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DISSERTATION ABSTRACT

Theodore Lindsay

Doctor of Philosophy

Department of Biology

September 2012

Title: Functional Circuitry Controlling the Selection of Behavioral Primitives in 
Caenorhabditis elegans

 One central question of neuroscience asks how a neural system can generate 

the diversity of complex behaviors needed to meet the range of possible demands 

placed on an organism by an ever changing environment. In many cases, it appears 

that animals assemble complex behaviors by recombining sets of simpler behaviors 

known as behavioral primitives. The crawling behavior of the nematode worm 

Caenorhabditis elegans represents a classic example of such an approach since 

worms use the simple behaviors of forward and reverse locomotion to assemble 

more complex behaviors such as search and escape. 

 The relative simplicity and well-described anatomy of the worm nervous 

system combined with a high degree of genetic tractability make C. elegans an 

attractive organism with which to study the neural circuits responsible for assembling 

behavioral primitives into complex behaviors. Unfortunately, difficulty probing the 

physiological properties of central synapses in C. elegans has left this opportunity 

largely unfulfilled. In this dissertation we address this challenge by developing 

techniques that combine whole-cell patch clamp recordings with optical stimulation 

of neurons. We do this using transgenic worms that express the light-sensitive ion 

channel Channelrhodopsin-2 (ChR2) in putative pre-synaptic neurons and fluorescent 

protein reporters in the post-synaptic neurons to be targeted by electrodes.

 We first apply this new approach to probe C. elegans circuitry in chapter II 

where we test for connectivity between nociceptive neurons known as ASH required 
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for sensing aversive stimuli, and premotor neurons required for generating backward 

locomotion, known as AVA. In chapter III we extend our analysis of the C. elegans 

locomotory circuit to the premotor neurons required for generating forward 

locomotion, known as AVB. We identify inhibitory synaptic connectivity between ASH 

and AVB and between the two types of premotor neurons, AVA and AVB. Finally, we 

use our observations to develop a biophysical model of the locomotory circuit in 

which switching emerges from the attractor dynamics of the network. Primitive 

selection in C. elegans may thus represent an accessible system to test kinetic 

theories of decision making.

 This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

BEHAVIORAL PRIMITIVES

Animals face a daunting task; they must obtain resources and mates, avoid 

predation, all while maintaining homeostasis in a complex ever-changing world. To 

overcome these challenges most animals are capable of executing a wide range of 

behaviors that allow them to adapt to environmental and homeostatic demands. 

Whereas these behaviors may equip the animal with the tools for success, they 

present the challenge of selecting and executing the appropriate behavior for a 

situation. This challenge is met — in large part — by the nervous system.

When presented with an environmental or homeostatic challenge, two options are 

available. The nervous system may invent the appropriate response de novo, or 

utilize previously learned and/or hard-wired or behaviors. The approach of drawing 

on pre-existing behaviors — known as behavioral primitives — appears to be 

widespread in the animal kingdom since it allows animals to build a range of more 

complex behaviors from a hierarchy of these simpler primitives 1-3. 

In some instances, multiple primitives are executed simultaneously to generate a 

complex behavior. For example, there is evidence that the diversity of limb motions 

in tetrapods is accomplished through linear combination of circuits coding for a small 

subset motor programs known as muscle synergies 4,5. 

In many instances however, simultaneous execution of more than one behavior is 

either impossible or maladaptive. For example an eye may only foveate a single 

target at a time 6,7, and flying insects need not generate the motor patterns for flight 
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and walking simultaneously 8. In these instances the animal should select the correct 

behavior or sequence of behaviors in a way that is appropriate for the situation. 

Mechanisms of flip-flops in neural systems

The selection between mutually exclusive behaviors can be thought of as a general 

model of decision making and has been studied in a range of animals including 

invertebrates, rodents and primates (Fig. 1). These studies have hinted that in many 

instances, the neural circuits responsible for the selection of behavioral primitives 

conform to an activity pattern known as a flip-flop.  A flip-flop — which takes its 

name from the corresponding electrical circuit 9 — is inherently bi-stable, such that 

the underlying neurons, or groups of neurons are active or inactive for extended 

periods of time. Moreover, a key feature of flip-flops is that transitions between the 

active and inactive states are rapid when compared to the duration of the states 

themselves. 

Binocular Rivalry
(Primate)

(C. elegans)

(B. mori)
Plume following

Locomotory Switching

Histology

Dye tracing

Wiring diagram

Extracellular electrophysiology

Extracellular electrophysiology
Intracellular electrophysiology

Intracellular electrophysiology

Calcium imaging

Behavioral task
Perceptual report

Tracking

Computer vision

Tracking
Tethered behavior

fMRI

Genetic identification

Neural substrate Circuit mechanism Psychophysical assembly

Genetic identification

Figure 1: Experimental approaches for studying flip-flop circuits at three 
levels of organization. Three examples of putative flip-flop circuits that have been 
studied using a range of techniques. These techniques can be broadly categorized 
according to the level of organization they target. Arrows indicate instances where 
experiments have been performed that provide connections between multiple levels. 
This might occur when multiple techniques can be applied simultaneously in the 
same experiment, for example single unit recordings taken from monkeys trained to 
do a perceptual task while single unit recordings. Connections are also made when 
predictions from experiments or theory at one level are tested and validated and 
expanded on by experiments at another level. In this dissertation we test the 
predictions of the C. elegans wiring diagram using electrophysiology, and extend the 
diagram with functional data (red arrow).
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There are multiple ways in which a nervous system can generate flip-flop behavior. 

One common mechanism is through the intrinsic voltage-dependent conductances of 

individual neurons.9-11  In this case, a neuron is capable of sustaining constant 

depolarization for an extended period of time without support from external input. 

This type of depolarization is known as a plateau potential 12,13 and has been 

identified in many invertebrate and vertebrate systems 11,14,15. The plateau potential 

in a single neuron might be able drive populations of follower cells and thus set the 

pace for a network-wide flip-flop pattern.

Theoretical considerations suggest that synaptic and network properties alone might 

also be able to support the generation of a flip-flop pattern.  In this case, recurrent 

excitation or inhibition is thought to maintain stable active or inactive states across 

two or more neurons16  Experimentally however, it has been considerably harder to 

identify instances where a flip-flop is demonstrably due to connectivity alone9. Here 

we focus primarily on just such examples where synaptic mechanisms are likely 

responsible for the generation of flip-flop behavior: the mating dance of the silkmoth 

Bombyx mori, perceptual switching between visual streams of the two eyes in 

primates known as binocular rivalry, and the locomotory switching of the nematode 

C. elegans. 

Forming a comprehensive model across multiple levels of organization

In general, a particular experimental or theoretical technique is best suited to answer 

questions at a specific level of biological organization — certain techniques are 

appropriate for molecular or cellular questions whereas other are appropriate for 

studying cognitive or perceptual phenomena. The ongoing goal of research is to 

integrate findings drawn from these disparate sources into a comprehensive model; a 
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model that explains how the various levels of organization interdepend on each 

other. Of particular value to this goal is experimental or theoretical work that can 

establish links between levels of organization. Thus, in the discussion of neural flip-

flops that follows, we pay particular attention to how what is known of neural 

systems informs such a comprehensive model (Fig. 1). Accordingly, we define three 

levels of organization to use as a framework for this discussion: (1) The neuronal 

substrate, (2) the circuit mechanisms, (3) the psychophysical assembly.

We consider the first level of organization, the neuronal substrate, to refer to the 

neurons and synaptic connectivity that are engaged during the execution of a 

particular behavioral primitive. Hence, the substrate of a flip-flop includes the 

circuitry that is necessary and sufficient for the primitives, and the circuitry whose 

activity is correlated with the primitives. Testing necessity usually involves 

experiments that determine if primitives are eliminated from animals when identified 

circuit elements are removed or otherwise rendered inactive. Establishing sufficiency 

usually involves experiments that manipulate identified circuit elements in a way that 

evokes the execution of the primitives of interest. Finally, determining if a neural 

circuit takes part in the natural generation of a primitive involves experiments that 

correlate activity patterns in a putative circuit with the production of the primitives. 

In summary, understanding the neuronal substrate necessarily includes an 

understanding the anatomical wiring of the circuit, but also requires an 

understanding of the neurochemistry and activity of neurons. 

We consider the second level of organization, circuit mechanisms, to refer to the 

explanation of how the anatomic structure of the circuit and the tuning properties of 

the neurons are used to generate and select primitives. This often requires the 

formulation of models that make testable predictions. Testing these predictions then 
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requires experimental tools that can simultaneously measure the activity of multiple 

elements of the circuit and precisely manipulate neuronal activity.

We consider the third level of organization, psychophysical assembly, to refer to the 

explanation of how the flip-flop circuits are regulated by external input in order to 

meet the homeostatic and environmental demands placed on the organism. This 

often requires tools for quantitative behavioral analysis, methods to access hidden 

perceptual or neural states, and the precise control of sensory stimuli. 

Ultimately, a comprehensive understanding of a flip-flop circuit and the 

corresponding primitives would encompass all three levels, and thus explain 

interdependence between the levels. For example, we would like to know how 

anatomic wiring explains the circuit mechanisms driving a neural computation. 

Likewise, we seek to understand how complex behaviors or cognitive function are 

assembled from the circuit mechanisms underlying the individual primitives.

MODEL SYSTEMS OF CIRCUIT LEVEL FLIP-FLOPS

Binocular rivalry in humans and non-human primates

A neural flip-flop may be critical to the formation of a coherent visual perception in 

humans and other non-human primates. Humans that are healthy, with normal 

binocular vision experience a single perception of the visual world, even though they 

receive two streams of visual information from the left and right eyes17. In most 

cases the binocular information is consistent, and thus the formation of a single 

coherent visual percept is not surprising; however, it was discovered that when the 

binocular patterns of visual information are inconsistent, a single visual perception of 

the visual world still forms 18 , 19. The inconsistency between binocular visual streams 
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is resolved in some cases by fusing the two visual images into a single hybrid 

percept, and other cases by switching back-and-forth between the two discordant 

visual streams. This switching back-and-forth is known as binocular rivalry and 

suggests that a flip-flop circuit may participate in the formation of a single visual 

experience.

Most of our understanding of the neural substrate for binocular rivalry comes from 

work detailing the neuroanatomy of the visual pathways in general. Because 

binocular rivalry has traditionally been explored in animals that have sufficient 

cognitive function to report their perceptual experience (higher primates), rigorous 

lesion studies on these areas have not been performed for ethical reasons. 

Experiments using trans-cranial magnetic stimulation (TMS) to inactivate cortical 

regions in humans have suggested that disruption of V1 appears to alter the timing 

of rivalry intervals 20. Unfortunately, TMS is a relatively low-resolution technique and 

limited to relatively superficial brain regions 21. Thus it is difficult to target TMS to 

small, deep brain regions such as the monocular layers of the visual thalamus. This 

is a particular problem since inhibitory connectivity between the thalamic layers may 

themselves be critical to the mechanism of the flip-flop circuit 19.

There is considerable debate regarding how patterns of neural activity in different 

brain regions correlate with binocular rivalry. Single-unit recordings from non-human 

primates trained to report their perceptual experience have shown that successive 

stages of visual processing display increasing numbers of neurons that are 

modulated by binocular rivalry, with very few neurons in V1 or thalamus showing 

modulation and large number of neurons being modulated in the inferior temporal 

cortex 22,23 . In contrast to these reports, fMRI imaging studies have detected a BOLD 
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signature associated with binocular rivalry in early visual areas such as the thalamus 

and monocular regions of the visual cortex 24 .

The work delineating the visual system at the substrate level is key to understanding 

binocular rivalry at the level of circuit mechanisms. This is because different circuit 

mechanisms are plausible depending on where the perceptual rivalry is resolved 25,26. 

In early stages of visual processing such as in the thalamus and visual cortex, 

neurons are tuned primarily to monocular stimuli, whereas in later stages neurons 

are tuned to binocular stimuli. Consequently, if the binocular conflict is resolved at 

early stages, the mechanism likely involves competition between the monocular 

visual streams through a process referred to as interocular completion 25,26.  

Alternatively, if the perceptual conflict is resolved at later visual stages — where 

neurons show binocular tuning — it is expected that the mechanism involves 

competition between incompatible visual patterns, a model known as pattern 

completion. Multiple hybrid mechanisms have also been proposed; these 

mechanisms could involve excitatory feedforward pathways in which partial 

interocular completion would tip the scales for pattern completion in higher visual 

pathways. Likewise, feedback mechanisms are also possible in which higher visual 

areas are responsible for partially selecting a pattern, a process that would then be 

finalized by way of inhibitory feedback to early monocular areas 19.

At psychophysical assembly level, quite a bit is known about how binocular rivalry is 

regulated by environmental and stimulus parameters. Ever since the first rigorous 

psychophysical investigation of binocular rivalry by Wheatsone 18, it was recognized 

that the dominant perception switched randomly between eyes, and the statistics of 

this switching depended on the relative salience of the individual monocular stimuli: 

increased perceptual time was devoted to a stimulus that received better 
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illumination. Further studies have investigated the relationship between stimulus 

parameters and the temporal properties of the dominance intervals and have shown 

that a number of stimulus parameters such as contrast 27, motion, color 28 ,  spatial 

frequency 29,30 can influence the relative duration of the dominant or suppressed 

perception. Internal cognitive states such as attention also appear to have similar 

effects on the perceptual intervals.31

A common finding of all studies investigating the temporal properties of rivalry is that 

the perceptual intervals are fundamentally stochastic, thus stimulus and cognitive 

parameters exert their effects by modulating the statistics of the intervals, but the 

precise duration of any particular interval cannot be predicted 29 . Another conclusion 

of these studies is that some sort of adaptation process appears to influence the rate 

of switching between dominance intervals.32 

Binocular rivalry represents an important example of a flip-flop circuit that may 

provide insight into visual awareness 33. Unfortunately, the perceptual nature of this 

phenomenon has mostly limited the study primarily to primates. This has resulted in 

an understanding of the circuit that is very heavily weighted at the psychophysical 

assembly level.  Models of the circuit mechanisms have been proposed, but 

neurophysiological experiments that directly test these models have yet to be 

reported 32. Detailed tracing of the neuroanatomy and connectivity in the primate 

visual pathways have suggested a possible substrate for the flip-flop circuit, however 

this does not provide an exhaustive list of possible circuits, and unidentified 

connectivity may very well be critical for circuit function.
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Mating dance of the silkmoth B. mori

Adult mail silkworm moths B. mori localize mates by tracking plumes of sex 

pheromones from conspecific females. Although moths exhibit this behavior both 

while flying and while walking, extensive studies of the behavior have focused 

primarily on walking. The behavior consists primarily of bouts of locomotion in a 

relatively constant direction interrupted by a back-and-fourth sequence of turning 

bouts. A series of experiments performed by the Kanzaki lab have indicated that a 

flip-flop circuit may be responsible for controlling the directionality and timing of the 

turns and loops during this behavior.

The neural substrate of this circuit has been localized primarily to a pair of bilaterally 

symmetric pre-motor regions of neuropil in the moth protocerebrum: the lateral 

accessory lobe (LAL) and the ventral protocerebrum (VPC). Olfactory input to these 

structures is thought to arrive by way of projection neurons emanating from the 

antenna lobes. The functional, anatomical and neurochemical properties of the 

neurons innervating the LAL and VPC neuropil have been studied by combining sharp 

electrode recordings, dye filling and immunohistochemistry respectively 34,35. 

The suggestion of a flip-flop circuit was first made following recordings from a 

collection of descending interneurons that project from the LAL and VPC to ipsilateral 

neck motor neurons in the thoracic ganglia.  Both the descending interneurons and 

the postsynaptic motoneurons displayed long trains of firing and quiescence with 

transitions between modes that occurred spontaneously and relatively quickly. 

Furthermore, these transitions events occurred both synchronously and 

asynchronously in the left and right LAL and VPC suggesting some sort of 

interconnectivity between hemispheres 36 .  
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A recent survey of 52 putative interneurons suggested a potential neural substrate 

for this interconnectivity. Using cytoarchetechture to distinguish presynaptic and 

postsynaptic regions of neuronal arborizations, the study identified a set of 

interneurons that appeared to connect contralateral LAL and VPC regions. 

Interestingly, some of these neurons displayed both flip-flop spiking patterns and 

GABA immunoreactivity, raising the possibility that these interneurons might supply 

reciprocal inhibition between the left and right elements of the circuit 37 .

At the circuit mechanism level, reciprocal inhibition has been proposed as a model to 

explain the flip-flop behavior of the circuit 38, however this has been difficult to test 

experimentally. It is possible that technical challenges associated with simultaneously 

recording and manipulating the activity of identified neurons in the moth has slowed 

progress towards validating these models 37. For instance, a key test for reciprocal 

inhibition would involve activating the neurons of the LAL and VPC in one hemisphere 

and recording the predicted inhibition in the neurons of the contralateral hemisphere. 

This experiment has not yet been performed since, in order to identify the neurons of 

interest, large numbers of candidate neurons must be first impaled, and the tissue 

must be fixed for histology. Neither technique is compatible with robust pair-wise 

recordings in vivo 37. Recent developments of transgenic approaches for identifying 

and labeling neurons in the B. mori nervous system may overcome some of these 

challenges so long as genetic reagents that target the cells of interest are 

identified 39.

At the psychophysical assembly level, the flip-flop circuit is thought to be control the 

turns associated with pheromone plume following for two reasons: (1) The neurons 

in the LAL and VPC project to neck motor neurons associated with steering the 

moths 38 (2) Pheromone stimulation can cause the activity in the projection neurons 
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to flip states 35.  Although B. mori, like other closely related moths, can follow 

pheromone plumes while in flight 40, the details of how the flip-flop circuit 

implements the behavioral algorithm used to follow a pheromone plume best 

understood in walking B. mori. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Behavioral studies of tethered and unrestrained walking B. mori have shown that the  

moths respond to phasic pheromone stimuli by initiating a turn to the left of right. 

Left-right antennal differences in stimulus concentration and onset times are used to 

direct the turn such that the moths steer into the plume. When the moth experiences 

a new phasic stimulus — leaving the plume for example — it will quickly switch into a 

new turn direction. In absence of a stimulus however, a turn may persist for 

extended periods of time, sometime causing the moth to loop before switching 

directions spontaneously 40. Because the descending neurons of the LAL and VPC 

project to motor neurons responsible for steering, it is hypothesized that the 

persistence of these turns, and the rapid direction switching emerges from the bi-

stable properties of the flip-flop circuit.

The putative flip-flop circuit in the B. mori protocerebrum may represent an 

important example of how a flip-flop can be used as the basis of a more complex 

search behavior — in this case it allows moths to navigate up the tortuous path of an 

airborne chemical plume. Significant progress has been made identifying a putative 

substrate for the circuit, and hypothetical circuit mechanisms and behavioral 

algorithms have been proposed. Nevertheless, a comprehensive understanding of the  

circuit has yet to be established. Experiments required to establish such an 

understanding would provide physiological evidence for the sign and strength of the 

proposed connections between circuit elements, measurements of neuronal activity 
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during pheromone following behavior, and manipulations of circuit activity in ways 

that test formal models of the circuit behavior. 

Locomotory switching behavior of the nematode C. elegans

A third example of a putative neural flip-flop lies in the circuit controlling the 

forward-reverse direction of locomotion in the nematode C. elegans. Considerable 

work taking advantage of a wide range of experimental approaches has elaborated 

our understanding of the substrate, mechanisms and psychophysical assembly of this 

circuit.

A significant advance in our understanding of the neural substrate for the C. elegans 

locomotory circuit was provided by reconstructions from serial electron micrographs 

of 2.5 animals. By examining the location of presynaptic densities and gap junction 

connections on these micrographs White 41 and colleagues reconstructed a detailed 

map of the synaptic connectivity between the 302 uniquely identifiable neurons in 

the C. elegans nervous system. From these reconstructions White et al. noted a 

“striking grouping that is seen in interneurons ... whose synaptic outputs are 

directed primarily to motoneurons. These classes are AVA,AVB,AVD,AVE and PVC, 

which synapse onto motorneurons in the ventral cord.” Of these 5 classes of neurons 

AVA and AVB have the most extensive connectivity with the ventral cord 

motorneurons41.  Additionally, these two neuron classes are distinguished by the 

extensive number of inputs they receive from other neurons as well as from each 

other; they are both postsynaptic to more neurons, and receive a greater number of 

individual synaptic contacts than any other C. elegans neuron class 42. This 

anatomical evidence suggests that AVA and AVB are uniquely poised to integrate 

external information from the rest of the C. elegans nervous system, and then use 

this information regulate locomotion via outputs to the motor system.
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The necessity of the AVA and AVB class of neurons in the locomotory circuit was 

established by ablation studies which found that bilateral kills of AVA resulted in 

severely uncoordinated backward locomotion whereas bilateral kills of AVB resulted 

in uncoordinated forward locomotion. Similar, but less severe results were observed 

following ablation of the other premotor interneurons 43.  In accordance with the 

ablation results, these pre-motor interneurons are commonly identified as command 

neurons for the mode of locomotion they are necessary for: AVA,AVD, and AVE are 

the reverse command neurons and AVB and PVC are the forward command neurons. 

Calcium imaging of several of these command neurons in unrestrained crawling 

worms has demonstrated that their activity patterns are consistent with their 

canonical assignment: AVA calcium is elevated during bouts of reverse locomotion 

and AVB calcium is elevated during bouts of forward locomotion 44-47.  Similar 

imaging studies have indicated that AVA and AVB generally share co-activity with 

their postsynaptic motoneuron targets, although this activity pattern can occasionally 

become decoupled, an effect that is exacerbated by mutations that effect the gap 

junctions between the pre-motor and motor system 46.

The mechanism for the flip-flop behavior of the locomotory circuit behavior has been 

the subject of considerable experimental and theoretical work. The suggestion that 

this circuit might represent a bi-stable switch was originally proposed when the 

necessity of the command neurons for locomotory behavior was first uncovered 43 

however, whether this apparent bi-stability was intrinsic property of the command 

neuron network, or was driven by circuit mechanisms elsewhere in the C. elegans 

nervous system remained an open question. 
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Evidence that localized the source of bi-stability was first provided in a series of 

genetic experiments in which a mutated glutamate receptor was expressed in a 

subset of the command neurons 48. This manipulation — which was presumed to 

result in chronic depolarization of the command neurons — had a profound effect on 

the duration of locomotory bouts, and worms flipped back-and-forth quickly between 

bouts of forward and reverse crawling. Because expression of the mutated receptor 

was restricted primarily to the command neurons, these results were taken as 

evidence that the flip-flop mechanism should be localized within command neuron 

circuit. The authors of this study proposed reciprocal inhibition between the forward 

and reverse pool of command neurons as a potential mechanism for the flip-flop 

behavior, though physiological evidence for this claim was notably absent.

Forward and reverse locomotion in C. elegans are particularly interesting examples of 

behavioral primitives that fall under the control of a flip-flop. This is because these 

primitives are assembled into a number of higher-oder behaviors. For instance, 

worms use bouts of reverse locomotion both to escape from aversive stimuli as well 

as to search for appetitive stimuli 49-56 . Both search and escape are thought to be 

assembled by way of regulation of the command neuron circuit through feed-forward 

synaptic pathways from sensory neurons57,58 .

In the case of search behavior, the klinokenisis mechanism of chemotaxis to salts 

such as NaCl provides a clear example of how locomotory switching is used to 

navigate up a chemical gradient. By analyzing the movement of worms as they 

searched for the peak of a radial NaCl gradient, work in our lab has determined that 

worms monitor changes in salt concentration as they crawl, and use this to modulate 

turning frequency: turns are promoted when concentration is decreasing, and turns 

are suppressed when concentration is increasing 51,58. Turning in this algorithm 
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implies an increase in reversal frequency because bouts of reverse locomotion result 

in changes in direction, and thus represent a major form of turning. Similar 

behavioral strategies have been identified with respect to chemotaxis to attractive 

olfactory59, thermal and other environmental stimuli 60. 

In the case of escape behavior, several types of aversive stimuli have been shown to 

trigger bouts of reverse locomotion. These include both harsh and light touch50 as 

well as environmental vibrations that can be evoked with a tap to the petri plate 

housing the worms 61. Additionally, aversive chemical stimuli such as the bitter 

tasting compound quinine or heavy metals such as copper will evoke a similar bout 

of reverse locomotion 53,62. For large part, the sensory neurons responsible for 

transducing these aversive stimuli have been identified 50,63-65 and appear to signal to 

both the forward and reverse command neurons via monosynaptic and polysynaptic 

pathways 41. 

The escape response to gentle anterior touch has been particularly well studied, and 

significant evidence for a synaptic pathway between the sensory neurons and the 

command neurons has been established through genetic and physiological 

experiments. The majority of these studies have indicated that the polymodal 

nociceptor ASH is primary responsible for sensing both bitter chemical stimuli and 

light touch, and ASH signals to the command neuron circuit via an excitatory 

pathway to the reverse command neuron AVA 50,62,66-69. The physiological details of 

this pathway were uncovered in the work described in chapter II of this dissertation. 

The question of whether ASH signals to the forward members of the command 

neuron circuit such as AVB are answered in chapter III of this dissertation. The data 

collected in chapter III will be published as part of a separate report with the 
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coauthors Shawn Lockery, William Roberts, Tod Thiele, Navin Pokala, Rebecca 

Lindsay, Kristy Lawton, Cornelia Bargmann and Steven Augustine.

 

A number of experimental approaches have coalesced to inform our understanding of 

the C. elegans locomotory flip-flop, hinting at the possibility that it might be possible 

to form a comprehensive model of this circuit that spans all three levels of 

organization. However, before such a comprehensive model is formed there are 

notable experimental and theoretical gaps that must be addressed. In particular, 

extending the wiring diagram to include physiological data on the sign and dynamics 

of putative connections would allow circuit mechanisms to be reconciled with the 

neural substrate in a coherent framework. 

With a single exception 69, direct physiological demonstration of synaptic connectivity 

in the central nervous system of C. elegans has been notably absent until the recent 

development of tools for stimulating genetically identified neurons with pulses of 

light 70,71. These tools allow electrophysiological investigation of connectivity between 

pairs of neurons using a single electrode so long as light sensitive ion channel can be 

expressed in the pre-synaptic neurons of interest. This allows experiments to be 

performed that would previously require two simultaneous electrical recordings, a 

challenging task given the small size of C. elegans neurons. 

Along with several other labs 72,73, we developed techniques for combining 

optogenetic simulation with electrophysiology to examine synaptic connectivity 

between C. elegans neurons. We describe development of this procedure in 

chapter II which has been published with co-authors Tod Thiele and Shawn Lockery. 

We then applied this technique to the locomotory flip-flop and physiologically 

established reciprocal inhibitory connectivity between AVA and AVB. We also applied 
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the technique to study how this flip-flop is regulated by nociceptive stimuli by testing 

for connectivity between ASH and both AVA and AVB. Finally, we used our 

physiological observations to build a model of a simplified circuit that is sufficient to 

explain the flip-flop behavior of the circuit, and the emergent locomotory behavior. 

This dissertation contains a description of these experiments.
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CHAPTER II

OPTOGENETIC ANALYSIS OF SYNAPTIC TRANSMISSION IN THE CENTRAL NERVOUS 

SYSTEM OF THE NEMATODE C. ELEGANS

This work was published in volume 2 of the journal Nature Communications in May 

2011. I along with Shawn Lockery and Tod Thiele designed experiments. Tod Thiele 

assisted with the generation of strains. Shawn Lockery and I wrote the manuscript. I 

collected and analyzed the data. 

INTRODUCTION

Any method for synaptic physiology between identified neurons should allow for 

selective stimulation of the presynaptic neuron, quantitative control of presynaptic 

activation, and positive identification of the postsynaptic neuron.  In many systems, 

these requirements can be met by making pairwise whole-cell patch clamp 

recordings.  Such pairwise recordings are challenging in any system, but in C. 

elegans the challenge is compounded by the fact that whole-cell patch clamp 

recordings from individual neurons are comparatively short-lived.  In genetically 

tractable organisms, however, the first two requirements can now be met using an 

optogenetic approach in which a photoactivatable ion channel is genetically targeted 

to the desired presynaptic neurons71,74-76. The third requirement can be met by 

targeting the expression of fluorescent proteins to the desired postsynaptic 

neurons77.  

To develop such a method in C. elegans, we focused on the connection between the 

neuron classes ASH and AVA.  ASH is a left-right pair of glutamatergic, nociceptive 

sensory neurons 50,64,66,78-80.  Anatomical reconstructions imply that ASH makes 

monosynaptic and polysynaptic connections onto AVA, a left-right pair of premotor 
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command interneurons that expresses at least two types of glutamate 

receptors41,43,48,68,81. Our selection of the ASH-AVA connection was based on three 

main considerations. First, there is ample physiological evidence that the connection 

is functional as mechanical and optical stimulation of ASH elicits inward synaptic 

currents and calcium transients in AVA, respectively69,82.  Second, ASH makes 

monosynaptic connections onto AVA.  Third, the connection is behaviorally relevant, 

as ASH neurons respond to stimuli that elicit escape responses79, and AVA neurons 

are required for, and active during, reverse locomotion43,44, an inherent component 

of escape behaviors in C. elegans.  

Here we present a method for recording quantitatively evoked synaptic currents and 

potentials at central synapses in C. elegans for the first time. ChannelRhodopsin-2 

(ChR2) is used to photoactivate71 presynaptic neurons and the whole-cell patch-

clamp configuration is used to record from postsynaptic neurons.  To demonstrate 

the utility of the new methodology, we analyzed synaptic correlates of AVA-mediated 

escape responses.  We found that the time course of excitatory synaptic currents in 

AVA closely matched the time course of the probability of escape behavior.  Evoked 

currents were surprisingly complex, exhibiting three distinct components.  The two 

main components increased smoothly as stimulus strength was increased, 

suggesting that the overall input-output function of AVA-mediated escape responses 

is graded.  This result is consistent with a model in which the energetic cost of 

escape behaviors in C. elegans is tuned to the intensity of the threat.

RESULTS

Optogenetics, dissection, and neuronal identification

To activate presynaptic neurons, we created a transgenic strain (XL165) in which 

ChR2, tagged with yellow fluorescent protein (YFP), is expressed under the control of 
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the sra-6 promoter.  This promoter was chosen because it has the greatest known 

specificity for ASH neurons.  As expected from published sra-6 expression patterns80, 

we observed strong ChR2 expression in ASH and weak ChR2 expression in ASI, a 

left-right pair of chemosensory neurons required for diet-induced longevity, dauer 

formation, regulation of reverse locomotion, and chemotaxis83-85; we refer to ASH 

and ASI collectively as "sra-6 expressing neurons." Although photostimulation is 

likely to activate both pairs of neurons, the synaptic current attributable to ASI is 

likely to be small relative to the current attributable to ASH because of the difference 

in expression levels.

The effectiveness of photostimulation was assessed in whole-cell patch clamp 

recordings from ASH (Fig. 1a,b), which revealed an inward current with the transient 

and sustained components that are characteristic of this probe43.  The amplitude and 

time course of the photocurrents were functions of stimulus irradiance, consistent 

with previous results in other systems76, as well as muscles and other neurons in 

C. elegans75,86.  Photostimulation failed to elicit currents in worms grown in the 

absence of all-trans retinal, the essential cofactor71 for ChR2, indicating that native 

light sensitivity in C. elegans87,88 did not contribute to the currents recorded in ASH 

neurons at the irradiances used here. 

The two standard methods for exposing C. elegans neurons for patch clamp 

recording48,89,90 involve large incisions in the cuticle and a sudden release of internal 

pressure, either of which might disrupt synaptic connections.  We found that the 

preparation’s physical integrity could be preserved to a greater degree by a new 

dissection procedure in which a tiny slit, less than 10 µm in length, is made 

immediately adjacent to the target neuron (AVA).  In most instances, only a single 

neuron emerges from the slit.  To facilitate this procedure, we manipulated worms 
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before dissection into grooves formed in an agarose surface using a microfabricated 

mold (Fig. 1c) and glued them in place such that the worm’s cuticle was convex at 

the point nearest to the target neuron.

Postsynaptic neurons were identified for patch clamp recording by transgenic 

expression of a red fluorescent protein (RFP) which is visualized by green light.  

Although we also tried green fluorescent protein (GFP) for this purpose, we found 

that the likelihood of observing evoked synaptic currents was much lower than when 

RFP was used, presumably because the blue light used to visualize GFP depresses 

synaptic transmission by sustained excitation of ChR2. Postsynaptic neurons were 

identified by expression of the RFP known as tdTomato91 under the control of the 

nmr-1 promoter, which labels the command neuron AVA, its nearest neighbor AVE, 

and four other interneurons that are further away48.  

Although AVA and AVE can be distinguished, in principle, by the relative positions of 

their somata, it was not always possible to discern which neuron emerged from the 

slit.  However, inspection of the amplitude and time course of the current families 

measured in voltage clamp when either of the two neurons may have been exposed 

revealed two qualitatively distinct physiological types: one having small currents that 

activated almost instantaneously and decayed quickly, and the other having large 

currents that activated and decayed more slowly (Fig. 1d). We also noted that the 

whole-cell capacitance in recordings of the first type was systematically larger than 

the whole cell capacitance in the second type (0.77±0.02 pF vs. 0.53±0.02 pF; p < 

0.001).  This result suggested that the first type corresponds to AVA neurons, whose 

only neurite is twice as long as AVE's41. We confirmed this correspondence by 

recording from a transgenic strain in which AVA could be identified positively as the 

only neuron that expressed both a red and a green fluorescent protein 
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Figure 1.  Photostimulation of ASH neurons and electrophysiological 
identification of AVA neurons.  (a) Membrane current evoked by photostimulation 
of ASH neurons with 50ms long stimuli; asterisks denote the transient component of 
the current. The stimulus irradiance varied from 0.07 to 12.5 mW/mm2 in steps of 
1.04 log units. (b) membrane current in ASH neurons in response to 5s long pulses 
of light at 0.75 and 12.5 mW/mm2.  Upper and lower current traces are from animals 
supplied (ATR+) or not supplied (ATR-) with all-trans retinal, respectively.  Holding 
potential was -55 mV. (c) A glued-worm positioned for dissection on a 
micropatterned agarose substrate. The worm and glue have been pseudocolored to 
enhance contrast. Scale bar = 200µm. (d) Representatives of the two types of 
current families obtained when recording from from unidentified command neurons 
presumed to be either AVA or AVE as identified by cell body position and expression 
of tdTomato driven by the nmr-1 promoter. Voltage steps ranged from -80 mV to 
+40 mV in steps of 10 mV from a holding potential of -55 mV as shown above.  (e) A 
current family from an AVA neuron positively identified by combinatorial  expression 
of dsRed and GFP driven by the for glr-1 and rig-3 promoters, respectively.  The 
voltage protocol was the same as in d.  (f) Histogram of the slope of the initial 
current in response the +40mV voltage step in a population of 182 unidentified 
neurons that were either AVA or AVE (blue bars) and 10 neurons positively identified 
as AVA by combinatorial expression.  Slope was computed over the 2 ms window 
(yellow) following termination of the capacitative transient ; the inset shows typical 
traces during this window for the two types of current families shown in d. Shading 
indicates the subpopulation of neurons identified post hoc as AVA.
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marker (Fig. 1e,f). Henceforth, we identified AVA by its unambiguous physiological 

characteristics alone, using the initial slope of the membrane current as shown in 

Fig. 1f.

Escape responses elicited by photostimulation

Before trying to record synaptic currents in AVA neurons in the strain XL165, we 

tested whether AVA neurons are likely to exhibit synaptic responses in this strain by 

attempting to elicit escape responses via photostimulation.  These experiments were 

done using the so-called glued-worm preparation56,92, in which the worm is glued by 

the head to an agarose-coated coverslip and bouts of reverse locomotion 

("reversals") are scored manually by noting the direction of propagation of 

undulatory wavesalong the worm's body.  To ensure that photostimulation was the 

same as in the electrophysiological experiments recounted below, we performed the 

behavioral assays in our patch clamp setup, using its light source and microscope 

objective for photostimulation.  As expected, reversal bouts occurred 

stochastically51,93 before, during, and after photostimulation (Fig. 2a).  However, 

plotting the change in the probability of reverse locomotion versus time (Fig. 2b) 

revealed clear increases in probability for two of the three stimulus strengths used; 

the third stimulus was apparently too weak to elicit detectable behavior.  Because 

AVA makes a major contribution to reversals43, these results provided some 

assurance that synaptic responses would be seen in patch clamp recordings from 

AVA.  

Synaptic currents in AVA neurons

To investigate the relationship between synaptic input to AVA and the time course of 

reversal responses, we recorded synaptic currents in AVA in response to light pulses 

that matched the duration and irradiance of the light pulses used in the behavioral 
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experiments of Fig. 2a,b.  Synaptic currents elicited by photostimulation were inward 

(Fig. 2c), consistent with the fact that ASH is a glutamatergic neuron and AVA is 

known to express ionotropic glutamate receptors and to exhibit an inward current in 

response to direct application of glutamate in dissected preparations48,69,81.  It should 

also be noted that laser ablations of ASI indicate that it normally acts to suppress 

reversal behavior85, suggesting that inward currents we observed in AVA are 

attributable solely to ASH.  This fact, together with the above-mentioned contrast 

between ChR2 expression levels in ASH and ASI, suggests that the effect of ASI 

activation is at most a modest reduction in the amplitude of this inward current.  

Thus, photostimulation of sra-6 expressing neurons appears to be a reasonable 

approximation to photostimulation of ASH alone.

Synaptic currents in AVA were remarkably well correlated with reversal behavior 

(measured in different animals) in three important respects.  First, currents were 

observed in response to the two stimuli that were behaviorally sufficient, whereas 

currents were absent in response to the only stimulus that was behaviorally 

insufficient.  Second, the stimulus that elicited the strongest behavioral response also 

elicited the strongest synaptic response.  Third, the overall duration of the currents 

matched the duration of the behavioral responses.  We conclude that synaptic 

current in AVA is well correlated with reversal probability.

Further inspection of AVA synaptic currents revealed three phenomenologically 

distinct components.  The first component (“onset transient,” Fig. 2c, asterisks) was 

a short latency current that decayed rapidly. Synaptic latency, measured relative to 

the onset of the light pulse (see Methods), was a decreasing function of stimulus 

irradiance (Supplementary Fig. 1).  The peak amplitude of the onset transient was an 

increasing function of stimulus irradiance as shown by the current-irradiance (C-I) 

plot in Fig. 3a.  The second component (“sustained current,” Fig. 2c, red trace) was a 
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long-lived current identified in the figure by median filtering of the membrane 

current. To quantify this component, we computed its average during the time period 

corresponding to the rising phase of the behavioral responses shown in Fig. 2b (0 ≤ t 

≤ 2.1 s); it too was found to be an increasing function of irradiance (Fig. 3b).  The 

third component (“unitary event frequency”, Fig. 2c, insets) was a transient increase 

in the frequency of small, unitary synaptic currents. The effect on this component of 

increasing stimulus irradiance was not statistically significant (Fig. 3c). We conclude 

that the onset and sustained components of the synaptic current observed in 

response to photostimulation are graded functions of stimulus strength.  Evidence for 

graded synaptic connectivity between ASH and AVA. 

As we understand the term, a "graded synaptic connection" is one in which action 

potentials are required neither for transmitter release nor for postsynaptic signaling, 

and incremental changes in membrane potential in the soma of the presynaptic 

neuron cause incremental changes in membrane potential in the soma of the 

postsynaptic neuron94.

This term can be applied to monosynaptic connections and to so-called functional 

connections, which are defined in terms of the net effect of multiple synaptic 

pathways, including parallel pathways that may also be polysynaptic. The signature 

of a graded synaptic connection is a smoothly rising input-output function, defined by 

the curve obtained when postsynaptic membrane potential is plotted against 

presynaptic membrane potential.  Conversely, the signature of a non-graded is an 

input-output function that exhibits a step-like discontinuity, indicating a distinct 

threshold for synaptic transmission.
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Figure 2.  Time course of reversal behavior and the synaptic current in AVA 
evoked by photostimulation of sra-6 expressing neurons.  (a) Raster plots 
showing the behavioral state of semi-restrained worms in response to 
photostimulation at three different irradiances.  Black and yellow pixels indicate 
forward and reverse swimming, respectively.  Blue bars show the time of the 
photostimulus at the indicated irradiance. (b) The stimulus evoked change in the 
probability of reverse swimming for the data shown in a. Error bars are SEM (n > 42 
for each stimulus condition). (c) Typical synaptic current in AVA evoked by 
photostimulation of sra-6 expressing neurons at the three irradiances shown in a.  
Holding potential was -55 mV.  Three phenomenologically distinct components of the 
response are visible: the onset transient (asterisk), the sustained current (red trace 
showing median-filtered current), and the increase in the unitary event 
frequency(insets).  Data in a-c are plotted on the same time axis to facilitate 
comparison of the time course of behavior and synaptic current.
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To delineate the approximate input-output function of the connection between ASH 

and AVA, we recorded voltage responses in these neurons when ASH was stimulated 

by an increasing series of brief (50 ms) light pulses. We found that the amplitudes of 

responses of ASH and AVA to photostimulation were increasing functions of stimulus 

irradiance and lacked any discontinuities that might suggest non-graded synaptic 

transmission. This relationship held for presynaptic depolarizations in ASH (Fig. 

4a,b), postsynaptic currents in AVA (Fig. 4c,d) and postsynaptic potentials in AVA 

(Fig. 4e,f).  Discontinuities were also absent when, combining data from both 

experiments, we plotted postsynaptic membrane potential against presynaptic 

membrane potential (Fig. 4g), in accordance with the definition of a graded synaptic 

connection.  Together, these data are consistent with a graded functional synaptic 

connection between ASH and AVA.  This finding agrees with previous reports of 

graded synaptic transmission between neurons in the nematode Ascaris suum and at 

the neuromuscular junction in Ascaris suum and C. elegans86,88,95,96.

The design of the experiment in Fig. 4 also allowed us to compare the time course of 

synaptic currents and synaptic potentials in AVA neurons, albeit in different animals.  

It is interesting to note that average synaptic potentials outlasted average synaptic 

current evoked by the same photostimulus (Fig. 4c vs. e). Temporal filtering by 

passive membrane properties of AVA neurons was not sufficient to account for this 

discrepancy, as the average predicted membrane time constant of AVA neurons was 

0.85±0.03 ms (see Methods). This result suggests that synaptic potentials in AVA 

may involve one or more types of sustained postsynaptic mechanisms. Possibilities 

include cellular-level mechanisms such as current through NMDA receptors expressed 

in AVA neurons48 or network level mechanisms such as positive feedback via 

recurrent excitatory synaptic connections41.  Further experiments will be required to 

distinguish between these possibilities.
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Figure 3.  Quantitative summary of the three components of the synaptic 
current in AVA evoked by photostimulation of sra-6 expressing neurons. 
Currents were quantified and subjected to an ANOVA to test for a linear relationship 
with irradiance. (a) Peak onset transient synaptic current vs. irradiance in animals 
supplied with all-trans retinal, (ATR(+),blue dots, n = 9) and retinal-free controls,
(ATR(-),black dots, n = 4). The magnitude of the onset transient from ATR(+) 
animals increased significantly with stimulus irradiance (p=0.029)  (b) Average 
sustained synaptic current vs. irradiance.  Current was averaged over the interval 0 
≤ t ≤ 2.1 s. Symbols as in a. The magnitude of sustained currents from ATR(+) 
animals increased significantly with stimulus irradiance (p= 0.044)  (c) Average time 
course of the frequency of unitary synaptic events in response to photostimulation at 
three different irradiances (horizontal blue bars). The frequency of unitary synaptic 
events evoked by photostimulaion increased with stimulus irradiance in ATR(+) 
animals, but this effect did not reach significance (ANOVA, p= 0.246). Upper and 
lower traces show data from animals supplied or not supplied with all-trans retinal, 
respectively. ATR(+) n = 9, ATR(-) n=4. Error bars (a-c) are SEM. Statistics (a-c): 
within-subjects ANOVA test for a linear trend.
 

Distinguishing between chemical and electrical transmission

Gap junctions, the anatomical correlates of electrical synapses, are commonly 

encountered in the reconstructions of C. elegans central nervous system41.  To test 

whether the synaptic current between sra-6 expressing neurons and AVA contains an 

electrical component, we attempted to record synaptic currents in mutant worms 

in which classical chemical synaptic transmission is known to have been essentially 

eliminated by a loss-of-function mutation in the gene unc-13.  This gene encodes the 

nematode form of MUNC-13, which is required for the priming and release of clear-
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core vesicles characteristic of synapses that utilize glutamate and other classical 

neurotransmitters97,98.  We found that all three components of the synaptic 

current evoked by photo-simulation of sra-6 expressing neurons were absent in 

unc-13(e51) mutants (Fig. 5), leading us to conclude that pathways comprised of 

purely electrical synapses do not make a detectable contribution to evoked synaptic 

currents in AVA.  We also found that the unc-13(e51) mutation eliminated the 

spontaneous events seen in the baseline periods before photostimulation (Fig. 

5a,b,d), indicating that these events too are synaptic in origin.  Together, these 

findings are consistent with the fact that the C. elegans neuronal connectivity 

database shows that there are only a few all-electrical synaptic pathways from sra-6 

expressing neurons to AVA and all of them are highly indirect (fifth order or 

higher)41 .  The absence of evoked synaptic currents in unc-13 mutants does not, 

of course, rule out a contribution from polysynaptic pathways that contain both 

chemical and electrical synapses. 

In addition to clear-core synaptic vesicles, C. elegans neurons also contain so-called 

dense core vesicles, which release catecholamines and neuropeptides99.  Although 

ASH is not known to express synthetic enzymes for catecholamines100, it does 

express genes for at least four neuropeptides, and neuropeptide gene expression is 

also seen in neurons that are members of the polysynaptic pathways between ASH 

and AVA .  To test whether a component of the synaptic current in AVA might involve 

the release of dense-core vesicles, we recorded synaptic currents in mutants in 

which this release mechanism has been impaired by a deletion (e928) in the gene 

unc-31, which is required for all dense core vesicle release in 

C. elegans101,102.  Although we observed a trend toward reduction of synaptic 

currents across all three components (Fig. 5), the effect failed to reach significance 

for any individual component.  We conclude that there might be a modest

29



5
 p

A

25 ms

1
0

 m
V

25 ms

2
 m

V

25 ms

AVA Im

Vm

AVA Vm

AVA

AVA

e

c

a

f

g

d

b

10 10 10

10 20 4030 50

12

10

8

6

4

2

0

12

10

8

6

4

2
0

0

-1 0 1

0

-10

-20

-30

-40

50

40

30

20

10

0

 2

Figure 4.  Evidence for graded synaptic transmission between sra-6 
expressing neurons and the command neuron AVA.  (a) Average membrane 
potential of ASH neurons in response to the photostimulation protocol shown at the 
top. Color indicates stimulus irradiance which varied from 0.07 to 12.5 mW/mm2 in 
steps of 1.04 log units. (b) Peak depolarization evoked in ASH vs. irradiance (n=14 
in a,b). (c) Average membrane current in AVA neurons (photostimulation as in a). 
(d) Peak synaptic current evoked in AVA vs. irradiance (n=9 in c,d). (e) Average 
membrane potential in AVA neurons (photostimulation as in a). (f) Peak synaptic 
potential vs. stimulus irradiance (n=18 in e,f). data were recorded from the 
indicated neuron but in different animals.  (g) Postsynaptic membrane potential in f 
plotted against presynaptic membrane potential in d.  SEM is indicated by gray 
bands in a,c,d, and error bars in b,d,f,g.
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requirement for UNC-31 in synaptic signaling between ASH and AVA, suggesting a 

possible role for peptides and catecholamines as neurotransmitters or 

neuromodulators.  A similarly mild effect has been observed in null mutants of the 

analogous gene in Drosophila103.

Evidence for glutamate transmission

Candidate glutamatergic synapses in C. elegans can be identified using genetic 

evidence for presynaptic expression of the glutamate vesicular transporter gene 

eat-478, together with postsynaptic expression of NMDA or non-NMDA glutamate 

receptor subunits81,104.  One such candidate is the monosynaptic connection from 

ASH to AVA.  The observation that AVA neurons exhibit inward currents in response 

to exogenously applied glutamate69,81 supports this view.  However, glutamatergic 

synapses are likely to play a central role in polysynaptic connections as well.  Indeed, 

by combining the C. elegans neuronal wiring diagram with published expression 

patterns of eat-4 and various glutamate receptor subunits78,105 , we found that 62 of 

the 72 polysynaptic pathways (up to fourth order) between ASH and AVA contain at 

least one connection that is a candidate glutamatergic synapse.

As a direct test of whether glutamatergic transmission is required for the connectivity 

between ASH and AVA, we first measured the peak current-voltage relationship of 

the synaptic currents elicited in AVA by photostimulation of sra-6 expressing neurons 

(Fig. 6a,b).  We found that synaptic currents reversed near 0 mV, the value obtained 

in recordings from AVA neurons in dissected preparations in response to exogenous 

glutamate69.  We next recorded synaptic currents in the combined presence of the 

glutamate antagonists CNQX and MK-801.  We found that glutamate antagonists 

reduced the amplitude of all three components of the AVA synaptic current Fig. 6c-f.  
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Together, these findings lead us to conclude that the overall connectivity between 

ASH and AVA is at least partly glutamatergic.  The persistence of synaptic currents in 

the presence of glutamate antagonists may reflect a glutamate-independent 

component of the synaptic current or incomplete access of the antagonists to the 

central nervous system.  The latter might be expected because the hole formed in 

the cuticle during dissection is small and likely to be partially occluded by 

surrounding soft tissue.  
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Figure 5.  Synaptic currents evoked by photostimulation of sra-6 expressing 
neurons in two synaptic transmission mutants.  (a) Typical currents in wild type 
(N2) animals and animals with mutations in synaptic transmission mediated by clear-
core vesicles (unc-13(e51)) or dense-core vesicles (unc-31(e928)).  The 
photostimulus is shown by the blue bar above the top trace.  (b) Summary of effects 
on the onset transient. The unc-13 mutation eliminated the onset transient (b vs. d, 
p = 0.002) whereas the unc-31 mutation did not have a significant effect (b vs. f, p 
= 0.2978).  (c) Summary of effects on the sustained current.  The unc-13 mutation 
eliminated the sustained current (b vs. d, p = 0.00025) whereas the unc-31 
mutation did not have a significant effect (b vs. f, p = 0.652). (d) Summary of 
effects on frequency of unitary events relative to stimulus onset in wild type. The 
unc-13 mutation essentially eliminated the increase in unitary event frequency (b vs. 
d, p = 0.0002) whereas the unc-31 mutation did not have a significant effect (b vs. 
f, p = 0.037). Statistics (b-d): Bonferroni-adjusted Mann-Whitney U test.  The joint 
level of significance (α) in the Bonferroni adjustment was 0.017 in b, and 0.025 in c, 

d. Sample sizes were: wild type, n=9; unc-13 n=10; and unc-31, n=10.  Error bars 
are SEM.
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Figure 6.  Evidence for glutamatergic synaptic transmission between sra-6 
expressing neurons and AVA. (a) Reversal of synaptic currents in AVA by 
clamping the neuron at holding potentials from -95 mV to +65 mV. (b) Peak synaptic 
current versus holding potential in 10 AVA neurons.  A linear fit indicates a reversal 
potential of -7.0±3.2 mV.  (c) Typical spontaneous and evoked synaptic currents 
recorded from AVA in normal saline, during the bath application of glutamate 
blockers CNQX (200 µM) and MK-801 (50 µM), and following washout with normal 
saline. The photo stimulus is indicated by the blue bar. (d) Glutamate blockers 
reduced the average onset transient during the stimulus (pooled a,c vs. b, 
p=0.0009; a vs. c, p = 0.622). (e) Glutamate blockers reduced the average 
sustained current during the stimulus (pooled a,c vs. b, p=0.0007; a vs. c, p = 
0.575). (f) Glutamate blockers reduced the average unitary event frequency during 
the stimulus (pooled a,c vs. b, p=0.003; a vs. c, p = 0.375). Statistics (d-f): within-
subjects ANOVA (n = 10) with orthogonal planned comparisons.  The joint level of 

significance (α) was 0.025 throughout. Error bars are SEM.

DISCUSSION

Although the present combination of photostimulation and patch clamp 

electrophysiology ("photo-electrophysiology") has been used effectively in studies of 

synaptic transmission at the C. elegans neuromuscular junction74,86, it has not been 

applied to synapses of the central nervous system in C. elegans until now.  A key 

feature of the new method is a minimally invasive dissection procedure designed to 
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increase the likelihood that synaptic connections remain intact after the cell body of 

the postsynaptic neuron is exposed for recording. This procedure was facilitated by 

gluing the animals in close-fitting groves formed by a microfabricated mold.

The main limitation of photo-electrophysiology in C. elegans is the current scarcity of 

pairs of promoters that are entirely specific for the presynaptic and postsynaptic 

neuron classes of interest.  Fortunately, this limitation is at least partly 

surmountable.  In cases in which unwanted presynaptic neurons express the 

photoprobe, it may be possible to identify the presynaptic neuron by the relative 

position of its cell body and to simulate it selectively using patterned illumination 

such as that provided by a digital mirror device82.  In cases in which unwanted 

postsynaptic neurons are labeled, we have shown that ambiguities can sometimes be  

resolved using electrophysiological criteria such as the amplitude and time course of 

membrane current.  Restriction of expression patterns using a combinatorial 

expression system105,106 is another option for addressing this limitation.

An alternative method for determining functional connectivity in C. elegans is "all-

optical interrogation" which also employs optogenetic techniques to activate (or 

inactivate) presynaptic neurons, but uses calcium imaging rather than 

electrophysiology to monitor postsynaptic neurons82.  All-optical interrogation is 

probably better suited for a large-scale, first-pass examination of functional 

connectivity in which it is advantageous to investigate several pairs of neurons in a 

single preparation.  Other advantages include the ability to resolve activity in 

subcellular compartments and to preserve both internal milieu and whole-animal 

behavior.  Photo-electrophysiology is probably better suited for situations in which 

calcium concentration is an inappropriate proxy for membrane potential or synaptic 

current.  Such situations include separation of the effects of membrane currents from  
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the effects of synaptic currents, as well as the detection and analysis of synaptic 

inhibition, other subthreshold events, synaptic events that occur on the time scale of 

milliseconds to tens of milliseconds, and the latency of synaptic transmission.  Other 

advantages include the ability to manipulate cellular and synaptic physiology by 

altering a neuron's internal or external milieu.

The anatomical connectivity of the nervous system of the nematode worm C. elegans  

has been reconstructed completely41but the signs and strengths of its synaptic 

connections are almost entirely unknown.  Photo-electrophysiology should greatly 

accelerate the process of annotating the neuronal wiring diagram.  Indeed, we used 

the new approach to characterize the net physiological effects sra-6 expressing 

neurons upon the command neuron AVA.  The functional connection between these 

neurons and AVA exhibits three components: an onset transient, a sustained current, 

and an increase in unitary event frequency.  We found that all three components are 

sensitive to glutamate antagonists.  In perhaps the simplest interpretation of these 

findings, the onset transient and the sustained current are the result of temporal 

summation of the unitary currents, such that all three components are 

manifestations of a single synaptic mechanism.  Under this interpretation, the fact 

that glutamate blockade is incomplete is explained by incomplete access of the 

antagonists to the central nervous system, but our experiments do not, of course, 

exclude the possibility that additional synaptic mechanisms are involved.

The conclusion that the functional connection between ASH and AVA is graded is 

complicated by the possibility that although expression of ChR2 in ASI neurons in 

XL165 worms is weak, it might be sufficient to generate a significant amount of 

synaptic current in AVA.  If so, it is formally possible that the connection between 

ASH and AVA is not graded, i.e., it is a step-function whose effect is balanced by 
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inhibitory effects of the functional connection between ASI and AVA. Although the 

ASI-AVA connection is likely to be inhibitory as the model requires, we think this 

scenario is unlikely because the it would require that the effect of ASI-AVA 

connection to be greatest when ASI is least activated (Fig. 7).
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Figure 7.  Hypothetical current-irradiance curve for the functional 
connection between ASI and AVA.  The model assumes that ASI inhibits AVA 
(i.e., currents attributable to ASI are greater than or equal to zero at all irradiances), 
which is justified by the fact that ablation of ASI neurons causes an increase in 
reversal frequency85.   The model also assumes, counterfactually, that the current-
irradiance curve for the connection between ASH and AVA (blue) is a step-function 
(i.e., the connection is not graded).  IASI, the predicted curve for the ASI connection 
(magenta) was computed by subtracting the step function IASH from Inet (green), the 
overall current-irradiance curve obtained experimentally.

Graded synaptic transmission between ASH and AVA is consistent with a model in 

which stronger – and likely more dangerous – aversive stimuli elicit a greater 

number of stochastic escape responses per unit time.  As energetic cost almost 

certainly increases with the number of escape responses, graded transmission 
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between ASH and AVA may exist to provide a means of reserving the most costly 

responses for the most dangerous stimuli.

METHODS

Animals

The strains used in this study were wild-type C. elegans Bristol (N2), MT7929 

unc-13(e51); CB169 unc-31(e169); XL157 ntIs29[nmr-1::tdTomato], XL153 ntIs27[

sra-6::ChR2*YFP,unc-122::dsRed], XL165 ntIs2[sra-6::ChR2*YFP,unc-122::dsRED]; 

ntIs29[nmr-1::tdTomato], XL167 unc-31(e928);ntIs27[sra-6::ChR2*YFP,unc-122::d

sRED];ntIs29[nmr-1::tdTomato], XL168 unc-13(e51);ntIs27[sra-6::ChR2*YFP,unc-1

22::dsRED];ntIs29[nmr-1::tdTomato]. NC1749 otEx239[(rig-3::GFP), 

pha-1(e2123)III]; hdIs32[glr-1::DsRed2] was a gift from Clay Spencer and David 

Miller107.

Molecular biology 

The sra-6::ChR2*YFP construct was made by first inserting the sra-6 promoter into 

the xba-1 site of the pPD95.75 Fire Vector108. ChR2*YFP was then inserted between 

the BamHI and EcoRI site of pPD95.75 3’ of the promoter. The psra-680 and 

ChR2*YFP2 were obtained as clones of preexisting constructs. The nmr-1::tdTomato 

plasmid was made by first inserting tdTomato between the BamHI and EcoR1 sites of 

pPD95.75.  5Kb of the nmr-1 promoter and the first 5 codons of the predicted nmr-1 

protein coding sequence48 were amplified from genomic DNA by PCR and inserted 

between the sphI and salI to fuse tdTomato with the first 5 codons of nmr-1 in the 

pPD95.75 vector. All constructs were injected at 50 ng/µL using published 

methods108.
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Photostimulation

Worms were photostimulated in both the behavioral and electrophysiological 

experiments using the blue channel (470 nm) of a dual wavelength LED module 

(Rapp OptoElectronic, Hamburg, Germany) that was focused by a 63x 1.4 NA oil 

immersion objective lens (Zeiss, part number 440762-9904). Irradiance was 

determined by measuring the power emitted from the objective using an optical 

power meter placed above the front lens of the objective (Newport, Irvine, Ca) and 

dividing by the area of the field of illumination at the focal plane of the preparation.

Electrophysiology

Worms were prepared for electrophysiology by gluing them to an agarose pad formed 

on a coverslip that became the bottom of the recording chamber as described in 89. 

Here, however, the pad contained grooves (cross-section 20 µm x 20µm) formed by 

pressing a microfabricated polydimethylsiloxane (PDMS) mold109 into a drop of 

molten agar to produce an obliquely crossed array (Fig. 1c). To ensure that the pad 

adhered to the coverslip and not to the mold, the coverslip was pre-coated with a 

thin layer of agarose that was allowed to dry before forming the pad. Prior to gluing, 

each worm was positioned with its body in one groove and the tip of its head in a 

second groove that intersected the first one. As a result, the neck region was bent 

slightly to one side, producing a convex surface at the point of contact between the 

dissecting probe and the body; this arrangement applies tension to the worm's 

cuticle to facilitate entry of the sharp glass probe used for dissection. In addition, the 

worm was rotated so that its ventral midline was at the bottom of the first groove, 

placing the target neuron at the most favorable latitude for dissection. The chamber 

was filled with external saline and the cell body of the neuron was exposed by 

making a small slit in the cuticle. Recording pipettes were pulled and pressure-

polished109 to achieve resistances of 10–20 MΩ when filled with normal internal 
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saline. Voltage and current-clamp recordings were made with a modified Axopatch 

200A89 amplifier. Pulses used to calculate whole-cell capacitance and series 

resistance were filtered at 50 kHz and sampled at 125 kHz. Voltage clamp current 

families, and recordings of photostimulation-evoked events, were filtered at 2 kHz 

and sampled at 10 kHz. 

Physiological solutions

Internal saline consisted of (in mM): 125 K-gluconate ,1 CaCl2, 18 KCL, 4 NaCl, 1 

MgCl2, 10 HEPES, 10 EGTA, pH 7.2 (KOH). External saline consisted of 5 KCl, 10 

HEPES, 8 CaCl2, 143 NaCl, 30 glucose, pH 7.2 (NaOH).

Behavioral analysis

Worms were prepared for behavioral experiments56 and care was taken to ensure 

that the conditions of behavioral and electrophysiological experiments were closely 

matched.  Briefly, each worm was glued by the head to an agarose-coated coverslip 

that formed the bottom of the recording chamber.  The preparation was submerged 

in external physiological saline and positioned on the stage of the inverted 

microscope normally used for patch clamping and photostimulation; thus, the same 

microscope objective (63x) and light source were used in both types of experiments.  

Whole-worm behavior was recorded (29.97 FPS) using a video camera attached to a 

4x objective stationed above the preparation; the camera was fitted with a long-pass 

emission filter to prevent the ChR2 excitation light from reaching the camera.  

Behavioral state (forward or reverse) was scored off-line by noting the direction in 

which undulatory waves propagated along the worm's body; the scorer was blind to 

the timing and irradiance of the stimulus as well as the experimental treatment (± 

all-trans retinal). The time course of the probability of each state was obtained by 
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aligning the behavioral records of different animals to stimulus onset and computing 

bin-wise averages of the fraction of time spent in each state across animals.

Data analysis and statistics

Whole cell capacitance and series resistance were estimated from the currents 

evoked by a voltage pulse from -40 to -70 mV89. Briefly, after seal formation, we 

measured uncompensated electrode capacitance and seal resistance in the on-cell 

configuration before rupturing the patch to obtain the whole-cell configuration.  The 

effects of uncompensated electrode capacitance the current across the seal 

resistance were removed by subtracting on-cell currents from whole-cell currents 

before further analysis. The time constant of AVA neurons was estimated as the 

product of whole-cell capacitance and resistance.  Series resistance errors were 

compensated offline. We excluded cells that had a whole-cell capacitance of less than 

0.2 pF, or a holding current at -55 mV that was outside the range of -40 pA to 20 pA, 

as these cells were likely to be damaged.  In current-clamp experiments, we 

excluded cells in which the resting potential was less negative than -50 mV.

Components of synaptic current

The onset transient was quantified as the peak inward current observed during the 

first 50 ms of the photostimulus minus the peak current observed in the 50 ms 

immediately before the stimulus.  The sustained component of the synaptic current 

was quantified as the average median-filtered current during the initial 2.1 s of the 

stimulus minus the average current during an equivalent period immediately before 

the photostimulus. The frequency of unitary events was defined in terms of events 

detected using a weighted least squares fit of a scaled template.110  For this 

component, synaptic response was defined as the frequency of unitary currents 

40



during the stimulus minus the frequency of unitary events during equivalent period 

immediately before the photostimulus.  Analyses were performed using custom 

software written using IgorPro™ or the ScyPy111 Python libraries. Error bars 

represent ± standard error of the mean (SEM). 
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CHAPTER III

MINIMAL NEURONAL CIRCUITRY FOR LOCOMOTORY SWITCHING BEHAVIOR 

IN C. ELEGANS

This chapter contains data collected as part of a project modeling the behavioral 

kinetics of worm locomotion. This model, known as the stochastic-switch-model, 

predicts the reciprocal connectivity between the command neurons from the 

behavioral statistics of worm locomotion. Thus, the data presented here will be 

published as part of the stochastic-switch-model with the coauthors Shawn Lockery, 

William Roberts, Tod Thiele, Navin Pokala, Rebecca Lindsay, Kristy Lawton, Cornelia 

Bargmann and Steven Augustine. The model discussed in this chapter intends to 

analyze the electrophysiological data from a biophysical perspective and is separate 

from the stochastic-switch-model.

INTRODUCTION

C. elegans locomotory behavior is largely restricted to movement along its body axis 

in either the anterior (forward) or posterior (reverse) direction. Analysis of C. 

elegans tangential movement has shown that instead of occupying many different 

forward or reverse velocities, worms have preferred gates45,51,93,112. With the 

exception of brief pauses at zero velocity, transitions between these gates happen in 

a roughly all-or-non manner 113,114. Thus, these gates represent mutually exclusive 

modes of locomotion.  

Early studies of the neural circuitry controlling locomotory behavior found that laser 

ablation of the pre-motor interneuron class AVA resulted in worms with severe 

defects in reverse locomotion, whereas ablation of the pre-motor interneuron class 

AVB resulted in analogous defects in forward locomotion 43. This led to the 
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hypothesis that AVA and AVB serve as command neurons for reverse and forward 

locomotion respectively. Inspection of the anatomical reconstructions of the worm 

nervous system  — known as the wiring diagram — supports the command neuron 

hypothesis 41. The wiring diagram indicates circuity that is segregated at the level of 

command neuron output: projections from AVA are nearly exclusively to the motor 

neurons thought to generate reverse thrust, and projections from AVB are to motor 

neurons thought to generate forward thrust 41.

Further support for the command neuron hypothesis comes from calcium imaging of 

AVA and AVB in unrestrained crawling worms; calcium was found to be elevated in 

AVA throughout bouts reverse locomotion, and depressed throughout bouts of 

forward locomotion 44-47. The converse pattern was found in AVB 45,46.  These 

imaging experiments not only further solidify the role of AVA and AVB as command 

neurons, but also speak to the nature of the control system: since the command 

neurons are active during mutually exclusive behaviors, their activity must also be 

mutually exclusive. Although voltage in AVA and AVB has not been recorded 

simultaneously, we infer that AVA is only active when AVB is inactive and vise versa. 

We refer to these segregated patterns of activity as flip-flop behavior. 

The neural mechanisms that generate the flip-flop behavior in the C. elegans 

command neuron circuit are unknown, but several possibilities exist. Two prominent 

possibilities include intrinsic bi-stability of the command neurons, and/or emergent 

properties of the synaptic network 9,115-117. 

Both mechanisms beg the questions of what connectivity exists between the two 

neurons and how sensory neurons regulate the system. In the case that the 

command neurons are intrinsically bi-stable, then some synaptic interaction is 
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required so that the neurons do not remain co-active or co-inactive for extended 

periods. In the case that the patterns are an emergent property of the network, then 

is there a minimal circuit that allows for both stability of the patterns and transitions 

between them? In either case, sensory input might be directed at AVA, AVB or both 

cells, and the consequences of this input on network behavior would depend highly 

on the intrinsic properties of the neurons and their interconnectivity.

Inspection of the wiring diagram indicates that monosynaptic contacts are made 

reciprocally between the AVA and AVB class (Fig. 1). Additionally, the wiring diagram 

also suggests extensive poly-synaptic connectivity 41. In spite of the anatomical 

evidence, this putative synaptic connectivity has not been tested at the physiological 

level, thus it is not known if it is functional, let alone if it is excitatory or inhibitory.

ASH(R)

AVA(L) AVB(L)

AVA(R) AVB(R)

ASH(L)

Figure 1. Anatomical predictions for circuitry involved in the regulation of 
the command neuron circuit. Diagram shows putative monosynaptic connections 
between the left and right members of three neuron classes ASH,AVA, and AVB. 
Darker arrows indicate a greater number of synaptic contacts associated with the 
connection. Left-right laterality is indicated in parenthetically.

The ASH nociceptive neuron class presents a useful way to uncover the mechanisms 

of how sensory input regulates the command neuron circuit. ASH is known to trigger 

a bout of reverse locomotion when it detects nociceptive stimuli at the anterior end 
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of the worm. It has already been well established that this response results in part 

via excitatory synaptic output to AVA 50,62,66-69,73,78,82,118 but the wiring diagram also 

indicates extensive monosynaptic (Fig. 1) and polysnaptic pathways from ASH to 

AVB 41. Yet, again the functionality and sign of this connectivity between ASH and 

AVB has not been tested.

Here, we first study the intrinsic properties of the command neurons and then test 

the functionality of putative synaptic connectivity between pairs of neurons. To test 

for connectivity we use a recently developed method that involves photo-activating a 

putative presynaptic member of a neuron pair using the light-gated ion channel 

Channelrhodopsin-2 (ChR2) 70,71, and recording the evoked synaptic currents in the 

other class 72,73,118.  By measuring the reversal potential of the synapse we 

determine if this connectivity is excitatory or inhibitory. 

In this study, first we establish that the command neuron membrane properties are 

largely passive. Second, we show that inhibitory reciprocal connectivity exists 

between the forward and reverse command neurons. Third, we show that inhibitory 

connectivity exists between the nociceptor ASH and AVB. Finally, we use our 

observations of command neuron intrinsic properties and connectivity to formulate a 

biophysical model. This model is sufficient to produce activity patterns consistent 

with the production of worm locomotory behavior. 

In the description of experiments focused on synaptic connectivity in this study, we 

adopt the following nomenclature to help clarify the directionality of a particular 

connection of interest: we append (pre) to the names of putative presynaptic 

neurons and (post) to the names of putative postsynaptic neurons.
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RESULTS

The membrane currents of the AVA and AVB command neurons are largely 

passive

Prior recordings from the AVA command neurons have shown that AVA have a 

predominantly linear current-voltage relationship compared to other C. elegans 

neurons 116. Because of these passive properties in AVA, it is unlikely that intrinsic bi-

stability in AVA is necessary for the formation of the network-wide flip-flop behavior. 

To our knowledge whole cell recordings from the AVB neurons have not performed, 

thus it remains possible that intrinsic bi-stability in AVB serves as a source of the 

network-wide behavior.

 

To study the intrinsic properties of AVB, we first focused on targeting AVB for 

electrical recordings. Traditionally, this targeting in C. elegans involves expressing a 

fluorescent reporter protein under the control of a cell- or class-specific promotor 

89,119. Unfortunately, no truly specific promotor for the AVB class of neurons has been 

identified 105. Fortunately, in prior studies we were able to employ semi-specific 

promoters for this identification procedures so long as additional anatomic and/or 

electrophysiolgical exclusion criteria could be applied 118. 

We selected the sra-11 promotor as the best candidate for targeting AVB since it was 

shown to express in only three cell classes: AVB, AIY and AIA 105,120. Furthermore, 

the anatomy of these three cell classes indicated that they might be easily 

distinguished during recording procedures; the somata are well separated and AVB 

have long primary neurites that descend the length of the body. In contrast AIY and 

AIA have short primary neurites restricted to the anterior nerve ring 41. 
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When we expressed the red fluorescent protein tdTomato using the sra-11 promotor 

we found that indeed we were able to successfully target AVB using anatomical 

criteria alone. We then asked if the currents evoked by depolarizing voltage steps in 

AVB were consistent with intrinsic regenerative behavior. We found that like the 

forward command neuron AVA, the current-voltage relationship in AVB is mostly 

linear (Fig. 2a,b). Additionally, again like AVA, depolarizing voltage steps from AVB 

did not evoke currents with slowly activating and inactivating kinetics. Both of these 

observations support a passive model of AVA and AVB intrinsic properties 121, and 

distinguish these command neurons from many other identified C. elegans neuron 

classes such as ASE(R), 89, ASH 65 (Fig. 2c), AWC 122, AFD, AWA 123, RIM 116, AIY 119 

and AVE 118.  

The AVA and AVB neurons are reciprocally inhibited

Having the means to record from the postsynaptic member of the putative AVA(pre) 

to AVB(post) connection, we next focused on testing for synaptic connectivity 

between these neuron classes.  Before doing so, however, we needed to be able to 

selectively activate the presynaptic member of this pair. The rig-3 promoter 

expresses in the AVA neuron class, thus by using this promotor to express ChR2 we 

were able to activate AVA(pre) with pulses of blue light. Recordings from AVA in this 

strain validated that ChR2 activated excitatory currents as expected (data not 

shown). 

Finally, to test for connectivity, we constructed worms expressing ChR2 in AVA(pre) 

and tdTomato in AVB(post) using the promotors listed above. Furthermore, because 

short wavelength light has been reported to engage non-specific effects on the wild 

type C. elegans locomotory circuit, we expressed these constructs in a background in 
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which the non-specific effect of blue-light stimulation is eliminated by a mutation 

(ce314) of the lite-1 gene 87.
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Figure 2. Comparison of intrinsic currents in the AVA and AVB command 
neurons with the ASH sensory neuron. (a-c) Example recordings from AVA a, 
AVB b, and ASH c, showing the first 600ms of a family of membrane currents evoked 
by voltage steps from -80 to +40mV in steps of 10mV. The current-voltage 
relationship for these families is shown to the right. The same voltage protocol was 
used for a-c, top.

To simultaneously determine the magnitude (conductance) of putative functional 

connectivity from AVA(pre) to AVB(post), and also measure the sign (reversal 
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potential) we voltage-clamped AVB(post) at a family of membrane potentials and 

recorded the currents evoked by photostimulation of AVA(pre) (Fig. 3a). To estimate 

the reversal potential of observed connectivity, we first estimated the conductance of 

the connection in a given preparation by fitting the relationship between the light-

evoked current and holding potential with a linear (ohmic) model (Fig. 3b). We 

tested the fit against the null hypothesis of zero conductance. In a small 

subpopulation of preparations (4/33), photostimulation AVA(pre) evoked a 

statistically significant synaptic conductance (Fig. 3b,c). It is unknown why some 

preparations failed to exhibit significant synaptic conductances however, we suspect 

this is likely due to disruption of network connectivity during the dissection and 

immobilization procedure. Thus, we view the preparations that display a significant 

synaptic conductance as a more accurate representation of the connectivity of an 

intact worm. Hence, we excluded preparations with a conductance that was not 

significantly different than zero, and then calculated the group-wise reversal 

potential as the average zero-current intercept of the linear fits across the remaining 

preparations.

Using this exclusion method, we calculated average reversal potential of the 

AVA(pre) to AVB(post) connectivity to be -69.51± 3.57 mV (Fig. 3c). This reversal 

potential is roughly consistent with a chloride conductance (calculated chloride 

equilibrium = -77.6 mV), however we acknowledge the formal possibility of a mixed 

synaptic conductance. Nevertheless in intact worms, we expect that this conductance 

to yield an inhibitory synaptic effect in AVB(post). 
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Figure 3. Biophysical properties of the functional connectivity amongst the 
neurons AVA,AVB and ASH (a)  Voltage clamp recordings of an AVB neuron held 
at family 11 of holding potentials ranging from -115mV to 45mV. Synaptic currents 
were evoked when rig-3 expressing neurons were photo-simulated with blue light 
(bar, top). (b) The average light-evoked currents shown in a plotted against the 
holding potential. A linear fit (grey line) was used to estimate the conductance 
(slope) and reversal potential (zero-current intercept). (c) Estimates of conductance 
plotted against reversal potential for 33 preparations in which connectivity between 
AVA(pre) and AVB(post) was tested as in a and b. Connections with a conductance 
significantly different than 0 S are shown in black, (Bonferroni corrected alpha =  
0.0015) and were used to calculate the group-wise average reversal potential (black 
arrow). Preparations with a non-significant synaptic conductance are shown in grey. 
The equilibrium potential for chloride (open arrow) is shown for reference. (e-f) 
Same design as a-c except recordings tested connectivity between sra-11 expressing 
neurons and AVA. n= 14 in f, alpha = 0.0036. (g-i) same as e-f except recordings 
were performed in worms with a mutation (mg158) in the ttx-3 gene. n= 8 in i, 
alpha = 0.006 . (j-l) Connectivity between ASH and AVB. n=5 in l, alpha = 0.001. 
The the synaptic connectivity being tested in each row of panels is shown by the 
cartoon on the left with darker coloration indicating greater levels of transgenic 
protein expressed by the indicated neuron. 

We next sought to test for the reciprocal connection - AVB(pre) to AVA(post) - using 

an analogous approach as we used for the AVA(pre) to AVB(post) connection. In this 
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instance we expressed ChR2 using the sra-11 promotor and tdTomato using the 

nmr-1 promotor48, again in a lite-1(ce314) background. This allowed us patch clamp 

AVA(pre) and photo-activate AVB(post). It should be noted, however, in this case 

additional neurons — primarily AIY(L) and AIY(R) — were also likely activated by our 

photosimulation light.

Photostimulation of the sra-11 expressing neurons evoked synaptic currents 

(Fig. 3d), in AVA(post) in 5/15 preparations (Fig. 3e,f). Using the exclusion approach 

described above, we estimated the reversal potential of the currents to be 

-62.4±3.56 mV amongst preparations with a statistically significant conductance. 

These results suggested the presence of inhibitory functional connectivity between 

AVB(pre) and AVA(post), however the more promiscuous expression pattern of the 

sra-11 promotor potentially confounds our interpretation of this result. AIY 

represents a particularly problematic confound because previous studies have 

suggested that activity in AIY serves to promote forward locomotion 57,85,124. Thus, it 

is natural to think that AIY may send inhibitory connectivity to the reverse command 

neurons AVA. 

To rule out the possibly that the light-evoked synaptic currents we observed in 

AVA(post) resulted entirely from AIY activation, we took advantage of mutations 

(mg158) in the ttx-3 gene that is required for the expression of sra-11 in AIY. 120  We 

expressed sra-11::ChR2::YFP and nmr-1::tdTomato in a ttx-3(mg158) background 

and found that as expected, ChR2::YFP expression in AIY was eliminated (not 

shown); however, the light evoked inhibitory synaptic currents persisted in AVA(post) 

in 6/10 preparations (Fig. 3g-i). Furthermore, the reversal potential (-67.49±1.48 

mV) of these currents was not altered in a major way (Fig. 3i). This suggests that 
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synaptic output from AIY is at most a minor component of the net connectivity from 

sra-11 expressing neurons and AVA(post).

Presently, we have not ruled out a possible contribution of synaptic output from AIA 

to AVA, however, we find that AIA is an unlikely source of the majority of the light-

evoked synaptic currents for three reasons: (1) ChR2 is expressed weakly in AIA 

when compared to AVB 120. (2) Unlike AVB, there are no monosynaptic contacts from  

AIY onto AVA 41. (3) the ttx-3 mutation weakens the expression of sra-11 reporters 

in AIA 120.

AVA and AVB neurons receive bi-directional regulation from the ASH 

nociceptor

When a worm is crawling in the forward direction and its nose encounters an 

aversive stimulus, the worm responds rapidly and reliably with a bout of reverse 

locomotion. It has been well established that the sensory neuron ASH is necessary 

for this avoidance response 50,62,66. Consistent with the role of ASH in sensing 

aversive sitmuli, and AVA in commanding reverse locomotion, studies from our lab 

and others have demonstrated excitatory functional connectivity between ASH and 

AVA 67-69,73,78,82,118. In spite of the well-studied interaction between ASH and the 

reverse command neurons, it is not known how or if ASH interacts with the forward 

command neuron AVB. Since activation of AVB would likely antagonize a reverse 

escape bout, it might be expected that functional connectivity between ASH and AVB 

is inhibitory if it exists, however, ASH also makes direct dyadic synapses to both AVA 

and AVB.41  Following Dale’s principle 125,126 it is then also reasonable to hypothesize 

that ASH excites AVB, since it is known that ASH releases glutamate to excite 

AVA67,116,118.
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Our ability to perform electrical recordings from AVB affords us the ability to 

determine if ASH(pre) excites or inhibits AVB(post). Thus, we used the sra-6 

promotor to express ChR2 in ASH(pre) and measured the reversal potential of light-

evoked currents in AVB(post). Again we identifed AVB(post) by expressing tdTomato 

with the sra-11 promotor. By photostimulating ASH(pre) we observed synaptic 

currents (Fig. 3j) in AVB(post) in 4/5 preparations (Fig.3k,l). These currents had a 

reversal potential of -73.82 ± 4.17 mV, indicating that net effect of functional 

connectivity between ASH and AVB is inhibition. Thus, the effect of ASH activation is 

bi-directional: simultaneous activation of AVA and inhibition of AVB.

Synaptic conductance noise suggests a mechanism for state transitions in a 

reciprocally connected neural circuit

The reciprocal connectivity demonstrated by our optogenetic experiments resembles 

a well studied class of oscillatory circuits known as half centers 127,128, however, 

analysis of C. elegans locomotory behavior indicates that transitions between forward 

and reverse locomotion are not rhythmic, rather they occur randomly 93. Accordingly, 

we expect command neuron activity to also switch between activity patterns 

randomly rather than rhythmically.   

Non-linearities and time-dependance included as terms of many existing half center 

models distinguishes them from the AVA and AVB circuit, especially since these 

terms are often critical for the limit cycle behavior of the oscillations see 129. In 

contrast, as we have shown in Fig. 2, the intrinsic currents in AVA and AVB appear to 

be largely passive. Given the passive intrinsic properties of the command neurons, 

the stability of the flip-flop behavior must be generated at a network level. We 

hypothesized that reciprocal inhibitory connectivity alone would be sufficient to 

accommodate the demand for stability in the flip-flop behavior, and conductance 
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noise could allow for random transitions between stable states. This hypothesis 

generates two questions: What form and properties are required of the synaptic 

transfer function to meet the demand for stability? (2) Is noise is able to drive 

transitions without entirely overwhelming stability?

In order to answer these questions we constructed a simplified conductance model of 

the system, modifying an existing model of two reciprocally connected passive 

neurons by adding noise. The original, deterministic form of this model included two 

units  — named a  and b here — that were described by their capacitive properties, a 

single passive leak conductance and an inhibitory synaptic conductance that coupled 

the units via an instantaneous sigmoidal transfer function 129. In this model, the 

voltage 
 
V

= (V

a
,V

b
)  changes as a function of the conductance-driven membrane 

currents according to symmetrical differential equations for V
a
 and V

b
 such that such 

that for a:

dV
a

dt
=
−I

al
− I

b→a

C
m

Where I
al

 is the leak current in a , I
b→a

 is the synaptic current in a  coming from b , 

and C
m
 is the membrane capacitance. The synaptic current, I

b→a
 depends on the 

driving force on chloride and the synaptic conductance so that

Ib→a = gsgb→a (Va − ECl )

Here E
Cl

is the equilibrium potential for chloride, g
s
is a general synaptic conductance 

scaling that is shared by all synaptic terms in the model. The synaptic transfer 

function gb→a  is a sigmoidal function of the voltage in b  and ranges from zero to one:

gb→a =
1

1+ e
β (U−Vb )
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where U  is the half-maximal activation voltage of the synapse and β  is the gain.

This description conforms well to our experimental observations of the passive 

intrinsic properties of AVA and AVB  (Fig. 2a,b) and inhibitory reciprocal synaptic 

connectivity (Fig. 3a-i). We modified these deterministic equations to introduce noise  

into the leak term. Because of the large amount of ongoing synaptic activity and 

relatively depolarized zero-current potential of the AVA and AVB neurons (Fig. 2a,b) 

we assumed a leak conductance that was the sum of ongoing excitatory and 

inhibitory synaptic input 130 I
al
= I

ae
+ I

ai
.  

To simulate the perturbation noise we used a form of colored noise known as an 

Ornstien-Uhlnbeck (OU) process 131. This stochastic process has a stationary mean 

and properties that are known analytically, therefore the process can be described 

entirely by the standard deviation, σ
cond

, of excursions from the mean and the 

autocorrelation time constant τ
cond

.  Furthermore, an OU process has been shown to 

approximate the synaptic conductance waveform resulting from the non-saturating 

sum of large numbers of synaptic inputs with Poisson release statistics and a unitary 

waveform with an instantaneous rise and exponential decay. Therefore we added 

independent OU processes, X
ae

 and X
ia

to the conductance driving the both leak 

currents such that in a

Iae = (gs + Xae )(Va − E0 )

Iai = (gs + Xai )(Va − ECl )

where E
0
 is the equilibrium potential for a nonselective cation channel.

Through power spectrum analysis it can be shown that the time constant of the 

exponential decay of the unitary inputs provides the autocorrelation time constant 

for the corresponding OU equations 132. Accordingly, we used the decay time-

constant taken from recordings of miniature synaptic currents recorded from AVA 
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and AVB (Fig 2a,b) to set τ
cond

. We then varied the σ
cond

 to probe how the system 

responded to increasing levels of noise. In cases when σ
cond

 of the noise process is 

set to zero, our model reduces to the deterministic form described by Manor and 

colleagues 129.

As was previously shown, depending on the choice of parameters, the deterministic 

form of our model may exist in a configuration with three steady-state solutions. In 

this configuration two of the steady-state solutions are stable and one is unstable. 

The stable solutions have the underlying neurons, a  and b at unequal membrane 

potentials, whereas the unstable solution has a  and b  at equivalent membrane 

potentials. We found that using values of membrane capacitance, input resistance 

and synaptic conductance on the same order as we observed in AVA and AVB, the 

three steady-state configuration was possible so long as appropriate parameters of 

the synaptic transfer function were chosen (Fig. 4a).  If the transfer function has low 

gain, or the threshold is outside a range of critical values, only a single steady-state 

solution exists (Fig. 4b,c).

We first assumed a synaptic transfer function that allows for a three-solution space, 

and asked if noise might be sufficient to drive transitions between stable solutions. 

After increasing σ
cond

 of the noise to a critical level (not shown), we found that  V


 

exhibited flip-flop behavior (Fig. 4d).  

To better understand the mechanisms underlying the formation and transitions of the  

flip-flop, we analyzed the behavior of the stochastic form of the model with respect 

to the state space of the deterministic form. This analysis is justified by the fact that 

the nose term has a zero mean, and τ
cond

 is fast (0.5ms) compared to the 

membrane time constant (~2ms). Thus, the deterministic state-space represents an 

approximation of the average behavior of the stochastic system. In Fig. 4e we 

plotted the trajectory of the simulation shown in Fig. 4d on the state space shown in 

Fig. 4a.
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This analysis demonstrates that the two stable steady-state solutions in state space 

form the basis for the two stable voltage configurations during the flip-flop behavior. 

This analysis also ads insight into the time-course of the transitions. It can be seen 

that because of the nature of the derivative field, when transitions occur, they 

progress through the low magnitude derivative field around the unstable steady-

state solution. This has an important consequence: since the transition region 

roughly follows a diagonal with a negative slope, transitions appear as simultaneous 

changes in both neurons i.e. the hyperpolarized unit begins to depolarize at the same 

time as the depolarized unit begins to hyperpolarize.
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Figure 4. Conductance model of reciprocally inhibited passive neurons (a-c) 
state space and vector field (arrows) of the time derivatives for the state variables 
V
a
and V

b
, given various parameters of the synaptic transfer functions. The the V

a

nullcline is plotted in yellow,V
b
 in green. (a) Three steady-state solutions are present 

when the transfer function has high gain, β , and an intermediate threshold value, 
U . The points labeled F  and R  are stable whereas Z is unstable.  (b) The same U  
values are used as in a except β  of the functions are increased. In this case a single 
stable steady-state solution, Z  exists.  (c) Solutions when the high β  transfer 
functions in a have more negative U , here a single steady-state solution P

x
 exists. 

(d) The voltage time-series of the a  (red) and b  (blue) units resulting from a 
simulation where noise was added to the conductance terms. The parameters of the 
U  and β  were the same is in a. (e) The path of the system in d plotted on the 
state-space given in a. Initial conditions in d and e have V

a
=V

b
= 0mV.
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Threshold noise provides a novel mechanism for state transitions in a flip-

flop circuit

A critical assumption we made in this model was the selection of a synaptic transfer 

function that is static, and generates the three-steady-state solutions. This 

assumption is not necessarily justified. In the event parameters of the synaptic 

transfer functions are chosen that yield single steady-state solutions as in Fig. 4b&c, 

the addition of conductance noise simply results in  V


fluctuating around the steady-

state solutions(not shown). A more interesting situation arises when we consider the 

possibility that the transfer function itself is subject to random fluctuations that alter 

the relationship between the voltage in the neuron and the amount of transmitter 

released.

Many biologically plausible processes might account for such fluctuations or noise in 

a transfer function. One source of such noise that may be particularly applicable to 

C. elegans synapses is the random opining and closing of ion channels near the pre-

synaptic density. This noise source, commonly referred to as channel noise, has been 

shown through theoretical and experimental work to result in fluctuations of the 

threshold for action potential generation 133-135. This effect is especially pronounced 

in the small diameter cables of axons or neurites 136. Since the synapses between 

C. elegans neurons are generally made en passant, many of the presynaptic 

specializations are restricted to such cylindrical neurites where channel noise may 

have a major influence on the voltage dependence of synaptic release. Furthermore, 

individual channel effects may be exacerbated in C. elegans since the total number 

of channels of a particular type expressed by an single neuron may number as low as 

50 89.
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We asked what effect noise acting on a synaptic transfer function might have on the 

behavior of the system by adding noise X
at
and X

bt
, henceforth ‘threshold noise’ , to 

the threshold terms of the transfer functions such that for a :

ga→b =
1

1+ e
β (Xat+U−Vb )

Again, we used an OU process as the noise source since it recently has been shown 

to approximate the behavior of a population of channels with two-state kinetics in a 

computationally efficient manner. In this approximation, the autocorrelation time 

constant τ
thresh

 of the OU process is inversely equal to the sum of the single-channel 

opining and closing rates 137. Since we do not have physiological data to constrain 

τ
thresh

 for this process we explored the behavior of the model varying τ
thresh

 from 1ms 

to 3.125s. 

The effect of threshold noise on the behavior of the model depended jointly on the 

standard deviation of the threshold noise, σ
thresh

 as well as τ
thresh

 (Fig. 5). In cases 

where τ
thresh

 was fast, the effect of threshold noise was similar to the effect of 

conductance noise: at small σ
thresh

 the system tended to dwell in a single state; at 

high σ
thresh

 the system was overwhelmed by the noise; at intermediate values the 

system displayed flip-flop behavior, switching between two states F  and R . 

In the case that τ
thresh

 was slow, two new states emerged, these consisted of one 

state in which both neurons were hyperpolarized, P
x
, and another in which both 

neurons were depolarized, P
y  (Fig. 6a). This had a surprising effect on the nature of 

the flip-flop behavior. Transitions between the two one-on, one-off configurations,
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Figure 5. Effect of adding threshold noise to the distribution of voltages in a 
model flip-flop circuit. Matrix of two-dimensional occupancy histograms show the 
probably density for voltage vectors 

 
V

= (V

a
,V

b
)  generated from 30s of simulated 

data. Columns show simulations with identical threshold noise autocorrelation time 
constants, τ

thresh
 (ranging from 1.0 to 3125ms). Rows show simulations with identical 

threshold noise standard deviations σ
thresh

 (ranging from 1.0 to 8.0 mV). Note that 
when a value of σ

thresh
 of 1.0 mV is used, the system dwells for the entire simulation 

around a single configuration ( F  or R ). Also note that shortτ
thresh

 tended to yield 
simulations in which noise overwhelmed the system. In the simulations shown here 
where σ

thresh
 was 4.0 mV or larger, a four state regime emerged, with the system 

visiting the P
x
 and P

y
 configurations in addition to F and R . Blues indicate low 

probability density, yellows and reds indicate high density. To improve visual clarity 
conductance noise with a standard deviation, σ

cond
, of 20pA was included in all 

simulations (see Fig. 7). The regions in state-space corresponding to the four states 
( F , R ,P

x
, P

y
) are labeled in the bottom right hand histogram.

60



 ( F , R ) now appeared in which one of the new states ( P
x
, Py) served as an 

intermediary (Fig. 6a). 

State-space analysis again helps understand the emergent behavior of the system. 

Because the two new states form when threshold τ
thresh

 is slow compared to the 

membrane time-constant we may apply a quasi-steady-state assumption to our 

analysis; when τ
thresh

 is slow, at any time-point, the instantaneous dynamics of the 

system are approximated by a phase-space that takes into account the values of the 

noise terms at that instant. 

In Fig. 6b,c we plot the nullclines and fixed points that are formed using values of 

X
at

and X
bt

 taken from time-points when the system is in P
x
 orP

y
.  From this view it 

can be seen that single steady-state solutions corresponding to the P
x
 and P

y
 

conditions result when both thresholds simultaneously deviate in the negative or 

positive direction. In this case, floor and ceiling effects dominate, and changes in the  

membrane potential no longer result in changes in transmitter release; thus the 

reciprocal synapses become either tonically active or tonically inactive, and the 

system is drawn to the newly formed stable fixed point. 

The solutions for the P
x
 and P

y
 states can be derived analyticity by setting the 

synaptic conductance terms to either zero or one in the model equations (see 

methods), and thus provide an explanation how fluctuations in the threshold can lead 

to the system occupying these new states. Notably, when threshold noise is applied, 

the canonical F  and R  states may still form in situations when the nullclines 

assume a configuration with two stable solutions (Fig. 6d). However, formation of a

P
x

 orP
y
 state can break the system out of these stable F or R  states, potentially 

catalyzing transitions between F  and R .
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Figure 6. Simulated behavior of reciprocally inhibited passive neurons when 
the synaptic thresholds are subject to noise. (a) Voltage time-series for the a  
(red) and b  (blue) units. The system dwells preferably in four configurations 
indicated by the arrows. At point R , a  is depolarized and b  is hyperpolarized. The 
opposite situations exists at point F . At P

y
 and P

x
, a  and b  are either co-

hyperpolarized or co-depolarized, respectively. (b-d) the state-space produced when 
values of the noise terms at the P

y
, P

x
 and R   time-points (b,c,d respectively) 

shown in a are applied to the threshold. The path of the system (grey lines) from the 
simulation shown in a is plotted on each panel as a reference. The location of the 
system at the given time-point is indicated with a magenta circle.

DISCUSSION

We probed the functionality of hypothetical circuitry responsible for controlling  

C. elegans locomotory behavior using a combination of whole cell electrophysiology 

and optogenetics. We first examined the intrinsic properties of the command neurons 

AVA and AVB and found them to be predominantly passive. Next we examined 

putative connectivity between the command neurons for forward and reverse 

locomotion and found evidence for reciprocal inhibition. We then showed that the 

nociceptor ASH regulates locomotion by inhibiting the forward command neuron AVB, 

in addition to its known role exciting the reverse command neuron AVA 73,82,118. 

Finally we developed a model of passive reciprocal inhibition that is sufficient to 

account for the flip-flop behavior of the C. elegans command neurons.
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Intrinsic properties of the command neurons

Using whole cell voltage clamp recordings of the AVB neuron class we discovered 

that the kinetics and current-voltage relationship of AVB membrane currents were 

primarily passive, and in close agreement with those previously recorded in the 

reverse command neurons AVA. 

Because of the invasive nature of the recording procedure, our estimation of whole 

cell currents are necessarily prone to some uncertainty. Of particular concern is the 

shunting effect of the leak conductance around the electrode seal, and the washout 

of cytosolic contents following whole cell access. Whereas we cannot rule out the 

possibility that these difficulties cause us to miss regenerative currents that would be 

sufficient to generate bi-stability in either AVA or AVB, we feel this is unlikely since 

we are able to identify these types of regenerative currents in other C. elegans 

neurons such as ASH (Fig. 2C). Consequently, the intrinsic regenerative currents of 

the command neurons must be unusually susceptible to the whole cell procedure, or 

the the intrinsic currents are largely passive. We find the latter explanation more 

parsimonious.

Reciprocal inhibitory synaptic connectivity

Our ability to identify and patch-clamp AVB expands the repertoire of neurons 

accessible to electrical recordings to both classes of major locomotory command 

neurons. This presented the prospect of studying the synaptic interactions between 

these neurons by combining optogentics with electrophsiology. Unfortunately, this 

approach requires that optogenetic photostimulation light is delivered broadly to the 

neurons in the head. Thus, the expression system we use to drive ChR2 in 

presynaptic members of a putative coupled pair requires a greater degree of 

specificity than the system used to label the postsynaptic member.  
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The rig-3 promotor allowed us to express ChR2 in AVA, allowing straightforward 

testing of AVA(pre) to AVB(post) connectivity. The situation was more complicated, 

however, when testing for the reciprocal connection - AVB(pre) to AVA(post). This is 

because the most specific promotor for AVB also drives expression in the 

interneurons AIY and AIA.  Fortunately, we were able to use a mutation in the 

ttx-3(mg158) gene to control for the effect of AIY(pre) on this connection. The 

possibility of a confound from synaptic output of the AIA(pre) neuron remains. 

Nevertheless, we believe that connectivity between AIA(pre) and AVA(post) if it were  

to exist, would unlikely reverse our conclusion of inhibitory connectivity between 

AVB(pre) and AVA(post). This is because weaker ChR2 expression in AIA, and 

anatomical evidence of numerous monosynaptic contacts from AVB(pre) onto 

AVA(post) favors the a priori interpretation of a strong AVB(pre) to AVA(post) 

connection that dominates the observed currents.

Dissection and exposure of the command neuron somata is unfortunately a 

necessary requirement of the whole cell recording procedure. Although we take steps 

to minimize the invasiveness of the procedure, the synaptic connectivity of the 

network is likely disrupted to some extent by dissection. We expect that the large 

variability in conductance values between different preparations is due to this 

disruption, however, other possibilities exist such as day-to-day variation in the 

laboratory environment or individual differences in the life history of the worms. 

To control for preparation-to-preparation variability in our estimate of synaptic 

reversal potentials, we only included trials in which a statistically significant synaptic 

conductance was measured. This is based on the notion that we are better able to 

estimate the true reversal potential of a connection from a preparation that yields a 
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large, easily detectible synaptic signal than one that yields a small signal. 

Unfortunately, this approach makes it difficult to make comparisons regarding the 

magnitude of the conductance between groups since we are using conductance itself 

as an exclusion criterion. Nevertheless, it is interesting to note that a much larger 

proportion of the group testing connectivity from AVB(pre) to AVA(post) displayed a 

significant conductance than group testing AVA(pre) to AVB(post). This is consistent 

with the wiring diagram which shows fewer contacts from AVB(pre) to AVA(post) 

than in the reciprocal direction, and may underly the reason that freely crawling 

worms spend more time crawling forward than reverse41.

Flip-flop circuit for locomotory control

A possible role of reciprocal cross connectivity between the command neurons might 

be to help stabilize segregated membrane potentials in the command neurons, 

generating a flip-flop configuration such that one neuron is active while the other is 

inactive. Two reciprocally inhibited neurons is usually referred to as a  half center 127 

and has been the subject of extensive theoretical investigation regarding the 

generation of rhythmic oscillations. Whereas half-centers are clearly capable of 

driving rhythmic processes, they have received less study with regards to the 

production of random switching between stable states, as is observed in worm 

locomotory behavior 9.

It has been shown that a simple conductance model of a half center with passive 

neurons is sufficient to produce an oscillator of two neurons with anti-phase activity 

patterns 129. We asked if noise could drive flip-flop behavior in a similar model.

The cell-intrinsic and synaptic conductance terms in our model were taken to have 

no time dependence. Whereas we took this simplification to make the system easier 
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to analyze, it is partially supported by the fact that the underlying cell-intrinsic and 

synaptic currents shown in Fig. 2 and Fig. 3 respectively, have only moderate time 

dependance.  Ultimately, the kinetics of the currents likely play an important 

functional role in the behavior of the actual command circuit, we nevertheless find 

that they are not required for the production of stable states and random switching 

behavior in our simplified model.

An additional simplification of our model was the use of passive neurons. Beyond 

mere simplification however, this closely reflects our electrophysiolgical observations 

of roughly linear current-voltage relationships in AVA and AVB. Given the inclusion of 

passive neurons, a nonlinear synaptic transfer function was required to produce 

stable state-wise activity patterns in the two units. Presently, we have no data 

regarding the actual form of the transfer functions used by the reciprocal 

connections. Previous investigations of connectivity between other C. elegans 

neurons 72,118 have shown graded, low gain input-output functions that would be 

unlikely to generate the stable segregated states we observed in our model.  Graded 

inhibitory synaptic transfer functions with steep input-output relationships have 

recorded in the closely related nematode Ascaris thus raising the possibility that 

similar transfer functions might be found between C. elegans neurons 96.  An 

important prediction of our model therefore,  is that the reciprocal connectivity 

between the command neurons should have a steeper, non linear input-output 

functions than has been shown previously in the C. elegans central nervous system.

Fluctuations in the synaptic threshold may explain emergent behavioral 

states

The notion of the flip-flop voltage pattern as we defined it necessarily requires that a 

transition to a depolarized voltage in one neuron must be accompanied by a 

corresponding transition to a hyperpolarized voltage in the other neuron. This 

requirement, does not necessarily dictate the fine grain temporal sequence by which 
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these transitions proceed. Two hypothetical sequences exist, the first involves 

simultaneous transitions in both neurons, whereas the second involves one neuron 

making a transition which is then followed by a concomitant transition in the other 

neuron. We found that our model was sufficient to generate both types of sequences 

depending on how noise was introduced into the equations.

We hypothesized two possible ways that noise might perturb the system. The first 

way assumed a process driven by fluctuations in tonic synaptic input from excitatory 

and inhibitory neurons. This approach has been used extensively to model the effect 

of background conductance noise on neural computations 132. This source of noise 

was sufficient to generate flip-flop transitions that were realized as simultaneous 

changes in both neurons. 

The second way we introduced noise into our model was through fluctuations in 

threshold of the synaptic transfer functions. This source of noise has not been 

demonstrated experimentally, however it may result from channel noise at the 

presynaptic terminal. Since the statistics of this noise would be determined by the 

rate constants of the underlying ion channels, our model predicts that manipulation 

of the ion-channel rate constants should alter the switching rates of the command 

neuron flip-flop and, thus the locomotory behavior of the worm in a predictable way. 

This prediction is potentially testable given the identification of mutant alleles of ion 

channel genes known to localize to presynaptic regions 138-142.

To our knowledge the theoretical consequences of such random fluctuations of 

synaptic threshold on the behavior of a neural circuit has not been examined. We 

find the possibility of threshold noise especially compelling with respect to the 

C. elegans command neuron circuit since it provides a mechanism to generate a 

critical aspect of worm locomotory behavior. High temporal resolution analysis of 
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worm locomotion has has shown that in addition to bouts of forward and reverse 

crawling, worms will stop for brief periods of time before resuming in either the 

forward or reverse direction 114. These pause states might very well arise as a 

consequence of threshold noise.

It is easy to imagine a linear relationship in which the crawling velocity of a worm is 

simply a scaled version of the voltage difference between its forward and reverse 

command neurons. Given this transformation, our simulations would produce very 

different results depending on whether a conductance or threshold noise source is 

used. In the case that conductance noise is dominant, worm velocity would reside 

predominantly in either a forward or reverse mode (Fig. 7a) with relatively broad 

distributions. In contrast, in the case that threshold fluctuations dominate, then 

three velocity modes (forward, reverse and stopped) would be observable from 

whole worm behavior (Fig. 7b).  A hybrid situation is also possible, in which both 

conductance and threshold variations are involved. In this case, we would expect a 

broad tri-modal distribution of velocity values (Fig. 7c). The voltages of the actual 

command neurons during the pause events are unknown, but future studies taking 

advantage of new voltage imaging technologies might be able to answer this 

question.

Bi-directional sensory regulation of locomotion

Another opportunity afforded by the ability to perform electrical recordings from AVB 

was the prospect of extending our understanding of sensory regulation of the 

command circuit beyond the known synaptic connectivity with AVA, to possible inputs 

on AVB. We found that photoactivating nociceptive neuron ASH evoked inhibitory 

synaptic currents in AVB. This is in contrast with the excitatory effect ASH activation 

has on AVA.
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Figure 7. Hypothetical velocities generated from the voltage differences 
between reciprocally inhibited model neurons. (a) Time-series of voltage 
differences when only conductance noise is used. The probability density histogram 
of the difference values is shown to the right. (b) Same as in a, except that noise is 
introduced only into the synaptic threshold term. Note the narrow distributions and 
emergence of a third peak (asterisk) at zero (c) Hybrid model in which both 
conductance noise and threshold noise are introduced. This produces a broad tri-
modal distribution. Note that transitions events not apparent in either a or b appear 
in c (pound). V

a
−V

b
 could be transformed into a vector representing velocity by 

multiplying by an arbitrary scalar having the units mm/(s*mV). The conductance and 
threshold noise waveforms from in a and b were used in c.

Since our investigations here also demonstrate inhibitory connections between 

AVA(pre) and AVB(post) it is possible that ASH generates its inhibitory effect on AVB 

by way of a polysynaptic pathway through AVA. Indeed, our simplified conductance 

model would treat an excitatory sensory input on one unit, identically to an 

equivalent inhibitory sensory input to the other unit. This fact results entirely from 

the symmetric and instantaneous nature of the synaptic transfer function we used. 

In reality, our model is likely an over-simplification and both synaptic delays and 

asymmetries play an important role in-vivo. Importantly, we found that the synaptic 

currents we recorded in AVB have roughly the same latency whether ASH and AVA 
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serves as the pre-synaptic neuron. This suggests that ASH and AVA inhibit AVB via 

pathways of equivalent length. Indeed, direct synaptic pathways from ASH to both 

command neurons might be functionally relevant since they could short-circuit the 

latency associated with reciprocal connectivity, thus accelerating the locomotory 

response to an aversive stimulus.

Here we have primarily studied the C. elegans locomotory circuit as it relates to 

escape behavior. It is interesting to note that in addition to escape, worms use 

locomotory switching to construct a number of higher order behaviors such as the 

search for food and mates. This implies that a large number of sensory modalities 

are integrated into a common behavioral switch. Therefore the command neuron flip-

flop represents a general example of decision making by a noisy neural system. 

Indeed, several models of decision making in humans and non-human primates 

involve the interaction between a noisy diffusion process and the attractor dynamics 

of the underlying neural network 143. Given the attractor dynamics of our simplified 

model, the C. elegans locomotory circuit may represent a system in which these 

theories of decision making can be examined in a genetically accessible organism. 

METHODS

Strains

Animals. The strains used in this study were wild-type C. elegans Bristol 

(N2);lite-1(ce314);ntIs37[rig-3::ChR2::coel::GFP];ntIs35[sra-11::tdTomato];KyEx3

801[sra-11::ChR2*GFP;coel::dsRed];ntIs29[nmr-1::tdTomato(vvtva)];lite-1(ce314);

lite-1(ce314) X; ntIs27[sra-6::ChR2;unc-122::dsRed];ntIs36[sra-11::tdTomato]; 
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KyEx3801[sra-11::ChR2*GFP;coel::dsRed];ntIs29[nmr-1::tdTomato(vvtva)];ttx-3(m

g158) X.

Electrophysiology

Electrophysiological procedures generally follow those previously 118. Briefly, 

recording pipettes were pulled and pressure-polished to achieve resistances of 10–20 

MΩ when filled with normal internal saline. Voltage and current-clamp recordings 

were made with a modified Axopatch 200A amplifier. Pulses used to calculate whole-

cell capacitance and series resistance were filtered at 50 kHz and sampled at 125 

kHz. Voltage clamp current families, and recordings of photostimulation-evoked 

events, were filtered at 2 kHz and sampled at 10 kHz. 

Physiological solutions. Internal saline consisted of (in mM): 143 K-gluconate ,

1 CaCl2,, 4 NaCl, 1 MgCl2, 10 HEPES, 10 EGTA, pH 7.2 (KOH). External saline 

consisted of 5 KCl, 10 HEPES, 8 CaCl2, 143 NaCl, 30 glucose, pH 7.2 (NaOH).

Parameters of the flip-flop conductance model

The voltage V
a
,V

b
 of two neurons a  and b  respectively were described by 

symmetrical equations governed entirely by synaptic currents. We set C
m

 to 1 pF, a 

value consistent with the measured capacitance of AVA or AVB in vivo. The chloride 

equilibrium potential (-75mV) and the reversal potential of a non-selective cation 

conductance (0mV) were used for E
Cl

 and E
o
 respectively. To simplify the equations, 

a single synaptic conductance scaling term g
s
was set to 200pS and used for all 

currents. Whereas future studies might yield accurate estimations of the conductance 

for all relevant inputs to the command neurons, this value is roughly compatible with 

our observations from recordings of AVA and AVB; it is on the same order as the 

magnitude of the reciprocal conductances (Fig. 3a,b), and yields an average resting 

71



input resistance of 1.6 - 2.5 GΩ depending on the activation of the synaptic 

conductance. This was intentionally higher than the 1-2 GΩ measured experimentally 

because we expect the act of recording from delicate C. elegans neurons decreases 

their input resistance.

The voltage equations were coupled by a synaptic conductance that was a sigmoidal 

function of the voltage in the alternate neuron. The gain, β , of the transfer function 

was set arbitrarily to 1.0 mV-1 and a value of 43.75 mV was used for the half 

maximal activation, U , since this is the voltage value half-way between the steady-

state values of V
a
 and V

b
 when Xat  goes to ∞ or -∞, (see below). 

The voltage equations were integrated numerically using the Euler method with an 

integration time step Δt  of 1µs. Noise was generated using an Ornstien-Uhlnbeck 

process, in which the stochastic variables X
j
were updated numerically using the 

following rule144:

X
j
(t + Δt) = X

j
(t)e

−Δt /τ
+ n 2σ

2
(1− e

−2Δt /τ
) / 2

where j ∈{at,bt,ai,ae,bi,be} , n  was a sample from a unit normal distribution and σ  

and τ are the desired standard deviation and autocorrelation time constant 

respectively. 

The nullclines for the voltage equations can be determined by setting dV
a
/ dt and 

dV
b
/ dt  to zero.  Thus dV

b
/ dt = 0when

Va =
E
0
+ ECl + gb→aECl

2 +gb→a

72



Since gb→a ga→b , are sigmoidal functions that goes from zero to one, they are 

saturated when X
at

 X
bt
 go to ∞, and thus V

a
=V

b
= (E0 + 2ECl

) / 3= −50.0mV. 

Similarly, when X
at

 X
bt

 go to -∞ V
a
=V

b
= (E0 + 2ECl

) / 3= −37.5mV. For this reason 

in our simulations we set the average synaptic threshold, U  to -43.75 mV, half-way 

between these values to provide for symmetrical solutions.
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CHAPTER IV

SUMMARY

In this dissertation we sought to identify the synaptic connectivity and circuit 

mechanisms that are responsible for selecting between two simple behavioral motifs 

in the nematode C. elegans. We first developed methodology that allowed us to 

probe the nervous system of this simple organism by combining the new transgenic 

technique of optogenetics with traditional electrophysiology. We first applied this 

approach to study the synaptic connectivity between the sensory neurons involved in 

escape behavior ASH, and the major command neurons for reverse locomotion AVA.  

After identifying the detailed properties of the excitatory connectivity between the 

escape sensory neurons and the reverse command neurons, we extended our studies 

to study the circuitry between ASH and the command neuron for forward locomotion 

AVB. Here we found inhibitory connectivity suggesting bi-directional control of the 

command neuron circuit by ASH. Finally, we investigated the connectivity between 

the command neurons AVA and AVB and found evidence for reciprocal inhibition. 

We used the circuit motif discovered in our experiments to develop a model that was 

sufficient to predict many aspects of spontaneous and sensory-evoked locomotory 

switching behavior observed in crawling C. elegans. Furthermore, the model 

suggested that the decision making algorithm employed by worms during locomotory 

switching may be described according to the dynamics of a brownian particle in a 

free-energy, or attractor space. This view of C. elegans behavior is compliant to 

several generalized theories of decision making that utilize a framework of statistical 

mechanics or chemical kinetics 143. Thus, the locomotory circuit we identified here 

may provide a practical testbed for concepts related to decision making in other 

species.
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