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DISSERTATION ABSTRACT 
 
James T. Neal 
 
Doctor of Philosophy 
 
Department of Biology 
 
December 2011 
 
Title: Bacterial Stimulation of Intestinal Proliferation via the Wnt Pathway in Zebrafish 

 
This dissertation describes research into microbial influences on host signaling in 

the zebrafish intestine. Vertebrate organisms are consistently exposed to microbes, 

especially on epithelial tissues that are exposed to the environment, such as the skin and the 

gastrointestinal tract. The close association between these tissues and microbes over time 

has resulted in a symbiotic state, whereby microorganisms have gained the ability to utilize 

vertebrate epithelia as a niche for replication and the acquisition of nutrients. These 

associations run the gamut from beneficial to exceedingly pathogenic and often involve 

complex bidirectional signaling between microbe and host. Microbial signals can interact 

with host cell pathways involved in a wide range of cellular processes. Here, we describe 

our investigations into one such pathway, the Wnt signaling pathway, and how microbial 

activation of Wnt signaling can translate into alterations in cell proliferation and 

homeostasis in the intestinal epithelium of the teleost fish Danio rerio. We report that 

epithelial cell proliferation in the developing zebrafish intestine is stimulated both by the 

presence of the resident microbiota and by activation of Wnt signaling and demonstrate 

that resident intestinal bacteria enhance the stability of β-catenin in intestinal epithelial 

cells, promoting cell proliferation in the developing vertebrate intestine. We also describe 

how transgenic expression of the bacterial effector protein CagA from the human gastric 
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pathogen Helicobacter pylori is capable of causing significant overproliferation of the 

intestinal epithelium and adult intestinal hyperplasia, as well as significant upregulation 

of the Wnt target genes cyclinD1 and the zebrafish c-myc ortholog myca. We show that 

co-expression of CagA with a mutant allele of the β-catenin destruction complex protein 

Axin1 resulted in a further increase in intestinal proliferation, while co-expression of 

CagA with a null allele of the essential β-catenin transcriptional cofactor Tcf4 restored 

intestinal proliferation to wild-type levels. These results suggest that CagA activates 

canonical Wnt signaling downstream of the β-catenin destruction complex and upstream 

of Tcf4. Our studies provide in vivo evidence of Wnt pathway activation by CagA and 

implicate this activation in CagA-induced epithelial overproliferation, an early step in 

gastrointestinal cancer development. 

This dissertation contains both my previously published and unpublished co-

authored material. 
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CHAPTER I 

INTRODUCTION 

 

HEALTH AND THE GASTROINTESTINAL MICROBIOTA 

Multicellular organisms have coevolved with microbes, and this co-evolution has 

resulted in the assembly of specific microbial communities within a host, collectively 

known as the microbiota. Evidence for this co-evolution can be found in the observation 

that species within the microbiota exhibit a large degree of host adaptivity (1), and also in 

the observation that microbial communities transplanted from one species to another will 

be remodeled to resemble the resident microbiota in the transplant recipient (2). As such, 

the host has developed complicated mechanisms to control the resident microbiota without 

the concomitant activation of potentially damaging immune responses (3). The vertebrate 

gastrointestinal tract represents one of the largest niches available for microbial 

colonization, and becomes robustly colonized shortly after birth. This colonization by the 

gastrointestinal microbiota is important for the health of the host, and has been linked to 

several discrete benefits. 

The gastrointestinal microbiota serves as a first line of defense against colonization 

of the intestine by pathogenic microbes. This function is carried out via several 

mechanisms, including competitive exclusion through absorption of available nutrients and 

physical occupation of host attachment sites, production of anti-microbial compounds, and 

by stimulating the host to activate anti-microbial defenses. Additionally, the gastrointestinal 

microbiota plays a central role in host nutrition, acting to increase nutrient the availability 

of otherwise indigestible material (4, 5), and by interaction with hormonal pathways 
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associated with regulation of host energy balance (6). Finally, one of the most interesting of 

benefits conferred by microbial colonization of the gastrointestinal niche is the signaling 

between host and microbes to promote proper patterning of the host tissues. The presence 

of enteric microbes has been shown to be associated with proper spleen and lymph node 

development (7), as well as with the cell-type census of the intestine itself (8, 9). The effect 

of the microbial community on intestinal development is of particular relevance to this 

dissertation, and will be further examined in Chapter II; this chapter contains work co-

authored with S. Cheesman, E. Mittge, B. Seredick, and K. Guillemin. 

 

THE GASTROINTESTINAL MICROBIOTA AND DISEASE 

Given the variety of roles played by the gastrointestinal microbiota in host 

development and health, it is unsurprising that disruption of the carefully evolved balance 

between microbiota and host could be detrimental to both parties. Such an effect can be 

clearly seen in the case of diarrhea resulting from overgrowth of the normal microbiota 

member Clostridium difficile following perturbation of the normal microbiota with 

antibiotics (10). Additionally, monoassociation of model organisms with individual 

microbial species can result in abnormal development and homeostasis of the GI tract, a 

phenomenon that will be explored further in Chapter II.  

It was long believed that despite the rich microbial diversity within the human 

gastrointestinal tract, the stomach, with its highly acidic lumen, would be free of bacteria. It 

wasn’t until the early 1980’s that observations by the gastroenterologists Barry Marshall 

and Robin Warren identified the first known gastric bacterium, Helicobacter pylori, in the 

stomachs of ulcer patients (11). Since then, Helicobacter pylori has been discovered in the 
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stomachs of nearly half the world’s population, has been linked to gastritis, peptic ulcer 

disease, and gastric cancer, and has been designated a known carcinogenic agent by the 

World Health Organization, the only bacterium to be so designated. Still, the vast majority 

of persons colonized by H. pylori develop no disease, and gastric cancer rates among H. 

pylori-infected persons are around 1% (12). The mechanisms that underlie this disparity 

have yet to be fully elucidated, but a combination of bacterial and host-derived factors are 

likely to be involved. Investigations into the molecular mechanisms of H. pylori 

pathogenesis will be described in Chapter III; this chapter contains work co-authored by T. 

Peterson, M. Kent, and K. Guillemin. 

 

THE ZEBRAFISH INTESTINE 

The teleost fish Danio rerio (zebrafish) has several advantages that make it useful 

for the modeling of host-microbe interactions. First, zebrafish develop rapidly, with a fully 

functional intestine that allows feeding as early as 5 days post-fertilization (13, 14). 

Second, zebrafish are transparent throughout early development, allowing observation of 

the intestine and its associated microbiota as it develops (15). Third, the zebrafish intestine 

is quite similar to the vertebrate intestine in morphology, organization, and self-renewal. 

Lastly, due to the fact that zebrafish undergo early development in a sterile environment 

within the chorion, they can be reared germ-free with relative ease (16). Chapters II and III 

will describe the use of zebrafish as a model organism for the study of both beneficial and 

pathogenic interactions between microbes and hosts. Finally, Chapter IV will provide a 

discussion of some of the implications suggested by my dissertation research. 
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CHAPTER II 

EPITHELIAL CELL PROLIFERATION IN THE DEVELOPING ZEBRAFISH 

INTESTINE IS REGULATED BY THE WNT PATHWAY AND MICROBIAL 

SIGNALING VIA MYD88 

 

 The work in this chapter was previously published in Volume 108 of PNAS in 

October 2010. It was co-authored by S. Cheesman, E. Mittge, B. Seredick, K. Guillemin, 

and myself. S. Cheesman, K. Guillemin, and myself designed research. S. Cheesman, E. 

Mittge, B. Seredick, and myself performed research. S. Cheesman, E. Mittge, B. 

Seredick, K. Guillemin, and myself analyzed data. S. Cheesman and K. Guillemin wrote 

the paper. 

 

INTRODUCTION 

The vertebrate intestinal epithelium is one of the most rapidly renewing tissues in 

the body. Perturbation of normal tissue homeostasis attributable to genetic lesions or 

environmental insults, such as infection with bacterial pathogens, can lead to 

hyperproliferative diseases of the intestinal tract (1). The regulation of intestinal epithelial 

cell proliferation has been studied extensively in the context of colorectal cancer (CRC), 

which has revealed canonical Wnt signaling as a key regulator of cell division and 

differentiation (2). Another contributing factor to rates of intestinal epithelial cell 

proliferation is the associated microbial community, as indicated by the paucity of 

proliferating cells in the intestines of germ-free (GF) rodents and zebrafish (3–5). However, 

the mechanisms underlying microbiota-induced cell proliferation are poorly understood. 
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Evidence for the role of Wnt signaling in intestinal homeostasis comes from 

mutations that perturb this genetic pathway. Canonical Wnt signaling is modulated by the 

levels of β-catenin protein; when abundant, β-catenin protein accumulates in the cytoplasm 

and translocates into the nucleus, where it interacts with co-activators, such as the intestine-

specific transcription factor Tcf4, to turn on transcription of pro-proliferative target genes, 

including c-myc and sox9 (6, 7). In the absence of endogenous Wnt ligands, β-catenin 

levels are kept low by the activity of the cytoplasmic destruction complex, composed of 

Apc, Axin, and GSK-3, which target β-catenin for destruction by the proteosome. 

Constitutive activation of Wnt signaling, such as in the case of genetic loss of the β-catenin 

destruction complex, results in unchecked intestinal cell proliferation. This is seen in 

apcMin/+ mutant mice in which clonal loss of heterozygosity of the WT apc gene results in 

adenoma formation (8). These animals display a similar phenotype to human patients with 

familial adenomatous polyposis coli, who develop thousands of colonic polyps as a result 

of clonal loss of APC function. Conversely, when Wnt signaling is attenuated in transgenic 

adult mice overexpressing the Wnt receptor inhibitor Dkk-1 (9, 10) or in neonates lacking 

Tcf4 (7, 11), the small intestine is depleted of proliferating cells that normally replenish the 

intestinal epithelium. 

Similar analyses in zebrafish have shown that Wnt signaling regulates cell 

proliferation in the adult zebrafish intestine; however its function in the larval intestine 

during the period of establishment of the gut microbiota has not been determined (12). 

Zebrafish heterozygous for the apcmrc mutation, which contains a premature stop codon in 

the apc gene, spontaneously develop intestinal neoplasia as adults (13), but apcmrc/mrc 

homozygotes die before 96 h post-fertilization (hpf), before maturation of the larval gut, 
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which begins to function in nutrient uptake at 5 d post-fertilization (dpf) (14, 15). 

Conversely, zebrafish homozygous for the null mutation tcf4exl exhibit a loss of 

proliferative compartments within the intestinal epithelium, but this defect is only reported 

to be apparent in young adult zebrafish at 5 wk of age (16). An earlier role for tcf4 in the 

intestine is suggested by the finding that removal of tcf4 in the apcmrc/mrc mutant rescues 

expression of the intestinal marker ifabp at 72 hpf but not the early larval lethality (17). 

Collectively, these results demonstrate that appropriate levels of Wnt signaling are crucial 

for the maintenance of intestinal epithelial renewal in the adult intestine, but they do not 

explain how intestinal epithelial renewal rates are established during larval development. 

This is a crucial period in zebrafish development, analogous to the postnatal period in 

mammals, when the digestive tract is first colonized by microbes that influence the organ's 

maturation (18). 

One mechanism by which animals perceive the presence of microbes is through the 

innate immune Toll-like receptor (TLR) signaling pathway (19). TLRs were initially 

studied for their role in perceiving pathogens and activating host protective inflammatory 

responses. However, there is growing evidence for the critical role that TLR signaling plays 

in host perception of indigenous beneficial microbes (20), which typically do not elicit a 

strong inflammatory response. Myd88 functions as a key adaptor protein downstream of 

the majority of TLRs; when perturbed, it interferes with TLR signaling in mammals. The 

zebrafish genome has duplicated tlr genes but only a single copy of myd88 (21, 22). We 

and others have shown that Myd88 functions in zebrafish to modulate innate immune 

responses to microbes and microbial-associated molecular patterns (MAMPs), such as LPS 

(23–25). Notably, LPS sensing in zebrafish differs mechanistically from that in mammals 
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and does not involve a Tlr4–MD2 complex (26). 

Possible combinatorial effects of microbial and Wnt signaling on intestinal 

epithelial homeostasis are suggested by the observation that apcMin/+ mice develop 50% 

fewer small intestinal adenomas when reared GF than when reared under conventional 

conditions (27). Similarly, deletion of Myd88 in apcMin/+ mice results in fewer adenomas 

than in apcMin/+ controls (28). We set out to investigate how the microbiota and Wnt 

signaling affect proliferation of the developing vertebrate intestinal epithelium. We used a 

gnotobiotic zebrafish model, which allowed us to manipulate readily both the presence and 

composition of the microbiota and the genetic makeup of the host. The overall 

development, tissue organization, and physiology of the teleost and mammalian intestines 

are highly similar (12, 14, 15). In this study, we made use of the axin1tm213 mutant that 

contains a missense mutation in the Gsk3-binding domain of Axin1 (29, 30), which 

disrupts the function of the β-catenin destruction complex. Homozygous axin1 mutants are 

viable through 8 dpf, allowing analysis of the effects of excessive Wnt signaling on the 

larval intestine. We report that cell proliferation in the larval zebrafish intestine is increased 

both by the presence of the microbiota and by up-regulation of Wnt signaling in an axin1 

mutant. We demonstrate that myd88 is required for perception of the microbial signals that 

promote intestinal cell proliferation. We show that a dominant member of zebrafish gut 

microbiota, Aeromonas veronii, secretes pro-proliferative signals and that zebrafish with a 

mutation in the β-catenin co-activator Tcf4 have a decreased proliferative response to 

monoassociation with A. veronii. Finally, we show that GF larvae have reduced numbers of 

intestinal epithelial cells with cytoplasmic β-catenin and that A. veronii monoassociation is 

sufficient to promote the accumulation of cytoplasmic β-catenin in the intestinal 
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epithelium, demonstrating that resident intestinal bacteria enhance Wnt pathway activity 

and elevate rates of epithelial renewal in the developing vertebrate intestine. 

 

RESULTS 

Zebrafish Intestinal Epithelial Cell Proliferation Is Stimulated by the Microbiota  

 To investigate the influence of microbes on zebrafish intestinal cell proliferation, 

we exposed larvae to the nucleotide analogues BrdU and 5-ethynyl-2′-deoxyuridine (EdU) 

and quantified S-phase nuclei in 30 serial sections in the intestinal bulb (Fig. 1 A and B: see 

Appendix for all figures). The absolute numbers of labeled cells varied with the different 

nucleotide analogues and even between trials, but the relative levels of cell proliferation 

between treatment groups were reproducible between trials. The spatial distribution of S-

phase cells within the larval intestinal epithelium was sporadic, with some bias toward the 

bases of the emerging epithelial folds (Fig. 1C), as described (14, 15). We observed 

enrichment of proliferating cell nuclear antigen (PCNA) in the same cells that were labeled 

with EdU (Fig. 1 C–E), confirming that these were proliferating cells. We observed no 

PCNA staining in terminally differentiated goblet cells, which were visualized with Alcian 

blue staining (Fig. 1F), suggesting that zebrafish intestinal epithelial cells undergo 

proliferation before committing to a particular cell fate, similar to mammalian intestinal 

epithelial cells. In conventionally reared (CV) larvae with normal microbiota, we observed 

a decrease in the number of dividing cells between 6 and 8 dpf (Fig. 1G), similar to other 

reports of proliferation patterns in the developing zebrafish intestine (14, 15, 31). In larvae 

reared GF, the intestinal epithelia exhibited significantly fewer dividing cells than in CV 

controls at both 6 and 8 dpf (Fig. 1G). This observation was consistent with previous 
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analyses of cell proliferation in the 6-dpf GF zebrafish intestine (4, 32). 

To determine whether these differences in cell proliferation resulted in an increase 

in intestinal cells in CV vs. GF animals, we scored the total number of epithelial cells in 

single H&E-stained tissue sections from three defined locations along the intestine (Fig. 1 

H–J). We observed no significant differences in the total numbers of intestinal epithelial 

cells in CV and GF 8-dpf intestines at any of the three anatomical locations (Fig. 1K). The 

larval intestinal epithelium contains very few apoptotic cells (14), and there is no difference 

in the number of these cells between GV vs. CV larvae (4). Because fewer cells are 

dividing in GF vs. CV animals but the total numbers of cells in the two are similar, we infer 

that intestinal epithelial cells must undergo a slower rate of turnover in the absence of 

microbes. 

 

Myd88 Is Required for Intestinal Epithelial Cell Proliferation in Response to 

Microbial Signals 

 The TLRs are key sensors of MAMPs produced by both pathogenic and beneficial 

microbes. In mammals, Myd88 functions as a common downstream adaptor of the TLRs, 

and thus is a good target for disrupting TLR signaling. To test whether Myd88 functions in 

reception of the microbial cell proliferation-promoting signal in the zebrafish intestine, we 

examined cell proliferation levels in the intestinal epithelia of myd88 morpholino (MO)-

injected animals. We observed significantly fewer proliferating cells in the myd88 MO-

treated animals as compared with their WT siblings (Fig. 1L). Next, we compared intestinal 

epithelial cell proliferation in myd88 MO-injected larvae that were reared in the absence of 

the microbiota. If Myd88 function were required for the perception of the microbial signals 
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that promote intestinal cell proliferation, in the absence of Myd88, the rate of cell 

proliferation should be the same irrespective of the presence or absence of the microbiota. 

Consistent with this prediction, we observed that the levels of cell proliferation in CV and 

GF myd88 MO-injected larvae were indistinguishable (Fig. 1L). 

We have shown that on colonization of the zebrafish intestine, the microbiota elicit 

an influx of neutrophils into the intestinal epithelium by means of a Myd88-dependent 

mechanism (23). We wondered whether a mild inflammatory response to the microbiota, 

similar in mechanism but smaller in scale to the hypertrophic response of the epithelium to 

pathogen infection or injury (1), could produce the increased intestinal cell proliferation 

observed in the colonized larval intestine. Inhibition of TNF receptor with a pair of tnfr 

MOs efficiently blocked neutrophil influx in CV larvae (23). However, this treatment had 

no effect on the number of proliferating cells in the intestinal epithelium (Fig. 1M), 

suggesting that the microbiota-induced cell proliferation in the developing intestine is 

mechanistically distinct from pathological hypertrophy, which is known to require Myd88 

function (33–35). 

 

Wnt Signaling Promotes Cell Proliferation in the Zebrafish Larval Intestine  

 Canonical Wnt signaling is a key pathway regulating the balance between 

proliferating and differentiated cells in the mammalian intestine (2). We sought to establish 

whether Wnt signaling functions in the larval zebrafish intestine to establish rates of 

epithelial proliferation during the period when the gut is first colonized by microbes. We 

therefore examined whether components of the Wnt signaling pathway are expressed in the 

larval intestine and whether they respond to known inducers of Wnt signaling. 
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In situ hybridization against the β-catenin cofactor gene, tcf4, revealed strong 

expression within the brain and modest expression in the intestinal bulb in 6-dpf larvae 

(Fig. 2A). Low-level intestinal and brain expression of the Wnt target gene sox9b was also 

detected in larvae (Fig. 2B). We were unable to detect expression of the other Wnt target 

genes c-myc, axin2, cdx1a, or nt-1 by in situ hybridization in the larval intestine or the GFP 

product of the Wnt reporter topD line (36) by immunohistochemistry, but we were able to 

amplify these mRNAs from dissected larval intestines by RT-PCR (Fig. 3 A and B). In 

adult intestines, tcf4 was expressed throughout the villi (Fig. 2C) and sox9b was localized 

to the base of the villi (Fig. 2D) in the region where cell proliferation becomes restricted in 

adults. We also examined expression of the Wnt pathway transducer β-catenin in the larval 

intestine. The zebrafish genome contains two β-catenin genes (37), which encode highly 

similar proteins that are recognized by polyclonal antisera raised against the human protein 

(38). Using these antisera, we detected strong cytoplasmic β-catenin expression in a subset 

of pharyngeal and esophageal cells (Fig. 2 F and G) and in a few scattered cells along the 

length of the intestine (Fig. 2 H and I). The antisera also cross-reacted with luminal 

intestinal microbes (Fig. 2 H and I), but these were easily distinguished from intestinal 

epithelial cells by their shape and location. 

We next asked whether we could detect changes in levels of Wnt pathway 

components in response to modulators of Wnt signaling. First, we treated zebrafish larvae 

with LiCl, an inhibitor of β-catenin destruction complex member GSK-3 (39). Larvae 

exposed to 75 mM LiCl from 3 dpf exhibited stronger pharyngeal β-catenin staining at 6 

dpf than untreated controls (Fig. 2 F and G). Second, we analyzed β-catenin distribution in 

the intestines of homozygous 6-dpf axin1tm213 mutants. We noted that relative to their WT 



 

12 

siblings, the axin1 mutants had more cells with cytoplasmic β-catenin distributed along the 

length of their intestines (Fig. 2 H and I). We were also able to measure a modest 2-fold 

increase in transcript level of the Wnt target gene c-myc in intestines of axin1 8-dpf mutant 

larvae relative to WT siblings (Fig. 3C). Collectively, these data provide support for a 

functional Wnt pathway in the larval intestinal epithelium that is up-regulated in axin1tm213 

mutants, but they suggest that the level of Wnt signaling in this tissue is low compared with 

that in other tissues, such as the brain. 

We next performed functional studies in the axin1 mutant to test whether Wnt 

signaling regulates cell proliferation in the larval intestine. We noted that in live 6-dpf 

axin1 animals, the intestines appeared larger and the tissue thicker and more convoluted 

(Fig. 3 D and E). H&E-stained sections of 8-dpf axin1 intestines revealed epithelial 

hypertrophy and regions of disordered epithelia (Fig. 4B), in contrast to the orderly 

alignment of cells in the intestinal epithelia of WT siblings (Fig. 4A). On quantification, we 

found that at both 6 and 8 dpf, axin1 mutant larvae had significantly more proliferating 

cells than WT siblings (Fig. 4C). We quantified an increase in the total number of intestinal 

epithelial cells in the axin1 mutant 8-dpf larvae, most notably in the intestinal bulb (Fig. 

4D). The elevated intestinal epithelial cells in the axin1 mutant (1.8-fold more than in WT 

in the intestinal bulb) could not account for the increased number of S-phase cells in these 

animals (7-fold more than in WT in the intestinal bulb), confirming that rates of intestinal 

epithelial cell proliferation were elevated in the axin1 mutant.  

 

Microbial Signals and Axin1 Loss Promote Cell Proliferation Combinatorially  

 We had so far shown that both the presence of microbes and activation of Wnt 



 

13 

signaling through impairment of the β-catenin destruction complex increased cell 

proliferation in the intestinal epithelium. We next asked whether the microbiota induced 

cell proliferation by promoting Wnt signaling upstream of the β-catenin destruction 

complex. If this were the case, we would expect axin1-deficient animals, which experience 

constitutive Wnt signaling, to be insensitive to microbial signals, and thus to exhibit similar 

levels of intestinal epithelial cell proliferation in the presence or absence of microbes. 

However, when we quantified cell proliferation in 6-dpf GF axin1 larvae, we observed 

significantly fewer dividing nuclei than in CV axin1 siblings (Fig. 5A). These observations 

suggest that the microbial signals promoting cell proliferation do so through a pathway that 

functions in parallel to or downstream of Axin1. If Myd88 functions to transduce the 

signals from the microbiota that promote intestinal epithelial cell proliferation, we would 

predict that an axin1 mutant lacking myd88 would resemble an axin1 mutant reared under 

GF conditions. Similar to our observations in GF axin1 mutants, we observed a significant 

decrease of cell proliferation in the intestinal epithelia of axin1 mutants injected with the 

myd88 MO, with levels that resembled those of CV WT controls (Fig. 5B). These data are 

consistent with the model that Myd88 transduces the microbial signals that promote 

intestinal epithelial cell proliferation in parallel to or downstream of Axin1. 

 

Secreted Bacterial Signals Modulate Levels of Intestinal Epithelial Cell Proliferation  

 We next wanted to explore the nature of the microbial signals that promote 

intestinal cell proliferation. Because we had shown that Myd88 is required for this 

response, we wondered whether any TLR ligand could induce this response. We have 

shown previously that LPS induces certain Myd88-mediated responses when administered 



 

14 

to zebrafish larvae in their water, including toxicity (at 50 μg/mL or higher) and induction 

of intestinal alkaline phosphatase activity (at 3 and 30 μg/mL) (23). We tested whether 

purified LPS that was competent to elicit these responses (Fig. 6 A and B) was sufficient to 

stimulate intestinal proliferation when added to GF larvae at the sublethal dose of 30 

μg/mL. We found that exposure to 30 μg/mL LPS caused no increase in the number of 

proliferating cells in the intestinal epithelia of GF larvae (Fig. 5C). Having ruled out a 

generic MAMP as the intestinal epithelial cell proliferation-promoting factor, we sought to 

establish whether specific members of the zebrafish gut microbiota possessed this activity. 

The complexity of the zebrafish microbiota is similar to that of mammals, but the 

community is dominated by Gram-negative Gamma-Proteobacteria (4, 32). Previously, we 

had found that monoassociation with a strain of A. veronii biovar sobria, a member of the 

dominant genera of the zebrafish microbiota, was sufficient to reverse multiple GF traits 

(40). We therefore tested whether A. veronii monoassociation could induce cell 

proliferation in GF animals, using two different experimental time courses: inoculation of 

GF larvae at 4 dpf and assaying at 6 dpf or inoculation at 6 dpf and assaying at 8 dpf. At 

both end points, monoassociation with A. veronii was sufficient to stimulate intestinal 

epithelial cell proliferation significantly (Fig. 5 D and F). 

We proceeded to characterize the A. veronii-associated cell proliferation promoting 

activity by testing whether it was secreted or required the presence of the bacteria. We 

generated A. veronii cell-free supernatant (CFS) by centrifugation and filtration and further 

purified it using a concentrator with a molecular mass cutoff of 10 kDa, which reduced the 

toxicity of the solution when administered to fish [likely by removing toxic LPS (23)]. A. 

veronii CFS, when added back to GF larvae at 6 dpf, was sufficient to increase intestinal 
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cell proliferation at 8 dpf (Fig. 5D). As with the A. veronii monoassociations, the levels of 

intestinal epithelium cell proliferation in CFS-treated larvae were sometimes slightly higher 

than those found in CV larvae (Fig. 5D). 

We used the simplified A. veronii monoassociation model to investigate the relation 

between bacterial and Wnt signaling further. We reasoned that if A. veronii 

monoassociation stimulated cell proliferation independent of inhibition of Axin1, the 

effects of bacterial inoculation and axin1 deficiency should be combinatorial. Indeed, when 

we monoassociated axin1 mutants with A. veronii, we observed levels of intestinal 

epithelial cell proliferation that significantly exceeded those of the CV axin1 mutants (Fig. 

5E), consistent with our other evidence suggesting that microbiota signals promote cell 

proliferation in parallel to or downstream of Axin1. 

To address whether bacterial signals promote proliferation through components of 

the Wnt pathway downstream of Axin1, we made use of the zebrafish tcf4exl null mutant 

(16). Previous characterization of this mutant had revealed no impairment in intestinal 

epithelial cell proliferation before 5 wk post-fertilization. When we carefully analyzed cell 

proliferation in these mutants at 6 dpf, we observed a slight but statistically significant 

decrease relative to WT siblings (Fig. 5F), demonstrating that canonical Wnt signaling is 

required for normal levels of cell proliferation in the larval intestine. We reasoned that if A. 

veronii monoassociation promotes intestinal cell proliferation upstream of Tcf4, the 

proliferative response should be blocked in A. veronii-monoassociated tcf4 mutants. We 

observed that the proliferative response to A. veronii was partly decreased in the tcf4 

mutants (Fig. 4F; 1.8-fold increase over GF) as compared with the WT response (2.4-fold 

increase over GF), suggesting that Tcf4 function is partially required for transduction of the 
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A. veronii proliferation-promoting signal. 

 

Resident Bacteria Promote β-Catenin Stability in Intestinal Epithelial Cells  

 To look for direct evidence of Wnt signaling regulation by the microbiota, we 

quantified intestinal epithelial cells with cytoplasmic β-catenin in the same region of the 

intestinal bulb in which we had quantified S-phase nuclei. Consistent with the role of 

Axin1 in the β-catenin destruction complex, we observed significantly more cells with 

cytoplasmic β-catenin in axin1 mutant vs. WT intestinal epithelia (Fig. 5G). When WT 

animals were reared GF, their intestinal epithelia contained significantly fewer cells with 

cytoplasmic β-catenin than CV siblings (Fig. 5 G and H), indicating that the presence of the 

microbiota stabilized β-catenin in the intestinal epithelium. This observation also held true 

in axin1 mutants, in which the number of cells with cytoplasmic β-catenin was significantly 

reduced in the absence vs. presence of the microbiota (Fig. 5G). Finally, we quantified β-

catenin-positive cells in the intestinal epithelia of larvae colonized solely with A. veronii. 

We found that monoassociation with A. veronii was sufficient to increase numbers of 

intestinal epithelial cells with cytoplasmic β-catenin to levels significantly higher than 

those observed in GF or CV animals (Fig. 5H), demonstrating that a resident intestinal 

bacterium is capable of stabilizing β-catenin in intestinal epithelial cells. 

 

DISCUSSION 

 When the vertebrate intestine is first colonized by microbes at birth or hatching, this 

tissue is still undergoing maturation and establishment of adult patterns of tissue renewal. 

Studies in GF zebrafish clearly demonstrated a role for the microbiota in stimulating rates 
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of intestinal cell proliferation during this period of development (4). We can speculate on 

why microbes elicit an increase in intestinal epithelial renewal. From the host's perspective, 

increased cell turnover may be beneficial as a mechanism to purge epithelial cells exposed 

to increased concentrations of harmful chemicals, such as reactive oxygen species, 

associated with microbial colonization. From the microbes’ perspective, stimulating cell 

turnover would increase the numbers of host cells shed into the lumen and the availability 

of host-derived glycans that can serve as nutrient sources for the microbial community (41). 

We report here that Myd88, an adaptor for the TLR family of innate immune 

receptors, is required for the normal proliferative response to the microbiota in the 

developing zebrafish intestine. In mice, adult Myd88 mutants have normal or slightly 

elevated numbers of proliferating intestinal epithelial cells in the absence of injury (33, 34), 

but the effect of Myd88 signaling on rates of intestinal epithelial proliferation has not yet 

been characterized in neonates (42). The mechanisms underlying intestinal epithelial cell 

proliferation during normal development are likely to be different from those operating in 

the proliferative response to injury in the adult intestine. Intestinal epithelial cell 

proliferation in adult mice in response to the toxin dextran sodium sulfate (DSS) or 

Citrobacter rodentia infection occurs with a robust induction of proinflammatory 

cytokines, which is blunted in the absence of Myd88 (35, 43). Furthermore, blocking TNF 

signaling attenuates tumor formation in a murine model of DSS-induced colitis-associated 

CRC (44). 

In contrast to the described role of Myd88 in promoting inflammation-associated 

hypertrophy in the intestines of adult mice, we found no correlation between signals that 

induce inflammation and cell proliferation in the developing zebrafish intestine. LPS, 
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which is sufficient to protect against DSS toxicity associated with a defective proliferative 

response in the sterilized mouse intestine (35), and which induces inflammatory responses 

in the zebrafish intestine (23), did not induce epithelial cell proliferation. Furthermore, we 

found that inhibition of inflammatory responses with TNF receptor MOs had no effect on 

cell proliferation in the larval intestine. 

We provide evidence that Wnt signaling is both necessary and sufficient to promote 

cell proliferation in the larval zebrafish intestine, using the tcf4 and axin1 mutants, 

respectively. Given the importance of Wnt signaling in regulating cell renewal in this 

tissue, we asked whether microbial signals could increase cell proliferation by up-

regulating Wnt signaling. We addressed the interactions between microbial and Wnt 

signaling in intestinal epithelial renewal by manipulating both host genetics and microbial 

associations. These tests were imperfect because of the complexity of the microbial signals 

and the limitations of Wnt pathway mutants (the axin1tm213 allele may have some residual 

activity because the phenotype is temperature-sensitive, and the tcf4exl mutant larvae may 

have some maternal gene product that could explain the mild proliferation defect at this 

stage). Nonetheless, our data support the model that the microbiota promote intestinal 

epithelial cell proliferation, in part, by up-regulating Wnt signaling downstream of Axin1 

and upstream of Tcf4. The proliferative effects of the axin1 mutation were combinatorial 

with the presence or absence and the composition of the microbiota, suggesting that the 

proliferative signals from the microbiota act in parallel to or downstream of Axin1. The 

proliferative response to A. veronii monoassociation was considerably reduced in the tcf4 

mutant, indicating that the signals from microbiota may act partly through Tcf4 to promote 

intestinal epithelial proliferation. 
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To gain mechanistic insight into the interaction between the microbiota and the Wnt 

signaling pathway, we quantified intestinal epithelial cells with cytoplasmic β-catenin. 

Cytoplasmic accumulation of β-catenin is indicative of active Wnt signaling. Loss of the β-

catenin destruction complex component, Axin1, resulted in elevated numbers of intestinal 

epithelial cells with cytoplasmic β-catenin. Most intestinal epithelial cells in the axin1 

mutant still displayed low levels of β-catenin, indicating that other factors prevent the 

accumulation of β-catenin in these cells. Consistent with our observation that the presence 

of the microbiota and the loss of axin1 acted combinatorially to promote intestinal 

epithelial cell proliferation, we observed that these factors both contribute to β-catenin 

levels in the intestine, with significantly fewer β-catenin-positive cells in GF vs. CV axin1 

mutants. Furthermore, we demonstrated that colonization of the GF intestine with A. 

veronii was sufficient to stabilize β-catenin to higher than CV levels. Our observation that 

loss of the β-catenin co-activator Tcf4 partially blocks the pro-proliferative activity of A. 

veronii is consistent with the model that A. veronii induces intestinal epithelial cell 

proliferation by increasing the stability of β-catenin in these cells. 

One possible mechanism for microbial signaling through the Wnt pathway could 

involve a Myd88-dependent up-regulation of prostaglandin E2, a molecule that has been 

shown to stimulate Wnt signaling and promote stem cell regeneration in a number of larval 

zebrafish tissues through phosphorylation-based regulation of β-catenin stability (45). 

Another possible mechanism could involve microbial induction of reactive oxygen species, 

which have been shown to promote Wnt signaling through inhibition of β-catenin 

ubiquitination (46). Additionally, gastrointestinal bacteria may produce specific effector 

molecules that activate Wnt signaling, as has been shown for the CagA protein of 
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Helicobacter pylori (47). All these mechanisms stimulate Wnt signaling downstream of 

Axin1 and upstream of Tcf4, similar to the zebrafish microbiota-associated signals we 

describe here. 

We do not know the chemical nature of the microbial signals that promote cell 

proliferation in the zebrafish larval intestine, but our experiments shed some light on their 

properties. We showed that LPS exposure is not sufficient to stimulate intestinal cell 

proliferation and that A. veronii-secreted factors greater than 10 kDa stimulate proliferation 

in the intestine. We hypothesize that members of the microbiota produce multiple pro-

proliferative factors at various concentrations and with various potencies. Indeed, Rawls et 

al. (32) observed differences in the extent to which individual bacteria could induce 

intestinal cell proliferation in monoassociations. Different assemblages of gut microbes 

would therefore have different proliferative capacities. Notably, colonization of axin1 

mutants with a monoculture of A. veronii elicited significantly more cell proliferation than 

colonization with complex microbiota. In humans, the majority of spontaneous and 

hereditary mutations associated with CRC impair the β-catenin destruction complex (48). 

Our data suggest that although an individual's genetic Wnt status clearly plays an important 

role in determining CRC risk, the individual's microbiota and innate immune system 

function will likely contribute to the risk for intestinal epithelial hyperproliferation. 

Proinflammatory microbes are likely to contribute to the development of colitis-associated 

CRC (49). Our data suggest that members of the microbiota also influence rates of 

intestinal epithelial cell proliferation independent of inflammation via direct modulation of 

β-catenin signaling. 
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MATERIALS AND METHODS 

 All experiments with zebrafish were performed using protocols approved by the 

University of Oregon Institutional Animal Care and Use Committee and following standard 

protocols (50). WT (Ab/Tu) zebrafish were reared at 28 °C. The axin1tm213 mutant line was 

reared at 30 °C; at that temperature, the eye development defect was fully penetrant among 

the homozygotes (29). The tcf4exl mutant line (16) was kindly provided by Tatyana 

Piotrowski (University of Utah, Salt Lake City, Utah). Progeny from tcf4exl/+ parents were 

euthanized at 6 dpf, and tail tissue posterior to the vent was removed for genotyping. 

Genotyping was carried out by PCR as described (16). GF embryos were derived and 

maintained as previously described (40). All larvae were starved through the duration of the 

experiments. 

 Larvae were immersed in 200 μg/mL BrdU (B-5002; Sigma) and 20 μg/mL 5′-

fluoro-2′-deoxyuridine (F-0503; Sigma) or 100 μg/mL EdU (A10044; Invitrogen) for 16 h 

before termination of the experiment. Larvae were fixed in BT fixative (4% 

paraformaldehyde, 0.15 mM CaCl2, 4% sucrose in 0.1 M PO4 buffer) (50) for 4 h at room 

temperature with gentle shaking, immediately processed for paraffin embedding, and cut 

into 7-μm sections. To detect BrdU, sections were deparaffinized and tissue-denatured in 2 

M warm HCl for 20 min, neutralized in 0.1 mM sodium borate for 10 min, and rinsed in 

PBS/0.5% Triton X-100 (PBSt). Tissue was blocked for 1 h at room temperature in 10% 

(vol/vol) normal goat serum in PBSt and soaked in anti-BrdU (1:150, 11170376001 mouse 

monoclonal; Roche) overnight at 4 °C. Slides were then rinsed in PBSt, incubated in 

secondary goat-anti-mouse 488 (1:500; Molecular Probes) for 2 h, rinsed again, and 

mounted in Vectashield (Vector). For EdU detection, slides were processed according to 
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the Click-iT EdU Cell Proliferation Assay Kit (C35002; Molecular Probes). 

BrdU- or EdU-labeled nuclei within the intestinal epithelium were counted over 30 

serial 7-μm sections beginning at the esophageal-intestinal junction and proceeding 

caudally into the bulb. Analysis of this extended region was necessary because of the 

stochastic patterns of cell proliferation. The absolute numbers of labeled cells varied 

between trials and the type and batches of nucleotide analogues. For example, fewer 

labeled cells were observed with BrdU vs. EdU treatment, likely because of less efficient 

incorporation of the nucleotide into cells and less efficient detection of the antigen. Despite 

these differences in the absolute numbers of labeled cells, the proportional trends of 

proliferating cells between treatments and genotypes were consistent and reproducible 

between trials. 

 Filter-sterilized LPS (Escherichia coli serotype 0111:B4, product no. 62325; 

Sigma) solution was injected into flasks of 3-dpf GF larvae to a final concentration of 30 

μg/mL, and cell proliferation was quantified at 6 dpf by labeling S-phase nuclei with EdU 

as above. 

 Larvae were fixed overnight in Dietrich's fixative, processed for paraffin sectioning, 

cut into 7-μM sections, and stained according to standard protocols (51). The total number 

of epithelial cells was quantified in a single section at the location of the esophageal-

intestinal junction, 30 sections caudal in the bulb, and 60 sections caudal in the distal 

intestine. 

 Larvae were fixed overnight in BT, processed for paraffin embedding, and cut into 

7-μM sections. Following deparaffinization, antigen retrieval was performed by boiling in 

0.1 M sodium citrate for 1 or 20 min (for detection of PCNA and β-catenin, respectively) 
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and cooling to room temperature for 30 min. Slides were blocked in 10% (vol/vol) normal 

goat serum in PBSt for 1 h and then exposed to anti-β-catenin (1:1,000, C2206 rabbit 

polyclonal; Sigma) or anti-PCNA (1:5,000 for immunofluorescence or 1:20,000 for 

colorimetric detection, P8825 mouse monoclonal; Sigma) overnight at 4 °C. Antibodies 

were detected with appropriate fluorophore-conjugated secondary antibodies (Molecular 

Probes) as above. To visualize proliferating and goblet cells, anti-PCNA was detected with 

HRP-conjugated secondary using a Vectastain ABC kit (Vector Laboratories) and 

subsequently stained with Alcian blue solution (pH 2.5) for 90 min, counterstained with 

nuclear fast red (Vector Laboratories) for 10 min, dehydrated in 95% (vol/vol) alcohol, 

cleared in xylene, and mounted in Permount (Fisher Scientific). Intestinal epithelial cells 

with cytoplasmic β-catenin were quantified in 30 serial sections caudal from the 

esophageal-intestinal junction. 

In situ hybridization on larvae was performed as described (50), with the addition 

of a 20-min soak in proteinase K (2 μg/mL) followed by a 20-min postfixation. In situ 

hybridization on adult cryosectioned tissue was performed as described (52). RNA probes 

included sox9b (53) and tcf4 (54). 

 Samples were imaged on a Nikon Eclipse TE 2000-V inverted microscope 

equipped with a Photometrics Coolsnap camera. Confocal images were captured using a 

Nikon D-Eclipse C1 microscope. Images were manipulated in Adobe Photoshop. 

 Cultures of A. veronii biovar sobria strain HM21R (55) were grown at 30 °C for 17 

h on a rotary shaker at 170 rpm. Flasks of GF larvae were inoculated with 105 to 106 

cfu/mL culture on 4 or 6 dpf, and the experiment was terminated on 6 or 8 dpf, 

respectively. Monoassociation experiments were deemed successful when dissected 
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homogenized intestines yielded an average of 103 cfu on tryptic soy agar plates. 

A. veronii cultures prepared as above were spun at 5,600 × g for 10 min at 4 °C, and 

the supernatant was passed through a 0.22-μM filter (Corning) on ice. CFS was 

concentrated through an Amicon Ultra-15 spin concentrator to remove small products, 

which were toxic to the fish. Protein concentration was determined by Bradford assay. All 

CFS exposures were performed using 500 ng/mL total protein, corresponding to ≈108 A. 

veronii cells/mL. 

 Splice-blocking MOs targeting myd88 and tnfr were used as described (23). MO-

injected larvae exhibited good survival, developed a swim bladder, and were grossly 

similar to their control siblings. Efficacy of the MO was assessed by RT-PCR and, in the 

case of the tnfr MO, by the ability to inhibit influx of myeloid peroxidase-positive 

neutrophils into the intestines (23). 

 Student's unpaired t tests were performed with GraphPad Prism software. 
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CHAPTER III 

HELICOBACTER PYLORI VIRULENCE FACTOR CAGA INCREASES 

INTESTINAL EPITHELIAL CELL PROLIFERATION BY ACTIVATION OF 

WNT SIGNALING IN A TRANSGENIC ZEBRAFISH MODEL 

 

The work described in this chapter was co-authored by T. Peterson, M. Kent, K. 

Guillemin, and myself. K. Guillemin, and myself designed research. I performed research. 

T. Peterson, M. Kent, K. Guillemin, and myself analyzed data. K. Guillemin and myself 

wrote the paper. 

 

INTRODUCTION 

Helicobacter pylori is a pathogenic Gram-negative bacterium that colonizes over 

50% of the world’s human population. Colonization with H. pylori is linked to numerous 

gastric disorders including gastritis, peptic ulcer disease, and gastric adenocarcinoma (17). 

Although gastric cancer occurs in fewer than 1% of people colonized by H. pylori (18), it is 

still the second most common cause of cancer mortality worldwide (19), and more than 

50% of gastric adenocarcinomas can be attributed to infection with H. pylori (20). Most 

people infected with H. pylori, however, do not develop gastric cancer, and the molecular 

mechanisms underlying this disparity have yet to be fully elucidated.  

Although there are many factors that appear to contribute to H. pylori’s 

carcinogenicity, strains that translocate the CagA protein into host cells are significantly 

more likely to cause gastric cancer than strains lacking this ability. CagA is one of 28 

gene products encoded by the cag pathogenicity island (cag PAI), a 40 kb stretch of DNA 
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shown to be present in most strains isolated from patients with severe gastric pathology 

(21). During infection with H. pylori, CagA is translocated into host cells via a type IV 

secretion system (TFSS), where it interacts with a multitude of host cell proteins. These 

interactions have been shown to affect signal transduction pathways, the cytoskeleton, 

and cell junctions (22).  

After translocation into host cells by the H. pylori TFSS, CagA can be 

phosphorylated by Src family kinases on tyrosine residues within conserved Glu-Pro-Ile-

Tyr-Ala (EPIYA) motifs (23). Upon phosphorylation, CagA has been shown to induce 

morphological changes in cultured epithelial cells through interaction with a variety of 

host-cell proteins such as SHP-2, Met, Csk, Grb2, and ZO-1 (23-27). In addition to its 

phosphorylation-dependent effects, CagA has also been shown to interact in a 

phosphorylation-independent manner with pathways associated with proliferation and 

inflammation (28). Although it is not yet clear which of these myriad interactions are 

required for the development of gastric cancer in persons colonized by H. pylori, the 

ability of CagA to interact with components of the canonical Wnt signaling pathway 

provides a potential link between CagA’s observed oncogenic effects and a host signaling 

pathway frequently deregulated in gastrointestinal cancers (29). 

In addition to its role in early embryogenesis, the canonical Wnt signaling 

pathway plays a crucial role in regulating the proliferation and homeostasis of 

gastrointestinal epithelia. In normal stomach and intestinal epithelia, Wnt signaling has 

been shown to be important for proliferation, stem cell maintenance, and tissue renewal 

(30-34). On the other hand, perturbation of Wnt signaling has been shown to result in 

cancers of the stomach and colon (35-37). Activation of the Wnt pathway is tightly 
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controlled via regulation of the primary Wnt effector protein β-catenin. β-catenin 

complexes with E-cadherin to form adherens junctions between epithelial cells, and in the 

absence of Wnt ligand, is also bound by Axin/APC/Gsk3β in the so-called ‘β-catenin 

destruction complex’ where it is targeted for proteosomal degradation. Upon binding of 

Wnt by the co-receptors Frizzled and LRP, Axin1 is sequestered at the membrane, 

preventing assembly of the β-catenin destruction complex. This results in cytoplasmic 

accumulation of β-catenin, and subsequent translocation of β-catenin into the nucleus. 

Upon nuclear translocation, β-catenin binds the essential transcriptional cofactor TCF, 

and initiates transcription of Wnt target genes.  

Non-phosphorylated CagA has been previously shown to disrupt the β-catenin/E-

cadherin complex in cultured epithelial cells, causing cytoplasmic and nuclear 

accumulation of β-catenin, and subsequent activation of the Wnt pathway (38-40). 

Additionally, CagA has been shown to increase signaling through β-catenin via activation 

of phosphatidylinositol 3-kinase/Akt (28). Although the mechanisms of CagA’s 

interactions with the Wnt pathway have yet to be fully elucidated, it is clear both that 

CagA is capable of activating Wnt signaling through β-catenin, and that inappropriate 

activation of Wnt signaling is potentially oncogenic. 

Understanding the wide variety of host cell interactions required for H. pylori-

induced pathogenesis has necessitated the use of animal models, and to date numerous 

primate and rodent models have been developed (41-44). Although previously 

unexploited in the study of H. pylori pathogenesis, the teleost fish Danio rerio (zebrafish) 

has emerged as a model organism for the study of various human diseases, including 

leukemia (45), melanoma (46, 47), and intestinal neoplasia (48). In lieu of a stomach, 
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zebrafish possess an anterior digestive compartment known as the intestinal bulb. The 

zebrafish intestinal bulb is a columnar, non-ciliated epithelium like the mammalian 

stomach, and expresses sox2 and barx1 (49), two mammalian stomach markers (50-52). 

Unlike the mammalian stomach, however, it is non-acidic and lacks the chief and parietal 

cell types. Nonetheless, the zebrafish intestinal bulb has been proposed to share a 

common ontogeny with the mammalian stomach and its renewal is regulated by similar 

molecular pathways, including the Wnt pathway (53). Finally, the rapid development of 

the zebrafish intestinal tract makes it an ideal model for the study of gastrointestinal 

development and disease (54). 

CagA has been shown to interact with a plethora of host cell pathways, yet it is 

not yet clear which of these interactions is essential for the development of gastric cancer 

in humans. Here, we describe the development of a novel transgenic model system that 

simplifies the complexity of H. pylori infection to study the effects of a single bacterial 

protein on host cell biology in the zebrafish intestine. We report that proliferation in the 

zebrafish intestinal epithelium is increased by transgenic expression of CagA and that this 

increase occurs independently of CagA phosphorylation. We demonstrate that expression 

of CagA induces cytoplasmic and nuclear accumulation of the Wnt effector β-catenin, as 

well as activation of known Wnt target genes. Finally, we show that CagA causes 

overproliferation of the zebrafish intestinal epithelium via interaction with the canonical 

Wnt signaling pathway downstream of the β-catenin destruction complex and upstream 

of the essential β-catenin transcriptional cofactor Tcf4. 
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RESULTS 

Generation of CagA-expressing Transgenic Zebrafish  

In order to generate cagA transgenic animals, we cloned the cagA gene out of H. 

pylori strain G27. Strain G27 was originally isolated from Grossetto Hospital (Tuscany, 

Italy), and has been used extensively in research on the CagA virulence factor (24, 38, 

56, 57). The cloned gene was then 3’-tagged with EGFP to facilitate in vivo visualization 

of CagA expression. To express CagA ubiquitously in zebrafish, the cagA/EGFP fusion 

construct was connected downstream of the 5.3kb beta-actin (b-) (58) promoter (Fig. 

7A). To facilitate intestine-specific expression of the fusion construct, we connected 

cagA/EGFP downstream of a 1.6kb fragment of the zebrafish intestinal fatty acid binding 

protein (i-)(59) promoter (Fig. 7B). By 6 days post-fertilization b-cagA/EGFP transgenic 

zebrafish exhibited ubiquitous fluorescence, while i-cagA:EGFP transgenics exhibited 

fluorescence in the distal esophagus and anterior intestine (Figure 8 A and B). CagA’s 

phosphorylation state has been previously shown to have significant effects on the type 

and severity of CagA-induced pathologies, so in order to determine the role of CagA 

phosphorylation in the intestinal epithelium, we fused the previously described 

phosphorylation-resistant cagAEPISA allele (60) (Fig. 9) to EGFP and connected it 

downstream of the b-actin promoter (Fig. 1C). b-cagAEPISA/EGFP transgenics exhibited 

ubiquitous fluorescence and were indistinct from b-cagA/EGFP fish (Fig. 8C). 

Expression of cagA mRNAs was verified in transgenic animals by RT-PCR (Figure 8D), 

and analysis of relative intestinal cagA transcript level in the transgenic lines was 

performed using quantitative real-time PCR (Fig. 8E). CagA-expressing zebrafish 
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showed normal intestinal development (Fig. 8F and G), and were histologically 

indiscernible from wild-type clutch-mates (Fig. 8H and I). 

 

CagA Expression Causes Overproliferation of the Intestinal Epithelium  

CagA has been previously shown to increase proliferation in vitro and in vivo (27, 

61) To determine the proliferation state of CagA-expressing intestines, we exposed 

animals at 6 and 15 dpf to the nucleotide analog 5-ethynyl-2’-deoxyuridine (EdU) and 

counted S-phase nuclei in 30 serial sections of the intestinal bulb. Expression of CagA 

resulted in a significant increase in EdU labeled cells in all transgenic lines at 6 and 15 

days post-fertilization (Fig. 10A & B). We observed enrichment of Proliferating cell 

nuclear antigen (PCNA) in the same cells that were labeled with EdU, verifying that 

these cells were proliferative (Fig. 10C). To determine if this increase in proliferation had 

an effect on the cell census, we quantified total epithelial cell number in single H&E-

stained sagittal sections along the length of the intestine. We did not observe any 

significant difference in total cell counts between CagA transgenics and wild-type 

animals at 6 and 15 dpf (Figure 10D & E), indicating that expression of CagA caused 

increased turnover of intestinal epithelial cells. Increased intestinal cell turnover would 

require an increase in cell death, however, we observed very few TUNEL-positive cells 

in the intestines of wild-type and CagA-expressing animals (Fig 10F & G), consistent 

with previous reports of low numbers of apoptotic cells in the developing zebrafish 

intestine (62), with no significant difference observed between the two groups.  
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CagA Expression Activates the Wnt Pathway Downstream of the β-catenin 

Destruction Complex 

We had previously shown that epithelial cell proliferation in the zebrafish 

intestine is regulated by the Wnt pathway (53). In addition, previous studies had shown 

that CagA can induce cytoplasmic and nuclear accumulation of the Wnt effector protein 

β-catenin, and can activate transcription of canonical Wnt target genes (28, 29, 61). 

Accordingly, we examined whether CagA was capable of activating the Wnt signaling 

pathway in the zebrafish intestine. We first utilized quantitative real-time PCR to assess 

the relative expression levels of known Wnt target genes in dissected adult intestines. 

Transcript levels of the canonical Wnt target genes c-myc (myca) (63) and cyclinD1 (64) 

were modestly increased in all CagA-expressing lines relative to the wild-type strain (Fig. 

11A & B). We next asked whether CagA was capable of inducing β-catenin accumulation 

in intestinal epithelial cells, indicating activation of the Wnt pathway. CagA expression 

caused a significant increase in the number of intestinal epithelial cells with cytoplasmic 

and nuclear accumulation of β-catenin as compared to wild-type animals (Fig. 11C & D).  

We next compared the intestinal β-catenin accumulation observed in CagA-

expressing animals to that of a known Wnt signaling mutant, axin1tm213. axin1tm213 

homozyotes exhibit deregulated Wnt signaling as a result of a missense mutation in the 

Gsk3β binding domain of Axin1, which prevents assembly of the β-catenin destruction 

complex. These mutants die as a result of craniofacial defects, but are viable through 8 

dpf, allowing study of the juvenile intestine (65) (66). We observed significant increases 

over wild-type and CagA-expressing animals in both the number of proliferating cells 

and the number of cells featuring cytoplasmic and/or nuclear accumulation of β-catenin 
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in the intestinal epithelia of axin1tm213/tm213 mutants (Fig. 11E). Finally, we crossed CagA-

expressing animals to axin1tm213/tm213 mutants to obtain CagA-expressing, axin1tm213 

homozygotes. We reasoned that if CagA were capable of activating Wnt signaling 

upstream of the β-catenin destruction complex, then axin1tm213 homozygotes should be 

refractory to CagA-induced accumulation of β-catenin, and levels of β-catenin 

accumulation in b-cagA; axin1tm213/tm213 double mutants should resemble those of 

axin1tm213 homozygotes. Instead, co-expression of CagA with axin1tm213/tm213 resulted in a 

dramatic increase in cell proliferation and β-catenin accumulation (Fig. 11F). Taken 

together, these data indicate that CagA is capable of causing sustained activation of 

canonical Wnt signaling in the intestinal epithelium, and that it does so either 

downstream of, or in parallel to the β-catenin destruction complex. Furthermore, CagA-

induced accumulation of β-catenin correlated strongly with increased epithelial 

proliferation (Fig. 11G & H), suggesting that CagA may stimulate proliferation through 

activation of the Wnt pathway. 

 

CagA-dependent Overproliferation of the Intestinal Epithelium Requires tcf4  

To determine if CagA-induced overproliferation of the intestinal epithelium was 

dependent on canonical Wnt signaling downstream of the β-catenin destruction complex, 

we utilized a null allele of the essential β-catenin transcriptional cofactor, Tcf4 (49). We 

reasoned that if CagA’s pro-proliferative effects were acting upstream of Tcf4, rates of 

intestinal proliferation in i-cagA; tcf4null double mutants should be identical to those 

observed in tcfnull animals. As previously observed, i-cagA animals showed a significant 
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increase in proliferation over wild-type, while tcf4null mutants showed a slight but 

insignificant decrease in intestinal proliferation relative to wild-type animals (Fig. 12A). 

Rates of intestinal proliferation in the i-cagA; tcf4null double mutants were statistically 

indistinguishable from wild-type and tcf4 null mutants, indicating that CagA interacts 

with the canonical Wnt signaling pathway to increase intestinal epithelial proliferation 

downstream of Axin1 and upstream of Tcf4 (Fig. 12B). 

 

DISCUSSION 

H. pylori related disease involves numerous factors, both microbe- and host-derived. 

Here, we have used transgenic expression of CagA to describe how the H. pylori 

virulence factor CagA is able to disrupt normal programs of gastrointestinal epithelial 

renewal by overactivation of an important host signaling pathway, the Wnt pathway, to 

cause significant overproliferation of an intact epithelium in vivo. Further, we show that 

despite the myriad signaling effects CagA is purported to have on cultured epithelial 

cells, activation of canonical Wnt signaling upstream of the essential β-catenin cofactor 

Tcf4 and downstream of the β-catenin destruction complex is required for CagA’s effects 

on intestinal epithelial proliferation. Our data also corroborate previous studies, which 

indicate that CagA’s effects on Wnt pathway components are not dependent on the 

phosphorylation state of CagA (28).  

It has been previously reported that phosphorylation of CagA is required for the 

development of gastric neoplasia in mouse (35), so it is not entirely clear why expression 

of the phosphorylation-resistant b-cagAEPISA allele induces significant overproliferation of 

the zebrafish intestine coupled with increased Wnt activation. It is possible that CagA’s 
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activation of Wnt signaling and subsequent induction of proliferation is capable of 

sensitizing the intestinal epithelium to further oncogenic stimulus, perhaps in the form of 

the previously observed phosphorylation-dependent epithelial depolarization by CagA 

(24) or in the form of pro-oncogenic polymorphisms in host genes like IL-1β or IL-10 as 

previously suggested (67).  

   

MATERIALS AND METHODS 

Transgenic zebrafish were developed using the Tol2kit as previously described 

(68). All zebrafish experiments were performed using protocols approved by the 

University of Oregon Institutional Care and Use Committee, and following standard 

protocols (69).  

Zebrafish larvae were immersed in 100 μg/mL EdU (A10044; Invitrogen) with 

.5% DMSO for 8-12 hours, fixed overnight at 4° C (4% paraformaldehyde in PBS) with 

gentle shaking, processed for paraffin embedding, and cut into 7μM sections. Slides were 

then processed using the Click-iT EdU Imaging Kit (C10337, Invitrogen). EdU labeled 

nuclei within the intestinal epithelium were counted over 30 serial sections beginning at 

the intestinal-esophageal junction and proceeding caudally into the intestinal bulb. 

TUNEL staining was carried out using the Click-iT TUNEL Imaging Assay 

(C10245, Invitrogen). TUNEL-positive cells within the intestinal epithelium were 

counted over 30 serial sections beginning at the intestinal-esophageal junction and 

proceeding caudally into the intestinal bulb. 



 

35 

Immunohistochemistry was carried out of paraffin sections as previously 

described using anti-β-catenin (1:1000, C2206 rabbit polyclonal, Sigma) or anti-PCNA 

(1:5000, P8825 mouse monoclonal, Sigma) (53).  

Reference gene testing was performed using the geNorm reference gene selection 

kit (Primerdesign) and qBasePLUS software (Biogazelle). Baseline, threshold, and 

efficiency calculations were performed using LinRegPCR software (70) Quantitative RT-

PCR reactions were performed using the SYBR FAST qPCR kit (Kapa Biosystems) on a 

StepOnePlus Real-Time PCR System (Applied Biosystems) using primers listed in Table 

1 (See Appendix). 

All statistical analyses were performed with Graph-Pad Prism software. 
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CHAPTER IV 
 

CONCLUSION 

 

MICROBES AND THE DEVELOPING INTESTINE 

The gastrointestinal microbiota plays a large and multifaceted role in the 

development and proper function of the vertebrate GI tract. Here, we demonstrate that the 

colonization of the zebrafish intestine by microbes is essential for the proper development 

and homeostasis of the intestinal epithelium. We show that secreted signals from the 

microbiota stimulate epithelial proliferation via the TLR adaptor protein Myd88. We also 

show that the microbial signals act partially through the canonical Wnt signaling pathway 

to stimulate proliferation. Finally, we have shown that intestinal proliferation is 

significantly altered when we reduce the microbial community down to a single member.  

Although we have shown that secreted signals from the microbiota affect rates of 

proliferation, we have not yet determined what these signals may be. Additionally, 

although we have established that the Wnt pathway is partially involved in determining the 

proliferative response to the microbiota, we do not know what other factors may be acting 

downstream of Myd88 to control proliferation. Nonetheless, our data indicate that host 

genetic factors cooperate with microbial factors to determine rates of proliferation in the 

intestinal epithelium, and that careful regulation of the microbial community is required for 

proper maintenance of intestinal homeostasis. Finally, these data suggest that an 

individual’s microbial complement may play a significant role in determining susceptibility 

to diseases, such as cancer, that affect intestinal proliferation. 
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HELICOBACTER PYLORI AND CANCER 

 H. pylori is a major risk factor for gastric cancer, but the mechanisms involved are 

not entirely clear. Here, we describe the development of a novel in vivo model of CagA-

induced pathology that accurately recapitulates the major hallmarks of CagA pathogenesis 

in vertebrate models, and use this model to gain novel insight into the molecular 

mechanisms of H. pylori pathogenesis. We demonstrate that the H. pylori virulence factor 

CagA is capable of hijacking the Wnt pathway within the intestinal epithelium to 

drastically enhance levels of proliferation, disturbing the careful homeostatic balance 

between cell proliferation and cell death, and resulting in severe intestinal hyperplasia. 

These data show that despite the large number of reported in vitro interactions between 

CagA and host proteins, CagA’s ability to interact with the Wnt pathway is the most 

significant with regards to epithelial overproliferation. This is not entirely surprising, as 

Wnt signaling has been shown to be crucial for maintaining the gastric and intestinal stem 

cell niches (1, 2) What remains to be seen, however, is how H. pylori is interacting with the 

gastric stem cells to induce proliferation. Previous studies have shown that all cell 

populations in the intestine other than the stem cells are refractory to oncogenic 

transformation (3) yet the stem cells reside deep within the crypts of the epithelium 

seemingly out of reach. Additionally, it is unclear what selective advantage (if any) would 

be gained by H. pylori through the deregulation of homeostasis in the gastric epithelium. 

As H. pylori has colonized humans throughout our evolution, and gastric cancer does not 

develop until late in life, it is possible instead that H. pylori’s carcinogenicity is simply an 

accidental side-effect of us living too long. 
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APPENDIX 

FIGURES AND TABLE 

 

 

 
Fig. 1. Microbes induce epithelial cell proliferation in the zebrafish larval intestine via 
Myd88 and not inflammation. Transverse sections of the intestinal bulb of 6-dpf larvae 
reared CV (A) or GF (B) labeled with EdU to reveal S-phase cells are shown. A transverse 
section of the distal intestine shows colocalization of EdU-labeled (C) and PCNA-labeled 
(D) cells (E, merge). (F) Distinct cell populations are stained with Alcian blue, marking 
differentiated goblet cells (arrowheads), and anti-PCNA, marking mitotic cells (brown 
bracket). (G) Total numbers of S-phase cells over 30 serial sections in the intestinal bulb of 
individual 6-dpf larvae are represented for the treatment groups and genotypes indicated. 
Here and in subsequent figures, the genotype and microbial exposure of each larva are 
indicated by the shape and color of the data point, respectively. Significantly fewer BrdU-
labeled cells were found in 6- and 8-dpf larvae reared GF vs. CV (P < 0.001). H&E 
sections of 8-dpf GF intestines at three locations within the intestinal tract are shown: the 
esophageal intestinal junction (H, eij), defined as position 0; the bulb, 30 sections caudal to 
the junction (I); and the distal intestine, 60 sections caudal to the junction (J). (K) There 
was no significant difference between total intestinal epithelial cell counts at the three 
positions described above in 8-dpf CV vs. GF larvae. (L) Significantly fewer EdU-labeled 
cells were found in CV or GF myd88 MO vs. CV WT (wt) (P < 0.05). (M) There was no 
significant difference in the numbers of EdU-labeled cells between CV vs. GF myd88 MO 
or between wt vs. tnfr MO. (Scale bars: A and B, 15 μM; C–F and H–J, 25 μM.) 
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Fig. 2. Wnt signaling occurs in the larval zebrafish intestine. (A) In situ hybridization 
with a tcf4 probe reveals strong brain expression as well as signal in the pharynx (*) and 
intestinal bulb (arrowhead) in a 6-dpf larva. (B) In situ hybridization with a sox9b probe 
reveals expression in the brain, pharynx (*), and intestinal bulb (arrowhead) of a 6-dpf 
larva. Sections of adult proximal intestine displaying expression of tcf4 (C) and sox9b 
(D) are shown. (E) H&E sagittal section of a 5-dpf larva showing the location of the 
esophageal intestinal junction (eij), bulb, and distal intestine. Sagittal sections of 6-dpf 
untreated (F) and LiCl-treated (G) larvae show β-catenin expression (green) in the 
pharynx and esophagus (*). Nuclei are stained with DAPI (blue). Transverse sections 
through the intestinal bulb of 6-dpf WT (wt) (H) and axin1 mutant (I) larvae show 
scattered cells with cytoplasmic β-catenin staining (green, arrowheads). Luminal 
microbes cross-react with the anti-β-catenin antisera. Nuclei are stained with Torpo 
(blue). (Scale bars: A and B, 100 μM; C and D, 25 μM; E–G, 50 μM; H and I, 15 μM.) 
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Fig. 3. Wnt signaling in the larval zebrafish intestine. Amplification of Wnt target genes 
and reporter from 6 dpf WT (A) and topD (B) larvae. The relative cycle threshold (Ct) 
values for a housekeeping gene (rp32) and the indicated Wnt target genes axin1, cdx1a, and 
nt1 (A) or the gfp reporter (B) are shown. The mean and SD of three triplicate reactions are 
shown. For all primer pairs, a no-template control reaction yielded no detectable product 
(i.e., Ct = 40). (C) Relative abundance (log2) of c-myc amplified from axin1 vs. WT (wt) 
6-dpf larval intestines is shown. Levels of c-myc were normalized to levels of rp32 for each 
sample. Error bars represent upper and lower limits, based on the SD of the ΔCt values. (D 
and E) Intestines of live 6-dpf wt and axin1 larvae. The axin1 intestine appeared thicker 
and more convoluted. 



 

42 

 

 

 
Fig. 4. Up-regulation of Wnt signaling causes intestinal hyperplasia. (A) H&E-stained 
section of an 8-dpf WT (wt) intestinal bulb shows an orderly array of cells in the intestinal 
epithelium. (B) An 8-dpf axin1 mutant intestine is thicker (bracket) and has more 
disorganized epithelial cells (*). (C) At both 6 and 8 dpf, axin1 mutants have significantly 
more BrdU-labeled cells within the intestinal epithelium than wt (P < 0.0001). (D) At 8 
dpf, axin1 mutant intestines have significantly more epithelial cells in the bulb and distal 
intestine vs. wt (P < 0.0001). (Scale bar: A and B, 25 μM.) 
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Fig. 5. Combinatorial effects of microbial and Wnt signaling on intestinal epithelial 
cell proliferation. (A–F) S-phase intestinal epithelial cells were quantified in 30 serial 
sections in the intestinal bulb of individual larvae as in Fig. 1. To label S-phase nuclei, the 
experiments in A and D used BrdU and the experiments in B, C, E, and F used EdU. All 
experiments were performed with 6-dpf larvae except the experiment in D, which was 
performed with 8-dpf larvae. (A) CV axin1 had significantly more proliferating intestinal 
cells than CV WT (wt), GF wt, and GF axin1 (P < 0.0001). GF axin1 had significantly 
more proliferating cells than GF wt (P < 0.01). (B) axin1 had significantly more 
proliferating cells than wt, myd88 MO, and axin1 myd88 MO (P < 0.001). axin1 myd88 
MO had significantly more proliferating cells than myd88 MO (P < 0.001). (C) Exposure 
of GF larvae from 3 to 6 dpf to 30 μg/mL LPS caused no change in cell proliferation 
relative to untreated GF larvae. (D) Monoassociation of GF larvae with A. veronii (AMA) 
or treatment with 500 ng/mL A. veronii CFS induced a significant increase in intestinal cell 
proliferation relative to GF (P < 0.0001). (E) axin1 mutants monoassociated with A. veronii 
had significantly more proliferating cells than CV axin1 (P < 0.0001). (F) tcf4 mutants had 
significantly fewer dividing intestinal cells than wt siblings when reared GF (P < 0.01) and 
when monoassociated with A. veronii (P < 0.0001). Intestinal epithelial cells with 
cytoplasmic β-catenin were quantified in 30 serial sections in the intestinal bulb of 6-dpf 
larvae. (G and H) CV wt larvae had significantly more β-catenin-positive cells than GF wt 
larvae (P < 0.05). (G) CV axin1 had significantly more β-catenin-positive cells than GF 
axin1 (P < 0.05). (H) A. veronii monoassociated larvae had significantly more β-catenin-
positive cells than CV animals (P < 0.0001). 
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Fig. 6. LPS does not induce intestinal epithelial cell proliferation. (A) Exposure of CV 
5-dpf larvae to LPS (E. coli serotype 0111:B4, product no. 62325, lot no. 0001418664; 
Sigma) at 150 and 250 μg/mL caused dose-dependent killing (n = 45 larvae per treatment). 
(B) CV larvae exposed to 3 and 30 μg/mL LPS from 6 to 8 dpf exhibited elevated levels of 
intestinal alkaline phosphatase activity (two replicate groups of ≈10 larvae were measured 
for each treatment; error bars indicate SD). 
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Fig. 7. Transgenic constructs (A) The cagA:egfp fusion cassette was cloned 
downstream of the 5.3kb b-actin promoter fragment. (B) The cagA:egfp fusion cassette 
was cloned downstream of the 1.6kb i-fabp promoter fragment. (C) The cagAEPISA:egfp 
fusion cassette was cloned downstream of the 5.3kb b-actin promoter fragment.  
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Fig. 8. cagAEPISA (A) The phosphorylation resistant cagAEPISA allele lacks EPIYA motifs 
for phosphorylation by Src family kinases 
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Fig. 9. Development of CagA+ transgenic zebrafish (A) ubiquitous CagA:EGFP fusion 
protein expression driven by the b-actin promoter. (B) ubiquitous CagAEPISA:EGFP 
fusion protein expression driven by the b-actin promoter. (C) intestinal CagA:EGFP 
fusion protein expression driven by the i-fabp promoter. (D) RT-PCR of dissected larval 
intestine showing expression of cagA and RPL13 housekeeping control gene at 6 dpf. (E) 
quantitative RT-PCR of dissected adult intestines showing relative expression levels of 
cagA transcript in transgenic lines at 1 year of age. (normalized to SDHA and β-actin) (F) 
H&E stained sagittal section of wild-type zebrafish intestine at 6 dpf. (G) H&E stained 
sagittal section of b-cagA transgenic zebrafish intestine at 6 dpf.  (H) H&E stained 
sagittal section of wild-type transgenic zebrafish intestine at 15 dpf. (I) H&E stained 
sagittal section of b-cagA transgenic zebrafish intestine at 15 dpf. 
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Fig. 10. CagA expression causes overproliferation of the intestinal epithelium (A & 
B) Intestinal epithelial cell proliferation at 6 dpf and 15 dpf, respectively. Bars represent 
proliferation as a percentage of wild-type. (* = p<.05, One-way ANOVA with Tukey’s 
test)  
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Fig. 11. CagA activates canonical Wnt signaling in the intestinal epithelium (A) 
Quantitative RT-PCR data showing relative expression levels of the Wnt target gene 
mycA. (normalized to SDHA and β-actin) (B) Quantitative RT-PCR data showing relative 
expression levels of the Wnt target gene cyclinD1. (normalized to SDHA and β-actin) (C-
F) Immunofluorescence micrograph showing number of proliferating cells (EdU, green) 
and cells with nuclear/cytoplasmic accumulation of β-catenin (red staining & white 
arrowheads) in intestinal epithelium of wild-type (C), b-cagA (D), axin1tm213 (E), and b-
cagA/axin1tm213 (F) animals at 6 dpf. (G) Quantification of proliferating (EdU+) cells. (H) 
Quantification of cells with nuclear/cytoplasmic accumulation of β-catenin. 
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Fig. 12. CagA-dependent Overproliferation of the Intestinal Epithelium Requires 
tcf4. (A) Intestinal epithelial cell proliferation at 15 dpf. Bars represent proliferation as a 
percentage of wild-type. (* = p<.05, One-way ANOVA with Tukey’s test) (B) Proposed 
mechanism for CagA-dependent overproliferation of the intestinal epithelium. 
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Gene  Forward (5’‐3’)  Reverse (5’‐3’) 

Succinate 
dehydrogenase (SDHA) 

GeNorm zebrafish 
reference gene kit 

GeNorm zebrafish 
reference gene kit 

βactin  GeNorm zebrafish 
reference gene kit 

GeNorm zebrafish 
reference gene kit 

cagA  tggagggcctactggtgggga  tcaggcggtaagccttgtatgtcgg
myca  ccagcagcagtggcagcgat  ggggactggggtacctcgactct 
cyclinD1  aggcttttgaaacgtaagcctgcgg aggtacacttgggcatccgtgca 

 
Table 1. Primers used for quantitative real-time PCR
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