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Abstract 

 Liver-enriched nuclear receptors (NRs) collectively function as metabolic and 

toxicological ‘sensors’ that mediate liver-specific gene-activation in mammals.  NR-

mediated gene-environment interaction regulates important steps in the hepatic 

uptake, metabolism and excretion of glucose, fatty acids, lipoproteins, cholesterol, 

bile acids, and xenobiotics.  While it is well-recognized that ligand-binding is the 

primary mechanism behind activation of NRs, recent research is revealing that 

multiple signal transduction pathways modulate NR-function in liver.  The interface 

between specific signal transduction pathways and NRs helps to determine their 

overall responsiveness to various environmental and physiological stimuli.  The 

pregnane x receptor (PXR, NR1I2) was identified in 1998 as a member of the NR 

superfamily of ligand-activated transcription factors. PXR is activated by a broad 

range of lipophilic compounds in a species-specific manner.  The primary function 

ascribed to PXR is the homeostatic control of steroids, bile acids, and xenobiotics. 

This function is mediated through PXR’s ability to coordinately activate gene 

expression and regulate the subsequent activity of phase I and phase II metabolic 

enzymes, as well as several membrane transporter proteins.  While PXR likely 

evolved primarily to protect the liver from toxic assault, its activation also represents 

the molecular basis for an important class of drug-drug, herb-drug, and food-drug 

interactions.  While ligand binding is the primary mode of PXR activation, several 

signal transduction pathways interface with the PXR protein to determine its overall 

responsiveness to environmental stimuli. Multiple signaling pathways modulate the 
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activity of PXR, likely through direct alteration of the phosphorylation status of the 

receptor and its protein cofactors.  Therefore, specific combinations of ligand binding 

and cell signaling pathways affect PXR-mediated gene activation and determine the 

overall biological response. 

 This dissertation contributes to the molecular understanding of the regulation 

of PXR by novel agonists, cAMP-dependent protein kinase (PKA) signaling, and 

phosphorylation.  The results presented here were primarily obtained from mouse and 

tissue culture systems.  This dissertation identifies Tian Xian, a traditional Chinese 

herbal anti-cancer remedy, as a novel PXR activator.  This evidence suggests that 

Tian Xian should be used cautiously by cancer patients taking chemotherapy due to 

its potential to increase the metabolism of co-administered medications.  In addition, 

data presented here show that activation of PKA signaling modulates PXR activity in 

a species-specific manner.  It is further revealed that PXR exists as phospho-protein 

in vivo and that the activation of PKA signaling modulates the phospho-threonine 

status of PXR.  Finally, the potential phosphorylation sites within the PXR protein are 

identified.  These phosphorylation sites are characterized, using a phosphomimetic 

and phospho-deficient site-directed mutagenesis based approach, based on their 

ability to modulate PXR activity.  Taken together, the work presented in this 

dissertation contributes to understanding the interface between ligands, signal 

transduction pathways and PXR activity, which is critical for the development of safe 

and effective therapeutic strategies. 

 iv



Acknowledgements 

 First and foremost, I would like to thank my graduate advisor Dr. Jeff 

Staudinger for his advice and guidance in the completion of this dissertation.  Not 

only is he an excellent scientist, but his creativity and passion for science have been 

an inspiration to me throughout my graduate career.  In addition, I would like to thank 

all Staudinger lab members, specifically Dr. Xunshan Ding and Mr. Dan Brobst for 

their patience, instruction and guidance.  I would also like to thank the faculty of the 

Department of Pharmacology and Toxicology for their role in my education and 

development at a scientist.  I am very grateful to Dr. Rick Dobrowsky, Dr. Nancy 

Muma, Dr. Lisa Timmons, and Dr. Kathy Suprenant for serving on my committee 

and for providing me with valuable suggestions, criticisms and guidance.  Finally, I 

would like to thank my family, specifically my husband Dave Kaiser, for their 

unwavering support in this pursuit. 

 I am thankful for the financial support and additional training that I have 

received from the Madison and Lila Self Graduate Fellowship program.  The research 

presented in this dissertation was funded by the NIH grant 1R01DK068443-NIDDK. 

 

 

 v



List of Abbreviations 

ABCA1: ATP Binding Cassette Transporter A1 

AF-1: Activation Function 1 

AF-2: Activation Function 2 

ALAS: Aminolevulinic Acid Synthase 

ALR: Augmenter of Liver Regeneration 

ALT: Alanine Aminotransferase 

AMPK: AMP-activated Protein Kinase 

APAP: Acetaminophen 

AR: Androgen Receptor 

BAC: Bacterial Artificial Chromosome 

BXR: Benzoate X Receptor 

CA: Cholic Acid 

CAR: Constitutive Androstane Receptor 

CARLA: Co-activator Receptor Ligand Assay 

CBP: CREB Binding Protein 

CCRP: Cytoplasmic CAR Retention Protein 

CDCA: Chenodeoxycholic Acid 

CDK2: Cyclin-dependent Kinase 2 

CK2: Casein Kinase 2 

COUP-TF: Chicken Ovalbumin Upstream Promoter Transcription Factor 

COX2: Cyclooxygenase 2 

 vi



CPT1A: Carnitine Palmitoyltransferase 1A 

CREB: Cyclic AMP Response Element Binding Protein 

CYP: Cytochrome P450 

DBD: DNA-binding Domain 

DSS: Dextran Sulfate Sodium 

EGF: Epidermal Growth Factor 

ER: Estrogen Receptor 

ERK: Extracellular Regulated Kinase 

FGF: Fibroblast Growth Factor 

FGFR4: FGF Receptor 4 

FOXO1/A2: Forkhead Box Transcription Factor O1/A2 

FXR: Farnesoid X Receptor 

G6Pase: Glucose 6 Phosphatase 

G6PDH: Glucose 6 Phosphate Dehydrogenase 

GPCR: G-protein Coupled Receptor 

GR: Glucocorticoid Receptor 

GST: Glutathione S Transferase 

H: Hinge Region 

HAT: Histone Acetyl Transferase 

HDAC: Histone Deacetylase 

HDL: High Density Lipoprotein 

HGF: Hepatocyte Growth Factor 

 vii



HMGCS2: 3-Hydroxy-3-Methylglutarate-CoA Synthase 2 

HNF4α: Hepatocyte Nuclear Factor 4 Alpha 

HSP90: Heat Shock Protein 90 

IBD: Inflammatory Bowel Disease 

ICAM-1: Intercellular Adhesion Molecule 1 

IFNα: Interferon Alpha 

IGF: Insulin-like Growth Factor 

IL: Interleukin 

iNOS: Inducible Nitric Oxide Synthase 

JNK: Jun-kinase 

LBD: Ligand-binding Domain 

LCA: Lithocholic Acid 

LPS: Lipopolysaccharide 

LRH-1: Liver Receptor Homolog 1 

LXR: Liver X Receptor 

MAPK: Mitogen-activated Protein Kinase 

MDR1: Multi-drug Resistance 1 

MRP2/3: Multi-drug Resistance Associated Protein 2/3 

NAPQI: N-acetyl-p-benzoquinone Imine 

NCoR: Nuclear Receptor Co-repressor 

NFκB: Nuclear Transcription Factor Kappa B 

NLS: Nuclear Localization Signal 

 viii



NR: Nuclear Receptor 

OATP2: Organic Ion Transporting Protein 2 

PB: Phenobarbital 

PBMC: Peripheral Blood Mononuclear Cell 

PBP: PPAR Binding Protein 

PCN: Pregnenolone 16α-carbonitrile 

PDGF: Platelet Derived Growth Factor 

PEPCK: Phosphoenolpyruvate Carboxykinase 

PGC-1α: Peroxisome Proliferator Activated Receptor Gamma Co-activator 1 Alpha 

PI3K: Phosphatidylinositol 3-Kinase 

PKA: Cyclic-AMP-dependent Protein Kinase 

PKB: Protein Kinase B 

PKC: Protein Kinase C 

PMA: Phorbol Myristate Acetate 

PPAR: Perioxisome Proliferator Activated Receptor 

PR: Progesterone Receptor 

PXR: Pregnane X Receptor 

PXR-KO: Pregnane X Receptor Knockout 

RAR: Retinoic Acid Receptor 

RIF: Rifampicin 

ROS: Reactive Oxygen Species 

RXR: Retinoid X Receptor 

 ix



SCD1: Stearoyl-CoA Desaturase 1 

SHP: Small Heterodimeric Partner 

SMRT: Silencing-mediator for Retinoid and Thyroid Hormone Receptors 

SNP: Single Nucleotide Polymorphism 

SPA: Scintillation Proximity Assay 

SR-B1: Scavenger Receptor Class B Type 1 

SRC: Steroid Receptor Co-activator 

SREBP: Sterol Regulatory Element Binding Protein 

SRM: Selective Receptor Modulator 

SUG-1: Suppressor for Gal-1 

SULT: Sulfotransferase 

TAT: Tyrosine Amino Transferase 

tBHQ: Tertiary Butylated Hydroquinone 

TNF4α: Tumor Necrosis Factor 4 Alpha 

TORC2: Transducer of Regulated CREB Activity 2 

UGT: UDP Glucuronosyltransferase 

VDR: Vitamin D Receptor 

XREM: Xenobiotic Responsive Enhancer Module 

 x



Table of Contents 

Acceptance Page ........................................................................................................... ii 

Abstract ........................................................................................................................ iii 

Acknowledgements........................................................................................................v 

List of Abbreviations ................................................................................................... vi 

Table of Contents......................................................................................................... xi 

List of Tables ............................................................................................................ xvii 

List of Figures .......................................................................................................... xviii 

Chapter 1: Cell Signaling and Nuclear Receptors: Opportunities for Molecular 

Pharmaceuticals in Liver Disease 

1.1  Introduction.............................................................................................................1 

1.1.1 General NR Structure and Function..........................................................1 

1.1.2 Intracellular Localization ..........................................................................2 

1.1.3 Co-regulator Proteins ................................................................................3 

1.2  Liver-Enriched NRs as Targets of Signal Transduction Pathways.........................4 

1.2.1 NR2A1, HNF-4α.......................................................................................7 

1.2.2 The NR1C Subfamily- PPARs..................................................................8 

1.2.3 NR1I2, PXR............................................................................................10 

1.2.4 NR1I3, CAR ...........................................................................................13 

1.2.5 NR1H3, LXR ..........................................................................................16 

1.2.6 NR5A2, LRH-1.......................................................................................18 

1.2.7 NR1H4, FXR ..........................................................................................19 

 xi



1.2.8 NR0B2, SHP...........................................................................................21 

1.2.9 NRs and FGFs.........................................................................................21 

1.3  Co-Regulator Proteins as Targets of Signal Transduction Pathways ...................24 

1.3.1 NCoR and SMRT Co-repressor Proteins................................................25 

1.3.2 p160/SRC Co-activator Proteins.............................................................27 

1.3.3 The PGC Family of Co-integrator Proteins ............................................29 

1.4  Therapeutic Obstacles and Opportunities .............................................................33 

1.5  Conclusion ............................................................................................................37 

1.6  References.............................................................................................................37 

Chapter 2:  An Introduction to PXR Signaling  

2.1  Historical Perspective ...........................................................................................52 

2.1.1 Regulation of Cytochrome-P450’s by Diverse Compounds...................52 

2.1.2 Species Differences in Response to Inducing Agents.............................55 

2.1.3 Xenobiotic Response Elements in the CYP3A Promoter .......................56 

2.2  Cloning and Characterization of PXR ..................................................................59 

2.2.1 Discovery and Cloning of PXRs.............................................................59 

2.2.2 PXR Expression Patterns ........................................................................62 

2.2.3 Cross-species Variation of PXR .............................................................65 

2.2.4 Inter-individual Variability of PXR in Humans......................................70 

2.2.5 Structure of PXR.....................................................................................71 

2.2.6 PXR is Activated by a Diverse Set of Ligands .......................................74 

2.2.7 PXR Target Genes ..................................................................................76 

 xii



2.3  Physiological Functions of PXR...........................................................................79 

2.3.1 Xenobiotic Metabolism and Liver Toxicity............................................79 

2.3.2 Drug-drug, Herb-drug, and Food-drug Interactions ...............................81 

2.3.3 Steroid Hormone Homeostasis ...............................................................84 

2.3.4 Bile Acid Homeostasis............................................................................85 

2.3.5 Cholesterol Toxicity................................................................................87 

2.3.6 Heme Homeostasis..................................................................................89 

2.3.7 Bilirubin Clearance .................................................................................90 

2.3.8 Vitamin D and Bone Mineral Homeostasis ............................................91 

2.3.9 Inflammatory Response ..........................................................................92 

2.3.10 Glucose Homeostasis ............................................................................94 

2.3.11 Lipid Metabolism..................................................................................96 

2.4  Mechanisms of PXR Activation ...........................................................................98 

2.4.1 Ligand Binding .......................................................................................98 

2.4.2 DNA Binding ........................................................................................100 

2.4.3 Sub-cellular Localization ......................................................................102 

2.4.4 Cofactor Interactions.............................................................................104 

2.4.5 Receptor Degradation ...........................................................................107 

2.5  Cell Signaling and PXR......................................................................................108 

2.5.1 Kinase Signaling and Post-translational Modification .........................108 

2.5.2 Cytokine Signaling................................................................................113 

2.5.3 Growth Factor Signaling.......................................................................115 

 xiii



2.6  PXR Crosstalk with Other Transcription Factors ...............................................116 

2.6.1 PXR and CAR.......................................................................................119 

2.6.2 PXR, FXR, LXR, and SHP...................................................................121 

2.6.3 PXR and HNF4α ..................................................................................123 

2.6.4 PXR and VDR.......................................................................................124 

2.6.5 PXR and PPAR.....................................................................................126 

2.6.6 PXR, GR, and NF-κB ...........................................................................127 

2.6.9 PXR and FOXO1 and FOXA2 .............................................................129 

2.7  Pre-clinical Modeling and Prediction of PXR Activity ......................................131 

2.7.1 Human Hepatocytes ..............................................................................131 

2.7.2 In Vitro Activity Assays........................................................................131 

2.7.3 PXR-null Mouse Models ......................................................................135 

2.7.4 Humanized PXR Mouse Models ..........................................................136 

2.8  Therapeutic Opportunities ..................................................................................138 

2.8.1 Hepatic Cholestasis...............................................................................138 

2.8.2 Hepatic Steatosis...................................................................................140 

2.8.3 Inflammatory Bowel Disease................................................................141 

2.8.4 Cancer and Chemotherapy....................................................................142 

2.8.5 Antifibrogenesis....................................................................................143 

2.8.6 Therapeutic Obstacles...........................................................................143 

2.9  Conclusion ..........................................................................................................146 

2.10  References.........................................................................................................147 

 xiv



Chapter 3:  The Traditional Chinese Herbal Remedy Tian Xian Activates PXR 

and Induces CYP3A Gene Expression in Hepatocytes 

3.1  Introduction.........................................................................................................171 

3.2  Materials and Methods........................................................................................174 

3.3  Results.................................................................................................................178 

3.4  Discussion ...........................................................................................................193 

3.5  References...........................................................................................................196 

Chapter 4:  Cyclic AMP-dependent Protein Kinase Signaling Modulates PXR 

Activity in a Species-specific Manner 

4.1  Introduction.........................................................................................................199 

4.2  Materials and Methods........................................................................................203 

4.3  Results.................................................................................................................208 

4.4  Discussion ...........................................................................................................233 

4.5  References...........................................................................................................237 

Chapter 5:  Phosphomimetic Mutation of Potential Phosphorylation Sites within 

the PXR Protein Modulates PXR Activity 

5.1  Introduction.........................................................................................................240 

5.2  Materials and Methods........................................................................................244 

5.3  Results.................................................................................................................248 

5.4  Discussion ...........................................................................................................269 

5.5  References...........................................................................................................277 

 xv



Chapter 6:  The Future Outlook for PXR 

6.1 The Significance of PXR ....................................................................................280 

6.2 PXR and Kinase Signaling..................................................................................282 

6.3 PXR as a Drug Target .........................................................................................285 

6.4 Concluding Remarks...........................................................................................287 

6.5 References...........................................................................................................288 

 xvi



List of Tables 

Table 2-1: Target Genes of PXR. ................................................................................78 

Table 2-2: Crosstalk Between PXR and Other Transcription Factors.......................118 

Table 5-1: Oligo Sequences for Site-directed Mutagenesis of the PXR Protein.245-246 

Table 5-2: Phosphomimetic mutations within the hPXR protein alter the 

transactivation capacity of hPXR in reporter gene assay...........................................255 

Table 5-3: In silico identification of conserved hPXR phosphorylation sites that are 

potentially good substrates for specific kinases.........................................................275 

 xvii



List of Figures 

Figure 1-1: Activation of signaling pathways modulates nuclear receptor 

transcriptional activity. ..................................................................................................6 

Figure 2-1: Identification of xenobiotic response elements in the CYP3A promoter. .57   

Figure 2-2: Nuclear receptors share a high degree of structural homology.................61 

Figure 2-3: Sequence comparison of PXR across species. ..........................................67   

Figure 2-4: Differential activation of mouse and human PXR by ligands. .................69 

Figure 2-5: PXR activity is regulated by structurally diverse ligands. ........................75 

Figure 2-6: Mechanism of hepatoprotection by PXR. .................................................80   

Figure 2-7: DNA-binding of PXR to its response elements. .....................................101 

Figure 2-8: Ligand-dependent translocation of PXR from the cytoplasm to the 

nucleus. ......................................................................................................................103 

Figure 2-9: PXR activity is regulated by cofactor binding. .......................................105 

Figure 2-10: Activation of signaling pathways modulates PXR activity. .................112 

Figure 2-11: Cell-based reporter gene assay..............................................................133 

Figure 2-12: The development of humanized PXR mouse models. ..........................137 

Figure 2-13: Physiological roles of PXR and their relation to disease states. ...........145 

Figure 3-1: Tian xian induces PXR activity in XREM-LUC reporter gene assays. ..179 

Figure 3-2: Differential modulation of PXRSRC1/2 and PXR-NCoR interactions by 

tian xian.............................................................................................................. 181-182 

Figure 3-3: Humanized PXR transgenic mouse production and expression profiling. ... 

............................................................................................................................ 184-185 

 xviii



Figure 3-4: Expression of Cyp3a11 is induced by tian xian in a PXR-dependent 

manner and in humanized PXR mouse hepatocytes. ......................................... 188-190 

Figure 3-5: Expression of CYP3A4 is induced tian xian in hepatocytes isolated from 

the transgenic humanized PXR mice. ........................................................................192 

Figure 4-1: PKA activation modulates CYP3A gene expression in primary cultures of 

mouse and rat hepatocytes. ........................................................................................209 

Figure 4-2: PKA activation has a species-specific effect on CYP3A gene expression in 

primary cultures of hepatocytes. ........................................................................ 212-214 

Figure 4-3: Species-specific modulation of PXR activity resides in the PKA signaling 

pathway. ............................................................................................................. 217-219 

Figure 4-4: hPXRis phosphorylated by protein kinases in vitro........................ 221-222 

Figure 4-5: The human PXR protein exists as a phosphoprotein in vivo...................224 

Figure 4-6: PKA signaling modulates the phosphorylation status of human PXR in 

vivo. ............................................................................................................................226 

Figure 4-7: Endogenous levels of PKA signaling modulate PXR activity in a species-

specific manner. ................................................................................................. 229-230 

Figure 4-8: PKA increases the strength of interaction between hPXR and NCoR in 

mammalian-2-hybrid reporter gene assays. ...............................................................232 

Figure 5-1: Identification of potential phosphorylation sites within the human PXR 

protein. ............................................................................................................... 250-252 

Figure 5-2: Phosphomimetic mutations at T57 and T408 attenuate the ligand-

inducible transactivation capacity of hPXR...............................................................257 

 xix



Figure 5-3: Phosphomimetic mutation at T57 abolishes the ability of hPXR to bind to 

its DNA response element. ................................................................................ 260-261 

Figure 5-4: Phosphomimetic mutations at S305, S350, and T408 impair the ability of 

PXR to heterodimerize with RXRα...........................................................................264 

Figure 5-5: Phosphomimetic mutations at S208 and S305 alter the ability of hPXR to 

interact with protein cofactors. .......................................................................... 267-268 

Figure 6-1: Environmental stimuli modulate the expression of drug-matabolizing 

enzymes......................................................................................................................283

 

 xx



Chapter 1: Cell Signaling and Nuclear Receptors: New 

Opportunities for Molecular Pharmaceuticals in Liver Disease 

 1.1 Introduction 

 1.1.1 General NR Structure and Function 

 NRs are one of the largest groups of transcription factors with 48 members in 

the human genome that regulate diverse biological processes including metabolism, 

homeostasis, development and reproduction [1].  The activity of many NRs is 

controlled by the binding of small lipophilic molecules such as hormones, fatty acids, 

bile acids and oxysterols, and xenobiotics. 

 All members of the NR superfamily share several conserved structural 

domains that are essential for receptor function [2].  The C-terminal region 

encompasses the ligand-binding domain (LBD) and includes a region termed 

activation function 2 (AF-2), which is an important site for co-activator protein-

binding.  Binding of ligand induces a conformational change that creates a new 

surface for the recruitment of co-activator proteins in the AF-2 region [3].  The LBD 

is connected to a DNA binding domain (DBD) by a hinge region (H) that contains a 

nuclear localization signal.  The DBD is highly conserved and contains two alpha 

helices and two zinc fingers that are involved in the specificity of response-element-

recognition and in receptor dimerization.  Most liver-enriched NRs are active as 

dimers, functioning either as homodimers, or as heterodimers with retinoid x receptor 

(RXR) [4].  Vertebrate RXR includes at least three distinct genes (RXRα, RXRβ, and 
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RXRγ) that give rise to a large number of protein products through differential 

promoter usage and alternative splicing.   

 The N-terminal region of NRs is highly variable in sequence and length, but 

all contain a region termed activation function 1 (AF-1) that acts independently of 

ligand [5].  The AF-1 domain contains many consensus phosphorylation sites and is 

therefore, the target of multiple kinases.  Although most of the phosphorylation sites 

identified in NRs are located in the N-terminal domain, many receptors have at least 

one phosphorylation site in the H region, and there are limited reports of sites located 

in the LBD and DBD.  In addition, there are likely many yet to be identified 

phosphorylation sites in NRs. 

 1.1.2 Intracellular Localization 

 Most NRs are constitutively localized in the nucleus, however, the major 

proportion of steroid receptors and a few other exceptional receptors may be located 

in the cytoplasm in the absence of ligand.  Nuclear localization of NRs is mainly 

regulated by protein-protein interactions such as dimerization with RXRs or co-

regulator proteins [6].  In the cytoplasm, NRs are bound to heat shock proteins and 

this association prevents receptor transportation through the nuclear pores and thus 

sequesters NRs from binding to DNA [7].  In the nucleus, ligand-mediated activation 

of NRs causes redistribution of the receptor to chromatin.  Recent evidence, which 

will be discussed in more detail, has suggested that nuclear localization of some NRs 

is a cell signaling- and phosphorylation-dependent event. 
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 1.1.3 Co-regulator Proteins 

 The full activity of NRs depends on a large number of co-regulator proteins 

that do not bind to DNA directly, but have a pronounced effect on the outcome of 

gene expression [3].  In general, non-liganded NRs form a complex with co-repressor 

proteins that inhibit transcriptional activity, often through the recruitment of other 

cofactor proteins that contain histone deacetylase (HDAC) activity.  HDACs alter 

chromatin structure by promoting chromatin compaction, thus rendering enhancer 

regions of genes less accessible to the necessary basal transcriptional machinery.  

Activation of NRs by ligand-binding or through phosphorylation induces a 

conformational change which results in the dissociation of the co-repressor 

multiprotein complexes and subsequent recruitment of co-activator protein complexes 

that enhance the rate of gene transcription, often through the recruitment of 

multiprotein complexes containing histone acetyltransferase (HAT) activity.  Co-

regulator proteins thus provide a second level of specificity in the modulation of gene 

expression by NRs.  Most NR-co-activator proteins identified to date preferentially 

interact with NRs through the C-terminal AF-2 domain via an -LXXLL- motif, which 

constitutes a prototypical NR-interaction motif.  However, in contrast to most co-

activator proteins, the peroxisome proliferator activated receptor gamma co-activator 

1 alpha (PGC-1α) interacts not only with the AF-2 region of NRs, but also with the H 

region of the selected liver-enriched NRs [8].  In addition to NRs, it has also been 

shown that the intrinsic and recruited enzymatic activities of several NR-associated 

co-factor proteins are regulated by phosphorylation in a dynamic manner in response 
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to specific signal transduction pathways, and this will be discussed later in this 

chapter in more detail. 

 1.2 Liver-Enriched NRs as Targets of Signal Transduction Pathways 

 Figure 1-1 outlines the interface between NRs and the signal transduction 

pathways discussed in this chapter.  While tyrosine phosphorylation of selected NRs 

has been observed, the functional significance of this type of phosphorylation is 

unknown.  The majority of amino acid residues identified as being regulated-

phosphorylation sites are serine and threonine residues.  Many of these sites lay 

within the N-terminal AF-1 region of NRs and correspond to consensus sites for 

proline-dependent kinases such as cyclin-dependent kinases [9, 10] and mitogen-

activated protein kinases (MAPKs) [11].  For some NRs, such as progesterone 

receptor (PR), which contains at least 13 sites, phosphorylation of the N-terminus is 

quite complex.  However, other NRs such as peroxisome proliferator activated 

receptors (PPARs) contain only one or two phosphorylation sites in the N-terminus 

[12]. 

 NRs can be phosphorylated constitutively in the absence of ligand, or in 

response to ligand-mediated activation.  Other NRs can be phosphorylated 

independently of ligand in response to cellular signaling events by MAPKs.  For 

example, growth factors, stress, cytokines, and other signals activate several serine 

kinase cascade pathways that activate different MAP kinases, including extracellular 

signal-regulated kinase (ERK), Jun-N-terminal kinase (JNK), or p38 MAPK which 

can enter the nucleus and phosphorylate NRs.  The N-terminal domains of PR [13, 
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14], estrogen receptor alpha (ERα) [15, 16], estrogen receptor beta (ERβ) [17, 18], 

androgen receptor (AR) [19], PPARs [20, 21], and retinoic acid receptor gamma 

(RARγ) [22, 23] have all been reported to be substrates of ERK or p38 MAPK, and 

that of RXRα is phosphorylated by JNK.  In addition to MAPK sites, the N-terminus 

of many NRs also contains consensus sites for Akt kinase, or protein kinase B, a 

kinase critical for cell survival and proliferation [24, 25].  Activated Akt negatively 

regulates downstream MAP kinases [26], and upon nuclear translocation 

phosphorylates specific NRs including ERα [27] and AR [28]. 

 In addition to the N-terminal domain, the LBD and DBD are also targets for 

protein kinases.  Phosphorylation of the LBD can involve the same proline dependent 

kinases.  For example, serine residues contained within the LBD of RXRs are 

targeted by the stress activated protein kinase- JNK [29, 30].   Phosphorylation by 

other kinases such as tyrosine kinases for ERα [31, 32] and RXRα [30] or cyclic-

AMP-dependent protein kinase (PKA) for RAR [33] is also common.  Evidence for 

phosphorylation of the DBD involves either PKA for ERα [34] or PKC for 

RARα [35] and vitamin D receptor (VDR) [36, 37]. 

 While signal transduction pathways and phosphorylation regulate most, if not 

all NRs in multiple tissue types, this chapter will focus on the regulation of non-

steroid NRs expressed in a liver-enriched manner. 
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Figure 1-1. Activation of signaling pathways modulates nuclear receptor
transcriptional activity.  Activation of MAPK signaling cascades (p38, JNK,
and ERK), FGF signaling, and G protein-coupled receptor (GPCR) signaling
results in phosphorylation-dependent modulation of NR activity. Signaling
pathways and phosphorylation events affect nuclear receptors or nuclear
receptor cofactors through the modulation of protein–protein interactions,
subcellular localization, DNA-binding, protein stability, and transactivation
capacity. The interface between signal transduction pathways and NRs is
critical in the responsiveness of the system to environmental and physiological
stimuli. 
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 1.2.1 NR2A1, HNF-4α 

 Hepatic nuclear factor-4α (HNF-4α) is a NR expressed mainly in liver, 

intestine, and kidney and is critical for development and liver specific gene 

expression [38].  HNF-4α has been implicated in the regulation of many genes in 

liver such as Cyp7a1[39], the constitutive androstane receptor (CAR) [40], and genes 

involved in glucose transport and glycolysis [41].  Although typically thought of as an 

orphan receptor, HNF-4α has been shown to be activated by fatty acyl-CoA thioesters 

[42].  In addition, the transcriptional activity of HNF-4α is regulated by 

phosphorylation of serine, threonine, and tyrosine residues.  Phosphorylation of HNF-

4α is required for DNA binding and appropriate sub-nuclear localization.  Violett et 

al. indentified a PKA consensus phosphorylation site in the DBD of HNF-4α and 

report that HNF-4α is directly phosphorylated by PKA.  PKA-mediated 

phosphorylation of wild-type HNF-4α strongly repressed the binding affinity and 

transcriptional activity of the receptor based on gel-shift assays and reporter gene 

analysis [43].  On the other hand, phosphorylation of specific serine and threonine 

residues in HNF-4α alters its tertiary structure, which increases the affinity and 

specificity of DNA-binding in COS-7 cells [44].  In addition to alterations in DNA-

binding, tyrosine phosphorylation is required for appropriate sub-nuclear localization 

and transactivation activity of HNF-4α as evidenced by immunofluorescence, 

electron microscopy, and reporter gene assay using genistein treatment to inhibit 

tyrosine phosphorylation [45].  
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 It has also been recently shown that p38 kinase phosphorylates HNF-4α at 

S158 increasing its interaction with co-activator PC4, DNA-binding, and 

transactivation activity in the presence of interleukin (IL)-1β and hydrogen peroxide 

[46].  In addition, inhibition of p38 kinase activity diminishes HNF-4α nuclear 

protein levels and its phosphorylation, rendering a less stable protein.  Induction of 

p38 kinase by insulin results in an increase of HNF-4α protein and Cyp7a1 gene 

expression in primary rat hepatocytes, thus providing a functional link between HNF-

4α phosphorylation and bile acid synthesis [47].  Since HNF-4α has been shown to 

activate multiple genes and interacts with multiple transcription factors and co-

regulators in liver such as chicken ovalbumin upstream promoter transcription factors 

(COUP-TFs), steroid receptor co-activator (SRC) proteins, CREB binding protein 

(CBP), p300, and PGC-1α [40, 48, 49], further study is required to determine the 

mechanism by which phosphorylation of HNF-4α modulates protein-protein 

interactions and differential gene expression. 

 1.2.2 The NR1C Subfamily- PPARs  

 The three peroxisome proliferators activated receptor (PPAR) isotypes, PPAR 

α, β, and γ, form a subfamily of NRs that are mainly involved in lipid and glucose 

homeostasis, control of inflammation and wound healing, and regulation of food 

intake and body weight [50, 51].  PPARα is expressed in metabolically active tissues 

including liver, kidney, heart, skeletal muscle and brown fat.  PPARγ is expressed to 

a high extent in adipose tissue with lower amounts present in kidney, liver, and 

skeletal and smooth muscle [52].  Fatty acids and fatty acid derivatives are 
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endogenous ligands for PPARs and induce PPAR-dependent gene activation.  In 

addition, PPARs are very important therapeutic targets for the treatment of 

hyperlipidemia and type-2-diabetes.  The hypolipidemic fibrates were the first known 

synthetic ligands of PPARα, while thiazolidinediones are the best characterized 

PPARγ ligands used in the treatment of type-2-diabetes [53].  Therefore, 

understanding the mechanisms that regulate PPAR activity is crucial for effective 

therapeutic treatment of metabolic diseases. 

 Insulin treatment enhances PPARα activity via phosphorylation of S12 and 

S21 by p42/p44 MAP kinase, but represses PPARγ activity via phosphorylation of 

S112 [20, 21].  Furthermore, phosphorylation of the N-terminal domain of PPARγ has 

been shown to decrease PPARγ activity.  For example, platelet-derived growth factor 

(PDGF) treatment decreases PPARγ transcriptional activity in reporter gene assays, 

and in vivo labeling experiments demonstrated that PPARγ undergoes epidermal 

growth factor (EGF)-stimulated MAPK-dependent phosphorylation at S82 [54].  

Further studies indicate that PPARγ activity is decreased through phosphorylation of 

the N-terminus at S84 by ERK2 and JNK via tumor necrosis factor (TNF)4α and 

EGF stimulation [55].  In contrast, another study reports an increase in transactivation 

of PPARγ via insulin-stimulated ERK2 phosphorylation in CHO cells [56].  

Differential modulation of PPAR activity by phosphorylation is likely due to the 

relationships between specific kinases, serine residues, ligands, and receptor isoforms 

in specific cell types.  For example, ERK2 and JNK, but not p38 MAP kinase can 
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phosphorylate PPARγ on S84 [55], while PPARα is a substrate for both ERK2 and 

p38 MAP kinase in a ligand-dependent manner [57].  In addition, phosphorylation of 

PPARα by PKA in transient reporter gene assays was shown to have different effects 

depending on which promoter was used experimentally [58]. 

 There are multiple mechanisms by which phosphorylation of PPARs 

modulates their activity.  Transfection studies have suggested that phosphorylation of 

the N-terminus induces the dissociation of co-repressor proteins such as nuclear 

receptor co-repressor (NCoR) from PPARα [21].  In a similar fashion, 

phosphorylation of the N-terminus of PPARα increases co-activation by PGC-

1α [57].  Phosphorylation can also enhance DNA-binding of PPARs, as is the case 

with PPARα phosphorylation by PKA [58].  PPARs may also be modulated through 

kinase cascades that up-regulate their own expression as shown by the PKC-

dependent upregulation of PPARα gene expression [59].   

 MAPKs, PKA, and PKC are three kinase families that have been implicated in 

the phosphorylation of PPARα and γ.  Activation of these signaling pathways and 

phosphorylation of PPARs could affect the endogenous and therapeutic function of 

PPARs.  For example stress or fasting may activate PKA signaling which 

phosphorylates PPARα, enhances its activity through the recruitment of PGC-1α, and 

may affect the function of PPARα as a drug target. 

 1.2.3 NR1I2, PXR  

 Pregnane x receptor (PXR) is a master-regulator of xenobiotic-inducible 

cytochrome-p450 (CYP) gene expression in liver.  The CYPs identified as PXR 
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target-genes encode enzymes responsible for the oxidative metabolism of over 60% 

of clinically prescribed drugs.  In addition, several studies have shown that PXR 

regulates other genes involved in the metabolism of xenobiotic and endobiotic 

compounds such as glutathione S-transferases (GSTs), sulfotransferases (SULTs), 

and UDP-glucuronosyltransferases (UGTs) [60-63].  PXR also regulates the 

expression of the drug-transporter genes organic anion transporting polypeptide 2 

(Oatp2), multi-drug-resistance 1 (Mdr1), multi-drug resistance-associated protein 2 

(Mrp2), and multi-drug resistance-associated protein 3 (Mrp3) [64-66].  PXR is a 

promiscuous receptor activated by a wide variety of compounds including synthetic 

and endogenous steroids, bile acids, and a variety of drugs and natural compounds 

[67].  In this manner, the modulation of PXR activity by ligands and/or signaling 

pathways represents the basis for an important class of drug-drug interactions. 

 Drug-inducible CYP gene expression is known to be responsive to cytokine, 

PKC, and PKA signaling pathways, however the exact mechanism by which these 

pathways intersect with PXR is unknown.  For example, a significant reduction in the 

hepatic expression of Mdr1 and Mrp3 genes were seen in endotoxin treated mice. 

Similarly, IL-6-treated mice displayed a 40-70% reduction in the mRNA levels of all 

Mdr isoforms [68].  Inflammatory cytokines inhibit the inducible expression of Oatp2 

during intrahepatic cholestasis [69].  It has also been shown using primanry cultures 

of human hepatocytes that IL-6 markedly decreases the expression of PXR and its 

close cousin CAR.  IL-6 also decreases both rifampicin- and phenobarbital-mediated 

induction of CYP3A and CYP2B gene expression [70]. 
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 Recent evidence has demonstrated crosstalk between PXR and nuclear factor 

kappaB (NF-κB) signaling pathways.  NF-κB activation by lipopolysaccharide (LPS) 

and TNF4α inhibited PXR association with the CYP3A promoter by disrupting the 

interaction between the PXR-RXR protein complex [71].  In addition, PXR activation 

inhibited the activity of NF-κB and the expression of its target genes.  This inhibition 

was shown to be PXR-dependent and was potentiated by PXR ligands in vitro and in 

vivo [72].  PXR activation has also been shown to alleviate the symptoms of 

inflammatory bowel disease.  Studies using inflammatory bowel disease and PXR 

knockout mouse models have shown that PXR agonist treatment decreased the 

expression of NF-κB target gene expression in a PXR-dependent manner [73]. 

 In addition to cytokine signaling, CYP3A gene expression is also modulated 

by PKA and PKC signaling pathways.  Co-treatment of primary cultures of rat 

hepatocytes with phenobarbital and cyclic AMP analogs and PKA activators clearly 

results in cyclic AMP-associated inhibition of CYP gene expression [74].  However, 

treatment with the andenyl cyclase activator forskolin and its non-PKA-activating 

analog 1,9 dideoxyforskolin both resulted in the stimulation of CYP3A gene 

expression [75].  Ding and Staudinger have shown that both forskolin and 1,9 

dideoxyforskolin induce CYP3A expression in primary mouse hepatocytes by 

functioning as PXR agonists.  In addition, activation of PKA signaling potentiated 

PXR-mediated induction of CYP3A expression and increased the strength of PXR-

co-activator protein interactions in mammalian 2-hybrid reporter gene assays.  

Further kinase assays show that PXR can be a substrate for PKA in vitro, suggesting a 
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potential mechanism for PKA-mediated modulation of CYP3A gene expression [76].  

It is also of interest that while PKA activation potentiates the expression of CYP3A in 

mouse hepatocytes, it is a repressive signal in both human and rat hepatocyte cultures.  

This suggests a species-specific effect for the modulation of CYP3A by PKA 

signaling.  Differential phosphorylation may be a possible factor the species-specific 

responses to PKA signaling.  In addition, activation of PKC signaling dramatically 

represses PXR activity in reporter gene assays and in hepatocytes by increasing the 

strength of interaction between PXR and the co-repressor NCoR, and by abolishing 

the ligand-dependent interaction between PXR and co-activator SRC-1 [77]. 

 1.2.4 NR1I3, CAR 

 Similar to PXR, the NR superfamily member CAR was first classified as a 

xenobiotic-sensing transcription factor that regulates numerous hepatic genes in 

response to a large group of xenobiotics and endobiotics.  CAR was originally found 

to regulate the transcription of genes encoding the CYP2B subfamily [78].  In 

addition to CYP2B, CAR also regulates the expression of multiple drug and hormone 

metabolizing enzymes and transporter proteins such as CYP3A, CYP2C, GSTs, 

SULTs, UGTs, Oatp2, Mrp2 and Mrp3 [79].  Interestingly, treatment of wild type and 

CAR knockout mice with phenobarbital, the prototypical CAR activator, both induces 

and represses certain hepatic genes in a CAR-dependent manner suggesting that CAR 

has diverse roles as both a positive and negative regulator of hepatic gene expression 

in response to Phenobarbital (PB) [80].  As the function of CAR has expanded, so has 

interest in the deciphering the molecular mechanism of its activation by drugs. 
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 It is well documented that the PB-mediated induction of CYP2B genes in 

cultured hepatocytes is responsive to several serine/threonine protein kinases and 

phosphatases.  However, the mechanism by which these signaling pathways interact 

with CAR remains poorly understood.  For example, activation of PKA signaling 

negatively impacts the induction of CYP2B expression in primary cultures of rat 

hepatocytes [74], and co-treatment with phosphatase inhibitors further potentiates the 

repressive effects of PKA signaling [81].  Serine/threonine-specific protein 

phosphatases PP1 and PP2A have a positive role in the induction of CYP2B [82].  

Pustylnyak et al. further reports that rats treated with inhibitors of 

Ca(2+)/calmodulin-dependent kinase exhibited increased gene expression of both 

CAR and CYP2B, while rats treated with the protein phosphatase PP1 and PP2A 

inhibitor okadaic acid exhibited the opposite effect [83]. 

 In the absence of a ligand or activator, CAR is sequestered in the cytoplasm 

where it forms a complex with heat shock protein 90 (Hsp90) and cytoplasmic-CAR-

retention-protein (CCRP).  In response to PB the complex recruits protein 

phosphatase 2A before translocation of CAR to the nucleus.  The protein phosphatase 

inhibitor okadaic acid represses PB-induced nuclear translocation of CAR [84].  In 

addition, de-phosphorylation of S202 in mouse CAR is required for its nuclear 

translocation [85].  The signaling pathway involved in the phosphorylation of S202 

remains unknown.  Unlike most NRs, CAR translocates to the nucleus without 

directly binding PB [86].  Taken together, these data indicate that the phosphorylation 
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status of CAR is intimately involved in its cytoplasmic retention and nuclear 

translocation. 

 Recent evidence shows that EGF represses PB-mediated activation of CAR-

dependent transcription [87], and that the MEK inhibitor U0126 increases the PB-

mediated induction of CYP2B in primary rat heptocytes [88].  In addition, hepatocyte 

growth factor (HGF) treatment represses induction of cyp2b10 by PB in primary 

mouse hepatocytes.  HGF treatment increased the phosphorylation of ERK1/2, thus 

decreasing the nuclear translocation of CAR [89], however, the exact mechanism by 

which this occurs is unknown.  In addition to MEK/ERK signaling, AMP-activated 

protein kinase (AMPK) has been suggested to activate CAR in hepatocytes [90].  

Additional studies using AMPK knockout mice demonstrate that that although 

AMPK does not regulate the PB-induced translocation of CAR, it may be involved in 

the activation of CAR in the nucleus [91].  Shindo et al. reported that activation of 

AMPK resulted in nuclear accumulation of CAR but was not sufficient to induce 

CYP2B gene expression [92].  Additional studies suggest that PB targets LKB1 

kinase for the activation of AMPK [93], adding a proximal target to the elusive 

sequence of events by which PB activates transcription of CYP2B.  While AMPK 

appears to be an activating signal for PB-mediated induction of CYP2B, MEK/ERK 

seems to be repressive.  Further study into the signal-related mechanisms of CAR 

activation is required to determine the effect that these pathways might have on the 

phosphorylation status of CAR or CAR-interacting proteins. 
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 1.2.5 NR1H3, LXR  

 Liver X receptors (LXRα and LXRβ) have emerged as important regulators of 

cholesterol metabolism and transport, lipid metabolism, glucose homeostasis and 

inflammation [94].  LXRα is primary expressed in liver, macrophages, and adipose 

tissue, while LXRβ is more ubiquitously expressed [67].  LXR-activating ligands 

include several oxysterols and 6α-hydroxy bile acids [95, 96].  Since the discovery of 

LXRs, multiple LXR-target genes that are involved in cholesterol and lipid 

homeostasis have been identified.  These include CYP7A1, the rate limiting enzyme 

in the classical pathway of bile acid synthesis, ATP-binding cassette transporters, 

lipoproteins such as apolipoprotein E, lipoprotein lipase, and lipogenic proteins such 

as sterol response element binding protein-1C (SREBP-1C) and fatty acid synthase 

[97-100].  Although early reports emphasized the role of LXR in cholesterol 

homeostasis, recent studies suggest that LXR negatively regulates gluconeogenesis 

[101] and inflammatory responses [102, 103]. 

 LXR has been shown to exist as a phosphoprotein in HEK293 cells.  

Mutational analysis and metabolic labeling indicate that LXR is constitutively 

phosphorylated at S198 in the hinge region of the receptor at a MAPK consensus site 

[104].  However, the biological significance of this phosphorylation event has yet to 

be elucidated.   

 Early studies demonstrate that PKA/PKC modulators such as prostaglandin 

E2, phorbol esters, 8-bromo-cyclic AMP, and forskolin enhanced the induction of 

reporter genes by LXR ligands [105].  These experiments suggest that trans-activation 
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by ligand-activated LXR may be further modulated through kinase signaling.  PKA 

can directly phosphorylate LXR, and has been reported to both increase and decrease 

trans-activation depending on the experimental conditions [106-108].  In primary 

cultures of rat hepatocytes, activation of PKA repressed LXR-mediated SREBP-1C 

gene expression.  Direct phosphorylation of LXR by PKA in vitro and in vivo at two 

PKA consensus sites (S195, S196 and S290, S291) located in the LBD was required 

for trans-repression.  PKA-mediated phosphorylation of LXR impaired DNA-binding 

through the disruption of LXR/RXR dimerization, and decreased transcriptional 

activity by inhibiting the recruitment of the co-activator protein- SRC-1, and 

enhancing the recruitment of co-repressor protein- NCoR [108].  On the other hand, 

Tamura et al. have demonstrated that PKA signaling can increase LXR trans-

activation in reporter gene assays conducted in renal As4.1 mouse cell lines [106].  

 In addition to inducing genes involved in cholesterol and glucose homeostasis, 

LXR reciprocally represses a set of inflammatory genes including inducible-nitric 

oxide synthase, cyclooxygenase-2, IL-6, and matrix metaloproteinase-9 after 

bacterial, LPS, TNFα or IL-1β stimulation [102, 103].  Importantly, LXR agonists 

reduce inflammation in vivo.  The mechanism by which LXR represses inflammatory 

genes is not well understood.  No LXR response elements have been identified on the 

promoters of the repressed genes.  In addition to possible competition for co-regulator 

proteins, recent evidence suggests that inhibition of the NF-κB pathway is involved 

likely through trans-repression of NF-kB in the nucleus [109].  In a recent study of 

trans-repression of the iNOS promoter, SUMOylation of PPARγ was identified as a 
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mechanism of repression [110].  In a similar manner, SUMOylation of LXR has been 

shown to negatively regulate a subset of pro-inflammatory genes by preventing the 

removal of NCoR co-repressor complexes from the promoter [111].  It remains to be 

determined the extent to which post-translational modification of LXR is involved in 

LXR-mediated trans-repression of inflammatory genes. 

 1.2.6 NR5A2, LRH-1  

 The orphan NR liver receptor homolog 1 (LRH-1) functions to regulate the 

expression of a number of genes involved in bile acid homeostasis and other liver 

functions.  Unlike the majority of NRs that function as dimers, LRH-1 binds as a 

monomer to an extended NR half site in the promoter of its target genes [112].  LRH-

1 is an important regulator of CYP7A1 gene expression [113, 114].  LRH-1 also 

regulates the expression of other genes involved in cholesterol and bile acid 

homeostasis including CYP8B1, Mrp3, cholesterol ester transfer protein, apical 

sodium-dependent bile acid transporter, and apolipoprotein A1 [60, 115-120]. 

 No ligands for LRH-1 have yet been identified, and the mechanisms that 

modulate its activity are still unclear.  Lee et al. have shown that treatment with the 

phorbol ester PMA increases LRH-1 activation in Hela cells.  The ERK1/2 inhibitor 

U0126 blocks this response.  Mutation analysis confirms that phosphorylation of 

LRH-1 at S238 and S243 in the H domain stimulates LRH-1 transactivation [121].  In 

contrast, activation of JNK pathways is associated with inhibitory effects on the 

LRH-1 target CYP7A1; however the role of LRH-1 in this pathway is unclear [122, 

123].  
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 Treatment of HepG2 cells with the inflammatory cytokine- TNFα, a potent 

activator of the JNK pathway, increased the expression of LRH-1 and MRP3, and 

also increased LRH-1-binding to the MRP3 promoter [115].  Krylova et al., have 

suggested that phosphatidylinositols, major intracellular signaling molecules, bind to 

LRH-1, linking phospholipid signaling and gene expression [124].  However the 

functional role of phosphatidylinositols as modulators of LRH-1 function remains 

unknown. 

 1.2.7 NR1H4, FXR  

 Farnesoid x receptor (FXR) is a NR expressed in liver, intestine, kidney and 

adipose tissue.  FXR has emerged as a key player involved in the maintenance of 

cholesterol and bile acid homeostasis through its regulation of the expression of genes 

involved in the synthesis, uptake, and excretion of bile acids [125].  An important 

breakthrough in the FXR field was the discovery that FXR is directly activated by 

several bile acids including chenodeoxycholic acid, lithocholic acid, and deoxycholic 

acid [126-128].  Studies with FXR knockout mice revealed that a number of genes 

involved in cholesterol homeostasis are also regulated by FXR including Cyp7a1, 

Cyp8b1, intestinal bile acid binding protein, canalicular bile salt excretory pump, 

phospholipid transfer protein, and the hepatic basolateral transporter- Na (+)-

taurocholate-cotransporting polypeptide [129].  Additional studies reveal that FXR 

induces expression of the NR superfamily member- small heterodimeric partner 

(SHP).  Increased SHP then represses Cyp7a1 transcription by inhibiting the activity 

of LRH-1, which is a positive regulator of the Cyp7a1 promoter [113].   
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 Although there is no evidence at this time for direct phosphorylation of FXR, 

the expression and activity of FXR are modulated by signal transduction pathways.  

For example, FXR is thought to modulate insulin signaling.  FXR expression is 

reduced in streptozotocin-induced diabetic rat models, and administration of insulin 

restores FXR mRNA to normal levels [130].  Additional support for this concept 

comes from the observation that glucose reduces FXR expression in the liver [130], 

while activation of FXR by the synthetic agonist GW4064 reduces plasma glucose 

levels in mice [131].  Furthermore, loss of FXR disrupts normal glucose homeostasis 

and leads to the development of insulin resistance in FXR knockout mice [132-134].  

FXR may also play a role in regulating glucose and lipid metabolism during 

alterations in nutritional status.  A recent study reports that FXR expression is 

induced in mouse liver in response to fasting, a condition during which PKA 

signaling is enhanced [135]. 

 Bile acids that are FXR agonists have been shown to activate multiple signal 

transduction pathways.  Treatment with taurocholic acid results in activation of the 

JNK pathway [136], and deoxycholic acid treatment activates the Raf-1/MEK/ERK 

signaling cascade in primary rat hepatocytes [137].  In addition, treatment of HepG2 

cells with bile acids results in the activation of PKC, and treatment with PKC 

inhibitors reduces the bile acid-mediated repression of Cyp7a1 gene expression [138].  

While there is evidence for multiple bile acid-responsive pathways, future research 

goals include elucidation of the effects that kinase activation has on the 

phosphorylation status and functional activity of FXR. 
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 1.2.8 NR0B2, SHP  

 The NR SHP is an atypical orphan member of the NR superfamily in that it 

lacks the conserved DBD.  SHP was isolated in a yeast 2-hybrid screen based on its 

ability to dimerize with other NRs [139].  It is expressed mainly in liver, small 

intestine, spleen, heart and pancreas [140].  SHP interacts with a variety of NRs in 

liver including PPARα [141], LRH-1 [113, 142], LXR [143], and HNF4α [144].  

SHP acts as a direct transcriptional repressor and inhibits the activity of most NRs 

with which it interacts [145].  Two notable exceptions are that SHP enhances the 

transcriptional activation of PPARα [146], and PPARγ [147] under certain 

conditions. 

 It has been shown that SHP expression is regulated by the JNK pathway.  

Gupta et al. provide evidence that bile acids rapidly down-regulate CYP7A1 

transcription via activation of the JNK pathway, and that SHP is a direct target-gene 

of activated c-Jun [136].  Over-expression of c-Jun resulted in increased SHP 

promoter activity, whereas mutation of the c-Jun response element in the SHP 

promoter abolished activation and induction of reporter gene expression under the 

control of the SHP promoter.  This study provides an alternative mechanism for bile 

acid-mediated induction of SHP expression that is independent of FXR. 

 1.2.9 NRs and FGFs 

 Recent evidence has uncovered several novel NR-dependent mechanisms 

involving fibroblast growth factors (FGFs).  This recent thrust of research has created 

a new paradigm that particular FGFs function as metabolic hormones and act through 
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yet to be described signal transduction cascades to elicit specific physiological 

responses.  FGFs function in processes such as development and wound healing.  

However, three members of the FGF family, FGF19 (FGF15 in mouse), FGF21, and 

FGF23 have recently emerged as novel metabolic hormones.  The expression of 

FGF23 plays a role in calcium and phosphate homeostasis and is regulated by VDR, 

which is expressed mainly in bone, kidney and intestine and therefore will not be 

discussed in this chapter [148, 149]. 

 As mentioned earlier in this chapter, activation of FXR by bile acids down-

regulates Cyp7a1 gene expression in mice through an indirect mechanism involving 

the induction and activation of the negative regulator- SHP.  Recently, an additional 

FXR-dependent mechanism involving FGF19 has been described.  FGF19 binds to its 

cell surface receptor, FGF-receptor (FGFR)4, and increases JNK-dependent signaling 

[150].  In primary cultures of human hepatocytes, FXR activation induces expression 

of FGF19.  FGF19 then modulates bile acid biosynthesis by reducing the expression 

of CYP7A1 through a JNK-dependent pathway without affecting SHP expression 

[151].  It has also been shown that over-expression of FGF19, using either a 

transgenic approach or with chronic FGF19 treatment, improves insulin sensitivity 

and glucose homeostasis in diet-induced obese mice, in part through increased 

metabolic rate and fatty acid oxidation [152, 153].  Conversely, activation of the JNK 

signaling pathway in the liver has been shown to increase insulin resistance [154], 

however there is currently no explanation for this discrepancy. 
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 FGFR4 deficient mice exhibit reduced JNK activity, an increased bile acid 

pool, and enhanced expression of CYP7A1 [155].  On the other hand, transgenic mice 

expressing constitutively active FGFR4 exhibit increased JNK activity, a reduced bile 

acid pool, and reduced expression of CYP7A1 [156].  The expression of FGF15, the 

mouse ortholog of FGF19, is induced by FXR activation in the small intestine, but not 

in the liver.  FGF15 expression then represses CYP7A1 in liver through a mechanism 

that involves FGFR4 and SHP [157].  In addition, mice lacking FGF15 have 

increased hepatic Cyp7a1 expression and activity corresponding to increased bile acid 

excretion [157].  Taken together, these studies define FGF19 in humans and FGF15 

in mice as pivotal components of a novel signaling pathway that cooperates with FXR 

and SHP to maintain bile acid homeostasis. 

 PPARα, a fatty acid-activated NR, regulates the utilization of fat during the 

starvation response.  Recently, a PPARα-dependent role for FGF 21 in the adaptive 

response to starvation has been described.  FGF21 has been observed to have a 

variety of beneficial effects on metabolic parameters.  Treatment of obese and leptin-

deficient mice with FGF21 decreases serum glucose and triglyceride concentrations, 

and increases insulin sensitivity and glucose clearance.  Moreover, mice that over-

express FGF21 are resistant to diet induced obesity [158].  Similar results were 

observed in FGF21 treatment of diabetic rhesus monkeys [159].  While theses studies 

show that the administration of FGF21 has important metabolic effects, recent studies 

have provided insight to the physiological role of FGF21.  Inagaki et al. and Badman 

et al., show that FGF21 expression in the liver of fasted mice is induced following 
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activation of PPARα [160, 161].  Adenoviral knockdown of endogenous FGF21 

resulted in fatty liver, increased serum triglyceride levels, and decreased serum 

ketone levels in mice fed a low carbohydrate, high fat diet [160].  This was associated 

with the decreased expression of fatty acid oxidizing enzymes and key enzymes in 

ketone body production that are known PPARα-target genes [160].  In transgenic 

mice over-expressing FGF21, ketogenesis and ketone body concentration in serum 

was increased several fold.  Interestingly, recombinant FGF21 treatment rescued 

defective ketone body production in PPARα knockout mice [161].  Over-expression 

of FGF21 in mice also produces decreased body temperature and locomotor activity 

during fasting and increased lipolysis in white adipose tissue [161].  These studies 

make it evident that FGF21 signaling collaborates with PPARα, and together they 

function in liver as master regulators of energy balance.  The precise molecular 

mechanisms that are downstream of these FGF signaling pathways in liver remain to 

be elucidated. 

 1.3 Co-regulator Proteins as Targets of Signal Transduction Pathways 

 Interaction of NRs with co-regulator proteins provides a second level of 

regulation in target gene activation.  The association of co-regulator proteins with 

NRs is clearly controlled at the level of ligand binding.  In addition, the activation of 

cell signaling events and/or protein kinases directly regulates the association of NRs 

with co-regulator proteins.  Numerous examples cited above illustrate how 

phosphorylation of NRs can result in increased or decreased strength of interaction 

between the receptor and co-activator or co-repressor multiprotein complexes.  
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Realization that the specificity and activity of co-regulator proteins may also be 

regulated by signal transduction and phosphorylation is relatively new concept for 

which much less is known. 

 1.3.1 NCoR and SMRT Co-repressor Proteins 

 The most extensively characterized co-repressor proteins for NRs are NR co-

repressor (NCoR) and silencing-mediator for retinoid and thyroid hormone receptors 

(SMRT) [162, 163].  NCoR and SMRT interact with and mediate the repression of 

overlapping sets of NRs.  NCoR and SMRT do not have intrinsic enzymatic activity; 

instead they have conserved modular domains that interact with HDACs.  These co-

repressor proteins can bind to NRs at their conserved C-terminal receptor interacting 

domain in the presence or absence of ligand and are regulated by a variety of signal 

transduction pathways [164].  

 It had been previously observed that activation of tyrosine kinases negatively 

regulates the interaction between transcription factors and SMRT [165].  Further 

studies reveal that phosphorylation of SMRT in the C-terminal receptor-interaction 

domain by the MAP kinase-kinase MEK-1 and MEK-1 kinase (MEKK-1) inhibits the 

interaction between SMRT and NRs [166].  In addition, introduction of MEK-1 and 

MEKK-1 signaling into transfected cells leads to the redistribution of SMRT from the 

nucleus to the perinucleus or cytoplasm [166].  In contrast, phosphorylation of SMRT 

by casein kinase 2 (CK2) on S1492 stabilizes SMRT-NR interactions [167].  

Therefore, different signaling pathways can modulate different transcriptional 

outcomes via SMRT phosphorylation.   
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 In contrast to SMRT, NCoR is refractory to MEKK1 phosphorylation, does 

not release from NR partners and does not change its sub-cellular distribution in 

response to MEKK1 signaling [168].  These results indicate that the closely related 

SMRT and NCoR are regulated by distinct kinase signaling pathways.  Although 

NCoR is fully refractory to MEKK-1 signaling, it is partially inhibited by EGF 

receptor signaling, indicating that NCoR may respond to an as yet undefined 

secondary pathway activated by EGF signaling [168].  Recent evidence suggests that 

this differential response may be determined by alternative mRNA splicing of SMRT 

and NCoR [169].  NCoR has been shown to be phosphorylated by Akt at S401, 

leading to the reversal of NCoR-mediated repression and nuclear export of NCoR.  

However, SMRT possesses and alanine residue at position 401 and is resistant to the 

actions of Akt [170]. 

 Finally, since SMRT and NCoR exist in co-repressor multiprotein complexes, 

their activity may be affected by activation of signaling cascades that result in the 

phosphorylation of an HDAC, or other proteins in the complex.  For example, 

phosphorylation of HDAC4 by ERK1 and ERK2 enhances its nuclear accumulation, 

whereas phosphorylation of HDAC1 and HDAC2 alters their interactions with co-

repressor complexes [171-173].  IL-1β has been reported to inhibit NCoR through an 

indirect pathway resulting in the MEK kinase-1-mediated phosphorylation of the 

transforming growth factor-beta-activated kinase 1-binding protein 2 subunit present 

in a subset of NCoR-HDAC3 complexes, whereas SMRT is resistant to this pathway 

[174]. 
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 1.3.2 The p160/Steroid Receptor Co-activator Proteins 

 Steroid receptor co-activators (SRC) proteins are widely expressed and co-

activate most NRs as well and many general transcription factors.  The C-terminal 

region of SRC contains HAT activity, albeit relatively weak [175, 176].  Furthermore, 

SRCs recruit other co-activator proteins such as CBP, p300 and histone 

acetyltransferase p300/CBP-associated factor (pCAF) to a larger multiprotein 

complex that participates in chromatin remodeling [177].  There are three members of 

the SRC family, all of which contain conserved centrally located -LXXLL- motifs 

that are responsible for ligand-dependent interaction with NRs through the AF-2 

domain [178]. 

 Seven phosphorylation sites for SRC-1 and six for SRC-3 have been identified 

[179, 180].  All seven of the sites identified in SRC-1 contained consensus-

phosphorylation sequences for serine/threonine-proline directed kinases, and two 

contained perfect consensus sequences for the MAPK family and are phosphorylated 

by ERK-2.  Phosphorylation of SRCs can be induced by a variety of environmental 

stimuli including EGF, cyclic AMP, cytokines, and steroid hormones [179-183].  In 

addition, the phosphorylation of SRCs induced by these agents is required for optimal 

co-activator activity.  For example, ERKs can phosphorylate SRC-2 at S736 and 

treatment of cells with EGF increases the transcriptional activity of GAL4-GRIP1 

[184].  In addition, SRC-1 phosphorylation at S1185 and T1179 is induced by cyclic 

AMP, and phosphorylation at these sites enhances the ligand-dependent and -

independent activity of PR [182].  PKA did not phosphorylate these sites in vitro, but 
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blockage of PKA activity in COS-1 cells prevents cyclic AMP mediated 

phosphorylation of these sites [182].  This phosphorylation event was also shown to 

be required for the interaction of SRC with pCAF or CBP [182].  In a similar manner, 

EGF-stimulated phosphorylation of SRC-3 by MAPK stimulates the recruitment of 

p300 and enhances ligand-dependent ER activity [181].  Phosphorylation of SRC-3 

was shown to selectively affect the interactions with NRs, NF-κB, and CBP [180].  

These data suggest that the phosphorylation of SRCs seems to be involved in the 

regulation of protein-protein interactions, however, it remains to be seen whether 

phosphorylation can affect other aspects of SRC-function. 

 All three SRCs contain both redundant and distinct functions which may be 

modulated by the signal transduction pathways that interact with SRCs and result in 

their phosphorylation.  For example, SRC-3 contains several distinct patterns of 

phosphorylation.  Phosphorylation of all six sites of SRC-3 is shown to be induced by 

estrogen and androgen hormones and is required for co-activation of estrogen and 

androgen receptors [180].  However, phosphorylation of only five of the six sites is 

induced by TNFα and is required for co-activation of NF-κB [180].  Further evidence 

shows that SRC-3, but not SRC-1 was co-purified in complex with IκB kinase, and 

consequently, phosphorylation of SRC-3, but not SRC-1 is enhanced in response to 

TNFα stimulation [183].  Thus, it appears that phosphorylation provides a molecular 

basis that determines the ability of SRCs to distinguish among various transcription 

factor families, and helps to provide specific responses to various upstream signaling 

pathways. 
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 In addition to SRC, phosphorylation of other proteins in the co-activator 

complex can modulate transactivation potential of NRs.  CBP and p300 can be 

phosphorylated in vivo and participates in cyclic AMP-regulated gene expression 

[185].  Kinase activities are also found to be associated with CBP and p300.  

Activation of cellular Ras with insulin treatment stimulated the recruitment of S6 

kinase pp90RSK to CBP [186].  Binding of pp90RSK to CBP represses the transcription 

of cyclic AMP-responsive genes via the cyclic AMP response element binding 

protein (CREB) [186].  CBP also contains a signal-regulated transcriptional activation 

domain that is controlled by calcium/calmodulin-dependent protein kinase IV and by 

cyclic AMP [187].  Signal transduction pathways may also influence 

acetyltransferase activities and substrate preferences.  An example of this is best 

illustrated with the POU homeodomain transcription factor Pit-1.  Pit-1 function 

requires CBP, p300, and pCAF and is positively regulated by cyclic AMP and MAPK 

signal transduction pathways [188].  Interestingly, stimulation of Pit-1 activity by 

cyclic AMP requires the intrinsic HAT activity of CBP, whereas stimulation of Pit-1 

activity by the MAP kinase pathway requires the HAT activity of pCAF [188].  It is 

thus plausible that activation of different signaling pathways could influence the 

group of co-activators that are required for NR mediated transactivation. 

 1.3.3 The PGC Family of Co-integrator Proteins 

There are three members of the PPARγ co-activator (PGC) family, PGC-1α, 

PGC-1β, and the PGC-1 related co-activator- PRC.  However, PGC-1α is the most 

extensively characterized member of the family.  Like many protein cofactors, PGC-
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1α co-activates multiple NRs.  PGC-1α is selectively expressed mainly in skeletal 

muscle, cardiac muscle, white fat, and liver [189].  PGC-1α binds to NR-LBDs with 

high affinity and, similar to SRCs, contains a triplet -LXXLL- motif for binding to 

NRs through their AF-2 domains.  PGC-1α does not have intrinsic HAT activity, and 

serves as a molecular scaffold that recruits additional factors such as CBP or p300 

[190].  The physiological role of PGC-1α has been well characterized as a master 

regulator of energy homeostasis in fat, liver and muscle [191].  Specifically in liver, 

PGC1-α plays a prominent role in the regulation of genes involved in energy 

metabolism and glucose homeostasis.  PGC-1α is induced in liver by fasting and up-

regulates the expression of key genes that participate in  gluconeogenesis [192], fatty 

acid oxidation [193], and bile acid synthesis [194].  

PGC-1α interacts with a multitude of signaling pathways that affect both its 

expression and/or phosphorylation status.  Agents that increase cyclic AMP signaling 

such glucagon, catecholamines, and glucocorticoids induce PGC-1α expression in 

liver [192].  This cyclic AMP/PKA-dependent induction of PGC-1α is mediated by 

phosphorylation and activation of the transcription factor CREB which directly 

regulates the PGC-1α promoter [195].  On the other hand, LKB1/AMPK signaling 

appears to regulate the repression PGC-1α gene expression.  In LKB1 deficient liver, 

transducer of regulated CREB activity 2 (TORC2), a transcriptional co-activator of 

CREB, was de-phosphorylated and entered the nucleus, driving expression of PGC-

1α [196].  
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In insulin stimulated skeletal muscle, PGC-1α gene expression is down-

regulated by Akt-mediated phosphorylation and nuclear exclusion of the forkhead 

transcription factor FOXO1 [197].  In addition to insulin, obesity and saturated fatty 

acids decrease PGC-1α gene expression and function via p38 MAPK-dependent 

transcriptional pathways [198].  Moreover, palmitate, a common saturated fatty acid, 

reduces PGC-1α expression in skeletal muscle through a mechanism involving 

MAPK-ERK and NF-κB activation [199]. 

It is worth noting that the most prominent PGC-1α post-translational 

modification in terms of control of its activity and physiological output is acetylation 

[200, 201].  Methylation can also enhance PGC-1α activity [202].  However, this 

chapter will focus on the effect of phosphorylation of PGC-1α.  Cytokines such as IL-

1α, IL-1β, and TNFα have been shown to activate the transcriptional activity of 

PGC-1α in muscle through direct phosphorylation by p38 MAPK resulting in 

increased stability, half-life and activation of the PGC-1α protein [203].  p38 MAPK 

phosphorylates PGC-1α at three residues (T262, S265, and T298) that occur in a 

region previously shown to interact with NRs, however, it remains to be seen whether 

phosphorylation of PGC-1α affects NR docking.  Further studies performed in 

primary hepatocytes confirm that PGC-1α phosphorylation by p38 MAPK is 

necessary for free fatty acid induced activation of PEPCK, a PGC-1α-target gene 

involved in gluconeogenesis [204].  The precise mechanism by which p38 MAPK-

mediated phosphorylation of PGC-1α alters the amount and activity of PGC-1α will 
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likely provide important physiological, and perhaps therapeutic, insight.  Kralli’s 

group has also shown that activation of p38 MAPK leads to an increase in PGC-1α 

activity.  They propose that a repressor binds to the PGC-1α −LXXLL- motif and that 

the interaction is terminated upon activation of p38 MAPK [205].  This suggests a 

model where the repressor and NRs compete to recruit PGC-1α to an inactive or 

active state, and that cellular signaling such as ligand or kinase signaling can shift the 

equilibrium between the two states. 

In addition to p38 MAPK, two recent reports show that PGC-1α is 

phosphorylated by AMPK and Akt/PKB.  AMPK activation in muscle increases the 

expression of genes required for glucose uptake, fatty acid oxidation, and 

mitochondrial biogenesis.  Using primary muscle cells and PGC-1α knockout mice, 

Jager et al. demonstrated that the effect of AMPK mediated gene expression is 

dependent on PGC-1α function.  Furthermore, AMPK phosphorylates PGC-1α at 

T177 and S583, which is required for PGC-1α dependent induction of the PGC-1α 

promoter [206].  In liver, the mechanism by which insulin regulates lipid synthesis 

and degradation are largely unknown.  Insulin treatment, through protein kinase 

Akt2/protein kinase B (PKB) resulted in the phosphorylation and inhibition of PGC-

1α [207].  Akt phosphorylates PGC-1α at S570 which prevents the recruitment of 

PGC-1α to its target promoters [207].  Repression of PGC-1α activity by 

phosphorylation impairs its ability to promote gluconeogenesis and fatty acid 

oxidation in liver.  PGC-1α has an additional role in the regulation of this pathway.  
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PGC-1α co-activates PPARα in the expression of tribbles homolog TRB-3, a fasting 

inducible inhibitor of Akt/PKB [208].  This mechanism by which insulin signaling 

regulates PGC-1α activity could provide insight into alternative drug targets for the 

treatment of type-2-diabetes. 

 1.4 Therapeutic Obstacles and Opportunities 

 NRs control many aspects of biology including development, reproduction, 

and homeostasis through target gene activation.  The ability to modulate their activity 

using fat-soluble molecules makes them extremely attractive drug targets.  As our 

understanding of NR signaling increases, so does our appreciation of the complexity 

of their regulation.  It is possible that the management of diseases in the future will 

include therapies that not only target NRs, but also co-regulator proteins and 

signaling pathways that are critical in the modulation of their function. 

 PPARs are the targets of some commonly used drugs in the treatment of 

hyperlipidemia and type-2-diabetes.  Activation of PPARα by fibrates causes the up-

regulation of genes involved in the β-oxidation of fatty acids.  This results in the 

decreased synthesis of triglycerides and decreased LDL secretion by the liver [67].  

Glitazones such as rosiglitazone and pioglitazone are PPARγ agonists.  PPARγ is 

known to regulate glucose homeostasis and adipogenesis, making it an attractive 

target for the treatment of type-2-diabetes.  However, recent evidence has indicated 

an increased risk of heart attacks with rosiglitazone (marketed as Avandia) and the 

FDA released a safety alert on the drug in May 2007 [209].  Further research 

surrounding the signaling events and co-regulator proteins that affect PPARγ activity 
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in multiple tissues may be useful in separating the therapeutic effects from the toxic 

effects of drugs like rosiglitazone. 

 One therapeutic challenge and opportunity in development of drugs that target 

NRs are selective therapeutic modulators (SRMs).  SRMs are NR ligands that exhibit 

agonistic or antagonistic activity in a cell- or tissue-dependent manner.  The classic 

SRM is tamoxifen, which can selectively activate or inhibit ERs and is commonly 

used in the treatment of breast cancer.  Tamoxifen exhibits agonist (estrogen-like) 

activity in uterus and antagonist (anti-estrogen-like) activity in breast [210].  SRM-

induced alterations in the conformation of NRs may affect the ability of the receptor 

to bind to co-regulators or to be phosphorylated.  The expression profile of specific 

co-activator proteins and co-repressor proteins in a given cell type may affect the 

relative agonist -vs- antagonist activity of SRMs.  However, as evidenced in this 

chapter, it is likely that cellular signaling events contribute to SRM activity due to 

altered activation, binding, and localization of co-regulator proteins, as well as NRs.  

Increased understanding of the effect of cellular signaling on NRs and their co-

regulator proteins has the potential to aid in the process of discovery of novel SRMs 

and the development of new and more effective drug therapeutics. 

 Most NRs regulate a myriad of target genes that control multiple processes.  

One of the challenges in designing NR agonists is separating the desired therapeutic 

effects from the undesirable side effects.  For example, the functional ability of LXRs 

to promote reverse cholesterol transport, improve glucose tolerance, and alleviate 

inflammation makes them attractive drug targets for the treatment of metabolic and 
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inflammatory diseases.  However, the finding that first generation synthetic ligands of 

LXR increase hepatic lipogenesis and plasma triglyceride levels is a therapeutic 

obstacle that needs to be overcome [211].  The increase in hepatic lipogenesis has 

been attributed to the LXR mediated induction of SREBP-1C, therefore an agonist 

designed to increase reverse cholesterol transport but not to induce SREBP-1C may 

be a more effective therapy.  Loss of LXR results in the increased expression of 

ABCA1 and decreased expression of SREBP-1C suggesting that LXRs interact 

differentially with the transcriptional machinery on either promoter.  A better 

understanding of the differential mechanisms and signaling pathways that interface 

with LXR during activation of specific target genes may provide insight into the 

design of a selective agonist or may present new drug targets. 

 Understanding of the signaling mechanisms that interface with NRs could also 

be useful in modulating the effect of a receptor without directly targeting it, or in the 

development of therapeutic molecules that only induce specific NR-target genes.  

There are multiple areas of potential therapeutic usefulness for FXR modulators such 

as cholestatic disorders, fatty liver disorder, or metabolic and inflammatory diseases.  

However, activation of FXR induces a complex physiological response that may lead 

to undesirable side effects in addition to the beneficial response.  For example, the use 

of an FXR agonist in the regulation of glucose homeostasis may also result in the 

inhibition of bile acid synthesis and impact cholesterol excretion.  Therefore, the 

identification of selective bile acid receptor modulators (SBARMs) may be necessary 

to target specific groups of genes modulated by FXR.  Additionally, the identification 
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of how signaling pathways intersect with and modulate FXR may provide additional 

therapeutic opportunities that don’t target FXR itself.  For example, FGF19 or FGFR4 

may prove to have interesting therapeutic potential in cholesterol and bile acid 

regulation. 

 The xenobiotic receptors PXR and CAR may have useful implications in the 

treatment of cholestatic liver disease.  However, it has been hypothesized that 

unwanted activation of PXR is responsible for nearly 60% of all drug-drug 

interactions.  Due to their promiscuous nature PXR and CAR are capable of 

modulating a number of genes in response to many different ligands.  PXR and CAR 

activation by a specific drug results in the in the increased metabolism of not only 

that drug, but other drugs that may be in the system as well.  In order for PXR and 

CAR to be effective therapeutic targets, the activation of a potential therapeutic-target 

gene must be separated from the activation of genes involved in drug metabolism.  A 

better understanding of the co-regulator proteins and signaling pathways that interface 

with PXR and CAR may provide alternative drug therapies toward that end.  In 

addition, pharmaceutical companies commonly screen for PXR activation by drug 

candidates in rodent and human species in order to avoid future drug-drug 

interactions.  However, there is a significant species-specific response of PXR- and 

CAR-target genes with respect to activating ligands and signaling pathways.  

Understanding the signaling pathways that affect these two receptors may also be 

useful in the development of more accurate activation assays in order to predict and 

prevent unwanted and potentially lethal drug-drug interactions. 
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 1.5 Conclusion 

 It is clear that multiple signaling pathways and phosphorylation events affect 

NR-mediated signaling.  They modulate protein-protein interactions, sub-cellular 

localization, DNA-binding, protein stability, and transactivation capacity.  The 

situation is further complicated by the fact that many NR cofactor proteins are 

themselves modulated by signaling pathways and phosphorylation events that affect 

their intrinsic and recruited enzymatic activities.  Further investigation into the role of 

cell signaling pathways in NR-mediated transcription, and into signaling pathway 

crosstalk will be necessary to fully understand the functional implication of these 

signaling events.  In addition, further characterization of these processes will likely 

lead to the development of novel and selective therapeutic molecules for a multitude 

of indications. 
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Chapter 2:  An Introduction to PXR Signaling 

 2.1 Historical Perspective 

 2.1.1 Regulation of Cytochrome-P450’s by Diverse Compounds 

 All organisms are exposed continuously and unavoidably to foreign 

compounds, or xenobiotics, which are either ingested in the diet, inhaled, or otherwise 

absorbed.  Normal homeostasis therefore requires the detoxification and elimination 

of these compounds from the body that are harmful when they accumulate to toxic 

levels.  These compounds include both manufactured and natural compounds such as 

prescription and non-prescription drugs, pesticides, pollutants, industrial chemicals, 

alkaloids, pyrolysis products from cooked food, and other toxins that are generated 

from molds, plants and animals.  The lipophilic property that enables many of these 

compounds to be absorbed is also an obstacle to their elimination.  Consequently, 

their elimination is dependent upon their conversion to more polar derivatives that 

can be readily excreted.  This process is known as biotransformation.  

Biotransformation is accomplished through the concerted action of the phase I 

oxidative cytochrome-P450 (CYP) enzymes, the phase II conjugating enzymes, and 

the membrane transporter proteins in the entero-hepatic system. 

 Members of the CYP family of heme-containing monooxygenases often 

catalyze the first enzymatic step in the clearance of lipophilic substrates.  Members of 

the CYP1A, CYP2C, CYP2D, CYP2E1, and CYP3A subfamilies of drug 

metabolizing enzymes are of particular interest in this respect because of the 

structural diversity of their substrates and their relatively high abundance in liver and 
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intestine [1].  One long-standing observation is that the expression of the genes 

encoding many CYP isoforms, notably CYP1A, CYP2B, and CYP3A, can be 

dramatically induced by exposure to certain prescription drugs and other xenobiotic 

compounds.  Frequently, compounds that induce the expression of a particular CYP 

enzyme are also a substrate for that particular CYP, thus providing a compensatory 

regulatory mechanism that amplifies the detoxification pathway during prolonged 

periods of xenobiotic challenge [2]. 

 During the 1950’s it was discovered that aromatic hydrocarbons (e.g., 3-

methyl-cholanthrene) and barbiturates (e.g., phenobarbital (PB)) regulate the activity 

of different classes of CYP enzymes [3, 4].  Additionally, various types of 

xenobiotics including glucocorticoids (e.g. dexamethasone) and the perioxisome 

proliferators (e.g. clofibric acid) were shown to induce distinct classes of CYP 

enzymes.  In fact, for many years CYP enzymes were biochemically classified based 

on the type of compound that induced their activity in liver.  In the early 1970’s, Hans 

Selye and colleagues introduced the concept of ‘catatoxic steroids’.  Catatoxic agents, 

such as the synthetic steroid pregnenolone 16α-carbonitrile (PCN), protect the liver 

of rodents against the effects of subsequently administered toxic substances by 

inducing CYP enzymes as well as other detoxifying enzymes [5, 6].  However, the 

mechanism for this type of induction and hepato-protection remained unknown for 

several decades.   

 In the early 1980’s, the PCN-inducible CYP3A enzyme (known then as P-

450PCN), was purified and shown to be distinct from previously characterized CYP 
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isoforms [7].  Further analysis of the gene encoding this CYP established it as a 

member of a distinct subfamily of P-450 genes [8, 9].  Biochemical studies in primary 

cultures of rat hepatocytes demonstrated that induction of this enzyme by PCN, 

originally thought to be a glucocorticoid receptor- (GR) mediated response, was in 

fact distinct from the classical GR signaling pathway.  Guzelian and colleagues 

demonstrated that in addition to PCN, CYP3A gene expression was also inducible in 

rat hepatocytes by the glucocorticoid- dexamethasone [10, 11].  However, the kinetics 

of induction of the prototypical GR-target gene, tyrosine aminotransferase (TAT), did 

not coincide with the increases in CYP3A gene expression in that it took nanomolar 

dexamethasone concentrations to induce TAT expression but micromolar 

dexamethasone concentrations were required to induce CYP3A gene expression.  A 

comparison of the effects of several steroid compounds supported this suggestion, 

because the concentration-response profiles of the compounds tested for TAT 

induction and CYP3A induction were completely different.  Furthermore, three known 

GR antagonists (PCN, α-methyl-testosterone, and progesterone) repressed 

dexamethasone-mediated increases in TAT gene expression, but enhanced the 

induction of CYP3A gene expression [11-13].  These seminal studies convinced the 

research community that a novel receptor was implicated, but many years passed 

before the receptor involved in regulating drug-inducible CYP3A gene expression was 

identified. 

 In the intervening years it became increasingly clear that in rodents, the 

CYP3A subfamily of hepatic genes are inducible by a myriad of structurally diverse 
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compounds.  For example, steroid compounds such as PCN, dexamethasone, 

betamethasone, hydrocortisone, mifepristone (RU486), α-methyl-prednisolone, 

dehydrorpiandrosterone, and spironolactone; the barbiturate PB; the anti-fungal drug 

clotrimazole; the antibiotic triacetyloleandomycin; the organochlorine-containing 

pesticides trans-nonachlor and γ-chlordane; the calcium channel antagonist 

nicardipine; the 11β-hydroxylase inhibitor metyrapone; and polychlorinated 

biphenyls were all found to be potent inducers of CYP3A gene expression in rodents 

[14-24].  It also became clear that there are distinct differences in the types of 

compounds that induce CYP3A gene expression in rodent hepatocytes when 

compared with human hepatocytes. 

 2.1.2 Species Differences in Response to Inducing Agents 

 It is a long-standing observation that the induction of CYP3A gene expression 

exhibits a species-specific pharmacology.  For example, classical biochemical studies 

demonstrated that rifampicin was an efficacious CYP3A inducer in rabbit, but had 

little effect in rat, whereas PCN, an inducer in rat, failed to induce in rabbit.  PB had a 

moderate effect in all species tested, suggesting that it may be acting by an alternate 

mechanism [23].  Species differences were also well documented in the response of 

human hepatocytes to CYP3A inducers.  The expression of CYP3A in humans and 

rabbits is strongly induced by rifampicin, whereas rodent CYP3A genes are poorly 

induced by this drug.  On the other hand, PCN is a potent inducer of rodent CYP3A 

genes, but a weak inducer in human and rabbit [16, 25-28].  These data indicated that 

 55



there were likely important species-specific differences in the receptor that regulated 

CYP3A gene expression. 

 In humans, CYP3A4 is the predominant CYP isoform expressed in liver and it 

is involved in the metabolism of more than 50% of all prescription drugs.  The 

induction of CYP3A4 gene expression by xenobiotic compounds is well documented 

and represents the basis for an important class of drug-drug interactions in which 

administration of one drug accelerates the metabolism of a second clinically 

prescribed drug [29].  Therefore, since rodents are commonly used in pre-clinical 

drug development studies in the pharmaceutical industry, the elucidation of the 

mechanisms underlying species-specific CYP3A expression was deemed to be 

extremely important for the development of safer therapeutic treatments for humans. 

 2.1.3 Xenobiotic Response Elements (XREs) in the Rat Cyp3A1 Promoter 

 To investigate the mechanism of non-classical glucocorticoid induction of the 

rat Cyp3A1 gene, Burger et al. fused a 1.5 kb fragment of the 5’-flanking region to a 

reporter gene.  Deletion analysis identified a specific 164 base pair region of the 

promoter (bases -220 to -56) that mediated both dexamethasone- and PCN-

responsiveness and that does not contain an identifiable glucocorticoid response 

element [12].  Further analysis of this region led to the identification of three sites that 

contained binding motifs for members of the nuclear receptor (NR) superfamily; sites 

A, B and C (Figure 2-1) [30, 31].   
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Figure 2-1. Identification of xenobiotic response elements in the CYP3A 
promoter.  A 1.5 kb fragment of the 5’ flanking region of the Cyp3a gene was 
fused to a reporter gene.  Deletion analysis identified a fragment (-220 to -56) that 
mediates dexamethasone and PCN responsiveness.  This region does not contain a 
glucocorticoid response element, but does contain three NR binding sites (A, B, 
and C).  Mutation analysis demonstrated that sites B and C are necessary for 
micromolar glucocorticoid responsiveness.  These sites contain a DR-3 and ER-6 
of the consensus AGTTCA PXR-response element. 

 57



Site-directed mutation analysis demonstrated that sites B and C were necessary for 

maximum glucocorticoid responsiveness.  Site B contained a direct repeat of the NR 

consensus binding site AGTTCA separated by three nucleotides (DR-3) and site C 

contained an everted repeat separated by 6 nucleotides (ER-6).  Neither site was 

capable of interacting with GR, but formed a common protein complex with nuclear 

extracts prepared from a rat hepatoma cell line [30-32].  Disruption of site B resulted 

in a complete loss of dexamethasone- and PCN-responsiveness.  In addition, although 

sites A and C appeared to have little ability to modulate the activity of reporter genes 

by dexamethasone and PCN, they were required for maximal induction of Cyp3A1 

reporter gene expression [31-33]. 

 In an experiment using the 5’-flanking sequences of rabbit, rat and human 

CYP3A genes and hepatocytes from rats and rabbits, Barwick et al. demonstrated that 

the inducibility of CYP3A genes was determined by the cellular environment rather 

than by the structure of the gene [34].  When reporter constructs containing the 5’-

flanking sequences of human, rat, or rabbit CYP3A were transfected into rat 

hepatocytes, all three were induced by dexamethasone and PCN, but not by 

rifampicin.  However, in rabbit hepatocytes, rifampicin and dexamethasone, but not 

PCN, transactivated the CYP3A reporter genes [34].  This study further supported the 

idea that there are likely species-specific differences in the receptor that regulates 

CYP3A expression. 
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 2.2 Cloning and Characterization of PXR 

 2.2.1 Discovery and Cloning of PXRs 

 NRs are one of the largest groups of transcription factors with 48 members in 

the human genome that regulate diverse biological processes including metabolism, 

homeostasis, development, and reproduction [35].  NRs can be loosely divided into 

two groups based on their ligand status.  The first group is composed of receptors for 

classical endocrine hormones.  NRs in the second group are referred to as orphans.  

Orphan receptors are cloned based on DNA sequence homology to classical 

endocrine receptors.  However, at the time of their cloning, nothing was known about 

their physiological ligands.  Pregnane x receptor (PXR, NR1I2) is a member of the 

NR1I subfamily which includes the vitamin D3 receptor (VDR, NR1I1) and 

constitutive androstane receptor (CAR, NR1I3).   

 All members of the NR superfamily share several conserved structural 

domains that are essential for receptor function (Figure 2-2) [36].  These domains 

include a highly variable N-terminal domain, a central DNA-binding domain (DBD), 

and a C-terminal ligand-binding domain (LBD).  The highly conserved DBD is 

approximately 70 amino acids in length.  The DBDs of NRs each contain two α-

helices and two zinc fingers.  Each zinc finger contains four highly conserved 

cysteine residues that chelate a zinc atom.  The DBD is critical for the specificity of 

response element recognition and imparts critical receptor dimerization properties.  

While some NRs function as monomers, most NRs are active as dimers; either as 

homodimers, or as heterodimers with retinoid x receptor (RXR) [37].  The DBD is 
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connected to the LBD by a hinge region (H) that contains a nuclear localization signal 

(NLS).  The LBD is approximately 250 amino acids in length and folds to form a 

hydrophobic pocket suitable for ligand binding.  The LBD also contains 

transcriptional activation motifs including the well-characterized activation fuction-2 

(AF-2) helix in the extreme C-terminal portion.  Upon ligand binding, the AF-2 

domain undergoes a conformational change and creates a new surface to interact with 

co-activator proteins and activate transcription [38].  The N-terminal region of NRs is 

highly variable in sequence and length, but all contain an activation function-1 (AF-1) 

domain that acts independently of ligand and is responsive to cell signaling pathways 

[39, 40]. 
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Figure 2-2. Nuclear receptors share a high degree of structural homology.  
Members of the NR superfamily share four modular domains: a highly variable N-
terminal region that in some NRs harbors a ligand-independent activation function 
(AF-1), a DNA-binding domain (DBD) that contains two zinc finger motifs, a 
flexible hinge domain (H), and the ligand-binding domain (LBD) that contains a 
ligand-dependent activation function (AF-2). 
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 Pregnane x receptor (PXR, NR1I2) was originally identified on the basis of its 

DNA sequence homology with other NRs in the expressed sequence tag database.  

The full-length mouse PXR (mPXR) cDNA was characterized in 1998 using the 

expressed sequence tag to screen a mouse liver cDNA library, and the receptor was 

named PXR based on its activation by pregnane (21-carbon) steroids [41].  Shortly 

after its discovery, PXR was classified as a broad specificity receptor that is activated 

by a wide variety of drugs and xenobiotic compounds as a heterodimer with RXRα.  

Upon ligand binding the PXR-RXR heterodimer binds to multiple sites on the CYP3A 

promoter and activates gene expression, at long last providing the molecular basis for 

the induction of CYP3A gene expression by xenobiotics [41, 42].  At approximately 

the same time the human PXR (hPXR) was cloned by three separate groups.  One 

group identified hPXR in studies aiming to identify homologues of the Xenopus 

laevis benzoate x receptor (BXR) [43].  Another group established hPXR as a 

homologue of mPXR [42].  In addition, a parallel computational search approach 

identified hPXR [44].  Since then, PXR has been cloned and functionally expressed 

from many other species including monkey, dog, rabbit, and rat as well as closely 

related receptors in chicken, frog and zebrafish [45-49]. 

 2.2.2 PXR Expression Patterns 

 The mRNA encoding the PXR protein is highly expressed in the liver, small 

intestine and colon in human, rabbit, rat and mouse [41-44, 46, 48, 49].  Markedly, 

these are the same tissues where the CYP3A gene is highly expressed, and CYP3A 

expression is induced in these tissues following xenobiotic exposure.  Lower levels of 
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Pxr gene expression have been detected in stomach, kidney and lung of rodents [24, 

41, 50].  Studies aimed at characterizing the expression of the Pxr gene during the 

perinatal period in mice detected expression in the ovary and uterus of female mice, 

as well as in the placenta throughout gestation [51].  In rats, the Pxr mRNA is 

expressed in the capillaries and endothelial cells that comprise the blood-brain barrier, 

and Pxr expression is increased by dexamethasone in a dose-dependent and reversible 

manner [52, 53].  Finally, in humans, the PXR mRNA has been detected in both 

normal and neoplastic breast tissue [54], as well as in peripheral blood mononuclear 

cells (PBMCs) [55].  In addition, a study of Japanese subjects has shown that the 

amounts of PXR protein in the liver and intestine reach maximal levels in young 

adults (15-38 years of age); subsequent decreased expression levels are detected with 

aging [56]. 

 Relatively little is known about the mechanism by which the expression of the 

PXR gene is regulated.  The promoter that drives expression of the PXR gene has not 

been well characterized.  However, two factors have been identified in the 

endogenous regulation of PXR gene expression: the GR and the liver-specific 

transcription factor hepatic nuclear factor 4α (HNF-4α).  Notably, dexamethasone 

increased Pxr mRNA expression in the rat hepatoma-derived cell line H4IIE.  This 

effect appears to be mediated through GR because it required nanomolar 

concentrations of dexamethasone, and the effect was opposed by the GR antagonist 

RU486 [57].  Similar results were obtained in another study utilizing human 

hepatocytes in which treatment with dexamethasone, hydrocortisone, or prednisalone 
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stimulated the expression of PXR mRNA [58].  This increase in PXR gene expression 

may contribute, in part, to the stimulation of CYP3A gene expression by 

dexamethasone.  Interestingly, expression of Pxr mRNA is increased nearly 50-fold 

in mouse liver and ovary during pregnancy, suggesting that expression of the Pxr 

gene may be stimulated by other hormones as well [51].  The extent to which these 

phenomena are conserved across species is not currently known. 

 The Hnf-4α gene is essential for the normal development of murine liver.  In 

fact, it is not possible to generate non-conditional HNF-4α-null mice, because 

deletion of the Hnf-4α gene in mice produces a non-viable embryo.  However, mice 

with HNF-4α-null livers were generated by aggregating tetraploid embryos with 

HNF-4α -/- ES cells.  When gene expression was analyzed in the livers of mice 

generated using this method, Pxr mRNA was markedly absent [59].  In another study, 

HNF-4α-null fetal hepatocytes were generated by Cre-mediated inactivation of the 

Hnf-4α gene.  Expression of Cyp3a11 and Pxr were suppressed by the inactivation of 

Hnf-4α.  In addition, a functional HNF-4α-response element was characterized in the 

Pxr promoter, and it is required for Pxr gene activation in fetal hepatocytes [60].  In 

adult HNF-4α-null mice generated using a floxed Hnf-4α allele, basal expression of 

an in vivo transfected CYP3A reporter gene construct was 50% of that observed in 

wild-type mice, however the HNF-4α-null mice were still able to respond to 

treatment with PCN and induce PXR-target gene expression.  Moreover, in adult 

HNF-4α-null mice it was Car expression that was suppressed, not Pxr expression 
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[61].  Without further data, it is difficult to determine the extent to which the effect 

HNF-4α has upon Pxr gene expression is either direct or indirect in embryonic or 

adult tissues. 

 More recently, Gibson et al. performed an in silico analysis of the human PXR 

promoter in an attempt to identify positive and negative regulatory elements [62].  

The analysis identified a peroxisome proliferator activated receptor α (PPARα) 

response element located at -1318 to -1338 base pairs upstream of the transcription 

start site.  Furthermore, expression of the PXR mRNA was increased by PPARα in 

reporter gene studies and mutation of the PPARα response element ablated that 

expression [62].  These results are consistent with a previous report that PPARα 

agonists’ clofibrate and perfluorodecanoate (PFDA) induce PXR expression in rat 

hepatocytes [63].   

 Gibson et al. also demonstrated that the human PXR proximal promoter is 

activated by forkhead transcription factor A2 (FOXA2, also known at HNF-3β) [62].  

Additional studies have shown that FOXA2 is recruited to a region of the mouse Pxr 

promoter between -167 and -193 during fetal liver development, and that novel single 

nucleotide polymorphisms (SNPs) in the human PXR promoter as well as in the first 

intron affect putative binding sites for FOXA2 and affect subsequent PXR-target gene 

expression [64, 65]. 

 2.2.3 Cross-species Variation of PXR 

 NR genes typically show a high degree of sequence homology across species.  

For example, amino acid sequence identities between human and mouse NR 
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orthologues are typically greater than 95% in the DBD and greater than 85% in the 

LBD [66].  A study comparing human, mouse and rat genomes and another study 

comparing human, mouse and chimpanzee genomes revealed that NRs have been 

subjected to negative evolutionary selection [66, 67].  However, the two notable 

exceptions in the NR superfamily are the LBDs of the ‘xenobiotic sensor’ receptors 

PXR and CAR [68]. 

 The PXR-LBDs are much more divergent across species when compared with 

other NRs (Figure 2-3).  The LBD of human PXR shares an amino acid identity of 

approximately 75% when compared with rodent sequences.  Furthermore, the human 

PXR-LBD shares 50% identity with the zebrafish and chicken PXR-LBD sequences.  

These LBD comparisons represent the lowest percent identity shared across species in 

the NR superfamily, whose members typically have comparable identities between 

species that are approximately 10-15% higher [47, 66].  The relatively large degree of 

divergence that occurs in the PXR-LBD amino acid sequence across species indicates 

that PXR genes have evolved to exhibit functionally and significantly altered ligand-

activation profiles, likely as a protective adaptation to differences in exposure to 

various toxic compounds in their respective environments. 
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Figure 2-3. Sequence comparison of PXR across species.  Sequences of PXR 
from various species and other NR1I family members are aligned.  The similarity 
is expressed as percentage amino acid identity in the DBD and LBD. 
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 Traditionally, compounds that activate NRs have been identified using cell 

based reporter gene assays.  The receptor expression plasmid typically encodes the 

full length receptor or a chimera of the NR-LBD fused to the DBD of the yeast 

transcription factor- GAL4.  The reporter gene contains binding sites for the full 

length or chimeric receptor upstream of a gene that encodes an easily quantifiable 

protein.  Using this strategy, numerous PXR-activating compounds have been 

identified across various species.  For example, mouse and rat PXR were activated by 

the CYP3A inducer PCN, whereas PCN had little effect on human and rabbit PXR.  

On the other hand, rifampicin activated human and rabbit PXR but had virtually no 

effect on the mouse and rat receptors (Figure 2-4) [42, 43, 46, 48]. 
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Figure 2-4. Differential activation of mouse and human PXR by ligands.  
Human and mouse PXR are activated by ligands in a species-specific manner.  
PCN is a strong activator of mouse PXR but has little effect on human PXR, 
whereas rifampicin is a strong activator of human PXR but has little effect on 
mouse PXR.  
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 2.2.4 Inter-individual Variability of PXR Activity in Humans 

 The expression level of CYP3A4 mRNA in the liver can vary by more than 

50-fold between individual humans, and may account for much of the observed inter-

individual variability in the metabolism of drugs.  However, it was recently 

discovered that very few polymorphisms exist in the CYP3A4 gene and promoter 

[69].  More recent studies have shown that PXR expression in human liver is subject 

in inter-individual variability [70].  In addition, several allelic variations of the human 

PXR gene are found that result in single amino acid substitutions, and the mRNA 

encoding the PXR protein is subject to a number of alternative splice variants. 

 In comparison with other human genes, relatively few SNPs are observed in 

the PXR gene.  However, a study in subjects of Caucasian and African origin 

identified 40 SNPs in the PXR gene, including seven that coded for missense 

mutations.  Four of the missense mutations (R122Q, V140M, D163G, and A370T) 

displayed altered basal and altered rifampicin-inducible gene activation profiles in 

cell-based reporter gene assays.  In particular, R122Q residing in the DBD of PXR 

markedly decreased its DNA binding activity in vitro.  However, this alteration has 

only been found as a heterozygous allele with the other normal PXR allele in vivo, 

resulting in no detectable change in activity.  V140M, D163G, and A370T all change 

residues in the PXR-LBD.  In reporter gene studies, D163G had reduced basal and 

ligand-induced activity, whereas V140M and A370T exhibited slight increases in 

basal activity [71-73].  Additional amino acid changes have been identified in 

Japanese subjects (R98C, R381W, and I403V) and Chinese subjects (Q158K) that 
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result in a decrease in PXR activity [74, 75].  The allelic frequency of each of these 

polymorphisms is less than 3%, which indicates that they likely do not account for 

much inter-individual variability. 

 In addition to single amino acid changes, the PXR mRNA is subject to 

alternative splicing that may be a significant source of inter-individual variability.  

Human PXR exhibits alternative splicing in exon 5; yielding slightly different LBDs 

designated hPXR.1 and hPXR.2 (with hPXR.2 lacking 37 amino acids in exon 5) 

[73].  In a study of tissue-specific mRNA expression, two more splice variants were 

identified; hPXR.3 (with a 41 amino acid deletion) and hPXR.4 (with a 71 base pair 

deletion leading to a frameshift and premature termination) were detected [76].  An 

additional form of PXR incorporates an alternative exon 1 (encoding 39 additional 

amino acids at the N-terminus) and appears to be as effective as hPXR.1 at inducing 

CYP3A gene expression [77, 78].  The expression of hPXR.1 is variable between 

individuals, but is consistently higher in females than males, correlating with the 

increased expression of CYP3A mRNA in females.  The hPXR.2 variant is accounts 

for 6-7% of hPXR transcripts, and the other isoforms are expressed at negligible 

levels [76]. 

 2.2.5 Structure of PXR 

 PXR contains all the conserved domain structures of classical NRs.  Most 

NRs interact with their ligands in a highly selective manner.  In contrast, PXR serves 

as a ‘xeno-sensing’ receptor and is activated by diverse array of lipophilic 

compounds.  Despite this relatively promiscuous ligand-binding profile, species-
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specific differences are observed in the activation profiles between PXR orthologs.  

Determination of the three-dimensional crystal structure of the human PXR-LBD has 

shed some light on the molecular basis of these properties. 

 Crystal structures of the hPXR-LBD have been determined alone, in 

complexes with several xenobiotics, and with a peptide fragment of the co-activator 

steroid receptor co-activator-1 (SRC-1) [79-83].  Similar to most NR-LBDs, the 

PXR-LBD contains a three-layer sandwich of α-helices.  However, while most NRs 

contain a short two- or three-stranded β-sheet, the PXR β-structure is extended to a 

five-stranded anti-parallel structure [82].  The PXR ligand-binding pocket is large, 

flexible and capable of varying in volume between 1,150 and >1,600 Ǻ.  Thus, PXR 

is comparable with the largest known NR ligand-binding cavity, which is 1,619 Ǻ for 

the fatty acid binding receptor peroxisome proliferator activated receptor γ (PPARγ) 

[84].  The PXR ligand-binding cavity is predominately hydrophobic, but contains 

eight polar residues that commonly interact with ligands and are distributed evenly 

throughout the surface of the pocket [79, 82].  Another interesting feature of the PXR 

ligand-binding pocket is an expandable pore that is created by a flexible loop (amino 

acids 309-321), which opens to expose more hydrophobic residues and to 

accommodate larger ligands [82].  The smooth, elliptical shape and the flexible nature 

of the PXR ligand-binding pocket undoubtedly contribute to its unusual broad-

specificity of ligand binding. 

 An additional structural feature of PXR is that during ligand binding, AF-2 

moves to a conformation that favors interactions with co-activator proteins.  For 
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example, in the absence of SRC-1 peptide, the small ligand SR12813 was shown to 

bind to the PXR-LBD in numerous distinct orientations at once.  However, when the 

–LXXLL- motif of the co-activator SRC-1 peptide is bound to the α2 helix of AF-2 

the agonist shifts to a single binding orientation [80].  Therefore, since co-activator 

proteins work in concert with ligand-binding in this manner, the ligand-induced 

response and specific repertoire of PXR-target genes that are activated is also likely 

dependent upon which co-activator protein(s) is present. 

 Finally, there are also structural clues in the PXR protein that elucidate the 

molecular basis of species-specificity in the ligand response.  Two key residues in the 

ligand-binding pocket of hPXR, G285 and H407, are not conserved across species.  

Site-directed mutagensis studies were performed in which G285 was mutated to I and 

H407 was mutated to G, the equivalent residues in mouse.  G285I indeed did show 

increased responsiveness to PCN and decreased responsiveness to rifampicin, while 

the H407G mutant had little effect [85].  Site-directed mutagenesis has also been used 

to examine the differences in ligand-binding between human and rat.  Mutation of 

F305 to L conferred rifampicin sensitivity and abolished PCN responsiveness on the 

rat receptor.  The reverse mutation of the human residue L308 to F reduced the 

receptors affinity for rifampicin but not its ability to undergo rifampicin-mediated 

activation [86].  In a study using rat-human PXR chimeras, replacement of a region 

(amino acids 306-326) of the human gene with the rat gene converted the reporter 

into a PCN-responsive state [87].  Similarly, when an equivalent residue in mouse 

PXR (F305) was mutated to the residue found in rabbit (V305), the PXR response to 
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PCN was decreased by 100-fold and the response to rifampicin was increased 3-fold 

[79].  The mutated residues are located in a flexible loop that forms the entrance to 

the ligand-binding pocket; therefore the mutation may affect the ability of this loop to 

rearrange in response to ligand binding. 

 2.2.6 PXR is Activated by a Diverse Set of Ligands 

 PXR is activated by a broad range of lipophilic compounds including a myriad 

of synthetic and endogenous steroids, certain bile acids, and a variety of drugs and 

plant products (Figure 2-5).  In contrast to the classic steroid hormone receptors, 

high-affinity (sub-nanomolar) ligands for PXR have not been discovered.  For 

example, the lowest EC50 values of steroids that activate PXR are low-micromolar, 

generally two to three orders of magnitude higher than concentrations found in 

circulating plasma [46, 47].  Even the highest affinity PXR ligands such as 

hyperforin, the active component of St. John’s wort, only have binding affinities in 

the mid-nanomolar range [88, 89]. 
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Figure 2-5. PXR activity is regulated by structurally diverse ligands.  
Represented here are xenobiotic compounds of various shapes and sizes that activate 
either human or mouse PXR. 
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 PXR is activated by a variety of natural and synthetic steroids such as 

pregnelenone, progesterone, several phyto-estrogens, dexamethasone and 

antiglucocorticoids [41-44, 46, 90].  Some bile acids including lithocholic acid (LCA) 

and ursodeoxycholic acid have also been shown to activate PXR [91-93].  The list of 

drugs and natural compounds that activate PXR is rapidly expanding.  Xenobiotics 

that activate PXR include the previously established CYP3A inducers PB, 

metyrapone, clotrimazole, spironolactone and tans-nanochlor [42, 90, 94, 95].  Other 

PXR activators include the HIV protease inhibitor ritonavir [96]; the calcium channel 

blocker nifedipine [97]; the anticancer drugs tamoxifen and paclitaxel [98]; the anti-

diabetic drug troglitazone [46]; the cholesterol lowering statins and SR12813 [46]; 

and endocrine disruptors bisphenol A and nonylphenol [99, 100].  In addition, PXR 

has also been shown to be activated by a variety of compounds found in natural 

products including St. John's wort, gugulipid, kava kava, Coleus forskolii, tian xian 

and ginko biloba [101-103].  While the majority of publications characterize novel 

PXR activators, there is also a growing list of PXR antagonists that includes ET-743 

[104], polychlorinated biphenyls [105], ketoconazole [106], sulforaphane [107], 

coumestrol [108] and the HIV protease inhibitor A-792611 [109]. 

 2.2.7 PXR-target Genes 

 PXR-selective ligands have been shown to stimulate genes involved in the 

oxidation (phase I), conjugation (phase II) and transport (phase III) of xenobiotics.  

The first genes shown to be regulated by PXR were CYP3A family members in mouse 

and human [41, 42].  In fact, over time, PXR has been termed the master regulator of 
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drug-inducible CYP3A gene expression.  Additional phase I drug metabolism gene 

products regulated by PXR include numerous CYPs, aldehyde and alcohol 

dehydrogenases, carboxylesterases, and enzymes related to heme production and 

support of the CYP cycle such as aminolevulonic acid synthase and P450 

oxidoreductase [80, 110, 111].  Phase II drug metabolism gene products regulated by 

PXR include UDP-glucuronosyl-transferases (UGTs), sulfotransferases (SULTs) and 

glutathione S-transferases (GSTs) [80, 111-115].  Finally, phase III drug metabolism 

gene products regulated by PXR include numerous ATP-binding cassette membrane 

pumps of the multidrug resistant family (Mdrs and Mrps) and organic anion 

transporting protein 2 (OatP2) [80, 93, 96, 104, 111, 116-118]. 

 The list of genes that are regulated by PXR continues to grow, and now 

includes genes that are not only involved in xenobiotic metabolism, but also those 

involved in cholesterol and bile acid homeostasis and other cellular processes.  For 

example, gene products known to be regulated by PXR include fatty acid and HMG 

coA synthases, OATPs and CYPs involved in cholesterol and bile acid metabolism 

[92, 119-121].  Additional PXR-target genes include insig-1 (encoding a protein with 

antilipogenic properties) and CD36 (encoding a free fatty acid transporter) [122, 123].  

PXR also upregulates the target gene inducible nitric oxide synthase (iNOS), that is 

known to influence inflammation and apoptosis [124].  Finally vitamin K activates 

PXR and transcription of Msx2, an osteoblatogenic transcription factor [125].  A list 

of PXR-target genes is summarized in Table 1-1. 
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Class Gene Organism 
Phase I Enzymes CYP1A1, CYP1A2 

CYP2A6 
Cyp2B1/2 
CYP2B6 
Cyp2b10 
CYP2C8, CYP2C9, CYP2C19 
Cyp3A1/2 
CYP3A4, CYP3A7 
Cyp3a11, Cyp3a13,Cyp3a44 
Cyp3A23 
Cyp7a1 
CYP24A1 
Aldh1a1, Aldh1a7 

Human 
Human 

Rat 
Human 
Mouse 
Human 

Rat 
Human 
Mouse 

Rat 
Mouse 
Human 
Mouse 

Phase II Enzymes Sult2a1 
SULT2A1 
Ugt1a1 
UGT1A1, UGT1A3, UGT1A4 
Gsta1, Gsta4 
GstA2 
Gstm1, Gstm2 

Mouse 
Human 
Mouse 
Human 
Mouse 

Rat 
Mouse 

Transporters MDR1 
Mdr1a, Mdr1b 
Mrp2, Mrp3 
Oatp2 
Oatp2 

Human 
Mouse 
Mouse 
Mouse 

Rat 
Accessory Proteins Alas1 

ALAS1 
PAPSS2 
Por 

Mouse 
Human 
Human 
Mouse 

Receptors AHR 
Car 
Pxr 

Human 
Mouse 
Mouse 

Other iNOS 
MSX2 
Insig-1 
CD36 

Human 
Human 
Mouse 
Mouse 

Table 2-1. Target genes of PXR.  Listed here are target-genes that are regulated 
by the activation of either human or rodent PXRs. 
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 2.3 Physiological Functions of PXR 

 2.3.1 Xenobiotic Metabolism and Liver Toxicity 

 As described above, PXR is activated by a myriad of xenobiotic compounds 

and regulates numerous genes involved in drug and xenobiotic metabolism.  

Induction of CYPs (phase I drug-metabolizing enzymes) is the most characterized 

system of PXR gene regulation.  However, PXR is also involved in the regulation of 

other aspects of drug metabolism and excretion.  PXR regulates the expression of 

genes encoding phase II drug metabolizing proteins including UGT, SULT, and GST 

enzymes that function to conjugate hydrophilic groups thereby increasing the water 

solubility of compounds [80, 111-115].  The PXR protein can also up-regulate the 

expression of transporters such as Bsep, Ntcp, OatP2, Mrp3, and Mdr2 [92, 126].  

These drug transporter proteins promote the uptake of xenobiotics into the liver for 

subsequent metabolism by phase I and phase II enzymes, and then move the 

conjugated metabolites into an excretory pathway either into bile or back into blood 

for excretion via the kidney.  In this manner, PXR activation increases clearance of 

xenobiotics by simultaneously increasing hepatic uptake, metabolism and excretion of 

numerous potentially toxic compounds (Figure 2-6).  Therefore, PXR activation is a 

principle defense mechanism defending the body from toxic assault. 
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Figure 2-6. Mechanism of hepatoprotection by PXR.  Xenobiotic and 
endogenous compounds enter hepatocytes where they are metabolized into more 
polar subtrates and excreted.  Many of these compounds are PXR ligands.  These 
ligands activate PXR and result in the upregulation of genes involved in xenobiotic 
biotransformation.  In this manner PXR activation protects hepatocytes from toxic 
assault.  However, PXR activation and subsequent upregulation of PXR target-
genes also represents the basis for an important class of drug-drug interactions. 
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 Occasionally, drug metabolizing enzymes produce chemically reactive 

metabolites that covalently bind to hepatic macromolecules resulting in liver toxicity 

[127].  Acetaminophen (APAP) toxicity represents one example of this type of 

toxicity.  At high doses, CYP enzymes including CYP1A2, CYP2E1, and CYP3A4 

convert APAP to a reactive quinine called N-acetyl-p-benzoquinone imine (NAPQI) 

that binds to cellular macromolecules and causes the production of reactive oxygen 

species [128, 129].  In fact, APAP toxicity is increased in humans and rodents by 

pretreatment with CYP inducers such as PCN [130, 131].  Since PXR is a master 

regulator of CYP3A in liver, its role has been investigated in APAP-induced 

hepatotoxicity.  Pretreatment with the PXR activator, PCN, enhanced APAP-induced 

hepatic toxicity, as evidenced by increased serum alanine aminotransferase (ALT) 

levels and hepatic centrilobular necrosis, in wild-type but not in PXR-null mice. This 

was due to the fact that PXR-null mice had lower Cyp3a11 expression levels and 

decreased NAPQI formation compared to wild-type mice treated with PCN [132].  

Thus, the possibility of treating APAP toxicity by targeting PXR is an intriguing one.  

However, since PXR and CAR engage in significant crosstalk and regulate 

overlapping sets of target genes a suitable clinical inhibitor may be difficult to design. 

 2.3.2 Drug-drug, Herb-drug, and Food-drug Interactions 

 Although PXR plays a critical role in the protective response against 

xenobiotics, its activation also represents the basis for an important class of drug-drug 

interactions.  It is clear that most drugs that induce expression of the CYP3A gene do 

so through the activation of PXR.  In fact, many of the xenobiotics that activate PXR 
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are prescription drugs, including the antibiotic rifampicin, the HIV protease inhibitor 

ritonavir and the chemotherapeutic drugs paclitaxel and cisplatin, to name a few [93, 

96, 98, 133-135].  Activation of PXR and the subsequent induction of CYP3A and 

other genes can result in the accelerated metabolism of other medications.  The 

CYP3A4 enzyme alone is involved in the metabolism of >50% of all prescribed 

drugs.  Therefore, drugs that activate PXR have the potential to reduce the therapeutic 

effectiveness of more than one-half of co-administered drugs.  This phenomenon is a 

serious concern for patients taking multiple medications with small therapeutic 

indices as alterations in drug metabolic rates in patients can often have life-

threatening consequences. 

 In addition to prescribed drugs, many natural products activate PXR and 

represent the basis for potential adverse drug reactions.  Natural products are not 

regulated in this country, unlike prescription drugs.  However, products such as St. 

John's wort, gugulipid, kava kava, Coleus forskolii, tian xian and ginko biloba have 

all been shown to activate PXR [88, 101-103].  Activation of PXR by St. John’s wort 

is a classic example of this type of herb-drug interaction.  St. John’s wort is widely 

used as an over-the-counter treatment for a variety of indications including 

inflammation and mild depression.  In patients, St. Johns wort enhances the 

metabolism of prescription drugs including oral contraceptives, the 

immunosuppressant cyclosporin, the HIV protease inhibitor ritonavir, the 

anticoagulant warfarin, and the cardiac glycoside digoxin [136-140].  Indeed, 

commercial preparations of St. John’s wort activate PXR in cell-based reporter gene 
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assays and induce the expression of CYP3A4 in primary human hepatocytes [88, 89].  

Further analysis revealed that hyperforin is the chemical component of St. John’s 

wort that binds to and activates PXR with high affinity [88, 89].  This provides a 

molecular explanation for the clinical reports that describe an interaction between 

prescription drugs and St. John’s wort. 

 The knowledge that PXR activation is the basis for drug-drug and herb-drug 

interactions, as illustrated above, should aid in the development of safer medications.  

In vitro assays that detect PXR activity are readily available.  Ideally, drug candidates 

would not activate PXR, and those that do can be replaced with compounds that have 

similar therapeutic efficacy, but lack the ability to activate PXR.  For example, the 

cancer drug paclitaxel and its analog docetaxel have similar anti-neoplastic activity, 

but paclitaxel is a strong PXR activator, whereas docetaxel is not [104].  Another 

example is the anti-diabetic drugs troglitazone, pioglitazone and rosiglitazone.  All 

three drugs are potent PPARγ agonists, but only troglitazone is also a PXR agonist 

[46].  In fact, troglitazone was later withdrawn from the market due to hepatotoxicity 

[141].  

 Dietary chemicals also have the capacity to activate PXR and represent the 

basis for a food-drug interaction.  Dietary consumption of phytochemicals occurs as a 

part of vegetables, fruits, spices, flavoring agents, and beverages.  Some 

phytochemicals including flavonoids, carotenoids, and terpenoids markedly activate 

PXR and induce the expression of CYP3A [142, 143].  Thyme, curcumin, resveratrol, 

and quercetin, are all common phytochemicals that activate PXR on the CYP3A 
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promoter [144-146].  Another group of compounds that activate PXR are plant 

estrogens.  Phytoestrogens and mycoestrogens are plant-derived natural compounds 

that are ingested through diet.  Some of the plant estrogens that have been shown to 

activate PXR include ferutinine, zearalenone, and the hops constituent colupulone 

[147-149].  On the other hand, the phytoestrogen coumestrol has been identified as a 

naturally occurring PXR antagonist [108].  In addition to naturally occurring dietary 

compounds, the food preservative tertiary butylated hydroquinone (tBHQ) also 

activates PXR [145].  The scope has also widened to include vitamins with the 

demonstration that vitamin E and vitamin K2 are activators of PXR-mediated 

expression of target genes [150, 151].  Taken together, these data signal that patients 

should be aware of potentially dangerous drug-drug and supplement-drug interactions 

involving the activation of PXR. 

 2.3.3 Steroid Hormone Homeostasis 

 Recent studies have shown that PXR plays an important role in adrenal steroid 

hormone homeostasis.  The concept of PXR as a potential endocrine disrupting factor 

may have implications in drug-hormone interactions.  Activation of PXR markedly 

increases plasma concentrations of corticosterone and aldosterone, the primary 

glucocorticoid and mineralocorticoid in rodents.  The increased levels of 

corticosterone and aldosterone were associated with activation of adrenal 

steroidogenic enzymes, including CYP11A1, CYP11B1, CYP11B2, and 3β-

hydroxysteroid dehydrogenase [152].  In addition, CYP3A4, the prototypical PXR-

target gene, is involved in the metabolism of steroid hormones.  In fact, cortisol and 
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testosterone 6β-hydroxylase activities are often used as biomarkers for CYP3A4 

induction or inhibition [153, 154].  The CYP3A4 enzyme also catalyzes the 6β- and 

16α-hydroxylation of progesterone and the 2-, 4-, and 16-hydroxylation of estradiol 

[155-157].  Furthermore, a transgenic mouse line expressing the CYP3A4 transgene 

has been characterized with an impaired lactation phenotype associated with 

significantly reduced serum estradiol levels [158].  This may be of relevance in the 

treatment of pregnant or lactating women with PXR activators.  However, further 

research is required to clarify the role of PXR in the homeostasis of steroid hormones. 

 2.3.4 Bile Acid Homeostasis 

 Bile, which is produced and secreted by hepatocytes, is essential for the 

elimination of excess cholesterol and for the digestion and absorption of dietary 

lipids.  Bile secretion is also an important pathway for the elimination of hydrophobic 

endobiotic and xenobiotic metabolites.  Bile acids, a major component of bile, are 

detergents that can be extremely toxic if their levels become elevated.  Therefore, bile 

acid levels are tightly regulated by multiple NRs including HNF-4α, liver x receptor 

(LXR), farnesoid x receptor (FXR), CAR and PXR [118, 159-161].  While the 

physiological regulation of bile acid and cholesterol levels is primarily mediated by 

LXR and FXR by means of endogenous oxysterol and bile acid ligands, respectively, 

in the nanomolar range, PXR responds to the same ligands at micromolar 

concentrations in pathophysiological situations.  The PXR protein is therefore 

involved in the regulation of the biosynthesis, transport and metabolism of cholesterol 
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and bile acid metabolites when levels of these endogenous compounds rise to 

excessive concentrations such as occurs during hypercholesterolemia and cholestasis.  

 Bile acids are produced in the liver by several enzyme dependent steps with 

the rate limiting step being the 7-hydroxylation of cholesterol by the CYP7A1 

enzyme.  In fact, it has been known for several years that the rodent PXR agonist 

PCN represses the activity of the Cyp7a1 enzyme [162].  Gene knockout studies 

confirmed that the repression of Cyp7a1 gene expression by PCN is mediated by 

PXR (92, 118).  Further studies suggest that PXR activation promotes PXR 

interaction with HNF-4α and blocks PPARγ co-activator-1α (PGC-1α) co-activation 

of HNF-4α, thereby resulting in inhibition of Cyp7a1 gene transcription [163].  In 

addition to negatively regulating CYP7A, PXR activation positively regulates the 

expression of genes involved in bile acid metabolism and transport.  The CYP3A4 

enzyme catalyzes the hydroxylation of bile acids, and OatP2 and Mrp2 transport bile 

acids across the sinusoidal and canalicular membranes of hepatocytes.   

 During cholestasis, toxic levels (5-10µM) of lithocholic acid (LCA), a 

secondary bile acid, have been reported in the livers of patients [164].  Notably, at 

low micromolar concentrations certain bile acids and bile acid precursors such as 

LCA, cholic acid (CA) and chenodeoxycholic acid (CDCA) have been shown to 

activate PXR (92, 120).  PXR activation then decreases bile acid synthesis via the 

down-regulation of Cyp7a1 and accelerates bile acid metabolism through the up-

regulation of metabolic enzymes and transporters.  OatP2 is located on the sinusoidal 

membrane of the hepatocyte and is involved in the cellular uptake of bile acids.  

 86



Induction of OatP2 activity following PXR activation would increase the uptake of 

bile acids from the blood into the hepatocyte where the detoxification pathways such 

as hydroxylation and sulfation could take place by CYP3A4 and selective 

sulfotransferase enzymes (115, 118). 

 The effects of bile acids on their own synthesis are known to be mediated, in 

part, by small heterodimer partner (SHP), an NR-like protein that lacks a 

conventional DBD.  FXR induces expression of the Shp gene, which in turn inhibits 

the transcription of the Cyp7a1 gene [160].  SHP has also been shown to interact with 

PXR in a ligand-dependent manner and represses its activity [165].  However, SHP-

null mice fail to repress Cyp7a1 expression in response to specific FXR agonists, but 

repression of Cyp7a1 is retained in SHP-null mice fed bile acids (166).  This 

demonstrates the existence of a PXR-mediated repression pathway of bile acid 

signaling that is independent of SHP and will be discussed later in this chapter. 

 2.3.5 Cholesterol Toxicity 

 Cholesterol is a critical component of cell membranes and a precursor to 

steroid hormones.  However, abnormally high levels of cholesterol contribute to 

several pathological conditions including coronary artery disease and atherosclerosis.  

In addition, oxysterols, which are oxidized metabolites of cholesterol, are toxic to 

cells [166].  The oxysterols 25-hydroxycholesterol and 24(S), 25-epoxycholesterol 

are able to induce CYP3A gene expression in rodent hepatocytes in a PXR-dependent 

manner (168).  This suggests the possibility that drugs that are not direct PXR ligands 
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could cause drug-drug interactions by altering cholesterol metabolism that leads to 

the generation of oxysterols. 

 PXR may also be important in maintaining cholesterol homeostasis.  There is 

an inverse relationship between levels of high density lipoprotein (HDL) cholesterol 

and the risk of coronary artery disease.  PXR agonists elicited increases in serum 

HDL and serum apolipoprotein A1 (apoA1) levels in wild-type, but not PXR-null 

mice [167].  In addition, CA treatment produces significant decreases in HDL 

cholesterol and apoA1 in mice.  However, PXR expression has been shown to 

antagonize this effect [168].  Finally, bile duct ligation experiments conducted in 

mice displayed increases in total serum cholesterol, which is attenuated by the 

deletion of PXR (171).  Additional studies suggest that PXR regulates hepatic 

cholesterol transport by inhibiting genes central to cholesterol uptake and efflux.  

Specifically the ATP-binding cassette transporter A1 (ABCA1) and the scavenger 

receptor class B type 1 (SR-B1) which are both major factors in the exchange of 

cholesterol between cells and HDL [169]. 

 Under normal conditions, dietary cholesterol does not cause toxicity due to 

complex homeostatic mechanisms.  However, a recent study has shown that PXR-null 

mice are sensitive to diet-induced cholesterol toxicity.  Feeding a diet that elicits the 

accumulation of cholesterol and its metabolites had no effect on the survival of wild-

type mice.  Yet, PXR-null mice showed acute lethality with signs of hepato-renal 

failure when fed the same diet [170].  This study suggests that the PXR signaling 

pathway protects the body from dietary cholesterol metabolites.  Further investigation 
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is required to elucidate the protective mechanism, but this study raises an interesting 

notion that PXR ligands may alleviate cholestatic liver diseases and the associated 

hepato-renal failure. 

 2.3.6 Heme Homeostasis 

 Heme is an essential component of numerous hemoproteins with functions 

including oxygen transport, energy metabolism, and drug biotransformation.  The 

liver is a major site of heme biosynthesis where CYPs rely on heme to catalyze the 

oxidation of endobiotic and xenobiotic compounds.  However, the production of 

heme must be tightly regulated since accumulation of free heme within a cell leads to 

toxicity.  The first and rate-limiting step in the heme biosynthesis pathway is 5-

aminolevulinic acid synthase (ALAS).  Studies on the regulation of Alas gene 

expression in mice have identified a drug-responsive enhancer element 17 kb 

upstream from the transcriptional start site of the gene.  Reporter gene experiments 

indicated that activation of this response element could be mediated by PXR.  In vivo, 

Alas gene expression is induced by prototypical PXR activators in wild-type, but not 

PXR-null mice [171].  Further studies identified an additional regulatory element 

located 20.1 kb upstream of the ALAS gene and gel shift assays demonstrated that the 

PXR protein is capable of binding to both of these regulatory response elements 

[172]. 

 The ability of ALAS to respond to regulation by PXR suggests that PXR is 

involved in the control of the biosynthesis of heme.  However, to date, the research 

completed in this area is limited.  Understanding PXR-mediated regulation of Alas 
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gene expression could be valuable in the treatment of porphyria diseases, in which 

excess heme intermediates accumulate in tissues and lead to tissue damage and severe 

neurological problems. 

 2.3.7 Bilirubin Clearance 

 Bilirubin is the primary byproduct of heme protein catabolism.  Accumulation 

of bilirubin results in hyperbilirubinemia and jaundice.  Congenital 

hyperbilirubinemias are conditions in which there is an abnormal serum bilirubin 

level without abnormalities in liver function.  The congenital hyperbilirubinemias are 

divided into two groups; conjugated (Dubin-johnson syndrome and Rotor syndrome) 

and unconjugated (Crigler-najjar syndrome and Gilbert’s syndrome).  Crigler-najjar 

and Gilbert’s syndrome are caused by defects in the UGT1A1 gene.  Dubin-johnson 

syndrome is caused by a defect in the MRP2 gene and the gene responsible for Rotor 

syndrome has not yet been identified [173, 174].  However, the causative genes in 3 

of 4 congenital hyperbilirubinemias are regulated by PXR.  Bilirubin is transported 

into hepatocytes by OatP2, where it is then glucuronidated by Ugt1a1 [175, 176].  

The conjugated bilirubin is then transported by Mrp2 into the bile [177].  The role of 

PXR in bilirubin clearance was further confirmed with the use of VP-hPXR 

transgenic mice, in which the hPXR transgene is rendered constitutively active and 

ligand-independent by fusion with the potent transcriptional activator VP16.  One 

hour after the mice were given a single dose of bilirubin, the remaining serum levels 

of both total and conjugated bilirubin in the transgenic mice were less than half of 

that observed in their wild-type littermates [121, 178].  Activation of PXR and up-
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regulation of Ugt1a1 activity appears to be sufficient for conjugation and clearance of 

bilirubin in this mouse model.  Since CAR is not expressed in neonates, PXR 

activation may be an interesting drug target for the treatment of neonatal or acquired 

forms of jaundice. 

 2.3.8 Vitamin D and Bone Mineral Homeostasis 

 Vitamin D promotes bone formation and is essential for skeleton 

development.  Vitamin D deficiency leads to bone softening diseases such as rickets 

and osteomalacia.  In addition, prolonged therapy with rifampicin has been shown to 

cause vitamin D deficiency or osteomalacia, especially in patients with low vitamin D 

stores [179, 180].  1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of 

vitamin D in humans and is synthesized from vitamin D3 by hepatic CYP27A1 and 

CYP2R1.  1,25(OH)2D3 mediates its biological effect by binding to the VDR.  VDR 

activation leads to the maintenance of calcium and phosphorus levels in the blood and 

to the maintenance of bone content [181].  CYP24 is well known to be the major 

enzyme that contributes to the metabolism of 1,25(OH)2D3 to the inactive form 

1,24,25-trihydroxyvitamin D3 (1,24,25(OH)3D3).  CYP24 has been identified as a 

PXR-target gene by both in vivo and in vitro studies and PXR has been shown to bind 

to and transactivate the CYP24 promoter [182].  This suggests that drugs that are PXR 

ligands can activate CYP24 expression and alter 1,25(OH)2D3 homeostasis.  

However, another study has suggested that the PXR-target gene CYP3A4 is the major 

source of 1,25(OH)2D3 metabolism in liver.  Although the affinity and efficiency of 

1,25(OH)2D3 metabolism by the CYP3A4 enzyme is 10 fold lower than that of 
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CYP24 [183].  A follow up study showed that activation of PXR did not induce 

CYP24 expression or transactivate the CYP24 promoter [184].  In fact, PXR may 

repress vitamin D3 activation of the CYP24 gene by preventing the dissociation of the 

co-repressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) 

from VDR on the CYP24 promoter.  The degree of PXR-mediated locking of SMRT 

appears to be dependent on the ratio of vitamin D to the PXR activator rifampicin 

[185].  Whatever the effect of the CYP24 and CYP3A4 enzymes on 1,25(OH)2D3 

homeostasis, the role of PXR in metabolic bone disorders remains unclear. 

 Vitamin K2 is a critical nutrient required for blood clotting and plays a role in 

bone formation.  In fact, vitamin K2 supplementation increases bone density in vivo 

and is used clinically in the management of osteoporosis.  Vitamin K2 has been 

identified as a PXR ligand [150].  In vitro, vitamin K2 was able to induce osteoblast 

bone markers in primary osteocytes isolated from wildtype, but not PXR-null mice 

[151].  Further studies indicate that the osteoblastgenic transcription factor MSX2 is a 

PXR-target gene and mediates the osteoprotective action of vitamin K2 [125].  In this 

manner, PXR plays a novel role as a mediator in bone homeostasis and may be an 

effective drug target in the treatment of osteoporosis. 

 2.3.9 Inflammatory Response 

 Exposure to xenobiotics can impair immune function.  In fact, it is a long-

standing observation that rifampicin tends to suppress immunological responses in 

liver cells [186-188].  Recent publications have demonstrated a mutual inhibition 

between PXR and the inflammatory mediator nuclear transcription factor kappaB 
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(NF-κB), thus providing a potential molecular mechanism that links xenobiotic 

metabolism and inflammation [189, 190].  Activation of PXR by rifampicin 

suppresses the expression of typical NF-κB target-genes such as cyclooxygenase-2 

(COX-2), tumor necrosis factor α (TNFα), intercellular adhesion molecule-1 (ICAM-

1) and several interleukins (ILs) [190].  Conversely, NF-κB activation by 

lipopolysaccharide (LPS) and TNFα results in the suppression of CYP3A4 activity 

through interactions of NF-κB with the PXR-RXR complex [191].  Furthermore, 

hepatocytes derived from PXR-null mice have elevated NF-κB target-gene 

expression compared to hepatocytes from wild-type mice.  The PXR-null mice also 

exhibit heightened signs of inflammation in their small bowel [190].  This could be 

due to the loss of negative regulation of NF-κB by PXR or due to inadequate 

clearance of toxic substances from this tissue. 

 Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the 

digestive tract including Crohn’s disease and ulcerative colitis.  The etiology of IBD 

is unknown.  However, PXR was identified as a gene strongly associated with the 

susceptibility to IBD [192].  In patients with IBD, decreased expression of PXR and 

PXR-target genes is observed [193, 194].  In the dextran sulfate sodium (DSS)-

induced IBD mouse model, treatment with the PXR agonist PCN protected against 

DSS-induced colitis compared to vehicle-treated mice.  However this treatment did 

not decrease the severity of DSS-induced colitis in PXR-null mice [195].  This 

indicates a role for PXR in protection against IBD.  Interestingly, two drugs approved 

for the treatment IBD, budesonide and rifaximin, have recently been identified as 
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PXR activators [196, 197].  However, further human studies are required to assess the 

potential role of PXR activation in therapeutics for IBD. 

 2.3.10 Glucose Homeostasis 

 Glucose production is tightly controlled by insulin and glucagon signaling and 

plays a critical role in survival during fasting and starvation by regulating the 

transcription of genes that are involved in gluconeogenesis such as glucose-6-

phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK).  Glucagon 

increases glucose production by up-regulating the transcription of these genes.  

Glucagon stimulates cAMP-activated protein kinase (PKA) to phosphorylate the 

cAMP response element binding protein (CREB), which then subsequently activates 

the transcription of G6Pase and PEPCK [198].  Insulin decreases glucose production 

by repressing the transcription of G6Pase and PEPCK.  In the absence of insulin, 

FOXO1 activates the transcription of G6Pase and PEPCK.  However, insulin 

signaling activates the phosphatidylinositol 3-kinase (PI3K)-Akt pathway to 

phosphorylate FOXO1, excluding it from the nucleus and resulting in the insulin-

dependent repression of G6Pase and PEPCK [199, 200].  Previous observations have 

revealed functional links between insulin- and xenobiotic-mediated signaling 

pathways.  For example, it is known that treatment with drugs that are known 

activators of PXR represses the expression of hepatic gluconeogenic enzymes [201-

203].  In fact, treatment with the mouse PXR activator PCN decreased blood glucose 

levels in fasting wild type but not PXR-null mice [204].  The G6Pase and PEPCK 

genes are also down-regulated in transgenic mice expressing constitutively activated 
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PXR [123].  It is becoming increasingly clear that PXR activation represses the 

gluconeogenic pathway by interfering with transcription factors and co-factors that 

are involved in the regulation of G6Pase and PEPCK gene expression. 

 FOXO1 is a transcription factor that positively controls the expression of 

genes involved in gluconeogenesis.  FOXO1 has been shown to interact with several 

NRs in a ligand-dependent or -independent manner and behaves as either a co-

repressor or co-activator [205, 206].  FOXO1 was found to be a co-activator of PXR-

mediated transcription.  In contrast, PXR inactivated FOXO1 transcriptional activity 

by preventing its binding to its response element in target genes such as G6Pase and 

PEPCK [203].  This provides one mechanism whereby drug activation of PXR could 

interfere with the gluconeogenic program.  It has also been proposed that PXR could 

inhibit the expression of gluconeogenic enzymes by interfering with the CREB 

pathway.  PXR activation results in the repression of PKA/CREB-mediated activation 

of the G6Pase promoter in mice and in human hepatocarcinoma cell lines.  This 

occurs by the ligand-dependent binding of PXR to CREB, which prevents CREB 

interaction with the cAMP response element (CRE) on the G6Pase promoter [207].  

Finally, PGC-1α is a glucagon-activated gene that binds to and activates HNF-4α 

mediated transcription of G6Pase and PEPCK.  Ligand-activated PXR dissociates 

PGC-1α from the HNF-4α complex through direct competition, thus repressing the 

transcription of PEPCK and G6Pase [202].  Since PGC-1α is also a co-factor for 

CREB- and FOXO1-mediated expression of gluconeogenic target-genes, a similar 

mechanism implicating the squelching of PGC-1α by PXR from those transcription 
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factors could be likely.  The underlying mechanism of how PXR represses glucose 

production appears to be the direct binding of PXR to transcription factors and 

accessory proteins that activate gene expression critical for the gluconeogenic 

program such as FOXO1, CREB, and PGC-1α. 

 2.3.11 Lipid Metabolism 

 In addition to gluconeogenesis, hepatic lipid metabolism plays an important 

role in survival during periods of fasting and starvation.  When blood glucose levels 

are low, the liver increases fatty acid oxidation and ketogenesis to provide extra-

hepatic tissues with ketone bodies through β-oxidation and ketogenesis.  The liver 

also decreases lipogenesis to lessen hepatic storage of triglycerides.  Under these 

conditions, carnitine palmitoyltransferase 1A (CPT1A) and mitochondrial 3-hydroxy-

3-methylglutarate-CoA synthase 2 (HMGCS2), the key enzymes in β-oxidation and 

ketogenesis, are up-regulated [208, 209].  On the other hand, stearoyl-CoA desaturase 

1 (SCD1), a key enzyme in the synthesis of unsaturated fatty acids is up-regulated by 

glucose [210].  In the absence of insulin, FOXA2 activates the transcription of 

CPT1A and HMGCS2. However, insulin signaling inactivates FOXA2 through the 

PI3K-Akt pathway resulting in the repression of CPT1A and HMGCS2 [211].  Insulin 

also increases the transcription of SCD1 by activating the lipogenic transcription 

factor sterol regulatory element-binding protein (SREBP) [212].  It is known that 

treatment with drugs, now classified as PXR activators, affect lipid metabolism in 

patients.  For example, treatment with rifampicin or carbamazepine appears to induce 

 96



hepatic steatosis, characterized by the accumulation of triglycerides in liver [213, 

214]. 

 Recent studies have shown that treatment with PCN down-regulates the 

expression of CPT1A and HMGCS2 in wild type, but not PXR-null mice.  Activated 

PXR physically interacts with FOXA2 through their ligand and DNA binding 

domains, thereby preventing FOXA2 from binding to its response element in the 

CPT1A and HMGCS2 promoters [204].  In addition, it has been shown that HNF-4α 

can activate CPT1A gene transcription [215].  As previously described, it has been 

demonstrated that PXR interferes with HNF-4α signaling by targeting PGC-1α and 

producing a squelching effect [202].  Since HNF-4α and PGC-1α are jointly involved 

in the regulation of CPT1A, it is likely that this type of crosstalk applies to this gene 

as well.  Furthermore, the expression of activated PXR in transgenic mice resulted in 

increased hepatic lipid accumulation that was independent of SREBP, but associated 

with increased expression of the free fatty acid transporter CD36 and accessory 

lipgenic enzymes such as SCD1 and long chain free fatty acid elongase [123].  CD36 

transcription is activated by free fatty acids and by PPARγ [216].  However, PXR 

may promote hepatic steatosis by increasing the expression of CD36 both directly on 

the CD36 promoter and indirectly through PXR-mediated activation of PPARγ [123, 

217].  In addition, Insig-1 has recently been identified as a novel PXR-target gene.  

Activation of Insig-1 gene expression by drugs leads to reduced levels of SREBP and 

consequently to reduced target-gene expression of genes responsible for triglyceride 

synthesis [122].  A companion report showed that activation of SREBP by insulin 
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inhibits the transcriptional activity of PXR [218].  It appears that drug and lipid 

metabolism is interconnected within a complex network of transcriptional regulators 

including PXR.  The role for PXR in the development of hepatic steatosis raises 

concern about the safety of drugs that are also PXR ligands.  Overall, the role of PXR 

in lipid metabolism and steatosis warrants further investigation. 

 2.4 Mechanisms of PXR Activation 

 2.4.1 Ligand Binding 

 PXRs from all species examined can bind to a myriad of structurally diverse 

xenobiotic and endobiotic compounds.  As previously described, the determination of 

the structure of the human PXR-LBD by X-ray crystallography has illuminated the 

molecular basis of PXR ligand-binding properties and has identified several residues 

that are critical for ligand binding.  In addition, two types of ligand binding assays 

have been developed for PXR.  The first is a direct scintillation proximity assay 

(SPA), which consists of genetically expressed and isolated receptors incubated with 

a test compound and a radiolabeled ligand.  Competition of the radiolabeled ligand 

with the test compound is measured and an IC50 can be determined [46, 219].  A 

second approach that has been used to determine whether compounds bind to PXR is 

the co-activator receptor ligand assay (CARLA).  The binding of an agonist to PXR 

results in a conformational change that permits interactions with the co-activator 

SRC-1.  This interaction can be measured by co-precipitation of radiolabeled SRC-1 

protein with PXR [42].  Studies using SPA and CARLA have demonstrated that many 

of the compounds that activate PXR do so by binding directly to the receptor.  These 
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binding assays are fairly straightforward to conduct; however their simplicity can also 

be a deficit.  For example, there is no cell membrane to act as a barrier to drug access.  

Cell based reporter gene assays represent a more complex assay to measure PXR 

activation by ligands and are often used to screen for PXR ligands in a high 

throughput format.  The reporter gene assay is comprised of expression vectors for 

full length PXR and a variation of the CYP3A promoter coupled to a reporter gene.  In 

this assay, increased luminescence or reporter gene activity is measured as an 

indication of CYP3A induction potential and an EC50 value can be determined.  

Typically there is a good correlation between EC50 and IC50 values in PXR 

transactivation and binding assays [220, 221]. 

 In silico modeling of PXR ligand binding would have an important role in 

drug development, especially if such models could eliminate drug candidates that 

may activate PXR and cause drug-drug interactions early in the drug development 

process.  However, the development of predictive in silico models of PXR-ligand 

interactions has proven to be very difficult.  Three studies have utilized molecular 

modeling analysis for PXR ligands.  The first study suggested that hydrophobicity of 

the ligand and adequate distance between the hydrogen-bond acceptor and the 

hydrophobic group is important for hPXR activation [222].  The second study utilized 

data on 12 diverse PXR activators to develop a three-dimensional pharmacophore.  

The pharmacophore was consistent with the hydrophobic nature of the PXR-LBD and 

was validated using a set of 28 known PXR ligands [223].  Finally, the third study 

suggests that highly active compounds share hydrophobic features that allow the 
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ligand to occupy large areas of the predominantly hydrophobic binding pocket [224].  

So far, it is not possible to utilize the crystal structure of PXR for predictive in silico 

modeling.  In fact, the broad specificity and the flexible nature of the PXR-LBD make 

structure based modeling very challenging. 

 2.4.2 DNA Binding  

 PXR binds as a heterodimer with RXRα to response elements composed of 

two copies of the NR binding motif AG(G/T)TCA in the promoter regions of genes 

[37].  The PXR-DBD is similar in structure to the RXRα-DBD, which is a double 

zinc-finger motif that binds to DNA in a sequence-specific manner.  The response 

elements are arranged as direct repeats with 3 to 5 bases separating the DBD binding 

sites (DR-3, DR-4, and DR-5 elements), as well as everted repeats separated by 6 or 8 

bases (ER-6 and ER-8 elements) (Figure 2-7) [42, 43, 117].  The PXR-RXR 

heterodimer was initially shown to bind to the DR-3 response elements in the 

CYP3A23 and CYP3A2 promoters [41, 94].  PXR binds to a DR-3 element and an 

ER-6 element in the promoter of its prototypical target-gene CYP3A4 [42, 44, 94].  In 

addition, DR-3 and ER-6 response elements are conserved in other xenobiotic-

inducible CYPs including CYP3A7 [225].  PXR also binds to DR-4 and DR-5 

response elements conserved in gene promoters such as CYP2B6 and MDR1 [116, 

226, 227].  Finally, PXR has been shown to bind to an ER-8 response element in the 

promoter of the MRP2 gene [117].  Since PXR and RXRα form only a single type of 

heterodimeric complex, the regions that connect the DBDs and LBDs must allow 

considerable flexibility to account for variations in response elements. 
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Figure 2-7. DNA-binding of PXR to its response elements. PXR binds as a 
heterodimer with RXRα to response elements composed of two copies of the NR 
binding motif half site AG(G/T)TCA.  This consensus sequence is arranged either 
as a direct repeat with a 3-5 nucleotide spacer (DR-3, DR-4, and DR-5) or as an 
everted repeat with a 6 or 8 nucleotide spacer (ER-6 and ER-8). 

 101



 2.4.3 Sub-cellular Localization 

 It was initially believed that PXR resides in the nucleus even in the absence of 

ligand.  Previous reports based on immunocytochemistry and GFP-tagged PXR 

localization experiments indicated that hPXR localized exclusively to the nucleus, 

regardless of the presence or absence of ligand [74].  However, other groups have 

detected ligand-dependent translocation of PXR from the cytoplasm to the nucleus 

(Figure 2-8) [228, 229]. 

Nuclear translocation of PXR appears to be dependent on the presence of a 

nuclear localization signal (NLS) mapped to amino acid residues 66 to 92 within the 

C-terminal region of the DNA binding domain [228].  It was further demonstrated 

that PXR exists in the cytoplasm in a complex with heat shock protein 90 (HSP90) 

and cytoplasmic CAR retention protein (CCRP) in HepG2 cells.  In fact, 

overexpression of CCRP increased the cytoplasmic level of the PXR, whereas a 

decrease in CCRP by treatment with siRNA repressed the PXR-mediated reporter 

activity in HepG2 cells [229].  It is apparent that CCRP and HSP90 are involved in 

the ligand-dependent nuclear translocation of PXR.  However, the specific molecular 

mechanisms involved in this process are currently unknown. 
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Figure 2-8. Ligand-dependent translocation of PXR from the cytoplasm to 
the nucleus.  PXR exists in the cytoplasm in a complex with HSP90 and CCRP.  
Upon ligand binding PXR dissociates from CCRP and HSP90 and is translocated 
to the nucleus where it can activate transcription of its target-genes. 
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2.4.4 Co-factor Interactions 

 The full activity of PXR depends on its interaction with co-regulator proteins 

that do not bind to DNA directly but have a pronounced effect on gene expression 

[38].  In general terms, non-liganded PXR forms a complex with co-repressor 

proteins that inhibit transcriptional activity, often through the recruitment of other co-

factor proteins that contain histone deacetylase (HDAC) activity.  HDACs alter 

chromatin structure by promoting chromatin compaction, thus rendering enhancer 

regions of genes less accessible to the necessary basal transcriptional machinery.  

Activation of PXR by ligand-binding induces a conformational change which results 

in the dissociation of co-repressor protein complexes and the subsequent recruitment 

of co-activator proteins that enhance gene transcription, often through the recruitment 

of multi-protein complexes containing histone acetyltransferase (HAT) activity 

(Figure 2-9) [38].  However, this simplified model is complicated by the fact that 

receptor activity is also influenced by the nature of the ligand, promoter location and 

context, and the expression levels of specific protein cofactors in specific tissue types.   
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Figure 2-9. PXR activity is regulated by co-factor binding.  PXR forms a 
complex with co-repressor proteins that inhibit transcriptional activity through 
the recruitment of HDACs.  This promotes chromatin compaction and renders 
genes less accessible to basal transcriptional machinery.  Ligand activation of 
PXR induces a conformational change, which results in the dissociation of co-
repressor protein complexes and the subsequent recruitment of co-activaor 
complexes that enhance gene transcription through the recruitment of protein 
complexes HAT activity. 
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 Most protein co-activators bind to PXR through the C-terminal AF-2 domain 

via an -LXXLL- motif.  In the absence of ligand, AF-2 exists in a conformation that 

favors interactions with co-repressor proteins, whereas in the presence of ligand, AF-

2 undergoes a conformational change that favors interactions with co-activator 

proteins [80].  The main co-activator protein involved in PXR activity is SRC-1, and 

the co-repressors involved include SMRT and nuclear receptor co-repressor (NCoR) 

proteins [230, 231].  Early studies determined via co-precipitation that PXR bound to 

SRC-1 [41].  Further studies confirmed that in the presence of ligand full length 

mouse PXR interacts with SRC-1 and the co-repressor receptor interacting protein 

140 (RIP140) [99].  The species-specific nature of PXR activity emphasizes the 

importance of confirming these interactions with the human receptor.  Several studies 

have confirmed human PXR’s interaction with SRC-1 [89, 100, 104, 231].  One of 

these studies also demonstrated interactions between hPXR and additional co-

activators including glucocorticoid receptor interacting protein 1 (GRIP1/SRC2), 

human activator for thyroid hormone and retinoid receptors (ACTR/SRC3), and 

PPAR binding protein (PBP) [104].  More recent studies have demonstrated that PXR 

binds to and is co-activated by PGC-1α on the CYP2A6 promoter [232].  PGC-1α is 

unique in that it has been shown to co-activate NRs in a ligand-independent manner 

and could play a role in ligand-independent regulation of PXR activity. 

 The interaction of PXR with co-repressor proteins is not as well characterized 

as its interaction with co-activator proteins.  SMRT and to a lesser extent NCoR 

interact with PXR in the absence of ligands, and different ligands have differing 
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abilities to prevent these interactions [104].  Several groups have examined co-

repressor effects on the CYP3A4 promoter in various species-specific cell lines.  

Transient transfection assays have shown that overexpression of SMRT inhibits 

PXR's transactivation of the CYP3A4 promoter; whereas silencing of SMRT enhances 

the reporter expression in the human embryonic kidney cell line HEK293 [233].  In 

the human hepocarcinoma cell line HepG2, but not monkey kidney CV-1 cells, PXR 

showed increased interactions with SMRT in the presence of rifampicin, which lead 

to decreased PXR activity on the CYP3A4 promoter [231].  In contrast, NCoR was 

responsible for the repression of ligand-induced CYP3A4 expression in human colon 

carcinoma LS180 cells, but a separate mechanism is required for the repression of 

MDR1 and UGT1A1 in the same cell line [234].  It is clear that the modulation of 

PXR activity by protein co-factors is a highly complex ligand-, tissue-, signaling-, 

and promoter-specific process.  Eulicidating the effects that co-regulator protein 

complexes have on the PXR transcriptional system remains an important area for 

future study. 

 2.4.5 Receptor Degradation 

 Degradation plays an important role in NR function by modulating protein 

levels.  Relatively little is known about the degradation of PXR.  However, 

preliminary studies show that PXR is degraded by the proteasome.  PXR was found 

to interact with suppressor for gal-1 (SUG-1), a component of the 26S proteasome 

complex, in the presence of progesterone but not in the presence of endocrine 

disrupting chemicals [99].  A follow up study confirmed that PXR is degraded by the 
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proteasome and that ligands that do not enhance PXR’s interaction with SUG-1, such 

as endocrine disrupting chemicals, block the degradation of PXR [235].  Therefore it 

is conceivable that ligands such as endocrine disrupting chemicals may affect PXR-

mediated transcription of target genes in part through the up-regulation of the PXR 

protein level.  The interaction between PXR and SUG-1 and the degradation of PXR 

by the proteasome appears to be complex and warrants further investigation. 

 2.5 Cell Signaling and PXR 

 2.5.1 Kinase Signaling and Post-translational Modification 

 Protein phosphorylation plays an important role in the regulation of NR 

function in general [236].  Drug-inducible CYP gene expression is known to be 

responsive to kinase signaling pathways; however, the exact mechanism by which 

these pathways intersect with PXR is unknown.  Treatment of mouse hepatocytes 

with the PKA activator 8-Br-cAMP potentiated the induction of Cyp3a11 by taxol 

and enhanced the binding of mouse PXR to SRC-1 and PBP.  Further kinase assays 

show that PXR can serve as a substrate for PKA in vitro, suggesting one potential 

mechanism for PKA-mediated modulation of CYP3A gene expression [237].  It is 

also noteworthy that while PKA activation potentiates the drug-inducible expression 

of Cyp3a11 in mouse hepatocytes, treatment of hepatocytes with 8-Br-cAMP serves 

as a repressive signal in both human and rat hepatocytes.  Similar to the PXR ligand 

response, this suggests a species-specific effect for the modulation of drug-inducible 

CYP3A gene expression by PKA signaling.  Activation of protein kinase C (PKC) 

signaling by phorbol myristate acetate (PMA) repressed PXR activity in reporter gene 
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assays and in hepatocytes by increasing the strength of interaction between PXR and 

NCoR, and by abolishing the ligand-dependent interaction between PXR and SRC-1.  

Interestingly, the protein phosphatase PP1/2A inhibitor okadaic acid strongly 

represses PXR-dependent transactivation [238].  In addition, cyclin-dependent kinase 

2 (Cdk2) attenuated the activation of CYP3A4 gene expression. PXR is a suitable 

substrate for the Cdk2 enzyme in vitro, and a phosphomimetic mutation at a putative 

Cdk phosphorylation site at (S350D) impaired the function of hPXR, whereas a 

phosphorylation-deficient mutation (S350A) conferred resistance to the repressive 

effects of Cdk2 on a reporter gene in HepG2 cells [239].  The results of these studies 

suggest that the activity of PXR is modulated by changes in phosphorylation within 

the cell, although direct phosphorylation of PXR was not demonstrated in vivo.  PXR 

could be involved in integrating external signals via phosphorylation, but these 

observations need to be investigated further. 

 Post-translational modification of co-factors and PXR-interacting proteins 

may also have an impact on PXR transactivation capacity.  For example, 

phosphorylation of RXRα at serine 32 inhibits the activity of several nuclear 

receptors, including PXR, that heterodimerize with RXRα [240].  The specificity and 

activity of NR co-factors is also regulated by kinase signaling and phosphorylation.  

Phosphorylation of SMRT on the C-terminal receptor interaction domain by the 

mitogen activated protein kinase (MAPK) kinase-kinase MEKK1 inhibits the 

interaction between SMRT and NRs [241].  In contrast, phosphorylation of SMRT by 

casein kinase 2 (CK2) on serine 1492 stabilizes SMRT-NR interactions [242].  In 
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contrast to SMRT, NCoR is refractory to MEKK1 phosphorylation and does not 

release NR partners in response to MEKK1 [243].  Since SMRT and NCoR exist in 

corepressor multiprotein complexes, their activity may be altered by kinase signaling 

that results in the phoshorylation of an HDAC.  For example, phosphorylation of 

HDAC4 enhances its nuclear accumulation, whereas phosphorylation of HDAC1 and 

HDAC2 alters their interactions with corepressor proteins [244-246]. 

 Seven phosphorylation sites for SRC-1 have been identified.  Phosphorylation 

of SRC-1, SRC-2, and SRC-3 can be induced by a variety of environmental stimuli 

including epidermal growth factor (EGF), cAMP, cytokines, and steroid hormones 

[247-249].  In addition, the phosphorylation of SRCs induced by these agents is 

required for optimal coactivator activity.  For example, SRC-1 phosphorylation at 

serines 1185 and 1179 is induced by cAMP and enhances the ligand-dependent and -

independent activity of NRs.  This phosphorylation event was also shown to be 

required for the interaction of SRC-1 with the HATs CREB binding protein (CBP) 

and p300/CBP associated factor (P/CAF) [247].  The p38 MAPK phosphorylates 

PGC-1α, a PXR-interacting coactivator protein, at three residues that occur in a 

region previously shown to interact with NRs [250].  However, it remains to be 

determined whether phosphorylation of PGC-1α affects PGC-1α’s ability to interact 

with PXR.  One study proposed that a repressor protein binds to the PGC-1α -

LXXLL- motif, and that the interaction with NRs is terminated upon activation of p38 

MAPK [251].  This suggests a model where a repressor protein and NRs compete to 

recruit PGC-1α and that activation of kinase signaling can shift that equilibrium.  In 
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liver, insulin treatment resulted in the phosphorylation and inhibition of PGC-1α 

through Akt2/protein kinase B (PKB) [252].  Unraveling the detailed roles that 

phosphorylation of PXR and its coregulator proteins play in transcriptional control 

remains an important area for future study (Figure 2-10). 
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Figure 2-10. Activation of signaling pathways modulates PXR activity. 
Signaling pathways and phosphorylation events affect NRs and NR cofactors by 
disrupting protein-protein interactions, DNA-binding, subcellular localization, 
protein stability and transactivation capacity.  The interface between signaling 
pathways and PXR warrants further study and is likely critical in the PXR 
response to environmental stimuli. 
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 2.5.2 Cytokine Signaling 

 It has been known for a number of years that the constitutive and inducible 

expression of CYPs is modulated during inflammation and sepsis.  Acute 

inflammation after surgery is associated with a decline in CYP3A4 expression and 

activity and has an impact on the metabolism of prescription drugs [253].  In addition, 

gene expression profiling in patients afflicted with ulcerative colitis revealed disease- 

and tissue-specific decreases in the expression of PXR and its target genes [193].  In 

primary cultures of human hepatocytes, treatment with various proinflammatory 

cytokines down-regulates the basal and inducible expression of CYPs [254, 255].  In 

particular IL-6 has been shown to specifically inhibit both the basal expression of 

CYP3A4 and its induction by rifampicin through PXR by at least 80%.  This was 

associated with a reduction in the expression of PXR shortly after IL-6 treatment.  

Since the transcriptional activity of PXR was not affected by IL-6 in reporter gene 

assays, the loss of CYP3A expression and inducibility likely results from the negative 

regulation of PXR gene expression by IL-6 [256].  Interestingly, in the human 

intestinal Caco-2 cell line, treatment with proinflammatory cytokines decreased the 

mRNA expression of CYP3A4 but increased the expression of MDR1, another PXR-

target gene [257].  This finding suggests that inflammation and infection trigger 

several cellular responses that affect drug bioavailability.  In this manner, cytokine 

signaling may have a promoter-specific effect on PXR activity, or may regulate these 

genes independently of PXR. 
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 Similar responses to cytokine signaling have been observed in rodent 

hepatocyte and whole animal studies.  In mice, the stimulation of inflammation by the 

injection of LPS reduced the expression Cyp3a11 in liver.  The decrease was 

associated with a marked reduction of PXR mRNA levels within 4 hours following 

treatment [258].  This effect appears to be PXR-dependent since the extent of PXR-

target gene suppression by inflammation is significantly diminished in PXR-null mice 

[259].  Also noteworthy is that LPS induced the down-regulation of PXR and PXR-

target genes in mouse placenta and fetal liver.  The down-regulation of PXR and its 

target genes in placenta was attenuated by treatment with a free radical trapping 

agent, suggesting the possible involvement of reactive oxygen species (ROS) [260, 

261].  In similar rat models of inflammation, inactivation of TNF4α prevented the 

down-regulation of the PXR-target gene OatP2, whereas inactivation of IL-1β 

prevented the down-regulation of the PXR-target gene Mrp2 [262].  Finally, 

treatment of rat hepatocytes with interferon γ (IFNγ) reduced CYP3A mRNA 

expression as well as CYP3A protein levels and activity [263]. 

 As described above, the activation of NF-κB by LPS and TNF4α results in the 

suppression of CYP3A4 expression through interactions of NF-κB and the PXR-RXR 

complex [191].  This is one mechanism by which cytokine signaling can modulate 

PXR activity.  Cytokine stimulation also activates PKC-dependent signaling 

pathways which are known to repress PXR activity [238].  Finally, it is clear that 

cytokine signaling can repress the expression of PXR itself, which results in a 

subsequent decrease in the expression of CYP3A.  Taken together, the effect of 
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inflammation and sepsis on PXR expression and PXR-mediated responses is not well 

understood but remains an important area for future investigation. 

 2.5.3 Growth Factor Signaling 

 Some evidence is accumulating for the role of growth factors in regulating 

PXR signaling.  Growth factors stimulate a variety of signaling cascades, are highly 

expressed upon liver damage and were shown to play a significant role in repair and 

regeneration [264].  Similar to the proinflammatory cytokines, some growth factors 

have been implicated in the down-regulation of CYP gene expression.  For example, 

treatment of primary cultures of either human or rat hepatocytes with epidermal 

growth factor (EGF) down-regulated the constitutive and inducible expression of 

CYPs including CYP1A, CYP3A, CYP2B, and CYP2C [265-269].  Treatment of 

human hepatocytes with hepatocyte growth factor (HGF) similarly decreased the 

basal and inducible expression of CYP3A4, but had no effect on the expression of 

phase II UGT and GST enzymes [270].  CYP3A4 expression is also modulated by a 

novel hepatotrophic growth factor, augmenter of liver regeneration (ALR).  ALR has 

no effect on PXR expression but does repress rifampicin-induced expression of 

CYP3A4 [271].  Another study aimed to investigate the effect that insulin-like growth 

factor-1 (IGF-1) and interferon (IFN)α treatment have on liver cirrhosis.  Co-

treatment of mice with IGF-1 and IFNα increased the expression of PXR and 

alleviated liver cirrhosis [272].  It is clear that growth factor signaling can modulate 

the expression of CYP genes, however the effect that growth factor signaling has on 
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PXR is unknown.  It is possible that these growth factors activate signaling cascades 

that interface with PXR or other proteins associated with PXR activity. 

 Fibroblast growth factors (FGFs) function in processes such as development 

and wound healing.  However, FGF19 (FGF15 in mouse) has recently emerged as a 

novel metabolic hormone.  FGF19 has been identified as an FXR-target gene in liver 

and intestine.  Gut-secreted FGF19 binds to its cell surface receptor FGF-receptor 4 

(FGFR4) on hepatocytes and initiates a c-Jun N-terminal kinase (JNK) signaling 

pathway causing an inhibition of CYP7A1 expression and subsequent bile acid 

synthesis [273, 274].  Recent studies have shown that FGF19 is also a PXR-target 

gene in intestine.  LCA or rifampicin treatment leads to the induction of FGF19 

promoter activity in intestinal cells [275].  This suggests a novel role for PXR in the 

LCA induced feedback-inhibition of bile acid synthesis via growth factor signaling. 

 2.6 PXR Crosstalk with Other Transcription Factors 

 The demonstration of crosstalk between PXR and other NR pathways 

indicates a more complex function for PXR.  In general, the PXR signaling pathway 

comprises a linear series of events including (1) a stimulus, (2) heterodimerization, 

(3) protein cofactor binding, (4) a set of target genes, and (5) physiological functions 

carried out by gene products.  However, this masks the fact that the PXR signaling 

pathway is interconnected with other pathways via multiple possibilities for crosstalk.  

These crosstalk events are apparently reciprocal, such that PXR activation and the 

expression of PXR-target genes are dependent on and affect the function of other 
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receptor pathways.  The crosstalk between PXR and other transcription factors is 

summarized in Table 2-2. 
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Crosstalk Mechanism Consequence 
PXR-CAR PXR and CAR share agonists; 

PXR and CAR share response 
elements within the same target 
genes 

PXR and CAR control overlapping 
target genes; PXR and CAR are 
functionally redundant in regard to 
xenobiotic metabolism 

PXR-FXR FXR and PXR share agonists; 
FXR activates PXR target-genes; 
FXR controls PXR gene 
expression 

Increases xenobiotic metabolism in 
response to bile acids; bile acid 
homeostasis is controlled by 
xenobiotics 

PXR-LXR LXR inhibits PXR transcriptional 
activity 

Xenobiotic metabolism is decreased 
by oxysterols 

PXR-SHP SHP inhibits PXR transcriptional 
activity; PXR controls SHP 
expression 

Xenobiotic metabolism is controlled 
by bile acids; bile acid homeostasis is 
controlled by xenobiotics 

PXR-  
HNF-4α 

PXR inhibits HNF-4α activity by 
competition for binding sites and 
PGC-1α 

Gluconeogenesis and fatty acid 
homeostasis are altered by 
xenobiotics 

PXR-VDR PXR and VDR share response 
elements; CYP3A4 catabolizes 
vitamin D 

Vitamin D controls xenobiotic 
metabolism; xenobiotics alter VDR 
target-gene expression and decrease 
active levels of vitamin D 

PXR-
PPARγ 

PXR induces PPARγ expression; 
PXR induces PPARγ target gene 
CD36 

PXR activation induces hepatic 
steatosis 

PXR-
PPARα 

PPARα controls PXR gene 
expression 

PPARα activation increases 
xenobiotic metabolism 

PXR-GR GR controls PXR gene expression Glucocorticoids control xenobiotic 
metabolism 

PXR-NF-κB PXR and NF-κB are mutually 
repressive 

Inflammation decreases xenobiotic 
metabolism; PXR activation 
alleviates inflammation 

PXR-
FOXO1 

FOXO1 increases PXR 
transcriptional activity; PXR 
inhibits FOXO1 transcriptional 
activity 

Reciprocal interaction between 
xenobiotic metabolism and 
gluconeogenesis 

PXR-
FOXA2 

PXR inhibits FOXA2 
transcriptional activity 

Xenobiotics decrease fatty acid 
metabolism 

Table 2-2. Crosstalk Between PXR and Other Transcription Factors. Crosstalk 
between PXR and other transcription pathways indicates a more complex function 
for PXR.  This crosstalk is reciprocal and affects the physiological functions of 
both PXR and other pathways. 
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2.6.1 PXR and CAR 

 Like PXR, CAR is a ‘xeno-sensing’ receptor that protects the body from an 

array of harmful chemicals by up-regulating the expression of drug-metabolizing 

enzymes.  PXR and CAR share many of the same ligands and many genes have 

regulatory elements that can respond to both receptors.  A diverse array of 

xenobiotics interacts with PXR and CAR as agonists, activators, or inverse agonists.  

PXR appears to be activated by more compounds when compared with CAR, but 

these receptors share certain ligands and target genes.  For example, PB and 5β-

pregnane-3, 20 dione activate both PXR and CAR, whereas clotrimazole and 

androstanol are activators of PXR, but inverse agonists of CAR.  Similarly, bile acids, 

such as CA, are activators of PXR and suppressors of CAR transcriptional activity 

[47, 276].  In addition, since PXR and CAR regulate overlapping sets of target genes, 

the effect of these compounds on gene expression depends, to a certain extent, on the 

relative expression of both PXR and CAR.  For example, guggulsterone, the active 

ingredient in guggulipid, is a PXR activator and a CAR inverse agonist [277, 278].  

PXR-CAR crosstalk thus determines the activity of guggulsterone treatment toward 

expression of the prototypical CAR target-gene CYP2B.  Mammalian two-hybrid 

reporter gene assays, demonstrated that treatment with guggulsterone favors the 

binding of the coactivator SRC-1 to PXR and displaces SRC-1 from CAR [278].  

Therefore, the induction of CYP2B gene expression depends on the ratio of PXR to 

CAR. 
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 PXR response elements are sometimes also recognized and transactivated by 

CAR and vice versa [117, 133, 227, 279, 280].  This would suggest an equal cross-

regulation of target genes between PXR and CAR.  However, even though PXR and 

CAR bind to and transactivate the same or similar response elements in the CYP3A 

and CYP2B promoters, their efficiencies in gene transcription are not the same.  

Human hepatocyte studies revealed nonselective induction of both CYP2B6 and 

CYP3A4 by PXR activation but marked preferential induction of CYP2B6 by 

selective CAR activation [281].  Furthermore, the generation of PXR- and CAR-null 

mouse models was useful in determining that mPXR and mCAR regulate distinct and 

overlapping sets of target genes in vivo [110].  In addition to knockout mouse models, 

the development of ligands that are specific for either PXR or CAR, such as CITCO 

for CAR, may help in discriminating between CAR- and PXR-mediated gene 

expressions [282].  The response of drug-metabolizing enzymes to PXR and CAR 

activation may originate from either or both receptors depending on their relative 

abundance and their affinity for specific ligands and response elements.  PXR and 

CAR are also competing for shared ligands and receptor interacting proteins 

including RXRα, SRC-1, and PGC-1α.  It is likely that the crosstalk between PXR 

and CAR resulted from an adaptive advantage for organisms to increase their ability 

to detect and eliminate a wide variety of toxic compounds, a so-called ‘metabolic 

safety net’. 
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 2.6.2 PXR, FXR, LXR, and SHP 

 As mentioned above, bile acids are essential for cholesterol absorption and for 

the solubilization of dietary fats.  The conversion of cholesterol to bile acids in the 

liver is initiated by the 7-hydroxylation of cholesterol by the CYP7A1 enzyme.  Some 

bile acids are highly toxic, so their homeostasis is tightly controlled by a number of 

NRs including HNF4α, LXR, FXR, SHP, liver receptor homolog-1 (LRH-1), CAR 

and PXR [118, 159-161].  Oxysterols activate LXR to increase the expression of 

CYP7A1 [283].  Feedback repression of CYP7A1 is mediated by bile acids that 

activate FXR.  The activation of FXR increases the expression of SHP, which inhibits 

positive regulators of CYP7A1 including HNF4α and LRH-1 [284, 285].  Bile acids 

are oxidized, conjugated, and transported by the products of PXR and CAR target-

genes including CYP3A, UGTs, SULTs, MRPs, and OATP2 [286, 287].  Bile acid 

and xenobiotic detoxification pathways are therefore closely linked and many levels 

of crosstalk exist between the two. 

 FXR and PXR share some of the same ligands.  LCA and its 3-keto derivative 

ursodeoxycholic acid are PXR agonists [92, 93].  Activation of PXR by LCA, which 

is highly toxic, results in the up-regulation of PXR-target genes including CYP3A4 

and OATP2, which are involved in the metabolism and transport of bile acids [92, 

118].  In addition, FXR controls PXR gene expression and can transactivate some 

PXR-target genes.  Feeding wild-type mice with cholic acid or the FXR agonist 

GW4064 results in PXR and PXR-target gene induction, whereas no induction is 

observed in FXR knockout mice.  FXR binds to a region in the PXR promoter and 
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results in increased transcription of PXR [288].  The findings that LCA induces 

expression of CYP3A in PXR-null mice and that FXR activates the CYP3A4 promoter 

in vitro suggests that FXR may in involved in the regulation of PXR-target genes [93, 

289].  In fact, two functional FXR response elements have been indentified in the 

xenobiotic responsive enhancer module (XREM) of CYP3A4, one of which is also 

known to bind to PXR [94].  Sequences known to be response elements of PXR have 

also been shown to be targets of FXR in the SULT2A1 and MRP2 genes [117, 290].  

The combination of FXR-mediated activation of PXR and PXR-target genes provides 

an amplification mechanism for bile acid detoxification. 

 SHP represses CYP7A1 primarily by interacting with and inhibiting LRH-1.  

SHP has been shown to bind to and inhibit the activity of other transcription factors 

including CAR, LXR, FOXO1 and HNF4α [291-294].  SHP has also been shown to 

interact with PXR in a ligand-dependent manner and inhibits its transcriptional 

activity [165].  Furthermore, PXR may play a role in the regulation of SHP 

expression.  In silico modeling identified a number of PXR response elements in the 

SHP promoter.  PXR binds to these response elements in vitro and the induction of 

SHP expression by PXR in the presence of rifampicin was confirmed in HepG2 cells 

[295].  This finding combined with the fact that PXR is activated by bile acids 

suggests a mechanism for amplifying the detoxification response to bile acid toxicity 

by decreasing CYP7A1 expression.  However, it is interesting that the repressive 

effect of SHP on PXR should circumvent this effect.  Nonetheless, the crosstalk 
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between SHP and PXR likely generates functional interference between bile acid 

homeostasis and xenobiotic detoxification pathways. 

 LXR enhances CYP7A1 expression in response to cholesterol and oxysterols 

[283, 286].  Hydroxylated bile acids generated in part by CYP3A4 are LXR agonists.  

These compounds have also been shown to inhibit xenobiotic metabolism in liver.  

The LXR/RXR heterodimer can bind to the same response elements as PXR.  In fact, 

reporter gene assays revealed that LXR inhibits the transcriptional activity of PXR 

through competition for binding sites [296].  This is consistent with previous 

observations that rats fed a high cholesterol diet have lower basal and inducible CYP 

expression compared to control animals [297].  Various levels of crosstalk reveal 

connections between the xenobiotic and bile acid pathways, suggesting that both 

pathways have established a long-standing cooperation throughout evolution. 

 2.6.3 PXR and HNF4α 

 HNF-4α is a transcription factor that binds to DNA as a homodimer and 

regulates the expression of several hepatic genes.  Fetal and adult mice with a 

conditional deletion of HNF-4α have been used to determine the role of HNF-4α in 

PXR and PXR-target gene expression.  The expression of CYP3A and PXR were 

suppressed by the inactivation of HNF-4α.  In addition, elements in the PXR and 

CYP3A promoters were identified that confer with HNF-4α binding [60, 61].  These 

phenomena were confirmed in reporter gene assays of PXR-mediated transcription of 

CYP3A4 in HepG2 cells [61].  In addition to CYP3A4, HNF-4α is also required for 

the maximal PXR-mediated induction of the CYP2C9 promoter [298].  Recently a far 
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module in the CYP3A4 promoter was shown to support the constitutive activity of 

CYP3A4.  The far module, like a previously characterized distal module contains 

PXR response elements and elements recognized by HNF-4α.  The presence of HNF-

4α on the distal module increased rifampicin-induced reporter activity, but HNF-

4α on the far module decreases it [299].  The difference between the far and distal 

modules in responding to HNF-4α suggests that HNF-4α plays a role in the fine-

tuning of PXR-mediated regulation of CYP3A4. 

 PXR and HNF-4α also exhibit crosstalk through competition for co-factors.  

Ligand-activated PXR interferes with HNF-4α signaling by targeting the common 

coactivator PGC-1α.  This squelching effect occurs through an increase in PXR-

PGC-1α complex formation and an associated decrease in HNF-4α-PGC-1α complex 

formation, leading to a decrease in the expression of HNF-4α target genes involved in 

the regulation of bile acids and glucose such as CYP7A1, G6Pase and PEPCK [163, 

202].  The crosstalk between PXR and HNF-4α plays a significant role in the 

regulation of xenobiotic, bile acid, and glucose homeostasis pathways.  Therefore the 

application of drugs targeted to this crosstalk could be useful in the treatment of 

various pathological liver conditions. 

 2.6.4 PXR and VDR 

 VDR mediates the effects of 1,25(OH)2D3 on a number of genes involved in 

biological functions such as bone mineralization.  Several studies have demonstrated 

that 1,25(OH)2D3 induces the expression of CYP3A4, CYP2B6, and CYP2C9 in 

intestinal cell lines and human hepatocytes [300-302].  Since 1,25(OH)2D3 does not 
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activate PXR, VDR was thought to be responsible for the observed induction.  In fact, 

the VDR/RXR heterodimer binds to and transactivates PXR response elements in the 

CYP3A4, CYP2B6 and CYP2C9 genes [300, 302, 303].  In the absence of xenobiotic 

ligands, the basal expression of PXR-target genes may be controlled in part by VDR.  

Since vitamin D is present in our diets, it is possible that dietary habits may influence 

the inter-individual variability in the basal expression of PXR-target genes.  Also 

similar to PXR, LCA binds to and transactivates VDR leading to increased expression 

of CYP3A4 and MRP3 [303].  It is suspected that in the presence of activators that 

PXR competes with VDR for response elements to enhance the transcription of target 

genes. 

 A reciprocal role in which PXR controls the expression of VDR-target genes 

has also been investigated.  CYP24 is the major enzyme that contributes to the 

metabolism of 1,25(OH)2D3 to the inactive form 1,24,25-trihydroxyvitamin D3 

(1,24,25(OH)3D3).  In this manner CYP24 appears to regulate the negative feedback 

process that controls vitamin D homeostasis.  CYP24 has been identified as a PXR-

target gene by both in vivo and in vitro studies and PXR has been shown to bind to 

and transactivate the CYP24 promoter [182].  This suggests that PXR ligands may 

activate CYP24 expression and alter 1,25(OH)2D3 homeostasis.  However, this had 

been called into question by a study that showed that activation of PXR did not 

induce CYP24 expression or transactivate the CYP24 promoter [184].  In fact, PXR 

may repress vitamin D3-mediated activation of the CYP24 gene by preventing the 

dissociation of SMRT from VDR on the CYP24 promoter.  The degree of PXR-
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mediated squelching of SMRT appears to be dependent on the ratio of vitamin D to 

the PXR activator rifampicin [185].   

 An alternative mechanism for the role of PXR crosstalk with the vitamin D 

pathway has recently been proposed.  The PXR-target gene CYP3A4 may also be a 

major source of 1,25(OH)2D3 metabolism in liver.  Although the affinity and 

efficiency of 1,25(OH)2D3 metabolism by CYP3A4 is 10 fold lower than that of 

CYP24, the relative expression of both CYPs suggest that CYP3A4 may play a 

dominant role in 1,25(OH)2D3 metabolism in liver [183]. The effect of VDR-PXR 

crosstalk on the expression of CYP24 and CYP3A4 may play an important role in 

1,25(OH)2D3 homeostasis. 

 2.6.5 PXR and PPAR 

 PPARγ is a member of the PPAR family of NRs and is an important regulator 

of adipogenesis and lipid storage through the activation of target genes involved in 

lipid metabolism and transport.  Activation of PXR results in increased hepatic lipid 

accumulation and is associated with increased expression of a number of genes 

involved in lipid metabolism including PPARγ, and the fatty acid transporter CD36 

[123].  The use of PXR transgenic and knockout mice showed that PXR is both 

necessary and sufficient for CD36 gene activation.  Additional promoter analyses 

revealed a PXR response element in the CD36 promoter, establishing CD36 as a 

direct transcriptional target of PXR [217].  Since PPARγ, a positive regulator of 

CD36 expression, is a PXR-target gene, PXR may be able to regulate CD36 

expression directly or indirectly through its activation of PPARγ.  This crosstalk 
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between PXR and PPARγ in the regulation of CD36 activity may play an important 

role in lipid homeostasis and the development of hepatic steatosis. 

 Additional evidence suggests that PPARα, another member of the PPAR 

family may play a role in the activation of the PXR gene itself.  Several chemicals 

have been shown to regulate PXR mRNA expression including the PPARα agonists 

clofibrate and perfluorodecanoic acid [49].  Analysis of the PXR promoter has shown 

that PPARα-mediated induction of PXR expression occurs via a PPAR-binding site 

located approximately 1.3 kb upstream of the transcription start site.  Ablation of this 

site prevented PPARα-mediated activation of PXR gene expression [304].  Therefore, 

compounds that increase PXR expression via PPARα signaling and compounds that 

interact with the PXR protein likely have synergistic effects on CYP3A induction.  

This crosstalk between PPARα and PXR represents another potential mechanism for 

drug interactions.  

 2.6.6 PXR, GR, and NF-κB 

 In primary cultures of human hepatocytes, expression of the PXR mRNA 

appears to be glucocorticoid-dependent [58, 305].  A functional glucocorticoid 

response element has not yet been identified in the PXR promoter region.  However, 

any process that affects the expression or activity of GR is expected to affect the 

expression of PXR.  In reporter gene assays, co-treatment of PXR ligands together 

with dexamethasone resulted in enhanced basal and ligand-dependent CYP3A4 

promoter activity.  This induction was attenuated by treatment with a GR antagonist 

and by introduction of GR siRNA [306].  Ketoconazole and miconazole are known 
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antagonists of GR.  Treatment of hepatocytes with these azole compounds down-

regulates the expression of PXR and PXR-target genes [307].  Additional studies have 

shown that activated GR is involved synergistically in the xenobiotic-responsive 

regulation of PXR-target genes including CYP2C8, CYP2B6, UGT1A1, and GSTA2 

[113, 308-310]. 

 It is well known that inflammation and sepsis are associated with the down-

regulation of PXR-target genes.  In fact, bacterial endotoxins and proinflammatory 

cytokines have been shown to reduce expression of PXR and PXR-target gene 

expression in human hepatocytes [256, 311].  These cytokines also activate NF-κB 

and this factor has been shown to bind and inactivate GR [312].  It has been shown 

that activation of NF-κB by IL-1β in human hepatocytes leads to the inhibition of GR 

activity, followed by the down-regulation of PXR, CYP3A, and UGT1A1 [311].  

Recent work has also demonstrated a mutual inhibition between PXR and NF-κB.  

Activation of PXR suppresses the expression of NF-κB target-genes, and PXR-null 

mice have elevated NF-κB target-gene expression compared to wild type mice [190].  

Conversely, NF-κB activation inhibited PXR and its target genes through NF-κB-

mediated disruption of the PXR-RXR complex [191].  During inflammation NF-κB 

activation may lead to the suppression of PXR expression and activity by both GR 

and NF-κB respectively. Nevertheless, the crosstalk between PXR and NF-κB 

represents the basis for the suppression of the activity of several hepatic CYPs during 

inflammation. 

 128



 2.6.9 PXR, FOXO1, and FOXA2 

 FOXO transcription factors are involved in numerous biological processes 

including development, cell differentiation, apoptosis, gluconeogenesis, and lipid 

metabolism.  Hepatic gluconeogenesis and lipid metabolism are tightly controlled by 

glucagon and insulin signaling.  Gluconeogenesis is stimulated by glucocorticoids, 

cAMP and glucagon, and is negatively regulated by insulin and glucose.  Two 

transcriptional regulators are known to be critical in the regulation of 

gluconeogenesis, FOXO1 and PGC-1α.  PGC-1α expression up-regulates the 

gluconeogenic program and is a coactivator protein that associates with FOXO1 

[313].  In the absence of insulin, FOXO1 activates the transcription of genes involved 

in gluconeogenesis.  However, insulin signaling results in the phosphorylation of 

FOXO1, thereby excluding it from the nucleus.  The net result is the insulin-

dependent repression of genes involved in gluconeogenesis [199, 200].  The FOXO1 

transcription factor binds to PXR and co-activates its transcriptional activity [203].  

This protein-protein interaction may be of general significance for xenobiotic 

detoxification.  In addition, the crosstalk between FOXO1 and PXR appears to be 

reciprocal.  PXR inactivates FOXO1 transcriptional activity by preventing FOXO1 

from binding to its response elements in gluconeogenic target genes [203].  

Therefore, drug metabolism and gluconeogenesis may be co-regulated in response to 

insulin and/or xenobiotics.  This data is consistent with the long-standing observation 

that diabetes enhances hepatic drug metabolism and that drugs that activate PXR 

suppress the expression of genes involved in gluconeogenesis [123, 201].  Another 
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possibility is that the objective of the crosstalk between FOXO1 and PXR is NADPH 

homeostasis.  NADPH is essential for CYP activity.  In liver, the pentose phosphate 

pathway generates NADPH through the conversion of glucose 6-phosphate to ribose 

5-phosphate by glucose 6-phosphate dehydrogenase (G6PDH).  In gluconeogenesis, 

glucose 6-phosphate is converted to glucose by G6Pase.  The repression of 

gluconeogenesis by xenobiotic-activated PXR might be essential to maintain 

adequate levels of NADPH for xenobiotic detoxification.  On the other hand, the 

decrease in PXR activity by insulin signaling is consistent with decreased NADPH 

production through the repression of gluconeogenesis. 

 When blood glucose is low, the liver metabolizes fatty acids via ketogenesis 

and β-oxidation to provide ketone bodies to extra-hepatic tissues.  FOXA2 has been 

shown to positively regulate this process by controlling the transcription of target 

genes including CPT1A and HMGCS2 [211, 314].  Treatment with PCN down-

regulates the expression of CPT1A and HMGCS2 in wild type, but not in PXR-null 

mice.  It was further shown that activated PXR and FOXA2 physically interact 

through their ligand- and DNA-binding domains, respectively.  This interaction 

prevents FOXA2 from binding to its response elements and leads to the repression of 

CPT1A and HMGCS2 [204].  This crosstalk suggests that activated PXR repressed 

hepatic energy metabolism by decreasing both ketogenesis and β-oxidation. 
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 2.7 Pre-clinical Modeling and Prediction of PXR Activity 

 2.7.1 Human Hepatocytes 

 Given the prominent role of PXR in regulating drug metabolism and drug 

elimination, assessing PXR activation is an important part of the drug development 

process.  A range of screening models have been developed for the assessment of 

PXR activation potential in response to existing drugs and lead compounds.  Aside 

from in vivo studies, short-term human hepatocyte cultures are the ‘gold standard’ for 

in vitro analysis of drug-mediated induction of enzymes and transporters.  Some of 

the limitations of primary cultures of human hepatocytes are the cost, scarcity of 

supply, and high degrees of inter-individual variability that exists [315-317].  The 

development of immortalized human hepatocytes that maintain robust xenobiotic 

responsiveness may address this problem.  However, due to these limitations, the use 

of high-throughput in vitro PXR activation and binding assays are commonly used to 

identify PXR activators.  In silico modeling of PXR ligand binding would be a useful 

tool in drug development; however, as mentioned above, pharmacophore modeling of 

PXR ligand-binding is in the early stages of development.  

 2.7.2 In Vitro Activity Assays 

 A number of in vitro models are commonly used to study ligand interactions 

with PXR including SPA and CARLA as described previously.  The most common 

approach is to use either transient or stably transfected cell-based reporter gene assays 

incorporating expression vectors for PXR and the XREM derived from the CYP3A4 

promoter linked to a reporter gene in human liver and intestinal cell lines.  The 
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receptor expression plasmid can encode either the full-length PXR or a chimera 

between the PXR-LBD and the DBD of another heterologous transcription factor, 

such as the yeast transcription factor Gal4.  The reporter gene plasmid contains 

binding sites for either full-length PXR or the PXR chimera upstream of a gene 

encoding an easily quantifiable reporter protein such as luciferase (Figure 2-11).   
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Figure 2-11. Cell-based reporter gene assay. Reporter gene assays are a 
common way to assess PXR activity.  Host cells are transfected with a PXR 
expression plasmid and a reporter plasmid encoding an easily quantifiable reporter 
protein such as luciferase.  PXR is expressed in cells, heterodimerized with 
endogenous RXR, and binds to specific response elements with in the reporter 
gene.  The presence of a PXR ligand increases expression of the reporter gene, 
which can be detected using standard assays. 
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 The advantages of reporter assays are the ability to specifically assess PXR 

activation without the contribution of other receptors.  Although when using full-

length PXR one must be aware that the cell line used may express endogenous PXR 

or other receptors that are capable of transactivating the reporter gene.  The chimera 

system eliminates the background caused by endogenous receptors and permits ligand 

screening without considering the DNA-binding characteristics of PXR [316].  In 

order to account for transfection variability, stable cell lines containing both integral 

genes encoding human PXR and a reporter gene driven by XREM have been 

constructed.  Results generated using the stable cell line strategies are similar to those 

generated from transient transfection analysis [318].   

 HepG2 is a commonly used cell line in reporter gene studies, but does have 

limitations compared to human hepatocytes.  For example, the ability of compounds 

to induce CYP expression in human hepatocytes is not robustly reproduced in HepG2 

[319].  There can also be inter-laboratory variability in the phenotype of HepG2 based 

on repeated passaging of the cell line and variable cell culture conditions.  Another 

issue is that many experiments involve transfecting a receptor from one species into a 

cell line derived from another species.  Given the species-specific nature of the PXR 

response, great care should be taken in the interpretation of such data.  The cell lines 

currently available can not fully reproduce the hepatocyte, leading to discrepancies 

between the two systems.  For example, St. John’s wort is a more potent activator of 

PXR in reporter gene assays when compared with rifampicin, but the opposite is true 

when observing the induction of CYP3A4 in human hepatocytes [320, 321].  
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Hepatocytes or in intact livers may be able to metabolize the compound studied and 

remove the compound from the cell via transporter proteins.  Therefore, while 

reporter gene assays are useful tools for high throughput screening, positive results 

should be confirmed in vivo or in human hepatocytes. 

 2.7.3 PXR-null Mouse Models 

 It is difficult to extrapolate in vitro results to a clinical situation in vivo and 

cell lines are limited in the study of overall PXR function.  As a result, PXR animal 

models are necessary to study PXR function in a whole animal system.  Two PXR-

null mouse models have been successfully generated using similar strategies of 

disrupting the mouse Pxr gene by homologous recombination [92, 322].  PXR-null 

mice have no overt phenotype and biochemical analysis showed no difference in 

serum cholesterol, triglycerides, glucose, or liver enzyme levels compared to wild 

type controls.  These mice also develop and reproduce normally [134].  However, as 

expected, PXR-null mice do not respond to PXR ligands.  PCN strongly induces 

PXR-target genes in wild type mice, but not in PXR-null animals [92, 322].  This was 

also observed at the level of enzyme activity in that PCN did not increase testosterone 

6β-hydroxylation, nor did it decrease paralysis time by the muscle relaxant 

zoxazolamine, both measures of CYP3A activity, in PXR-null mice [92].  

Consequently, the PXR-null mouse was validated as a reliable model to study PXR-

dependent signaling pathways.  It is also noteworthy that the basal level of CYP3A 

expression is increased roughly 3-4 fold in PXR-null mice compared to wild type 

controls [92].  Perhaps the absence of PXR allows other constitutively active 
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transcription factors such as CAR to transactivate the CYP3A promoter.  Another 

possibility is that in the absence of ligand, PXR interacts with corepressor proteins on 

the CYP3A promoter and actively represses the transcription of that gene. 

 2.7.4 Humanized PXR Mouse Models 

 The major reason for developing a humanized PXR mouse model is the 

distinct species-specific difference in the response to PXR ligands.  Toward this end, 

several humanized PXR mouse models have been successfully generated.  Alb-hPXR 

and TTR-hPXR transgenic mouse models have been generated by the use of a cDNA 

fused to the liver-specific albumin and transthyretin promoters.  These models have 

been developed in a PXR-null mouse background.  As expected, these humanized 

PXR mice responded to the human-specific PXR activator rifampicin and showed 

little response to the mouse-specific PXR activator PCN (Figure 2-12) [101, 322].   
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Figure 2-12. The development of humanized PXR mouse models. Several 
humanized PXR mouse models have been generated by the use of a hPXR cDNA 
fused to a liver-specific promoter.  These models have been developed in a PXR-
null mouse background.  Humanized PXR mice respond to the hPXR activator 
rifampicin (Rif) and show little response to the mPXR activator PCN. Such 
models are powerful tools to study the effect of hPXR activation in a whole 
animal system. 
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 These two mouse lines were generated using cDNA containing strong 

promoters to drive high expression of PXR in liver.  Therefore, results obtained using 

these models do not directly recapitulate the expression pattern of human PXR in 

these mice, which lack expression of human PXR in extra-hepatic tissues.  To address 

this issue, two functional BAC-hPXR models have been generated using a bacterial 

artificial chromosome (BAC) [323, 324].  The BAC transgene contains the complete 

PXR gene and is under control of the native hPXR promoter.  These BAC-hPXR 

models represent a useful approach to address the effects of hPXR on drug 

metabolism and pharmacokinetics, especially since in humans PXR is also expressed 

in the gut where it is involved in xenobiotic metabolism and transport.  A fourth 

model in which hPXR was fused to the coactivator VP16 was generated and produced 

a consitutively active hPXR mouse.  The Alb-VP-hPXR mouse exhibits constitutive 

activation of PXR-target genes, as well as hepatomegaly, liver toxicity, and growth 

retardation compared to Alb-hPXR controls [322].  These phenotypes suggest that the 

sustained activation of PXR may be harmful.  Although these humanized mice don’t 

reflect human xenobiotic detoxification pathways with complete accuracy, they are 

powerful tools to study the effects of human PXR on xenobiotic detoxification in a 

whole animal system. 

 2.8 Therapeutic Opportunities 

 2.8.1 Hepatic Cholestasis 

 Cholestatic liver disease is characterized by the impairment of bile flow and 

the accumulation of bile acids and bilirubin.  Adaptive regulation of phase I and II 
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metabolism and of the biliary transport system can minimize cholestatic liver injury.  

PXR activation decreases bile acid synthesis through down-regulation of CYP7A1 and 

accelerates bile acid metabolism and elimination through the up-regulation of 

metabolic enzymes and transporters [118, 163].  Clinically, ligands for PXR such as 

rifampicin have long been used for the treatment of jaundice and pruritus associated 

with cholestatis.  Rifampicin alleviated pruritus and reduced the serum concentrations 

of total and conjugated bile acids [325-328].  Rifampicin treatment led to increased 

expression of MRP2 in patients with gall stones [329].  Furthermore, induction of 

MRP2 expression along with increased glucuronidation of bilirubin by PXR-induced 

UGT1A1 enhances bilirubin detoxification [330].  However, the clinical data are 

controversial in regard to rifampicin treatment for cholestasis.  In patients with or 

without cholestasis, rifampicin has been shown to increase plasma levels of bile acids 

within two hours of treatment [331].  Cholestatic hepatitis has been reported in 

humans treated with rifampicin [332].  In addition, a high incidence of hepatotoxicity 

has been reported in patients with biliary cirrhosis undergoing treatment with 

rifampicin [333, 334]. 

 While many rodent studies have shown that LCA-induced liver damage can 

be alleviated by PXR activation, less is known about whether these strategies can be 

applied to other models of cholestasis.  Administration of PXR ligands to mice with 

bile duct ligation reduced serum bile acid levels and increased bile acid clearance.  

Despite the improvement in cholestasis, markers of liver injury were increased in this 

study, possibly caused by the accumulation of PXR agonists in models of biliary 
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obstruction [126].  PXR is a promising target for the treatment of cholestasis.  

However, the risk of rifampicin-induced hepatotoxicity should be taken into account 

for patients with cholestasis and future studies are required to assess the safety of 

these treatments. 

 2.8.2 Hepatic Steatosis 

 Nonalcoholic fatty liver disease is the most common liver disorder in affluent 

societies and is characterized by the abnormal retention of lipids within the cells.  

Hepatic steatosis patients have few symptoms; however they are at increased risk of 

liver fibrosis, cirrhosis and cancer.  In humans, steatosis is most often caused by 

either alcohol abuse or metabolic syndrome, but may also be induced by certain drugs 

or toxins.  As previously discussed, PXR plays a role in lipid metabolism in the liver 

and its function may affect the pathogenesis of steatosis.  Hepatic lipid accumulation 

was noted in humanized PXR mice treated with rifampicin [123].  It was recently 

shown that PXR may promote hepatic steatosis by increasing the expression of CD36 

either directly or indirectly through PXR-mediated activation of PPARγ [217].   

 The role of PXR in hepatic steatosis raises concern about the safety of drugs 

that are also PXR ligands.  In humans, the PXR activators rifampicin and 

carbamazepine have been known to induce events of steatosis [213, 214].  

Nevertheless, the revelation of the role of PXR in hepatic steatosis opens debate on 

whether these regulatory pathways can be therapeutically targeted in steatosis.  If 

activation of CD36 expression is causative in steatosis, then one can speculate that the 
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inhibition of PXR or the direct inhibition of CD36 activity may represent a novel 

strategy in steatosis treatment. 

 2.8.3 Inflammatory Bowel Disease 

 Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the 

digestive tract occurring as ulcerative colitis or Crohn’s disease.  Ulcerative colitis is 

limited to the colon whereas Crohn’s disease most commonly affects the small 

intestine, but could involve any part or the gastrointestinal tract.  In the past, genetic, 

psychological, infectious, and immunological factors have all been implicated in the 

etiology of IBD.  A recent report suggests that reduced expression and/or functional 

polymorphisms of PXR are associated with IBD [192].  In fact, decreased expression 

of PXR and PXR-target genes has been noted in patients with IBD [193, 194].  

Progress is being made in the development of anti-inflammatory and 

immunosuppressive medications for the treatment of IBD.  The identification for the 

role of PXR in inflammation and IBD may provide a new drug target for these 

conditions.  Notably, budesonide, an anti-inflammatory drug frequently used in the 

treatment of IBD, has been recently identified as a PXR ligand [197].  In addition 

rifaximin, which was initially approved for the treatment of travelers’ diarrhea, was 

found to be useful in the treatment of inflammatory gastrointestinal disorders.  

Rifaximin has been shown to be beneficial in the treatment of ulcerative colitis and 

moderate Crohn’s disease as well as in the prevention of postoperative recurrence of 

IBD [335-337].  Furthermore, by using PXR-null and –humanized mouse models, 

rifaximin was identified as a gut-specific hPXR activator [196].  PXR appears to be a 
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promising target in the treatment of IBD; however, further studies are required to 

assess the potential role of PXR activation in such therapeutics.  

 2.8.4 Cancer and Chemotherapy 

 PXR plays an obvious role in cancer treatment because it is activated by a 

variety of common chemotherapeutic compounds like paclitaxel and cisplatin [104, 

135].  The up-regulation of PXR-target genes involved in increased drug clearance is 

one of the reasons that such high doses of antineoplastic agents are required for 

clinical efficacy.  It would be advantageous to identify compounds that limit PXR 

activation to avoid potential toxicities and drug interactions associated with 

chemotherapy.  In addition, acquired resistance to chemotherapeutic agents is a major 

clinical problem and cause of failure in the treatment of cancer.  Several targets have 

been shown to be related to chemo-resistance including efflux transporters, phase I 

and phase II enzymes, and DNA repair enzymes.  Many of these targets are encoded 

by PXR-target genes such as Mdr1/p-glycoprotein, MRPs, CYP3A, UGTs, and GSTs 

[338].  Activation of PXR induces the expression of these genes to accelerate the 

metabolism and elimination of chemotherapeutic agents, which may contribute to 

acquired drug resistance and multi-drug resistance.   

 A more basic link between PXR and the development of cancer is also 

emerging.  Increased expression of PXR and its target-genes has been detected in 

cancerous tissues including breast, prostate, ovary, endometrium and colon [54, 339-

342].  PXR also appears to be manipulated in cancer cells to promote tumor growth.  

A pattern of PXR up-regulation combined with estrogen receptor (ER) down-
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regulation was identified in endometrial and breast cancer cells suggesting that PXR 

provides a growth advantage to neoplastic cells by processing steroid like compounds 

and xenobiotics [54, 341].  Breast cancer cells also have increased expression of 

PXR-target genes such as OATP1A2 that is capable of mediating the cellular uptake 

of estrogen [56, 343].  In addition an anti-apoptotic role of PXR has been reported in 

human colon cancer cells [344]. 

 2.8.5 Antifibrogenesis 

 PXR has recently been proposed as a target for anti-fibrotic therapy.  In rats 

treated with carbon tetrachloride, liver necrosis and fibrogenesis are produced.  PCN 

treatment has been shown to inhibit the extent of fibrosis in liver in a PXR-dependent 

manner [345].  In human hepatic stellate cells short-term treatment with rifampicin 

inhibited the expression of fibrosis related genes.  Long-term treatment with 

rifampicin reduced the proliferation and trans-differentiation of hepatic stellate cells. 

All of the rifampicin-mediated effects in these cells were PXR-dependent [346].  The 

mechanism by which PXR alleviates fibrosis is unknown, but PXR may be a potential 

target for anti-fibrotic therapy. 

 2.8.6 Therapeutic Obstacles 

 PXR is an attractive target for drug discovery since its activity is regulated by 

small lipophilic molecules (Figure 2-13).  However, the modulation of PXR activity 

leads to changes in the expression of multiple target-genes that are involved in 

multiple physiological processes.  Therefore, therapeutic targeting of PXR may be 

associated with deleterious side effects.  One opportunity in the development of drugs 
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that target PXR is to take advantage of selective receptor modulators (SRMs).  SRMs 

are NR ligands that exhibit agonistic or antagonistic activity in a cell- or tissue-

dependent manner.  The classic SRM is tamoxifen, which can selectively activate or 

inhibit ERs and is commonly used in the treatment of breast cancer.  Tamoxifen 

exhibits antagonist activity in breast and partial agonist activity in endometrium 

[347].  The expression profile of coregulator proteins and signaling pathways within 

different cell types likely contributes to the differential activities of SRMs.  A study 

addressing the effect of various PXR ligands and potential promoter selectivity 

revealed that steroidal compounds preferentially induced PXR activity towards the 

CYP3A promoter when compared with the MDR1 promoter.  Conversely, anti-cancer 

agents preferentially induced the MDR1 promoter when compared with the CYP3A 

promoter.  The mechanism for this differential promoter activation was traced to the 

differential recruitment of co-activator proteins [135].  These results indicate that 

opportunities exist for the identification of selective PXR agonists that may be useful 

in the direct treatment of disease or in fine-tuning the efficacy of other medications.  

In order for PXR to be an effective therapeutic target, the activation of a potential 

therapeutic target gene must be separated from the activation of other genes involved 

in drug metabolism.  A better understanding of coregulator proteins, signaling 

pathways, and receptor crosstalk that interface with PXR activity may provide 

alternative drug therapies toward that end. 
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Figure 2-13.  Physiological roles of PXR and their relation to disease states. 
PXR was originally characterized for its role in xenobiotic and endobiotic 
detoxification.  However, recent evidence has described a role for PXR in 
glucose and lipid homeostasis, inflammation, and bone mineralization, to name a 
few.  Further studies might reveal that PXR is a good potential drug target for 
the treatment of various diseases. 
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 2.9 Conclusion 

 For decades it has been recognized that drug-inducible hepatic gene 

expression has a profound impact on xenobiotic biotransformation.  Since the 

identification and molecular cloning of PXR in 1998, this fascinating receptor has 

been well characterized and is now recognized to play a major role in the transport, 

metabolism and clearance of xenobiotics and clinically prescribed drugs.  The PXR 

protein is mainly expressed in liver and intestine where it is activated by a broad 

range of lipophilic compounds in a species-specific manner.  Upon activation, the 

majority of the cellular PXR translocates to the nuclear compartment where it binds 

to specific PXR-response elements and increases the expression of numerous target 

genes involved in the xenobiotic biotransformation process.  Ligand binding also 

alters the association of the PXR protein with co-regulator multi-protein complexes 

that bind to PXR and either enhance or repress transcription.  In this manner PXR has 

a hepato-protective role and represents the basis for an important class of drug-drug 

interactions.  PXR was originally characterized as a regulator of the homeostatic 

control of steroids, bile acid, and xenobiotics.  However recent evidence has revealed 

a role for PXR in gluconeogenesis, lipid metabolism, and inflammation through either 

direct regulation or crosstalk with other transcription factors.  Ligand binding is the 

primary mode of PXR activation, but several signaling pathways also interface with 

PXR and affect its overall responsiveness to environmental stimuli, likely by altering 

the phosphorylation status of PXR or its associated protein co-factors.  Finally, 
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pharmacological manipulation of the complex network of factors that contribute to 

PXR activity present therapeutic opportunities in the treatment of numerous diseases. 
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Chapter 3:  The Traditional Chinese Herbal Remedy Tian Xian 

Activates PXR and Induces CYP3A Gene Expression in Hepatocytes 

 3.1  Introduction 

 Nuclear receptors comprise a large superfamily of transcription factors that 

are characterized by a conserved N-terminal zinc-finger type DNA-binding domain 

and a carboxy-terminal ligand-binding domain.  They are involved in a variety of 

physiological, developmental, and toxicological processes [1].  Pregnane X receptor 

(PXR, NR1I2) was first cloned in 1998 by a research group at GlaxoWellcome as a 

part of an effort to identify new members of the nuclear receptor superfamily based 

upon homology and the mouse genome sequencing project [2].   

 Since then, PXR has been identified in various species, including human, 

monkey, cow, pig, rabbit, rat, mouse, chicken, fish, and worms [3-5].  In mammals, 

PXR is highly expressed in the major organs that are important in xenobiotic-

biotransformation including the liver and intestine [2].  Numerous studies show that 

activation of PXR in the liver and intestine produces increased expression of a group 

of genes that encode proteins involved in the uptake, metabolism, and elimination of 

potentially toxic compounds [6-10]. 

 It is well-established that PXR is a key regulator of xenobiotic-inducible 

CYP3A gene expression [11, 12].  In addition, PXR regulates the inducible 

expression of other genes involved in the metabolism of xenobiotic compounds such 

as CYP2B, CYP2C, CYP24, glutathione S-transferases, sulfotransferases, and 

glucuronosyltransferases [6, 13-16].  In rodents, PXR also regulates the expression of 
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genes encoding the drug transporter genes organic anion transporting polypeptide 

1A4, P-glycoprotein/Mdr1, multi-drug resistance-associated protein 2, and multi-drug 

resistance-associated protein 3 [10, 17, 18].  Therefore, PXR activation has a complex 

nature.  While it protects cells from toxic insults, it also represents the molecular basis 

for an important class of drug-drug interactions.   

 For example, if one drug activates PXR, it can be predicted that administration 

of this drug will promote the elimination of other co-administrated drugs that are also 

metabolized and eliminated by PXR-target gene products, thereby reducing the 

efficacy of many drug therapies in patients on combination therapy.  Additionally, if 

one drug is a administered as a pro-drug, as is the case with certain anti-cancer 

therapeutic agents, and a PXR agonist is then co-administered, the resulting increased 

biotransformation of the pro-drug would likely produce profound and unwanted toxic 

side effects.  This phenomenon is also observed with numerous herbal remedies 

including St. John’s Wort, coleus forskohli, guggulsterone and many others that 

contain constituents that activate PXR [19]. 

 Tian xian (also known as Tien Hsein and pronounced “Dianne Sean”) 

products are herbal dietary supplements manufactured in China by the China-Japan 

Feida Union Co., Ltd. (www.cjfu.com/en/Main.php).  Tian xian products are 

distributed world-wide and are aggressively marketed as anti-cancer herbal therapy 

through several websites including www.tianxian.co.uk, www.cancer-tian-xian.com, 

www.original-tianxian.com, and www.tianxian.com.  These products are also 

marketed as herbal therapies that alleviate the unpleasant side effects associated with 
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western-style anti-cancer treatments (www.tianxian.com/products/products.asp#3).  

The main supportive information regarding their therapeutic efficacy as anti-cancer 

agents comes in the form of online testimonials, many of which can be found as web 

links to the online distributors of these products (for an example see: www.cancer-

central.com/). 

 Currently there are no published studies or clinical trials in the scientific 

literature establishing the efficacy of these herbal remedies as treatments for cancer, 

or for their effectiveness as agents that can reduce the side effects of conventional 

chemotherapy in patients.  However, there are three published studies from one 

laboratory that were performed at the School of Dentistry in the College of Medicine 

at National Taiwan University in Taipei, Taiwan on the biological effects of tian xian 

liquid [20-22].  The authors conclude that a liquid formulation of tian xian modulates 

antigen-stimulated cytokine production by T-cells isolated from patients with 

recurrent aphthous ulcerations, inhibits cell growth, and induces apoptosis in a wide 

variety of human cancer cells in cell-based assays. 

 Multiple tian xian product lines exist on the market including several powder 

formulations contained in gelatin capsules, a liquid extract, plaster, suppositories, and 

an ointment (www.cjfu.com/en/2_Products/).  A careful examination of the 

information available on the websites reveals that the main product marketed as a 

treatment for cancer patients is derived from the ‘original’ formulation of Tien-Hsien 

Capsule No.1.  The dosing regimen for this powdered capsule product is three to six 

capsules three times daily with warm water after meals.  The herbal ingredients for 
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tian xian capsule #1, their proportion, and the purported therapeutic effect can be 

found at the manufacturers’ website (http://www.cjfu.com/en/2_Products/).  The 

herbs and their proportions are listed here: Radix Trichosanthis (10%), Radix 

Clematidis (10%), Radix Ginseng (15%), Radix Astragali seu Hedysari (10%), Ji 

Xing Zi (10%), Venenum Bufonis (3%), Radix Gentianae (7%), Caculus Bovis (5%), 

Polyporus Umbellatus (10%), and Radix Pulsatillae (20%).  The high potential for 

herb-drug interactions in patients undergoing conventional chemotherapy is of great 

concern.  We therefore sought to determine the extent to which these agents could 

potentially alter the pharmacokinetic and pharmacodynamic properties of co-

administered CYP substrates. 

 Here, we use cell-based reporter gene assays and primary cultures of rodent 

and human hepatocytes to determine the extent to which an extract of tian xian 

produces alterations in the expression of CYP3A, a clinically important anti-cancer 

drug metabolizing enzyme in liver.  We also describe the creation, validation, and use 

of a novel line of genetically engineered transgenic mice that express a FLAG-tagged 

human PXR protein selectively in the liver of mice lacking the murine Pxr gene.   

 3.2  Materials and Methods 

 Animal Care.  All rodents were maintained on standard laboratory chow and 

allowed food and water ad libitum.  The studies reported here have been carried out in 

accordance with the Declaration of Helsinki and/or with the Guide for the Care and 

Use of Laboratory Animals as adopted and promulgated by the U.S. National 

Institutes of Health.   
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 Compounds and Plasmids.  Unless otherwise stated, all chemical compounds 

were purchased from Sigma (St. Louis, MO).  The pSG5-hPXR and the pSG5-mPXR 

was previously described [23].  The GAL4-SRC1, GAL4-PBP, and GAL4-NCoR1 

expression vectors were previously described [23].  The full-length human PXR was 

fused to the VP16 transcriptional activation domain as described [23].  The pFR-LUC 

reporter gene which is responsive to GAL4-fusion proteins is commercially available 

(BD Biosciences, Palo Alto, CA).  The pFLAG-hPXR vector was constructed by 

excising the human PXR cDNA from pSG5-hPXR using EcoRI and SalI sites and 

inserting it into pCMV-TAG2B vector (Stratagene, La Jolla CA). 

 Extract Preparation.  An extract of tian xian Capsule No.1 (Green and Gold 

International, Manilla, Phillipines) was prepared using one capsule (250 mgs powder) 

and 1 ml of absolute ethanol.  The mixture was placed in a 1.5 ml centrifuge tube and 

extracted overnight at 4°C on a rotating shaker.  The mixture was centrifuged at 

16,000 X g for 5 min.  The ethyl alcohol supernatant was decanted and kept at -20oC 

until use.   

 Cell Culture and Transient Transfection Analysis.  The XREM-LUC 

reporter gene assays were performed as described [24].  The mammalian two-hybrid 

system analysis was performed as previously described [23]. 

 Generation of a TTR-FLAG-Tagged hPXR Mini-gene.  The plasmid 

containing the TTR mini-gene shown in figure 3-3A was digested with Stu I and 

subsequently treated with calf intestinal alkaline phosphatase.  The FLAG-tagged 

human PXR cDNA was excised from pFLAG-hPXR using NotI and XhoI, treated 
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with Klenow DNA polymerase and dNTPs, and was ligated together with the StuI 

digested pTTR mini-gene.  A graphical representation of the TTR-FLAG-tagged 

human PXR transgene is shown in figure 3-3A. 

 Transgenic Mouse Production and Genotyping.  The TTR-FLAG-tagged 

hPXR transgene was excised with HindIII.  The resulting 6 kb fragment was gel-

purified using the QIAEX II (Qiagen, Valencia, CA) DNA purification kit.  The 

transgene was then injected into single-cell B6C3f1 mouse zygotes.  Transgene 

positive mice were screened using polymerase chain reaction.  Briefly, a forward 

primer derived from the TTR promoter (5’ cctggtgcacagcagtgcatc 3’) and a reverse 

primer derived from human PXR (5’ cctccgacttcctcatctgcg 3’) were used to amplify a 

424 bp sequence that would not be present in wild-type mice.  Cycling conditions 

used for the genotyping reactions were as follows: 95°C for 15 seconds, 65°C for 15 

seconds, and 68°C for 15 seconds for 35 cycles.   

 Detection of hPXR Protein and Expression-profiling of the hPXR 

Transgene.  Approximately 250 milligrams of liver tissue was homogenized using a 

dounce Teflon homogenizer in 3 ml of lysis buffer containing 50 mM Tris-HCL pH 

7.4, 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100 and protease inhibitors.  The 

homogenate was placed in a centrifuge at 2500 x g for 10 min.  The supernatant was 

pre-cleared using 20 µl protein-A agarose.  The resulting supernatant was 

immunoprecipitated using agarose linked to the M2 monoclonal antibody that 

recognizes the FLAG epitope.  Following SDS-PAGE, the proteins were transferred 

to nitrocellulose membrane that was probed with our anti-hPXR antibody.   
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 To determine expression profile of the FLAG-tagged human PXR transgene, 

RNA was isolated from the heart, lung, and liver using wild type and transgenic mice 

as described [8].  Following DNase I treatment, 1µg of RNA was reverse transcribed 

and real-time quantitative polymerase chain reaction was performed to detect the 

human PXR transgene (left primer- 5’ caggaggaaattgatgcagtttt 3’; right primer- 5’ 

gtcaagatactccatctgtagcacagt; fluorogenic probe- 5’ cccaataaggcaccacccacctatga 3’).  

All values were normalized to signal from 18S (left primer- 5’ ccagtaagtgcgggtcataa 

3’; right primer 5’ ggttcacctacggaaacctt 3’; fluorogenic probe- 5’ 

cgattggatggtttagtgaggccc 3’ as described [10]. 

 ‘Humanized’ PXR mouse production.  PXR-knockout (PXR-KO) mice were 

generated as described previously [9].  The transgenic mice harboring the FLAG-

tagged hPXR mini-gene were crossed with the PXR-KO mice to obtain a mouse line 

expressing human PXR in a PXR-KO mouse background (TTR-hPXR).  Following 

successful generation of ‘humanized’ mice lacking the mouse Pxr gene, the 

transgenic mice were backcrossed to C57Bl6 mice and then intercrossed to generate a 

homozygous and congenic line of mice that express the FLAG-tagged hPXR gene 

selectively in liver. 

 Statistical Analyisis.  Differences between reporter gene and messenger RNA 

levels were determined using a one-way ANOVA followed by the Duncan’s multiple 

range post-hoc tests. 
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3.3  Results 

 Activation of PXR by Tian Xian in Cell-based Assays.  To determine the 

extent to which the extract of tian xian activated human PXR we used a previously 

described cell-based reporter gene assay [24].  In CV-1 cells, 10 µM rifampicin (RIF) 

activated the XREM-LUC reporter gene in the presence of transfected human PXR 

(Figure 3-1).  A stock extract of tian xian (250 mg/ml) was used to treat transfected 

CV-1 cells.  A clear concentration-response was also observed with increasing 

amounts of tian xian extract (Figure 3-1).  Thus, in CV-1 cells an extract of tian xian 

produced efficacious activation of human PXR.  The activation of PXR by tian xian 

at the highest concentrations examined was comparable to that of 10 µΜ rifampicin, a 

well known PXR ligand.   
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Figure 3-1 

 

 

Figure 3-1. Tian Xian Induces PXR Activity in XREM-Luc Reporter Gene 
Assays.  (A) CV-1 cells were transfected with the expression vector for human PXR 
and the CYP3A4-derived XREM-Luc reporter gene.  Cells were treated with vehicle 
(Veh, 0.1% Ethanol) or 10 µM rifampicin.  Two-fold serial dilutions of a stock 
extract of tian xian (250 mg/ml) were used to perform the concentration-response 
analysis.  All compounds were added as 1000X stock to each individual well.  All 
cells were treated for 24 h.  The data represent the mean of replicates + SD (n=8) and 
are normalized against β-galactosidase activity, and are expressed as fold induction 
over vehicle control. * = Statistically different from vehicle control (p<0.05). 
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 Modulation of PXR-cofactor Interactions in the Mammalian Two-hybrid 

System.  The interaction between accessory protein cofactors and PXR is modulated 

by the presence of activating ligands in cells.  Specifically, in the absence of 

activating ligands PXR exhibits a strong association with the nuclear receptor co-

repressor protein - NCoR [25].  Conversely, in the presence of activating ligands PXR 

strongly associates with members of the steroid receptor coactivator family including 

SRC-1 and SRC-2 [26, 27].  CV-1 cells were transfected with expression vectors 

encoding the GAL4 DNA-binding domain fused to the respective nuclear receptor-

interacting domains in the co-activator proteins SRC-1 and SRC-2 together with an 

expression vector encoding VP16-tagged full-length human PXR.  The GAL4-

responsive luciferase reporter gene, pFR-LUC, was used to determine the extent to 

which tian xian extract modulated interaction between human PXR and protein 

cofactors in cell-based assays.  Similar to rifampicin, treatment with increasing 

concentrations of tian xian extract (4, 31, and 250 µg/ml) recruited VP16-tagged 

human PXR to GAL4-SRC-1 and GAL4-SRC-2 (Figure 3-2A), but displaced VP16-

tagged human PXR from GAL4-NCoR (Figure 3-2B).  These data strongly suggest 

that the extract of tian xian contains biologically active molecules that modulate 

PXR-co-factor interactions in cell-based assays.  While this is useful information, 

activation of human PXR in a reporter gene assay does not always correlate with the 

ability to activate PXR in the context of hepatocytes. 
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Figure 3-2A 
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Figure 3-2B 

 
 
 
 
Figure 3-2. Differential Modulation of PXR-SRC-1/2 and PXR-NCoR 
Interactions by Tian Xian.  Receptor-interaction domains fused to the GAL4-DNA-
binding domain were used to determine whether tian xian altered PXR association 
with (A) SRC1/2 and (B) NCoR in the mammalian two-hybrid system.  Transient 
transfection of CV-1 cells was performed as described in materials and methods.  
Twenty-four hours post-transfection, CV-1 cells were treated with vehicle (Veh, 0.1% 
Ethanol) or 10 µM rifampicin.  A stock extract (250 mg/ml) was used to treat cells 
with three different dilutions of tian xian (1:64,000; 1:8,000, and 1:1,000).  All 
compounds were delivered as 1000X (1 µl/ml) and all wells were treated for 24 
hours.  The data represent the mean of replicates + SD (n=8) and are normalized 
against β-galactosidase activity, and are expressed as percent full reporter gene 
activity.  In (A) * = Statistically different from GAL4 fusion alone control (p<0.05). 
In (B) * = Statistically different from GAL4-NCoR + VP16-hPXR control (p<0.05). 
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 Construction and In Vivo Hepatic Expression of a FLAG-tagged Human 

PXR Mini-gene in PXR Knockout Mice.  The best characterized PXR-target gene in 

mouse liver encodes the Cyp3a11 enzyme, the heme-containing steroid mono-

oxygenase and functional orthologue of human CYP3A4.  We have produced a novel 

line of transgenic mice in which expression of the FLAG-tagged human PXR cDNA 

is under the control of an enhancer region isolated from the transthyretin promoter.  

As shown in figure 3-3A, this transgene drives expression of the FLAG-tagged 

human PXR transgene in a liver-selective manner.  This is consistent with the 

previous use of the same transthyretin enhancer region in other lines of transgenic 

mice [28].  We subsequently crossed this line of mice with the previously described 

PXR knockout mice [9], and then back-crossed these mice into the C57BL/6 line of 

mice to create a novel strain of mice that are homozygous for the transgene and lack 

the murine pxr gene.  Using this strategy we have created a novel line of mice that 

express the FLAG-tagged human PXR protein in a liver-specific manner in the 

absence of the murine Pxr gene (Figure 3-3B).  

 183



Figure 3-3A 

 184



Figure 3-3B 

 
 
Figure 3-3. Humanized PXR Transgenic Mouse Production and Expression 
Profiling.  (A). A 3,000 bp upstream fragment of the transthyretin promoter was used 
to drive expression of the FLAG-tagged human PXR cDNA.  The location of the 
PCR primers used for genotyping is shown with the forward primer (fp) located in the 
transthyretin promoter region.  The reverse primer (rp) is derived from the human 
PXR cDNA sequence.  The sequence of each primer is listed in Materials and 
Methods.  The resulting transgenic mouse line was crossed to the PXR knockout mice 
and then bred to homozygosity for both the Pxr knockout allele as well as the 
transgenic allele.  Nine successive backcrosses were performed into the C57Bl6 strain 
of mice to obtain a congenic line of mice that are homozygous for the transgene and 
nullizygous for the wild type Pxr allele. The anti-FLAG M2 monoclonal antibody was 
used to precipitate immuno-reactive proteins from wild type and humanized PXR 
transgenic livers.  Proteins were resolved using SDS-PAGE on identical gels.  One 
was stained with coomassie blue (left) and the other was transferred to PVDF 
membrane.  The membrane was subsequently probed using anti-human PXR 
antibodies (right).  (B). Total RNA was isolated from liver, heart, and lung tissue.  
The RNA was DNase-treated and reverse transcribed as described in Materials and 
Methods.  Real-time quantitative PCR analysis was used to detect expression levels 
of the human PXR transgene.  Data are expressed as relative transgene expression 
over wild type liver control and are normalized to 18S values obtained as described in 
Materials and Methods. 
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 The ‘Humanized’ PXR Transgenic Mice Exhibit Species-specific Responses 

to Known Species-specific PXR Activators.  It is well known that PXR exhibits a 

species-specific response to certain CYP3A inducers [4].  Indeed, several humanized 

PXR transgenic mouse models have already been developed that are currently being 

used to assess the potential for drug-drug interactions commercially and in academic 

laboratory settings [29, 30].  The hallmark experiment that determines the utility of 

these mouse models is the administration of rifampicin, a selective human PXR 

activator, and pregnenolone 16α carbonitrile (PCN), a selective mouse PXR activator 

to distinguish the functional difference between wild type and humanized PXR mice.   

We therefore administered 10 µM  concentrations of these two compounds for 48 

hours to primary cultures of hepatocytes isolated from wild type, PXR-KO, and 

humanized PXR mice (Figure 3-4A).  As expected, PCN induced the expression of 

Cyp3a11 in wild type hepatocytes, while rifampicin had only a minimal effect.  Also 

as expected, neither rifampicin nor PCN had any effect on the expression of Cyp3a11 

in hepatocytes isolated from PXR-KO mice.  In contrast, treatment of primary 

cultures of hepatocytes isolated from humanized PXR mice with rifampicin produced 

marked induction of Cyp3a11 gene expression, while treatment with PCN produced 

only minimal increased expression of this known PXR-target gene.   

To determine the extent to which PXR activity is required for induction of 

Cyp3a11 gene expression we treated primary cultures of hepatocytes isolated from 

wild type and PXR-KO mice with 10 µM  PCN and increasing concentrations of tian 

xian (4, 31, and 250 µg/ml).  Treatment with PCN produced robust and PXR-
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dependent induction of Cyp3a11 gene expression, while treatment with tian xian also 

increased Cyp3a11 gene expression in a concentration- and PXR-dependent manner 

(Figure 3-4B).  Primary cultures of hepatocytes isolated from humanized PXR mice 

were treated with 10 µM rifampicin and increasing concentrations of tian xian (4, 31, 

and 250 µg/ml).  Tian xian treatment produced increased levels of Cyp3a11 gene 

expression in a concentration-dependent manner, similar to that obtained with 

rifampicin, the prototypical human PXR activator (Figure 3-4C).  These data indicate 

that compounds contained within the tian xian extract activate both mouse and human 

PXR and produce increased expression of a known PXR-target gene, Cyp3a11, in the 

context of cultured hepatocytes. 
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Figure 3-4A 
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Figure 3-4B 
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Figure 3-4C 

 

Figure 3-4. The Expression of Cyp3a11 is Induced by Tian Xian in a PXR-
dependent Manner and in Humanized PXR Mouse Hepatocytes.  (A). Primary 
cultures of hepatocytes were isolated from transgenic humanized PXR, PXR 
knockout, and wild type mice.  Cultures were treated with vehicle (Veh, 0.1% 
DMSO) or 10 µM of Rifampicin or PCN.  All cells were treated for 48 hours before 
RNA isolation.  Total RNA was isolated and used in real time quantitative PCR 
analysis.  The data are normalized to 18S levels and are expressed as average values 
(n=3) + SD.  * = Statistically different from vehicle control group (p<0.05).  (B). 
Primary cultures of hepatocytes were isolated from wild type and PXR-KO mice.  
Cultures were treated with vehicle (Veh, 0.1% DMSO), 10 µM PCN, and increasing 
concentrations of tian xian extract.  All cells were treated for 48 hours before RNA 
isolation.  Total RNA was isolated and used in real time quantitative PCR analysis.  
The data are normalized to 18S levels and are expressed as average values (n=3) + 
SD.  * = Statistically different from vehicle control group.  (C). Primary cultures of 
hepatocytes were isolated from transgenic humanized PXR mice.  Cultures were 
treated with vehicle (Veh, 0.1% Ethanol), 10 µΜ of Rifampicin, or with three 
different dilutions of tian xian (1:64,000; 1:8,000, and 1:1,000).  All compounds were 
delivered as 1000X (1 µl/ml) and all wells were treated for 24 hr.   All cells were 
treated for 24 h before RNA isolation.  Total RNA was isolated and used in real time 
quantitative PCR analysis.  The data are normalized to 18S levels and are expressed 
as average values (n=3) + the SD.  * = Statistically different from vehicle control 
group.   
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 Tian Xian Induces the Expression of CYP3A4 in Primary Cultures of 

Human Hepatocytes.  The relative expense and low availability of primary cultures 

of human hepatocytes has recently led to a large effort to find suitable alternatives to 

test the potential for drug-drug and herb-drug interactions.  One of the more positive 

aspects of the PXR reporter gene assay and the use of humanized mouse models 

includes the genetic uniformity and technical convenience of both cell-based systems 

and engineered mouse models.  However, the ‘gold standard’ of drug metabolism 

studies required by the Food and Drug Administration (FDA) in the United States still 

remains the use of primary cultures of human hepatocytes.  We therefore sought to 

determine the extent to which the expression of the CYP3A4 gene was altered by 

administration of tian xian.  Figure 3-5 reveals that treatment of primary cultures of 

human hepatocytes with increasing concentrations of tian xian produced a 

concentration-dependent increase in the expression of the important drug 

metabolizing enzyme CYP3A4. 
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Figure 3-5 

 

Figure 3-5. The Expression of CYP3A4 is Induced Tian Xian in Hepatocytes 
Isolated from the Transgenic Humanized PXR Mice.  Primary cultures of 
hepatocytes were obtained from XenoTech, LLC.  Cultures were treated with vehicle 
(Veh, 0.1% Ethanol), or with three different dilutions of tian xian (1:64,000; 1:8,000, 
and 1:1,000).  All compounds were delivered as 1000X (1 µl/ml) and all wells were 
treated for 24 hr.   All cells were treated for 24 h before RNA isolation.  Total RNA 
was isolated and used in real time quantitative PCR analysis.  The data are 
normalized to 18S levels and are expressed as average values (n=3) + SD.  * = 
Statistically different from vehicle control group.   
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 3.4  Discussion 

 It has been nearly twenty years since the identification of drug-inducible 

members of the CYP3A subfamily of drug metabolizing enzymes [31-33].  It is now 

well known that induction of CYP3A4 gene expression in liver and intestine at the 

level of transcription by nuclear receptor proteins produces clinically relevant 

elevations in enzymatic activity of this extremely important drug-metabolizing 

enzyme [12].  It is also well known that both drug-drug and herb-drug interactions 

can affect the clinical outcome in cancer patients on combination therapy [34].  The 

purpose of this study was to determine the extent to which treatment with tian xian 

has the potential to produce alterations in the expression and activity of CYP3A4 in 

human patients.  Moreover, we present here a novel humanized PXR mouse model 

that will undoubtedly be useful for future studies involved in the pre-clinical testing 

of candidate drug molecules and additional herbal remedies. 

 There are two previously described transgenic ‘humanized’ PXR mouse 

models.  The first transgenic mouse model created utilized the albumin promoter to 

drive expression of the human PXR cDNA selectively in liver, but this model 

subsequently lacked any expression of the transgene in intestine [30].  To compensate 

for this lack of intestinal expression, another transgene was engineered using the fatty 

acid-binding protein promoter, thus generating a bi-transgenic mouse model with 

expression in both liver and intestine [35].  Recently, another group took a different 

approach that utilized a bacterial artificial chromosome containing the entire human 

PXR gene, including the relevant promoter regulatory sequences, to drive expression 
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of potentially all PXR splice variants in a manner that more closely recapitulates PXR 

expression in humans [36].  The model we present here has utilized the transthyretin 

promoter that expresses a FLAG-tagged human PXR cDNA selectively in liver and 

choroid plexus in brain (data not shown) in our PXR-KO mouse model, and has been 

backcrossed to produce a congenic line of mice containing the C57Bl6 genetic 

background. 

 Humanized mouse models are becoming extremely important in the pre-

clinical testing of novel drug candidate molecules.  By knocking-out the rodent pxr 

gene and replacing it with the human receptor, 'humanized' PXR mouse models have 

been established as unique tools to dissect the drug-induced xenobiotic response, and 

are aiding the development of safer drugs at an earlier stage of pre-clinical drug 

development.  These unique mouse models all have the advantage of providing 

reliable, cost-effective, plentiful, convenient, and genetically uniform systems that 

can be used to test for potential drug-drug and herb-drug interactions.  This is of 

particular importance in the herbal remedy industry, as it is not currently required by 

the FDA in this country to determine the extent to which their products are safe for 

co-administration with concurrently used prescription medications. 

 Tian xian represents only one example of potential herb-drug interactions, but 

we feel that the experiments presented here are particularly important because this 

herbal remedy is marketed on the world-wide web and is available without a 

prescription as an anti-cancer therapy to be used in conjunction with ‘western’ 

chemotherapeutic agents.  This product line purports to validate its efficacy as an 
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anti-cancer herbal remedy using on-line ‘testimonials’.  These testimonials tend to be 

cancer patients that are not responding to their conventional chemotherapy, but testify 

that tian xian co-administration eased their side-effects and increased the 

effectiveness of their chemotherapy.  Cancer patients can not test the validity of these 

on-line claims before using tian xian, and the experiments presented here do not 

specifically refute these claims.  However, our data strongly suggest that co-

administration of tian xian together with conventional chemotherapeutic agents, many 

of which are indeed substrates of the CYP3A4 enzyme, would likely increase their 

biotransformation. The potential danger highlighted in this study is that co-

administration of tian xian and conventional chemotherapeutics would tend to 

decrease the efficacy of anti-cancer agents that are metabolized and excreted by PXR-

dependent mechanisms.  Conversely, co-administration of tian xian with a pro-drug 

that requires bioactivation would likely increase the rate of such a conversion.  As is 

the case with cyclophosphamide and ifosfamide, induction of CYP3A4 activity would 

likely promote accumulation and possible toxicity due to their narrow therapeutic 

index.  Finally, since the tian xian extract is a complex mixture of compounds, it is a 

formal possibility that tian xian could simultaneously activate PXR and inhibit CYP 

enzymatic activity.  Future studies should address this issue by examining alterations 

in cytochrome P450 activity following administration of this herbal remedy. 

 It is well known that activation of PXR coordinately regulates the expression 

and activity of multiple drug transporter proteins, as well as numerous other drug 

metabolizing enzymes.  In addition to CYP3A4, PXR is involved in regulating 
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numerous members of the UDP-glucuronosyltransferase family [13, 37], 

sulfotransferases [15], drug transporter proteins and many other enzymes involved in 

handling oxidative stress in cells [6, 10, 16, 17].  Future studies will involve 

determining the extent to which this Chinese herbal remedy modulates the expression 

and activity of these enzymes in liver using primary cultures of human hepatocytes 

and the line of transgenic mice described here. 
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Chapter 4:  Cyclic Amp-Dependent Protein Kinase Signaling 

Modulates Pregnane x Receptor Activity in a Species-Specific 

Manner 

 4.1  Introduction 

 The nuclear hormone receptor, pregnane x receptor (PXR, NR1I2), regulates 

drug-inducible gene expression in liver and intestine [1].  PXR is activated by a vast 

array of compounds including certain steroids and bile acids, a plethora of naturally 

occurring compounds, specific antibiotics, antifungal drugs, polychlorinated 

binphenyls, organochloride pesticides, and phenobarbital (PB) [2].  The prototypical 

marker of PXR activation and best-characterized PXR-target gene in mammals 

encodes certain members of the CYP3A family of cytochrome P450 (CYP) drug 

metabolizing enzymes [3, 4].  It is now clear that PXR-mediated gene activation 

coordinately regulates a group of genes that encode CYP proteins and additional drug 

metabolizing enzymes, as well as drug transporter proteins in liver and intestine [5].  

Hence, PXR-mediated gene activation produces profound up-regulation of the 

metabolism, transport, and elimination of potentially toxic chemicals including many 

steroids, xenobiotics, cholesterol metabolites and other compounds from the body. 

 Ligand-mediated activation of PXR occurs in a species-specific manner [6].  

One of the most effective activators of human PXR is the macrocyclic antibiotic, 

rifampicin.  Interestingly, rifampicin does not appreciably activate mouse PXR. 

Conversely, pregnenolone 16α carbonitrile (PCN) is an efficacious activator of 

mouse PXR, but has only minimal effect on human PXR.  The species-specific 
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induction of CYP3A gene expression can be fully accounted for by evolution of the 

ligand-binding pocket of this nuclear receptor from mice to humans.  We and others 

have demonstrated this experimentally using novel lines of PXR-knockout mice 

crossed with additional novel lines of transgenic mice expressing the human PXR 

protein [7-10].  While much is known regarding the identity of target genes and 

ligands for this nuclear receptor, very little is known regarding the signal transduction 

pathways that interface with the PXR protein. 

 The primary target of intracellular cyclic AMP (cAMP) is cAMP-dependent 

protein kinase (PKA) [11].  Numerous physiological stimuli such as β-adrenergic 

stimulation during fasting and caloric restriction, as well as acute inflammation 

produce increases in the intracellular concentration of cAMP in hepatocytes.  The 

PKA signal transduction pathway is also involved in the phosphorylation of target 

proteins through indirect interaction with the classical mitogen-activated protein 

kinase (MAPK) signaling pathway [12].  There are conflicting reports in the literature 

regarding the effect of PKA signaling on drug-inducible CYP3A and CYP2B gene 

expression in hepatocytes.  Using primary cultures of rat hepatocytes, Sidhu et al. 

clearly demonstrated that PB-mediated induction of Cyp3A1 and Cyp2B1/2 

expression is inhibited by treatment with cAMP analogues [13].  Conversely, the 

same laboratory reported that forskolin treatment produces increased expression of 

Cyp3A1 in rat hepatocytes; however induction was independent of cAMP and PKA 

signaling [14].  The molecular basis for this difference was conclusively 

demonstrated when two groups independently found that forskolin functions as a 
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direct agonist of both rodent and human PXR, thereby inducing ligand-dependent 

expression of CYP3A genes [15, 16].  In mice, it has been reported that PB-mediated 

induction of Cyp3a11 and Cyp2b10 gene expression is inhibited by PKA activators, 

while inhibitors of PKA enhanced drug-inducible CYP gene expression [17, 18]. 

 Studies from our laboratory using mouse models show that the PKA signal 

transduction pathway synergizes with ligand-dependent PXR-mediated induction of 

Cyp3a11 gene expression [15].  These studies also revealed that the PKA-mediated 

synergism is a PXR-dependent phenomenon in mice.  Additional studies from our 

laboratory using mouse models indicate that PKA signaling interfaces with CAR 

activity by modulating CAR-protein cofactor interactions, and also by increasing the 

expression of the CAR gene itself [19].  During the course of these studies we noticed 

significant differences in PKA-dependent alterations of drug-inducible CYP gene 

expression that were dependent upon the species of rodent (mouse -versus- rat) used 

to isolate primary cultures of hepatocytes.  To date, there are no studies that we are 

aware of that have systematically investigated the effect of PKA signaling upon drug-

inducible CYP gene expression in hepatocytes across multiple species.    These 

observations led us to initiate a systematic study of the effect of PKA signaling on 

drug-inducible CYP3A gene expression in cultured hepatocytes across three different 

species; mice, rats, and humans.   

 Using primary cultures of hepatocytes we show here that pharmacological 

activation of PKA signaling using the cyclic AMP analog, 8-bromo cyclic AMP (8-

Br-cAMP), has a species-specific effect upon PXR-mediated activation of drug-
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inducible CYP3A gene expression.   In primary cultures of mouse hepatocytes, PKA 

signaling has a synergistic effect upon PXR-mediated Cyp3a11 gene activation.  

Conversely, in primary cultures of human and rat hepatocytes, PKA signaling 

dramatically represses PXR-mediated drug-inducible Cyp3A1 gene activation.  We 

use biochemical and pharmacological methods to explore the molecular basis of the 

interface between the PKA signal transduction pathway and the human PXR protein.  

In vitro 32P-labeling experiments using recombinant human PXR protein and several 

catalytically active protein kinases reveal that human PXR protein serves as a 

comparatively effective and direct substrate for PKA.  In vivo metabolic labeling 

experiments using 32P-orthophosphate show for the first time that human PXR exists 

as a phosphoprotein in cells.  Moreover, western blot analysis using antibodies 

directed against phosphothreonine amino acid residues reveals that activation of PKA 

signaling increases the phosphothreonine content of the human PXR protein.  

Mammalian two-hybrid analysis indicates that PKA signaling likely represses human 

PXR activity through increases in the strength of interaction between human PXR and 

the protein cofactor nuclear receptor co-repressor protein (NCoR).  Elucidation of the 

mechanism by which PKA signaling modulates PXR activity will likely be useful in 

the prediction and prevention of harmful drug interactions in patients on combination 

therapy that also suffer from diabetes, obesity, or acute inflammation.  It is of further 

interest to determine the extent to which the interface between PXR and key signal 

transduction pathways, such as the PKA signaling pathway, is evolutionarily 

conserved.  This thrust of research will also likely be useful in helping to understand 
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the molecular basis of altered drug metabolism pathways in patients with diabetes, 

obesity, and metabolic syndrome.  

 4.2 Materials and Methods 

 Hepatocyte Culture and Treatment.  Hepatocytes were isolated from male 

mice or rats using a standard collagenase perfusion method as described previously 

[20].  Hepatocytes were plated in collagen-coated 6-well plates at a density of 8 X 105 

live cells per well.  Primary cultures of human hepatocytes were purchased from 

CellzDirect (Pittsboro, NC).  Forty-eight hours after plating, hepatocytes were treated 

with 1 millimolar (mM) concentrations 8-bromo-cyclic-AMP or 8-bromo-cyclic-

GMP, 10 µM PCN, a known rodent PXR agonist, or 10 µM rifampicin- a known 

human PXR agonist.  Mouse hepatocytes were treated for 24 hours and human 

hepatocytes were treated 48 hours. 

 RNA Isolation, Northern Blot and Real-Time Quantitative-PCR Analysis.  

Total RNA was isolated from cell culture using a commercially available reagent, 

Trizol (Invitrogen), according to the manufacturer’s directions. For Northern Blot 

analysis, 10 µg total RNA was resolved on a formaldehyde agarose gel.  Blots were 

hybridized with 32P-labeled cDNA corresponding to the cDNA sequences for mouse 

and rat CYP3A analogs or for 18S RNA as described previously [15, 21].  For QPCR 

analysis, isolated RNA was DNase treated (Sigma-Aldrich), reverse transcribed 

(Promega), and quantitative PCR was performed using a Cepheid Smart Cycler™ 

(Sunnyvale, CA) to detect mRNA expression specific for CYP3A, and CYP2B 

orthologues in mouse, rat, and human.  Primers for CYP3A were designed as follows: 
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mouse Cyp3a11 (5’-CAA ggA gAT gTT CCC TgT CA and 5’-CCA CgT TCA CTC 

CAA ATg AT), rat Cyp3A1 (5’-AAT AAg gCA CCT CCC ACC TA and 5’-ggA 

TCA Cgg TgA AgA gCA TA), and human CYP3A4 (5’-CAg gAg gAA ATT gAT 

gCA gTT TT and 5’-gTC AAg ATA CTC CAT CTg TAg CAC AGT).  Primers for 

CYP2B were designed as follows : mouse Cyp2b10 (5’-gAC TTT ggg ATg ggA AAg 

Ag and 5’-CCA AAC ACA ATg gAg CAg AT), human CYP2B6 (5’-AAg Cgg ATT 

TgT CTT ggT gAA and 5’-Tgg Agg ATg gTg gTg AAg AAg), and rat Cyp2B1/B2 

(5’-ggT ACC TgC TTC CCA AgA AC and 5’-ACA AAT gTg CTT  TCC TgT gg).  

Fold induction was calculated using 18S RNA to normalize the data as described 

previously [22]. 

 Generation of the Human PXR Recombinant Adenovirus.  Recombinant 

adenoviruses were generated using the AdEasy™ Adenoviral Vector System 

(Stratagene).  A BamHI/XhoI human PXR PCR product was inserted into the 

pShuttle-IRES-hrGFP1 transfer vector.  The PCR primer sequences were 5’-gAC ggC 

CTC gAg gCT ACC TgT gAT gCC gAA CAA CTC and 5’-gAA ggC CTC gAg gCC 

ACC ATg gAT TAC AAg gAT gAC.  These primers were designed to omit the stop 

codon in order to fuse the protein to a 3X-FLAG epitope at the COOH-terminus.  

Viruses were propagated in the AD-293 cell line and were purified using cesium 

chloride density gradient centrifugation.  Cells were transduced with the purified 

adenovirus expressing FLAG-tagged human PXR at MOI=10. 

 Immuno-purification of FLAG-tagged Human PXR Protein.  Following 

overnight adenoviral transduction, cells were drug-treated for 24-48 hr and lysed by 
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sonication in a buffer composed of 50mM Tris-HCL, pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 1% Triton-x, and 1X protease and phosphatase inhibitor cocktails (Thermo 

Scientific).  Cell lysates were precleared with 20 µl of immobilized protein A 

(Repligen).  Immunoprecipitation of the human PXR protein was accomplished using 

anti-FLAG M2 affinity gel (Sigma-Aldrich) or a polyclonal antibody directed against 

the human PXR protein as indicated.  Control reactions contained non-immune IgG 

(Sigma-Aldrich) or blank virus as indicated.  Free immune complexes were captured 

with immobilized protein A and and washed three times with lysis buffer. 

 In Vitro Phosphorylation Analysis.  Immuno-purified human PXR protein 

was subjected to in vitro phosphorylation analysis using catalytically active purified 

kinases including CDK1, CK2, GSK3 (New England Biosciences), PKA, PKC 

(Promega), p70S6K, AMPK, and Akt2 (Upstate).  Approximately 3 micrograms of 

human PXR protein was incubated at 30 °C for 30 min with the above kinases and 

corresponding reaction buffers.  Reaction buffer composition was as follows: CDK1 

(50mM Tris-HCl pH 7.4, 10mM MgCl2, 2mM DTT, 1mM EGTA, 200µM ATP, 

0.5µCi γ 32P ATP), CK2 (20mM Tris-HCl pH 7.4, 80mM KCl, 10mM MgCl2, 200µM 

ATP, 0.5µCi γ 32P ATP), GSK3 (20mM Tris-HCl pH 7.4, 10mM MgCl2, 5mM DTT, 

200µM ATP, 0.5µCi γ 32P ATP), PKA (40mM Tris-HCl pH 7.4, 5mM MgCl2, 

200µM ATP, 0.5µCi γ 32P ATP), PKC (20mM HEPES pH 7.4, 10mM MgCl2, 3.4mM 

CaCl2, 200µM ATP, 0.5µCi γ 32P ATP), p70S6K (40mM MOPS-NaOH pH 7.0, 1mM 

EDTA, 10mM MgCl2, 0.1mg/ml BSA, 0.01% β-ME, 200µM ATP, 0.5µCi γ 32P 

ATP), AMPK (30mM HEPES pH 7.4, 10mM MgCl2, 0.2mM DTT, 0.2% NP-40, 
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300µM AMP, 200µM ATP, 0.5µCi γ 32P ATP), and Akt2 (50mM Tris-HCl pH 7.5, 

10mM MgCl2, 0.1mM EGTA, 0.2mM DTT, 200µM ATP, 0.5µCi γ 32P ATP).  The 

samples were subjected to SDS-PAGE.  The gel was dried and autoradiography 

analysis was performed overnight at -80°C. 

 In Vivo Metabolic Labeling Analysis.  HepG2 cells were plated in 6-well 

plates at a density of 1 x 106 cells per well.  The cells were transduced with Ad-hPXR 

or Ad-GFP (MOI=10) overnight.  After viral transduction, the cells were treated with 

phosphate-free DMEM containing 1% dialyzed fetal bovine serum containing 1% 

Penicillin/Streptomycin for six hours.  The culture medium was then supplemented 

with 300µCi of 32P-orthophosphate per well and treated with vehicle, 1mM 8Br-

cAMP, or 1mM 8Br-cGMP for an additional 14 hr.  The cells were washed three 

times in 1X phosphate-buffered saline and human PXR protein was immuno-purified 

using anti-human PXR antibody as described above.  The samples were subjected to 

SDS-PAGE.  The gel was dried and autoradiography analysis was performed for 30 

min at room temperature.  For control purposes, a duplicate experiment was 

performed for the parallel western blot analysis that omitted the radiolabel in order to 

examine the efficiency of immuno-purification. 

 Detection of Phosphothreonine in Human PXR.  The immuno-purified 

human PXR protein was resolved using 10% SDS-PAGE and transferred to PVDF 

membranes (Millipore).  Western Blot analysis was performed using monoclonal 

antibodies obtained from the PhosphoDetect™ phosphoserine and phosphothreonine 

detection kits (Calbiochem).  The lambda protein phosphatase (New England 
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Biolabs) reaction conditions were 50 mM Tris-HCl, 100 mM NaCl, 

2 mM Dithiothreitol, 0.1 mM EGTA, 0.01 % Brij 35, 2 mM MnCl2, at pH 7.5 at 

25°C. 

 Transient Transfection and Reporter Gene Analysis.  The XREM-Luc and 

mammalian-2-hybrid reporter gene assays were performed as previously described 

[20, 21].  Briefly, cells were plated in 96-well plates at a density of 7000 cells per 

well.  After 24 hours the cells were transfected using Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions.  The PXR transactivation 

assays were transfected with 110 ng of DNA per well containing SV40-βgal (40ng), 

XREM-Luc (20ng), pGFP-hPXR (5ng), pFC-PKA or pFC-MEK1 (10ng), and 

pBluescript (35ng).  The mammalian-2-hybrid assays were transfected with 110 ng of 

DNA per well containing SV40-βgal (40ng), pFR-Luc (20ng), Gal4-NCoR (20ng), 

VP16-hPXR (10ng), pFC-PKA (10ng), and pBluescript (10ng).  The next day the 

cells were drug-treated for 24 hours.  Luciferase activities were determined using a 

standard luciferase assay system (Promega).  β-galactosidase activities were 

determined by ONPG assay and were read at 420nm. 

 Statistical Analyisis.  Statistical differences between treatment groups were 

determined using a one-way ANOVA followed by the Duncan’s multiple range post-

hoc tests. 
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 4.3 Results 

 PKA Signaling has a Species-specific Effect on PXR-mediated Gene 

Activation in Hepatocytes.  To determine if PKA signaling has a species-specific 

effect upon PXR-mediated gene activation, primary cultures of mouse and rat 

hepatocytes were isolated and treated with vehicle or 10 µM PCN for 24 hr in the 

presence of increasing concentrations 0.01, 0.1, and 1.0 mM of 8-Br-cAMP and 

northern blotting analysis was performed (Figure 4-1).  As expected, treatment with 

PCN produced increased expression of both Cyp3a11 and Cyp3A1 in primary cultures 

of mouse and rat hepatocytes, respectively.  Strikingly, increasing concentrations of 

the PKA activator, 8-Br-cAMP, had opposite effects upon PCN-inducible CYP3A 

gene expression in primary cultures of mouse hepatocytes when compared with that 

obtained using rat hepatocytes.  In mouse hepatocytes, 8-Br-cAMP synergized with 

PCN producing extremely robust levels of Cyp3a11 gene expression at the highest 

doses, while in rat hepatocytes it dramatically repressed the expression of Cyp3A1.  

Both the synergistic and repressive effects were concentration-dependent in both 

species examined, respectively.  The synergistic effect of 8-Br-cAMP in mouse 

hepatocytes was also PXR-dependent, as there was only minimal induction of 

Cyp3a11 gene expression at the highest doses of 8-Br-cAMP examined in PXR-

knockout mice (data not shown). 
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Figure 4-1 

 
 
 
Figure 4-1. PKA activation modulates CYP3A gene expression in primary 
cultures of mouse and rat hepatocytes.  Primary rodent hepatocytes were treated 
with 10 µM PCN and increasing concentrations of 1mM 8Br-cAMP for 24 hours 
before RNA isolation.  Blots were probed sequentially with 

32
P labeled fragments of 

CYP3A and 18S. 
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 To further examine the specificity of the effect of the effect of PKA signaling 

across species we treated primary cultures of mouse, rat, and human hepatocytes for 

24 hr with either 8-Br-cAMP, or 8-bromo-cyclic GMP (8-Br-cGMP) as a control 

compound, in the presence and absence of 10 µM PCN or rifampicin and performed 

real-time quantitative polymerase chain reaction (Q-PCR) to analyze the expression 

levels of CYP3A.  Figure 4-2A shows that treatment of primary cultures of mouse 

hepatocytes with 1 mM 8-Br-cAMP or 10 µM PCN for 24 hr induced expression of 

Cyp3a11 to approximately equivalent levels, while co-treatment with 8-Br-cAMP and 

PCN produced a synergistic level of PXR-target gene expression (>2000 fold-

induction).  Treatment with 1 mM 8-Br-cGMP alone had no significant effect upon 

Cyp3a11 gene expression levels, and co-treatment with 8-Br-cGMP and PCN 

produced very similar effects when compared with PCN treatment alone.  Primary 

cultures of rat and human hepatocytes were also treated using identical experimental 

conditions.  Treatment of cultured hepatocytes with 1 mM 8-Br-cAMP isolated from 

these two species produced the exact opposite effect as that observed with mouse 

hepatocytes.  Figure 4-2B shows that treatment of primary cultures of rat hepatocytes 

with either 8-Br-cAMP or 8-Br-cGMP produced little or no effect upon Cyp3A1 gene 

expression levels, while treatment with 10 µM PCN induced expression as expected.  

However, treatment of rat hepatocytes with 8-Br-cAMP together with PCN reduced 

the fold-induction of Cyp3A1 expression to less than 10% of that observed when 

compared with PCN treatment alone.  In contrast, treatment of rat hepatocytes with 8-

Br-cGMP together with PCN induced expression of Cyp3A1 comparable to that 
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observed with PCN treatment alone.  When primary cultures of human hepatocytes 

were used, 10 µM rifampicin was substituted for PCN treatment, other than that the 

experimental conditions were identical.  Figure 4-2C reveals that treatment with 8-Br-

cAMP produced dramatic repression of rifampicin-inducible CYP3A4 gene 

expression.  Treatment with 8-Br-cGMP had very little or no effect upon either the 

basal or rifampicin-inducible expression of the CYP3A4 gene. 
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Figure 4-2A 
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Figure 4-2B 
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Figure 4-2C 

 
 
 
Figure 4-2. PKA activation has a species-specific effect on CYP3A gene 
expression in primary cultures of hepatocytes.  Primary cultures of (A) mouse, (B) 
rat, and (C) human hepatocytes were treated with either 10µM PCN or 10 µM 
Rifampicin, and 1mM 8-Br-cAMP or 1mM 8-Br-cGMP for 24 hr and monitored for 
the induction of CYP3A orthologues.  Data are expressed as fold induction over the 
vehicle control and are normalized to 18S expression and represent the mean of the 
replicates + S.D. (n=3).  Letters different from each other indicate a statistical 
difference between treatment groups (p<0.05). 
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 Species-specificity Resides in the Cyclic AMP Signaling Pathway.  We next 

sought to determine whether the species-specific response to cAMP resides in the 

PXR protein, or is a function of how PKA signaling interfaces with PXR activity.  

The XREM-Luc reporter gene was used in HepG2 cells to determine if over-

expression of PKA altered activity toward the CYP3A4 promoter in a species-specific 

manner.  A plasmid encoding human PXR was co-transfected with the XREM-Luc 

reporter gene in the presence and absence of an additional expression vector encoding 

the catalytic domain of PKA (Clontech).  A plasmid encoding MEK3 (Clontech) was 

used as a control for kinase over-expression.  Twenty-four hr post-transfection, 

selected wells were treated with rifampicin for an additional 24 hr (Figure 4-3A).  As 

expected, rifampicin activated XREM-Luc reporter gene activity approximately 65-

fold in the presence of human PXR.  Over-expression of PKA repressed reporter gene 

activity by approximately 70%, while over-expression of MEK3 did not.  Identical 

experiments using a plasmid encoding mouse PXR yielded similar results in that 

over-expression of PKA significantly repressed XREM-Luc reporter gene activity, 

while over-expression of MEK3 did not (Figure 4-3B).  These data suggest that PKA 

signaling is a repressive signal in the human genetic background, and that repression 

of PXR activity is independent of the species of PXR protein. 

 We also wanted to determine whether human PXR would be positively 

regulated in the context of a murine hepatic genetic background.  We therefore 

utilized our line of PXR knockout mice that have been engineered to express a human 

PXR transgene in liver [8].  Following liver perfusion, primary cultures of ‘PXR-
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humanized’ mouse hepatocytes were treated with 8-Br-cAMP in the presence and 

absence of the human PXR agonist rifampicin (Figure 4-3C).  As expected, treatment 

with rifampicin produced a 6-fold increase in Cyp3a11 gene expression.  Co-

treatment of hepatocytes with 8-Br-cAMP and Rifampicin had a positive effect 

producing approximately 14-fold increase in Cyp3a11 gene expression.  As a 

negative control, treatment with 8-Br-cGMP had no effect on rifampicin-inducible 

gene expression.  Taken together, these data further support the hypothesis that the 

observed species-specific interaction between cAMP and PXR activation in 

hepatocytes is a function of how PKA signaling interfaces with CYP3A gene 

expression across species, and is not due to differences in primary amino acid 

sequences in the human and mouse PXR proteins. 
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Figure 4-3A 
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Figure 4-3B 
 

 218



Figure 4-3C 
 

 
 
 
Figure 4-3. Species-specific modulation of PXR activity resides in the PKA 
signaling pathway.  HepG2 cells were transfected with expression vectors for (A) 
human PXR or (B) mouse PXR together with the XREM-Luc reporter gene, in the 
presence or absence of an expression vector encoding constitutively active PKA. 
Cells were treated with 10 µM Rifampicin, 10 µM PCN, 1mM 8-Br-cAMP, and 1mM 
8-Br-cGMP for 24 hours.  Data are expressed as the mean of replicates + S.D. (n=8) 
and are normalized to β-galactosidase activity.  (C) Primary cultures of humanized 
mouse hepatocytes were treated with 10 µM Rifampicin in the presence and absence 
of 1mM 8-Br-cAMP and 1mM 8-Br-cGMP for 24 hours.  Data are expressed as the 
mean of replicates + S.D. (n=3).  Letters different from each other indicate a 
statistical difference between treatment groups (p<0.05). 
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 Human PXR is a Phosphoprotein In Vitro and In Vivo.  The extent to which 

down-regulation of human PXR activity is associated with alterations in the 

phosphorylation status of the PXR protein is unknown. We therefore created an 

adenoviral expression vector encoding a FLAG-tagged version of the human PXR 

protein in order to facilitate immuno-purification of the recombinant protein from 

cultured cells.  Analysis of protein isolated from adenoviral-infected CV-1 cells using 

SDS-PAGE and coomassie-blue staining shows that the FLAG-hPXR protein is 

approximately 52 kDa (Figure 4-4A).  Western-blot analysis using either anti-FLAG 

antibodies or anti-hPXR antibodies confirms that the recombinant protein is indeed 

FLAG-tagged human PXR (data not shown).  When incubated in vitro with a series 

of catalytically active protein kinases, PXR served as the most effective substrate for 

PKA, followed by casein kinase II, glycogen synthase kinase, and protein kinase C 

(Figure 4-4B).  Catalytically active AMP kinase and AKT2 were unable to directly 

phosphorylate the human PXR protein in vitro (data not shown). 
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Figure 4-4A 
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Figure 4-4B 
 

 
 
 
Figure 4-4. hPXR is phosphorylated by protein kinases in vitro.  HepG2 cells 
were transduced with adenovirus expressing FLAG-tagged human PXR.  (A) Human 
PXR was isolated from cellular extracts using immunoprecipitation with the M2 flag 
monoclonal antibody and detected using SDS-PAGE and coomassie staining.  (B) 
The recombinant human PXR protein was phosphorylated with γ−

32
P and myriad of 

kinases in vitro.  Radiolabeled proteins were visualized by autoradiography. 
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 To determine whether PKA can directly affect phosphorylation status of 

human PXR, CV-1 or HepG2 cells expressing recombinant FLAG-tagged human 

PXR protein were subjected to in vivo labeling using 32P-orthophosphate and treated 

with either 8-Br-cAMP or 8-Br-cGMP in the presence and absence of rifampicin.  

The CV-1 cell line was chosen due to its ease of culturing as a confluent monolayer 

and uniform infection with the adenoviral vector; however identical results were 

obtained using either cell line.  The human PXR protein was immunoprecipitated, 

resolved using SDS-PAGE, the gels were dried and subsequent autoradiography 

revealed that the human PXR exists as a phosphoprotein (Figure 4-5, lane 4).  

Immunoprecipitates from non-infected cells, blank-virus infected cells, and non-

immune serum were included as negative controls (Figure 4-5, lanes 1, 2, and 3).  

The addition of rifampicin also had no effect upon the overall phosphorylation level 

of the human PXR protein (data not shown).  A duplicate ‘cold’ experiment was 

performed and used for western-blot analysis with anti-hPXR antibodies to insure 

specificity of immunoprecipitation and roughly equivalent loading (Figure 4-5, 

bottom panel). 
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Figure 4-5 
 

 
 
Figure 4-5. The human PXR protein exists as a phosphoprotein in vivo.  HepG2 
cells were transduced with adenoviral expression vector encoding FLAG-tagged 
human PXR.  Cells were treated with phosphate-free medium for six hr and then 
treated with media containing 300 µCi/well 

32
P-orthophosphate together with vehicle, 

1mM 8-Br-cAMP, or 1mM 8-Br-cGMP for 14 hr.  Phosphorylated PXR protein was 
visualized by autoradiography (upper panel).  Total PXR protein was visualized by 
Western Blot using anti-HPXR antibodies in a duplicate cold experiment (lower 
panel). 
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 We next screened a panel of seven commercially available monoclonal 

antibodies against the immuno-purified human PXR protein, which potentially 

recognize phosphoserine (four) and phosphothreonine (three) in the context of 

differing surrounding amino acid residues.  Three of these antibodies, 1C8 (anti-

phosphoserine), 14B3 and 1E11 (anti-phosphothreonine), effectively and specifically 

recognized immuno-purified human PXR phospho-protein in western blot analysis.  

To more closely examine whether activation of the PKA signaling pathway could 

alter the phosphorylation status of specific serine/threonine residues on the human 

PXR protein we treated adenoviral infected cells with either 8-Br-cAMP or 8-Br-

cGMP in the presence or absence of rifampicin.  Western blotting analysis revealed 

that treatment with 8-Br-cyclic AMP specifically up-regulated the recognized 

phosphothreonine content of the immunopurified human PXR protein, while 

treatment with 8-Br-cGMP did not (Figure 4-6, lanes 4 and 5).  Treatment with 

rifampicin alone did not alter phosphothreonine content, while co-treatment with 

rifampicin prevented the up-regulation of 8-Br-cAMP-mediated phosphorylation of 

the human PXR protein (Figure 4-6, lane 7).  Immunoprecipitates from cells infected 

with blank virus (Figure 4-6, lane 1), and immunopurified recombinant human PXR 

protein treated with lambda protein phosphatase (Figure 4-6, lane 2) were included as 

negative controls.  The blot was stripped and re-probed with anti-FLAG monoclonal 

antibody to insure equal loading (Figure 4-6, bottom panel).  Similar results were 

obtained with another monoclonal antibody anti-phosphothreonine- 1E11 

(Calbiochem) (data not shown). 
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Figure 4-6 
 

 
 
 
Figure 4-6. PKA signaling modulates the phosphorylation status of human PXR 
in vivo. CV-1 cells were transduced with an adenovirus expressing FLAG-tagged 
human PXR.  Cells were treated with 10µM Rifampicin, 1mM 8Br-cAMP and 1mM 
8Br-cGMP for 24 hours.  The PXR protein was immunoprecipitated using anti-hPXR 
antibody and subjected to Western Blot analysis using anti-phosphothreonine 14B3 
antibody (upper panel).  The blot was stripped and re-probed with anti-FLAG 
monoclonal antibody to ensure equal loading (lower panel).  
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 Physiological Levels of PKA Signaling Modulate PXR-target Gene 

Activation in a Species-specific Manner.  Using pharmacological and biochemical 

methods to elevate PKA signaling, the experiments presented thus far are consistent 

with the hypothesis that PKA signaling interfaces with PXR activity in a species-

specific manner.  It was therefore of interest to determine whether endogenous PKA 

signaling modulates PXR-target gene activation across species.  We therefore used 

the PKA-selective inhibitor H89 to examine the effect of inhibition of PKA on human 

and mouse PXR activity.  HepG2 cells were transduced with the adenoviral 

expression vector encoding human PXR and treated with rifampicin in the presence 

and absence of H89 and expression levels of the CYP3A4 gene were determined using 

Q-PCR (Figure 4-7A).  Treatment of cells with rifampicin produced significant 

increases in CYP3A4 gene expression.  Treatment of cells with H89 alone produced a 

significant increase in the level of CYP3A4, although the levels were less than that 

produced by rifampicin treatment alone.  Co-treatment of cells with rifampicin and 

H89 produced significantly increased levels of CYP3A4 gene expression when 

compared to either treatment alone.  The opposite trend was observed when similar 

experiments were conducted using primary cultures of mouse hepatocytes (Figure 4-

7B).  As expected, treatment with PCN alone produced significant increases in 

Cyp3a11 gene expression levels, while treatment with H89 alone did not.  Co-

treatment of hepatocytes with PCN and H89 produced significantly lower levels of 

Cyp3a11 gene expression when compared with that observed with PCN treatment 
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alone.  Taken together, these data indicate that physiological levels of cyclic AMP 

and PKA signaling interface with PXR activity in a species-specific manner.    
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Figure 4-7A 
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Figure 4-7B 
 

 
 
 
Figure 4-7. Endogenous levels of PKA signaling modulate PXR activity in a 
species-specific manner.  (A) HepG2 cells were transduced with the adenoviral 
expression vector encoding FLAG-tagged human PXR.  Cells were treated with 
vehicle or 10 µM rifampicin, 10 µM H89, or 10 µM rifampicin plus 10 µM H89.  (B) 
Primary cultures of mouse hepatocytes were treated with vehicle or 10 µM 
rifampicin, 10 µM H89, or 10 µM rifampicin plus 10 µM H89. Endogenous levels of 
CYP3A were determined using Q-PCR analysis.  Data are expressed as the mean of 
replicates + S.D. (n=3).  Letters different from each other indicate a statistical 
difference between treatment groups (p<0.05). 
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 Activation of PKA Signaling Promotes Association of Human PXR with 

NCoR.  Because rifampicin-activated human PXR localized in part to the nucleus, 

and was repressed by both treatment with 8-Br-cAMP and co-expression of the 

catalytic subunit of PKA, we reasoned that PKA signaling might modulate PXR’s 

ability to interact with nuclear receptor corepressor protein (NCoR).  To investigate 

this possibility we used the nuclear receptor interaction domain (Arg 2065 to Gly 

2287) from NCoR (GAL4-NCoR) and full-length human PXR fused to VP16 (VP16-

hPXR) in the mammalian two-hybrid system.  Transfection of CV-1 cells with 

GAL4-NCoR together with VP16-human PXR produced increased reporter gene 

activity, while transfection of GAL4-NCoR alone did not (Figure 4-8).  As expected, 

treatment of transfected cells with 10 µM rifampicin decreased the strength of 

interaction between these two fusion proteins.  Co-transfection of the catalytic subunit 

of PKA increased the strength of association between PXR and NCoR by 

approximately five-fold, whereas co-transfection of the constitutively active kinase 

MEK1 had no effect.  Interestingly, while administration of rifampicin in the presence 

of PKA weakened the association between NCoR and human PXR, the relative 

strength of association was well above that obtained in the absence of PKA.  Similar 

results were obtained when using 8-Br-cAMP to activate PKA signaling and 8-Br-

cGMP as a negative control in HepG2 cells (data not shown). 
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Figure 4-8 
 

 
 
 
Figure 4-8. PKA increases the strength of interaction between hPXR and NCoR 
in mammalian-2-hybrid reporter gene assays.  CV-1 cells were transfected with 
expression vectors for Gal4-NCoR receptor interacting domain, VP16-human PXR, 
pFR-Luc reporter gene, and constitutively active kinases. Cells were treated with 10 
µM Rifampicin for 24 hours.  Data are expressed as the mean of replicates + S.D. 
(n=8) and are normalized to β-galactosidase activity.  Letters different from each 
other indicate a statistical difference between treatment groups (p<0.05). 
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 4.4 Discussion 

 Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol 

consumption all produce alterations in the expression and activity of hepatic drug 

metabolizing enzymes [23].  Moreover, the expression and activity of CYP3A4, the 

primary drug metabolizing enzyme found in liver and intestine, is rapidly and 

dramatically repressed in response to acute inflammatory states [24].  Because PXR is 

a master-regulator of drug-inducible transcription of the CYP3A4 gene, there is a high 

level of interest in understanding the potential role of this transcription factor in 

mediating transcriptional suppression during these specific pathological conditions.  

While much is known regarding the identity of target genes and ligands for this 

important nuclear receptor protein, comparatively little is known regarding the post-

translational modification of the human PXR protein.  Therefore, we and others have 

sought to understand the molecular mechanisms that comprise the potential interface 

between human PXR and important cellular signal transduction cascades that mediate 

repression of drug metabolism, energy metabolism, and glucose production in liver.   

 The species-specific nature of nuclear receptor signaling is a well documented 

and highly relevant area of scientific inquiry.  For example, although peroxisome 

proliferators have carcinogenic consequences in the livers of rodents, epidemiological 

studies have revealed that similar effects are unlikely to occur in humans [25].  

Additionally, PB has been used for decades as the prototypical non-genotoxic tumor 

promoting agent in numerous rodent studies of hepatocarcinogenesis, however, 

epidemiological studies indicate that PB does not cause liver tumors in humans [26].  
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Although the primary event governing activation of nuclear receptors is ligand-

binding, increasing amounts of evidence suggest that cell signaling pathways and 

modulation of nuclear receptor-cofactor-phosphorylation status also determines 

overall responsiveness to environmental stimuli [27, 28].  Phosphorylation has been 

implicated in regulation of (1) nuclear receptor transactivation capacity, (2) DNA-

binding, (3) sub-cellular localization, (4) protein cofactor interaction profile, and (5) 

protein stability.   

 It is a long-standing observation that treatment of patients with rifampicin 

tends to suppress immunological responses in liver cells.  The precise molecular basis 

for the repression of the inflammatory response following PXR activation is not 

currently known, although it likely involves a kinase-mediated signaling cascade.  

Symmetrically, activation of the inflammatory response by treatment with 

lipopolysaccharide or tumor necrosis factor α decreases PXR-mediated gene 

activation.  Recent studies suggest that activation of NF-κB interferes with the 

formation of the PXR-RXR heterodimeric complex on the CYP3A4 promoter [29].  

Additional studies in rodents suggest that down-regulation of PXR-target genes by 

inflammatory cytokines is PXR-dependent [30].  Our results provide additional 

evidence for a key interface between kinase-mediated signal transduction pathways 

and PXR activity.  Moreover, our results provide compelling evidence for 

pronounced species-specific differences in the coupling of pivotal kinase cascades 

and PXR activity.  Moreover, since PKA signaling is up-regulated during acute 
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inflammation, our results describe a potential molecular mechanism for the observed 

repression of PXR-target gene expression during this pathophysiological condition. 

 Recent research indicates that some metabolic signal transduction pathways 

interface with PXR.  The extent to which this interaction is dependent on kinase 

signaling and the phosphorylation status of PXR is unknown and requires further 

investigation.  Activation of PXR has recently been shown to decrease energy 

metabolism and increase hepatic triglyceride levels through down-regulation of 

gluconeogenesis, fatty acid oxidation, and ketogenesis and by up-regulating hepatic 

lipogenesis [31-35].  The crosstalk of PXR with these fundamental biological 

processes is thought to be due to PXR’s ability to interact directly with FoxO1, 

FoxA2, CREB, and PGC-1α.  In addition, a recent study indicates that human PXR 

can be phosphorylated at more than one site by the serine-threonine protein kinase 

CDK2 in vitro [36].  The same study showed that PXR activity toward the CYP3A4 

promoter is inhibited during S-phase of the cell cycle.  

 In the current study we show that activity of the PXR protein is modulated in 

hepatocytes by treatment with 8-Br-cAMP, a well characterized and specific activator 

of PKA in a species-specific manner.  We also show that the phosphorylation status 

of threonine residues is altered following activation of PKA signaling in cultured cell 

lines.  There are several important implications of these findings.  First, this is the 

first demonstration that we are aware of that PXR exists in cells as a phosphoprotein.  

Second, the demonstrated alterations in PXR’s threonine phosphorylation status and 

modulation of NCoR corepressor protein recruitment following activation of PKA 
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signaling impart a new level of understanding regarding the potential molecular basis 

of repression of PXR activity by various signal transduction pathways.  Specifically, 

our data are consistent with the model that phosphorylation of the human PXR 

protein, or PXR-associated protein, favors recruitment of corepressor multi-protein 

complexes thereby producing repression of drug-inducible PXR-target gene 

expression.  However, it should be noted here that our data do not exclude the 

possibility that the molecular basis of PKA-mediated repression of PXR activity is 

multi-factorial in nature.  For example, alterations in the phosphorylation status of the 

PXR protein could in principle inhibit PXR’s DNA binding capacity, alter its 

subcellular distribution, reduce PXR protein stability, as well as prevent PXR 

association with coactivator proteins.  Whether repression of PXR activity by PKA 

signaling is regulated by direct phosphorylation of the human PXR protein is not 

currently known, however, extensive mutagenesis of the human PXR protein failed to 

identify a single residue that was responsible for PKA-dependent repression in the 

reporter gene assay (data not shown).  While our western blotting data generated 

using an anti-phosphothreonine antibody suggests that the level of threonine 

phosphorylation is altered by cAMP in the recombinant human PXR, the question 

remains as to how PKA signaling represses PXR activity in the presence of 

rifampicin.   Our western blot data should be interpreted carefully since the anti-

phospho antibodies used here recognize only a subset of phosphothreonine residues in 

any given protein due to the nature of the surrounding amino acid sequences and the 

accessibility of the given epitope. Finally, our description of the species-specific 
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effects of PKA signaling raises the possibility that pre-clinical testing of novel drug 

candidates in ‘humanized’ PXR and CAR mice poses more of a problem than 

previously realized.  Future experiments should be focused upon determining which 

serine and/or threonine residues are subject to regulated phosphorylation and which 

kinases and phosphatases alter the activity of the human PXR protein.  
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Chapter 5:  Phosphomimetic Mutation of Potential Phosphorylation 

Sites within the PXR Protein Modulates PXR Activity 

 5.1  Introduction 

 Nuclear receptors (NRs) comprise a large group of transcription factors, with 

48 members present in the human genome, which control diverse biological functions 

including metabolism, homeostasis, reproduction and development.  All members of 

the NR super-family share several conserved structural domains that are essential for 

receptor function.  The C-terminal region contains a ligand binding domain (LBD) 

and a ligand-dependent activation function-2 (AF-2).  The LBD is connected to the 

DNA binding domain (DBD) and an N-terminal activation function-1 (AF-1) by a 

hinge region (H) [1].  Most NRs are conventionally activated by the binding of small 

lipophilic ligands such as hormones, fatty acids, oxysterols, bile acids, and 

xenobiotics [2].  In addition to ligand binding, numerous studies have implicated 

signaling pathways in the modulation of NR activities.  Many liver-enriched NRs are 

targets of phosphorylation, a post-translational modification and regulatory 

mechanism, which not only is critical for protein functions, but also enables cross-talk 

between diverse signaling pathways [3, 4].  NRs can be phosphorylated 

constitutively, in response to ligand, or in response to the activation of various 

signaling pathways.  NRs can be phosphorylated in any of their conserved domains.  

In fact, multiple aspects of NR activity are modulated when specific sites within the 

receptor are phosphorylated including transcriptional activity, protein expression and 

stability, sub-cellular localization, heterodimerization, and cofactor binding. 
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 In comparison to other NRs, we have a meager understanding regarding how 

the NR pregnane x receptor (PXR) is regulated by phosphorylation.  PXR is a 

promiscuous receptor activated by a wide range of compounds including steroids, bile 

acids, and variety of drugs and natural compounds.  PXR has been characterized as a 

master regulator of xenobiotic-inducible cytochrome-p450 (CYP) gene expression in 

liver.  In fact, the CYPs identified as PXR target genes are responsible for the 

oxidative metabolism of more than 60% of clinically prescribed drugs.  Furthermore, 

it is now clear that PXR regulates the activation of a group of genes that encode 

CYPs, additional drug metabolizing enzymes, and drug transporter proteins [5-7].  In 

this manner, PXR activation increases metabolism, transport and elimination of 

potentially toxic compounds from the body and represents the basis for an important 

class of drug interactions.  In addition, recent evidence suggests a role for PXR in 

hepatic glucose and lipid metabolism [8, 9], endocrine homeostasis [10, 11], 

inflammation [12-14], and drug resistance [15, 16]. 

 It has been known for a number of years that drug-inducible CYP gene 

expression is responsive to kinase signaling pathways; however, the exact mechanism 

by which these pathways intersect with PXR is unknown.  Activation of cyclic AMP-

dependent protein kinase (PKA) signaling has been shown to modulate PXR activity 

[17].  While PKA activation potentiates the drug-inducible expression of Cyp3a11 in 

mouse hepatocytes, it serves as a repressive signal in both human and rat hepatocytes.  

Kinase assays show that PXR can serve as a substrate for PKA in vitro.  It has also 

been shown that PXR exists as a phospho-protein in vivo and that its phospho-
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threonine status is modulated by the activation of PKA signaling [18].  This evidence 

suggests one potential mechanism for PKA-mediated modulation of CYP3A gene 

expression.  In addition, the activation of protein kinase C (PKC) signaling has been 

shown to repress PXR activity by increasing the strength of interaction between PXR 

and the co-repressor NCoR, and by abolishing the ligand-dependent interaction 

between PXR and SRC-1 [19].  Cyclin-dependent kinase 2 (Cdk2) also attenuates the 

activation of CYP3A4 gene expression. PXR is a suitable substrate for the Cdk2 

enzyme in vitro, and a phosphomimetic mutation at a putative Cdk phosphorylation 

site at (S350D) appears to impair the function of hPXR, whereas a phosphorylation-

deficient mutation (S350A) conferred resistance to the repressive effects of Cdk2 on a 

reporter gene in HepG2 cells [20].  An additional study has identified a 

phosphomimetic mutation within the DBD (T57D) that is associated with the loss of 

function of hPXR.  Furthermore, PXR was identified as a substrate for p70 S6 kinase 

in vitro and the phosphorylation-deficient mutation (T57A) conferred resistance to the 

inhibitory effect of p70 S6K [21].  The results of these studies suggest that the 

activity of PXR is modulated by changes in phosphorylation.  However, the direct 

phosphorylation and subsequent modulation of PXR activity has not been 

demonstrated in vivo. 

 Understanding the mechanisms that regulate the expression of drug 

metabolizing enzymes is critical in the development of effective clinical therapeutic 

strategies and to avoid potentially dangerous drug interactions.  Since the activity of 

PXR is noticeably regulated by the activation of kinase signaling pathways, an 
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understanding of the phosphorylation dependent events in PXR signaling is necessary 

for safe and effective and drug design and clinical use.  To date, there are no studies 

that we are aware of that have systematically investigated the potential 

phosphorylation sites within the PXR protein in regard to PXR activity.  In this study, 

we identify 18 potential phosphorylation sites throughout the hPXR protein by either 

kinase consensus site prediction or by sequence homology of known phosphorylation 

sites within other NRs.  Using a site-directed mutagenesis based approach; we 

identified 6 sites of interest at S8, T57, S208, S305, S350, and T408 that warranted 

further characterization.  A phosphomimetic mutation (Asp) at these 6 sites decreases 

the basal activity of PXR in a cell based reporter gene assay, whereas 

phosphorylation-deficient mutation (Ala) results in either no change or in an increase 

in PXR activity.  Phosphomimetic mutations at T57 and T408 further abolish the 

ligand-inducible transactivation of PXR on the XREM reporter gene.  Gel mobility 

shift assay experiments reveal that phosphomimetic mutation at T57, located within 

the DBD, abolishes the ability of PXR to bind to its response elements whereas the 

phosphorylation-deficient mutation does not.  Furthermore, phosphomimetic 

mutations at consensus sites within the LBD at S305, S350, and T408 decrease the 

ability of PXR to heterodimerize with its partner RXRα.  Mammalian 2-hybrid 

experiments reveal that phosphomimetic mutations at S208 and S305 increase the 

strength of interaction between PXR and the co-repressor NCoR and decrease the 

strength of interaction between PXR and the co-activator SRC-2.  Taken together, 

these data suggest that PXR may potentially be regulated by phosphorylation at 

 243



specific amino acid residues.  Furthermore, phosphorylation at specific residues can 

uniquely regulate PXR activity by altering either one or a combination of the 

following parameters: transactivation capacity, DNA-binding, heterodimerization, 

and co-factor binding. 

 5.2  Materials and Methods 

 Compounds and Plasmids.  Unless otherwise stated, all chemical compounds 

were purchased from Sigma-Aldrich.  The pSG5-hPXR, GAL4-SRC1, GAL4-SRC2, 

GAL4-PBP, and GAL4-NCoR1 expression vectors were described previously [19]. 

The pFR-LUC reporter gene, which is responsive to GAL4-fusion proteins, is 

commercially available (BD Biosciences).  The pCMX-flag RXRα expression vector 

was a kind gift from Dr. Koren Mann.  PXR wild-type and mutant constructs were 

fused to the VP16 transcriptional activation domain by sub-cloning into the pVP16 

expression vector (Clontech) at EcoRI and BamHI restriction sites.   

Site-directed mutagenesis.  Consensus serine and threonine phosphorylation 

sites within the human PXR protein were identified using the NetPhos 2.0 server.  

Eighteen potential phosphorylation sites were mutated to an aspartic acid, a 

phosphomimetic mutation, and an alanine, a non-phosphomimetic mutation.  The 

mutant pSG5-hPXR expression vectors were generated by site-directed mutagenesis 

using the QuickChange Mutagenesis system (Stratagene).  Primer sequences used for 

site-directed mutagenesis are shown in Table 5-1. 
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Table 5-1.  Oligo sequences for site-directed mutagenesis of the human PXR 
protein. 
 
Amino 
Acid 

Oligos for mutagenesis to D 

S8 5’  ggaggtgagacccaaagaagactggaaccatgctg 
3’  cagcatggttccagtcttctttgggtctcacctcc 

T20 5’  gactttgtacactgtgaggacgatgagtctgttcctggaaagccc 
3’  gggctttccaggaacagactcatcgtcctcacagtgtacaaagtc 

T57 5’  ctggctatcacttcaatgtcatggattgtgaaggatgcaagggcttttt  
3’  aaaaagcccttgcatccttcacaatccatgacattgaagtgatagccag 

T90 5’  agatcacccggaaggaccggcgacagtgcc 
3’  ggcactgtcgccggtccttccgggtgatct 

S105 5’  gcgcaagtgcctggaggacggcatgaagaaggag 
3’  ctccttcttcatgccgtcctccaggcacttgcgc 

S114 5’  gaaggagatgatcatggacgacgaggccgtggag 
3’  ctccacggcctcgtcgtccatgatcatctccttc 

S130 5’  cttgatcaagcggaagaaagacgaacggacagggactcagc 
3’  gctgagtccctgtccgttcgtctttcttccgcttgatcaag 

T133 5’  cggaagaaaagtgaacgggatgggactcagccactggga 
3’  tcccagtggctgagtcccatcccgttcacttttcttccg 

T135 5’  aagtgaacggacaggggatcagccactgggagtg 
3’  cactcccagtggctgatcccctgtccgttcactt 

S180 5’  ccaggggtgcttagcgatggctgcgagttgcc 
3’  ggcaactcgcagccatcgctaagcacccctgg 

S192 5’  cagagtctctgcaggccccagatagggaagaagctgcc 
3’  ggcagcttcttccctatctggggcctgcagagactctg 

S208 5’  ggtccggaaagatctgtgcgatttgaaggtctctctgcag 
3’  ctgcagagagaccttcaaatcgcacagatctttccggacc 

S231 5’  caaacccccagccgacgatggcgggaaagagatc 
3’  gatctctttcccgccatcgtcggctgggggtttg 

S274 5’  atcgaggaccagatcgacctgctgaagggggc 
3’  gcccccttcagcaggtcgatctggtcctcgat 

T290 5’  ctgtgtcaactgagattcaacgatgtgttcaacgcggagactgga 
3’  tccagtctccgcgttgaacacatcgttgaatctcagttgacacag 

S305 5’  ggagtgtggccggctggactactgcttggaagac 
3’  gtcttccaagcagtagtccagccggccacactcc 

S350 5’  ccatctccctcttcgacccagaccgcccag 
3’  ctgggcggtctgggtcgaagagggagatgg 

T408 5’  atcaatgctcagcacgaccagcggctgctgcg 
3’  cgcagcagccgctggtcgtgctgagcattgat 
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Amino 
Acid 

Oligos for mutagenesis to A 

S8 5’  ggaggtgagacccaaagaagcctggaaccatgctg 
3’  cagcatggttccaggcttctttgggtctcacctcc 

T20 5’  tgtacactgtgaggacgcagagtctgttcctgg 
3’  ccaggaacagactctgcgtcctcacagtgtaca 

T57 5’  ctatcacttcaatgtcatggcatgtgaaggatgcaaggg 
3’  cccttgcatccttcacatgccatgacattgaagtgatag 

T90 5’  gatcacccggaaggcccggcgacagtg 
3’  cactgtcgccgggccttccgggtgatc 

S105 5’  cgcaagtgcctggaggccggcatgaagaagga 
3’  tccttcttcatgccggcctccaggcacttgcg 

S114 5’  gaaggagatgatcatggccgacgaggccgtg 
3’  cacggcctcgtcggccatgatcatctccttc 

S130 5’  cttgatcaagcggaagaaagctgaacggacagggactcagc 
3’  gctgagtccctgtccgttcagctttcttccgcttgatcaag 

T133 5’  gaagaaaagtgaacgggcagggactcagccact 
3’  agtggctgagtccctgcccgttcacttttcttc 

T135 5’  tgaacggacaggggctcagccactggg 
3’  cccagtggctgagcccctgtccgttca 

S180 5’  caggggtgcttagcgctggctgcgagttgc 
3’  gcaactcgcagccagcgctaagcacccctg 

S192 5’  ctctgcaggccccagcgagggaagaag 
3’  cttcttccctcgctggggcctgcagag 

S208 5’  tccggaaagatctgtgcgctttgaaggtctctctg 
3’  cagagagaccttcaaagcgcacagatctttccgga 

S231 5’  acccccagccgacgctggcgggaaagag 
3’  ctctttcccgccagcgtcggctgggggt 

S274 5’  cgaggaccagatcgccctgctgaaggg 
3’  cccttcagcagggcgatctggtcctcg 

T290 5’  gtcaactgagattcaacgcagtgttcaacgcggag 
3’  ctccgcgttgaacactgcgttgaatctcagttgac 

S305 5’  gtgtggccggctggcctactgcttgga 
3’  tccaagcagtaggccagccggccacac 

S350 5’  catctccctcttcgccccagaccgccc 
3’  gggcggtctggggcgaagagggagatg 

T408 5’  caatgctcagcacgcccagcggctgct 
3’  agcagccgctgggcgtgctgagcattg 
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Transient Transfection and Reporter Gene Analysis.  The XREM-LUC 

reporter gene assays were and the mammalian two-hybrid system assays were 

performed as described previously [19, 22].  Briefly, CV-1 cells were plated in 96-

well plates at a density of 7000 cells per well.  After 24 hours the cells were 

transfected using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions.  The PXR transactivation assays were transfected with 110 ng of DNA 

per well containing SV40-βgal (40ng), XREM-Luc (20ng), pSG5-hPXR (5ng), and 

pBluescript (45ng).  The mammalian two-hybrid assays were transfected with 110 ng 

of DNA per well containing SV40-βgal (40ng), pFR-Luc (20ng), Gal4-Cofactor 

(20ng), VP16-hPXR (10ng), and pBluescript (20ng).  The next day the cells were 

drug-treated for 24 hours with vehicle or 10 µM rifampicin.  Luciferase and β-

galactosidase activities were determined using a standard luciferase assay system 

(Promega). 

Gel Shift Assay.  Wild-type and mutant human PXR and RXRα were 

synthesized in vitro using the TNT reticulocyte lysate system (Promega) according to 

the manufacturer’s instructions.  Each 20µl gel mobility shift reaction contained 

10mM Tris pH 8, 60mM KCl, 0.1% NP-40, 6% glycerol, 2mM DTT, 2µg poly-dIdC, 

and 5µl total in vitro translated protein.  Competitor oligonucleotides were added in 5 

and 50 fold molar excess.  A monoclonal antibody for hPXR (Santa Cruz) was added 

to visualize a super-shift.  After incubation on ice for 10 minutes 4ng of 32P labeled 

oligonucleotide was added.  After an additional 10 minute incubation on ice, the 

DNA-protein complexes were resolved on a 4% polyacrylamide gel.  The gel was 
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dried and subjected to autoradiography.  The following double stranded 

oligonucleotides were used as radio-labeled probes or cold competitors as indicated: 

CYP3A4 ER6 (5’-gAT CAA TAT gAA CTC AAA ggA ggT CAg Tg) and mutated 

CYP3A4 ER6 (5’-gAT CAA TAT gTT CTC AAA ggA gAA CAg Tg). 

PXR Heterodimerization Assay.  Wild-type and mutant human PXR and flag-

RXRα were synthesized in vitro using the TNT reticulocyte lysate system (Promega).  

Ten µl of each in vitro translated protein was diluted to 500 µl in 

immunoprecipitation buffer (PBS, 0.5% NP-40, and protease inhibitors).  The lysates 

were pre-cleared with 20 µl of immobilized protein A (Repligen).  Flag-tagged 

RXRα was immunoprecipitated using anti-flag M2 affinity gel (Sigma-Aldrich) or 

non-immune IgG as indicated.  Free immune complexes were captured and washed 

three times with lysis buffer.  Immunoprecipitated protein complexes were subjected 

to SDS-PAGE and transferred to PVDF membranes (Millipore).  Western Blot 

analysis was performed using a polyclonal antibody generated to detect the human 

PXR protein. 

 5.3  Results 

 Identification and mutation of predicted phosphorylation sites within the 

PXR protein.  Potential serine and threonine phosphorylation sites within the PXR 

protein were identified using the NetPhos 2.0 Server.  Forty-eight potential serine and 

threonine phosphorylation sites were identified and scored from 0.000-1.000 based on 

the likelihood of phosphorylation (Figure 5-1A).  The serine and threonine residues 

that have higher scores are indicated as likely phosphorylation sites.  In this study, 
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serine and threonine residues that were scored above the threshold of 0.500 were 

selected for mutagenesis (Figure 5-1B).  In addition to the residues that were scored 

above 0.500, we also selected T57, T133, and S274 for mutagenesis.  T57 has been 

previously characterized as a PXR phosphorylation site that is potentially regulated 

by p70 S6K [21].  Preliminary mass spectroscopy data from our lab has indicated 

T133 as a potential PXR phosphorylation site (data not shown).  Finally, S274 was 

chosen due to its location within a conserved nuclear localization signal.  Therefore, 

eighteen residues in total were mutated to either a negatively charged 

phosphomimetic residue (Asp) or a phospho-deficient residue containing a 

hydrophobic side chain (Ala).  These 18 residues are located throughout the 

conserved NR domains of the PXR protein.  It is also noteworthy that three of the 

residues S180, S192, and S208 are located in a portion of the PXR protein that is 

deleted in the alternative splice variant hPXR.2 (Figure 5-1C). 
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Figure 5-1A 
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Figure 5-1B 
 

 

 251



Figure 5-1C 
 

 
Figure 5-1.  Identification of potential phosphorylation sites within the human 
PXR protein.  Forty-eight potential phosphorylation sites within the human PXR 
protein were identified and scored using the NetPhos 2.0 server (A).  Serine and 
threonine residues that scored above the 0.500 threshold were selected for site-
directed mutagenesis (B).  Eighteen residues located throughout the PXR protein 
were selected for site-directed mutagenesis (C). 
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 Phosphomimetic mutations alter the transcriptional activity of PXR.  We 

next sought to determine the effect that these phosphomimetic and phospho-deficient 

PXR mutations would have on PXR activity in cell-based reporter gene assays.  

Primarily, the activation of kinase signaling pathways has been shown to attenuate 

PXR activity.  Therefore, we expected that phosphomimetic mutation at PXR 

phosphorylation sites would repress the activity of PXR on the XREM reporter gene.  

Furthermore, we expect that the phospho-deficient mutation would either increase or 

have no effect on PXR activity.  The XREM-Luc reporter gene was used in CV-1 

cells to detect changes in PXR activity based on mutations at 18 phosphorylation 

sites.  Expression vectors encoding wild-type and mutant PXR constructs were co-

transfected with XREM-Luc.  Luciferase activity was monitored 48 hours post-

transfection.  The fold induction of each mutant compared to wild-type PXR was 

recorded (Table 5-2).  Phosphomimetic mutations at 4 sites including S8, T57, S305 

and S350 displayed attenuated PXR activity with p<0.001.  Phospho-deficient 

mutations at the same five sites displayed no significant change in PXR activity.  At 

S208, the phosphomimetic mutation attenuated PXR activity with p<0.001 while the 

phospho-deficient mutation increased PXR activity with p<0.001.  In addition, T408 

is noteworthy due to the extent to which the phosphomimetic mutation attenuated 

PXR activity.  T90 has a high phosphorylation score of 0.949 and like T57, is located 

within the conserved zinc finger motifs of the PXR DBD.  These 7 sites were selected 

for further analysis for potential phospho-specific regulation of PXR activity.  The 

modulation of PXR activity by mutations that mimic phosphorylation suggest that 
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phosphorylation at those specific sites could confer a measurable functional impact 

by negatively regulating PXR activity.  Multiple mechanisms could contribute to the 

impaired transactivation function these mutants including protein expression and 

stability, cofactor interactions, DNA binding, heterodimerization with RXRα and 

sub-cellular localization. Therefore we sought to elucidate the responsible 

mechanisms. 
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Table 5-2.  Phosphomimetic mutations within the hPXR protein alter the 
transactivation capacity of hPXR in reporter gene assay.  Changes in hPXR 
activity are represented as fold induction of hPXR mutants compared to WT on 
XREM-Luc. 
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 Phosphomimetic mutations at T57 and T408 attenuate the ligand-inducible 

transactivation capacity of PXR.  To determine the effect that phosphomimetic 

mutations at the 7 selected sites of interest has on the inducible transactivation 

capacity of PXR, CV-1 cells were transiently transfected with the XREM-Luc 

reporter gene construct and expression vectors encoding wild-type or mutant PXR.  

Twenty-four hours post-transfection, cells were treated with either vehicle or 10 µM 

rifampicin, a prototypical human PXR ligand.  Luciferase activity was observed an 

additional 24 hours after drug treatment.  As expected, wild-type PXR significantly 

enhanced the reporter gene activity in the presence of rifampicin.  In contrast a 

phosphomimetic mutation at T57 abolishes the ligand-inducible activation of the 

reporter gene.  However, the phospho-deficient mutation at T57 had no effect on the 

ligand-inducible activation of the reporter gene.  A phosphomimetic mutation at T408 

significantly attenuated the ligand-inducible activation of the reporter gene when 

compared to wild-type PXR.  However, the phospho-deficient mutation at T408 again 

had no effect on the ligand-inducible activation of the reporter gene.  Mutations at the 

additional sites of interest, S8, T90, S208, S305,and S350, did not effect the 

rifampicin-inducible transactivation capacity of PXR compared to wild-type (Figure 

5-2). 
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Figure 5-2 
 

 
 
Figure 5-2.  Phosphomimetic mutations at T57 and T408 attenuate the ligand-
inducible transactivation capacity of hPXR.  CV-1 cells were transfected with the 
XREM-Luc reporter gene construct and expression vectors encoding wild-type or 
mutant PXR.  Twenty-four hours post-transfection, cells were treated with either 
vehicle or 10 µM rifampicin.  Luciferase activity was observed an additional 24 hours 
after drug treatment.  PXR proteins containing phosphomimetic mutations at T57 and 
T408 were not activated by rifampicin treatment.  The data are normalized to β-
galactosidase activity and represented as fold induction ± standard deviation (n=4). 
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 Phosphomimetic mutation at T57 impairs the ability of PXR to bind to its 

DNA response elements.  PXR-mediated transactivation of its target genes requires 

direct binding of the PXR protein to response elements on its target gene promoters.  

The PXR DBD contains two zinc finger motifs that are essential for DNA binding.  

T57 and T90 are located within the first and second zinc finger motifs respectively 

(Figure 5-3A).  Phosphorylation of these residues may alter the DNA-binding 

capacity of PXR.  Therefore, we hypothesize that the abolishment of the inducible 

transactivation capacity of the T57D mutant may be due to its lack of ability to bind 

to PXR response elements.  In fact, gel shift assay results demonstrate that while both 

wild-type and T57A PXR bound to PXR response elements, T57D PXR failed to do 

so.  T90D and T90A PXR were both able to bind to PXR response elements but to a 

lesser extent than wild-type PXR. 

 In vitro transcribed and translated wild-type and mutant PXR proteins were 

bound to a radio-labeled oligo corresponding to the ER6 PXR response element in the 

CYP3A4 promoter and run on a gel.  In order to verify the specificity of PXR binding 

to its response element, we demonstrated that the addition of increasing molar 

concentrations of an unlabeled wild-type, but not mutant, ER6 oligo competed with 

the binding of the labeled oligo.  Furthermore, incubation with an anti-hPXR antibody 

super shifted the PXR-oligo complex.  Wild-type and T57A PXR bound to the 

labeled oligo, whereas T57D PXR did not.  T90D and T90A PXR bound to the 

labeled oligo, although to a lesser extent than wild-type PXR.  This suggests that 

conservation of the T90 residue is important for DNA binding.  However, 
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phosphorylation at T90 likely would not impact DNA binding and the functional 

significance of this observation is difficult to interpret.  Phosphomimetic and 

phospho-deficient mutations at the other sites of interest, including S8, S208, S305 

and S350, had no effect on oligo binding compared to wild-type (Figure 5-3B).  

Taken together, these observations demonstrate that phosphorylation at T57 within 

the PXR protein may inhibit the ability of PXR to bind to its promoter elements.  

Thus suggesting a mechanism whereby PXR phosphorylation could result in the 

impaired function of PXR. 
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Figure 5-3A 
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Figure 5-3B 
 

 
 
 
Figure 5-3.  Phosphomimetic mutation at T57 abolishes the ability of hPXR to 
bind to its DNA response element.  T57 and T90 are located within conserved zinc 
finger motifs within the DBD of the PXR protein (A).  In vitro transcribed and 
translated wild-type and mutant PXR proteins were bound to a radio-labeled oligo 
corresponding to the ER6 PXR response element in the CYP3A4 promoter and run on 
a gel.  Assay specificity was confirmed in that the addition of a cold ER6 oligo 
competed for hPXR binding, while the addition of a mutant ER6 oligo did not.  
Addition of an anti-hPXR antibody super shifted the protein-oligo complex.  Wild-
type and T57A hPXR bound to the ER6 response element, whereas, T57D hPXR did 
not (B). 
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 Phosphomimetic mutations at S305, S350, and T408 impair the ability of 

PXR to heterodimerize with RXRα.  While some NRs function as monomers, most 

NRs are active as dimers; either as homodimers, or as heterodimers with retinoid x 

receptor (RXR).  PXR-mediated transactivation of its target genes requires 

heterodimerization with RXRα.  Upon ligand binding the PXR-RXR heterodimer 

binds to multiple sites on the PXR target gene promoters and activates gene 

expression.  Since PXR and RXRα form a single type of heterodimeric complex, the 

regions that connect proteins must allow considerable flexibility to account for 

variations in response elements.  Dimerization surfaces are located within the LBD of 

both PXR and RXRα.  Therefore, we hypothesize that phosphomimetic mutations 

contained within the PXR LBD may interfere with PXR-RXR heterodimerization.  

Co-immunoprecipitation studies show that phosphomimetic mutations at S305, S350, 

and T408, contained within the LBD, do in fact, disturb PXR-RXR 

heterodimerization. 

 Expression constructs encoding flag-tagged RXRα, wild-type, and mutant 

PXR were in vitro transcribed and translated.  The expression of the wild-type and 

mutant PXR proteins was roughly equivalent as demonstrated by western blot using 

an anti-hPXR antibody (Figure 5-4: top panel).  The wild-type and mutant PXR 

proteins were co-immunoprecipitated with flag-tagged RXRα using an anti-flag 

antibody.  The immunoprecipitated complexes were washed three times, and the 

presence of PXR was detected, indicating heterodimerization, using an anti-hPXR 

antibody.  As expected, wild-type PXR heterodimerized and was co-
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immunoprecipitated with RXRα using an anti-flag antibody.  In order to verify the 

specificity of the co-immunoprecipitation in detecting PXR-RXR heterodimerization, 

we immunoprecipitated lysates containing, RXRα alone, PXR alone, or un-

programmed cell lysate using the anti-flag antibody.  We also immunoprecipitated 

lysate containing both flag-RXRα and wild-type PXR using a control antibody.  As 

expected PXR was not co-immunoprecipitated or detected by western blot in any of 

the control reactions.  In this study, heterodimerization and co-immunoprecipitation 

of PXR proteins containing phosphomimetic mutations within the LBD at S305, 

S350, and T408 was disturbed as evidenced by the decreased detection via western 

blot.  Phospho-deficient mutation at the same sites did not appear to affect 

heterodimerization.  Phosphomimetic mutation at T57 and T90 (located in the DBD) 

did not affect PXR-RXR heterodimerization, whereas mutation at S8 (located in the 

N-terminal region) and at S208 (located in the N-terminal region of the LBD) appear 

to slightly decrease PXR heterodimerization (Figure 5-4: bottom panel).  These data 

indicate that potential phosphorylation at S305, S350, and T408 within the PXR 

protein may decrease PXR-RXR heterodimerization and contribute to decreased PXR 

activity.  It is interesting to note that while S305D, S350D and T408D mutant PXR 

proteins did display decreased basal PXR activity, perhaps due in part to decreased 

PXR-RXR heterodimerization, these mutants were still functional and able to induce 

the expression of reporter gene activity in response to rifampicin. 
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Figure 5-4 
 

 
 
 
Figure 5-4.  Phosphomimetic mutations at S305, S350, and T408 impair the 
ability of PXR to heterodimerize with RXRα.  Flag-tagged RXRα, wild-type, and 
mutant PXR were in vitro transcribed and translated.  The expression of the wild-type 
and mutant PXR proteins was analyzed by western blot using an anti-hPXR antibody 
(top panel).  The PXR proteins were co-immunoprecipitated with flag-tagged RXRα 
using an anti-flag antibody.  The presence of PXR was detected using an anti-hPXR 
antibody.  Wild-type PXR co-immunoprecipitated with RXRα using an anti-flag, but 
not a control antibody.  PXR was not detected in the immunoprecipitation of lysates 
containing RXRα alone, PXR alone, or un-programmed cell lysate.  PXR proteins 
containing phosphomimetic mutations at S305, S350, and T408 were not 
immunoprecipitated with RXRα whereas phospho-deficient mutations at the same 
sites did not appear to affect heterodimerization. 
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 Phosphomimetic and phosphor-deficient mutations at S208 and S305 

differentially modulate PXR-cofactor interactions.  The complete function of many 

NRs, including PXR, is dependent on their ability to interact with protein cofactors.  

For example, in the absence of ligand, PXR is associated with co-repressors such as 

NCoR.  However, ligand-binding disrupts the PXR-co-repressor association and 

induces the association of PXR with co-activators such as SRC-1 and SRC-2 [5].  In 

addition to ligand-binding, phosphorylation is known to regulate the ability of NRs to 

bind to cofactors.  Given that PXR interacts with transcriptional cofactors at the LBD, 

we hypothesize that phosphomimetic mutations contained within the PXR LBD may 

interfere PXR-cofactor interactions.  Therefore, we used the mammalian 2-hybrid 

system to determine whether the loss of PXR function observed in the 

phosphomimetic mutations contained within the LBD could be attributed to 

alterations in cofactor interactions. 

 CV-1 cells were transiently transfected with the pFR-Luc reporter gene 

construct and expression vectors encoding Gal4-co-factor fusion proteins and VP16-

wild-type or -mutant PXR fusion proteins.  Twenty-four hours post-transfection, cells 

were treated with either vehicle or 10 µM rifampicin.  Luciferase activity was 

observed an additional 24 hours after drug treatment.  A phosphomimetic mutation at 

S208 increased the basal association of the co-repressor NCoR with PXR, whereas 

the phospho-deficient mutation conferred the opposite effect (Figure 5-5A).  On the 

other hand, phosphomimetic mutation at S208 decreased the basal association of the 

co-activator SRC-2 with PXR and the phosphodeficient mutation increased the 
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association (Figure 5-5B).  This differential modulation of cofactor binding to S208D 

and S208A hPXR is consistent with the modulation of PXR activity in the reporter 

gene assay.  Alterations in the phosphorylation status of PXR at S208 may contribute 

to the modulation of PXR activity by disrupting receptor-co-factor interactions.  

Furthermore, phosphmimetic mutation at S305 had a similar effect of PXR-co-factor 

binding in that it increased the association of NCoR and decreased the association of 

SRC-2.  Phosphomimetic mutations at S350 and T408 resulted in a general decrease 

in co-factor binding (Figures 5-5A and 5-5B).  Ligand dependent associations of 

either NCoR or SRC-2 with hPXR were not disrupted by any of the selected 

mutations (data not shown). 
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Figure 5-5A 
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Figure 5-5B 
 

 
 
Figure 5-5.  Phosphomimetic mutations at S208 and S305 alter the ability of 
hPXR to interact with protein cofactors.  CV-1 cells were transfected with the 
pFR-Luc reporter gene construct and expression vectors encoding Gal4-co-factor 
fusion proteins and VP16-wild-type or -mutant PXR fusion proteins.  Twenty-four 
hours post-transfection, cells were treated with either vehicle or 10 µM rifampicin.  
Luciferase activity was observed an additional 24 hours after drug treatment.  
Phosphomimetic mutations at S208 and S305 increase the strength of interaction 
between PXR and the co-repressor NCoR (A) and decrease the strength of interaction 
between PXR and the co-activator SRC-2 (B).  The data are normalized to β-
galactosidase activity and represented as fold induction ± standard deviation (n=4). 
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 5.4  Discussion 

 Although the primary mode of regulation of NRs is ligand-binding, increasing 

amounts of evidence show that cell signaling and the modulation of NR and co-factor 

phosphorylation statuses are critical in determining the NR response to changes in 

environmental stimuli [3, 4].  Phosphorylation has been implicated in the modulation 

of multiple aspects of NR activity including transcriptional activity, protein 

expression and stability, sub-cellular localization, heterodimerization, DNA binding, 

and cofactor interactions. 

 It is well documented that changes in environmental conditions such as 

inflammation, diabetes, obesity, malnutrition, and alcohol consumption all result in 

the modulation of the expression and activity of drug metabolizing enzymes [24, 25].  

More specifically, the expression and activity of CYP3A4, a hepatic enzyme 

responsible for the oxidative metabolism of roughly 60% of all prescription drugs, is 

rapidly repressed in response to inflammation [26].  PXR is a master regulator of the 

drug-inducible transcription of not only the CYP3A4 gene, but also of genes that 

encode additional drug metabolizing enzymes and drug transporter proteins.  Given 

the potential for drug-environment or drug-disease interactions, it is important to 

understand the likely role of PXR in mediating transcriptional repression in response 

to environmental stimuli and pathological conditions.  While much is known about 

the PXR ligand-inducible regulation of target genes, relatively little is known 

regarding the regulation of PXR activity by signaling pathways and post-translational 

modifications.  We and others are interested in understanding the molecular 
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mechanisms by which signal transduction pathways interface with PXR to mediate 

the repression of PXR target genes. Understanding these mechanisms that regulate the 

drug metabolism program is critical for the development of effective clinical 

therapeutic strategies and to avoid potentially dangerous drug interactions. 

 It is known that PKA, PKC, and CDK2 are involved in the regulation of PXR 

activity [17-20].  In primary cultures of mouse hepatocytes, treatment with phorbol 

ester, a PKC activator, dramatically represses the expression of cyp3a11 [19].  

However, treatment of mouse hepatocytes with 8Br-cAMP, a PKA activator, 

potentiates the expression of cyp3a11 [17].  Cell-based mammalian 2-hybrid 

experiments suggest that the modulation of cyp3a11 expression by PKC and PKA is 

due in part, to the increased association of PXR with the cofactors NCoR and SRC-1 

respectively [17, 19].  However, it remains unclear as to whether the activation of 

PKA or PKC signaling modulates PXR activity via direct phosphorylation of PXR, 

direct phosphorylation of a protein cofactor, or an entirely different mechanism.  

Interestingly, while the activation of PKA signaling potentiates the expression of 

cyp3a11 in mouse hepatocytes, it represses the expression of CYP3A4 in human 

hepatocytes [18].  Treatment of hepatocytes isolated from a liver specific 

‘humanized’ PXR transgenic mouse model with 8Br-cAMP, resulted in the 

potentiation of cyp3a11 expression.  However, it is noteworthy that the activation of 

PKA signaling potentiated the expression of cyp3a11 in mouse hepatocytes in a 

synergistic manner, whereas the effect in ‘humanized’ PXR hepatocytes appeared to 

be additive [18].  This evidence suggests that the species-specific interface between 
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PXR activity and PKA signaling is not entirely contained within the PXR protein.  

Nonetheless, it is known that human PXR exists as a phospho-protein in vivo and is a 

good substrate for PKA in vitro [18].  Therefore, we can speculate that the 

modulation of PXR activity by PKA or other kinase signaling pathways is due to a 

combination of factors that may include the phosphorylation of PXR or a PXR-

interacting protein.  Another recent study has shown that the activation of CDK2 

leads to the attenuation of hPXR activity in cell-based reporter gene studies [20].  The 

same study indicates that CDK2 can phosphorylate human PXR in vitro at more the 

one site.  Furthermore mutagenesis analysis identified S350 as a potential site for 

CDK2 phosphorylation [20]. 

 It is clear that the activation of signaling pathways modulates PXR activity; 

however the extent to which the phosphorylation of PXR is involved is unknown.  A 

recent study sought to characterize the effect of a phosphomimetic mutation at T57 on 

the activity of human PXR [21].  T57 is highly conserved throughout the NR super-

family in the first zinc finger motif of the DBD.  The T57 phosphomimetic mutant of 

hPXR loses its transactivation function and displays a punctate nuclear distribution.  

Gel shift assays suggest that this may be due to the impaired ability of the mutant 

PXR to bind to its DNA response elements [21].  The same study identified T57 as a 

potential phosphorylation site for p70 S6K and showed that p70 S6K can 

phosphorylate hPXR in vitro [21].  Given the likelihood that PXR is regulated as a 

phospho-protein, and given the information that T57 and S350 have been identified as 
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potential phosphorylation sites within the PXR protein, we sought to systematically 

identify and characterize potential phosphorylation sites within the PXR protein. 

 While ligand binding is the primary mechanism of PXR activation, it is likely 

that phosphorylation is involved in fine-tuning PXR activity in response to 

environmental stimuli.  In the current study, we identified 18 likely PXR 

phosphorylation sites using in silico consensus site prediction methods.  Of the 18 

sites, 7 were chosen for further characterization.  Phosphomimetic mutations at each 

of the 7 sites resulted in the repression of PXR activity (p<0.001), whereas, the 

phospho-deficient mutations had either no effect or increased PXR activity.  There 

are multiple mechanisms by which phosphorylation at a specific site could result in 

decreased PXR activity including the impairment of transcriptional activity, DNA 

binding, heterodimerization, cofactor interactions, or sub-cellular localization.  We 

show that phosphomimetic mutations at T57 and T408 impair the ligand-inducible 

transactivation capacity of PXR whereas phospho-deficient mutations at those sites 

have no effect on PXR transactivation.  Similar to previous reports, we observed that 

a phosphomimetic mutation at S350 resulted in the decreased basal expression of 

PXR in cell based reporter gene assays; however, we did not observe an attenuation 

of ligand-induced PXR activity as reported by Lin et al. [20].  Our data also suggest 

that the lack of PXR activity displayed by the T57D PXR mutant is due to its inability 

to bind to PXR response elements.  This result is consistent with the previous report 

characterizing a phosphomimetic mutation at T57 [21].  In addition, given that T57 

and T90 are highly conserved residues located within the zinc fingers of the PXR 
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DBD, it is not astounding to speculate that phosphorylation at those sites would 

disrupt DNA binding.  However, both T90D and T90A mutants retained their ability 

to bind to DNA, albeit to a lesser extent than wild-type PXR.  While T90 appears to 

be a critical residue for DNA binding, our data indicate that phophorylation at this 

site would may not have an impact on PXR DNA binding and activity.  Furthermore, 

phosphomimetic mutations at S305, S350, and T408 inhibit PXR-RXR 

heterodimerization, thus providing a mechanism by which phosphorylation at those 

sites could result in decreased PXR activity.  Mammalian 2-hybrid experiments 

suggest that phosphorylation of PXR at S208 or S305 could result differential 

modulation of PXR-co-factor interactions and in subsequent PXR activity.   

 Taken together, our data provide a systematic identification and 

characterization of potential phosphorylation sites within the PXR protein.  We show 

that potential phosphorylation at sites throughout the PXR protein could modulate 

PXR activity by altering either one or a combination of the following parameters: 

transactivation capacity, DNA binding, heterodimerization, or cofactor interactions.  

However, there are some inconsistencies present in this data set.  For example, a 

phosphomimetic mutation at S350 inhibits the ability of PXR to heterodimerize with 

RXRα in co-immunoprecipitation assays but does not affect its ability to bind to its 

response element with RXRα in gel shift assays.  In addition, both phosphomimetic 

and phospho-deficient mutations at T90 slightly impair the ability of PXR to bind to 

its response element in gel shift assays but do not effect PXR activity in reporter gene 

assays.  Thus, it is difficult to interpret the extent to which the alterations in the 
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parameters of PXR activity, as measured in this study, are functionally significant.  

Furthermore, it is unknown as to whether or not phosphorylation at any of the 

characterized sites is physiologically significant.  In silico analysis reveals that many 

of the conserved PXR phosphorylation sites are potentially good substrates for an 

array of kinases (Table 5-3).  However, preliminary experiments performed in our 

lab, utilizing constitutively active kinase expression vectors in cell-based reporter 

gene assays, have been unsuccessful in identifying sites that are responsive to specific 

kinases (data not shown).  Further studies are required to determine the physiological 

connection between the activation of kinase signaling pathways and altered PXR 

activity as well as to determine the extent to which the direct phosphorylation of PXR 

is involved. 
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Table 5-3.  In silico identification of conserved hPXR phosphorylation sites that 
are potentially good substrates for specific kinases. 
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 The full activity of the PXR signaling pathway is dependent on both crosstalk 

with other signaling pathways and on PXR-cofactor interactions.  For example, it is 

known that PXR activation suppresses the hepatic immunological response.  On the 

other hand, inflammation is known to decrease PXR-mediated gene activation.  The 

evidence suggests that the activation of the NF-κB signaling pathway during 

inflammation interferes with PXR heterodimerization [14].  Furthermore, the 

activation of PXR has recently been shown to decrease energy metabolism and 

increase hepatic triglyceride levels.  The crosstalk between metabolic signaling 

pathways and PXR is thought to be due to direct interactions between PXR and the 

transcriptional regulators CREB, PGC-1α and FOXO [8, 27-29].  The molecular 

basis for the crosstalk between PXR and these metabolic pathways is unknown, 

although kinase signaling events are likely involved.  It is also well known that the 

activation of kinase signaling resulting in the phosphorylation of protein cofactors, 

such as SRCs, PGCs, and NCoR, disrupts NR-cofactor interactions.  Since NRs share 

many of the same cofactors, it is likely that the direct phosphorylation of cofactors 

could contribute to altered PXR activity in response to kinase activation.  Altogether, 

the interface between signal transduction pathways and PXR activity is complex and 

the physiological relevance of PXR phosphorylation is undefined.  It is most likely 

that the phosphorylation of PXR interacting proteins in addition to the potential 

phosphorylation of PXR itself contributes to alterations in PXR activity.  Even so, 

understanding the mechanisms by which environmental stimuli and signal 
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transduction pathways modulate the expression of PXR target genes is critical for the 

development of safe and effective therapeutic strategies. 
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Chapter 6:  The Future Outlook for PXR  

 6.1  The Significance of PXR 

 Normal homeostasis requires the detoxification and elimination of xenobiotics 

from the body through the combined action of the phase I oxidative cytochrome-P450 

(CYP) enzymes, the phase II conjugating enzymes, and the membrane transporter 

proteins in liver.  It is a long-standing observation that the expression of the genes 

encoding many drug-metabolizing enzymes (DMEs) can be dramatically induced by 

exposure to certain xenobiotic compounds [1].  Shortly after its discovery, PXR was 

classified as a receptor that is activated by a wide variety of xenobiotic compounds to 

activate the expression of genes involved in biotransformation, at long last providing 

the molecular basis for the induction of DME gene expression by xenobiotics [2, 3].  

Therefore, PXR activation is a principle defense mechanism protecting the body from 

toxic assault.  However, the discovery that the activation of PXR and the subsequent 

induction of DMEs can result in the accelerated metabolism of other medications, 

demonstrates that PXR activation also represents the basis for an important class of 

drug-drug interactions [3, 4].   

 This phenomenon is a serious concern for patients taking multiple medications 

with small therapeutic indices as alterations in drug metabolic rates in patients can 

often have life-threatening consequences.  Therefore, in order to develop safe and 

effective therapeutic strategies, it is critical to systematically screen new drug 

candidates and clinically used drugs for their ability to activate PXR.  Ideally, drug 

candidates would not activate PXR, and those that do can be replaced with 
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compounds that have similar therapeutic efficacy, but lack the ability to activate PXR.  

In addition, evidence presented in this dissertation and elsewhere shows that herbal 

compounds such as St. John’s Wort, Tian Xian, guggulsterone, and others can 

modulate the activity of PXR and may contribute to an herb-drug interaction [5-8].  

Herbal products are readily available over-the-counter and are not regulated for 

biological activity and side effects to the extent that prescription drugs are.  

Therefore, it is important to continue to screen natural products for PXR activity and 

to educate the general public on this issue. 

 While the primary function ascribed to PXR is the homeostatic control of 

steroids, bile acids, and xenobiotics, more recent research indicates a suppressive role 

for activated PXR in both gluconeogenesis and inflammation that is mediated through 

crosstalk with the forkhead transcription factor FOXO1 and the inflammatory 

mediator NFκB, respectively [9, 10].  Additional research indicates a key role for 

PXR in the development of hepatic steatosis and in the homeostasis of vitamin D [11-

13].  Therefore, in addition to drug-drug interactions, PXR activation may also 

represent the basis for drug-induced pathological conditions such as hypoglycemia, 

impaired immune function, hepatic steatosis, or osteomalacia.  Further research is 

required to determine the extent to which PXR activation contributes to the 

development of such conditions. 
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 6.2  PXR and Kinase Signaling 

 Although the primary mode of regulation of NRs is ligand-binding, increasing 

amounts of evidence show that cell signaling and the modulation of NR and co-factor 

phosphorylation statuses are critical in determining the NR response to changes in 

environmental stimuli [14, 15].  It is well documented that changes in environmental 

conditions such as inflammation, diabetes, obesity, malnutrition, and alcohol 

consumption all result in the modulation of the expression and activity of DMEs 

(Figure 6-1) [16, 17].  Understanding the mechanisms that regulate the expression of 

drug metabolizing enzymes is critical in the development of effective clinical 

therapeutic strategies and to avoid potentially dangerous drug interactions. 
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Figure 6-1.  Environmental stimuli modulate the expression of drug-
matabolizing enzymes.  Changes in environmental conditions including exposure to 
xenobiotics, lifestyle choices, age, disease, and pathological conditions all result in 
the modulation of the expression and activity of DMEs.  The mechanism by which 
signaling pathways interface with PXR and affect its overall responsiveness to 
environmental stimuli is an exiting area of future research.   
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 Drug-inducible DME gene expression is known to be responsive to kinase 

signaling pathways; however, the exact mechanism by which these pathways intersect 

with PXR is unknown.   The activation of PKA, PKC, CDK2, and p70 S6K signaling 

pathways result in the attenuation of PXR activity and PXR is a good substrate for 

these kinases in vitro [18-21].  The results of these studies suggest that the activity of 

PXR is modulated by changes in phosphorylation within the cell, although direct 

phosphorylation of PXR was not demonstrated in vivo.  Data presented in this 

dissertation provides the first evidence that PXR exists as a phospho-protein in vivo 

and that its phosphorylation status is modulated in response to the activation of a 

kinase signaling pathway [22].  Furthermore, given that PXR activity is noticeably 

regulated by the activation of kinase signaling pathways, we and others have sought 

to understand the mechanism by which phosphorylation dependent events modulate 

PXR signaling.  Data presented in this dissertation systematically show that 

phosphorylation at consensus sites throughout the PXR protein could result in the 

modulation of multiple aspects of PXR activity including transcriptional activity, 

heterodimerization, DNA binding, and cofactor interactions.  This suggests that PXR 

could be involved in integrating external signals via phosphorylation.  In addition, the 

post-translational modification of co-factors and NR-interacting proteins, such as 

RXRα, are critical in modulating the activity of many NRs in response to signaling 

pathways [14, 15].   Future studies are required to determine the impact that the direct 

phosphorylation of PXR or PXR-interacting proteins may have on PXR 

transactivation capacity. 
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 It is noteworthy that, similar to the PXR ligand response, a species-specific 

effect for the modulation of PXR activity by the PKA signaling pathway is reported 

in this dissertation.  We show that while PKA activation potentiates the drug-

inducible expression of Cyp3a11 in mouse hepatocytes, treatment of hepatocytes with 

8-Br-cAMP serves as a repressive signal in both human and rat hepatocytes [22].  

Pharmaceutical companies commonly screen for PXR activation by drug candidates 

in both rodent and human species in order to avoid future drug-drug interactions.  

Future studies that contribute to understanding the mechanism by which signaling 

pathways interface with PXR across species will be useful in the development of 

more accurate activation assays in order to predict and prevent potentially lethal drug-

drug interactions.  

 6.3  PXR as a Drug Target 

 As mentioned in chapter 2, in addition to drug metabolism, PXR has been 

implicated in the regulation of bile acid and bilirubin homeostasis, glucose and lipid 

homeostasis, the inflammatory response and in cancer.  Therefore, compounds that 

target PXR may be useful in the treatment of diseases that result from the disturbance 

of such homeostatic pathways.  In fact, there are multiple clinical examples in which 

PXR ligands have been used in the treatment of disease.  For example, rifampicin has 

been used for the treatment of jaundice and pruritus associated with cholestatis [23, 

24].  Budesonide, an anti-inflammatory drug used in the treatment of inflammatory 

bowel disease, has been recently identified as a PXR ligand [25].  In addition, 

rifaximin, which was initially approved for the treatment of travelers’ diarrhea, has 
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been used off-label for the treatment of inflammatory bowel disease and was 

identified as a gut-specific PXR activator [26].  Further studies are required to assess 

the potential role of PXR activation in such therapeutics.   

 Rifampicin treatment has also been known to induce side-effects such as 

hepatic steatosis [27].  Given emerging evidence for the role of PXR in lipid 

homeostasis and hepatic steatosis, the inhibition of PXR may represent a novel 

steatosis treatment strategy [12, 13].  Finally, recent evidence shows that PXR is up-

regulated and appears to promote tumor growth in certain human cancers [28-31].  

Again, future studies are required to assess the potential role of PXR inhibition in the 

treatment of diseases such as steatosis and cancer. 

 The ability to modulate the activity of PXR using small lipophilic ligands 

makes it an attractive drug target.  However, PXR regulates the expression of 

multiple target genes that are involved in several physiological processes.  One of the 

challenges in targeting PXR is separating the desired therapeutic effects from the 

undesirable side effects.  For example, the unwanted activation of PXR represents the 

basis for drug-drug interactions and in order for PXR to be an effective therapeutic 

target; the activation of a potential therapeutic-target gene must be separated from the 

activation of genes involved in drug metabolism.  One promising strategy in the 

development of drugs that target PXR is to take advantage of selective receptor 

modulators (SRMs) that exhibit agonistic or antagonistic activity in a cell- or tissue-

dependent manner.  The expression profile of co-regulator proteins and signaling 

pathways within different cell types likely contributes to the differential activities of 
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SRMs.  Another strategy is to attempt to target PXR in a promoter-specific manner.  

It is known that steroidal compounds preferentially induce PXR activity towards the 

CYP3A promoter, whereas anti-cancer agents preferentially induced the MDR1 

promoter.  The mechanism for this differential promoter activation was traced to the 

differential recruitment of co-activator proteins [32].  In this manner, an ideal drug 

candidate would activate PXR on the promoters of target genes involved in the 

treatment of disease, but would not activate PXR on the promoters of genes involved 

in drug metabolism. 

 As our understanding of PXR signaling increases, so does our appreciation of 

the complexity of its regulation.  It is likely that the clinical therapeutics will include 

strategies that not only target PXR, but also co-regulator proteins and signaling 

pathways that are critical in the modulation of its function.  Future research that 

contributes to a better understanding of the co-regulator proteins and signaling 

pathways that interface with PXR may provide alternative drug therapies toward that 

end. 

 6.4  Concluding Remarks 

 In the past ten years, PXR has moved from an orphan receptor to a well-

characterized xenobiotic sensor and a putative drug target.  We now face new 

challenges to deepen our understanding of the basic functions of PXR in human 

biology, as well as how the receptor might be harnessed in a clinical setting.  The role 

that distinct ligands play in the PXR-mediated regulation of tissue-, promoter-, and 

co-factor-specific transcriptional events represents a new direction toward that end.  
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The identification of novel ligands and target-genes continues to be an important 

aspect of PXR research.  However, the mechanism by which signaling pathways 

interface with PXR and affect its overall responsiveness to environmental stimuli is 

emerging as a key area of study for this receptor.  In addition, the potential impact of 

sites of phosphorylation on the action and stability of PXR and PXR-interacting 

proteins warrants detailed attention.  Finally, the search for selective PXR modulators 

might provide novel therapeutic tools to target this noteworthy receptor in the 

treatment of human diseases. 
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