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Although outcrossing is the most widespread mating system among animals and

plants, the reason for this prevalence is not fully understood. Evolutionary theory has

classified the potential selective pressures driving the evolution and maintenance of

outcrossing into two broad categories: deleterious mutations and changing ecological

conditions. Despite the inherent advantages of self-fertilization, exposure to either or both

of these selective pressures is predicted to favor outcrossing over self-fertilization.

I tested these predictions using experimental evolution in populations of

Caenorhabditis elegans with genetically modified rates of outcrossing and selfing. I

found that outcrossing reduces the fixation of deleterious mutations under mutation influx

and that outcrossing expedites adaptation to a bacterial pathogen. Further, I identified

facultative outcrossing, a novel life history characteristic, in specific C. elegans strains

that predominantly reproduce by selfing but engage in outcrossing when stressed. The

shift from a primarily selfing mating system to a predominantly outcrossing system is

similar to the environmentally induced facultative sex observed in asexual species, which
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is thought to enable more rapid adaptation. Facultative outcrossing, although not

previously documented, may playa major role in the life histories of many highly selfing

speCIes.

Finally, most mutations are deleterious and therefore elevated mutation rates are

generally thought to produce progressively larger reductions in fitness. Using the

chemical mutagen ethylmethanesulfonate, I found the surprising result that populations

exposed to a mutation rate at least fifty times greater than natural rates exhibited

significantly greater fitness than populations exposed to substantially lower mutation

rates. This unexpected fitness optimum may be the result of a volatile balance between

the influx of deleterious mutations and compensatory mutations.

This work confirms the predictions of several long-standing evolutionary theories

by identifying both deleterious mutations and changing ecological conditions as selective

pressures capable of driving the evolution and maintenance of outcrossing. These

selective pressures, which are ubiquitous in nature, may explain the prevalence of

outcrossing relative to selfing.

This dissertation includes previously published and co-authored materials.
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CHAPTER I

INTRODUCTION

Reproduction is the most basic and essential requirement for the maintenance of

life. It is the means through which organisms generate new life and transmit genetic

material from generation to generation. Because evolution is dictated by the transmission

of genes through lineages, reproduction ultimately shapes the evolutionary trajectory of

every population and thus influences the genetic architecture of all genomes. Given the

incredible significance of reproduction, it is surprising to find that an abundance of

diverse reproductive modes, or mating systems, are utilized in nature. Even more

surprising, or perhaps disturbing, is the failure of modern evolutionary biology to fully

explain the evolution and maintenance of the most prominent mating systems in nature

despite several decades of research.

The topic of mating systems had been previously discussed by prominent

biologists like Charles Darwin (Darwin 1876), RA Fisher (Fisher 1941), and Hermann

Muller (Muller 1964), but it was John Maynard Smith's work on the "two-fold cost of

sex" that brought the issue to the forefront of modern biology (Maynard Smith 1978).

Maynard Smith exposed a potentially major hole in evolutionary biology by

mathematically demonstrating that "all else equal" asexual organisms should have as
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much as a two-fold reproductive advantage over sexual organisms in a population at

carrying capacity. The premise of this model is that sexual females invest in the

production of male offspring, meaning as much as half of their progeny that will not

directly bear offspring. In contrast, each offspring produced by an asexual organism is

capable of bearing offspring. This essentially means that the lineage of an asexual

organism can grow much more rapidly than that of a sexual female simply because

asexual lineages can produce more progeny. This revelation by Maynard Smith would

not have presented an evolutionary enigma if asexual reproduction were the only mating

system in nature. However, sexual mating systems are quite prevalent, thereby causing

great concern and debate as to the evolutionary explanation for the widespread existence

of sex.

Given the prevalence of sexual mating systems, selection should at least

conditionally favor sexual reproduction. Maynard Smith's cost of sex is predicated on the

assumption that sexual and asexual offspring have comparable fitness (Maynard Smith

1978). So, the potential key to explaining the evolution and maintenance of sex must be

in the fitness of offspring produced through sex versus those produced asexually.

Specifically, if sexually produced offspring have a pronounced fitness advantage over

asexually produced offspring under certain conditions then the inherent numerical

advantage of asexual reproduction may be negated.

The search for the specific conditions facilitating the evolution and maintenance

of sexual reproduction has inspired three decades of research, primarily theoretical, on

the evolutionary costs and benefits of mating systems. Much of this work has focused on
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either deleterious mutations (Felsenstein 1974; Kondrashov 1984; Gabriel et al. 1993;

Lynch et al. 1993; Kondrashov 1994; Charlesworth and Charlesworth 1998; Lande 1998)

or changing ecological conditions (Maynard Smith 1978; Bell 1982; Lively 1987; Crow

1992; West et al. 1999; Lively and Dybdahl 2000) as the selective pressures favoring

sexual over asexual reproduction. Both of these selective pressures capitalize on the

ability of sexual organisms to shuffle genetic variation between lineages through

recombination. Such shuffling can prevent deleterious mutations from being fixed in the

genome by incorporating genes from diverse lineages (Muller 1964), and has the

potential to accelerate the rate of adaptation to changing environmental conditions by

unifying beneficial alleles with different genetic origins into the same genome (Crow

1992). Empirical work has demonstrated the value of recombination in increasing the rate

of adaptation to a novel environment (Colegrave 2002; Goddard et al. 2005, Baltrus et al.

2008) . However, this work was done in organisms that do not produce males. Therefore

those organisms that undergo recombination are not doing so at the cost of producing

males. This work emphasizes the importance of genetic exchange, but cannot assess the

importance of genetic exchange relative to the cost of male production.

Curt Lively assessed the selective benefits of sexual versus asexual reproduction,

while accounting for the cost of males, by studying both sexual and asexual populations

of the snail Potamopyrgus antipodarum. His work shows strong positive correlations

between the occurrence of sex and male production in the snail populations with the

occurrence of highly virulent parasites that continually facilitate changing ecological

conditions (Lively 1987). In addition, the snail and parasite populations exhibit signs of
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coevolution indicative of rapid adaptation in the snail population, potentially as a means

of avoiding the parasite (Lively and Dybdahl 2000). This work strongly supports the

hypothesis that sex facilitates adaptation to changing ecological conditions, but is not a

direct test. No studies to date have directly and empirically measured the value of sex and

male production in preventing the fixation of deleterious mutations and facilitating rapid

adaptation to changing environmental conditions. Therefore the specific selective

pressures that drive the evolution and maintenance of sex remain largely unidentified

from an empirical standpoint.

A clear understanding and identification ofthese selective pressures is further

complicated by the existence of two forms of sexual reproduction. Although the common

usage ofthe term "sex" generally refers to outcrossing, self-fertilization is also a form of

sexual reproduction. Maynard Smith's model contrasted outcrossing lineages versus

asexual lineages (Maynard Smith 1978). However, the model also applies within sexual

mating systems. Self-fertilizing hermaphrodites enjoy the same inherent numerical

advantage over outcrossing organisms (Uyenoyama 1984; Lively and Lloyd 1990). But

again, outcrossing is the most prevalent sexual mating system. Therefore not only is the

evolution and maintenance of sex an open question, but within sexual reproduction, the

selective pressures driving the evolution and maintenance of outcrossing remain

unidentified. Several potential genetic advantages of self-fertilization further complicate

the evolution and maintenance of outcrossing, beyond the simple cost of male production.

So, in many ways the prevalence of outcrossing relative to selfing is more difficult to

justify than the prevalence of outcrossing relative to asexual reproduction.
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Again, the key to understanding the evolution and maintenance of outcrossing is

finding the selective pressures that permit outcrossing to overcome the relevant two-fold

cost relative to self-fertilization. And again, the conditions predicted to favor outcrossing

over se1fing generally involve either deleterious mutations or changing environmental

conditions as the primary mechanisms driving selection. However, the situation is

complicated by the fact that self-fertilization is a sexual mating systems and therefore

allows recombination. Whereas recombination was the primary factor separating

outcrossing and asexual reproduction, the selective advantages of outcrossing over

selfing cannot be reduced to merely the presence or absence of recombination.

Although outcrossing and selfing are both sexual mating systems and permit

recombination, the genetic consequences of each are quite different. Self-fertilization is

the most extreme form of inbreeding. Both sperm and egg originate from the same

individual; so there is no opportunity for genetic exchange between lineages in obligate

selfing populations. Consequently selfing lineages lose genetic variation over time as

alleles at heterozygous loci segregate out to generate homozygous loci, which effectively

fixes the allele in that specific lineage because the only source of novel genetic input is

mutation (Lande and Schemske 1985; Charlesworth and Charlesworth 1987). As selfing

genomes tend towards greater frequencies of homozygous loci, the efficacy of

recombination is compromised (Charlesworth et al. 1993). Recombination is an effective

means of shuffling genetic variation when there is genetic variation between

chromosomes. However, recombination between nearly identical chromosomes has no

effect on genetic variation. As a result large portions of selfing genomes become tightly
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linked (Hastings 1984). Conversely, outcrossing has the potential to permit genetic

exchange between diverse lineages (Lande and Schemske 1985; Charlesworth and

Charlesworth 1987), thereby increasing the amount of genetic variation within a lineage.

The presence of genetic variation within the genome then permits recombination to

generate novel combinations of alleles and greatly reduces genetic linkage (Felsenstein

1974; Barton 1995).

The tendency for selfing to permit the expression of recessive alleles via the

production of homozygous loci is thought to be an effective means of purging deleterious

mutations from populations (Lande and Schemske 1985; Charlesworth and Charlesworth

1987; Charlesworth et al. 1993; Byers and Waller 1999; Crnokrak and Barrett 2002). As

deleterious mutations arise in the genome selection must immediately remove them, or

they accumulate in the genome. A novel recessive deleterious mutation arising in a

selfing lineage has a fifty percent chance of being lost, or purged, each generation, either

through segregation or through expression and subsequent selection. Therefore, selfing

has a high probability of purging mutant alleles at a single locus relative to outcrossing.

But, purging as a strategy for preventing mutation accumulation may be compromised

when deleterious mutations arise at multiple loci. The probability of self-fertilization

producing an offspring that is homozygous for a newly arisen mutation at any given locus

is fifty percent. But, as more loci are mutated the probability of producing offspring free

of mutation rapidly declines (Heller and Maynard Smith 1979). Once accumulated,

recessive deleterious mutations that are not expressed, or those with moderate or small

effects on fitness, have the potential to drift to fixation within a population (Lande and
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Schemske 1985; Charlesworth and Charlesworth 1987; Charlesworth et al. 1993). This

process is largely governed by population level properties like effective population size

and the overall strength of selection. Should deleterious mutations become fixed in a

population they reduce the overall mean fitness ofthat population, and as more mutations

become fixed the population can suffer major fitness consequences (Kondrashov 1984;

Lynch et al. 1995; Schultz and Lynch 1997; Charlesworth and Charlesworth 1998; Lande

1998).

Outcrossing, although perhaps more prone to mutation accumulation, is predicted

to fix fewer deleterious mutations under the conditions expected to push selfing

populations toward mutation meltdown (Charlesworth et al. 1993). Because outcrossing

individuals have the potential to generate offspring harboring heterozygous loci by

mating with individuals from a diverse lineage, then recessive deleterious mutations are

much less likely to be expressed in outcrossed offspring. This aspect of outcrossing

results in very inefficient purging, but makes outcrossing populations much less likely to

fix deleterious mutations once they have accumulated. In addition, deleterious mutations

are less likely to remain fixed in an outcrossing population because recombination

between lineages can progressively separate specific alleles from their genetic

background (Felsenstein 1974; Barton 1995). Therefore, outcrossing populations are

predicted to be a much lower risk of fixing deleterious mutations under conditions in

which self-fertilization is unable to effectively purge the arising mutation load

(Kondrashov 1984; Charlesworth et al. 1993; Lynch et al. 1995; Schultz and Lynch 1997;

Lande 1998). Under these conditions outcrossed offspring should maintain greater fitness
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than selfed offspring, so the influx of deleterious mutations may be a selective pressure

driving the evolution and maintenance of outcrossing.

Outcrossing is also predicted to facilitate more rapid adaption to changing

environmental conditions than selfing (Stebbins 1957; Nagylaki 1976; Maynard Smith

1978; Bell 1982; Crow 1992). Changing environmental conditions can apply selective

pressure favoring an adaptive response. An adaptive response requires genetic variation.

As selfing lineages tend to lose genetic variation within a lineage, whereas outcrossing

can maintain and potentially generate variation within a lineage, outcrossing populations

are thought to be better prepared to respond to selection. However, outcrossing may also

confer a selective benefit in terms of genetic linkage. Because outcrossing facilitates

recombination between lineages and creates novel genetic combinations, potentially

beneficial alleles can be liberated from their original genetic background and unified into

a common genome (Felsenstein 1974; Barton 1995). This accumulation of beneficial

alleles, as driven by selection, is adaptation. Such adaptation can occur in relatively rapid

fashion because the alleles may already be present in the population (Fisher 1930; Muller

1932). Adaptation via beneficial alleles in selfing populations requires multiple beneficial

mutations to occur in the same lineage, as alleles are not shared between lineages. This

process may be significantly slower than that facilitated by outcrossing. Therefore,

outcrossing populations are predicted to be capable of adapting more rapidly to changing

ecological conditions, and thus changing ecological conditions may favor the evolution

and maintenance of outcrossing relative to selfing.
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Sex, specifically outcrossing, is the most prevalent mating system among animals

and plants. This prevalence is unexpected in light of Maynard Smith's model that detailed

an explicit cost to outcrossing relative to asexual reproduction, and further work that

demonstrated a cost to outcrossing relative to self-fertilization. However, subsequent

research predicted deleterious mutations and changing ecological conditions as two

factors that may drive the evolution and maintenance of outcrossing, albeit for slightly

different reasons relative to either asexual reproduction or selfing. However, no selective

pressures explicitly favoring both outcrossing and male production have yet been

empirically identified. Nevertheless, these selective pressures must exist and operate

quite frequently because outcrossing is widespread across many diverse species.

Empirical identification of these selective pressures is a key to developing a

comprehensive understanding of mating systems, their influence on evolutionary change,

and to resolving a major puzzle in evolutionary biology.

Dissertation Research

The primary objective of my dissertation research was to empirically identify the

selective pressures driving the evolution and maintenance of outcrossing. More

specifically my work focused on the maintenance of males and outcrossing in the

primarily self-fertilizing nematode Caenorhabditis elegans as a model for understanding

the forces influencing the maintenance of outcrossing on a much broader scale. To

address this objective, I tested specific selective pressures predicted by evolutionary

theory to favor the evolution and maintenance of outcrossing" and identified a novel

mating strategy in mixed mating (capable of outcrossing or selfing) populations. In the
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following section I briefly summarize the aims and results for each chapter in the

remainder of my dissertation.

Chapter II is entitled "Mutation load and rapid adaptation favour

outcrossing over self-fertilization." This chapter is co-authored by Michelle Parmenter

and Patrick Phillips and is published in Nature, which is copyrighted by Nature

Publishing Group, a division of Macmillan Publishers Limited. The objective of this

work was to empirically test selective pressures predicted to favor outcrossing over self­

fertilization, thus accounting for the prevalence of outcrossing despite the inherent

advantages of self-fertilization. Evolutionary theory predicts that outcrossing may better

impede the fixation of deleterious mutations and facilitate more rapid adaptation to

changing ecological conditions than self-fertilization. We tested these predictions using

experimental evolution, by exposing obligate selfing, mixed mating, and obligate

outcrossing populations of C. elegans to elevated mutation rates and rearing them in a

rugged novel environment. After fifty generations of mutation and selection, outcrossing

populations fixed significantly fewer deleterious mutations than selfing populations and

exhibited significantly greater rates of adaptation under natural mutation rates. To further

test outcrossing's ability to promote rapid adaptation and determine the role of standing

generation variation in facilitating adaptation, we used a similar experimental evolution

approach to test the rate at which obligate selfing, mixed mating, and obligate outcrossing

populations adapt to the virulent bacterial pathogen Serratia marcescens. Prior to

selection the populations were infused with genetic variation via EMS mutagenesis.

Again, after forty generations of selection, obligate outcrossing populations exhibited the
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most rapid and substantial levels of adaptation, while stronger selection imposed by the

pathogen and standing genetic variation permitted a stronger response to selection than

that observed in our previous experiment. This work is the first empirical test oftheory

regarding the evolution and maintenance of outcrossing and demonstrates that, as

predicted, outcrossing populations have greater fitness than selfing populations under

specific conditions. The conditional value of outcrossing may be quite significant as most

organisms are presumably subject to deleterious mutations and/or environmental

conditions favoring rapid adaptation. Both of these factors likely explain the prevalence

of outcrossing as a sexual mating strategy.

Chapter III is entitled "Sexual partners for the stressed: facultative outcrossing in

the predominantly self-fertilizing nematode C. elegans." This work, co-authored with

Brian Cappy, Jennifer Anderson, and Patrick Phillips, is published in Evolution, which is

copyrighted by Wiley Blackwell Publishing. We identified and characterized a novel

mating strategy, facultative outcrossing, in C. elegans. When exposed to starvation

stress, specific strains of C. elegans respond by elevating outcrossing rates after emerging

from their stress response state. This phenomenon rapidly and substantially increases

male frequencies, and is the first mechanism promoting robust male maintenance

identified in C. elegans. Importantly periods of starvation stress are common in natural

populations. Stress-induced facultative outcrossing in highly self-fertilizing populations

closely resembles stress-induced sexual reproduction exhibited by asexual species. Both

highly selfing and asexual organisms suffer from the same genetic complications, low

within-lineage genetic variation. Facultative outcrossing has the potential to increase
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levels of within lineage genetic variation and enable a more rapid adaptive response to

stressful conditions, therefore fulfilling the same role as facultative sex in asexual

organisms. This work demonstrates that C. elegans populations respond to changing

ecological conditions by elevating outcrossing rates, therefore indicating that outcrossing

may be more favorable than selfing within that context. Though currently unidentified in

other taxa, facultative outcrossing is likely a strategy employed by other highly selfing

organisms to avoid the genetic consequences of obligate self-fertilization under

conditions in which outcrossing is favorable.

Chapter IV is entitled "Paradoxical increase in fitness with increasing mutation

rate in Caenorhabditis elegans." This chapter is co-authored by Aki Ohdera and Patrick

Phillips and is in preparation for PLoS One. The objective ofthis work was to test the

ability of obligate self-fertilizing populations to purge deleterious mutations across a

range of different mutation rates. Most mutations with fitness effects are deleterious to

some degree. Increases in mutation rate should therefore result in more deleterious

mutations arising in the genome, and those that are not removed by selection accumulate

in the genome. Selfing is thought to be an efficient means of purging deleterious

mutations, thus preventing mutation accumulation. However, selfing also generates tight

genetic linkage between large portions ofthe genome, which is counterproductive for

purging deleterious mutations at multiple loci. Elevated mutation rates are capable of

inducing deleterious mutations at multiple loci in the genome, potentially overwhelming

purging due to genetic linkage. To understand the dynamics between the two genetic
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phenomena we tested the strength of purging and genetic linkage in obligate selfing

populations exposed to a range of mutation rates.

Populations of C. elegans were exposed to different concentrations of the

chemical mutagen ethylmethanesulfonate (EMS) for several generations before we

measured the mean fitness of each population. After mutagenesis, we found that elevated

mutation rates monotonically decreased population mean fitness, thus indicating that

purging was overwhelmed at all of the mutation rates we measured. However, exposure

to highly elevated mutation rates produced a fitness increase that was greater than the

fitness exhibited by populations exposed to moderately elevated mutation rates. The

fitness increase is potentially generated by a delicate balance of interactions between

induced deleterious mutations and compensatory mutations. Further, the genetic linkage

inherent in selfing may facilitate this interaction.

In Chapter V, I summarize the results from chapters II through IV and conclude

with a discussion of this work and its broader impacts on mating system evolution and

maintenance.
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CHAPTER II

MUTATION LOAD AND RAPID ADAPTATION FAVOUR OUTCROSSIJ\JG OVER

SELF-FERTILIZATION

A paper published in Nature and co-authored with Michelle D. Parmenter and Patrick C.

Phillips

The tendency of organisms to reproduce by cross-fertilization despite numerous

disadvantages relative to self-fertilization is one of the oldest puzzles in evolutionary

biology. For many species, the primary obstacle to the evolution of outcrossing is the cost

of producing of males (Maynard Smith 1978), individuals that do not directly contribute

offspring and thus diminish the long-term reproductive output of a lineage. Self­

fertilizing organisms do not incur the cost of males and therefore should possess at least a

two-fold numerical advantage over most outcrossing organisms (Lively and Lloyd 1990).

Two competing explanations for the widespread prevalence of outcrossing in nature

despite this inherent disadvantage are the avoidance of inbreeding depression generated

by selfing (Heller and Maynard Smith 1979; Lande and Schemske 1985; Charlesworth

and Charlesworth 1987) and the ability of outcrossing populations to more rapidly adapt

to environmental change (Stebbins 1957; Maynard Smith 1978; Crow 1992). Here we
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show that outcrossing is favored in populations of C. elegans subject to experimental

evolution both under conditions of increased mutation rate and during adaptation to a

novel environment. In general, fitness increased with increasing rates of outcrossing.

Thus, each of the standard explanations for the maintenance of outcrossing are correct,

and it is likely that outcrossing is the predominate mode of reproduction in most species

because it is favored under ecological conditions that are ubiquitous in natural

environments.

The vast majority of animals and plants reproduce by outcrossing, as opposed to

self-fertilization. This observation is puzzling because theory suggests selfing enjoys

several substantial fitness advantages over outcrossing (Fisher 1941; Williams 1975). For

example, selfing results in the production of offspring that are each capable of bearing

offspring, whereas many outcrossing species produce males that do not bear offspring.

This halving of the number of offspring-bearing progeny an individual can produce is

known as the "two-fold cost of males" and generates a large gap between the mating

systems in numerical contribution, and thus fitness, over time (Maynard Smith 1978). In

addition to this inherent numerical advantage, selfing also efficiently reduces the

mutation load over time by eliminating or "purging" new harmful mutations by exposing

them to natural selection via the production of homozygous offspring (Lande and

Schemske 1985; Charlesworth and Charlesworth 1987). However, if mutations are too

numerous or have effect sizes that allow them to slip below the selection threshold, then

deleterious mutations can accumulate unchecked within selfing lineages; something that

should not happen in outcrossing populations of sufficient size (Heller and Maynard
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Smith 1979; Kondrashov 1984; Schultz and Lynch 1997). Further, any new adaptive

mutations will tend to become trapped within different selfing lineages because the lack

of outcrossing means that any mutations that arise within separate selfing individuals can

not be incorporated into the same lineage or genome (Felsenstein 1974; Barton 1995). In

this way, selfing mimics the problems associated with asexual reproduction, with

outcrossing providing a more effective means of recombination and thereby generating

the genetic variation necessary to adapt to a novel environment (Crow 1992). In order to

critically evaluate these theoretical predictions, it is necessary to both experimentally

manipulate the mating system of a given species and to recapitulate the evolutionary

process under the specific conditions predicted to favor either selfing or outcrossing.

Here, we utilize experimental evolution in populations of Caenorhabditis elegans

to test the benefits of outcrossing relative to selfing under conditions predicted'to favor

outcrossing. C. elegans populations are composed of males and hermaphrodites.

Hermaphrodites reproduce through either self-fertilization or by outcrossing with males.

Despite the potential for outcrossing with males, most C. elegans populations reproduce

predominantly via selfing ("wildtype" outcrossing rates are generally less than 5%)

(Chasnov and Chow 2002; Stewart and Phillips 2002; Sivasundar and Hey 2003; Barriere

and Felix 2005; Haber et al. 2005; Teotonio et al. 2006). However, by incorporating one

of two mating system altering mutations (xol-J(Miller et al. 1988) andfog-2 (Schedl and

Kimble 1988)), we generated both obligate selfing and obligate outcrossing populations,

yielding three different outcrossing levels (obligate setfing, wildtype, obligate.

outcrossing) within the same genetic background. These mutations were independently
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crossed into two separate genetic backgrounds (N2 and CB4856) with known differences

in wildtype outcrossing rates (Teot6nio et al. 2006). Exposing these populations to two

different novel selection environments, (l) elevated mutation rates coupled with a

migratory barrier (Figure A2.l a) and (2) a virulent bacterial pathogen (Figure A2.l b),

allowed us to directly test theories advocating either deleterious mutations or adaptation

to ecological conditions as the primary selective forces contributing to the prevalence of

outcrossing as a means of sexual reproduction.

Selfing populations are thought to be able to purge new deleterious mutations as

long as the mutations are not too frequent and their effect sizes are large enough to be

exposed to selection (Heller and Maynard Smith 1979; Lande and Schemske 1985;

Charlesworth and Charlesworth 1987). Indeed, even relatively small C. elegans

populations have been shown to escape the most serious consequences of mutation

accumulation, even when their mutation rate is increased ten-fold (Estes et al. 2004).

However, outcrossing is predicted to slow the fixation of deleterious mutations with weak

to moderate effect sizes. To explore these contrasting expectations, we subjected

populations to the chemical mutagen ethyl methanesulfonate (EMS) every other

generation at a leveI.that increases individual mutation rate by approximately four times

the natural rate. Populations exposed to the mutagen and populations maintained at

natural mutation rates were reared and passaged within a novel environment, a Petri dish

transected by a vermiculite barrier separating populations from their food source upon

introduction to the dish, to impose strong selection and thereby facilitate the potential to

purge deleterious mutations. We then tracked the subsequent evolution of 60 different
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populations for 50 generations under different combinations of mutation, mating system,

and genetic background.

Despite strong selection against deleterious mutations, obligate selfing

populations fixed significantly more mutations than did the obligate outcrossing

populations, as evidenced by the fact that the latter populations maintained fitness over

the course of the experiment in spite of elevated mutation rates, whereas the selfing

populations displayed a substantial decline in fitness (Figure 2.1a; Fl ,48l = 456.15, P <

0.001). The purging of deleterious mutations within selfing populations is easily

overwhelmed by slight increases in mutation rate. In contrast, while outcrossing

populations are more likely to accumulate segregating deleterious mutations (Schultz and

Lynch 1997), these mutations do not lead to an overall decline in mean fitness (Figure

2.1a). The value of outcrossing is particularly evident in the wildtype populations, where

outcrossing rates are free to vary as dictated by selection. The wildtype populations

subject to elevated mutation rates exhibit increased levels of outcrossing (Figure 2.1 b;

Fl ,8 = 55.7, P < 0.001), thus indicating that increased levels of outcrossing are favored

under these conditions.

While fitness loss due to selfing is offset to a large extent by the intermediate

amounts of outcrossing exhibited in the wildtype populations, obligate selfing CB4856

populations lose fitness over time even when maintained at their natural mutation rate

(Figure 2.1a; F l ,48l = 17.5, P < 0.001). We replicated the deterministic loss of fitness in

obligate selfing CB4856 populations under long term maintenance in more permissive

laboratory conditions as well (20% fitness loss over thirty generations; F3,7l = 9.85, P <
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0.001). Indeed, obligate selfing C. elegans populations would in general be expected to

go extinct over the course of a few hundred generations (Loewe and Cutter 2008).

Several other studies have investigated the role that elevated mutation rates may play in

maintaining males within partially selfing C. elegans populations, finding that increases

in mutation can prolong the maintenance of males in the population, but at levels that are

only slightly greater than wildtype (Cutter 2005; Manoel et al. 2007). Therefore, even

partial outcrossing is a valuable, if not always sufficient, means of managing the influx of

deleterious mutations.

As predicted, outcrossing ameliorates the fixation of deleterious mutations.

However, alternative theories emphasize that outcrossing should enable a stronger and

more rapid adaptive response to ecological conditions than selfing (Stebbins 1957;

Felsenstein; Maynard Smith 1978; Crow 1992; Barton 1995). Here, outcrossing (wildtype

and obligate outcrossing) populations maintained at natural mutation rates exhibited a

significantly greater amount of adaptation than the obligate selfing populations after fifty

generations of selection, regardless of genetic background (Figure 2.1 a; F1,481= 51.98, P <

0.001). The observed rate of adaptation in the obligate outcrossing populations (0.34%

increase in fitness per generation) is particularly impressive because this adaptation

occurred in near-isogenic lines over a span of only fifty generations. Thus, the majority of

the adaptive response is likely to have been due to novel mutations.
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Figure 2.1 I Experimental test of the major theories of the evolution of outcrossing.
a, Experimental populations (N2, triangles; CB4856, squares) with different outcrossing
rates were exposed to a novel, challenging environment at either natural (solid lines) or
elevated (4X; dashed lines) mutation rates for 50 generations. Percent change in
population mean fitness over time was assessed by comparing the competitive fitness of
the ancestral population to that of the evolved population. Obligately selfing populations
showed pronounced fitness decline in the face of elevated mutation rates (or even natural
mutation rates in the case of CB4856). Both the rate of adaptation and resistance to
mutational degradation increased with increasing levels of outcrossing. b, Within the
wildtype outcrossing treatments, populations exposed to elevated mutation rates evolved
higher outcrossing rates. c, Experimental populations with a CB4856 background were
mutated to generate genetic variation and then exposed to either the bacterial pathogen S.
marcescens (dashed lines) or heat-killed S. marcescens control (sold lines) for forty
generations, then percent change in mean fitness measured for each population. The
outcrossing populations exhibited both rapid and substantial adaptation to the pathogen,
however, the obligate selfing populations failed to adapt. d, Populations exposed to S.
marcescens evolved higher outcrossing rates within the wildtype outcrossing treatment.
Thus, in keeping with theory, both the influx of deleterious mutations and adaptation to a
novel environment favor outcrossing over selfing. Error bars represent two standard
errors of the mean (errors calculated on arcsine-square-root transformed data for band
d).
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To further test the ability of outcrossing to facilitate rapid adaptation, we exposed

obligate outcrossing, wildtype, and obligate selfing populations within a common

CB4856 background to the bacterial pathogen Serratia marcescens. Several strains of S.

marcescens elicit a pathogen avoidance behavior from C. elegans (Pradel et al. 2007), in

addition to inducing the expression of a specific set of pathogen resistance genes

following ingestion (Mallo et al. 2002). S. marcescens 2170 is highly virulent when

consumed by C. elegans, initially inducing an 80% mortality rate in our experimental

regime (Figure A2.1b). Repeated exposures to S. marcescens therefore imposes strong

selection for either pathogen avoidance or resistance, or a combination of both responses.

As a control, replicate populations were passaged on heat-killed S. marcescens. Prior to

selection on S. marcescens the experimental populations were mutagenized with EMS to

generate standing genetic variation into the previously inbred experimental populations.

After forty generations of exposure to S. marcescens, outcrossing populations

adapted to the novel pathogenic conditions whereas the obligate selfing populations did

not (Figure 2.1c; F1,8o= 245.79, P < 0.001). The obligate outcrossing populations

exhibited very rapid and substantial increases in fitness when exposed to S. marcescens

(Figure 2.1c; F1,8o= 160.18, P < 0.001). In addition, wildtype mating populations exposed

to S. marcescens exhibited elevated outcrossing rates (Figure 2.1d; F1,5 = 27.2, P = 0.003)

and significantly greater fitness (Figure 2.1c; F1,8o= 9.29, P = 0.003) than wildtype

populations maintained on heat-killed S. marcescens, indicating that selection favored

outcrossing over selfing. In general, outcrossing first increased and then declined over the

course of the experiment (approaching is maximum value of 1.0 after 20 generations),
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indicating that the change in male frequency is an evolved rather than facultative

response (Figure 2.1d). Stronger selection imposed by S. marcescens and initial standing

genetic variation enabled a much stronger evolutionary response (3.8% increase in fitness

per generation) (Figure 2.1c), than that observed in the first experiment (Figure 2.1a).

Overall, then, outcrossing enables more rapid adaptation to changing ecological

conditions than does selfing.

The prevalence of outcrossing is something of an evolutionary puzzle given the

inherent advantages of self-fertilization. This work provides the first experimental tests of

the selective pressures favoring the evolution and maintenance of outcrossing. We have

demonstrated that outcrossing impedes the fixation of deleterious mutations and

facilitates rapid adaptation relative to selfing, such that outcrossing is at the least

conditionally favored by selection. Similar results have been observed in accelerated rates

of evolutionary change in sexual versus asexual populations (Colegrave 2002; Goddard et

al. 2005). While we cannot directly address the question of the origin of selfing and

outcrossing in our experiments, overall levels of outcrossing increased in our wildtype

treatments in which selfed and outcrossed offspring were competing within the same

population (Figures 2.1 b,d). These results support the idea that obligate selfing may often

be an evolutionary dead-end, in which species that evolve obligate selfing are ultimately

doomed to extinction due to an inability to respond to changing environmental conditions

(Stebbins 1957).

The fact that obligate outcrossing yielded a much larger response than natural

outcrossing rates is something of a surprise, because it is thought that moderate amounts
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of outcrossing are sufficient to escape the problems associated with obligate selfing

(Schultz and Lynch 1997). One additional feature of this system that has not been

previously considered, however, is that an increase in the frequency of males within a

population also increases the opportunity for sexual selection, which has been shown to

reduce the overall genetic load within a population (Whitlock and Agrawal 2009). Males

therefore play multiple roles within these populations, both for enhancing genetic

exchange across generations and increasing the efficacy of natural selection within

generations. Mutation, changing environmental conditions, and pathogens are nearly

ubiquitous selective pressures for many organisms, which likely explains outcrossing's

relative prevalence in nature.

Methods Summary

We conducted two large-scale experimental evolution studies. First, we exposed

obligate outcrossing, wildtype mating, and obligate selfing populations with

approximately five hundred individuals apiece to 0.5 mM of the chemical mutagen EMS

every other generation for fifty generations. These mutated populations, in addition to

replicate populations maintained at natural mutation rates, were passaged each generation

in a selective novel environment (Figure A2.1 a). Second, we exposed obligate

outcrossing, wildtype mating, and obligate selfing populations composed of

approximately five hundred individuals to S. marcescens (Figure A2.1 b) for forty

generations while exposing replicate populations to heat-killed S. marcescens as a

control. These populations were exposed to 10mM of EMS for four generations prior to

selection as a means of inducing genetic variation. We used a competitive fitness assay to
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measure the change in fitness for each experimental population relative to its ancestor

prior to selection. The competitive fitness assays were conducted within the context of

the selective environment and the assay was conducted simultaneously on the

experimental population and the previously frozen ancestral population. Fitness was

determined by mixing each population (experimental and ancestral) with a GFP-marked

tester strain at a 50:50 ratio. After passaging the worms in the relevant selective

environment, the GFP ratio of the offspring was calculated and used to estimate fitness.

More detailed methods are available in Appendix A.

Bridge to Chapter III

In chapter II we used experimental evolution to test the relative fitness of

outcrossing and selfing under conditions of mutation accumulation, exposure to a novel

environment, and exposure to a pathogenic bacteria as a means to identify the selective

pressures that favor outcrossing, and to reveal the adaptive value of outcrossing. In

chapter III we identified facultative outcrossing, a previously unidentified mating

strategy, in the primarily self-fertilizing nematode C. elegans. Facultative outcrossing is

in induced in C. elegans populations under shifting ecological conditions. Our results

from chapter II demonstrate that outcrossing allows more rapid adaptation to changing

ecological conditions. Therefore, facultative outcrossing in C. elegans may enable more

rapid adaption to stressful environments encountered by natural populations through

timely outcrossing.
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CHAPTER III

SEXUAL PARTNERS FOR THE STRESSED: FACULTATIVE OUTCROSSn~G IN

THE SELF-FERTILIZING NEMATODE CAENORHABDITIS ELEGANS

A paper published in Evolution and co-authored with Brian J. Cappy, Jennifer L.

Anderson, and Patrick C. Phillips

Introduction

Sex, although widespread, is theoretically disadvantageous as a consistent

reproductive strategy (Maynard Smith 1978). However, facultative sexual reproduction

and increased recombination during periods of compromised fitness is predicted to be an

evolutionarily stable strategy that could potentially invade both sexual and asexual

populations (Hadany and Otto 2007). Environmental stress is known to initiate sexual

reproduction in a broad range of species that normally undergo asexual reproduction

(Bell 1982; Harris 1989; Dubnau 1991; Kleiven 1992; Gemmill et al. 1997; Dacks and

Roger 1999; Mai 2000). Asexual species are subject to deleterious mutation accumulation

through Muller's Ratchet as well as a decline in genetic variation due to a lack of

recombination (Muller 1964; Gabriel et al. 1993; Lynch et al. 1993). Sex in

predominantly asexual organisms is thought to enhance fitness through the infusion of
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genetic variation and removal of deleterious mutations, thereby promoting survival and

facilitating adaptation under stressful conditions (Muller 1964; Bell 1982; Hoffman 1997;

Peck et al. 1999; Colegrave et al. 2002; Kaltz and Bell 2002).

The long-term genetic consequences of obligate self-fertilization closely resemble

many ofthe genetic hazards associated with asexual reproduction, largely because ofthe

systematic loss of genetic variation within lineages due to continuous inbreeding

(Stebbins 1957; Heller and Maynard Smith 1979; Kondrashov 1985; Lande and

Schemske 1985; Charlesworth et al. 1993; Charlesworth and Charlesworth 1995; Lynch

et al. 1995). Extended periods of obligate self-fertilization result in the production of

offspring harboring predominantly homozygous loci, which limits the effectiveness of

recombination within any given lineage (Heller and Maynard Smith 1979). Extreme

inbreeding and the lack of recombination coupled with natural selection and genetic drift

result in the consistent loss of population-level genetic diversity within selfing

populations. Further, these characteristics of obligate self-fertilization are predicted to

reduce the mean time to extinction for selfing populations relative to outcrossing

populations (Lynch et al. 1995; Schultz and Lynch 1997). Although currently unexplored,

facultative outcrossing may enhance the adaptive response of high selfing populations in

the face of environmental stress. Here we explore this possibility using the nematode

Caenorhabditis elegans as a model system.

A useful study system for examining the potential of stress-induced outcrossing

is one that is predominantly self-fertilizing (but is capable of outcrossing), that provides a

means of consistently and accurately determining the outcrossing rates within a



27

population, and that displays a distinct response to environmental stress. The mostly

selting soil nematode C. elegans is an ideal system for addressing these questions. C.

elegans populations are composed of self-fertile hermaphrodites that harbor two copies of

the X-chromosome and males with a single X-chromosome as their only sex chromosome

(Brenner 1974). Hermaphrodites cannot mate with other hermaphrodites and so

outcrossing can only occur via mating with males. Although males facilitate outcrossing,

they are rare and tend to be quickly driven out of laboratory populations by their

hermaphrodite counterparts (Stewart and Phillips 2002; Cutter 2005; Teotonio et al.

2006). Males and outcrossing also appear to be rare within natural populations (Barriere

and Felix 2005; Sivasundar and Hey 2005). Therefore, C. elegans populations seem to be

predominantly self-fertilizing, but capable of outcrossing in the presence of males.

Outcrossing rates within C. elegans populations are relatively straightforward to measure.

Outcrossing events, the fertilization of eggs (X) by male sperm (X or 0), result in the

production of 50% male offspring and 50% hermaphroditic offspring (Nigon 1949). Self­

fertilization produces 99.9% hermaphrodites, with rare X-chromosome nondisjunction

events resulting in the production of males (0.1 %) (Ward and Carrel 1979). After

correcting for the number of males produced through X-chromosome nondisjunction,

male frequency thus functions as an indicator of the outcrossing rate (Stewart and Phillips

2002).

Early in development and prior to sexual maturation, C. elegans larvae that

encounter environmental stress (starvation, overcrowding, desiccation, high

temperatures) enter a stage of developmental arrest, known as the dauer stage (Cassada
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and Russell 1975). This is a migratory non-feeding stage that is common in natural

populations and centrally important across most nematode groups (Barriere and Felix

2005). Once the worms reach a new food source in the absence of dauer pheromone (an

indicator of overcrowding), they resume normal development. C. elegans strains exhibit

natural variation for sensitivity to dauer-inducing conditions (Viney et al. 2003), and the

genetic basis of the signaling pathway is well characterized (Vowels 1992; Kenyon et al.

1993; Thomas 1993; Gottlieb 1994). Larva can survive in the dauer stage for greater than

twice their regular lifespan under normal conditions (Klass and Hirsh 1976; Kenyon et al.

1993). The dauer stage therefore provides a rich ecological and functional context within

which to explore the influence of environmental stress on mating system dynamics in

populations of C. elegans.

Here, we test for stress induced facultative outcrossing directly by repeatedly

passing several different natural isolates of C. elegans through the dauer stage and

observing the subsequent strain specific increases in male frequency. We determine that

male frequency can increase both during dauer exposure and in the generation following

dauer. We find that an enhanced male presence after dauer coupled with greater

outcrossing rates results in a facultative shift in C. elegans reproductive strategy from

predominantly se1fing to primarily outcrossing.

Methods

Population maintenance and dauer induction

C. elegans strains are stock populations originally derived from a single

individual isolated from a natural population. Two of these isolates, N2 and CB4856
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(originally from Bristol, England and Hawaii, USA, respectively), were obtained from

the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN) and

one, JU440 (originally obtained from Beauchene, France), was obtained from the

laboratory of H. Teot6nio (Instituto Gulbenkian de Ciencia, Portugal). The N2 strain

maintains males at very low frequencies and has been in a laboratory setting for

thousands of generations (Brenner 1974; Teot6nio et al. 2006), whereas the JU440 strain

is a more recent natural isolate but maintains males at similarly low levels (Teot6nio et al.

2006). Like JU440, CB4856 is a relatively recent natural isolate, but maintains males at

much higher rates than either N2 or JU440 (Teot6nio et al. 2006). These strains were

chosen because they are some of the most distinct genotypes that have yet been collected

(Haber 2005); M. Rockman, pers. comm.), thus allowing a good sampling of available

genetic and phenotypic diversity. All strains were inbred for ten generations before use to

minimize within strain genetic variation. Replicate populations were maintained at 20°C

on 10cm agar (Nematode Growth Medium Lite, US Biological, Swampscott, MA) plates

seeded with OP50 Escherichia coli to serve as their bacterial food source. Populations

were chunk transferred (approximately five hundred individuals), predominantly as

young (L1 or L2) larva to freshly seeded plates each generation (Stiernagle 2006).

Upon transfer, a starting density of approximately 500 nematodes per plate

permitted the populations to initially experience standard laboratory conditions but

subjected the next generation to dauer-inducing conditions via starvation and

overcrowding. The starvation status of populations was determined by assessing the ratio

of dauer larvae (measured phenotypically; (Cassada and Russell 1975» to adults in a
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plate transect representing approximately 20% of the total plate area. When the ratio of

dauers to adults (L1 and L2 larvae were not counted) was at least 19; 1 the population was

determined to be "starved." The dauer ratio of each population was measured daily after

initial transfer to a new food source until the population was determined to be starved.

Most populations were deemed starved approximately one week after transfer. The

populations remained on the same depleted plate for twenty-one days after being

identified as starved, and chunk transferred to a fresh food source allowing them to

resume development and reproduce.

Effects ofstarvation stress on male frequency

Populations of each strain (N2, CB4856, and JU440) were subjected to two

different starting conditions (no initial males and 10% initial males) and three different

treatments (control, single dauer exposure, and successive dauer exposure) within each

starting condition. The two starting conditions were chosen to test the response in male

frequency based on the initial presence or absence of males. The single dauer exposure

treatment was utilized to determine the immediate and long-term effects of a single dauer

exposure on male frequency, whereas the successive dauer exposure treatment was used

to investigate the compounded effects of multiple dauer exposures. Four replicate

populations were run for each combination of strain, starting condition, and treatment.

All replicate populations were maintained separately throughout the experiment. Each

population was maintained for ten generations.

Populations in the "no initial male" starting condition were composed of

approximately five hundred hermaphrodites. Populations that started in the "10% male"
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starting condition were composed of approximately fifty males and four hundred and fifty

hermaphrodites. The control treatment consisted of populations that were maintained

under standard laboratory conditions (not starved). "Single dauer exposure" populations

were initially starved for a single generation and then continuously maintained under

standard laboratory conditions for the duration of the experiment. The "successive dauer

exposure" populations were alternately starved one generation then maintained under

standard laboratory conditions the next generation for eight generations, and then

maintained under standard laboratory conditions for the final two generations. The first

dauer exposure was imposed upon individuals in the second generation of the experiment

(Figure 3.1), allowing us to measure male frequency prior to starvation.

Male frequency was assessed each generation for ten generations by sexing

worms across a transect representing ~20% of the total plate area and dividing the total

number of males counted by the total number of individuals counted (Stewart and

Phillips 2002). Male frequency counts were taken three days after transfer to a fresh

plate. Only adult and L4 (the latest larval stage) worms were assayed, as only these life­

stages exhibit phenotypic sexual differentiation.

The data was analyzed using both a repeated measures categorical data analysis

(CATMOD procedure in SAS 9.1, Cary, NC) and a repeated measures MANOVA (JMP­

IN 5.1, Cary, NC) testing the effects of strain, initial male presence, dauer exposure, and

replicate. The results of both approaches were consistent with one another, so we only

report the MANOVA results.
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CHANGES IN MALE FREQUENCY DURING DAUER

To examine any possible changes in male frequency while in dauer, we tested

male vs. hermaphrodite survival during dauer and hermaphrodite to male sexual

conversion during dauer. To assess relative male survival during dauer, replicate

populations were chunk transferred to two different freshly seeded plates and were

allowed to reproduce and populate the plates. One population was subsequently chunk

transferred to a freshly seeded plate and scored for male frequency, while the other

population was subjected to dauer exposure for a specific period oftime (0, 1,21, or 42

days), and then chunked to a freshly seeded plate and scored for male frequency. Five

replicate population pairs were maintained for each period of time. Changes in relative

survival were tested by performing a one-way ANOVA on the log transformed

differences in frequency between the treatment and control plates.

Migration

Sex-specific migration in dauer could potentially influence male frequency during

dauer. We measured the male frequencies of migrants vs. the source population in dauer

using modified "white traps" (Bashey et al. 2007). White traps use liquid to trap

migratory individuals by maintaining the source population above but surrounded by

liquid so that individuals crawling away from the source population go into the liquid and

are unable to return to the source population. To construct the modified whitetraps, we

placed the lid ofa 35 x 10mm Petri dish in the center ofa lOcm x 15mm Petri dish and

placed a piece of 70mm Whatman # 2 filter paper on top of the lid. We then filled the

lOcm x 15mm Petri dish with enough S. Basal buffer to fill the dish but not engulf the
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filter paper or the lid (approximately 3-4mL). A 60 x 5mm circle of agar (NGM Lite) was

placed on top of the filter paper and seeded with OP50 to serve as the base for the source

population.

Thirty replicate populations of CB4856 were chunk transferred to the OP50 spots

on individual white traps. Approximately ten days after transfer and three days after

dauer induction (determined as previously described) individuals were separately

removed from the agar (source population) and the buffer (migrants) and transferred to

seeded plates permitting sexual maturation. Male frequency was then scored for the

source population and the migrants. Only previously dauer individuals were scored, some

adult migrants were harvested but not s,?ored. The difference in migrant and source

population male frequency was analyzed using a one-way ANOVA.

Sexual conversion

The JK2735 strain, derived from an N2 background, possesses a constitutively

expressed GFP-marker on its X-chromosome that is inherited by only hermaphrodite

progeny in a cross between a male that carries the marker and an unmarked

hermaphrodite. This pattern of inheritance and subsequent expression can serve as an

early indicator of sex in the Fl progeny, thus permitting a test of sexual conversion

during the dauer stage (Prahlad et al. 2003). The JK2735 GFP-marker was backcrossed

into the CB4856 background for 5 generations and inbred for 10 generations to produce

the PX360 strain. Ten individual PX360 males, harboring a single green fluorescent

protein (GFP)-marked X-chromosome, were mated with approximately two hundred

CB4856 hermaphrodites apiece on 35mm agar plates. The large number of
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hermaphrodites ensured that the Fl individuals would encounter dauer-inducing

conditions. Once in dauer, GFP-expressing and nonGFP-expressing offspring were

separated, maintained in the dauer stage for approximately twenty-one days, and

monitored for the loss or gain of GFP expression. The dauer worms were then moved to

freshly seeded plates to resume development. Upon reaching sexual maturity they were

sexed and monitored for the loss or gain of GFP expression. As a control PX360

hermaphrodites were crossed with CB4856 males demonstrating that PX360 x CB4856

crosses can produce males that express GFP.

CHANGES IN MALE FREQUENCY AFTER DAUER

To test for possible changes in male frequency caused by changes in X­

chromosome nondisjunction, two hundred L4 hermaphrodites were transferred to twenty

replicate populations for each strain (JU440, CB4856, and N2). By starting populations

with only hermaphrodites, any male individuals present in the next generation must be

the result of X-chromosome nondisjunction (Rose and Baillie 1979). The replicate

populations were split evenly into two groups, one exposed to dauer, the other maintained

under standard laboratory conditions. Dauer exposure was approximately 21 days. Male

frequency was measured in the populations after one generation under their respective

rearing conditions. Possible effects of dauer exposure were analyzed using logistic

regression in the CATMOD procedure of SAS.

Outcrossing rates

We compared outcrossing rates between group matings in which the males and

hermaphrodites were subject to either dauer or standard conditions prior to mating. The
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dauer group was starved and allowed to remain in dauer for three weeks then chunked to

fresh plates to resume development and mature to the L4 stage, whereas the control group

was maintained under standard laboratory conditions. Four L4 hermaphrodites and one

L4 male were picked to a single 35mm agar plate seeded with OP50, allowed to mate,

and scored for the production of male offspring. Within each strain four crosses were

conducted: dauer male x dauer hermaphrodites, dauer male x fed hermaphrodites, fed

male x dauer hermaphrodite, fed male x fed hermaphrodite. Each cross was replicated

thirteen times within each strain, and the entire assay was replicated twice. The male

frequency of each cross was determined by sexing a sample of the progeny across a

transect representing ~20% of the total plate area (Stewart and Phillips 2002).

Outcrossing rates were determined by 2(m - fl), where m is the frequency of the male

offspring and /l is the rate of X chromosome nondisjunction (modified from Eq. 3 in

(Stewart and Phillips 2002)). The strain-specific X chromosome nondisjunction rates (as

measured in this study) were used as estimates of fl. The data was analyzed using an

ANOVA to test for possible effects of dauer treatment, strain, sex, and dauer status of

mate on outcrossing rate. A Tukey's HSD test, testing the effect of having one or both

mates experience dauer versus no dauer exposure for either mate, was conducted post­

hoc.

EFFECTS OF DAUER ON HERMAPHRODITE SELF FECUNDITY

To·determine if elevated outcrossing rates after dauer exposure were the product

of sperm-limitation in hermaphrodites or greater mating success by males, we compared

the total fecundity of hermaphrodites that experienced dauer exposure to that of
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hermaphrodites maintained under standard laboratory conditions. Six replicate

populations were established by chunking from a single source population. Three of those

replicate populations were exposed to dauer for approximately 21 days, while three were

maintained under standard laboratory conditions. Approximately thirty L4

hermaphrodites were sampled from each population (after the dauer populations had

resumed development after dauer exposure) and total fecundity calculated for each

hermaphrodite. The data was analyzed using a one-way ANOVA.

EFFECTS OF MALE FREQUENCY ON OUTCROSSING RATES

We compared the outcrossing rates in populations started with a broad range of

male frequencies. Populations were established by picking twenty L4 worms to a single

5cm agar plate seeded with OP50. Specific numbers of male and hermaphrodites were

placed on each plate to generate the desired initial male frequencies (0%, 10%, 20%,

30%,40%, and 50%). Three replicate plates were established at each initial male

frequency. The worms were allowed to mate (hermaphrodites were permitted to self­

fertilize in addition to outcrossing with males) and reproduce. Then, the offspring were

transferred to a seeded 10cm plate, allowed to reach sexual maturation, and sexed. The

outcrossing rates were determined as previously stated. The data was analyzed using

regression analysis in JMP-IN 5.1. The outcrossing rate was regressed on the initial male

frequency and a stepwise polynomial regression was used to assess the best fitting model.
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Results

EFFECTS OF STARVATION STRESS ON MALE FREQUENCY

Successive exposures to the dauer stage permitted males to sweep into

populations ofthe CB4856 and JU440 natural isolates, even into populations in which

males were initially absent (Figure 3.1; FJ,51 = 124.42, P < 0.0001). Repeated exposure to

dauer-inducing conditions was especially effective at generating prolonged maintenance

of high male frequencies, with the overall increase dependent on whether males were

initially present in the population or not (CB4856 Fl,51 = 219.48, P < 0.0001; JU440 FJ,51

= 13.47, P = 0.0006). In the most extreme case, replicates ofCB4856 moved from 10%

males to close to the theoretical maximum of 50% after just two or three exposures to

dauer (Figure 3.1a). These increases were sustained as long as the populations continued

to experience periodic starvation. In contrast, a single exposure to the dauer stage raised

levels of male frequency in the 10% initial male treatments in both the CB4856 and

JU440 strains (CB4856 F2,50= 74.44, P < 0.0001; JU440 F2,5o= 3.44, P = 0.0398), but

failed to exhibit prolonged male maintenance (Figure 3.1 a,c). The male frequency in all

treatments ofthe N2 strain was unaffected by exposure to the dauer stage (FJ,51= 0.21, P

= 0.6508; Figure 3.le,f). All populations maintained under standard laboratory conditions

failed to exhibit a significant increase in male frequency (F9,43 = 1.80, P = 0.0965), while

the JU440 and N2 populations rapidly lost males in the 10% initial male treatment

(Figure 3.1 c,e).
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Figure 3.1. Dauer exposure generates strain-specific increases in male frequency.
Nematodes were either not exposed to dauer inducing starvation conditions (diamonds),
were exposed to a single episode of dauer (squares), or were repeatedly exposed to dauer
(triangles). Arrows represent periods of dauer' exposure (single dauer exposure occurred
at the first arrow). The first point after the arrow represents the frequency of males in
populations that have directly experienced dauer. The second point after the arrow
represents the frequency of males in the offspring of the individuals that have gone
through dauer. (a) CB4856 10% initial male populations, (b) CB4856 no initial male
populations, (c) JU440 10% initial male populations, (d) JU440 no initial male
populations, (e) N2 10% initial male populations, (t) N2 no initial male populations. The
C. elegans strains CB4856 and JU440 both exhibit increases in male frequency over time
following starvation-induced dauer exposure (P < 0.0001). The CB4856 strain
approaches a mean male frequency of 50%, which is the theoretical maximum male
frequency for C. elegans populations. Male frequencies were elevated in these strains
regardless of the presence or absence of males upon first dauer exposure; The N2 strain,
however, exhibited no male frequency response after dauer exposure (P = 0.6508). Data
points indicated the mean male frequency (± 2 s.e.) of replicate populations measured
over 10 generations.
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Causes ofelevated male frequency

The elevated male frequencies resulting from dauer exposure can be generated

from two possible sources: a change in the male to hermaphrodite ratio during dauer

and/or a shift in the reproductive dynamics after exposure to the dauer stage. In the first

case, any increase in male frequency immediately following dauer exposure is generated

by factors acting directly on individuals experiencing dauer, since reproduction has yet to

occur. In the second case, changes in male frequency occur in the generation following

dauer exposure and therefore result directly from mating and/or reproduction. We will

examine each possible cause of the increase in male frequency in turn.

INCREASE IN MALE FREQUENCY DURING DAUER

The frequency of males within CB4856 populations steadily increases over time

while in dauer, indicating either the addition of males or the loss of hermaphrodites (F3,26

= 6.09, P = 0.0028; Figure 3.2). The other strains do not exhibit this effect (instead they

tend to lose males during dauer), and so we focus our initial analysis on the CB4856

strain.



40

0,15

a

>.u
c
Q)
::::J
0" 0,1
~
u..
Q)

rn
~ 0,05
c
Q)
Ol
c
rn
.r:
U a 10 20 30

Days in Dauer

40

Figure 3.2. CB4856 males survive dauer at rates greater than hermaphrodites. Male
frequency increases with time spent in dauer (P = 0.0028). The increase in male
frequency is a direct of result of a greater proportion of males living through dauer, as
compared to the proportion of hermaphrodites that survive dauer exposure. The data
points represent the change in mean male frequency (± 2 s.e.) of replicate populations
exposed to dauer for varying lengths of time.

Sexual conversion

Dauer-induced sexual conversion, the transformation of hermaphrodites into

sexually functional males, is a possible source for the increase in male frequency during

dauer exposure (Prahlad et al. 2003). Using a GFP-marker to determine sex prior to dauer

exposure we found no instances of dauer-induced hermaphrodite to male sexual

conversion (0% sexual conversion, power = 80% to determine a 1% conversion rate). A

sexual conversion rate of approximately 20% would be required to solely account for the

increase in male frequency during dauer. Therefore the increase in male frequency during

dauer is not due to sexual conversion.
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Migration

The increase in male frequency during dauer is the result of hermaphrodite loss

rather than a gain in males. Hermaphrodites could be lost to differential migration rates in

dauer, leaving behind greater male frequencies in dauer populatIons. Using a modified

white trap to ensnare migrants from dauer CB4856 populations, we found that the male

frequency of migrants was greater than the male frequency of the source populations

(migrant mean male frequency = 12.2%, source population mean male frequency = 1.5%;

F1,62 = 43.07, P < 0.0001). Therefore, differential migration in dauer decreases, rather

than increases, male frequency during dauer exposure.

Differential survival during dauer

If hermaphrodites are not sexually converting into males and differential

migration is not driving the increase in male frequency, then the increase in male

frequency during dauer is the result of male survival and hermaphrodite mortality while

in the dauer stage. We observe a 10% increase in male frequency over a period of 42 days

in dauer (Figure 3.2). Male survival coupled with hermaphrodite mortality therefore

accounts for the increase in male frequency exhibited in populations that have directly

experienced dauer (Figure 3.1).

INCREASE IN MALE FREQUENCY FOLLOWING DAUER

Differential survival of males and hermaphrodites cannot explain the observed

subsequent increase in males that occurs in the generation following dauer exposure

(Figure 3.1). This delayed response is especially clear in JU440, but is also present in
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CB4856. An increase in either the X-chromosome nondisjunction rate or the outcrossing

rate is required to explain the increase in male frequency in the generation following

exposure to dauer because these individuals did not directly experience the dauer stage.

X-chromosome nondisjunction

Dauer-induced increases in X-chromosome nondisjunction rates could elevate

male frequencies in the offspring of dauer-exposed hermaphrodites by increasing the

number of spontaneously produced males. However, passage through the dauer stage did

not increase the rate of X-chromosome nondisjunction in hermaphrodites (F1,2 = 0.26, P =

0.8759; Figure 3.3). Therefore the elevated male frequencies must be the product of

altered mating dynamics after dauer exposure.
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Figure 3.3. X-chromosome nondisjunction events are not responsible for the increase in
male frequency after dauer exposure. Exposure to dauer does not increase the X­
chromosome nondisjunction rate (P = 0.8759). Nondisjunction frequencies were
measured in all-hermaphrodite populations after undergoing twenty-one days in dauer.
Each bar represents the mean nondisjunction rate (± 2 s.e.) of replicate populations.
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Facultative outcrossing

The outcrossing rate in both the CB4856 and JU440 strains increases dramatically

following dauer (FU87 = 58.22, P < 0.001; Figure 3.4). Thus, the environmental stress

generated by starvation leads directly to an increase in outcrossing within these two

strains. Indeed, outcrossing rates are elevated when at least one of the partners has

experienced dauer (Figure 3.4). The increased outcrossing rates are not a consequence of

sperm-limitation in dauer-exposed hermaphrodites, as hermaphrodite self-fecundity is not

reduced by dauer exposure (CB4856: control mean = 198.8, dauer mean = 211.3; FU74=

3.93, P = 0.049; JU440: control mean = 205.1, dauer mean = 216.9; F1,86 = 1.24, P =

0.261). Therefore the increase in outcrossing rate must be the product of more frequent

fertilization by males. The effects are nearly additive for the CB4856 strain (i.e.,

outcrossing rates increase significantly when both sexes have gone through dauer), but

saturate in the JU440 strain. These results clearly show that the elevated male frequencies

following dauer are the result of an increase in outcrossing.
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Figure 3.4. Dauer exposure induces facultative outcrossing. Outcrossing rates are
elevated when individuals mate with others that have been previously exposed to dauer
(P < 0.001). The increase in outcrossing occurs whether the male or the hermaphrodite is
the partner exposed to dauer. Exposure of both partners further increases outcrossing in
CB4856 but yields the same outcrossing rate as single partner exposure in JU440. Data
points represent mean outcrossing rates (± 2 s.e.) of replicates for each category of
mating.

For the CB4856 strain, greater male survivorship through dauer and the effect of

dauer on mating interact synergistically, as the positive correlation between male

frequency and outcrossing (r2 = 0.91; Figure 3.5) demonstrates that increases in male

survivorship translate directly into heightened outcrossing rates. Therefore, the elevated

male frequencies generated through environmental stress via exposure to the dauer stage

are the combined result of differential male survival while in the dauer stage and

increased outcrossing rates after dauer exposure.
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Figure 3.5. Male maintenance function. Population-level outcrossing rates rapidly
increase with increasing initial male frequency in CB4856 (r2 = 0.91). Each point shows
the outcrossing rate (± 2 s.e.) of replicate populations started at different initial male
frequencies. The line shows the best quadratic fit to the data, given by the line
outcrossing rate = 0.13 + 0.79 m - 2.04 (m - 0.24i, where m is the initial male
frequency. The overall model is highly significant (F2,13 = 70.80, P < 0.0001), as is each
individual coefficient (P < 0.001).

Discussion

Laboratory populations of C. elegans exhibit little or no outcrossing and therefore

maintain males poorly (Stewart and Phillips 2002; Cutter 2005; Teot6nio et al. 2006).

This observation is the basis for the view that C. elegans males are evolutionary relics

and not functional genetic contributors (Chasnov and Chow 2002). Here, however, we

demonstrate that exposure to the dauer stage not only increases male frequency but also

elevates outcrossing rates independent of the initial male frequency in two natural isolates

of C. elegans (Figures 3.1 and 3.5). This shift in mating system dynamics, from

predominantly selfing to at least partially outcrossing, is ultimately induced by

environmental stress.
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FACULTATIVE OUTCROSSING AS EMPLOYED BY C. ELEGANS

The shift from asexual to sexual reproduction in most facultative sexual species

occurs prior to or during environmental stress. Facultative outcrossing in C. elegans

occurs after direct environmental stress as the nematodes emerge from dauer and sexually

mature. Starvation and overcrowding, stresses that induce dauer formation, signal a need

for migration. C. elegans populations are predominantly ephemeral in nature (Barriere

and Felix 2007), consistently migrating to fresh bacterial blooms and novel locations.

Therefore, dauer induction is an indicator of an impending migration, a new food source,

and potentially many different environmental conditions that could be encountered in a

different location. The dauer stage has adaptive value during stress, whereas facultative

outcrossing would presumably generate its value upon colonization, providing the

potential to expedite adaption to a novel environment encountered following emergence

from dauer.

CAUSES OF FACULTATIVE OUTCROSSING

The increase in outcrossing rates following exposure to dauer can be generated by

sex-specific differences in survival during dauer and by dauer-induced changes in mating

patterns following dauer exposure. Ailion and Thomas (2000) found that males are more

sensitive to the dauer pheromone, entering the dauer stage more readily than

hermaphrodites, which should further contribute to the increase in male frequency

resulting from dauer exposure apart from male survival. Here, we show that this sex

difference is amplified by greater male survival through dauer (Figure 3.2). Although
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sex-specific, the disparity between the male and hermaphroditic response and survival in

dauer occurs before sexual maturation.

The CB4856 and JU440 strains also exhibited stress-induced increases in

outcrossing rates (Figure 3.4). Interestingly, elevated outcrossing rates were not sex­

specific, indicating altered mating dynamics in both hermaphrodites and males after

dauer exposure (Figure 3.4). The increases in hermaphrodite outcrossing rates are not due

to sperm limitation, but rather are driven by interactions between hermaphrodites and

males.

Srinivasan et al. (2008) established a potential link between the dauer stage and

mating dynamics by demonstrating that a C. elegans male attractant was composed of a

blend of several dauer-inducing glycolipids. Dauer may induce changes in hermaphrodite

mate signaling, receptivity to mating, or sperm preference that enables males to sire a

greater proportion of offspring.

The presence of males is required for facultative outcrossing, because males are

required for outcrossing. Populations initiated with males experienced a rapid increase in

outcrossing rates, exhibiting facultative outcrossing and the subsequent increase in male

frequency even after a single exposure to dauer (Figure 3.1). Populations that were

established without males were originally dependent upon male production through

nondisjunction, requiring more time to generate facultative outcrossing (Figure 3.1).

These populations required successive exposures to the dauer stage before males could

become established and thereby enhance outcrossing rates. A large proportion of C.

elegans natural isolates are hermaphrodites, and therefore multiple exposures to dauer
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would be required for most natural populations to experience high levels of outcrossing

in response to stress (Barriere and Felix 2005; Sivasundar and Hey 2005; Barriere and

Felix 2007).

OUTCROSSING WITHIN C. ELEGANS

The strains that displayed a reproductive response to dauer, CB4856 and JU440,

are more recent natural isolates than the N2 strain, which failed to exhibit facultative

outcrossing (Figure 3.1) and is known to suffer developmental defects resulting from

dauer exposure (Kim and Paik 2008). An overwhelming proportion of soil natural

isolates are found in the dauer stage, indicating that dauer inducing conditions are a

consistent selective pressure in natural populations (Barriere and Felix 2005).

Recent studies investigating natural C. elegans populations have concluded that

outcrossing is usually, but not always, rare (Sivasundar and Hey 2003; Barriere and Felix

2005; Haber et al. 2005; 2005; Barriere and Felix 2007). Natural isolates have been

recovered with signatures of periodic outcrossing (Haber et al. 2005; Sivasundar and Hey

2005; Barriere and Felix 2007), leading to speculation that outcrossing may occur

intermittently as conditions dictate (Fitch 2005). Barriere and Felix (2007) suggest that

outcrossed offspring may be selected against because they observe the stable

maintenance of selfing lineages within established populations (see also Dolgin et al.

2007). Although this result is consistent with a disadvantage of outcrossing, it may

instead be reflective of a conditional value to outcrossing. Outcrossing may be more

beneficial in transient populations or upon colonization than in established populations.
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The genetic background of natural isolates may also dictate outcrossing rates.

Populations sampled in California (USA) appear to exhibit relatively high levels of

outcrossing (Sivasundar and Hey 2005) as compared to populations sampled in France

(Barriere and Felix 2005, 2007). These differences could simply reflect strain-specific

differences in facultative outcrossing such as those observed in this study (Figure 3.1).

Strain-specific differences can alter both dauer induction and life history after dauer

(Harvey et al. 2008), in addition to dictating the number of males readily available.

It is also possible that physical outcrossing events fail to leave a genetic signal.

Outcrossing events will only appear in microsatellite data if there is sufficient genetic

variation present within a population to be shuffled by segregation and recombination.

Outcrossing in highly inbred and isolated populations will result in widespread biparental

inbreeding and have no effect on the pattern of genetic variation within that population,

self-fertilization and outcrossing events would therefore be indistinguishable in sequence

data, potentially resulting in downwardly biased estimates of natural outcrossing rates.

Recent analysis of a genetic incompatibility system within this species (Seidel et al.

2008) indicates that there has been extensive recombination among strains, even in

genomic regions very close to the incompatibility loci. Given the observed strain

differences and the temporal nature of dauer-induced facultative outcrossing (Figure 3.1),

one would expect that some natural populations would exhibit signs of outcrossing while

others may appear as obligate seifers.



50

EVOLUTIONARY CONSEQUENCES OF FACULTATIVE OUTCROSSn\JG

Through stress-induced facultative sex, normally asexual species utilize sexual

reproduction as a novel reproductive strategy to overcome the genetic limitations of

asexual reproduction. Theoretical models have demonstrated that alleles that modify the

rate of recombination in response to'stress can readily invade sexual (Agrawal et al.

2005) and asexual (Hadany and Otto 2007) populations. Selection on induced

recombination in diploid populations is weaker because heterozygosity decreases the

association between the modifier response and the effects on recombination (Agrawal et

al. 2005). Although more theory on this is needed, close inbreeding generates the needed

tight linkage between the recombination modifiers and the affected loci, which

functionally mimics the asexual situation, and should therefore generate strong selection

on stress-induced recombination via outcrossing. Obligate seIfers share the same genetic

predicament as asexual individuals: a lack of genetic variation within lineages and the

potential to accumulate slightly deleterious mutations due to perpetual inbreeding (Heller

and Maynard Smith 1979; Kondrashov 1985; Lande and Schemske 1985; Charlesworth

et al. 1993). Outcrossing has the potential to introduce genetic variation and allow for the

production of offspring harboring fewer deleterious mutations than the parental

generation (Heller and Maynard Smith 1979; Bell 1982; Charlesworth et al. 1993; Peck et

al. 1999). In this way the genetic consequences of self-fertilization parallel those of

asexual reproduction (with the additional complication of homozygosity), and therefore

self-fertilizing organisms should also benefit from stress-induced facultative outcrossing.
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The long-term evolutionary stability of obligate self-fertilization as a reproductive

strategy has long been suspect (Stebbins 1957). In addition to a large body of theoretical

work, the phylogenetic positioning of several obligatory selfing species indicates that

selfing may be an evolutionary dead-end (Takebayashi and Morrell 2001). Ultimately, all

obligate self-fertilizing populations may be at risk of mutation accumulation due to the

systematic loss of lineage-specific genetic variation through perpetual inbreeding

(Charlesworth et al. 1993; Lynch et al. 1995). The threat of extinction is likely elevated

under stressful conditions, as the potential lack of genetic variation at the population level

may inhibit adaptation to novel environments. Continued self-fertilization under stress

will perpetuate these risks, but timely outcrossing may increase the efficacy of

recombination thus providing relief from mutation accumulation and facilitate rapid

adaptation. Many plant species once thought to rely solely upon obligate self-fertilization

as a reproductive strategy have been found to utilize a broad range of mixed mating

strategies by incorporating differing degrees of outcrossing with self-fertilization

(Goodwillie et al. 2005). We would therefore predict that stress-induced facultative

outcrossing might be a common, but currently unexplored, feature that many partial

seIfers utilize to periodically generate genetic variation under stressful conditions.
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Bridge to Chapter IV

In chapter II we identified deleterious mutations as one potential selective

pressure capable of driving the maintenance of outcrossing despite the inherent fitness

advantages of self-fertilization. Obligate selfing and mixed mating populations exposed

to marginally elevated mutation rates exhibited substantial reductions in fitness. In

chapter IV we test the fitness effects of a range of mutation rates in obligate selfing

populations. We find that the purging capabilities of self-fertilization are overwhelmed by

elevated mutation rates and identify a previously undocumented non-monotonic fitness

increase at a mutation rate at least fifteen times greater than the induced mutation rates

used in chapter II.
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CHAPTER IV

PARADOXICAL INCREASE IN FITNESS WITH INCREASING MUTATION RATE

IN CAENORHABDITIS ELEGANS

An unpublished paper co-authored with Aki H. Ohdera and Patrick C. Phillips

Introduction

Although mutations are an essential component of adaptive evolution, most

mutations that affect fitness are deleterious (Drake et al. 1998; Keightley and Eyre­

Walker 1999). As mutations arise in the genome, selection acts to remove deleterious

mutations segregating within natural populations. However, if selection is weak or the

expression of a mutation masked by a dominant allele, then deleterious mutations can

accumulate in the genome over time (Mukai 1964; Muller 1964). Despite their negative

effects on fitness, deleterious mutations are capable of drifting to fixation under certain

conditions (Wright 1931; Crow and Kimura 1970; Schultz and Lynch 1997;

Charlesworth and Charlesworth 1998; Lande 1998). Fixation of deleterious mutations

reduces the mean fitness of a population. The collective effect of fixing multiple

deleterious mutations can drastically reduce the mean fitness of a population, particularly

if the mutations interact in a negatively synergistic fashion. Although extreme, the
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process of fixing deleterious mutations and subsequent fitness decline can perpetuate

itself and eventually drive extinction (Gabriel et al. 1993; Schultz and Lynch 1997; Lande

1998; Vassilieva et al. 2000; Morran et al. 2009b). Therefore the ability to curb the

accumulation of deleterious mutations is essential for long-term population viability.

Mating systems dictate the way in which mutations can be partitioned among

offspring and therefore can have a profound influence on mutation accumulation from

generation to generation. Organisms that reproduce through self-fertilization are thought

to be at a lower risk of accumulating mutations as compared to outcrossing or asexual

organisms, particularly because selfing promotes the expression of recessive alleles

(Lande and Schemske 1985; Charlesworth and Charlesworth 1987; Charlesworth et al.

1993). Self-fertilization is the most extreme form of inbreeding, which consequently

increases the probably that selfing lineages will harbor homozygous loci relative to either

outcrossing or asexual lineages (Stebbins 1957; Lande and Schemske 1985; Charlesworth

and Charlesworth 1987). Therefore selfing lineages are more likely to produce offspring

that express recessive deleterious mutations and expose deleterious mutations to selection

that would otherwise be masked by dominant alleles (Lande and Schemske 1985;

Charlesworth and Charlesworth 1987). As these individuals are removed by selection,

offspring that did not inherit the mutation are left to propagate the lineage. Such selection

facilitates the removal, or purging, of recessive deleterious mutations from lineages and

ultimately the population as a whole, assuming that segregation permits the production of

offspring that do not carry the mutations.
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If selfing facilitates efficient purging, then selfing organisms may be capable of

incurring increased mutation rates with few fitness consequences. Conversely, if the

influx of deleterious mutations were to overwhelm the purging process by preventing the

production of offspring free of newly arisen deleterious mutations, then selfing organisms

would be at risk of fixing increasing amounts of deleterious mutations and become

subject to a mutation meltdown (Heller and Maynard Smith 1979; Lynch et al. 1995). In

general, elevated mutation rates lead to reductions in fitness (Schultz and Lynch 1997). If

most mutations are deleterious, then increasing the number of mutations incurred by an

individual should lead to the transmission and inheritance of more deleterious mutations.

Therefore, successive increases in mutation rate should generate progressively larger

reductions in fitness, assuming that the mutations accumulate in the genome and that the

effects of the mutations are additive or act synergistically (Schultz and Lynch 1997).

These predictions are generally upheld by most studies that have examined the fitness

effects of elevated mutation rates (Rosenbluth 1983; Drake et al. 1998; Davies 1999;

Manoel et al. 2007; Morran et al. 2009b).

Although individual mutations may be deleterious, genetic linkage has the

potential to alter the epistatic interactions between mutations arising within a lineage and

thus ultimately influence the fitness effects of those mutations (Heller and Maynard

Smith 1979; Hastings 1984). Self-fertilization has a profound influence on the efficacy of

recombination, which dictates the scope of genetic linkage within a lineage. As obligate

selfing increases the frequency of homozygous loci within a genome, the efficacy of

recombination within a lineage becomes limited due to the loss of allelic variants (Heller
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and Maynard Smith 1979; Hastings 1984). Therefore selfing lineages generally maintain

large portions of their genome in linkage disequilibrium (Charlesworth and Wright 2001).

This aspect of selfing should be beneficial when epistatic interactions between mutations

reduce their collective effect on fitness, as is the case with compensatory mutations

(Phillips et al. 2000). However, such tight linkage may greatly limit the effectiveness of

purging via selfing should deleterious mutations at multiple loci be too numerous to

segregate out to only a fraction of offspring (Heller and Maynard Smith 1979). If

accumulated mutations have reduced the fitness of all genomes in a population, then

genetic hitchhiking, facilitated by linkage, could potentially reduce population mean

fitness (Hill and Robertson 1966; Lynch et al. 1995; Charlesworth and Charlesworth

1998; Lande 1998). Deleterious mutations that escape purging can be carried to fixation

simply due to their association with genomes that have high relative fitness in the

population.

We used the predominantly selfing nematode Caenorhabditis elegans to test the

efficacy of purging and the role of linkage in populations exposed to a range of elevated

mutation rates. C. elegans is an androdioecious soil nematode with hermaphrodites that

reproduce through self-fertilization or outcross with males (Brenner 1974). Importantly,

hermaphrodites are incapable of outcrossing with one another. The xol-l mutation

~,etivates X-chromosome dosage compensation in C. elegans, which is necessary to

reduce X-chromosome expression in hermaphrodites as they possess two copies of the X­

chromosome, but lethal in males because they possess only one copy (Miller et al. 1988).

Therefore, C. elegans populations harboring the xol-l mutation are composed solely of
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hermaphrodites and as a result selfing is the only means of reproduction (Morran et al.

2009b).

To elevate mutation rates, we exposed obligate selfing populations of C. elegans

to increasing concentrations of the chemical mutagen ethyl methanesulfonate (EMS).

EMS is commonly used to elevate mutation rates in a wide variety of organisms due to its

limited toxicity (relative to other mutagens) and its tendency to induce point mutations,

particularly AfT to GfC transitions (Anderson 1995). Another valuable aspect of EMS

mutagenesis is that induced mutation rates are positively correlated with increasing EMS

concentration, therefore mutation rates can be titrated through EMS exposure

(Rosenbluth 1983).

We found that while increases in mutation rates easily overcame any presumed

benefits of purging, very high mutation rates yielded an unexpected increase in fitness.

This unexpected fitness increase may be the direct result of a previously undocumented

interaction between genetic linkage maintained by obligate self-fertilization and

increasing rates of beneficial or compensatory mutations at very high mutation rates.

Results

Mutation rate

A study by Rosenbluth and colleagues (Rosenbluth 1983) demonstrated that

mutation rates increase exponentially with increasing EMS concentrations at low

concentrations (OmM to 30mM) and then increase linearly at greater concentrations (up

to 60mM). We tested this relationship at higher concentrations by calculating the relative

EMS induced mutation rates at OmM, 40mM, 80mM, and 100mM by measuring the
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reversion rate of C. elegans mutants exposed to each EMS concentration. Calculating the

reversion rate of a known point mutation with clear phenotypic effects after exposure to

EMS is a means of estimating the induced mutation rate of the EMS concentration in

question. Based on reversion rate measurements, we found that the mutation rate

increased approximately linearly with increasing EMS concentration (Figure 4.1). The

induced mutation rate at 100mM EMS was significantly greater than the induced

mutation rate at 80mM (Figure 4.1; F1,194 = 26.19, P < 0.001), while the induced rate at

80mM was also significantly greater than that induced by 40mM (Figure 4.1; F1,194 =

7.15, P = 0.008).
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Figure 4.1. EMS induced mutation rates.
Replicate populations of the uncoordinated mutant strain CB665 were mutagenized with
a range of EMS concentrations, the Fl generation scored for reversion of the
uncoordinated phenotype, and reversion rates calculated for each EMS concentration.
The reversion rate scaled with the EMS concentration. The highest EMS concentration,
100mM, induced the highest reversion rate among the concentrations assayed. Error bars
represent two standard errors of the mean.
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Toxicity

The toxicity of EMS also increases with increasing EMS concentration (Figure

4.2). Although generally considered among the most benign mutagens, EMS is quite

toxic at high concentrations, inducing greater than 50% mortality rates (Figure 4.2). The

mortality rate induced by exposure to 80mM is significantly greater than that induced by

exposure to 40mM (Figure 4.2; F1,36= 132.84, P < 0.001), however, exposure to 100mM

does not induce significantly greater mortality than 80mM (Figure 4.2; F1,36 = 0.49, P>

0.05).
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Figure 4.2. EMS induced mortality rates.
Replicate populations of CB665 were exposed to different EMS concentrations.
Following mutagenesis the populations were scored for live and dead worms and the
mean mortality rate calculated for each EMS concentration. Overall, the EMS induced
mean mortality rate, or toxicity, increased with increasing EMS concentration. The
100mM EMS exhibited the greatest level of toxicity. Error bars represent two standard
errors of the mean.
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Dose response curves

When exposed to increasing EMS concentrations up to 80mM for five generations

of mutagenesis, obligate selfing C. elegans populations exhibit progressively lower

fecundity (Figure 4.3). However, populations exposed to greater EMS concentrations

exhibit surprisingly high fecundity under the same experimental regime (Figure 4.3).

Fecundity after exposure to 100mM of EMS is comparable to fecundity after exposure to

5mM and 10mM (Figure 4.1; F1,486 = 0.02, P> 0.05) and significantly greater than

fecundity after exposure to 20mM, 40mM, and 80mM (Figure 4.1; F1,486 = 28.8, P <

0.001).
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Figure 4.3. EMS dose response curve.
Replicate populations of PX384 were exposed to five generations of mutagenesis across a
range of different EMS concentrations. Mean fecundity generally decreased with
increasing EMS concentration, however, exposure to 100mM significantly elevated
fecundity relative to much lesser concentrations of EMS. Error bars represent two
standard errors of the mean.
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To test the possibility of pleiotropic effects ofxol-l driving our results (Figure

4.3), we generated another EMS dose response curve using highly selfing wildtype N2

populations, the same genetic background as was used to generate the previous curve

(Figure 4.3) but without the xol-l mutation. Although males were produced in these

populations, we manually removed them before mating, limiting outcrossing rates to less

than 1%. We exposed them to a subset of the EMS concentrations that were investigated

in the initial dose response curve, but otherwise maintained identical experimental

design. Again, we found that purging was overwhelmed by elevated mutation rates and

again we observed the fitness increase at 100mM of EMS (mean fecundity OmM = 113,

mean fecundity 40mM = 41, mean fecundity 100mM = 102; FI,203 = 112.79, P < 0.001).

Next, we tested the role of genetic background in our previous dose response

curves. To do this, we consistently exposed populations with a genetic background from

a different and highly divergent natural isolate (CB4856 from Hawaii) carrying the xol-l

mutation to a range of EMS concentrations. After three generations of mutation

accumulation we found that purging was again overwhelmed at all concentrations (Figure

4.4). However, prolonging the experiment to five generations of exposure to EMS, as in

our previous dose response curves, generated a fitness increase at 100mM (Figure 4.4;

F I,22S= 154.67, P < 0.001), while all other concentrations continued to decline in fitness

(Figure 4.4). Additionally, the obligate selfing CB4856 populations maintained at natural

mutation rates lost fitness over time (Figure 4.4; F2,48 = 9.56, P < 0.001). Therefore,

failure to purge deleterious mutations and the ability to recapitulate the unexpected

fitness increase at high mutation rates were not dependent upon genetic background.
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Figure 4.4. Time series EMS dose response curve.
Replicate populations of PX3 85 were exposed to five generations of mutagenesis across a
range of different EMS concentrations. Mean fecundity was assessed prior to
mutagenesis, after three generations of mutation, and after five generations of mutation.
The mutated populations (solid lines) exhibit reduced mean fecundity, relative to the
control populations (dashed line), after three generations. Then, after five generations, the
populations exposed to 100mM exhibit a substantial increase in mean fecundity while all
of the other mutated populations exhibit further reductions in mean fecundity. Error bars
represent two standard errors of the mean.

A similar response is observed when the mutation accumulation process is

continued until populations were driven extinct. Populations exposed to 100mM EMS

endured significantly more generations of mutation before going extinct as compared to

populations exposed to lesser concentrations of EMS (Figure 4.5; F1,16 = 48.78, P <

0.001). The survival time of populations exposed to 100mM EMS was twice that of

populations exposed to 80mM EMS (Figure 4.5). Thus the fitness increase at 100mM is

not transient, but is persists over time.
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Figure 4.5. EMS induced extinction rates.
Replicate populations of PX385 were continually exposed to a range of different EMS
concentrations and driven to extinction. We calculated the mean time to extinction for
each EMS concentration. Treatment with 100mM EMS required more generations of
exposure to induce extinction than all other EMS treatments. Control populations, with
no EMS exposure, did not go extinct during the course of the experiment. Error bars
represent two standard errors of the mean.

EMS selection

Might the populations exposed to high concentrations of EMS have simply

evolved resistance to EMS itself? We tested this hypothesis by exposing CB4856

populations that had previously exhibited the fitness increase at 1OOmM to a range of

different EMS concentrations for five generations of mutagenesis. If resistance had

evolved then we would expect a decreased influence of EMS at all concentrations.

Instead, the dose response curve we generated from "pre-adapted" populations (Figure

4.6) closely resembled our original dose response curve (Figure 4.3). The populations

exposed to 100mM EMS exhibited a fitness increase relative to the other mutagenized

populations (Figure 4.6; F1,275 = 84.68, P < 0.001), and had a higher, but not significantly
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different, mean fitness than populations that were not mutagenized for the second dose

response curve (Figure 4.6; F1,275 =1.17, P >0.05). In other words, further exposure to

100mM EMS generated greater mean fitness than no further exposure to EMS. Therefore,

the fitness increase at 100mM is not the product of evolved EMS resistance in

populations exposed to 100mM EMS.
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Figure 4.6. Recapitulated EMS dose response curve.
Populations of PX385 that were previously exposed to 100mM for five generations of
mutation, and exhibited a fitness increase, were split into replicate populations and
exposed to another five generations of mutation at a range of different EMS
concentrations. After the second mutagenesis regime the populations exposed to 100mM
again exhibited increased fitness relative the other mutagenized populations. Error bars
represent two standard errors of the mean.

Discussion

Mutations can interact with mating systems in multiple ways. Most of the work in

mating system theory has focused on single locus effects and the fact that potential

inbreeding depression can be "purged" from selfing populations by exposing these

mutations to natural selection at higher frequency than would be expected in outcrossing
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populations (Lande and Schemske 1985; Charlesworth and Charlesworth 1987;

Charlesworth et al. 1993). Purging can prevent fitness loss only if all of the newly arisen

deleterious mutations are removed from a lineage. Mutations at multiple loci within a

lineage have the potential to severely compromise purging and permit mutation

accumulation (Heller and Maynard Smith 1979). Mutation can also interact with mating

system through linkage. Linkage can permit mutations that accumulate to sweep to

fixation through genetic hitchhiking, potentially reducing population mean fitness in

seIfers due to particularly tight and widespread linkage relative to outcrossing (Hill and

Robertson 1966; Hastings 1984; Charlesworth et al. 1993). However, the high levels of

linkage disequilibrium generated by selfing may act to increase population mean fitness

in the case of compensatory mutations. The epistatic interactions required to maintain the

fitness benefits of compensatory mutation are more likely to be maintained in selfing

populations relative to outcrossing populations due to linkage.

Purging in obligate seljing populations

We exposed obligate selfing populations to a range of different mutation rates to

test the efficacy of purging at multiple loci. As exposure to increasing EMS

concentrations increased the mutation rate (Figure 4.1) (Rosenbluth 1983) and thus the

number of mutations arising in the genome, we see that purging in obligate selfing C.

elegans populations is overwhelmed by elevated mutation rates as evidenced by the loss

offitness at all EMS concentrations (Figure 4.3). In fact, even marginal increases in

mutation rate are capable of overwhelming purging in obligate selfing populations under

strong selection against mutation accumulation (Morran et al. 2009b). Therefore, the
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efficacy of purging as a mechanism for preventing mutation accumulation may be quite

limited, particularly when dealing with mutations of small to moderate effect size at

multiple loci.

Obligate selfing C. elegans populations with an N2 background maintain fitness

over time when under selection (Morran et al. 2009b). So, it seems that purging at natural

mutation rates may be sufficient to prevent mutation accumulation in N2. However, both

this study (Figure 4.4) and our previous work (Morran et al. 2009b) demonstrate that

obligate selfing populations with a CB4856 background gradually lose fitness over time.

Many different factors may contribute to this fitness loss, but it could be that purging in

the CB4856 background is an insufficient means of avoiding mutation accumulation.

This insufficiency may be the result of a greater natural mutation rate or reduced

mutational robustness in the CB4856 strain relative to N2. Such differences in mutational

decay have previously been identified in C. elegans and among several other nematode

species (Baer et al. 2005). Interestingly, the CB4856 strain naturally maintains much

greater outcrossing rates than the N2 strain (Teot6nio et al. 2006) and does not lose

fitness under conditions permitting outcrossing (Morran et al. 2009b). Contrary to selfing,

outcrossing is capable of breaking apart groups of linked genes, thus reducing the

probability of fixing accumulated mutations (Felsenstein 1974; Barton 1995). It may be

that once purging is overwhelmed by mutations at multiple loci, the genetic linkage

facilitated by selfing traps populations at a level of reduced fitness.
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Fitness increase at high mutation rate

As expected, given that purging was overwhelmed, we found that substantial

increases in mutation rate (Figure 4.1) generally led to significantly larger reductions

fitness (Figure 4.3). However, contrary to expectation, we identified a non-monotonic

fitness response generated by a remarkably high mutation rate (Figure 4.3). By measuring

fitness in four separate dose response curve experiments (Figures 4.3, 4.4, 4.6) and

measuring extinction rates in populations with prolonged EMS exposure (Figure 4.5), we

find that populations in each experiment exhibit a relative increase in fitness after regular

exposure to 1OOmM EMS.

The increase in fitness is a cumulative result of several exposures to IOOmM

(Figure 4.4), as three generations of mutagenesis were insufficient to drive the fitness

increase. Therefore the increase must be driven by a mechanism with a cumulative basis,

like mutation accumulation. We tested several aspects of our experimental design to

identify a mechanism driving the increase. We see that IOOmM induces greater mutation

rates (Figure 4.1) and equal or greater toxicity than lesser concentrations of EMS (Figure

4.2). Therefore, the fitness increase is not a direct product of altered mutagenic properties

of EMS at IOOmM. The fitness increase occurs in N2 populations both with (Figure 4.3)

and without the xoi-I mutation, ruling out the possibility of pleiotropic effects of the xoi­

I mutation. Further, the fitness increase is present in populations with either an N2

(Figure 4.3) or CB4856 (Figure 4.4) genetic background. Finally we found that the fitness

increase is not the product of selection during the course of the experiment, as exposure

to IOOmM did not make the populations more resistant to EMS (Figure 4.6). It may be
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that the fitness increase generated by exposure to 100mM EMS is the product of

unexpected genomic consequences of high mutation rates coupled with the genomic

effects of self-fertilization.

The idea that large increases in mutation rate cause major reductions in fitness is

based on the belief that most mutations with fitness effects are deleterious and that the

effects ofthese deleterious mutations are either additive or negatively synergistic.

However, compensatory mutations increase fitness by interacting epistatically with

deleterious mutations in the genome (Phillips et al. 2000). Therefore, a compensatory

mutation itself may have little or perhaps negative fitness effects, but that same mutation

has positive fitness effects when expressed in a specific genetic background. Silander et

al. (2007) demonstrated that deleterious mutations are context-dependent: as fitness

declines, the ratio of beneficial to deleterious mutations increases. Therefore, the

classification of mutations as deleterious depends greatly upon the genetic background

into which that mutation is incorporated, and fewer mutations have deleterious effects in

genetic backgrounds with poor fitness. So, elevating the mutation rate may reduce fitness

through the influx of deleterious mutations. However, as fitness declines, the ratio of

beneficial to deleterious mutations may shift to a point at which a significant proportion

of new mutations are beneficial, or compensatory, and their collective effect begins to

elevate fitness, which could be most pronounced at high mutation rates and would likely

only materialize after several generations of mutation accumulation.

Compensatory mutation has also been shown to facilitate substantial fitness

recovery in mutation accumulation lines and natural populations previously overwhelmed
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by accumulated deleterious mutations (Estes and Lynch 2003; Howe and Denver 2008).

Such fitness recovery via compensatory mutation may operate at high mutation rates at

which the sheer volume of mutations being incorporated into the genome increases the

probability of compensatory mutation. The mutation rate induced by 100mM EMS may

represent a point at which the dynamics between deleterious mutations and compensatory

mutations are somehow more evenly balanced than at other points along the spectrum of

mutation rates.

Self-fertilization would playa critical role under this scenario, driving the fitness

increase in conjunction with the dynamics of mutation. All of the experimental

populations utilized in this study reproduced either predominantly or solely through self­

fertilization. The widespread homozygosity resulting from prolonged periods of selfing is

a very effective means of maintaining linkage groups (Charlesworth and Wright 2001),

especially those favored by selection. If exposure to 100mM were to increase the rate of

compensatory mutation relative to lesser EMS concentrations, then selfing would likely

permit the epistatic interactions between loci to be maintained for many generations (Hill

and Robertson 1966; Heller and Maynard Smith 1979; Felsenstein 1974; Hastings 1984;

Barton 1995). Such a phenomenon occurring throughout the genome could potentially

lead to increased fitness despite high mutation rates.

Regardless of the mechanism driving the fitness increase exhibited by populations

exposed to 100mM EMS, the result is a testament to the resiliency of the genome.

Consistent exposure to such high mutation rates should wreak havoc on the genome, and

with a mean extinction rate of eight generations of mutation (Figure 4.5) it is fair to say
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that exposure to 80mM EMS does just that. However, the genome is able to recover a

large proportion of the fitness lost at 80mM when exposed to 100mM EMS (Figure 4.3).

This result is quite surprising and challenges the long-held beliefs concerning the

relationship between mutation rates and fitness.

Materials and Methods

C. elegans strains are stock populations originally derived from a single

individual isolated from a natural population. The N2 and CB665 strains were obtained

from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN).

The PX384 and PX385 strains are described in Morran et al. (Morran et al. 2009b).

All populations were reared on agar plates constructed by pouring 24 mL of

autoclaved NGM Lite (US Biological, Swampscott, MA) into a 10 cm Petri dish. Each

plate was seeded with 5 ~L of OP50 Escherichia coli, and all populations maintained at

20DC.

Dose response curves

All dose response curve experiments (Table 4.1) were conducted by exposing

approximately one thousand individuals (or the entire population if the census size

dropped below one thousand individuals) from each replicate population (Table 4.1) to a

specific concentration of EMS (cat. #M0880, Sigma-Aldrich, St. Louis, MO), as

described by Anderson (1995), every other generation for ten generations or five

mutagenesis events. Control or "0" mM populations were subject to the same buffer and

mixing procedures as mutated populations, however no EMS was added to the control

populations during mixing. All populations were chunk transferred to freshly seeded
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plates every other generation opposite the generations of mutagenesis treatment

(Stiernagle 2006).

Table 4.1. Dose response curve logistics.

Dose C. elegans Genetic xol- EMS Replicate
Response Strain Background 1 Concentrations Populations

Curve (mM) per
Concentration

1 PX384 N2 Yes 0, 5, 10, 20, 40, 4
80, 100, 120,

140
2 N2 N2 No 0,40,100 3
3 PX385 CB4856 Yes 0, 40, 60, 80, 5

100
4 PX385 CB4856 Yes 0, 40, 60, 80, 5

Previously 100
mutated at

100mM

After five generations of mutagenesis (or three generations (Table 4.1)) and a

recovery period of at least two generations, we measured the mean lifetime self-fecundity

of fifteen to twenty arbitrarily sampled L4 (late stage larval) individuals from each

replicate concentration at each EMS concentration. Mean lifetime fecundity can serve as

a proxy for fitness in C. elegans (Baer et al. 2005). To assess mean lifetime fecundity,

single worms were picked to 35 x 10mm plates seeded with OP50 and allowed to self.

We counted the total number of offspring per worm four days after picking, allowing

time for the offspring to mature to the L3 larval stage, therefore incorporating offspring

survival from egg to L3 into our fecundity counts. Individuals that did not produce

offspring were counted as having a mean fecundity of zero ifthe presence of worm tracks

indicated that the worm was not killed during transfer. Otherwise worms with no
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offspring or tracks were excluded from our analysis. An ANOVA was performed in JMP­

IN 5.1 (SAS Institute, Cary, NC) testing the effects of EMS concentration on mean

fecundity. Additionally, Tukey's HSD tests were performed post-hoc for specific

comparisons between EMS concentrations.

Extinction rate

Four replicate PX385 replicate populations were exposed to OmM, 40mM, 60mM,

80mM, and 100mM EMS using the same experimental regime employed for running the

previously described dose response curves. However, instead of ending the experimental

regime after five generations of mutagenesis, we extended the duration of the experiment

indefinitely and measured the time to extinction for each population. If one thousand

worms were not available we transferred the maximum number possible. The presence of

fewer than five worms on a plate was counted as extinction because such low numbers

can not be sustained through the buffer and mixing procedures required for EMS

mutagenesis (Anderson 1995). An ANOVA was performed in JMP-IN 5.1 testing the

effects of EMS concentration on the mean time to extinction. Tukey's HSD tests were

performed post-hoc for specific comparisons between EMS concentrations.

Toxicity

Ten replicate populations ofPX385 with approximately one thousand L4 stage

individuals apiece were given a single exposure to OmM, 40mM, 80mM, or 100mM

EMS. After mutagenesis the worms were transferred to a freshly seeded plate and

allowed to mature. Mortality was measured by counting a total number of 200 individuals

across a transect representing approximately 20% of the plate and scoring individuals as
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either living or dead (by poking the worms and assessing movement). Mortality rates

were calculated by determining the frequency of dead worms relative to the total counted.

We performed an ANOVA in JMP-IN 5.1 testing the effects of EMS concentration on

mortality rate. Tukey's HSD tests were performed post-hoc for specific comparisons

between EMS concentrations. The data significantly deviated from normality, so we

conducted the nonparametric Wilcoxon signed-rank test, which was in agreement with

the ANOVA, but lacks the capability to conduct specific comparisons.

Mutation rate

The mean relative mutation rates of OmM, 40mM, 80mM, and 100mM EMS were

measured with a mutator assay using the CB665 strain, which possess the unc-58 (e665)

allele. These worms exhibit a dominant uncoordinated phenotype that greatly impairs

movement (Park and Horvitz 1986). Reversion of the uncoordinated phenotype is caused

by intragenic and extragenic suppressor mutations that restore normal movement (Park

and Horvitz 1986). Fifty replicate populations of approximately two thousand L4

individuals apiece were mutated for one generation at each designated EMS

concentration. Mutagenesis was conducted as described in Anderson (1995). The

populations were transferred to freshly seeded plates after mutagenesis and allowed to

self-fertilize. Their adult offspring were then scored for the presence or absence of

individuals with restored movement, thus indicating reversion. Then we calculated the

mean mutation rate for each EMS concentration.
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The total number of mutagenized worms that produced offspring in each

population was calculated as:

t = x (1 - m) ,

where t is the number of mutagenized worms that produced offspring, m is the mortality

rate specific to each EMS concentration, and x is the number of mutagenized individuals.

The estimated number of revertants in each population was calculated as:

r=y(zxt)+y,

where r is the estimated number of revertants, y is the measured value of revertants in

each population (measured binomially where a value of one indicated the presence of

revertants and a value of zero indicated no revertants), and z is probability of multiple

reversions occurring in the same population as calculated for each EMS concentration

with fifty populations per concentration:

50

L(y/f)
z = ..!.=i-"-.l--

50
The mutation rate for each population was calculated as:

j.1=r/t,

where J1 is the mutation rate for each population. We then calculated the mean mutation

rate for each EMS concentration. We performed an ANOVA in JMP-IN 5.1 testing the

effects of EMS concentration on reversion rate. Tukey's HSD tests were performed post-

hoc for specific comparisons between EMS concentrations. The data significantly

deviated from normality, so we conducted the nonparametric Wilcoxon signed-rank test,



which was in agreement with the ANOVA, but lacks the capability to conduct specific

comparisons.
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CHAPTER V

CONCLUSION

The unexpected prevalence of outcrossing has been a troubling issue in

evolutionary biology for several decades. Many species reproduce via outcrossing despite

the numerical cost of producing male offspring relative to self-fertilization and asexual

reproduction. Although evolutionary theory had previously identified several potential

conditions that could favor outcrossing and male production over selfing and asexual

reproduction, no empirical studies had explicitly tested those theories and identified

selective pressures capable of facilitating the evolution and maintenance of outcrossing.

We used C. elegans as a model system to test both deleterious mutation

accumulation and changes in ecological conditions as selective pressures capable of

favoring outcrossing over self-fertilization. By genetically manipulating C. elegans

mating system, we exposed populations with common genetic backgrounds, but different

mating systems, to the conditions predicted to favor outcrossing. We found that ability of

obligate selfing populations to purge deleterious mutations was compromised with little

or no increase in mutation rate. Whereas obligate selfing populations with elevated

mutation rates fixed deleterious mutations and lost fitness over time, mutated obligate

outcrossing populations gained fitness despite the influx of deleterious mutations.
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Exposed to novel rugged terrain or a virulent pathogen, obligate outcrossing populations

adapted to the new selective pressure, but the obligate selfing populations failed to

exhibit an adaptive response. We further demonstrated the value of outcrossing in

preventing the fixation of deleterious mutations and facilitating adaptation by studying

populations with mixed mating systems under both conditions. The mixed mating

populations were capable of either self-fertilization or outcrossing, and predominantly

reproduce via selfing under standard conditions. However, when selective pressure was

applied to the mixed mating populations, we found that the populations evolved greater

outcrossing rates in response. Therefore, we identified both deleterious mutations and

changing ecological or environmental conditions as selective pressures capable of

favoring the evolution and maintenance of outcrossing. This is the first work that

empirically demonstrates the evolutionary benefits of producing males.

We also identified facultative outcrossing as a novel life history characteristic of

C. elegans. Although C. elegans populations predominantly reproduce through selfing,

specific strains of C. elegans outcross much more readily after exposure to stressful

environmental conditions. Because changing environmental conditions favor outcrossing

over selfing, the environmentally induced shift in mating system may confer substantial

fitness benefits given the foraging ecology of C. elegans. However, facultative

outcrossing may not be limited to just C. elegans. The ability to recognize specific

environmental cues and shift from a highly selfing to outcrossing mating system may be a

major life history component of many highly selfing species.
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C. elegans males and outcrossing have been the subject of debate in the mating

system literature. Because males are generally rare and selfing is the predominant mating

system utilized by C. elegans, males and outcrossing have been deemed evolutionary

relics, still remaining from C. elegans dioecious ancestor. Our work refutes these claims

and clearly demonstrates the conditional value of males in several strains and necessity of

outcrossing in at least one strain.

Given the conditional value of males and outcrossing, facultative outcrossing,

rather than obligate outcrossing, may be the most effective means of utilizing males in C.

elegans populations. It is clear that maintaining high frequencies of males is costly from a

reproductive standpoint. However, moderate amounts of outcrossing are sufficient to curb

the fixation of deleterious mutations at natural mutation rates and sufficient to generate

an adaptive response, though a lesser response than obligate outcrossing. Therefore,

facultative outcrossing may be the most effective means of avoiding the cost of consistent

or excessive male production and gaining the benefits of periodic bursts of moderate to

high levels of outcrossing.

The selective pressures that favor outcrossing over selfing, deleterious mutations

and changing ecological conditions, are ubiquitous obstacles which all species encounter.

These problems likely plague asexual species as well as selfing species, due to the value

of effective recombination in selecting for outcrossing. As asexual lineages do not

undergo recombination, outcrossing would likely be favored over asexual reproduction

for the given conditions as well. Although selfing and asexual reproduction enjoy an

inherent numerical advantage over outcrossing, the prevalence of deleterious mutations
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and changing ecological conditions make the prevalence of outcrossing much less

troubling for the field of evolutionary biology. Therefore, the initial threat to the theory of

evolution by natural selection posed by Maynard Smith's cost of sex model and the

prevalence of outcrossing may now be much less imposing. Nonetheless, much work

remains in order to develop a fully comprehensive understanding of the evolution and

maintenance of mating systems.
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Methods

C. elegans strains are stock populations originally derived from a single

individual isolated from a natural population. N2 and CB4856 (originally from Bristol,

England and Hawaii, USA, respectively) and the GFP marked strain JK2735, were

obtained from the Caenorhabditis Genetics Center (University of Minnesota,

Minneapolis, MJ\I).

C. elegans is an androdioecious soil nematode with self-fertile hermaphrodites

and males that facilitate outcrossing, no outcrossing occurs between hermaphrodites

(Brenner 1974). Sex determination in C. elegans is genetically based where

hermaphrodites harbor two copies of the X-chromosome and males possess a single X­

chromosome as their only sex chromosome. C. elegans mating system can be

manipulated using two specific mutations, xol-l andfog-2. The xol-l mutation induces X

chromosome dosage compensation resulting in reduced expression of the X

chromosomes (Miller et al. 1988). The xol-l mutation is lethal in males because they

posses only a single copy of the X chromosome, but is relatively benign in

hermaphrodites as they require X chromosome dosage compensation. The removal of

males from populations leaves only selfing hermaphrodites, thus producing obligate

selfing populations. In contrast the fog-2 mutation disables sperm production in

hermaphrodites generating "female" C. elegans (Schedl and Kimble 1988) and obligate

outcrossing populations. The C. elegans "wildtype" outcrossing rate varies among

different strains, although self-fertilization is the prominent means of reproduction in all

known strains (Teot6nio et al. 2006). In the canonical strain, N2, the outcrossing rate is
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substantially less than 1% (Teot6nio et al. 2006). However, the CB4856 strain maintains

an outcrossing rate between 20% and 40% (Teot6nio et al. 2006). By backcrossing the

mating system altering mutations separately into both the N2 and CB4856 genetic

backgrounds, we generated congenic strains with three different levels of outcrossing

(obligate selfing, wildtype, and obligate outcrossing) and identical genetic backgrounds

shared between those levels of outcrossing.

Strain Construction

CB4856 and N2 individuals were adapted to the MRP for twenty generations, and then

inbred for ten generations via single-worm transfer. The xol-l andfog-2 mutations were

separately backcrossed into each strain for five generations and subsequently inbred for

ten generations.

MOUNTAIN RANGE PLATE

C. elegans laboratory environment generally exerts very little selective pressure.

Individuals with severe disabilities are capable of feeding and reproducing as the worms

are essentially surrounded by their bacterial food source. We developed the Mountain

Range Plate (MRP) (Figure A2.Ia) to apply stronger selective pressure on populations.

The MRP environment requires individuals to locate their food and possess the ability to

scale steep and uneven terrain to reach their food, mature, and reproduce. This added

selective pressure provides the context to observe an adaptive response and facilitates

more efficient purging of deleterious mutations in populations subjected to elevated

mutation rates.
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Table A2.11 Strain designations, genetic backgrounds, and outcrossing rates of

experimental populations generated and used in this study.

Genetic Outcrossing Level
Background

Obligate Wildtype Obligate Outcrossing
Selting

CB4856 PX384 PX382 PX386

N2 PX385 PX383 PX387

Plate Construction

Mountain range plates (MRP) were constructed by pouring 24 mL of autoc1aved

NGM Lite (US Biological, Swampscott, MA) into a 10 em Petri dish. Once the NGM

Lite was poured into the dish and still warm, two 5 mL scoops of vermiculite (autoc1aved

and filtered through a 1mm sieve using only pieces larger than 1mm2
) were poured across

the agar in a straight line (dividing the dish in half) and maintaining roughly the same

height across the vermiculite line. The vermiculite line serves as a barrier across the plate

to provide a more complex environment than a standard C. elegans Petri dish. One side

of the MRP (as divided by the vermiculite) was seeded with 5 flL of OP50 Escherichia

coli, requiring the worms to crawl over the vermiculite to reach their food source. All

populations maintained on MRP's were stored at 20°C. Passage of a healthy population

across the MRP reduces the number of breeding individuals by approximately 60%

relative to passage on a plate with no vermiculite barrier (F2,16= 148.76, P < 0.001).
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SERRATIA SELECTION PLATE

We developed the Serratia Selection Plate (SSP) (Figure A2.1 b) to ensure that C.

elegans were exposed to a bacterial pathogen but also to provide us with the opportunity

to select those individuals that survived and reproduced on the E. coli bacterial lawn.

The SSP requires that the worms either resist the S. marcescens they consume or avoid

consuming S. marcescens and then navigate to the E. coli and reproduce.

Plate Construction

Serratia selection plates (SSP) were constructed by pouring 24 mL of autoc1aved

NGM Lite into a 10 cm Petri dish. One side of the plate was seeded with 10 flL of S.

marcescens strain 2170 taken from a culture grown overnight in LB at 37°e (Pujol et al.

2001). The control plates were seeded with heat-killed S. marcescens that was heated at

800e for 4 hours and concentrated in a 1OmL: 1mL ratio prior to seeding (Kurz et al.

2003). The opposite side ofthe SSP was seeded with 5 f.lL of OP50 Escherichia coli.

After allowing the bacteria to grow at room temperature (~200e) overnight, 20 f.lL of

ampicillin (lg/mL) was streaked across the plate between the two bacterial lawns. This

setup required the worms to crawl through S. marcescens (live or heat-killed) and over

ampicillin to reach their food source. All populations maintained on SSP's were stored at

20oe. Passage of a healthy population on the live S. marcescens lawn reduces the number

of breeding individuals by approximately 80% relative to passage on a plate with heat­

killed S. marcescens (F1,114 = 1340.7, P < 0.001).
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EXPERIMENTAL EVOLUTION ON MOUNTAIN RANGE PLATES

Experimental Design

Five replicate populations of PX382, PX383, PX384, PX385, PX386, and PX387

were exposed to 0.5 mM EMS, every other generation for fifty generations while being

passaged on the MRP. Five replicate populations of each strain were also maintained on

the MRP for fifty generations with no EMS exposure as a control.

Transfer on MRP's

Approximately five hundred LI-L4 (larval) individuals were transferred in 150

flL ofM9 buffer to the MRP, on the side of the vermiculite that did not contain OP50

bacteria. Populations were transferred to a fresh MRP each generation. To ensure that

bacteria transported with the worms did not grow on the transfer side ofthe vermiculite

20 flL of ampicillin (1 g/mL) was also added to the transfer side in combination with the

worms. Approximately 40% ofthe worms transferred in healthy non-adapted populations

reach the bacteria, feed, mature and reproduce, therefore roughly two hundred individuals

were successfully transferred each generation. Only the offspring of individuals that

reached the bacteria were transferred to a fresh MRP to begin the next generation and

. repeat the preceding procedure. As mutations accumulated and fitness declined in some

populations the rate of successful transfer decreased over time resulting in fewer than five

hundred individuals per transfer and fewer than two hundred individuals reaching the

bacterial food source. Drift must be partially responsible for the fitness decline in the

obligate selfing and wildtype populations once population size was significantly reduced

due to mutation accumulation. However, it is unlikely that the initial decline in mean
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fitness was the product of drift because the effects of drift should be minimal at the initial

population sizes used in our experiment (Schultz and Lynch 1997).

EMS Mutagenesis

We used the chemical mutagen ethyl methanesulfonate (EMS) as a means to

elevate mutation rates, therefore allowing us to titrate the influx of mutations into C.

elegans populations. Mutated populations were exposed to 0.5 mM EMS (cat. # M0880,

Sigma-Aldrich, St. Louis, MO), as described in Anderson (1995), every-other generation

during transfer between MRP's. Control populations were subject to the same mixing

procedures as mutated populations, however no EMS was added to the control

populations during mixing.

Calculation ofmutation rates

Approximately 92% of the mutations induced by EMS are G/C to AIT transitions

(Anderson 1995). Accounting for the number of G/C bases in the haploid genome of C.

elegans (3.5 x 107 bases) (C. elegans Genome Consortium 1998) and the mutation rate at

0.5mM EMS (8.8 x 10-8 mutations per site per generation as estimated from Rosenbluth

et al. (1983) our mutagenesis induced approximately 3.1 G/C to AIT transitions per

haploid genome per generation as calculated in Davies et al. (1999). C. elegans natural

mutation rate, 2.1 x10-8 mutations per site per generation (Denver et al. 2004) in the N2

strain, produces approximately 0.74 G/C to AIT transitions per haploid genome per

generation. The EMS concentration of 0.5mM thus elevated the mutation rate to a level

that produced G/C to AIT transitions at a rate approximately four times greater than the

natural mutation rate.
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Competitive fitness assay

Stock populations of the strains PX382, PX383, PX384, PX385, PX386, and

PX387 were frozen at generation zero, before mutagenesis. The replicate populations of

each strain were frozen after exposure to the MRP for fifty generations (twenty-five

generations of exposure to elevated mutation rates in the mutated populations). A sample

from all populations at generation zero and generation fifty was thawed and permitted

two generations of standard laboratory maintenance (lOcm Petri dishes filled with NGM

Lite seed with 10!lL ofOP50 stored at 20De) to recover from thawing.

Three replicate competitive fitness assays were conducted for each replicate

population (both control and mutagenized populations) at generation fifty and six

replicate competitive fitness assays were conducted for each stock strain at generation

zero. Approximately one hundred worms from an individual replicate population were

liquid transferred in M9 buffer to an MRP. Approximately one hundred worms from a

GFP-marked tester strain, JK2735, were simultaneously transferred to the same location

on the same MRP, and 20 !lL of ampicillin also added to the spot (to kill any residual

transferred E. coli). After allowing the worms to cross the vermiculite barrier and

reproduce, the offspring were collected as L4 larva and liquid transferred in M9 buffer to

an unseeded 10cm Petri dish. Approximately two hundred individuals were assessed for

GFP expression and counted along a cross-section of the Petri dish. The percent change

in mean fitness was calculated for each replicate population as (x - y)/y, where x is the

ratio of replicate population worms from generation fifty to tester strain worms and y is

the ratio of replicate populations from generation zero relative to the same tester strain.
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A positive percent change in fitness is indicative of fitness gained during the

experiment; as the experimental population out-competed the GFP tester strain relative to

the generation zero stock performance, thus decreasing the GFP ratio at generation fifty.

However, a negative percent change in fitness is indicative of fitness lost during the

experiment.

All generation zero populations had comparable fitness as measured relative to

the tester strain. One replicate population of the mutagenized PX384 strain went extinct

after forty-seven generations and was counted as having a GFP ratio of 1. Another

replicate population of the mutagenized PX384 strain failed to cross the vermiculite

barrier in any of the replicate competitive fitness assays, therefore it was also counted as

having a GFP ratio of 1, as only the tester strain reproduced. The tester strain possessed a

dominant marker, therefore cross-progeny between experimental strains and the tester

strain would be counted as tester strain progeny in the competitive fitness assay. Because

the tester strain possessed few (.01 %) males, only the wildtype and obligate outcrossing

populations were likely subject to this error. Therefore our measures of competitive

fitness in the wildtype and obligate outcrossing populations are potentially

underestimates of their fitness. An ANOVA was performed in JMP-IN 5.1 testing the

effects of strain, mutagenesis treatment, outcrossing level, all possible interactions, and

population nested within strain, mutagenesis treatment, and outcrossing level on the

percent change in fitness. Additionally, Tukey's HSD tests were performed post-hoc for

specific comparisons.
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We present the change in fitness exhibited by the experimental strains relative to

the ancestral fitness in Figure 2.la as a means of reporting evolutionary change. Although

the ancestral populations do not differ from one another substantially in terms of mean

fitness, we also report the unnormalized fitness of the experimental strains compared

directly to the uniform tester strain that was used for every fitness assay (Figure A2.2).

Fitness here was calculated p'/(l-p'), where p' was the frequency of the experimental

strain at the end of the competitive fitness assay, with each strain beginning at an initial

frequency of 50%. Subject to the caveat on the competitive fitness assay discussed above,

this value provides a lower bound on the fitness measure WElWT, where WE is the fitness

of a given experimental treatment line and WT is the fitness of the tester strain. Changes

in fitness on this scale are large and are qualitatively similar to evolutionary change

measured relative to each ancestor (Figure A2.2a), demonstrating that obligate

outcrossing populations exhibited significantly greater absolute, as well as relative,

fitness than obligate selfing populations after selection.
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Figure A2.2 I Competitive fitness. Absolute
competitive fitness measurements of
experimental populations relative to the tester
strain fitness. 3, Experimental populations were
exposed to a novel, challenging environment at
either natural or elevated (4X) mutation rates
for 50 generations. Populations were competed
against a marked tester strain to assess fitness in
the selective environment after 50 generations
of selection. Obligate outcrossing populations
exhibited significantly greater fitness than
obligate selfing populations (CB4856 F I,481 =

26.41, P < 0.001; N2 FI,48l = 15.95, P < 0.001)
when maintained under elevated mutation rates.
The N2 obligate outcrossing populations also
maintained greater fitness than N2 wildtype
populations (F l ,481 = 12.73, P < 0.001), however
the CB4856 populations were not significantly
different. b, Experimental populations with a
CB4856 background were mutated to generate
genetic variation and then exposed to either the
bacterial pathogen S. marcescens or heat-killed
S. marcescens for forty generations. Again,

populations were competed against a marked tester strain in the selective environment
after selection. The outcrossing populations exhibited both rapid and substantial
adaptation to the pathogen, however, the obligate selfing populations failed to adapt (F I,80

= 19.98, P < 0.001). The fitness of the obligate outcrossing populations was not
significantly greater than the wildtype populations. Overall, obligate outcrossing not only
facilitates greater changes in mean fitness (Figures 2.1 a,c), but also permits the
maintenance or evolution of greater competitive fitness relative to obligate selfing under
the conditions tested. The values presented for the wildtype and obligate outcrossing
populations are lower bound estimates of competitive fitness (see "Competitive fitness
assay" in Supplementary Information Methods). Error bars represent two standard errors
of the mean.
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EXPERIMENTAL EVOLUTION ON SERRATIA SELECTION PLATES

EMS Mutagenesis

Seven near-isogenic replicate populations ofPX382, PX384, and PX386 were

independently mutagenized at 10mM of EMS for 4 hours during four consecutive

generations. The populations were maintained separately and received random and

independent mutation loads. One population ofPX382 suffered major fitness losses as a

result of EMS mutagenesis and was discarded before beginning selection on SSP's.

Experimental Design

Seven populations ofPX384 and PX386, and six populations ofPX382 were

passaged on SSP's for forty generations approximately 3 generations after mutagenesis.

Replicates of these populations were also maintained on the SSP's but with heat-killed S.

marcescens as a control.

Transfer on SSP's

Approximately five hundred L3-L4 (larval) individuals were chunk transferred to

the SSP (Figure A2.1). Populations were transferred to a fresh SSP each generation. Only

the offspring of individuals that reached the bacteria were transferred to a fresh SSP to

begin the next generation and repeat the preceding procedure. On separate occasions, two

PX382 and two PX384 populations experienced reductions in population size and were

maintained under standard lab conditions for one to three generations to restore the

population size before resuming selection. These populations still experienced the full

forty generations of selection on the SSP.
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Measuring outcrossing in wildtype populations

Outcrossing rates were measured in the same manner the experimental evolution

conducted on the MRP's.

Competitive fitness assay

Competitive fitness assays were conducted in the same manner as those run on the

MRP's, except that these assays were run on SSP's. The ancestral strains used in these

competitive fitness assays were the progenitor strains after mutagenesis, therefore the

ancestral strain possessed all of the induced mutations that went into the selection

experiment. All generation zero populations had comparable fitness relative to the tester

strain. An ANOVA was performed in JMP-IN 5.1 testing the effects of outcrossing level,

SSP treatment, population nested within outcrossing level, and all possible interactions

on the percent change in mean fitness. Additionally, Tukey's HSD tests were performed

post-hoc for specific comparisons.

We present the change in fitness exhibited by the experimental strains relative to

the ancestral fitness (Figure 2.1 c) as means of reporting the evolutionary change. As for

Experiment 1, obligate outcrossing populations exhibited significantly greater absolute

fitness than obligate selfing populations after selection (Figure A2.2b).

MEASURING OUTCROSSING RATES IN WILDTYPE POPULATIONS

Male frequency was measured in both the experimental and control replicate

populations ofPX382 and PX383 every five generations in the EMS mutagenesis

experiment and every four generations in the S. marcescens experiment. All adult worms

were sexed and counted on the MRP or SSP after liquid transfer. C. elegans outcrossing
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rates were extrapolated from male frequency data. Outcrossing events produce an equal

proportion of males and hermaphrodites. EMS is known to elevated outcrossing rates in

C. elegans populations, this increase in outcrossing is due to the genetic implications of

mutagenesis rather than a differential affect on C. elegans sexes (Manoel et al. 2007). In

addition to outcrossing, males are also spontaneously produced through hermaphroditic

self-fertilization if X chromosome nondisjunction occurs during meiosis, however this is

a very rare event (Brenner 1974).

EMS exposure increases rates of nondisjunction, therefore strain specific EMS

induced nondisjunction rates were used to calculate the outcrossing rate for the

mutagenized populations. These rates were determined as previously described (Morran

et al. 2009a) with an additional mutagenesis step in which populations of L3 larval

individuals were exposed to 0.5 mM of EMS (as described above) the generation prior to

scoring for X chromosome nondisjunction. By correcting for the number of males

produced through nondisjunction and multiplying the remaining male frequency by two

(to account for both males and hermaphrodites produced via outcrossing), we calculated

the outcrossing rate (Stewart and Phillips 2002) for each replicate population, we report

the mean outcrossing rates of the wildtype populations in Figure 2.1. A repeated

measures ANOVA was performed in JMP-IN 5.1 (SAS Institute, Cary, NC) testing the

effects of strain, treatment, population (nested within strain), time, and all possible

interactions.
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LONG-TERM FITNESS OF OBLIGATE SELFING CB4856 POPULATIONS

We assessed the fitness of the PX384 strain maintained for multiple generations

under standard lab conditions to determine the consequences of prolonged obligate

selfing in the CB4856 background. Ten replicate PX384 populations were maintained at

20°C and stored on 10cm Petri dishes filled with NGM Lite and seeded with 1OflL of

OP50 for thirty generations. Approximately one thousand worms were liquid transferred

(1: 10 dilution in M9 buffer) every generation to a freshly seeded Petri dish. Samples of

each population were frozen every ten generations.

Two samples of each population from each time point, including the stock

PX384 at generation zero, were thawed and allowed two generations under standard lab

maintenance to recover. After recovery the mean fecundity was determined for each

replicate population by measuring the fecundity of twelve randomly sampled individuals

from each time point. A repeated measures ANOVA was performed in JMP-IN 5.1

evaluating the effects of generation, freezer sample, population nested within freezer

sample, generation by freezer sample, and population [freezer sample] by generation on

mean fecundity.
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