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The trochid gastropod Chlorostoma (Tegula)funebralis is found in rocky

intertidal habitats along the west coast of North America from Baja California to

Vancouver Island. Size-frequency distributions of populations were analyzed along a

latitudinal gradient from northern Oregon to Baja California. Populations in California

and southern Oregon were dominated by individuals in the juvenile size classes (O.lg­

2g). Along the Oregon coast, populations dominated by juveniles were correlated with

coastline topography, with protected areas having large numbers of juveniles and exposed

areas dominated by larger size classes. The largest size classes (> 9g) were rarely present

in southern populations.

The seasonality of reproduction was investigated in a southern California

population and an Oregon population to determine whether continuous reproduction in

southern populations increases recruitment success over the year and decreases inter-
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annual variation in reproductive success. Constant recruitment may cause populations to

have a large number of juveniles, the observed pattern in southern populations. Although

individuals capable of reproduction were found year-round in both populations, the

southern population experienced multiple spawning events over the year, while the

northern population experienced only one such event. Constant recruitment may be a

strategy to compensate for shorter life spans and smaller sizes of individuals in southern

California.

To investigate whether variations in predation rates on large adult C. funebralis

affect the size structure of populations, the main predators and predation rates for

different populations in Oregon were identified. All observed predation events were by

the intertidal seastar Pisaster ochraceus. Predation pressure by P. ochraceus varied

significantly with site and between sampling dates but did not remove enough C.

fttnebralis from the adult population to have a significant effect on population size

structure.

To determine the connectivity between populations and the maximum dispersal

potential, the mitochondrial gene COl was sequenced from individuals from nine

populations ranging from southern California to northern Oregon. Although haplotype

diversity was high, no genetic structure was found between populations. Rather than an

indication of high dispersal potential and a panmictic species, the lack of isolation by

distance may be a result of range expansion following the last glacial maximum.
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CHAPTER I

GENERAL INTRODUCTION

Population Structure of Chlorostomafunebralis

The intertidal gastropod Chlorosloma (Tegula)junebralis is common in the rocky

intertidal of the western coast ofNorth America (Figure I). It ranges from Baja

California to Vancouver Island (Morris et al 1980), and can occur in densities of more

than I000/m2 (Paine 1969). As a member of the family Trochidae, C.junebralis free

spawns gametes which develop into lecithotrophic larvae. These larvae are planktonic

for five to eight days before metamorphosis. Populations of C.junebralis are known to

vary in size-structure through its species range (Frank 1975, Wright 1975). In the

southern portion of its range, from Baja to central California, individuals have a lifespan

of five to eight years and remain small. In contrast, populations in Northern California,

Oregon, and Washington have distributions that are not as heavily weighted towards

juveniles. Populations frequently have bimodal distributions and individuals can live up

Figure I: Adult Chlorosloma
(Tegula) funebralis
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to 30 years (Darby 1964). This is attributed to regular recruitment events in the southern

portion of the species range, and high inter-annual variation along the Oregon and

Washington coastlines (Frank 1975, Wright 1975). Although this pattern described in the

1970's, the factors causing these differences have not been explored.

Larval Transport

The planktonic larval stage is often cited as a source of variation in recruitment

and adult distributions, because inter-annual variation in recruitment to a population will

cause gaps in the adult distributions as those juveniles age (Ebert and Russell 1988,

Roughgarden et al1988, Menge et al 2004, McQuaid and Phillips 2006). Larval supply

and dispersal may be largely determined by a combination of local hydrography, coastal

oceanography, and larval behavior. Chlorostoma funebralis larvae are small « 250 ~m)

and marine invertebrate larvae have long been expected to disperse with the prevailing

oceanographic currents. However, the ability to migrate vertically through the water

column may allow larvae to move through different bodies of water and mitigate the

effects of dispersal in anyone direction (Cronin and Forward 1979, Rothlisberg et al

1983, Shanks et al 2003a, Shanks 2009). Variation in hydrodynamic conditions and the

biology of C. funebralis may therefore cause the variation in age structure observed by

Frank (1975) and Wright (1975).

Variations in hydrographic conditions on a latitudinal scale are hypothesized to

have a significant effect on population and community structure (Roughgarden et al

1988, Menge et al 2004). Upwelling moves surface waters offshore, and larvae are
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expected to move offshore with this water mass. In contrast, downwelling moves surface

water onshore. Along the Oregon coast, upwelling occurs primarily in the summer and is

intermittent. Periods of upwelling, which move larvae offshore, are divided by

downwelling periods, which move larvae back to the inter- or sub-tidal environments

where they can metamorphose. In contrast, central and Northern California have constant

and strong upwelling, so larvae rarely get the opportunity to move back to appropriate

adult habitat (Menge et al 2004). This hypothesis should lead to higher, more constant

recruitment along the Oregon coast, and episodic recruitment in central and northern

California with high inter-annual variation (Menge et a12004). This pattern is in direct

contrast to that observed for C. Junebralis by Frank (1975) and Wright (1975), which

indicated regular recruitment along the California coastline and high inter-annual

variation in recruitment along the Oregon and Washington coastlines.

However, the ability of larvae to vertically migrate may allow larvae to stay

nearshore even during periods of strong upwelling (Poulin et al 2002, Shanks and Brink

2005, Morgan et a12009a, 2009b, Shanks and Shearman 2009). The larvae of many taxa

reside in deeper waters which are not moved offshore by upwelling, and instead are able

to maintain a constant depth through changing oceanographic conditions (Shanks and

Brink 2005). The strength of upwelling as a factor driving the observed latitudinal

differences in population structure of C. funebralis is dependent on the ability of C.

Junebralis to regulate dispersal and movement offshore through larval behavior.

The effects of hydrodynamic conditions on larval transport will also depend on

the timing of reproduction. If larvae are not present in the water column during seasonal
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upwelling, the upwelling and downwelling patterns of the summer will have little effect

on larval dispersal. The seasonality of reproduction and triggers for spawning may have

a large effect on the conditions the planktonic stages encounter.

In addition to variation on a latitudinal gradient, the size-frequency distribution of

some marine invertebrate species has been shown to vary with coastal topography and the

degree of exposure of intertidal populations. The limited swimming ability of many

invertebrate larvae may increase the importance of local hydrographic factors that can

keep larvae close to shore or transport larvae offshore. Larvae may be retained within

protected areas such as bays and coves by oceanographic fronts that form at the mouths

(Shanks et al 2003a, 2003b , von der Meden et al 2008,). At exposed areas, particularly

those near headlands, larvae may be transported by jets of water moving offshore (Ebert

and Russell 1988). This offshore movement reduces larval supply and increases inter­

annual variation in recruitment at these sites (Ebert and Russell 1988).

Community Structure

While hydrography and larval behavior only affects the early life stages, the

interactions with other intertidal species become important for Chlorostoma funebralis

after metamorphosis. It has been hypothesized that predation by Pisaster ochraceus may

play an important role in limiting populations of large, adult C. funebralis in Washington

populations (Paine 1969). In California, predation pressure from octopus and crabs is

more prevalent than predation by P. ochraceus.
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Due to the habitat selection of juvenile and adult C. funebralis, predation by P.

ochraceus occurs predominately on the adult portion of the population. Juvenile C.

funebralis settle in the high intertidal, beyond the physiological tolerance of sea stars. As

individuals grow larger, they migrate into the mid intertidal, where they encounter

predation pressure. If the pressure exerted by predators on C. funebralis populations

differ between populations, it may be a source of variation in the size structure of

populations of C. funebralis.

Using Molecular Markers to Study Size Structure and Population Connectivity

Molecular markers, particularly DNA sequences, have become a regular method

of studying larval dispersal and population connectivity (Palumbi 2003, Marko 2004,

Sotka 2004, Marko et al 2007). These methods can provide information on the degree of

isolation between populations of varying distances from each other, and show patterns on

a latitudinal scale (Sotka 2004). If populations in different areas of the species range are

isolated from each other or have low connectivity, evolutionary divergence between the

two regions may explain some of the differences in age structure in Chlorostoma

funebralis, such as the shorter life span in the southern portion of the range. However, if

the population is panmixic and no genetic isolation is apparent, the differences in age

structure are likely to be ecological in nature.

Molecular markers can also test for differences in age structure caused by coastal

topography (Nicastro et al 2008). If larvae are retained within protected areas, more

private haplotypes and lower overall genetic diversity should be observed, in contrast to
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exposed populations, where larvae are more likely to be transported offshore and less

likely to recruit to the parent population.

Scope and Objectives

The primary objectives of this dissertation are to document variation in size­

frequency distributions of Chlorostoma funebralis and to explore some of the

mechanisms that potentially cause this variation. A combination of laboratory and field

techniques were used to determine the relative importance of various factors to the size­

frequency and age structure of C. funebralis.

Chapter II includes size - frequency distributions collected from Baja California

to northern Oregon, including many sites previously sampled 35 years ago (Frank 1975,

Wright 1975). Previous studies had documented difference in size-structure along a

latitudinal gradient, with larger numbers of smaller individuals in the southern portion of

the species range and larger individuals in the northern portion of the range. The research

presented in Chapter II shows a similar trend, but also increased the number of

populations sampled from other studies, showing a previously undescribed pattern of the

importance of coastal topography in population structure. Within the northern portion of

the range, populations in physically protected areas such as bays and coves have a

significantly higher percentage of juvenile individuals. In contrast, exposed populations

have few juveniles and more large individuals. The remaining chapters address some of

the potential reasons for the variations both in latitude and coastal topography.
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Chapter III explores the role of seasonality of reproduction in the size-frequency

distributions through the species range. If reproduction is annual and episodic in the

northern portion of the species range, as proposed by Paine (1971), high inter-annual

variation would not be unexpected, since some years would provide optimal conditions

for larval survival and recruitment while other years would suffer high larval mortality.

If, in contrast, southern populations reproduce multiple times throughout the year as

proposed by Wright (1975), recruitment events may be smaller in magnitude but offer

higher chances of successful recruitment at some point during the year. This may be one

of the factors causing large numbers of juveniles in the southern portion of the range and

higher variability in the number of juveniles in the northern portion of the range.

Chapter IV focuses just on the differences in the number of large individuals

between populations along the Oregon coast. Because C. ftmebralis settle in the high

intertidal and migrate into the mid intertidal as they grow larger, primary predators in the

intertidal such as crabs and seastars are only encountered by adult C. funebralis. If

predators are removing significant numbers of large adults from populations, we expect

to see fewer large adult C. funebralis in populations that co-occur with high predator

densities. To test the effects of predation, this chapter used field experiments to identify

the important predators of C. funebralis, document the densities of those predators, and

measure the predation rate at multiple sites along the Oregon coast.

In Chapter V, the mitochondrial sequence COl is used to study the degree to

which populations of C. funebralis are reproductively isolated from each other, including

populations from southern California to northern Oregon. Because C. funebralis has a



relatively short larval period (five to eight days), some genetic differentiation may be

observed along this gradient. Due to the longer time scales that affect the genetic

differentiation between populations, this technique offers a different analysis than

ecological studies.

8
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CHAPTER II

LATITUDE AND COASTLINE SHAPE DETERMINE AGE-STRUCTURE OF

CHLOROSTOMA (TEGULA) FUNEBRALIS POPULATIONS

Introduction

The size-frequency distributions and age structures of many marine invertebrates

vary among populations (Ebert and Russell 1988, McQuaid and Phillips 2006). At times

these attributes vary along a latitudinal gradient (Frank 1975, Ebert 1983, Menge et al

2004). These differences may be the result of larval supply and recruitment, since years

of poor recruitment will result in gaps in the size-frequency distribution as the population

ages (Ebert and Russell 1988, Roughgarden et al1988, Menge et a12004). Differences in

recruitment, in tum, may be driven by hydrodynamics and coastal topography. Because

larvae have limited swimming capacity, their movement may largely be determined by

the movement of water masses, which can vary latitudinally as well as locally. Frank

(1975) and Wright (1975) collected data on the size distribution of Chlorostoma (Tegula)

funebralis along the west coast of North America. These distributions showed a

latitudinal gradient in the number of adult individuals, with the largest number of adults

in the northern populations and more juveniles in southern populations. However,

populations for these studies were geographically disparate. To distinguish between

latitudinal gradients that might be driven by gradients in coastal hydrodynamics and the
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effects of coastal topography, more sampling of populations on a larger latitudinal

gradient and a range of coastal topography types is necessary.

The intertidal snail C. funebralis is an ideal organism to study variation in size­

frequency distributions because it is common and often abundant in the rocky intertidal

from Baja, California to British Columbia in both high and low energy environments

(Morris et aI1980). The duration of the pelagic lecithotrophic larval stage is between

five and eight days (Moran 1997, Guzman del Proo et al. 2006). Individuals live up to 30

years in the northern portion of the range (Darby 1964). Growth rates have been

calculated throughout the species range (Frank 1975, Wright 1975). C. funebralis grow

throughout their lifespan, so it is possible, using size, to age individuals and use size­

frequency distributions as an indication of age structure of populations (Frank 1975).

The differences in age-structure of C. funebralis populations present an opportunity to

study the mechanisms that determine population structure.

Larval supply can drive patterns in recruitment and adult distributions (Ebert and

Russell 1988, Roughgarden et a11988, Menge et al 2004). Populations with low larval

supply have been shown to have low population densities. This relationship between

larval supply and population structure has been seen, for example, in urchins (Ebert and

Russell 1988), mussels (McQuaid and Phillips 2006) and barnacles (Menge et aI2004).

The recruitment of many marine invertebrate larvae to adult populations is driven by

hydrodynamics both at large scales, such as on a latitudinal gradient (Menge et al 2004)

and local scales of bays and headlands (McQuaid and Phillips 2006). Species with a

planktonic larval stage have a dispersal distance determined by hydrodynamics and larval
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swimming behavior, primarily vertical migration (Shanks et al 2003, Shanks 2009).

Upwelling, which moves surface waters offshore, is hypothesized to move larvae away

from benthic habitats where they must ultimately settle (Roughgarden et aI1988). When

upwelling is relaxed, surface waters move back towards shore, carrying larvae back to the

adult habitat. Larval capacity for vertical migration may be a confounding factor,

enabling larvae to stay nearshore even during upwelling events (Poulin et al 2002, Shanks

and Brink 2005, Morgan et a12009a, 2009b, Shanks and Shearman 2009). Larvae may

also have a preference for depths below the Ekman transport layer, which would

minimize movement offshore during upwelling (Shanks and Brink 2005, Morgan et al

2009a, 2009b, Shanks and Shearman 2009).

On the west coast of North America, coastal upwelling varies on a latitudinal

gradient. Summer wind-driven upwelling is intermittent on the Oregon Coast south to

Cape Blanco, and relatively constant from Cape Blanco to Point Conception

(Roughgarden et aI1988). Roughgarden et al (1988) hypothesized that the intermittent

upwelling in central and northern Oregon should transport pelagic larvae to the rocky

intertidal, reducing larval mortality and causing constant, annual larval supply. More

constant upwelling in central and northern California should transport larvae offshore,

resulting in delivery of larvae to the shore only under rare conditions (Menge et al 2004).

Coastal topography has also been shown to affect larval dispersal and settlement.

Because many types of larvae have limited swimming capability, local hydrodynamic

features may playa role in retaining larvae or moving them offshore. Ebert and Russell

(1988) found a correlation between coastal headlands and larval recruitment. Sites with
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low recruitment were near coastal headlands, where regular coastal upwelling jets are

hypothesized to move larvae offshore. In South Africa, protected bays and exposed

headlands have different population structures of mussels, possibly related to recruitment

patterns. Higher recruitment in bays in comparison with nearby exposed populations

may be due to larval retention within the bay and larval advection from exposed sites

(von der Meden et al 2008). The flushing times of bays is correlated with retention of

cyprid larvae (Gaines and Bertness 1992). In one study, the presence of oceanographic

fronts at the mouths of bays and coves was correlated with upwelling, and the fronts

acted as a barrier to the shoreward movement of larvae into the bay (McCulloch and

Shanks 2003).

The distribution of adult marine invertebrates is the cumulative effect of

recruitment success, juvenile mortality, and adult mortality. Each of these factors may

vary between populations independently of each other. Previous studies have shown that

large C. funebralis are absent in the southern portion of the species range (Frank 1975,

Wright 1975). This absence may be a reflection of a latitudinal gradient in adult

mortality, but not enough populations have been studied to determine the potential effects

of other factors. The presence of large adults in the population may have a significant

impact on the reproductive capacity of the population (McQuaid and Phillips 2006).

Previous studies of Chlorostoma funebralis did not sample enough sites within

each oceanographic region to separate the confounding effects of upwelling and coastal

topography on population structure. In this study, a number of sites covering a wide

latitudinal range and types of coastal topographies were sampled for the size-frequency
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distributions of populations of C. funebralis to separate the impact of upwelling and

coastal topography. If upwelling, through its impact on larval dispersal, is driving

patterns of population structure, differences in population structure should be observed in

regions with different upwelling strength and duration. If population structure is caused

by coastal topography affecting larval dispersal, differences within regions with similar

upwelling regimes should vary with the type of coastline. Detailed description of these

patterns will allow the formation and testing of hypotheses describing the mechanisms

driving variation in population structure.

Methods

Site Classification

To investigate whether population structure changes with coastal topography,

populations were sampled at "protected" and "exposed" sites. Sites identified as

protected included bays and coves predominately enclosed on at least three sides.

Exposed sites were exposed to the open ocean on two or more sides. The wave energy of

sites may differ within exposure classifications due to changing hydrographic conditions

along the coast of North America, so classification is an indication of the shape of the

local coastline and not an indication of local wave energy.

Sites were classified as "north" or "south" based on the geographic range of the

large (> 5 g) adult Chlorostomafunebralis. Initially, populations were identified as north

or south of Cape Blanco, the traditional breakpoint between regions of intermediate

(north of Cape Blanco) and constant upwelling (south of Cape Blanco) (Barth et al 2000).
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However, the geographic distribution of distributions including large individuals has a

southern limit of Brookings, OR, approximately 100 km south of Cape Blanco.

Site Selection

Twenty-two populations of Chlorostoma funebralis from northern Oregon to

Baja, California were sampled (Figure 2, Table 1). Sites were selected by the presence of

C. funebralis habitat, primarily mid to high rocky intertidal, and the ease of accessibility.

Sites were selected throughout this range to test for a latitudinal gradient in size­

frequency distributions.

In Oregon, 15 sites were sampled (seven protected, eight exposed). Five of these

sites (Lighthouse Beach, Sunset Bay, Ezzy Cove, Middle Cove, South Cove) are found

near Cape Arago, Oregon. In northern California, four sites were sampled (three

exposed, one protected). Point Dume was the one exposed site sampled in Southern

California. In Baja, two populations were sampled (one protected, one exposed) (Figure

2).

Sampling Populations

Because Chlorostoma funebralis settle into the high intertidal and migrate into the

mid intertidal as they grow larger, sampling was conducted with a belt transect across

tidal heights. The width of the transect was selected based on the density of individuals

at that site (0.25, 0.5, or 1 m width). In populations with low densities, a wide transect

was used (up to 1m) to ensure that an adequate number of individuals were sampled on
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Table 1: Latitude and longitude for sampled populations of Chlorostoma funebralis. Protected
populations were enclosed on at least three sides, while exposed sites were open to the open ocean
on two or more sides. Coefficient of Variation measured as a percentage of size distribution of
populations.

Exposed or Coefficient of
Site Latitude Longitude

Protected Variation (%)

Indian Beach Exposed 4SoSS'OSN 123°S8'44W 40

Boiler Bay Protected 44°49'47N 124°03'33W 96

Devil's
Exposed 44°44'46N 124°03'SOW 67

Punchbowl

Strawberry Hill Exposed 44°1S'14N 124°06'43W 41

Lighthouse
Protected 43°20'2SN 124°22'30W 8S

Beach

Sunset Beach Protected 43°20'OON 124°22'32W 13S

Ezzy Cove Protected 43°19'S6N 124°22'40W 123

Middle Cove Protected 43°18' 17N 124°24'02W 64

South Cove Protected 43°18'12N 124°23'S6W 108

Cape Blanco Exposed 42°S0'17N 124°33'37W 60

Nellie's Cove Protected 42°44'2SN 124°33'37W 4S

Port Orford Exposed 42°44' 17N 124°29'S7W 40

Mt. Humbug Exposed 42°42'SIN 124°27' 14W 8

Lone Ranch Exposed 42°0S'S8N 124°20'42W 81

Harris Beach Protected 42°03'S7N 124°18'33W 132

Crescent City Exposed 41°4S'19N 124°13' 12W 82

Patrick's Point Exposed 41°07'48N 124°09'S3W 81

Shelter Cove Protected 40001'21N 124°04'OOW 88

Laguna Point Exposed 39°29'23N 123°48' 18W 104

Point Dume Exposed 34°00' lIN 118°48' 18W ISO

Erendira Protected 31°17'23N 116°24' 14 63

El Soccorito Exposed 30°17' 19N l1S048'31W 94
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each transect. In areas with high densities, narrower transects (0.25m or 0.5m) were

used. A minimum of three transects and 500 individuals were sampled at each site when

possible. Transects were a minimum of 50 m apart to insure independent sampling. If

after sampling three transects fewer than 500 individuals were sampled, additional

transects were sampled. Indian Beach and Port Orford were sites too small to use more

than three transect lines so fewer than 500 individuals were collected from those two

sites. The smallest juveniles were collected by hand-sorting coarse sediment collected

from under boulders in the high intertidal. Larger juveniles and adults were collected

from under and on boulders, in tidepools, and under algae.

All individuals within the belt transect were collected and allowed to air dry.

Initially, individuals were weighed and shell diameters were measured as the widest point

across the umbilical region from the shell lip to opposite body whorl (Frank 1975). After

weighing and measuring the width of 700 individuals, a power relationship was obtained

between snail mass and shell diameter (Figure 3). These data were log-transformed and

the regression was found to be significant (p < 0.0001, R2 =0.916). After these initial

measurements, weight alone was used to measure the size of individuals as this was the

more efficient method of quantifying size. The age of individuals was calculated using

Frank's (1975) growth rates and size-age correlation models along a latitudinal gradient.

To test for differences in population structure between sites of differing coastal

topography, the percentage of juveniles in each population was calculated after minimum

size at reproduction was established from reproductive output data (see below). To test
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Figure 3: Regression (p < 0.0001, R2 =0.916) between mass and maximum shell
diameter in C. funebralis.

for population differences on a latitudinal gradient and interaction with coastal

topography, populations were tested using a 2-way ANOVA with latitudinal region and

coastal topography as factors. Further analyses using I-way ANOVA's were used to test

differences within latitudinal regions.

To test for differences in size distributions between sites, I used the coefficient of

variation (CV) (Ebert and Russell 1988). The CV was calculated for each population,

arcsine transformed, and differences between factors were tested using ANOVA.

To test for differences in latitudinal gradient in the largest size classes, the

percentage of the population ten years or older (approximately 9 g) was calculated using

growth rates reported by Frank (1975). The percentage of these old individuals in each

population was tested using the same statistical methods as the percentage of juveniles.
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Reproductive Output

To quantify the potential reproductive consequences of differing size-frequency

distributions, the number of eggs/female produced by Chlorostoma funebralis was

calculated for individuals that were sexually mature, up to the largest individuals in the

population. Individuals between 2 and 15 grams were collected from South Cove,

Crescent City, Patrick's Point, Shelter Cove, and Laguna Point. Females smaller than

approximately 2.0 grams (approximately 14 mm in diameter) had gonad tissue with very

few eggs and were judged sexually immature.

After weight and shell diameter were established, the female gonad was removed,

weighed, and displacement volume measured. Ovaries were macerated, diluted and

suspended in sea water. Four 20 !1L aliquots were sampled from each female and the

number of eggs in each aliquot quantified. The aliquot was placed on a slide and gently

pressed with a cover slip. A digital camera was used to photograph the sample under 4x

magnification. ImageJ (Rasband 2008) was used to superimpose a grid over the image to

increase the accuracy of enumeration of eggs in the sample. All of the eggs in the entire

20 !1L aliquot were counted.

With few exceptions, replicate aliquots from females were not significantly

different from each other and so were averaged. Total egg production was calculated

from mean egg concentration in the 20 !1L aliquots multiplied by the total ovary mass

suspended in seawater. A linear regression was used to test the association of number of

eggs in the gonad and the size of the individual. Sexually immature individuals « 2 g)

were excluded from this analysis.
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Results

Size-Frequency Distributions

Size-frequency distributions were collected from 22 sites along the west coast of

North America (Figure 4). The number of individuals measured from a population

ranged from 75 to 4,564 and were collected from between three and five independent

transect lines. Sites were grouped by coastal topography (protected or exposed) and

latitudinal range (north or south of Brookings, OR (see methods)). Two size-frequency

distributions, those weighted towards juveniles and those lacking large numbers of

juveniles, were apparent from in populations north of Brookings. Populations also varied

in the presence or absence of large individuals (> 5 g). In populations south of

Brookings, all were weighted towards the juvenile size classes « 2 g) and most

populations had few individuals larger than 5 g.

Proportion ofJuveniles

When a 2-way ANOVA was used with coastal topography and latitudinal region

as factors, the differences based on coastal topography were not significant (F[1,18] =

1.19, P = 0.290). The difference between north and south was significant (F[1,18] =

10.57, P =0.004) as was the interaction (F[1,lS] =5.98, P =0.025).

The results of the 2-way ANOVA potentially mask differences within latitudinal

region. A one-way ANOVA testing the impact of coastal topography on populations

limited to the northern portion of the range (Brookings, OR to Indian Beach, OR) shows

a significant
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Figure 4: Size frequency distributions from populations of Chlorostoma funebralis.
Populations in black are enclosed on at least 3 sides. Populations shown in gray are
exposed to the open ocean on at least two sides. IE = Indian Beach; BB = Boiler Bay;
DP = Devil's Punchbowl; SH = Strawberry Hill; LH = Lighthouse Beach; SB = Sunset
Bay; EC = Ezzy Cove; MC = Middle Cove; SC = South Cove; CB = Cape Blanco; NC =
NeJlie's Cove; PO = Port Orford; MH = Mount Humbug; LR = Lone Ranch; HB = Harris
Beach; CC = Crescent City; PP = Patrick's Point; ShC = Shelter Cove; LP = Laguna
Point; PD = Point Dume; ER = Erendira; ES =El Socorrito
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(F[l,ll] = 9.18, P = 0.021). Protected populations were heavily weighted towards

juveniles, with populations averaging 59% juveniles, ranging from 30% to 77%,

excluding Nellie's Cove. Exposed populations had few individuals in the juvenile size

classes, averaging just 14% (ranging from 0% - 17%) of individuals. In the northern

portion of the range, the only protected site that was not skewed towards juveniles was

Nellie's Cove, near Port Orford, OR. This site had no juveniles and a large percentage of

older individuals. When this site was removed from the one-way ANOVA, the

difference in the relative abundance of juveniles between protected and exposed sites

increases (F[l,ll]= 25.27, P = 0.001).

In the southern portion of the range, Brookings OR to Baja California, there was

no significant difference between protected and exposed sites in the proportion of the

population that were juveniles (one-way ANOVA: F[1,7] = 0.96, P = 0.360). All sites

were comprised largely of juveniles with very few sexual mature individuals. Protected

populations had an average of 69% juveniles (ranging 32% - 82%), compared to exposed

populations with 87% juveniles (ranging from 40% -97%).

When Nellie's Cove was removed from the 2-way ANaVA, the significance in

coastal topography increases, but was still not statistically significant (F[1,17] = 3.94, P =

0.064), however, the strength of the interaction effect increases (F[1,17] = 13.72, P =

0.002).
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Coefficient of Variation

The coefficient of variation (CV) is a measure of the dispersion of the size­

frequency distribution (Table I). When the CV's of populations were analyzed in a 2­

way ANaVA, the results were similar to the percentage of the population in the juvenile

size range. The difference between north and south was significant (F[1,18] ::: 5.01, p :::

0.038), the difference between protected and exposed sites was not significant (F[1,18] :::

3.41, p ::: 0.081), and the interaction between latitudinal range and coastal topography

was significant (F[1,18] ::: 4.79, p ::: 0.042).

When analyses are separated by latitudinal region and the effects of coastal

topography are tested with one-way ANaVA's, the results are again similar to the

percentage of juveniles in populations. In the northern portion of the range, the

difference in CV between exposed and protected sites was significant (F[l,ll]::: 11.27, p

::: 0.006). Exposed sites, which had a range of sizes of large individuals, had large CV's

in comparison to protected sites, which had primarily small individuals (Table 1). In the

southern portion of the range, CV's were not significantly different between protected

and exposed sites (F[1,7] ::: 0.04, p ::: 0.841).

As with the percentage of the population in the juvenile size range, the

significance of the coefficient of variation changes with the exclusion of Nellie's Cove.

When Nellie's Cove was removed from the 2-way ANaVA, the latitudinal difference

was no longer significant (F[1,17] ::: 4.18, p ::: 0.057), coastal topography becomes

significant (F[1,17] ::: 5.35, p ::: 0.034), and the interaction term increased in significance

(F[1,17] ::: 7.17, p ::: 0.016). In a one-way ANaVA testing coastal topography in the
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northern portion of the range, the significance of coastal topography increases with the

removal of Nellie's Cove (F[l,lO] = 19.28, P =0.001).

Proportion ofLarge Adults

The distribution of individuals ten years (> 9g) and older has the same pattern as

percentage of juveniles and CV in the 2-way ANOVA. There is no significant difference

in the percentage of older individuals by exposure (F[1,18] =0.09, P =0.765), but there is

a significant difference between north and south (F[1,18] = 9.31, P = 0.007), with a non­

significant interaction factor (F[1,18] =1.63, P =0.218). However, there is no difference

between protected and exposed in the northern portion of the study, tested with a one­

way ANOVA (F[l,ll] =1.14, P =0.308). When northern and southern sites are

compared with a one-way ANOVA without coastal topography as a factor, there are

significantly more large individuals in the northern portion of the range (F[1,18] = 10.69,

P = 0.004).

Reproductive Output

Females with a mass:::: 2 grams, or about 14 mm in diameter, did not have fully

developed gonads. In Chlorostoma funebralis females larger than 2 grams, gonad mass

increased linearly with increasing snail mass (p < 0.0001, R2 = 0.832, Figure 5). Snail

mass and diameter are strongly correlated, so snail diameter also has a significant

regression with gonad mass (p < 0.0001, R2 = 0.730). The concentration of eggs within

gonads did not vary significantly with size, so the number of eggs produced by a female



26

(extrapolated from gonad mass) increases linearly with snail weight (p < 0.0001, R2 =

0.337, Figure 6).

To quantify potential egg production for populations, the number of eggs

produced by each size class was calculated. The relative abundance of each size class in

a population was calculated from the size-frequency distribution of the population and

then standardized for 1000 individuals (Figure 7). The sum of egg production for an

average representation of 1000 individuals was used as the relative egg production for

each population. Because the relationship between size and egg production is linear, the

number of eggs produced per 1000 individuals is derivative of the size-frequency

distribution. However, statistical tests of the number of juveniles and large adults does

not address the full distribution of sizes of adults and their egg production. Comparisons

of egg production between populations tests the possibilities of differences due to the

size-distribution of adults.

Larger individuals have the potential to produce more eggs than smaller

individuals. Populations with a higher percentage of large individuals should produce

more eggs per 1000 individuals than populations skewed towards the smaller size classes.

In a 2-way ANOVA, exposure was not significant (F[1,18] =0.55, p =0.469) while

latitudinal region was (F[1,18] = 11.41, P = 0.003) and the interaction between factors

was significant (F[1,18] = 5.06, P = 0.037).

Egg production was not significantly different between coastal topographies in the north

(F[l,l1] =4.23, P =0.064) or in the south (F[1,7] =2.30, P =0.174). However, when

Nellie's Cove was excluded from this analysis, the difference between exposed and
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protected sites in the north becomes highly significant (F[1,10] = 12.98, P = 0.005). In

the northern portion of the study, exposed populations had high percentages of large

individuals that contribute to the relative egg production of the population. Protected

sites in the northern portion of the study are skewed towards the juvenile size classes but

some populations, such as Boiler Bay and South Cove, also have a small percentage of

larger individuals which will produce large numbers of eggs. The average egg

production per 1000 individuals in the northern portion of the study was 2.75 x 107
.

In the 2-way ANOVA without Nellie's Cove, latitudinal region was significant

(F[l,17] = 13.49, P = 0.002) while coastal topography was not (F[1,17] = 2.51, P =

0.132). The interaction in the 2-way ANOVA was more significant than when Nellie's

Cove was included (F[1,17] = 12.09, P = 0.003, from p = 0.037). This was because

removing Nellie's Cove has increased the overall difference between exposed and

protected sites in the northern portion of the range.

Comparing northern and southern regions without using coastal topography as a

factor, egg production was significantly higher in the northern populations (F[1,18] =

10.74, P = 0.004). In the southern portion of the study, populations were heavily skewed

towards pre-reproductive juveniles and small adults, which contribute little to the total

egg production of the population. The average egg production per 1000 individuals in

the southern portion of the study was 9.72 x 106
, lower than the average egg production

of populations in the north.
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IE BB SP SH LH SB EC MC SC CB NC PO MH LR HR CC PP SV LP PD ER ES

Figure 7: Egg production (in millions) per 1000 individuals of populations of C.
funebralis , displayed from highest to lowest latitude, left to right. Shaded populations
are exposed, black populations are protected. Egg production is calculated by gonad
size and population size-frequency distribution. Northern sites are defined as north of
Lone Ranch (LR). Protected sites are identified as (P), exposed sites by (E). IE =
Indian Beach (E); BB = Boiler Bay (P); DP = Devil's Punchbowl (E); SH = Strawberry
Hill (E); LH = Lighthouse Beach (P); SB = Sunset Bay (P); EC = Ezzy Cove (P); MC =
Middle Cove (P); SC = South Cove (P); CB = Cape Blanco (E); NC = Nellie's Cove
(P); PO = Port Orford (E); MH = Mount Humbug (E); LR = Lone Ranch (E); HB =
Harris Beach (P); CC = Crescent City (E); PP = Patrick's Point (E); SV = Shelter Cove
(P); LP = Laguna Point (E); PD = Point Dume (E); ER = Erendira (P); ES =£1 Socorrito
(E)
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Discussion

The structure of populations of Chlorostoma funebralis vary with both coastal

topography and latitude. Coastal topography was a significant factor only in the northern

portion of this study. In the northern region, populations in protected areas show a much

higher percentage of juveniles than exposed populations, which are skewed toward large

adults. In the southern portion of the study, population structure did not vary with coastal

topography, and all populations were primarily composed of juveniles.

These observed patterns are most likely due to the combination of several factors.

One component of size-frequency distributions, the presence or absence of juveniles, is

due to factors affecting recruitment such as larval supply and post-settlement mortality.

In contrast, the distribution of adults in populations is due to the sum of numerous

factors. The numbers of adults in a population is a reflection of recruitment events in

past years, as well as mortality due to predation and physical stress that has occurred

during the intervening years.

An absence of juveniles in exposed populations may be caused by low and/or

irregular larval supply, a failure oflarvae to survive metamorphosis (settlement), or high

mortality rates of newly metamorphosed juveniles. Protected sites may have had more

juveniles because larval supply is high and populations experience high settlement with

little inter-annual variation. Exposed sites may have low larval supply due to movement

of larvae offshore, punctuated with occasional years of high settlement. This pattern of

high inter-annual variation would result in populations where juveniles are rare except
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during certain years. This is one potential mechanism that would create the size­

frequency distributions described by this study.

Larval supply may drive patterns of recruitment. Several studies have shown

relationships between protected bays and coves and larval retention (Archambault et al

1998, Archambault and Bourget 1999, Shanks et al 2003, McQuaid and Phillips 2006).

The hydrography of protected areas may retain larvae for long enough periods that larvae

are unable to disperse outside of the protected area on a large scale. Many studies of

larval dispersal and retention have focused on species with larval periods of weeks, such

as mussels and barnacles (Menge et al 2004, Shanks and Brink 2005, McQuaid and

Phillips 2006). The shorter larval period of C. funebralis (five to eight days) should

amplify the effects of retention since there will be less time and opportunity for

hydrographic conditions to change and for larvae to move offshore. Topographically

generated fronts at the mouth of protected bays and coves can last for days (Shanks et al

2003), long enough to retain C. funebralis for the entirety of its larval period. Larval

retention would increase larval supply, and the resulting recruitment rate should be higher

and have lower inter-annual variation.

Studies with mussels show a positive correlation between high recruitment and

gamete production within a protected population (McQuaid and Phillips 2006). Larval

retention within this protected area results in high larval supply. This previously

described pattern is unlikely to be mechanistically similar to patterns observed in

Chlorostoma funebralis. In this study, the highest reproductive effort was observed in

exposed, northern populations with the fewest juveniles. If reproductive effort was
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directly tied to larval supply and recruitment as in McQuaid and Phillips (2006), exposed

populations with the largest individuals would also have large numbers of juveniles.

If large numbers of juveniles in protected habitats north of Brookings, Oregon

was due to larval retention within bays and coves, the lack of juveniles in most exposed

populations may be due to larval movement offshore. Populations at exposed sites have

few individuals in the juvenile size classes, indicating poor recruitment in the previous

years. Several exposed sites, such as Indian Beach and Devil's Punchbowl, have multiple

peaks in the size-frequency distribution (Figure 4). If these peaks reflect years of high

recruitment separated by gaps of poor recruitment, these populations have high inter­

annual variation in recruitment. Exposed sites experience more wave energy, which may

wash larvae away from the parental site, and larvae are only moved onshore at these sites

during years when hydrographic conditions move larvae onshore during the spawning

period. Many gastropods are known to spawn during wave events (Orton and Southward

1961, Bowman and Lewis 1977, Thompson 1979, Creese and Ballantine 1983). Some

species in the genus Tegula spawn during major wave events in Japan (Sasaki and

Shepherd 1995) and return to shore, potentially by remaining within local wave generated

circulation cells. If C. funebralis larvae have similar methods for remaining close to

shore, larval supply may remain high annually, and inter-annual variation in recruitment

may be due to inter-annual variation in post-settlement mortality.

The population in Nellie's Cove was different from all other protected sites in the

north. Other protected populations in the northern portion of this study had a large

portion of the population in the juvenile size classes, and few large adults. Nellie's Cove,
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in contrast, is a protected population with no juveniles and a high percentage of large

adults. Nellie's Cove is a south-facing cove on the south face of Port Orford Headlands.

This site is protected during the summer, when wave energy is primarily from the north

(Shanks et al 2003), but is exposed to storm waves from the south in the fall and winter;

it is the only protected site in this study that is exposed to storms from the south in the

fall. C. funebralis larvae are expected to be in the water column between August and

October in northern populations (Belcik 1965, Paine 1971, Moran 1997), hence, the

period of storm waves may overlap with the spawning window preventing larval

retention in an otherwise protected site.

Differences in recruitment between protected and exposed populations may also

be due to post-settlement mortality. The small size of recently metamorphosed

individuals and the likelihood of early post-settlement mortality make the youngest

juveniles difficult to enumerate. The size of C. funebralis at metamorphosis is between

240 and 260 ~tm (Moran 1997, Guzman del Proo et a12006) and the smallest individuals

collected in this study were approximately 500 ~m. Using juvenile growth rates

observed in the laboratory, the smallest juveniles collected in this study may be between

two and six months old (Moran 1997, Guzman del Proo et al 2006). The smallest

individuals sampled had settled months before they were counted, hence, we cannot

differentiate between the effects of larval supply and variation in mortality in the first few

months after metamorphosis on the population structure.

Variation in post-settlement mortality may be caused by differences in juvenile

habitat between protected and exposed sites that exist only within the northern portion of
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the population. These differences may include wave energy, which may cause

differences in temperature, oxygen levels, sedimentation, food availability and sediment

movement. However, juveniles are found in the high intertidal, exclusively in coarse

sediment under boulders and very protected cracks on rocks (personal observation).

There is no immediately obvious biotic or abiotic factor within this micro-habitat that

would differ systematically between protected and exposed populations.

South of Brookings, Oregon, all populations sampled showed similar size­

frequency distributions; the distributions were heavily skewed toward juvenile C.

funebralis. No difference is apparent between northern and southern California and Baja

California. This pattern was also observed by Frank (1975), who proposed that in the

southern portion of the species range, individuals have shorter life spans, faster growth

rates, and reproduce throughout the year rather than annually spawning as in the north.

In southern California, a conjoining species, Chlorostoma (Tegula) eiseni, spawns and

recruits throughout the year (Wolf 1991). In Oregon and Washington, C. funebralis

spawns in late summer or fall (Belcik 1965, Paine 1971, Moran 1997); spawning of C.

funebralis has not been studied in California and the species may show variation in

reproductive strategy in different latitudinal regions. If, like C. eiseni, C. funebralis in

California reproduce throughout the year, they may be using a reproductive strategy

which allows for more opportunities to spawn during hydrographic conditions that allow

larvae to remain close to shore, regardless of local coastal topography.

Non-seasonal reproduction may be necessary for Chlorostoma funebralis in the

southern portions of its range. By reducing inter-annual variation in recruitment success,
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C. funebralis populations ill the south may be sustained despite the shorter life span of

individuals indicated by grmvth rate dala (Frank 1975) and the size-frequency

distributions from populations sampled in California. Individuals in central and southern

California rarely live longr-r than seven years (Frank 1975), so inter-annual variation in

recruitment must be dampened in comparison to populations in Oregon, where

individuals may live up to 30 years (Frank 1975) and so have many more years to attempt

reproductive Sllccess. Further studies of the reproductive and recruitment seasonality on

a latitudinal gradient are necessary to determine if C. funebralis reproduce year-round in

the southern portion of the species range and annually in the northern portion of the

range.

Differences in population structure may also be due to differences in predation

rates. Juvenile C. jttnebralis are found in the high intertidal (Paine 1971, Frank 1975,

Moran 1997), generally above the tidal height of the adult predators, so it is unlikely that

these predators have an effect on the number of juveniles in a population. The main

predators through the species range of C. fitnebralis are the seastar Pisaster ochraceus

and crabs of the genus Cancer. In southern California, intertidal octopus (Octopus

bimacliloides and O. bimaculatus) are also important predators (Fawcett 1984). P.

ochraceus and Cancer spp. abundances do not vary on a latitudinal gradient (Fawcett

1984), but the added predation pressure of Octopus spp. in southern California and Baja

California may cause the absence of larger C. funebralis in those populations. Predation

pressure of P. ochraceus and Cancer 5pp. may vary along the Oregon coast, which could

explain wby some populations, such as Devil's Punchbowl and Cape Blanco, have many
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large individuals, while other populations, such as Sunset Bay have very few large

individuals. No studies have identified potential predators on the juvenile stages of C.

funebralis, which will be necessary to fully understand the effects of predation on

population structure.

Although two latitudinal regions are clear from the data collected in this study,

they do not conform to the predictions of population structure on a latitudinal gradient

predicted by upwelling regions. The intermittent upwelling during summers north of

Cape Blanco has been hypothesized to move larvae offshore during upwelling and

transport them back toward shore during relaxation of upwelling (Roughgarden et al

1988, Menge et al 2004). It has been hypothesized that constant upwelling south of Cape

Blanco offers few opportunities for larvae to return to shore, leading to low recruitment

with high inter-annual variation. In contrast, the data collected in this study show high

recruitment success in California and southern Oregon where upwelling is more

persistent. North of Brookings, Oregon, where upwelling is more variable, population

structure varies with coastal topography. C. ftmebralis may not be as affected by

upwelling patterns as other species with longer larval periods. Surviving larvae of C.

funebralis may be retained close to shore and metamorphose before they are moved far

offshore. If the larvae are transported offshore by any mechanism, the larval period will

not last long enough to allow a return to shore.

Population structure of C. funebralis varies with both coastal topography and

latitude. Numerous factors such as local hydrodynamics, post-settlement mortality, and

predation may all contribute to the observed patterns. Local, small-scale processes may
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be important in determining larval settlement and population dynamics, but this spatial

scale is often ignored in favor of large scale observations on a latitudinal gradient.

Without further studies that use both meso- and large-scale observations, we will not be

able to understand the relative importance of these factors.

Bridge I

Size-frequency distributions of Chlorostoma funebralis vary between the northern

and southern portions of the species range, with the divide just north of the Oregon­

California border. In the northern portion of the range, coastal topography plays a

significant role in determining the presence or absence of juveniles. Size-frequency

distributions in protected areas are weighted heavily towards the juvenile size classes, but

exposed populations have more adults. In contrast, populations in the southern portion of

the range are smaller and populations are dominated by juveniles, regardless of coastal

topography.

One potential source of variation on a latitudinal gradient is differences in the

timing of reproduction. If populations in the southern portion of the range reproduce

throughout the year, this behavior may increase the probability of having at least one

reproductive event each year. In contrast, if northern populations spawn in one episodic

event each year, this may increase the variability in reproductive success each year,

causing gaps in the size-frequency distributions. This hypothesis is tested in Chapter III

using a time series of reproductive stage in San Diego, California and Cape Arago,

Oregon.
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CHAPTER III

VARIATION IN SEASONALITY OF REPRODUCTION AND REPRODUCTIVE

STRATEGIES OF CHLOROSTOMA (TEGULA) FUNEBRALIS ON A

LATITUDINAL GRADIENT

Introduction

The supply of larvae has long been hypothesized as a driving factor in structuring

intertidal communities (Ebert and Russell 1988, Roughgarden et al 1988, Menge et al

2004). Because space is often a limiting factor in the intertidal (Connell 1961,

Stachowicz et aI1999), the timing and success of larval supply and recruitment events

may have important repercussions for population and community ecology in the

intertidal. Marine invertebrates have been shown to spawn in response to a number of

environmental cues, including but not limited to temperature, tidal cycle, and wave

energy (Giese and Kanatani 1987). These cues may signify optimal conditions for larval

survival or dispersal, or in species with external fertilization may increase the chances of

synchronous spawning and increased probability of fertilization.

Populations of marine invertebrates show several types of reproductive cycles.

Spawning of individuals can be synchronized and seasonal, in which case individuals will

all be at the same stage of gametogenesis and females will produce mature oocytes at the
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same time. In contrast, populations that reproduce continuously can be produced in two

ways: individuals that spawn only once but asynchronously with other individuals in the

population, or individuals that spawn continuously throughout the year (Eckelbarger and

Watling 1995). Investigation of oocytes can distinguish between these two patterns - if

the number of oocytes in the ovary of one female but not others decreases precipitously at

one time point, it indicates that the female is spawning in one event but asynchronously

with the rest of the population. If females have multiple stages of oocytes present in the

ovary continuously, it is likely that individuals are "dribbling", or relcasing a few eggs

throughout the year. However, it can be difficult to distinguish this pattern from

individuals that maintain mature oocytes for long periods and spawn on a non-seasonal

schedule that cannot be determined by irregular sampling methods (Tyler and Young

1992).

The timing of spawning may have important implications for larval survival and

dispersal. Spawning during high wave energy events can reduce the time larvae spend in

the surf zone, which may reduce the chances of predation (Shanks 1998). These events

can co-occur with periods of downwelling, which pushes surface waters onto shore and

may limit the distance larvae arc transported offshore (Sasaki and Shepherd 1995, Shanks

1998). However, models suggest that fertilization success for broadcast spawners should

be limited during high energy, turbulent periods (Denny and Shibata 1989).

The intertidal gastropod Chlorostoma (Tegula) funebralis ranges from Baja

California to Vancouver Island (Morris et al 1980). C. funebralis are broadcast spawners

with external fertilization and a larval period of five to eight days (Moran 1997, Guzman
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del Proo et al 2006). The size-frequency distributions of C. funebralis populations differ

significantly along a latitudinal gradient (Chapter I). In the southern portion of the range,

populations consist mainly of small juveniles (Frank 1975, Wright 1975, Chapter I). In

the northern portion of the species range, coastal topography is correlated with size

distributions, with protected populations containing juveniles and exposed populations

with few juveniles. This division between southern and northern populations occurs in

southern Oregon (Chapter I).

In Washington populations of C. funebralis, spawning is hypothesized to occur

synchronously between May and September, as indicated by a significant drop in the

energy content of females (Paine 1971). Spawning in the laboratory has been observed in

Oregon in mid-September (Moran 1997). The presence of juveniles in the field indicates

recruitment between May and December in Oregon (Frank 1975, Moran 1997) but

potentially year-round in California (Frank 1975, Wright 1975). Chlorostoma eiseni, a

conjoining species to C. funebralis in southern California, spawns year-round (Wolf

1991).

If C. funebralis populations in the southern portion of the species range spawn

continuously or multiple times throughout the year, this may increase the probability that

there will be successful recruitment each year, increasing the number of juveniles if

populations are limited by larval supply. In contrast, if populations in the northern

portion of the species range reproduce seasonally and episodically, successful recruitment

may not occur every year, creating high inter-annual variation in the size-frequency

distributions. This study tests this hypothesis by examining the timing of oogenesis
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throughout an annual cycle in two populations, one in San Diego, California and the other

in Charleston, Oregon.

Methods

Sample Collection and Embedding

From August 2008 - September 2009, 20 females were collected once a month

from Cape Arago, Oregon (43°18' l2N, l24°23'56W), excepting November 2008.

Twenty females each month were collected from San Diego (32°48'50N, 117°16'23W)

from April 2009 - March 2010, excepting May, September and November 2009.

The ovaries of Chlorostoma funebralis are distinct in the adult body due to their

green color (Moran 1997) and were easily dissected from the snail body and preserved in

6 - 8 % recycled formalin. After 48 - 72 hours, samples were transferred to 70 %

Ethanol for long term storage. A dehydration series in ethanol was followed by toluene

for 24 hours, followed by overnight in melted paraffin wax (mp =52°) and then

embedded.

Sections of 5 [lm thickness were cut and mounted on glass slides. At least three

slides were made for sections of each individual. Slides were stained with Harris

modified Hematoxylin, counterstained with Eosin, and glass cover slips were

permanently fixed to slides with Permount. Pictures were taken of each slide under 20X

magnification for later analysis.
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Analysis

Two methods were used to assess the reproductive stage of each female. The

sizes of 100 eggs were measured from each individual using Image] (Rasband 2008).

Because oocyte shape may be irregular due to tight packing in the ovary, oocyte feret

diameters were calculated (Feret diameter = ((4 x area)/n)1/2) to standardize oocyte size

(Tyler et aI2008). Only individuals with a visible nucleolus were sampled to avoid the

resampling of individual oocytes over several sections. Individual females were analyzed

using an ANOVA, with individuals nested within dates (Grant and Tyler 1983b).

Diameters were log-transformed to equalize variances.

Because of the high variance in individual oocyte diameters, a categorical method

of estimating reproductive stage, a maturity index, was also used for each specimen

(Grant and Tyler 1983a). After examination of stained specimens, five stages of

reproductive status were designated, modified from Patent (1969), Grant and Tyler

(1983a), and Tyler et al (2008). Individual specimens were assigned a reproductive stage

number of one through five, dependent on the ratio of vitellogenic to previtellogenic

oocytes within each female. Previtellogenic oocytes were identified as those that did not

stain pink in the Eosin counter-stain, indicating a lack of yolk within the egg.

Reproductive stages were analyzed with a single-level ANOVA with dates as a fixed

factor (Grant and Tyler 1983a) and a Tukey HSD for comparisons between consecutive

months. Maturity index data were square root transformed to make variances more

equal.
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Maturity index stages were identified as follows:

Stage 1, Post-spawning: Nearly all oocytes are previtellogenic, with relict oocytes very

rare (Patent 1969). Oocytes are not tightly packed (Figure 8A). Stage 2, Early Growth:

Most area in ovary (> 50) consists of previtellogenic oocytes, with 2 - 5 % of area

consisting of small vitellogenic oocytes. Oocytes are not tightly packed (Figure 8B).

Stage 3, Mid- Cycle: 6 - 50 % of ovary consists of previtellogenic oocytes, with both

small and full-sized vitellogenic oocytes present. Some oocytes are packed tightly

together (Figure 8C). Stage 4, Pre-Spawning: Less than 5 % of ovary is previtellogenic

oocytes. Oocytes are tightly packed (Figure 8D). Stage 5, Spawning: All oocytes are

large and vitellogenic and packed tightly within the ovary (Figure 8E).

Results

Oocyte Size

Oocytes ranged in size from 50 flm for previtellogenic oocytes to 250 flm for the

largest mature oocytes. Diameters of spawned eggs have been estimated at 200 flm

(Moran 1997). Spawning is rarely complete as mature, vitellogenic oocytes were seen in

nearly all females. Previtellogenic oocytes were observed in most, but not all,

individuals.

In the Oregon population, oocyte size-frequency distributions did not show

seasonal variation (Figure 9A), as evidenced by the lack of significant differences among

dates in a nested ANOYA (F[12,247] = 0.25, P = 0.99). If individuals were spawning

continuously throughout the sampling period, all females should have a wide
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Figure 8: Stages of oogenesis in
Chlorostomafimebralis. White bars
represent 100 11m. pya = previtellogenic
oocyte; ya = Yitellogenic oocytes; N =
Nucleolus (A) Stage 1; few mature
oocytes (8) Stage 2; fewer than 50%
oocytes are mature (C) Stage 3; 50% ­
95% oocytes are mature (D) Stage 4;
Previtellogenic oocytes are present but
fewer than 5% of the oocytes (E) Stage 5;
All oocytes are mature
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range of oocytes present in the ovary and no differences will be observed between

individuals. This is the case as shown by individuals, nested within dates (F[247,25740]

::: 0.36, p ::: 0.99).

A similar pattern was observed for the southern California population (Figure

9B). No difference was detected among dates (F[8,171] ::: 0.70, p ::: 0.6952) or among

individuals nested within dates (F[I71,17820] ::: 0.63, p ::: 0.999).

Maturity Index

The maturity index offers a more general overview of each female's reproductive

stage than oocyte size-frequency distributions. Although individuals of all stages were

observed, most individuals were between stages three and four (Figure 10). In the

Oregon population, dates were significantly different from each other (F[12,247] ::: 5.686,

p < 0.001). Tukey's post-hoc comparisons show a significant drop in average maturity

index between March 2009 and April 2009 (p ::: 0.009, Figure lOA, Figure 11). This

drop in maturity index is also observed as a decrease in mean oocyte diameter (Figure

9A), although the difference in oocyte diameter between March and April 2009 is not

statistically significant. A significant increase in maturity index was observed between

July 2009 and August 2009 (p ::: 0.001).

In the southern California population, most individuals were also between stage

three and stage four throughout the year (Figure lOB, Figure 12). There were significant

differences among sampling dates (F[9, 171] ::: 8.545, p < 0.001). Significant drops in the

maturity index were observed between August 2009 and October 2009 (p < 0.001) and
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January 2010 and February (p < 0.001, Figure lOB, Figure 12). No significant increases

in maturity index were observed between consecutive months.

Discussion

Both populations sampled in this study had synchronous spawning events where a

number of females in the population shed mature eggs simultaneously, as indictaed by a

large drop in the average maturity index. Females likely to spawn have ovaries packed

with large, mature oocytes and were identified in stages four and five of oogenesis. One

spawning period occurred in the Oregon population during the observed 13 months,

between March and April, when a large decrease occurred in the number of females in

the fourth and fifth stages of oogenesis. This coincides with a decrease in the

average feret diameter of oocytes between March and April, although this decrease was

not statistically significant. Even after spawning, at least a few females ready to spawn

were present in the Cape Arago population throughout the year. This may allow for some

continuous spawning of a few mature oocytes throughout the year, or a population-level

readiness for another spawning event. Continuous monitoring of the population, with

multiple samples taken every month, will be necessary to distinguish between these two

patterns.

The spawning event observed in this study is earlier in the year than those

observed by Paine (1979) in Mukkaw Bay, Washington, where Chlorostoma funebralis

spawned from June to September. This spawning event was also earlier than the

spawning period estimated from juvenile growth rates and size in the field by Moran
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(1997), in a study that estimated larval settlement between July and December.

Recruitment of C. funebralis juveniles has been observed at Cape Arago in September

and October (Cooper, unpublished data).

The population from San Diego had the largest proportion of mature females in

July and August, followed by a spawning event shown in the drop in maturity index. The

number of females ready to spawn recovered by January, and another spawning event

occurred between January and February, again indicated by a drop in maturity index.

Between October and December, there was a drop in the number of individuals in stages

four and five, but this difference is not statistically significant and may not represent a

third spawning event over the observed year.

At least two spawning events were observed over one year in San Diego, in

contrast a single spawning event at Cape Arago. By spawning multiple times in a year,

C. funebralis in San Diego may increase the probability of a successful recruitment event

every year. C. funebralis south of central California are smaller than those in Oregon or

Washington (Frank 1975, Wright 1975) and produce fewer eggs due to smaller gonads

(Chapter I). Spawning multiple times in one year may maximize the number of potential

recruits within the size limitations of individuals in southern populations. Northern

populations may delay reproductive effort in favor of attaining larger body size. Body

size correlates with the number of eggs produced (Chapter I) so a delay in reproduction

may ultimately lead to a larger reproductive effort. Southern populations may have

limited body size due to increased reproductive effort, limiting the scope of growth

remaining to increase body size.
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Chlorostoma funebralis in Oregon and Washington can live up to 30 years (Darby

1964). In contrast, individuals in southern California live only five to seven years (Frank

1975). Reproducing several times throughout the year in the southern portion of the

species range may be a shift in reproductive strategy that allows populations to

compensate for a shorter life span and smaller maximum size. The number of eggs

produced by a female increases with size (Chapter II), so southern populations weighted

towards small individuals will not produce as many gametes as populations with large

individuals in a single spawning event. While populations in the northern portion of the

species range can be self-sustaining with high inter-annual variation in recruitment

(Chapter I), the shorter lived individuals of California utilize multiple reproductive events

in a year to hedge against environmental conditions that may cause larval or juvenile

mortality.

Because samples were taken approximately one month apart, this study cannot

determine if spawning occurred on a single tidal event or over the course of several days

or weeks. However, for broadcast spawners with external fertilization, there is a

significant advantage for a large portion of the population to spawn at the same time.

Where distances between a spawning male and female are significant, eggs are less likely

to be fertilized (Pennington 1985, Levitan et a11992, Sewell and Levitan 1992).

Chlorostoma funebralis can naturally occur in densities of more than 1000/m2 (Paine

1969) so may not need to further aggregate if spawning is synchronous. However,

naturally high densities may mean that populations need to spawn synchronously only

within a very limited area for successful fertilization. If local aggregates spawn
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synchronously with each other but asynchronously with the rest of the population, the

resulting data would not show these local effects.

Although collecting samples on a monthly basis allows for the identification of

mass spawning events, the temporal scale is not fine enough to identify potential cues for

spawning. Along the Oregon coast, the spring transition occurs between March and June

and marks the start of the seasonal upwelling (Barth et al 2000). Prior to the spring

transition, downwelling conditions dominate along the Oregon coast, keeping surface

waters close to shore. Following the spring transition, downwelling periods are separated

by periods of strong upwelling (Barth et al 2000). Upwelling may have significant

effects on larval mortality by moving surface waters offshore (Roughgarden et al 1988,

Menge et al 2004). Some gastropods have been documented to spawn during conditions

that indicate downwelling (Sasaki and Shepherd 1995, Shanks 1998). However, the

larvae of many invertebrate taxa reside well below surface waters and so are not moved

offshore during upwelling (Shanks and Brink 2005, Morgan et al 2009, Shanks and

Shearman 2009), presumable reducing larval mortality due to offshore movement. C.

funebralis may be cuing to downwelling conditions; however, further sampling will be

necessary to test this hypothesis.

As predicted by Frank (1975) and Wright (1975), C. funebralis in southern

California spawned multiple times throughout the year. In contrast, C. funebralis at Cape

Arago, Oregon, spawned only once, similar to populations in Washington (Paine 1971).

These differences in reproductive strategy may be one mechanism driving decreased

inter-annual variation in recruitment in populations at the southern portion of the species



range when compared to northern populations. Further data on a finer temporal spatial

scale used in this study may be able to identify specific cues that induce spawning in C.

funebralis.

Bridge II

Chapter III explored how the reproductive strategies of Chlorostoma funebralis

vary along a latitudinal gradient. The oldest individuals with the largest capacity for

reproduction are most common in the northern portion of the species range, but their

prevalence varies between locations. Unlike the presence of juveniles explored in

Chapter II, adult populations are not correlated with coastal topography. Chapter IV

examines predation as a potential cause of differences in adult populations of C.

funebralis along the Oregon coastline.

54
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CHAPTER IV

EFFECTS OF PREDATION ON SIZE STRUCTURE OF CHLOROSTOMA

FUNEBRALIS POPULATIONS IN OREGON

Introduction

The size-frequency distributions of populations of marine invertebrates can vary

along a latitudinal gradient (Frank 1975, Ebert 1983, Menge et a12004) as well as

between geographically close populations (Ebert and Russell 1988, McQuaid and Phillips

2006). These differences may be caused by inter-annual variation in larval supply and

recruitment that create gaps in the size structure of the population (Menge et al 2004).

Adult mortality factors such as predation may be important in regulating the densities and

longevity and, hence, the maximum size of adults (Paine 1969, Fawcett 1984). The

intertidal gastropod Chlorostoma (Tegula) funebralis is an interesting species to study

since size distributions differ both on a latitudinal gradient (Frank 1975, Wright 1975,

Chapter I) and with coastal topography (Chapter I).

Chlorostoma funebralis is common in the rocky intertidal zone along the west

coast of North America from Vancouver Island to Baja California (Morris et al1980).

Juvenile C. funebralis settle in the high intertidal and migrate to the mid-intertidal as they

grow larger (Paine 1969, 1971), a size gradient that is recreated even after individuals are

relocated to different tidal heights (Doering and Phillips 1983). This behavior generates a
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spatial refuge from predation for juvenile and small C. funebralis since most predators

occur in the mid- to low- intertidal (Paine 1969).

Populations of C. funebralis differ in the age structure of populations (Frank

1975, Wright 1975, Chapter I). Along the Oregon coast, populations in relatively

protected areas have more juvenile C. funebralis than populations that are in more

exposed habitats (Chapter I). In California and Baja California, all populations are

heavily weighted towards the juvenile size classes (Frank 1975, Chapter I). Large C.

funebralis produce more gametes than small C. funebralis (Chapter I), so populations

dominated by juveniles that have fewer adults may have a lower reproductive potential

than populations with many adults (Chapter I). While the presence or absence of

juveniles in a population is correlated with the exposure of the population, the number of

adults is not related to coastal topography (Chapter I). The additive effects of selective

pressures on juveniles and adults may result in differences in size-structure between

populations.

The age structure of marine invertebrates is often interpreted as reflecting

historical recruitment to that population (Ebert and Russell 1988, Roughgarden et al

1988, Menge et al 2004). However, predation may be a major source of mortality for

adult C. funebralis and play an important role in shaping the size structure of populations

of C. funebralis. Paine (1969) directly measured predation rates by Pisaster ochraceus

on C. fUllebralis and calculated that 16-31% of adults are consumed by P. ochraceus

annually. Higher mortality of C. funebralis has been observed at sites with higher

densities of predators, including P. ochraceus, octopuses of the genus Octopus, and crabs



57

of the genus Cancer (Fawcett 1984). All of these predators are found in the sub- to mid­

intertidal zone. Larger adult C. fllnebralis occur in the mid intertidal zone while smaller,

younger individuals tend to be found high in the intertidal zone. The vertical limits of

these predators create a refuge for small C. fllnebralis in the high intertidal and creates a

narrow zone of overlap in the mid-intertidal where predation on larger C. fllnebralis may

occur (Paine 1969, Fawcett 1984).

Pisaster ochracells is known to exert strong predation pressure on mussels,

changing the community structure in areas where predation rates and densities are high

(Paine 1966, Menge et aI1994). The strength of predation rate as a factor in determining

community structure is dependent on exposure (Robles 1987, Menge et aI1994).

Predation rates by P. ochracellS are also temperature dependent, with higher densities in

the intertidal and higher predation rates on intertidal mussels correlated with higher water

temperatures (Sanford 1999,2002). C. fllnebralis is the second or third preferred prey

item of P. ochracells behind mussels of the genus MytilllS, but is a highly preferred item

in the absence of mussels.

If predation pressure affects the number of adult C. fllnebralis in a population,

populations with higher predation rates will have fewer adults in comparison to

populations with lower predation pressure. This study was undertaken to understand the

relationship between predation pressure and the size structure of populations of C.

fllnebralis.
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Methods

Snail Tethering Experiment

To compare predation rates, I leashed six sets of ten snails each at five sites

during July 2008. Cable ties were attached to the rocks and snails were tethered to the

cable ties with 10 em of monofilament line. All snails used in the experiment were larger

than 6.00 g, placing them in size classes that would encounter Pisaster ochraceous

naturally. To avoid variation in predation rates on a latitudinal scale (Fawcett 1984),

predation rates were only studied at populations considered in the northern portion of the

species range (Frank 1975, Chapter I). Snails were tethered at the following sites: Boiler

Bay (44°49'47N, l24°03'33W), Strawberry Hill (44°l5'14N, l24°06'43W), South Cove

(43°18' l2N, l24°23'56W), Cape Blanco (42°50' l7N, l24°33'37W), and Mt. Humbug

(42°42'5lN,124°27'14W).

After 11 or 12 days, the numbers of alive and dead Chlorostoma funebralis were

counted and probable cause of death noted. Empty shells that remained tethered were

counted as predation by P. ochraceous. Shells that were cracked or peeled were counted

as predation by intertidal crabs. Shells that disappeared from the tethering experiment

were counted as unknown. Differences in predation rates between sites were analyzed

with ANOYA and a post-hoc Power Test with G*Power (Buchner et al 1997).

Pisaster Surveys

The density of predators is potentially directly related to the predation pressure

experienced by populations of Chlorostoma funebralis. To determine the density and
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predation rate of Pisaster ochraceus, a modified methodology from Paine (1969) was

used. Parallel transect lines were laid out in the mid-intertidal overlap zone of P.

ochraceus and C. funebralis vertical distributions. Populations were sampled monthly

from June through August, the most active months of P. ochraceus predation (Paine

1969). A random number generator was used to select locations along transect lines to

layout 1 m2 quadrats. A total of 100 m2 were sampled at each of the following

populations: Boiler Bay (44°49'47N, 124°03'33W), Otter Rock (44°44'46N,

124°03'50W), Sunset Bay (43°20'00N, 124°22'32W), South Cove (43°18' 12N,

124°23'56W), Cape Blanco (42°50' 17N, 124°33'37W), and Mt. Humbug (42°42'5 IN,

124°27' 14W). Within each quadrat, the number of P. ochraceus was counted. Each P.

ochraceus was also removed from the rocks and the taxon and number of prey items held

in the arms or stomach were recorded. Differences in densities of P. ochraceus among

populations were tested using ANOVA after an arcsine transformation, with dates nested

within sites.

The water temperature can affect the feeding rate and density of P. ochraceus.

Sea surface temperatures for the dates and locations sampled were obtained from satellite

images from NOAA Coastwatch (2010). Although several satellite images are archived

from each day, cloud cover prohibits obtaining sea surface temperature for each location

in each picture. For each sampling day, the satellite image with the information closest to

the location of sampling at the time of sampling was used.

P. ochraceus are capable of feeding on each low tide, and can catch and fully

digest a C. funebralis in that time period (Paine 1969). This gives P. ochraceus two
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feeding periods each day to prey on C. funebralis. Predation rates on C. funebralis were

calculated using the number of C. funebralis found in the arms or stomach in P.

ochraceus for each date and site. The number of C. funebralis consumed/m2 was

multiplied by the number of feeding periods in each day. This was then multiplied by the

number of days in the month, which gave an estimate of the number of C. funebralis

consumed/m2 for each of the three sampled months.

To investigate the hypothesis that P. ochraceus predation determines the number

of adult C. funebralis in a population, the number of adult C. funebralis was correlated

against both P. ochraceus density and predation rates.

Results

Tethering Experiment

During the 11 or 12 days that tethered snails were left in the intertidal, sheUs

became unattached from the experimental setup and were lost. Many of these snails were

later found alive in the intertidal. However, the fate of aU lost snails cannot be explicitly

determined, so they are not included in the analysis. The loss of snails varied between

sites from 16% to 73% (Table 2).

The only evidence of predation was empty shells, indicating predation by Pisaster

ochraceus. No broken (crab predation) or drilled (octopus predation) shells were found

attached to the experimental setup. Predation by P. ochraceus varied between 0% (Boiler

Bay) and 40% (Cape Blanco) of the recovered snails at each site (Table 2).



61

Table 2: Chlorostoma funebralis recovery and predation rates for tethering experiment,
July 2008. Snails recovered includes all snails, dead or alive, still tethered to

experimental setup after 11-12 days. Percent consumed is percent of recovered snails

that were empty shells, indicative of Pisaster ochraceus predation.

Site Snails Tethered Snails Recovered % Consumed

Mt. Humbug 60 26 15

Boiler Bay 60 SO 0

Cape Blanco 60 25 40

South Cove 60 48 10

Strawberry Hill 60 16 6

To investigate if high predation rates are associated with the number of adults in

the population, correlation was run between the percentage of tethered Chlorostoma

funebralis consumed by P. ochraceus and the percentage of the population over 6 grams,

the approximate size at which individuals migrate low enough in the intertidal where they

may encounter P. ochraceus. All percentages were arcsine transformed. There was no

relationship between predation rate as estimated from this tethering experiment and the

percentage of older individuals in the population (r =0.403, df =3, P > 0.2).

Pisaster Density

Because tethering studies showed only predation by Pisaster ochraceus at the

sites studied, surveys were conducted to measure P. ochraceus density and excluded

other potential predators. P. ochraceus surveys were carried out once a month at each of
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six sites during the summer of 2009. Water temperatures during sampling days were 10­

11°C for all sampling in July and August, and 10-12°C for dates sampled in July. No

temperatures exceeding 12°C were observed. P. ochraceus densities were calculated for

each month (Table 3). In a nested ANOVA, with dates nested within sites, density of P.

ochraceus varied significantly between sites (F[5,12] = 4.12, P = 0.021) as well as dates

(F[12,1728] = 2.44, P =0.004).

A correlation was used to investigate the relationship between densities of P.

ochraceus and the number of adults in a population. Because sampling dates at the same

site are significantly different from each other, each date plotted independently against

the percentage of the Chlorostoma funebralis population that is larger than 6 grams

(Figure 13). A negative correlation would indicate fewer adult C. funebralis in locations

with higher densities of P. ochraceus. The correlation was negative, but not significant (r

= -0.357, df = 16, P = 0.146).
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Table 3: Density of Pisaster ochraceus at six sites in Oregon and predation rates on
Chlorostoma funebralis.

% of C. #c.
C. funebralis

Site Month funebralis Pisaster/m2 funebralis
consumed/month*m2

population> 6 g consumed
Boiler Bay June 20 .19 0 0

Boiler Bay July 20 .18 0 0

Boiler Bay August 20 .25 0 0

Otter Rock June 41 .05 0 0

Otter Rock July 41 .02 0 0

Otter Rock August 41 .01 0 0

Sunset Bay June 5 .22 0 0

Sunset Bay July 5 .41 0 0

Sunset Bay August 5 .31 0 0

South Cove June 3 .22 1 0.6

South Cove July 3 .14 0 0

South Cove August 3 .10 0 0

Cape Blanco June 32 .32 3 1.8

Cape Blanco July 32 .24 8 4.96

Cape Blanco August 32 .27 2 1.2

Mt. Humbug June 26.7 .23 2 1.2

Mt. Humbug July 26.7 .25 0 0

Mt. Humbug August 26.7 .35 4 2.48
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Figure 13: Correlation between percentage of C. funebralis population> 6 g and density

of P. ochraceus. P. ochraceus densities were sampled once a month during June, July,

and August 2009. Correlation is negative but not significant (r = -0.357, df = 16, P =

0.146).

Predation Rates

A total of 376 Pisaster ochraceus were counted during summer surveys at 6

locations. Of these, 136, 36%, had prey items either in the stomach or arms. Of feeding

P. ochraceus, Chlorostoma funebralis was the third most common prey item (20%),

behind acorn barnacles (51 %) and mussels (24%). Less common prey items included

juvenile Lottia sp, Lacuna sp., Nucella sp., small chitons, and bivalves.

At four of the six sites, one or no C. funebralis were observed being consumed by

P. ochraceus (Table 3). The highest predation rate was at Cape Blanco in July, where

eight C. funebralis were found in sea star stomachs or arms, an estimated 4.96 C.

funebralis may have been consumed/m2 over the course of the month.
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The predation rate was calculated for each site and month and correlated against

the density of predators. A correlation between the density of P. ochraceus and the

predation rate on C. funebralis was not significant (r = 0.235, df = 16, P > 0.1),

suggesting that the predation rate was not simply a function of the density of predators.

If the predation rate is related to the availability of C. funebralis, higher predation rates

will correlate with more C. funebralis larger than 6 g in the population. This correlation

is also non-significant (r = 0.310, df = 16, P > 0.1). At Otter Rock, the population with

the highest percentage of large C. funebralis (41 % of the population over 6 g), no C.

funebralis were observed at any point in the stomach or arms of P. ochraceus.

Discussion

Previously documented predators throughout the species range of Chlorostoma

funebralis are octopus, crabs, and sea stars. The tethering experiment indicated that

Pisaster ochraceus was the major predator of C. funebralis in Oregon, as documented in

previous studies (Fawcett 1984, Paine 1969). The effects of octopus and crabs on the

population may be stronger in the southern portion of the species range including Baja

California and Southern California, with their effect decreasing with increasing latitude

(Fawcett 1984). However, mobile predators such as crabs and octopus may have the

ability to remove prey from the tethering experiment and consume them elsewhere. If

this was the case, the tethering experiment will have falsely underestimated the predation

rates of these mobile predators. Although studies of potential predation rates are not

difficult to conduct in the lab, measuring the consumption of actual prey items in the field

presents challenges that may not be met with this tethering experiment.
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Along the Oregon coastline, the age structure of C. funebralis populations differs

significantly among locations (Chapter I). Populations dominated by juveniles are

associated with the coastal topography of the population. In contrast, the presence of

adult C. funebralis at a location is not associated with coastal topography (Chapter I). If

these differences in adult populations were due to predation, we would expect to observe

fewer adult C. funebralis in populations exposed to high predation rates. Because only

adult C. funebralis occur low enough in the intertidal to encounter predators, predation is

a mortality source that affects only the adult population. Both the tethering experiment

and P. ochraceus surveys indicate that there was no relationship between the predation

rate, the density of predators, and the prevalence of adult C. funebralis. Otter Rock,

which has large numbers of adult C. funebralis, had the lowest rate of predation and P.

ochraceus density. In contrast, Cape Blanco, which also has a large number of adult C.

funebralis, had the highest rate of predation and P. ochraceus density in this study.

In the intertidal zone where C. funebralis and P. ochraceus are both present, C.

funebralis can occur in densities that exceed lOOO/m2 (Paine 1969, personal observation).

Given their high densities and the fact that the two species are often found within

centimeters of each other, I expected that consumption by P. ochraceus would have been

higher. C. funebralis do exhibit an escape response in the laboratory when exposed to

predatory sea stars, which has been used to explain lower than expected predation rates

(Yarna111964). However, the predation rates calculated by Paine (1969) were much

higher than those found in this study, and it is unlikely that differing escape responses can
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account for this difference when P. ochraceus and C. funebralis were found in such close

association in this study.

Low predation rates on C. funebralis may be a function of other available food

sources. Chlorostoma funebralis was not the major prey item of P. ochraceus. Small

barnacles of the genus Balanus were numerically the most common prey item and are a

preferred food source (Mauzey 1966) although they do not have as high a caloric content

as molluscan prey items (Mauzey 1966). Gastropods in general were consumed

significantly less by P. ochraceus than would be predicted from their intertidal densities

(Feder 1959).

There are a number of sources of variation in P. ochraceus density and predation

rates that this study did not sample. P. ochraceus are sensitive to changes in water

temperature of 3-5°C (Sanford 1999) and consume more prey in higher temperatures.

Water temperatures were relatively similar for all sampling periods in this study, and all

cool enough to represent periods of upwelling. During downwelling events in the

summer of 2009, near-shore sea surface temperatures along the Oregon coast exceeded

15°C (NOAA Coastwatch 2010). The observed predation rates upon C. funebralis may

have been significantly higher if sampled during these periods of warmer waters, and

therefore this study may underestimate the total effects of predation during the summer

months.

Densities of P. ochraceus in the intertidal also vary seasonally. Intertidal

densities are highest from June through August in both California (Feder 1959) and

Washington (Mauzey 1966, Paine 1969). If P. ochraceus densities are highest in the
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summer in Oregon as well, predation rates calculated during the summer will

overestimate annual predation. However, if seasonal variation is dependent solely on

temperature, predation rates along the Oregon coast may increase in September and early

October, months not sampled in this study, due to summer upwelling and fall relaxation.

Chlorostoma funebralis is a species that can live up to 30 years (Darby 1964,

Frank 1965), and the age structure of populations is necessarily the sum of recruitment

and mUltiple sources of mortality. Adult C. funebralis have a high physiological

tolerance to temperature changes (Stenseng 2005) and desiccation (personal observation),

so predation maybe the main source of mortality for adults. If adult mortality is low, the

age structure of populations may reflect the recruitment history of the population.

Periods of high recruitment followed by years of low recruitment would create the size

frequency distributions observed in Oregon populations (Chapter I). Variation in

recruitment may be due either to larval supply or post-settlement mortality, the relative

effects of which are difficult to assess due to the small and ephemeral nature of newly

settled C. funebralis. Historic variations in recruitment larger than those previously

observed for C. funebralis may cause the observed distribution of adults. If the

recruitment and mortality of juveniles is the primary source of variation of adult

densities, long term studies of age structure and recruitment will be necessary to observe

juvenile populations as they mature into adult C. funebralis.

Seasonal and inter-annual variation in P. ochraceus density may mean that the

long-term effects of predation on the size-structure of C. funebralis are more significant

than those calculated in this study. However, predation may not be a consistent and
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strong driving factor in the abundance of large, adult C. Junebralis. Long term

monitoring of C. Junebralis populations will be necessary to further study the causes of

mortality in adults.

Bridge III

Chapter IV documented the limited effects of predation on Chlorostoma

Junebralis populations over a single summer season. In Chapter V, I used the

mitochondrial gene COl to study longer-term patterns of population structure in C.

Junebralis populations. The mitochondrial genome was used to explore dispersal

potential integrated over both the larval and adult life stages.
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CHAPTER V

POPULATION STRUCTURE AND CONNECTNITY IN CHLOROSTOMA (TEGULA)

FUNEBRALIS: NO GENETIC STRUCTURE DESPITE LOW

DISPERSAL POTENTIAL

Introduction

The connectivity of marine invertebrate populations and the dispersal of larval

stages is a factor of much concern in marine ecology and conservation (Roughgarden et

al1988, Underwood and Fairweather 1989, Menge 1991, Shanks et a12003). The larvae

of marine invertebrates are expected to disperse with the prevailing ocean currents due to

their poor swimming capacity. Therefore, the dispersal potential of marine invertebrates

has often been modeled using larval duration and oceanographic conditions (Cowen and

Sponaugle 2009). However, this method will estimate the near-maximum dispersal

potential, which may not accurately represent the ecological consequences of dispersal

(Palumbi 2003, Shanks 2009). Larval behavior such as vertical migration may limit the

realized distance that larvae travel (Poulin et al 2002, Shanks and Brink 2005, Morgan et

al 2009a, 2009b, Shanks and Shearman 2009). Other indirect methods of measuring

population connectivity, such as molecular markers, provide a different method for

estimating the exchange of individuals between populations. Genetic differentiation has

been used to estimate dispersal rates in many marine taxa, some of which have large
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dispersal distances (Sokta et al 2004). However, many species have shown far less

dispersal than expected given the duration of the larval period (Taylor and Hellberg 2003,

Jones et al 2005, Marko et aI2007).

The intertidal gastropod Chlorostoma (Tegula) funebralis is a common member

of the rocky intertidal along the west coast of North America. The genus Chlorostoma

dates to the mid-Miocene, and the species C. funebralis first occurred in the early

Pliocene (Hellberg 1998). Although it occurs in densities of up to 1000's 1m2 (Paine

1969) and ranges from Baja California to Vancouver Island, little is known about its

reproductive ecology or larval dispersal. Dispersal is expected to be limited because the

lecithotrophic larval stage is estimated between five and eight days (Moran 1997).

However, no studies of population connectivity have been conducted.

The limited larval duration of C. funebralis, limited adult dispersal potential, and

expanses of unsuitable habitat along the coastline indicate that it may have limited

population connectivity and strong genetic structure. With less expected dispersal

potential, populations are more likely to be isolated from each other and show stronger

genetic structure. Cape Blanco has been proposed to act as a dispersal barrier for pelagic

larvae (Menge et al 2004). In this study, the mitochondrial gene COl was used to

describe existing population structure in C. funebralis using populations that are

separated both by short distances « 20 km) and longer distances (> 1000 km) on both

sides of Cape Blanco.
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Methods

Sampling, DNA Extraction, Amplification, and Sequencing

Chlorostoma funebralis were collected from nine sites along the California and

Oregon coastlines (Figure 15). Three sites were protected (Boiler Bay, South Cove, San

Diego) (Chapter I), and five were exposed (Otter Rock, Indian Beach, Cape Blanco,

Mount Humbug, Crescent City). Twenty to 50 individuals were collected from each site.

Tissue was non-destructively collected from the cephalic tentacles or the foot

from live individuals and DNA was extracted using the Qiagen DNEasy kit. Mter

extraction, samples were precipitated with ethanol, washed and resuspended in water at

1: 10 or 1: 100 dilutions of the original extraction concentration. Cytochrome oxidase I

(COl) was amplified with primers LCOI4190 (5' -GGT CAA CAA ATC ATAAAG

ATA TTG - 3') and HC02198 (5'- TAA ACT TCA GGG TGA CCA AAA AAT CA- 3';

Folmer et al 1994) in PCR reactions. Amplification was carried out in 20 !II solutions

containing 2 !II of diluted genomic DNA, 1 mM of each primer, 5 !II of Green Go-Taq

buffer (Promega), and IV Go-Taq (Promega). PCR cycling consisted of an initial

denaturation at 95°C for 3 min; 15 cycles of denaturation at 95°C for 40 sec, annealing at

60°C for 30 sec, extension at noc for 45 sec; decreasing 0.3°C each cycle; followed by

31 cycles of denaturation at 95°C for 30 sec, annealing at 54.5°C for 30 sec, extension at

nOc for 1 min; final extension at nOc for 10 min.

Successfully amplified sequences were purified using the Promega Wizard PCR

Clean-up System and quantified with either a Low-Mass-Ladder or Quant-iT DNA Assay

Kit. Sequences were amplified with the LCOI4190 primer and sequenced using a Big
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Dye Terminator v 3.1 Cycle Sequencing Kit (Applied Biosystems) and sequenced on an

Automatic sequencer 3130XL Genetic Analyzer (Applied Biosystems).

Analysis

Sequence data from 266 individuals were aligned and proofread using Geneious

(Drummond et al 2007). All sequences of low quality or shorter than 530 bp were

discarded. TCS 2.1.1 was used to generate a haplotype network and identify the ancestral

haplotype (Clement et al 2000). Haplotypes that had only one individual and differed in

only one nucleotide polymorphism were combined with the closest haplotype to create a

conservative measure of haplotypes in case of sequencing error. Clade groups were

identified for related groups of haplotypes and used for further haplotype analysis.

ARLEQUIN 3.5 (Excoffier et al 2005) was used to calculate population parameters.

AMOVA and the Mantel test were used to test isolation by distance. Populations were

grouped as Northern (Indian Beach, Boiler Bay, Otter Rock, South Cove, Cape Blanco),

Mid (Mount Humbug, Crescent City, Fort Bragg) and Southern (San Diego) to

investigate if Cape Blanco acts as a dispersal barrier (Menge et aI2004). Populations

were also sorted into two groups, Northern and Southern, with only San Diego in the

Southern group, to test for connectivity of populations outside of the Southern California

Bight.
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Results

Sequence Characteristics

A 530-bp segment of COl was sequenced in 266 individuals in nine populations.

In total, 60 polymorphic sites were identified in 58 unique haplotypes (Table 4). Few

private haplotypes for any population were identified (Figure 14). Eleven clade groups

were identified from the haplotype network and labeled A through K (Figure 14).

Tajima's D was negative in all populations but only significantly so in four populations

(Table 4). Over the entire sampling range, Tajima's D was negative and highly

significant (D = -2.12, P < 0.0001), indicating a large number of low frequency

haplotypes.

Table 4: COl nucleotide diversity, haplotype diversities and Tajima's 0 among populations of C.

funebralis.

Collection
N

No. Polymorphic Nucleotide No.
Tajima's D (p value)

Site Sites Diversity Haplotypes

Indian Beach 25 16
0.00494 ±

15 -1.311 (0.077)
0.00304

Boiler Bay 24 16
0.00517 ±

14 -1.281 (0.099)
0.00316

Otter Rock 24 17
0.00559 ±

14 -1.251 (0.099)
0.00337

South Cove 57 35
0.00496 ±

22 -2.16 (0.002)
0.00298

Cape Blanco 25 14
0.00440 ±

12 -1.268 (0.094)
0.00279

Mt. Humbug 44 22
0.00405 :'::

17 -1.891 (0.009)
0.00255

Crescent City 20 16
0.00473 :'::

11 -1.647 (0.038)
0.00297

Fort Bragg 24 15
0.00542 ±

13 -1.003 (0.175)
0.00329

San Diego 23 19
0.00538 :'::

14 -1.631 (0.042)
0.003320

Total 266 60
0.00492 :'::

58 -2.121 « 0.001)
0.00292
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76

Population Structure

No cline of haplotype diversity or clade dominance is apparent between

populations along the coastline (Figure 15). Clades A, B, and J are found in all

populations, with the other clade groups distributed through the populations with no

trends along the coastline axis. When estimated from haplotype frequencies, no

significant genetic differentiation was observed either between groups (North, Mid, and

South, P = 0.60) or between populations (p = 0.13, Table 5). Variation within

populations accounted for almost all of the observed variation (99.4 %). When groups

are redefined into two groups with only San Diego in the Southern population, results are

similar (Table 6). Differences between groups are insignificant (p = 0.22) as are

differences between populations within groups (p = 0.18). Most variation is due to

variation within populations (98.5 %).

Table 5: AMOVA table, population structure based on haplotype frequencies of
populations of Chlorostoma funebralis. Populations are divided into three groups: North
(Indian Beach, Boiler Bay, Otter Rock, South Cove, Cape Blanco), Mid (Mt. Humbug,
Crescent City, Fort Bragg) and South (San Diego).

Source of
df

Sum of Variance % of Variation P
Variation Squares Component

Among groups
2 2.81 -0.0028 -0.21 0.602

Within groups,
among

6 9.63 0.0106 0.81 0.131
populations

Within
258 334.86 1.2979 99.40

Populations



77

Mt. Humbug

N =44

Fort Bragg

N =24

A

A

Boiler Bay A

N =24
J K

F (1) Indian Beach
I t??= J N =25

l K lEe

I r ~ i~~1 Otter Rock N =24

H f I
H F E

~,/
'KL------
\

N =57

Cape Blanco K

N =25

j(

L

)
I
L

'.

Figure 15: Haplotype clade diversity at each sampled
population of Chlorostoma[unebralis.
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Table 6: AMOVA table, population structure based on haplotype frequencies of
populations of Chlorostoma funebralis. Populations are divided into two groups: North
(all populations excluding San Diego) and South (San Deigo).

Source of
df

Sum of Variance
% of Variation P

Variation Squares Component
Among groups

1 1.97 0.0121 0.92 0.222

Within groups,
among

7 10.48 0.0667 0.51 0.185
populations

Within
258 334.86 1.2979 99.57

Populations

Isolation by Distance

A Mantel Test, using distance as measured along the coastline, found no

correlation between genetic differentiation and geographic distance between populations

(r = 0.132, P = 0.265). Likewise, no relationship was found between pairwise FST values

and geographic distance (r = 0.057, df = 35, P = 0.738, Figure 16A). A Mantel Test using

distance as measured in straight line between sites also shows no correlation between

genetic differentiation and geographic distance (r =0.089, P =0.353). Pairwise FST

values and geographic distance also show no relationship (r = 0.052, df = 35, P = 0.7599,

Figure 16B).
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Figure 16: Plot of pairwise FST vs. geographic distance measured two
ways. (A) Distance measured along the coastline. (B) Distance
measured in a straight line between populations.
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Discussion

Surprisingly, these data do not conform to expectations based on other work in

marine species with a pelagic dispersal stage. The strong results of the AMOVA analysis

indicate that there is little, if any, genetic structure between populations of Chlorostoma

funebralis between northern Oregon and southern California. Marine invertebrates with

short larval durations are expected to have limited dispersal and therefore are more likely

to show strong genetic structure (Bohonak 1999). However, the larval period of C.

funebralis is shorter than other species used in similar studies that show some genetic

structure, such as barnacles (Sotka et al 1994) with a larval period of two to four weeks

(Strathmann 1987) and show a genetic break in central California. Bryozoans with larval

periods of weeks to days show significant genetic structure throughout England (Porter et

al 2002). Lingcod have a larval period of three months and show limited connectivity of

populations within Washington (Marko et al 2007). These species have a higher

dispersal potential than C. funebralis as expected strictly from the pelagic larval duration

but show significantly more genetic structure.

Although unexpected, the strong results of the AMOVA indicate that the results

reflect the actual genetic variation between and within populations. An initial hypothesis

is that sample sizes were not large enough to detect population structure given the

variation on the mitochondrial genome. However, significant variation occurs on the

cal gene, with nucleotide diversities of 0.00492 that can be clearly partitioned among

different individuals. It is clear in the AMOVA analyses that this genetic variation is at

the level of the individual, rather than populations or regions. This is corroborated by the
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negative values of Tajima' s D for all populations, indicating a large number ofrare

haplotypes. Larger sample sizes may reveal some subtle genetic structure, but it is

unlikely that more specimens from some populations will affect the lack of strong

differentiation between populations separated by large distances. Therefore, other

hypotheses for the lack of genetic structure need to be explored.

Chlorostoma funebralis occur in high densities in large populations in many

locations (Paine 1969). This large population size may make the effects of genetic drift

negligible and limit the number of differences that can accumulate between

reproductively isolated populations. However, other marine invertebrates found in

similar habitats, such as the intertidal barnacle Balanus glandula, have similarly large

populations sizes and yet show genetic differentiation along a similar geographic range

(Sotka et al 2004).

Population connectivity due to larval dispersal may be the cause of the lack of

variation between populations. However, there are large expanses of sandy beaches,

unsuitable for adult C. funebralis, separating some of the populations sampled for this

study. Using the simplistic dispersal model of a passive particle moving at 10 cmls

(Shanks et al 2003), a C. funebralis larva could disperse approximately 70 km in eight

days. Cape Arago and Strawberry Hill, two populations in Oregon, are separated by

approximately 110 km of sandy beach habitat. For larvae to disperse from one

population to another, optimal conditions of high dispersal such as high current speeds

and extended larval duration must be met. Adult dispersal is also an unlikely hypothesis,

as adult C. funebralis occur only in the mid- to high rocky intertidal, and are very rarely
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found in the low or subtidal. Sandy beaches and steep zones such as coastal cliffs are

impassable barriers to adult dispersal since they are unlikely to survive a move to the

lower intertidal to pass such areas. Rafting is a potential dispersal mode for adults, but

adult C. funebralis are heavy (6g -30g) and would require large rafts of macroalgae to

move from one population to another. Although these rafts can exist for more than 100

days (Thiel 2003), C. funebralis dispersal on such rafts has not been directly observed.

Because eggs are shed directly into the water column, rafting of egg cases is not a mode

of dispersal as in other gastropods (Marko 2004).

Mitochondrial DNA in C. funebralis is maternally inherited. A consequence of

using only mitochondrial genes for a dispersal study is that it reflects only female

dispersal. Differences in actual male and female dispersal distances will not be apparent

in these data. However, difference in dispersal due to sex is unlikely since both males

and females start the larval stage as free-spawned gametes. As adults, dispersal events

are random (as described above) and unlikely to differ between male and females.

Population analysis using nuclear DNA will be necessary to confirm there is no sex­

dependent dispersal mechanism.

Another hypothesis that may account for a lack of variation between populations

is a relatively rapid range expansion. The lack of genetic structure in gastropods,

echinoderms, and intertidal fish, has been attributed to extinction in northern populations

and recolonization from populations in California following the last glacial maximum

(LGM) (Marko 2004, 2010). Range expansion following the LGM is expected to have

occurred in the last 20 thousand years. In a range expansion event, the source population
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is expected to have higher haplotype diversity, while younger populations will have

limited diversity due to the founder effect. Although species in the low or subtidal may

have had a habitat refuge from glacial ice, species that are obligate inhabitants of the mid

to high intertidal are significantly more likely to show a lack of genetic diversity in

northern populations (Marko 2004). This study does not show reduced diversity in

northern populations when compared to the southern portion of the species range,

although too few southern samples were used and therefore cannot asses varying levels of

diversity between regions. Larger sample sizes from more populations along the

California coast will provide the data necessary to distinguish between high population

connectivity and a recent range expansion event.

The lack of genetic structure over a large geographic area was unexpected given

the short dispersal time of C. funebralis. As a measure of dispersal and population

connectivity, genetic data may overestimate dispersal potential for species with dispersal

longer than a week (Shanks 2009). More loci, including nuclear DNA, in more

populations covering the entire species range should be sampled to explore hypotheses of

range expansion. However, if future studies also indicate high population connectivity,

the ecology of species with short pelagic larval durations should be reconsidered.
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CHAPTER VI

GENERAL CONCLUSIONS

Understanding geographic variations in age and population structure of marine

invertebrates requires the integration of both geographic and temporal scales. Throughout

a species range, the physical and biological pressures differ. For intertidal species along

the west coast of North America, these differences occur roughly on a latitudinal

gradient. Additionally, many marine invertebrates have a pelagic dispersal stage, during

which the habitat and selection pressures are significantly different from those

experienced by juveniles and adults. Both life stages must be incorporated into any

analysis of variations in population structure between populations in different locations.

The work presented in this dissertation was undertaken to explore the mechanisms

driving variation in population structure of Chlorostoma funebralis, previously

documented in the mid-seventies by Frank (1975) and Wright (1975).

The structure of populations of the intertidal gastropod C. funebralis varies along

a latitudinal gradient. Populations in the northern portion of the species range are large

and long-lived (Darby 1964), while individuals in the southern portion of the range are

smaller and have shorter life-spans (Frank 1975). The data I collected, 30 years after

both Frank and Wright's studies, corroborated this pattern of variation on latitudinal

gradient. However, I additionally observed a difference in population structure, specific
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to the Oregon coastline, between populations in exposed and protected locations.

Populations along exposed coastlines had few juveniles and small individuals, and were

dominated by older and larger C. funebralis. Populations in protected areas, such as bays

and coves, were heavily weighted towards juveniles and had relatively fewer adults.

The potential reproductive output of individuals is directly correlated with their

size, and consequently the size distributions of populations may have a significant impact

on their reproductive capacity. Populations in the southern portion of the species range

produce significantly fewer eggs than populations in the north, and protected populations

in the north produce fewer eggs than exposed populations.

C. funebralis may use different reproductive strategies to along the latitudinal

gradient. A population in southern California, dominated by small individuals, was

observed to synchronously spawn several times throughout the year. In contrast, a

population in Oregon had only one spawning event during the year studied. Spawning

multiple times in a year may allow smaller individuals in the southern portion of the

range to maximize reproductive output despite their small size. Additionally, multiple

spawning events may increase the probability of at least one successful reproductive

event each year, thereby increasing the probability of at least one successful reproductive

event over an individual's lifetime. In the northern portion of the species range,

individuals live much longer and it may be more advantageous to spawn only once a

year.

Predation has been previously documented as a major force in limiting the adult

population of C. funebralis (Paine 1969, Fawcett 1984). Variation in the number of
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adults C. junebralis between different populations along the Oregon coast may be due to

differences in predation rates. In this study, I identified the major predator, Pisaster

ochraceus, and observed no predation by other documented predators such as octopus

and crabs (Fawcett 1984). P. ochraceus did not remove as many adult C. junebralis from

populations as had been observed in previous studies (Paine 1969) and while long-term

effects are still unstudied, predation does not appear to be a constant and strong influence

on the size-structure of C. funebralis populations in Oregon.

The genetic structure of C. junebralis was studied to explore the levels of

population connectivity and the potential effects of coastal topography on larval

dispersal. Although samples were collected over a large geographic range, spanning

from northern Oregon to San Deigo, California, no genetic structure was observed using

the mitochondrial gene COL Although this may be due to high levels of population

connectivity, this is unlikely due to the limited dispersal period of larval C. junebralis of

five to eight days (Moran 1997). An alternative hypothesis is a rapid range expansion

event following the last ice age, although more data will be necessary to explore that

possibility.
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