc 

max_io = [6 2.0 1.15 0.9 3.469]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 11 

inp_h1_w = [-2.75089 1.38E-05 -2.38078 1.29877  -0.67293; 

-9.21712 0.07400  0.10600  1.32341  -8.77407; 

-2.75609 -0.16949 0.29642  2.30102  -2.56402; 

-0.88719 0.20515  -0.04049 0.82357  -0.21766; 

-0.48911 0.48015  -0.03110 1.60261  -1.52023; 

-2.26040 -0.43267 0.55785  1.08771  0.05458; 

-8.10760 -0.19176 -0.36607 1.56113  6.57974; 

-2.76684 -0.51862 -0.04346 1.50977  1.99701; 

-7.55100 -0.08488 -4.46464 0.21148  -1.72298; 

-1.44129 -0.50309 1.92424  0.03409  -3.19089; 

-4.36605 -1.05028 -0.68677 0.93710  1.19048]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 12 - 15 

h1_h2_w = [-2.094 1.688 -0.880 -0.718 -1.087 -0.702  -0.823 -3.799 -0.459 -0.725 0.905 0.040; 

-3.443 3.764 -1.488 -2.323 -0.044 -0.249 -1.207 -3.256 1.150 -0.215 -0.504 0.560; 

1.889 0.159 -1.907 -0.987 -0.220 1.519 -1.828 -1.687 -0.673 -2.582 0.658 -2.600; 

       -0.584 -0.037 -0.691 -0.062 -2.352 0.649 -1.865 -3.058 -2.296 -0.396 -0.635 -

0.706]; 

% hidden layer 2 - output layer weights - Linear node 0 

h2_out_w = [1.74284 -1.580634 -1.70493 -2.058410 -2.234610]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = [1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']; 

Kc_ns = ((h2_out_w*h2')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

end 
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function [Kc_s] = Kc_skew(lambda, xp, skew1) 

 

% Calculate the camber correction factor for moderately-skewed propellers 

global PropB PropAeAo; 

inp = [PropB pi*lambda skew1 PropAeAo xp]; % Z, pi*lambda, skew, Ae/Ao, r 

min_io = [4 0.4 0.00188 0.35 0.3 0.888]; % Z, pi*lambda, skew, Ae/Ao, r, Kc 

max_io = [6 2 0.30596 1.15 0.9 3.469]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 10 

inp_h1_w =[-7.3708  -0.0541      -0.9372   0.3215 1.3895  -5.9625; 

           -3.9309 -1.4767      -0.1731   0.0823 2.2177  0.6842; 

           -3.4057 -0.0687       0.7386  -0.2199 3.2336  -0.4574; 

           -1.7213  0.2475      -0.1269   0.9351 4.9080  -0.6952; 

           -3.7551 -0.0339      -4.0335   0.0751 0.2746  -3.7777; 

    -3.7886  0.1834      -2.2141  -0.0719 1.8391  -0.0810; 

           -4.8859 -0.6965      -0.3294  -0.1960 2.7482  2.9662; 

           -1.8442 -0.1833       0.0511  -0.1917 0.7315  1.1107; 

           -7.2947 -0.2509      -0.2369   0.1331 1.5791  5.4331; 

           -0.7391  0.0207      0.2562   1.7192 0.5096  -1.3462; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 11 - 13 

h1_h2_w = [-1.1176 -2.6608   -1.5085  -0.8632  -0.1613  -1.3015     

1.2945 -0.9657  -1.6414  -4.3167  -0.9436; 

         -2.7976 -2.6923  -2.2971  -1.8130  -1.1073  1.2447     

2.0496  5.1877  -1.3111  -3.1326  1.0880; 

          2.0183 -5.9550  -0.4939  -1.0714  2.0459  2.9006    

-1.2865 -1.6151  -1.0650  -2.0069  -1.0498]; 

% hidden layer 2 - output layer weights - Linear node 0 

h2_out_w = [2.1357 -3.7576  -2.4639  -2.3800]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = [1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']; 
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function [Kc_hs] = Kc_high_skew(lambda, xp, skew1) 

 

% Calculate the camber correction factor for highly-skewed propellers 

global PropB 

inp = [PropB pi*xp*lambda skew1 xp]; % Z, pi*lambda, skew, r 

min_io = [4 0.8 0.000 0.3 1.076]; % Z, pi*lambda, skew, r, Kc 

max_io = [6 1.2 1.374 0.9 2.998]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 10 

inp_h1_w = [ 4.322 0.3838  0.1161  8.7919  -1.8055; 

            -0.845 -3.5389  0.1065  1.9652  -0.0527; 

             0.5292 -1.3396  0.1398  1.2689  -0.4630; 

            -2.1702 -1.8448  -0.2647  -0.7886   1.4392; 

             4.8184 -0.3081  0.1945  -0.2441   6.8379; 

            -4.1490 -0.2636  -0.0796  -0.8972   4.6860; 

     -0.6598 -0.7109  1.9875  -0.9525   1.8857; 

     -1.5384 3.0282  -0.5272  3.3387  -1.3810; 

     -1.2413 -0.5073  0.3175  5.3477  -1.8784; 

            -1.9857 1.3565  -0.7461  1.7310   1.2331]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 11 - 14 

h1_h2_w = [-0.0836   0.3505  0.9113   -1.4599  0.5166  -4.3023  

         2.8366      1.1484  -1.6371 1.1880  -0.7610;     

           -0.5590   0.5636   0.9037 -1.8626  1.1313  -5.2025     

         4.0347      -0.9342   0.0600 0.3668  2.0028;               

           -1.2163   3.6231   -0.0338 -1.3159  -0.6340  -3.4351     

         1.9714      -0.4032   -1.2857 1.3890  -0.3794; 

           -2.0623   1.9346   -0.5861 0.3367  2.9570  -0.5876  

         2.5335      1.4386   -1.3082 2.1111  2.5049];     

% hidden layer 2 - hidden layer 3 weights - Sigmoid nodes 15 - 16 

h2_h3_w = [4.8287 -3.0077  -4.0986  -3.6240  -2.7791; 

      -1.5304 -2.8085  -1.8913  -1.9713  -3.3977]; 

% hidden layer 3 - output layer weights - Linear node 0 

h3_out_w = [2.9634 -3.6963  -2.2195]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = ([1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']'*ones(1,size(h2_h3_w,1)))'; 

h3 = [1 (1./(1+exp(-sum(h2_h3_w.*h2,2))))']; 

Kc_hs = ((h3_out_w*h3')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

if(Kc_hs > 2.188) 

   Kc_hs = 2.818; 

end 

 

end 
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APPENDIX E 

FUNCTIONS FOR CALCULATING Kα 

function [Ka_ns] = Ka_no_skew(lambda,xp) 

 

% Calculate the ideal angle of attack correction factor for propellers with zero skew 

global PropB PropAeAo; 

inp = [PropB pi*xp*lambda PropAeAo xp]; % Z, pi*lambda, Ae/Ao, r 

min_io = [4 0.4 0.35 0.3 1.016]; % Z, pi*lambda, Ae/Ao, r, Ka 

max_io = [6 2.0 1.15 0.9 3.500]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 11 

inp_h1_w = [-3.2396  0.1588  -0.4433  1.6336  -2.6346; 

            -2.4662  0.0890  0.4858  -1.6518  0.8280; 

            -4.7411  -0.1188  -4.2562  -0.1537  0.6396; 

            -5.1159  -0.1815  -2.5170  0.3574  -2.4205; 

             0.2349  -0.0696  1.8986  0.5743  -1.2201; 

            -3.0515  -0.7387  0.2331  1.7308  2.2967; 

            -4.7952  -1.5913  -0.1770  1.8101  0.8190; 

            -0.4842  0.5245  -0.1562  -0.8480  -1.6385; 

            -7.7872  -0.0056  -0.5569  0.4775  6.4588; 

            -1.9507  -0.7595  -1.4147  1.7424  0.4068; 

            -1.5883  0.0443  -0.7193  -1.9871  2.6478]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 12 - 14 

h1_h2_w = [-0.9977    1.4166    -3.5937    -4.3793    2.4574    0.5075    1.4305   

        1.8694       -1.6091    1.1231     0.0331    -0.3294;        

           -4.0839    1.6104    -2.0474    -0.4516    2.5765    1.3357    0.9096       

        1.7009       -0.1189    2.9098     2.2796   2.5415; 

           -6.0861    0.5262    -0.8460    1.4517     4.5334    2.4112    1.3192       

        1.8723        -0.4456    5.1123    0.1393     1.1120]; 

% hidden layer 2 - hidden layer 3 weights - Sigmoid nodes 15 - 16 

h2_h3_w = [1.2724 -1.0506  -0.8209  -5.0199; 

           -0.8071 -4.7283  -4.0975  -2.2539]; 

% hidden layer 3 - output layer weights - Linear node 0 

h3_out_w = [1.3416  -2.1962  -2.6900]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = ([1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']'*ones(1,size(h2_h3_w,1)))'; 

h3 = [1 (1./(1+exp(-sum(h2_h3_w.*h2,2))))']; 

Ka_ns = ((h3_out_w*h3')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

 

end 
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function [Ka_s] = Ka_skew(lambda,xp,skew1) 

 

% Calculate the ideal angle of attack correction factor for moderately-skewed propellers 

global PropB PropAeAo; 

inp = [PropB pi*lambda skew1 PropAeAo xp]; % Z, pi*lambda, skew, Ae/Ao, r 

min_io = [4 0.4 0.00188 0.35 0.3 -1.098]; % Z, pi*lambda, skew, Ae/Ao, r, Ka 

max_io = [6 2 0.30596 1.15 0.9  4.467]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 12 

inp_h1_w = [-20.7772    0.0677  0.1784  -16.8691 -0.0413       -2.9537; 

             1.8114   0.2930 -1.9146  -0.8758  -0.1207       -0.9325; 

            -3.8812  -0.0762 -0.0441   2.3463   0.4428  1.6676; 

            -1.5333   0.6353  0.1802   1.0250   7.1541       -1.3893; 

    -7.6179  -0.4049 -1.4173  -0.3182   1.6869  4.1564; 

             1.3249   0.0967 -0.3061   4.2440    0.2124       -5.2859; 

             0.0991  -0.0564 -0.4045  -0.3525   0.5233       -2.3068; 

            -4.1100   0.4961  0.9567  -0.1354   4.0693       -1.0667; 

            -4.5075   0.1672  0.2909  -3.7670  -0.4152       -1.9120; 

            -0.5577   0.0627 -0.2455          8.5951 0.4728      -10.4247; 

             1.8938  -0.3303  1.9359  -0.1228  1.6938       -1.7295; 

            -1.6155   0.0650 -1.8644         -0.5764 0.5146      -1.9903]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 13 - 15 

h1_h2_w = [-1.5197  1.2509      2.0672 -2.4704     -0.9725  3.5905      1.5224 1.6054         

2.3325     1.1542 -2.9494      1.1129  4.2004; 

          -5.0220 -6.9846    -2.7936 -4.5682      2.4895  1.4495      1.3349 3.1620        

-3.5418    -2.2157  2.6791     3.7712 -1.1699; 

          -2.5199 -9.2044     0.7765 -6.4019     -1.8318  6.0157      3.1372 0.1909         

2.5956    -3.0926  2.7383      0.9484 -0.7601]; 

% hidden layer 2 - hidden layer 3 weights - Sigmoid nodes 16 - 17 

h2_h3_w = [2.6276 -1.3245  -2.9243  -2.0779; 

          -0.0045 -1.8953  -6.5179  -5.7574]; 

% hidden layer 3 - output layer weights - Linear node 0 

h3_out_w = [1.2933 -1.6327  -2.7021]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = ([1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']'*ones(1,size(h2_h3_w,1)))'; 

h3 = [1 (1./(1+exp(-sum(h2_h3_w.*h2,2))))']; 

Ka_s = ((h3_out_w*h3')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

 

end 
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function [Ka_hs] = Ka_high_skew(lambda, xp, skew1) 

 

% Calculate the ideal angle of attack correction factor for highly-skewed propellers 

global PropB; 

inp = [PropB pi*xp*lambda skew1 xp]; % Z, pi*lambda, skew, r 

min_io = [4 0.8 0.000 0.3 -12.356]; % Z, pi*lambda, skew, r, Ka 

max_io = [6 1.2 1.374 0.9  12.649]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 11 

inp_h1_w = [0.0879 -0.0356      1.4122   1.5302 1.2035; 

           -1.6550  0.2199     -0.4810  -0.0068 1.2704; 

           -1.3156 -0.5600     -0.5930   0.5198 1.6379; 

            4.7972  0.0080     -0.0871  -1.9387 7.5794; 

           -2.2202 -0.1771      0.0273  -5.5446 3.5249; 

           -1.8495  1.0734      0.1728   2.9787 0.6287; 

           -1.3140  1.3068      0.0528   4.8941 2.0539; 

           -7.6463  0.1794     -0.0636   2.6686 6.2724; 

           -1.3494  0.1202      0.1762  -0.9548 1.7401; 

           -0.8335 -1.3672     -0.0599  -0.5705      -0.2015; 

            0.6120 -0.4885      0.0382   3.7280 0.4213]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 12 - 15 

h1_h2_w = [0.2099 -0.5287      -0.2288   -0.5184 -4.5411      -1.6695           

         0.0652 -1.3357      -1.7562   -0.4505 -0.0548      -1.4139; 

          -0.4459  0.9893       1.2948    1.0299 3.6351      -1.8281      

         1.8858 -1.7607      -4.5737   -0.6502 0.0201      -1.9219; 

          -0.8115  0.3629      -0.3938   -0.3511     -3.0162      -1.6446         

        -0.0937 -1.2404      -1.8691   -0.6986 0.2564      -1.0443; 

          -0.4917 -0.0282       -0.9093   -0.2069     -1.3352      -2.0544          

        -0.4662 -2.0782      -1.8886   -1.3239 1.3432      -0.0369]; 

% hidden layer 2 - output layer weights - Linear node 0 

h2_out_w = [-1.6108 2.8075    1.9625 2.0289     1.5734]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = [1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']; 

Ka_hs = ((h2_out_w*h2')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

if(Ka_hs > 3.909) 

   Ka_hs = 3.909; 

end 

if(Ka_hs < 0.808) 

   Ka_hs = 0.808; 

end 
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APPENDIX F 

FUNCTIONS FOR CALCULATING Kt 

function [Kt_ns] = Kt_no_skew(lambda,xp) 

% Calculate the thickness correction factor for propellers with zero skew 

global PropB PropAeAo; 

inp = [PropB pi*xp*lambda PropAeAo xp]; % Z, pi*lambda, Ae/Ao, r 

omega = 2.0; sigma = 1.7; 

Input_training = csvread('Kt_no_skew.csv'); 

min_io = min(Input_training); % Z, pi*lambda, skew, Ae/Ao, r, Kt 

max_io = max(Input_training); 

%Normalize input 

norm_inp = (inp - min_io(1:end-1))./(max_io(1:end-1) - min_io(1:end-1)); 

%Normalize training set 

Input_training_norm = (Input_training(:,1:end-1) -ones(size(Input_training,1),1)*min_io(1:end-

1))./(ones(size(Input_training,1),1)*(max_io(1:end-1) - min_io(1:end-1))); 

sum_d = sum((Input_training_norm-ones(size(Input_training,1),1)*norm_inp).^2,2); 

dist = sum_d.^0.5; 

krn = [(ones(size(dist,1),1)./(ones(size(dist,1),1)+(2*dist(:,1)*sqrt(2^(1/omega)-

1)/sigma).^2)).^omega; 1]; 

alpha = csvread('SMOPUK_Kt_coef_noskew.csv'); 

Kt_ns = (krn'*alpha)*(max_io(end)-min_io(end))+min_io(end); 

end 

 

 

 

 

 

 

function [Kt_s] = Kt_skew(lambda, xp, skew1) 

% Calculate the thickness correction factor for moderately-skewed propellers 

global PropB PropAeAo; 

inp = [PropB pi*lambda skew1 PropAeAo xp]; % Z, pi*lambda, skew, Ae/Ao, r 

omega = 8.0; sigma = 1.2; 

Input_training = csvread('WEKA_skew_Kt_only.csv'); 

min_io = min(Input_training); % Z, pi*lambda, skew, Ae/Ao, r, Kt 

max_io = max(Input_training); 

%Normalize input 

norm_inp = (inp - min_io(1:end-1))./(max_io(1:end-1) - min_io(1:end-1)); 

%Normalize training set 

Input_training_norm = (Input_training(:,1:end-1) -ones(size(Input_training,1),1)*min_io(1:end-

1))./(ones(size(Input_training,1),1)*(max_io(1:end-1) - min_io(1:end-1))); 

sum_d = sum((Input_training_norm-ones(size(Input_training,1),1)*norm_inp).^2,2); 

dist = sum_d.^0.5; 

krn = [(ones(size(dist,1),1)./(ones(size(dist,1),1)+(2*dist(:,1)*sqrt(2^(1/omega)-

1)/sigma).^2)).^omega; 1]; 

alpha = csvread('SMOPUK_Kt_coef_skew.csv'); 

Kt_s = (krn'*alpha)*(max_io(end)-min_io(end))+min_io(end); 

end 

function [Kt_hs] = Kt_high_skew(lambda, xp, skew1) 

% Calculate the thickness correction factor for highly-skewed propellers 
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global PropB; 

inp = [PropB pi*xp*lambda skew1 xp]; % Z, pi*lambda, skew, r 

min_io = [4 0.8 0.000 0.3 0.04]; % Z, pi*lambda, skew, r, Kt 

max_io = [6 1.2 1.374 0.9 1.08]; 

% input - hidden layer 1 weights - Sigmoid nodes 1 - 11 

inp_h1_w = [-2.3389  0.8812     -0.1176  -0.4608  -0.6899; 

            -7.2481 -0.3465     -0.3095  -5.8303  -1.2365; 

            -0.5705 -0.5424     -1.1134   1.1510        -1.0798; 

            -1.2669  0.5577     -0.5276   0.1765  -0.6462; 

            -0.5819 -0.6033     -1.0507   1.0623  -1.0534; 

            -3.3499  0.6082     -1.8140   1.7003  -2.0239; 

            -0.3924 -1.1913      0.4627  -0.4776   0.6528; 

            -1.0315 -1.3395     -0.2457   0.5172  -0.5596; 

            -1.5218  0.5656      0.0876  -0.0387  -1.8291; 

            -0.7541 -0.3925      2.4073  -2.3118  -0.8916; 

            -0.5218  0.2178      0.0540   0.3864   2.2308]; 

% hidden layer 1 - hidden layer 2 weights - Sigmoid nodes 12 - 14 

h1_h2_w = [-3.6102 1.0699    5.1424 -1.3795      0.0649 -1.3846      1.6032 -1.3742        

-1.5902   -0.5663  0.8176     -1.6717; 

           -1.7470 0.0803   -0.4573  0.8781      0.5534 0.8041      1.6923 -1.0556        

-0.6465    1.1165  1.0939     -2.4513; 

           -1.9698 0.3062    1.6848 -0.1677      0.6012   -0.3174      1.7107 -0.8219        

-0.9374   -0.0767  0.7726     -1.3720]; 

% hidden layer 2 - hidden layer 3 weights - Sigmoid nodes 15 - 16 

h2_h3_w = [-0.6711 -2.0731     -2.8482 -2.0310  

           2.7668 -3.6794     -2.1632 -1.9678]; 

% hidden layer 3 - output layer weights - Linear node 0 

h3_out_w = [2.7321 -2.1266      -3.2688]; 

% normalize input and add bias node input 

nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

% find network output 

h1 = ([1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']'*ones(1,size(h1_h2_w,1)))'; 

h2 = ([1 (1./(1+exp(-sum(h1_h2_w.*h1,2))))']'*ones(1,size(h2_h3_w,1)))'; 

h3 = [1 (1./(1+exp(-sum(h2_h3_w.*h2,2))))']; 

Kt_hs = ((h3_out_w*h3')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

end 
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APPENDIX G 

FUNCTION FOR CALCULATION OF SECTION CD 

function [Cd] = CD(xp,alpha) 

 

% Calculate the blade section drag coefficient 

global Foil tmax ch; 

if strcmp(Foil,'NACA66a0_8') 

    angle = [-3 -2 -1 0 1 2 3 4 5 6]; 

    Cdr = [0.00699129 0.00671751 0.00661256 0.00664296 0.00676150 0.00698097 0.00729192 

0.00778509 0.00852383 0.00913079]; 

    Cd = interp1(angle,Cdr,alpha*180/pi,'pchip','extrap'); 

elseif strcmp(Foil,'E817') 

    angle = [-5 -4 -3 -2 -1 0 1 2 3 4 5 6]; 

    Cdr = [0.00708446 0.00677365 0.0000655027 0.00668078 0.00669658 0.00687248 0.00717984 

0.00767871 0.00815160 0.00917460 0.01007430 0.01152160]; 

    Cd = interp1(angle,Cdr,alpha*180/pi,'pchip','extrap'); 

elseif strcmp(Foil,'YS920') 

    angle = [-4 -3 -2 -1 0 1 2 3 4 5 6]; 

    Cdr = [0.00681847 0.00657998 0.00649218 0.00615860 0.00660001 0.00644495 0.00696518 

0.00745026 0.00799587 0.00886487 0.0097655]; 

    Cd = interp1(angle,Cdr,alpha*180/pi,'pchip','extrap'); 

elseif strcmp(Foil,'Optimal') 

    inp = [tmax(xp)/ch(xp) alpha*180/pi]; 

    min_io = [0.02373 -2.1 0.005529477]; 

    max_io = [0.198227 6.0 0.07983381]; 

    % input - hidden layer 1 weights - Sigmoid nodes 1 - 3 

    inp_h1_w = [6.5017  4.3216  -3.8593; 

                -1.7239 1.3155   0.4409; 

                -0.2528 1.3500  -0.5462]; 

    % hidden layer 1 - output layer weights - Linear node 0 

    h1_out_w = [1.3634  -2.3262  0.3481  -0.1229]; 

    % normalize input and add bias node input 

    nrm_inp = ([1 (2*inp-max_io(1:end-1)-min_io(1:end-1))./(max_io(1:end-1)-min_io(1:end-

1))]'*ones(1,size(inp_h1_w,1)))'; 

    % find network output 

    h1 = [1 (1./(1+exp(-sum(inp_h1_w.*nrm_inp,2))))']; 

    Cd = ((h1_out_w*h1')*(max_io(end)-min_io(end))+min_io(end)+max_io(end))/2; 

end 

 

end 
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APPENDIX H 

SCRIPT FOR GENERATING OPENFOAM GRID 

clc 

clear 

pkg load all 

 

Fpts = 200; %No of points on the foil 

X = linspace(0,1,Fpts); 

 

var = [0.01299 0.04052 0.05250 0.06250 0.07620 0.05975 0.0475 0.024 0.01420 -0.01260 -0.0400   -

0.0445 -0.0454 -0.0325 -0.013 0.0036 0.007 0.00324] % Control Points 

 

ucp = [0.000 0.000 0.100 0.200 0.300 0.500 0.700 0.800 0.900 0.950 1.000; 0.000, var(1:9), 

0.000]; 

lcp = [0.000 0.000 0.100 0.200 0.300 0.500 0.700 0.800 0.900 0.950 1.000; 0.000, var(10:18), 

0.000]; 

 

ktsu  = [0 0 0 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 1 1 1]; 

ktsl  = [0 0 0 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 1 1 1]; 

 

arflu = bspeval(3,ucp,ktsu,X); 

arfll = bspeval(3,lcp,ktsl,X); 

 

area = trapz(arflu(1,:),arflu(2,:))-trapz(arfll(1,:),arfll(2,:)); 

zbar = 0.5*(trapz(arflu(1,:),arflu(2,:).^2)-trapz(arfll(1,:),arfll(2,:).^2))/area; % neutral axis 

location 

ixx = (trapz(arflu(1,:),(arflu(2,:)-zbar).^3)-trapz(arfll(1,:),(arfll(2,:)-zbar).^3))/3; % 

compute second moment of area about x-axis 

[f_max,ind_f] = max((arflu(2,:) + arfll(2,:))/2) 

arflu(1,ind_f) 

[t_max,ind_t] = max((arflu(2,:) - arfll(2,:))) 

arflu(1,ind_t) 

c_max = max(max(arflu(2,:)-zbar),max(abs(arfll(2,:)-zbar))); % maximum distance from neutral axis 

z_mod = ixx/c_max % section modulus 

 

Xu = arflu(1,:); 

Xl = arfll(1,:); 

Zu = arflu(2,:); 

Zl = arfll(2,:); 

x_mid = 101; 

 

plot(Xu,Zu,"b"); 

grid minor on; 

hold on; 

plot(Xl,Zl,"b"); 

hold off; 

 

% Geometric parameters 

c = 1;                      % Geometric chord length 

alpha = 0;                  % Angle of attack (in degrees) 

alpha = alpha*pi/180; 
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scale = 1;                          % Grid scaling factor 

H = 15;                             % Radius of 'C' segment 

W = 0.5;                            % Width of 3-D grid (y-axis) 

D = 50;                             % Length of downstream segment 

c_r = 2*c;                          % Inner grid dimension 

 

% Grid parameters 

N_foil = 250;                    % Number of mesh cells along the foil 

F_lead = 0.6;                           % Number of cells between leading edge and mid-chord 

(fraction of total cells) 

N_lead = round(F_lead*N_foil);           % Number of cells between leading edge and mid-chord 

N_trail = N_foil-N_lead; 

N_wake = 250;                            % Number of cells in the wake (downstream of the 

airfoil) 

N_trans_1 = 85; 

N_trans_2 = 35;                          % Number of cells in the transverse direction - outer 

grid 

N_width = 1;                             % Number of cells along the y-axis (typically set to 1) 

 

% Expansion ratios 

Exp_trans_1 = 30000;             % Expansion ratio in the transverse direction - inner grid 

Exp_trans_2 = Exp_trans_1/10000;  % Expansion ratio in the transverse direction - outer grid 

Exp_trans_3 = Exp_trans_1/1000;   % Expansion ratio in the transverse direction - inner grid 

outlet edges 

Exp_lead_1 = 5;                  % Expansion ratio on the airfoil near the leading edge 

Exp_lead_2 = 1;                  % Expansion ratio near the leading edge - interface of inner and 

outer grids 

Exp_trail_1 = 0.2;               % Expansion ratio on the airfoil near the trailing edge 

Exp_trail_2 = 5*Exp_trail_1;     % Expansion ratio near the trailing edge - interface of inner 

and outer grids 

Exp_wake = 600;                  % Expansion ratio in the downstream direction 

 

% Grid points 

v(1,1) = -H+Xu(x_mid);   v(2,1) = 0;     % Outer grid inlet center point - point 0 

v(1,2) = -c_r+Xu(x_mid); v(2,2) = 0;     % Inner grid upstream center point - point 4 

v(1,3) = Xu(x_mid);      v(2,3) = c_r;   % Inner grid suction side midchord point - point 5 

v(1,4) = Xu(x_mid);      v(2,4) = -c_r;  % Inner grid pressure side midchord point - point 13 

v(1,5) = Xu(end);        v(2,5) = c_r;   % Inner grid suction side trailing edge point - point 6 

v(1,6) = Xu(end);        v(2,6) = -c_r;  % Inner grid pressure side trailing edge point - point 

14 

v(1,7) = (D+c);          v(2,7) = 0;     % Inner grid outlet center point - point 11 

v(1,8) = (D+c);          v(2,8) = c_r;   % Inner grid outlet upper point - point 7 

v(1,9) = (D+c);          v(2,9) = -c_r;  % Inner grid outlet lower point - point 15 

v(1,10) = Xu(x_mid);     v(2,10) = H;    % Outer grid slip upper midchord point - point 1 

v(1,11) = Xl(x_mid);     v(2,11) = -H;   % Outer grid slip lower midchord point- point 16 

v(1,12) = Xu(end);  v(2,12) = H;   % Outer grid slip upper trailing edge point -  point 2 

v(1,13) = Xu(end);  v(2,13) = -H;   % Outer grid slip lower trailing edge point - point 17 

 

% Rotate the airfoil points according to the specified angle of attack 

upper = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)] * [Xu ; Zu]; 

lower = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)] * [Xl ; Zl]; 

Xu = upper(1,:)'; Zu = upper(2,:)'; Xl = lower(1,:)'; Zl = lower(2,:)'; 
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% Rotate the grid points according to the specified angle of attack 

v = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)] * v; v = v'; 

 

v(3,1) = v(3,1)-(v(3,1)-Xu(x_mid))*(v(3,2)-c_r)/(v(3,2)-Zu(x_mid)); % interpolation at c_r 

v(4,1) = v(4,1)-(v(4,1)-Xl(x_mid))*(v(4,2)+c_r)/(v(4,2)-Zl(x_mid)); 

v(5,1) = v(5,1)-(v(5,1)-Xu(end))*(v(5,2)-c_r)/(v(5,2)-Zu(end)); 

v(6,1) = v(6,1)-(v(6,1)-Xl(end))*(v(6,2)+c_r)/(v(6,2)-Zl(end)); 

v(10,1) = v(10,1)-(v(10,1)-v(3,1))*(v(10,2)-H)/(v(10,2)-v(3,2)); % interpolation at H 

v(11,1) = v(11,1)-(v(11,1)-v(4,1))*(v(11,2)+H)/(v(11,2)-v(4,2)); 

v(12,1) = v(12,1)-(v(12,1)-v(5,1))*(v(12,2)-H)/(v(12,2)-v(5,2)); 

v(13,1) = v(13,1)-(v(13,1)-v(6,1))*(v(13,2)+H)/(v(13,2)-v(6,2)); 

v(8,2) = v(5,2)+(v(8,2)-v(5,2))*(v(7,1)-v(5,1))/(v(8,1)-v(5,1)); % interpolation at D 

v(9,2) = v(6,2)+(v(9,2)-v(6,2))*(v(7,1)-v(6,1))/(v(9,1)-v(6,1)); 

 

vertx(1,:)  = [v(1,1),     W,     v(1,2)]; 

vertx(2,:)  = [v(10,1),    W,          H]; 

vertx(3,:)  = [v(12,1),    W,          H]; 

vertx(4,:)  = [v(7,1),     W,          H]; 

vertx(5,:)  = [v(2,1),     W,     v(2,2)]; 

vertx(6,:)  = [v(3,1),     W,     v(3,2)]; 

vertx(7,:)  = [v(5,1),     W,     v(5,2)]; 

vertx(8,:)  = [v(7,1),     W      v(8,2)]; 

vertx(9,:)  = [Xu(1),      W,      Zu(1)]; 

vertx(10,:) = [Xu(x_mid),  W,  Zu(x_mid)]; 

vertx(11,:) = [Xu(end),    W,    Zu(end)]; 

vertx(12,:) = [v(7,1),     W,     v(7,2)]; 

vertx(13,:) = [Xl(x_mid),  W,  Zl(x_mid)]; 

vertx(14,:) = [v(4,1),     W,     v(4,2)]; 

vertx(15,:) = [v(6,1),     W,     v(6,2)]; 

vertx(16,:) = [v(7,1),     W,     v(9,2)]; 

vertx(17,:) = [v(11,1),    W,         -H]; 

vertx(18,:) = [v(13,1),    W,         -H]; 

vertx(19,:) = [v(7,1),     W,         -H]; 

 

% Mirror the vertices on the negative y-axis 

vertx = [vertx; vertx(:,1), -vertx(:,2), vertx(:,3)]; 

 

% Edges 8-9 and 27-28 

pts1 = [Xu(2:x_mid-1), W*ones(size(Xu(2:x_mid-1))), Zu(2:x_mid-1)]; 

pts9 = [pts1(:,1), -pts1(:,2), pts1(:,3)]; 

 

% Edges 9-10 and 28-29 

pts2 = [Xu(x_mid+1:end-1), W*ones(size(Xu(x_mid+1:end-1))), Zu(x_mid+1:end-1)]; 

pts10 = [pts2(:,1), -pts2(:,2), pts2(:,3)]; 

 

% Edges 8-12 and 27-31 

pts3 = [Xl(2:x_mid-1), W*ones(size(Xl(2:x_mid-1))), Zl(2:x_mid-1)]; 

pts11 = [pts3(:,1), -pts3(:,2), pts3(:,3)]; 

 

% Edges 12-10 and 31-29 

pts4 = [Xl(x_mid+1:end-1), W*ones(size(Xl(x_mid+1:end-1))), Zl(x_mid+1:end-1)]; 

pts12 = [pts4(:,1), -pts4(:,2), pts4(:,3)]; 
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% Edges 0-1 and 19-20 

pts5 = [-H*cos(pi/4)+Xu(x_mid), W, H*sin(pi/4)]; 

pts13 = [pts5(:,1), -pts5(:,2), pts5(:,3)]; 

 

% Edges 0-16 and 19-35 

pts6 = [-H*cos(pi/4)+Xu(x_mid), W, -H*sin(pi/4)]; 

pts14 = [pts6(:,1), -pts6(:,2), pts6(:,3)]; 

 

% Edges 4-5 and 23-24 

pts7 = [-c_r*cos(pi/4)+Xu(x_mid), W, c_r*sin(pi/4)]; 

pts15 = [pts7(:,1), -pts7(:,2), pts7(:,3)]; 

 

% Edges 4-13 and 23-32 

pts8 = [-c_r*cos(pi/4)+Xu(x_mid), W, -c_r*sin(pi/4)]; 

pts16 = [pts8(:,1), -pts8(:,2), pts8(:,3)]; 

 

% Generate 'blockMeshDict' file 

foil = fopen('blockMeshDict', 'w'); 

 

% Write file 

fprintf(foil, '/*--------------------------------*- C++ -*----------------------------------*\\ 

\n'); 

fprintf(foil, '| =========                 |                                                 | 

\n'); 

fprintf(foil, '| \\\\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

\n'); 

fprintf(foil, '|  \\\\    /   O peration     | Version:  4.0                                 | 

\n'); 

fprintf(foil, '|   \\\\  /    A nd           | Web:      www.OpenFOAM.com                      | 

\n'); 

fprintf(foil, '|    \\\\/     M anipulation  |                                                 | 

\n'); 

fprintf(foil, '\\*---------- -----------------------------------------------------------------*/ 

\n'); 

fprintf(foil, 'FoamFile                                                                        

\n'); 

fprintf(foil, '{                                                                               

\n'); 

fprintf(foil, '    version     4.0;                                                            

\n'); 

fprintf(foil, '    format      ascii;                                                          

\n'); 

fprintf(foil, '    class       dictionary;                                                     

\n'); 

fprintf(foil, '    location    "system";                                                     

\n'); 

fprintf(foil, '    object      blockMeshDict;                                                  

\n'); 

fprintf(foil, '}                                                                               

\n'); 

fprintf(foil, '// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

\n'); 

fprintf(foil, '\n'); 
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fprintf(foil, 'convertToMeters %f; \n', scale); 

fprintf(foil, '\n'); 

fprintf(foil, 'vertices \n'); 

fprintf(foil, '( \n'); 

fprintf(foil, '    (%f %f %f)\n', vertx'); 

fprintf(foil, '); \n'); 

fprintf(foil, '\n'); 

fprintf(foil, 'blocks \n'); 

fprintf(foil, '( \n'); 

 

fprintf(foil, '    hex (8 9 5 4 27 28 24 23) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 1 1 

1 1) \n', N_lead, N_trans_1, N_width, Exp_lead_1, Exp_lead_2, Exp_lead_2, Exp_lead_1, 

Exp_trans_1, Exp_trans_1, Exp_trans_1, Exp_trans_1); 

fprintf(foil, '    hex (9 10 6 5 28 29 25 24) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 1 1 

1 1) \n',  N_trail, N_trans_1, N_width, Exp_trail_1, Exp_trail_2, Exp_trail_2, Exp_trail_1, 

Exp_trans_1, Exp_trans_1, Exp_trans_1, Exp_trans_1); 

 

fprintf(foil, '    hex (4 5 1 0 23 24 20 19) (%i %i %i) edgeGrading (%f 1 1 %f %f %f %f %f 1 1 1 

1) \n', N_lead, N_trans_2, N_width, Exp_lead_2, Exp_lead_2, Exp_trans_2, Exp_trans_2, 

Exp_trans_2, Exp_trans_2); 

fprintf(foil, '    hex (5 6 2 1 24 25 21 20) (%i %i %i) edgeGrading (%f 1 1 %f %f %f %f %f 1 1 1 

1) \n',  N_trail, N_trans_2, N_width, Exp_trail_2, Exp_trail_2, Exp_trans_2, Exp_trans_2, 

Exp_trans_2, Exp_trans_2); 

 

fprintf(foil, '    hex (27 31 32 23 8 12 13 4) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 1 

1 1 1) \n', N_lead, N_trans_1, N_width, Exp_lead_1, Exp_lead_2, Exp_lead_2, Exp_lead_1, 

Exp_trans_1, Exp_trans_1, Exp_trans_1, Exp_trans_1); 

fprintf(foil, '    hex (31 29 33 32 12 10 14 13) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 

1 1 1 1) \n',  N_trail, N_trans_1, N_width, Exp_trail_1, Exp_trail_2, Exp_trail_2, Exp_trail_1, 

Exp_trans_1, Exp_trans_1, Exp_trans_1, Exp_trans_1); 

 

fprintf(foil, '    hex (23 32 35 19 4 13 16 0) (%i %i %i) edgeGrading (%f 1 1 %f %f %f %f %f 1 1 

1 1) \n', N_lead, N_trans_2, N_width, Exp_lead_2, Exp_lead_2, Exp_trans_2, Exp_trans_2, 

Exp_trans_2, Exp_trans_2); 

fprintf(foil, '    hex (32 33 36 35 13 14 17 16) (%i %i %i) edgeGrading (%f 1 1 %f %f %f %f %f 1 

1 1 1) \n',  N_trail, N_trans_2, N_width, Exp_trail_2, Exp_trail_2, Exp_trans_2, Exp_trans_2, 

Exp_trans_2, Exp_trans_2); 

 

fprintf(foil, '    hex (10 11 7 6 29 30 26 25) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 1 

1 1 1) \n', N_wake, N_trans_1, N_width, Exp_wake, Exp_wake, Exp_wake, Exp_wake, Exp_trans_1, 

Exp_trans_3, Exp_trans_3, Exp_trans_1); 

fprintf(foil, '    hex (6 7 3 2 25 26 22 21) (%i %i %i) simpleGrading (%f %f 1) \n', N_wake, 

N_trans_2, N_width, Exp_wake, Exp_trans_2); 

 

fprintf(foil, '    hex (29 30 34 33 10 11 15 14) (%i %i %i) edgeGrading (%f %f %f %f %f %f %f %f 

1 1 1 1) \n', N_wake, N_trans_1, N_width, Exp_wake, Exp_wake, Exp_wake, Exp_wake, Exp_trans_1, 

Exp_trans_3, Exp_trans_3, Exp_trans_1); 

fprintf(foil, '    hex (33 34 37 36 14 15 18 17) (%i %i %i) simpleGrading (%f %f 1) \n', N_wake, 

N_trans_2, N_width, Exp_wake, Exp_trans_2); 

 

fprintf(foil, '); \n'); 

fprintf(foil, '\n'); 

fprintf(foil, 'edges \n'); 
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fprintf(foil, '( \n'); 

 

fprintf(foil, '    spline 8 9 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f) \n', pts1'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 9 10 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f)\n', pts2'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 8 12 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f) \n', pts3'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 12 10 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f)\n', pts4'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 27 28 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f) \n', pts9'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 28 29 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f)\n', pts10'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 27 31 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f) \n', pts11'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    spline 31 29 \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (%f %f %f)\n', pts12'); 

fprintf(foil, '        ) \n'); 

 

fprintf(foil, '    arc 0 1 (%f %f %f) \n', pts5'); 

fprintf(foil, '    arc 0 16 (%f %f %f) \n', pts6'); 

fprintf(foil, '    arc 19 20 (%f %f %f) \n', pts13'); 

fprintf(foil, '    arc 19 35 (%f %f %f) \n', pts14'); 

 

fprintf(foil, '    arc 4 5 (%f %f %f) \n', pts7'); 

fprintf(foil, '    arc 4 13 (%f %f %f) \n', pts8'); 

fprintf(foil, '    arc 23 24 (%f %f %f) \n', pts15'); 

fprintf(foil, '    arc 23 32 (%f %f %f) \n', pts16'); 

 

fprintf(foil, '); \n'); 
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fprintf(foil, '\n'); 

fprintf(foil, 'boundary \n'); 

fprintf(foil, '( \n'); 

 

fprintf(foil, '    inlet \n'); 

fprintf(foil, '    { \n'); 

fprintf(foil, '        type patch; \n'); 

fprintf(foil, '        faces \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (0 1 20 19) \n'); 

fprintf(foil, '            (0 16 35 19) \n'); 

fprintf(foil, '        ); \n'); 

fprintf(foil, '    } \n'); 

fprintf(foil, '\n'); 

 

fprintf(foil, '    outlet \n'); 

fprintf(foil, '    { \n'); 

fprintf(foil, '        type patch; \n'); 

fprintf(foil, '        faces \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (18 15 34 37) \n'); 

fprintf(foil, '            (15 11 30 34) \n'); 

fprintf(foil, '            (11 7 26 30) \n'); 

fprintf(foil, '            (7 3 22 26) \n'); 

fprintf(foil, '        ); \n'); 

fprintf(foil, '    } \n'); 

fprintf(foil, '\n'); 

 

fprintf(foil, '    topAndBottom \n'); 

fprintf(foil, '    { \n'); 

fprintf(foil, '        type patch; \n'); 

fprintf(foil, '        faces \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (3 2 21 22) \n'); 

fprintf(foil, '            (2 1 20 21) \n'); 

fprintf(foil, '            (18 17 36 37) \n'); 

fprintf(foil, '            (17 16 35 36) \n'); 

fprintf(foil, '        ); \n'); 

fprintf(foil, '    } \n'); 

fprintf(foil, '\n'); 

 

fprintf(foil, '    airfoil \n'); 

fprintf(foil, '    { \n'); 

fprintf(foil, '        type wall; \n'); 

fprintf(foil, '        faces \n'); 

fprintf(foil, '        ( \n'); 

fprintf(foil, '            (8 9 28 27) \n'); 

fprintf(foil, '            (9 10 29 28) \n'); 

fprintf(foil, '            (8 12 31 27) \n'); 

fprintf(foil, '            (12 10 29 31) \n'); 

fprintf(foil, '        ); \n'); 

fprintf(foil, '    } \n'); 

fprintf(foil, '); \n'); 
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fprintf(foil, ' \n'); 

fprintf(foil, 'mergePatchPairs \n'); 

fprintf(foil, '( \n'); 

fprintf(foil, '); \n'); 

fprintf(foil, ' \n'); 

fprintf(foil, '// ************************************************************************* // 

\n'); 

 

% Close file 

fclose(foil) 
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APPENDIX I 

COORDINATES OF THE NEW PROPELLER BLADE SECTION 

x Upper Lower 

0.00000 0.00000 0.00000 

0.00024 0.00157 -0.00152 

0.00094 0.00315 -0.00306 

0.00208 0.00472 -0.00459 

0.00364 0.00630 -0.00613 

0.00559 0.00788 -0.00767 

0.00791 0.00946 -0.00921 

0.01058 0.01102 -0.01074 

0.01357 0.01259 -0.01226 

0.01687 0.01414 -0.01377 

0.02045 0.01567 -0.01526 

0.02429 0.01720 -0.01674 

0.02836 0.01871 -0.01819 

0.03264 0.02019 -0.01963 

0.03711 0.02166 -0.02104 

0.04175 0.02310 -0.02242 

0.04654 0.02452 -0.02376 

0.05144 0.02591 -0.02508 

0.05644 0.02727 -0.02635 

0.06152 0.02860 -0.02759 

0.06665 0.02989 -0.02878 

0.07181 0.03115 -0.02993 

0.07698 0.03237 -0.03103 

0.08213 0.03355 -0.03208 

0.08724 0.03468 -0.03308 

0.09229 0.03577 -0.03401 

0.09727 0.03681 -0.03489 

0.10217 0.03781 -0.03572 

0.10699 0.03876 -0.03649 

0.11175 0.03967 -0.03720 

0.11643 0.04054 -0.03787 

0.12105 0.04137 -0.03849 

0.12562 0.04217 -0.03906 

0.13012 0.04293 -0.03959 

0.13457 0.04366 -0.04007 

0.13897 0.04436 -0.04052 

0.14332 0.04502 -0.04093 

0.14762 0.04566 -0.04130 

0.15189 0.04628 -0.04164 

0.15611 0.04687 -0.04195 

0.16030 0.04744 -0.04223 
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0.16446 0.04798 -0.04249 

0.16859 0.04851 -0.04272 

0.17270 0.04902 -0.04292 

0.17678 0.04952 -0.04311 

0.18085 0.05000 -0.04328 

0.18490 0.05048 -0.04343 

0.18893 0.05094 -0.04357 

0.19296 0.05139 -0.04370 

0.19698 0.05184 -0.04382 

0.20101 0.05228 -0.04393 

0.20503 0.05272 -0.04403 

0.20906 0.05316 -0.04413 

0.21310 0.05359 -0.04422 

0.21717 0.05402 -0.04430 

0.22126 0.05445 -0.04437 

0.22539 0.05488 -0.04444 

0.22956 0.05531 -0.04449 

0.23377 0.05574 -0.04454 

0.23804 0.05617 -0.04457 

0.24237 0.05660 -0.04459 

0.24677 0.05703 -0.04460 

0.25124 0.05746 -0.04459 

0.25579 0.05789 -0.04457 

0.26042 0.05832 -0.04454 

0.26515 0.05875 -0.04449 

0.26997 0.05919 -0.04442 

0.27490 0.05963 -0.04434 

0.27995 0.06007 -0.04424 

0.28511 0.06052 -0.04412 

0.29040 0.06097 -0.04399 

0.29582 0.06143 -0.04383 

0.30137 0.06189 -0.04366 

0.30708 0.06235 -0.04346 

0.31293 0.06282 -0.04325 

0.31894 0.06330 -0.04301 

0.32511 0.06378 -0.04275 

0.33143 0.06426 -0.04247 

0.33790 0.06474 -0.04216 

0.34450 0.06523 -0.04184 

0.35125 0.06571 -0.04149 

0.35811 0.06618 -0.04113 

0.36510 0.06665 -0.04075 

0.37220 0.06710 -0.04034 

0.37941 0.06754 -0.03992 

0.38672 0.06797 -0.03948 

0.39412 0.06838 -0.03903 
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0.40161 0.06878 -0.03856 

0.40918 0.06915 -0.03807 

0.41683 0.06949 -0.03756 

0.42455 0.06982 -0.03704 

0.43232 0.07011 -0.03650 

0.44016 0.07037 -0.03595 

0.44804 0.07061 -0.03539 

0.45596 0.07080 -0.03481 

0.46392 0.07096 -0.03422 

0.47191 0.07109 -0.03361 

0.47992 0.07117 -0.03299 

0.48794 0.07120 -0.03236 

0.49598 0.07120 -0.03172 

0.50402 0.07114 -0.03107 

0.51206 0.07104 -0.03041 

0.52008 0.07089 -0.02974 

0.52809 0.07070 -0.02906 

0.53608 0.07047 -0.02837 

0.54404 0.07020 -0.02767 

0.55196 0.06989 -0.02697 

0.55984 0.06955 -0.02626 

0.56768 0.06917 -0.02554 

0.57545 0.06877 -0.02482 

0.58317 0.06834 -0.02409 

0.59082 0.06788 -0.02336 

0.59839 0.06740 -0.02263 

0.60588 0.06690 -0.02189 

0.61328 0.06639 -0.02115 

0.62059 0.06585 -0.02041 

0.62780 0.06530 -0.01966 

0.63490 0.06474 -0.01892 

0.64189 0.06417 -0.01818 

0.64875 0.06359 -0.01744 

0.65550 0.06301 -0.01669 

0.66210 0.06242 -0.01596 

0.66857 0.06183 -0.01522 

0.67489 0.06125 -0.01449 

0.68106 0.06067 -0.01376 

0.68707 0.06009 -0.01303 

0.69292 0.05952 -0.01231 

0.69863 0.05896 -0.01160 

0.70418 0.05840 -0.01089 

0.70960 0.05784 -0.01019 

0.71489 0.05728 -0.00950 

0.72005 0.05673 -0.00881 

0.72510 0.05617 -0.00814 
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0.73003 0.05562 -0.00747 

0.73485 0.05506 -0.00682 

0.73958 0.05450 -0.00617 

0.74421 0.05394 -0.00554 

0.74876 0.05337 -0.00492 

0.75323 0.05280 -0.00431 

0.75763 0.05222 -0.00372 

0.76196 0.05163 -0.00314 

0.76623 0.05103 -0.00258 

0.77044 0.05042 -0.00203 

0.77461 0.04980 -0.00150 

0.77874 0.04917 -0.00099 

0.78283 0.04853 -0.00049 

0.78690 0.04787 -0.00002 

0.79094 0.04720 0.00044 

0.79497 0.04651 0.00088 

0.79899 0.04580 0.00130 

0.80301 0.04508 0.00170 

0.80703 0.04434 0.00207 

0.81105 0.04358 0.00243 

0.81506 0.04281 0.00276 

0.81907 0.04203 0.00307 

0.82306 0.04123 0.00337 

0.82705 0.04043 0.00364 

0.83103 0.03961 0.00390 

0.83499 0.03879 0.00413 

0.83895 0.03796 0.00435 

0.84288 0.03712 0.00454 

0.84680 0.03628 0.00472 

0.85070 0.03544 0.00489 

0.85457 0.03459 0.00503 

0.85843 0.03374 0.00515 

0.86226 0.03290 0.00526 

0.86606 0.03206 0.00535 

0.86984 0.03122 0.00543 

0.87359 0.03039 0.00548 

0.87731 0.02956 0.00553 

0.88100 0.02874 0.00555 

0.88465 0.02793 0.00556 

0.88827 0.02713 0.00556 

0.89185 0.02634 0.00553 

0.89539 0.02556 0.00550 

0.89890 0.02480 0.00545 

0.90237 0.02405 0.00538 

0.90582 0.02330 0.00530 

0.90927 0.02256 0.00521 
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0.91272 0.02181 0.00510 

0.91619 0.02106 0.00498 

0.91968 0.02030 0.00484 

0.92321 0.01952 0.00469 

0.92679 0.01872 0.00453 

0.93042 0.01790 0.00435 

0.93414 0.01706 0.00415 

0.93793 0.01618 0.00394 

0.94182 0.01527 0.00372 

0.94581 0.01431 0.00349 

0.94992 0.01332 0.00324 

0.95417 0.01227 0.00298 

0.95855 0.01117 0.00270 

0.96308 0.01002 0.00241 

0.96777 0.00880 0.00211 

0.97264 0.00752 0.00179 

0.97770 0.00617 0.00146 

0.98295 0.00475 0.00111 

0.98841 0.00325 0.00076 

0.99409 0.00167 0.00038 

1.00000 0.00000 0.00000 
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