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Invasions by introduced plant species cost billions of dollars each year in the 

United States and threaten native habitat. The primary goal of my dissertation research 

was to examine the role that natural enemies (pathogens and herbivores) play in these 

invasions in both unmanaged and restored plant communities.  

In two related studies in seasonal wetland prairies in the Willamette Valley, 

Oregon, USA, I surveyed natural enemy attack on common native and introduced plant 

species in a restoration experiment designed to test the effects of site preparation 

techniques on plant community composition. Restoration treatments had little influence 

on enemy attack rates. Attack rates depended on idiosyncratic differences in the 

relationships between host species and plant community characteristics, suggesting that 

existing theories concerning these relationships have limited predictive power.  
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Another field experiment tested the potential for enemy spillover from introduced 

to native species and dilution of natural enemy attack on introduced species by native 

species. I examined natural enemy attack on three native and three perennial grasses that 

commonly co-occur in the Willamette Valley. The native species are commonly used in 

restoration. The introduced species are common throughout North America and 

potentially harbor enemies that could affect both crops and natural communities. There 

was no compelling evidence of enemy spillover from the introduced to the native species, 

but dilution of enemies on the introduced species by the native species was evident in 

year 2 and even stronger in year 3 for two of the three introduced species.  

Using the same three introduced species from the spillover/dilution study, I tested 

the enemy release hypothesis, which proposes that introduced species lose natural 

enemies upon introduction and are thus “released” from population control. I surveyed 

populations of the three grass species across a wide geographic area in their native and 

naturalized ranges in Europe and the United States, respectively. I also compared my 

results to those of a previously published literature survey. My field survey supported 

release from herbivores but not from fungal pathogens. In contrast, the literature survey 

found evidence of release from fungal pathogens.  

This dissertation includes unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION 

Background and significance 

 Charles Elton (Elton 1958) pioneered the science of community invasions by 

introduced species, and was the first to clearly synthesize multiple explanations of those 

invasions (Richardson and Pyšek 2008). Elton correctly predicted that as intercontinental 

travel and trade increased, so would problems of species introductions via increased 

human traffic. Some of these ideas had previously been visited by Darwin (1859) and by 

Candolle and Sprengel (1821), but were not widely considered by other scientists before 

Elton. In the United States 5,000 plant species from other regions have become 

naturalized, compared with 17,000 native plant species (Pimentel et al. 2005). Fifty-seven 

percent of native plant species in the United States that are imperiled are threatened by 

introduced species (Wilcove et al. 1998). Efforts to maintain and restore native plant 

species often need to focus primarily on the control of introduced plant species.  

 Herbivores can affect plant community structure by preferentially feeding on and 

regulating the populations of their favored host species. In restoration efforts of rare 

native plants, controlling herbivore attack, especially at certain vulnerable life stages, can 

increase population growth of those plants (Bevill et al. 1999). Also, in some cases where 

herbivores have been introduced for control of an invasive plant species, those herbivores 

also feed on multiple co-occurring native plant species that are of conservation concern 

(Louda and O'Brien 2002).  

Similar to herbivores, pathogens also can affect plant community structure, 

because they can infect only some plant species and differentially affect host fitness 
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among species that they infect (Dobson and Crawley 1994). Plant pathogens can alter 

competitive interactions among plant species, and have been experimentally used to 

regulate invasive plant species (Carsten et al. 1998, Carsten et al. 2001). Plant pathogens 

have also been implicated in facilitating the invasion of introduced plant species by 

affecting the fitness of native more than introduced species (Borer et al. 2007).  

Several factors may affect the abundance of herbivores and pathogens (referred to as 

natural enemies throughout this dissertation) in a plant community (reviewed in 

Alexander 1992, Burdon 1993, Agrawal et al. 2006). Some studies have found evidence 

that natural enemy attack decreases as plant species diversity increases (Mitchell et al. 

2002), but this relationship has been most strongly supported at very low plant diversity 

levels such as agricultural settings (Power 1987). As total plant density or litter increase, 

the sheltered, more humid microclimate may lead to increased disease and herbivore 

attack (Folgarait et al. 1995, Facelli et al. 1999). Individual plant traits, such as nutrient 

status, may also affect enemy attack. The plant vigor hypothesis (Price 1991) predicts 

that natural enemy attack will be greater on larger, healthier plants (reviewed in 

Cornelissen et al. 2008). These patterns have been examined primarily only on one 

species of interest in a given plant community (but see Mitchell et al. 2002), and more 

community-wide studies are needed. 

Multiple, somewhat contradictory explanations for the invasiveness of introduced 

plant species focus on the potential roles of herbivores and pathogens. First, enemy 

spillover occurs when natural enemy levels in one host population are due to the high 

abundance of that natural enemy in another more competent reservoir host species. A 

competent host species is defined as being easily colonized by a natural enemy, able to 
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maintain high populations of that natural enemy, and readily able to transmit that natural 

enemy to other hosts. Some studies have found evidence that pathogen spillover from 

introduced to native grass species augmented the invasion by those introduced grass 

species (Malmstrom et al. 2005, Beckstead et al. 2010). These studies, however, 

compared native perennial grasses to introduced annual grasses, and their findings may 

have been confounded with life history differences between the native and introduced 

grasses (Borer et al. 2009). 

Second, dilution of natural enemies on a particular host species may occur when it 

is surrounded by less competent host species, leading to that plant species’ increased 

survival and reproduction. Dilution of natural enemies has been found in the context of 

diseases of animals (Ostfeld and Keesing 2000), but has not been extensively studied in 

plant communities (but see Borer et al. 2010).  

Finally, the enemy release hypothesis is probably the most popular explanation of 

invasions by introduced plant species. According to this hypothesis, plants experience a 

decrease in regulation by natural enemies upon introduction to a new geographic range, 

and therefore increase rapidly in distribution and abundance (Keane and Crawley 2002). 

Many studies have set out to test enemy release  (reviewed in Keane and Crawley 2002, 

Colautti et al. 2004, Liu and Stiling 2006), with varying results. Few studies, however, 

have effectively combined multiple approaches of testing enemy release (but see Vermeij 

et al. 2009), or simultaneously tested enemy release and other competing explanations of 

invasions (but see Williams et al. 2010).  

 To better understand and manage plant communities, the roles that herbivores and 

pathogens play in shaping plant community structure and mediating species invasions 
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need to be better understood. For my dissertation research, I combined multiple 

approaches to address several hypotheses about plant community structure, invasions by 

introduced species, and the host-enemy patterns that are associated with species 

introductions. 

 

Overview of research 

For my dissertation I performed four related research projects, described in 

Chapters II, III, IV, and V, in which I examined the role that natural enemies play in 

invasions by introduced plant species. My objective was to test the enemy release 

hypothesis and alternative roles of natural enemies in invasions, including spillover, 

dilution, and effects of plant community structure. My research also applies to restoration 

ecology of the wetland prairie native plant communities in the Willamette Valley in 

Oregon, where less than 1% of previously existing wetland prairies remain intact today. 

My field experiments were located in the Willamette Valley, in a seasonal wetland 

prairie. For Chapters IV and V, I focused on six perennial grass species, which combined 

comprise 64% of the total plant cover in the area where my field site was.  

 All data chapters were co-authored. Chapters II and III, which are very closely 

linked, were co-authored with Drs. Bitty Roy, Scott Bridgham, and Laurel Pfeifer-

Meister. Chapter IV was co-authored with Drs. Bitty Roy and Scott Bridgham, and 

Chapter V was co-authored with Dr. Bitty Roy. 

 In Chapter II, our objective was to test several currently debated hypotheses about 

patterns of natural enemy attack and plant community characteristics, including (i) plant 

species diversity may reduce vulnerability of plants to attack, (ii) enemy spillover may 
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occur, in which an enemy increase in one host species is due to transmission from another 

host species, (iii) dilution may occur, in which an enemy population is reduced by one or 

more plant species in the community, leading to reduced attack on an otherwise more 

heavily infested host, (iv) physical traits of the plant community, such as total plant 

cover, may influence enemy abundance, dispersal, and attack rates, and (v) traits of 

individual plants, such as size or nutrient content, may affect enemy populations and 

attack rates on those plants. To investigate these hypotheses, herbivore and pathogen 

attack were surveyed on the six most common native plant species, which combined 

comprised eighty percent of the total plant cover in the community, in a wetland prairie 

restoration experiment in Eugene, Oregon (Pfeifer-Meister 2008). Additionally, leaf 

chlorophyll content and shoot biomass were measured at the time of the survey as 

measures of plant vigor. We then used multi-model inference to examine the associations 

between enemy attack and plant community structure, based on detailed plant cover data 

that was collected concurrently with the natural enemy survey. 

 Our goals in Chapter III were to test the enemy release hypothesis by comparing 

natural enemy attack on native versus introduced species, and to compare natural enemy 

attack among different restoration treatments. In the same restoration experiment that we 

surveyed for Chapter II, herbivore and pathogen damage were surveyed on the two most 

common native grass species, Agrostis exarata and Deschampsia cespitosa, and the most 

common introduced grass, Lolium multiflorum, in plots that had been treated with five 

different experimental site preparation techniques, the adjacent agricultural field planted 

with L. multiflorum, and an intact seasonal wetland prairie. Enemy attack rates were 

compared between the native and introduced species to test enemy release, and among 
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the different restoration treatments to test response of enemy attack to different site 

preparation techniques. 

 In Chapter IV, we experimentally tested enemy spillover and dilution among three 

native (Agrostis exarata, Danthonia californica, and Deschampsia cespitosa) and three 

introduced (Anthoxanthum odoratum, Holcus lanatus, and Schedonorus arundinaceus) 

perennial bunchgrass species. The native species are commonly used in restoration. The 

introduced species are common throughout North America and potentially harbor 

enemies that could affect both crops and natural communities. We designed this study to 

test enemy spillover from introduced to native species, and dilution of natural enemies by 

native species on introduced species. Our eight experimental communities were as 

follows: three introduced species, three native species, three native species plus one 

introduced species, and three introduced species plus one native species. Communities 

were replicated five times in a randomized block design, for 40 plots total. We carried out 

this study over three growing seasons, surveying natural enemy attack on each species in 

each experimental treatment five times during the three years. Based on these surveys, we 

were able to evaluate differences in enemy attack on each species among the different 

treatment communities, how enemy attack varied over the course of three growing 

seasons, and how enemy attack varied over the course of one growing season.  

 In Chapter V, we used a biogeographical survey to test the enemy release 

hypothesis. We then compared our findings to existing compilations of information 

gathered from host indices of fungal plant pathogens to determine whether the two 

methods would yield similar or conflicting results. Herbivore and pathogen damage were 

surveyed in several populations of each of the three introduced grass species studied in 
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Chapter IV, across a wide geographic area in both their native (Europe) and naturalized 

(United States) ranges. We then compared the results of our field survey to those of a 

published literature survey (Mitchell and Power 2003). 

 In Chapter VI, I review and synthesize the findings of Chapters II, III, IV, and V.  
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CHAPTER II 

IDIOSYNCRATIC DIFFERENCES IN THE RELATIONSHIPS BETWEEN HOST 

SPECIES AND PLANT COMMUNITY CHARACTERISTICS DOMINATE 

HERBIVORE AND PATHOGEN ATTACK RATES 

 

A paper submitted to Plant Ecology and co-authored with Bitty A. Roy, Laurel E. 

Pfeifer-Meister, and Scott D. Bridgham 

 

Author contributions: The restoration experiment on which this study was based was 

designed and implemented by Laurel E. Pfeifer-Meister, Bitty A. Roy, Scott D. 

Bridgham, and Bart Johnson. The disease survey was designed by G. Kai Blaisdell, Bitty 

A. Roy, and Scott D. Bridgham.  G. Kai Blaisdell wrote the paper with contributions 

from Bitty A. Roy, Scott D. Bridgham, and Laurel E. Pfeifer-Meister.  

 

Introduction 

Conservation efforts to restore and protect native plant communities should 

consider the role of natural enemies (herbivores and pathogens), which reduce host 

fitness and can affect restoration and conservation success (Bevill et al. 1999). There is 

evidence that introduced natural enemies can spread ahead of introduced plants, and may 

facilitate invasions (Malmstrom et al. 2007, Borer et al. 2007). The effects of host 

community composition on natural enemies, and the reciprocal, the effects of natural 

enemies on host community composition have been hotly debated. In this study, we 

observed natural enemy attack rates on the most common native host species in an 
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experimental restoration of a seasonal wetland prairie, across a range of host community 

characteristics. 

One community pattern that has received support is that enemy attack tends to 

decrease as host diversity increases (Elton 1958, Mitchell et al. 2002, LoGiudice et al. 

2003, Keesing et al. 2006, Johnson et al. 2008). Many studies, however, focused only on 

host species richness, which is not always representative of diversity when the evenness 

of species varies, especially if dominant or rare species are present. A number of studies 

focused on the effects of diversity on one focal species, ignoring enemy attack on the rest 

of the community (e.g., Root 1973, Schellhorn and Sork 1997). Furthermore, this pattern 

has been most strongly supported at low diversity and species richness levels, with less 

clear results at higher diversity (Mitchell et al. 2002). The relationship between host 

diversity and enemy attack is not always negative or simple (Letourneau 1987, Andow 

1991, Joshi et al. 2004, Dobson 2004).  

Low host density may limit natural enemies due to the difficulty of dispersal 

among host plants (Alexander 1992, Folgarait et al. 1995). Numerous hypotheses relating 

to host density and herbivore attack rates generally predict increased attack rates as host 

density increases (reviewed by Agrawal et al. 2006). Many studies have focused on 

density of one particular host species and enemy attack on that species, with mixed 

findings (Root 1973, Schellhorn and Sork 1997, Harmon et al. 2003). Few studies, 

however, have examined community-wide patterns of density of multiple hosts and 

enemy attack on those host species. Additionally, studies and discussion of host 

communities often fail to distinguish between the effects of host diversity and host 

density. For example, Keesing and others (2006) indicated that the “diversity effect” 
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found by Mitchell and others (2002) was actually an artifact of the density of one 

particular host species. 

As a particular natural enemy population increases on its favored host species, the 

natural enemy may then spill over onto neighboring species, which would suffer more 

attack than in the absence of the favored host species (Power and Mitchell 2004). 

Conversely, as the favored host species becomes less common, the other less competent 

species can dilute the natural enemy in the community. Enemy spillover from introduced 

to native plant species has been implicated in facilitating invasions in plant communities 

(Tompkins et al. 2003, Malmstrom et al. 2007, Borer et al. 2007, Beckstead et al. 2010).  

Abiotic factors can affect populations of herbivores and pathogens, and are 

influenced by the physical structure of the plant community. Total vegetation cover 

affects microclimate, including light, temperature, and humidity. High humidity in dense 

stands usually favors infection and sporulation, but can impede dispersal of newly formed 

inoculum (Burdon 1987, Kranz 1990). Sun and shade have species-specific effects on 

enemies (Collinge and Louda 1988, Stanton et al. 2004). A buildup of dead plant material 

(thatch) can harbor pathogenic fungi. For example, in our study area in Oregon, USA, 

farmers use field burning after harvest to reduce crop residue and pathogens harbored 

there (Young et al. 1999). 

The plant vigor hypothesis (Price 1991) predicts that larger, more vigorous plants 

will experience more attack by herbivores than smaller, stressed plants. Larger plants can 

be a more desirable target for natural enemies (Folgarait et al. 1995, Bradley 2003). 

Higher nitrogen content per leaf area has been found to increase foliar fungal disease 

(Neumann et al. 2004, Throop and Lerdau 2004), and the carrying capacity and 
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population growth rate of aphids (Zehnder and Hunter 2008). Alternatively, the plant 

stress hypothesis predicts that unhealthy plants will experience more herbivore attack 

(White 1974). In a meta-analysis of herbivore studies, Cornellisen and others (2008) 

found higher abundances of insect herbivores on larger plants, in support of the plant 

vigor hypothesis, but did not find strong support for the plant stress hypothesis.  

Patterns of natural enemies in plant community restoration have not been 

extensively studied, and that was a goal of our project. We surveyed damage by natural 

enemies on six native plant species in a seasonal wetland prairie restoration experiment in 

Eugene, Oregon, USA (Pfeifer-Meister 2008). The restoration experiment provided an 

ideal setting for our study because it created different communities with some shared 

species in an area that has a relatively homogeneous physical environment. The same 15 

native plant species were seeded in each of 50 plots following implementation of 10 

different site preparation treatments designed to remove the extant vegetation and reduce 

the introduced seed bank. Following seeding of the experiment, natural succession of the 

plant communities was allowed to occur, without plant removal or additional seeding. We 

examined the effects of diversity, relative abundance of introduced species, relative 

abundance of affected species, physical attributes of the community structure, and 

individual plant traits on enemy attack rates by herbivores and pathogens on six native 

grass and forb species. Detailed plant cover data enabled us to address several patterns of 

plant community effects on natural enemies. We hypothesized that (i) herbivore and 

pathogen attack would decrease as plant species diversity increased,  (ii) if enemy 

spillover from introduced to native species was occurring, damage to native species 

would increase as relative abundance of introduced species increased, (iii) we might find 
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evidence of dilution by one or more species of enemy attack on other plant species, (iv) 

high total plant cover would lead to increased pathogen attack, and (v) larger plants and 

those with higher nutrient content would sustain more damage by natural enemies.  

 

Methods  

Study site 

Our survey was performed in a restoration experiment that was designed to test 

how site preparation techniques affect the relative success of native and introduced plant 

species (Pfeifer-Meister 2008). Prior to the restoration experiment, the area had been 

planted in Lolium multiflorum Lam. (annual ryegrass) for agricultural production. The 

4.5-hectare experiment included ten experimental land preparation techniques, replicated 

five times in randomized 15-m2 plots, for a total of 50 plots. Ten-m mown buffers 

separated plots, and a 23-m mown buffer surrounded the experimental restoration site. 

The treatments included various combinations of tilling, herbicide application, thermal 

application, and solarization: till only, herbicide only, herbicide + thermal, two herbicide 

applications, till + herbicide, till + two herbicide applications, till + solarization, till + 

thermal, till + herbicide + solarization, and till + herbicide + thermal. Application of all 

treatments and seeding of 15 native grass and forb species were completed in October 

2004, and natural succession was allowed to occur without more seeding or plant 

removal. We also surveyed a nearby intact reference wetland prairie for comparison to 

the restoration treatments. The reference wetland prairie was 4 km from the restoration 

experiment, and had the same soil type and similar hydrology to the restoration 

experiment. 
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Description of restoration treatments 

Tilling can reduce the introduced seed bank in recently cultivated fields. As a 

result of tilling, seeds present in the soil are moved to the surface and germinate, thus 

reducing future germination of introduced species (Fitzpatrick 2004). Thermal treatment 

is applied using an infrared burner, which produces temperatures ranging from 540-1090° 

C. Plants’ cells are ruptured due to the resulting heat exposure. Thermal treatment is most 

effective with grasses and small forbs (Fitzpatrick 2004). Solarization is the generation of 

heat and humidity over an extended time period by covering a large area of the ground 

with plastic. Solarization causes seeds in the seed bank to germinate and then die, thus 

reducing future germination (Fitzpatrick 2004). In this restoration experiment, the 

herbicide applied was the broad spectrum glyphosate. Herbicide application reduces 

existing vegetation in the short term, but its effects diminish within a few growing 

seasons. Practitioners and researchers have found that combining multiple site 

preparation techniques that mitigate the introduced seeds and plants at different stages 

can improve results (Fitzpatrick 2004).  

 

Collection of data 

We collected plant cover data in June 2006 using the point-intercept method 

(Jonasson 1988) in one randomly located 1-m2 subplot per 15-m2 plot, for a total of 5 

replicates per treatment. In the reference wetland prairie, five 15-m2 plots were randomly 

chosen, and  one 1-m2 subplot was placed in each 15-m 2 plot. Percent cover was recorded 

for each species using a 1-m2 frame with 25 pins. Species that were present but did not 
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contact a pin were allocated 1% cover. Additionally, dead plant material was recorded as 

present or absent with each pin, counting each pin hit at 4% cover. Standing thatch was 

defined as dead plant material that was still standing, and ground thatch was defined as 

dead plant material lying horizontally on the ground. In 2006, the mean number of plant 

species richness per plot was 14, and the range was 8-26 species per plot.  

To examine how the restoration treatments and plant community structure 

affected enemy attack rates on the native plants in the site, we assessed natural enemy 

damage to the six most common native plant species Agrostis exarata Trin. (spike bent 

grass), Deschampsia cespitosa (L.) P. Beauv. (tufted hair grass), Madia glomerata Hook. 

(tarweed), Prunella vulgaris L. (common selfheal), Epilobium densiflorum (Lindl.) Hoch 

& P. H. Raven (willow herb), and Grindelia integrifolia DC (gumweed) in all ten 

restoration treatments and the reference wetland prairie. These species combined 

comprised 80% of total plant cover in the study. The timing of sampling, from June 

through August 2006, was based on the phenology of each species, after flowering but 

before mature seed set or substantial senescence. To associate detailed information about 

plant community composition and cover with enemy attack, natural enemy attack was 

surveyed on one plant of each native species, collected from within 10 cm of the subplot 

used to measure cover in each plot (Table 2.1).  

Percent visible foliar herbivore and pathogen damage were assessed on each of 

three randomly selected leaves from each plant, and the average of the three leaves was 

used. Percent damage was scored as a continuous variable. Percent damage caused by 

each type of symptom on each leaf was also scored. Herbivore attack was scored as 

chew, rasp, mine, or sucking damage. Pathogen attack was scored as blotch, spot, or rust 
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pustules. Above-ground biomass of each plant at the time of sampling was measured by 

clipping and drying at 60°C for 48 hours.  

Leaf nitrogen content was estimated by measuring chlorophyll content in the field 

using a hand held portable SPAD-502 chlorophyll meter (Spectrum Technologies, Inc., 

Plainfield, Illinois, USA). For each plant, one measurement was taken for each of three 

randomly selected leaves, and the average of the three measurements was used. 

Chlorophyll content is highly correlated with nitrogen content, and is a quick, non-

destructive and inexpensive estimate of nitrogen content (Gáborčík 2003). 

 

Data analysis 

All analyses were performed using JMP version 7.0.1. We performed two-way 

ANOVAs for herbivore and pathogen damage, with plant species, treatment, and their 

interactions as independent variables. We considered treatment a fixed variable and 

species a random variable. Because of inadequate replication of E. densiflorum and G. 

integrifolia in two of the treatments, two ANOVAs were run for herbivore and pathogen 

damage. One included the four remaining species and all treatments, and the other 

included all six species but excluded the reference and till + solarization treatments. Post 

hoc Tukey’s HSD tests were performed to determine differences among individual 

treatments and plant species.  

The proportion of variance in herbivore and pathogen attack explained by each 

predictor variable was calculated for the random variables species, location, and their 

interaction. Location was included to account for possible spatial autocorrelation. For this 

analysis, sampling locations were grouped into eleven blocks of five adjacent plots. 
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Our decision to survey the six species was partially motivated by our observation of large 

plant community differences among the restoration treatments in 2005. However, the 

differences in plant community composition among the restoration treatments dampened 

over time, and the restoration treatments became more similar to the composition of the 

reference sites in 2006 (Pfeifer-Meister 2008). Therefore we found little to no difference 

among the treatments with respect to the variables that we measured. However, there 

were community differences among plots (Table 2.1), and the lack of treatment effects 

allowed us to more directly address how herbivore and pathogen attack varied with plant 

community composition and other factors.  

To determine which potential explanatory factors were associated with natural 

enemy attack, we used Akaike’s Information Criterion (AIC) multi-model inference 

(Burnham and Anderson 2002) to select groups of equivalent models that would explain 

herbivore and pathogen attack on the six native species. The models included the relative 

abundance of each of the six native species sampled, relative abundance of the introduced 

Lolium multiflorum, relative abundance of introduced species, total plant cover, 

Simpson’s diversity index, percent ground thatch, percent standing thatch, above-ground 

biomass, and chlorophyll content (Table 2.1). We selected models for which the 

corrected AIC value differed from the minimum corrected AIC value by less than two 

(Burnham and Anderson 2002). Using the corrected AIC values adjusted for our 

relatively small sample sizes (Table 2.1). Because some species surveyed did not occur in 

all plots sampled, the values of the community factors varied somewhat among the six 

species.  
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Table 2.1. Community factors that were measured and entered into AIC analysis, 
(average relative abundance of each species sampled, and number of plants of each 
species sampled.) Mean and Standard Error represent the mean value and standard error 
among all 55 plots in the survey. The Minimum and Maximum represent the plot with the 
lowest and highest values for each species or factor, and n represents the number of plots 
sampled for that species. The species that were surveyed for natural enemy attack are 
totaled. 

Species or Factor Mean Standard Error Minimum Maximum n 

Agrostis exarata 41.0% 3.29 0.0% 88.2% 55 

Deschampsia 

cespitosa 23.8% 2.75 0.2% 95.0% 55 

Madia glomerata 7.0% 1.09 0.0% 30.0% 53 

Prunella vulguaris 5.9% 0.87 0.0% 27.0% 55 

Epilobium densiflorum 1.8% 0.42 0.0% 13.9% 39 

Grindelia integrifolia 0.3% 0.07 0.0% 2.2% 32 

Total 80.2%    289 

      

Lolium multiflorum 5.5% 1.15 0.0% 46.27%  

Introduced species 14.6% 2.26 0.1% 65.42%  

Total cover 790% 25.41 422% 1389%  

Standing Thatch 85% 1.82 40% 100%  

Ground Thatch 43% 2.60 8% 96%  

Diversity (Simpson’s) 0.63 0.02 0.10 0.91  

 

Each variable entered into our AIC analyses was selected a priori and addressed a 

specific hypothesis. Some variables showed pair-wise correlations and variance inflation 

factors high enough to raise concern (Mac Nally 2000, Graham 2003). For example, in 
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our worst case scenario, the partial correlation of the relative abundance of introduced 

species with the relative abundance of L. multiflorum was r = 0.87 for the analysis of E. 

densiflorum. When pair-wise correlations were worrisome, and removing one variable 

could potentially hurt our analysis in other ways (O’Brien 2007), we used stepwise 

regression with both variables and each variable excluded to test for model stability. 

Furthermore, others have shown that AIC multi-model inference is robust against error 

with variable pair-wise correlations up to 0.9 (Smith 2009) or 0.94 (Burnham and 

Anderson 2002). Another potential pitfall is that the relative abundances of L. 

multiflorum and introduced species contain overlapping information because L. 

multiflorum was the most common introduced species in many plots. However, in a 

previous survey of the three most common grasses in a subset of the restoration 

treatments, we found that the introduced L. multiflorum had more pathogen damage than 

the two native grasses A. exarata and D. cespitosa (data not shown). Based on these 

results we hypothesized that the pathogen may spread from the L. multiflorum to the two 

native grasses, and we decided that the benefit of keeping both L. multiflorum and 

introduced species abundance in the analysis outweighed the costs of potential bias. 

Others have included variables that contain overlapping information using AIC (e.g., 

Seabloom et al. 2009). The strength of our analysis is the number and breadth of 

hypotheses that we were able to test about the effects of community variables on natural 

enemy attack across the dominant species in the community.  
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Results 

Pathogen attack varied among plant species (F5,41 = 19.26, P < 0.0001) but not 

among the ten restoration treatments and reference wetland prairie (Figure 2.1). There 

was an interaction between the two factors only when Grindelia integrifolia and 

Epilobium densiflorum were excluded from the analysis and all treatments were included, 

because these two species were absent from some treatments (F30,174 = 1.70, P = 0.019).  

Herbivore attack varied among plant species (F5,40 = 9.03, P < 0.0001) and among 

treatments ( F8,49 = 2.37, P = 0.035) (Figure 2.1). Attack was not the same for each plant 

species in each treatment (species by treatment interaction F48,225 = 2.85, P < 0.001). 

Herbivore damage was higher in the herbicide treatment than in the till + thermal 

treatment (Tukey’s HSD: P < 0.05); otherwise herbivory did not vary among the 

restoration treatments or reference wetland prairie. Overall, there was not a strong effect 

of treatment on pathogen or herbivore attack. 

Examination of the proportion of variance explained by plot location or plant 

species revealed that little of the variation in enemy attack was explained by plant 

species, location, or an interaction between the two variables, especially for pathogen 

attack rates. For herbivory, plant species explained 31.4%, spatial location 0.1%, species 

by location 15.5%, and there was 60.0% residual variance. There was more unexplained 

variance in pathogen damage, with plant species explaining 3.3%, spatial location 0.0%, 

species by location 29.0%, and there was 67.6% residual variance. 
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AIC multi-model inference 

Multiple regression analysis using AIC on 14 potential explanatory factors 

revealed that different factors influenced herbivores versus pathogens, and the 

importance of individual factors varied among the six native plant species (Figure A.1 in 

the Appendix). In general, the models selected explained more of the variation in 

pathogen damage than herbivore damage. 

 
Figure 2.1. Herbivore and pathogen damage to six native perennial grasses and forbs 

among restoration treatments and reference wetland prairie. We found no significant 
differences among treatments for pathogens. Small letters represent significant 
differences in herbivore and pathogen damage (P < 0.05) among plant species within 
treatments. Asterisks represent significant differences in herbivory among restoration 
treatments. 
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As plant species diversity increased, there were no large increases or decreases in enemy 

attack on any one of the six plant species (Figure 2.2a). There was, however, a slight 

negative partial correlation with plant species diversity and pathogen attack on five of the 

six species; Deschampsia cespitosa, Madia glomerata, Prunella vulgaris, Epilobium 

densiflorum, and Grindelia inetrifolia. This relationship, though small, appeared in all 

selected models for two of the plant species, D. cespitosa and P. vulgaris. There was no 

strong or consistent relationship between herbivore attack and plant species diversity.  

As the relative abundance of target host species increased, there were no clear 

community-wide trends (Figure 2.2b). As E. densiflorum’s relative abundance increased, 

herbivore attack on E. densiflorum also increased, and E. densflorum relative abundance 

appeared in all models selected.  

As relative abundance of the most common introduced plant species Lolium 

multiflorum increased, pathogen attack on the native grass D. cespitosa and the native 

forb G. integrifolia increased (Figure 2.2c). The variable L. multiflorum appeared in all 

selected models for these two species. In contrast, as relative abundance of L. multiflorum 

increased, pathogen attack on P. vulgaris decreased. Lolium multiflorum appeared in 89% 

of the models selected for P. vulgaris. Other partial correlations for L. multiflorum were 

very small or appeared in a small fraction of the selected models. As relative abundance 

of introduced plant species increased, herbivore attack decreased on P. vulgaris but 

increased on M. glomerata (Figure 2.2d). This variable appeared in all models selected 

for these two species.  

There was no clear community-wide response to physical attributes of the 

community (Figs. 2.2e, 2.2f, 2.2g). As total plant cover increased, pathogen attack on E. 
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densiflorum and M. glomerata increased, and appeared in all models selected (Figure 

2.2e).  

Figure 2.2. Partial correlations of variables with herbivore and pathogen attack to six 
native species. Title of each panel is the variable of interest for that panel. Panels b, c, 
and d represent relative abundance of the variable of interest. Panels f and g represent 
percent cover of the variable of interest. Partial correlations with the variable of interest 
and percent herbivore or pathogen attack on each of six species are represented by bars. 
Error bars represent variation (standard error) in magnitude of partial correlation among 
selected models. Numbers along x axes below each bar represent the percent of models in 
which that variable was selected.  
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Pathogen attack on G. integrifolia decreased as standing thatch increased, and this 

variable appeared in all selected models (Figure 2.2f). No plant species showed a strong 

change in enemy attack with respect to ground thatch (Figure 2.2g). There were no strong 

community-wide or individual plant species changes in enemy attack with respect to the 

individual plant traits shoot biomass (Figure 2.2h) or chlorophyll content (Figure 2.2i).  

Pathogen attack on P. vulgaris decreased as relative abundance of L. multiflorum, 

M. glomerata, and A. exarata increased, suggesting a possible dilution effect by the other 

species (Figure 2.3). Pathogen attack on M. glomerata increased as P. vulgaris relative 

abundance increased, but decreased as G.  integrifolia increased. As E. densiflorum 

relative abundance increased, herbivory on itself and on G. integrifolia also increased, 

suggesting possible spillover of an herbivore from E. densiflorum to G. integrifolia. The 

most common herbivore damage on both species was caused by chewing insects (Table 

2.2), which supports the possibility that the two host species shared a common herbivore. 

Pathogen attack on D. cespitosa and G. integrifolia increased as L. multiflorum relative 

abundance increased, suggesting possible spillover from the introduced grass to the two 

native species. The native grass A. exarata seemed to have a dilution effect on pathogen 

attack on D. cespitosa and P. vulgaris.  

 

Discussion 

The AIC models generally explained more variation in pathogen attack than in 

herbivory, perhaps because more variation in herbivory was explained by host species 

identity. Of the variables that we addressed, the only consistent community-wide pattern 

we found was a small negative correlation between pathogen attack and plant species  
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Figure 2.3. Interpretive diagram: partial correlations of changes in herbivore and 
pathogen attack with respect to abundance of each plant species. Width of arrows 
indicates magnitude of partial correlation, ranging from 0.06 to 0.40. The arrow with a 
dashed border was selected in 89% of the models selected. All other relationships shown 
were selected in 100% of the models. 
 
 

diversity, which is consistent with the findings of other studies (Mitchell et al. 2002, Lau 

et al. 2008). The diversity effect did not appear to be an artifact of the abundance of any 

one particular plant species in the community. Interestingly, we did not find the same 

effect for herbivore attack. Past studies that have found reduced herbivores with 

increased host diversity have typically focused on agricultural systems with lower species 

richness than in our study. Lau and others (2008) found increased herbivory by 

specialists, but decreased herbivory by generalists with low host diversity. 
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Table 2.2. Types of pathogen and herbivore symptoms found on plant species surveyed, 
and percent of plants surveyed on which each symptom type was found. 

Plant Species Blotchy 

Pathogen 

Spot 

Pathogen 

Rust 

pustules 

Chew Rasp Mine Suck 

Agrostis 

exarata 

3.7 3.7 83.3 7.4 5.6 1.9 68.5 

Deschampsia 

cespitosa 

0 80.0 3.6 7.2 3.6 0 41.8 

Epilobium 

densiflorum 

10.2 35.9 18.0 66.7 35.9 0 7.7 

Grindelia 

integrifolia 

46.9 18.8 0 96.9 31.3 12.5 3.1 

Madia 

glomerata 

11.1 0 50.0 20.4 14.8 0 1.9 

Prunella 

vulgaris 

20.8 94.3 3.8 28.3 49.1 13.2 0 

 

 

Consistent with enemy spillover and dilution, we found host species-specific 

correlations among the relative abundance of one species and attack on another. This 

result held for both herbivore and pathogen attack, and both native and introduced host 

species were correlated with increased or decreased enemy attack on another plant 

species. This suggests the potential for enemy spillover and dilution, both among the 

native species sampled and from introduced species to the native species. While we do 
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not know the identities of the majority of the enemies, the patterns that we found are 

consistent with spillover and dilution. To clearly discern spillover and dilution, there is a 

need for future community-wide studies that identify the herbivores and pathogens on all 

hosts.  

Variation in a host’s ability to maintain the population of a particular natural 

enemy is a necessary condition of enemy spillover. For example, in tallgrass prairies in 

Kansas, Garrett and others (2004) found wide variation in host competency among four 

related co-occurring host species for the generalist pathogen barley/cereal yellow dwarf 

virus. In communities with manipulated host species composition, Power and Mitchell 

(2004) found that the presence of the highly susceptible host Avena fatua increased the 

prevalence of barley/cereal yellow dwarf virus infection in several other species in the 

community. Alternatively, the patterns of attack relative to abundance of certain species 

that we observed could be due to some influence of a particular plant species on the 

physical structure of the plant community, but our data do not indicate that responses of 

enemy attack are similar with respect to the community physical characteristics that we 

measured versus relative abundance of any one plant species. We found that pathogens 

and herbivores on some host species responded to variation in physical attributes of the 

plant community, but not to individual plant traits within host species.   

Our results support the idea that host species diversity in communities reduces 

attack by pathogens, although this effect was not large. Other recent studies of pathogens 

and host diversity have also supported this finding. Dizney and Ruedas (2009) found that 

as mammalian diversity in forests declined, the proportion of deer mice infected with sin 

nombre virus increased. High diversity in ecological communities has also been shown to 
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reduce the frequency of Lyme disease (Keesing et al. 2006), frog malformations caused 

by parasites (Johnson et al. 2008), and foliar pathogens of plants (Mitchell et al. 2002, 

Lau et al. 2008). While the effect of host diversity was consistent across our study, 

species-specific interactions were stronger. With respect to restoration of native plant 

communities, achieving species diversity should be a priority, but consideration should 

also be given to each species’ interaction with other species and with natural enemies. 

Our results indicate stronger effects of individual host species identity, enemy spillover, 

and dilution.  

 

Bridge to Chapter III 

 In this chapter, we examined a variety of community variables and their 

associations with enemy attack on several native plant species in the community. We 

found that no single pattern dictated enemy attack rates across the native plant 

community. In the following chapter, we focused on the three most common grass 

species only, and included an introduced species in our study. This enabled us to further 

address enemy spillover, and to test enemy release by comparing natural enemy attack on 

the native versus introduced plant species. Additionally we examined both nitrogen and 

phosphorus leaf content, for a more detailed examination of the relationship between 

natural enemy attack and plant nutrient status. 
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CHAPTER III 

RESTORATION TREATMENTS, PLANT NUTRIENT STATUS,  

AND NATURAL ENEMIES 

 

Author contributions: The restoration experiment on which this study was based was 

designed and implemented by Laurel E. Pfeifer-Meister, Bitty A. Roy, Scott D. 

Bridgham, and Bart Johnson. The disease survey was designed by G. Kai Blaisdell, Bitty 

A. Roy, and Scott D. Bridgham.  Julie Stewart processed the nitrogen content samples. G. 

Kai Blaisdell wrote the paper with contributions from Bitty A. Roy, Scott D. Bridgham, 

and Laurel E. Pfeifer-Meister.  

 

Introduction 

In this study, we observed natural enemy attack rates on the three most common 

grass species in the wetland prairie restoration described in the previous chapter, to 

compare enemy attack on the introduced versus native species, and to examine the 

relationships among restoration treatments, plant nutrient status, and natural enemy 

attack. If herbivores and pathogens reduce the vigor or cover of one host, another may 

benefit, as occurred when chestnut blight reduced the cover of chestnuts, maples and oaks 

filled in forests in the Eastern United States (Day and Monk 1974). Also, natural enemies 

may be affected by host community structure.  For example, very simple communities, 

such as monocultures, are more susceptible to disease (Mitchell et al. 2002). However, 

debate regarding the importance of host community composition with respect to natural 



 

�
�

�

 

enemies has not been fully resolved (Harmon et al. 2003, Agrawal et al. 2006, Keesing et 

al. 2006, Johnson et al. 2008, Jiang et al. 2008).  

Enemy spillover occurs when natural enemy populations in one host species are 

driven by another host species that acts as a reservoir (Power and Mitchell 2004). 

Evidence of enemy spillover from introduced to native plant species has been found in 

grasslands and other plant communities (Malmstrom et al. 2007, Borer et al. 2007, 

Beckstead et al. 2010). The enemy release hypothesis, which is probably the most 

popularly cited explanation for invasions by introduced species, proposes that introduced 

species flourish because they leave their natural enemies behind and are no longer 

regulated by them (Keane and Crawley 2002, Colautti et al. 2004). 

Higher nutrient content per leaf area has been found to increase foliar fungal 

disease (Neumann et al. 2004, Throop and Lerdau 2004), and the carrying capacity and 

population growth rate of aphids (Zehnder and Hunter 2008). Due to fertilizing, nutrient 

availability is higher agricultural systems, which would lead to higher nutrient content in 

the plants relative to natural and restored communities. Different site preparation 

techniques may affect nutrient availability, which could affect the nutrient status of the 

plants in each restoration treatment. 

Our goal was to examine the effects of different restoration treatments and plant 

nutrient status on natural enemy attack on the most common introduced and native plant 

species in a restoration experiment in a wet prairie. To test enemy release, we also 

compared enemy attack rates among the native and introduced species that we surveyed. 

We performed a survey of damage by natural enemies on plants in the same seasonal 

wetland prairie restoration experiment described in the previous chapter (Pfeifer-Meister 
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2008). Grasses comprised the largest portion of plant biomass in the community, and we 

surveyed foliar herbivore and pathogen damage on the two most common native and the 

one most common introduced grass species to compare natural enemies among them. We 

hypothesized (i) that if enemy release were occurring, we would find less damage on the 

introduced grass than on the native grasses, (ii) that the different restoration treatments 

may lead to different nutrient status in the plants, and (iii) that this nutrient status would 

be associated with different rates of enemy attack.  

 

Methods 

Study site 

Prior to the restoration experiment, the area had been planted in Lolium 

multiflorum Lam. (annual ryegrass) for agricultural production. The treatments were 

primarily designed to reduce germination of introduced species including the previously 

planted Lolium multiflorum. We also surveyed the adjacent L. multiflorum field, which 

continued to be actively fertilized, for comparison to the restoration treatments. This 

study was performed across the farm, reference prairie, and a subset of five restoration 

treatments (till only, two herbicide applications, till + two herbicide applications, till + 

solarization, and till + thermal). We chose these treatments based on data from 2005 that 

indicated maximally divergent plant community responses (Pfeifer-Meister 2008). 

 

Collection of data 

Our goal was to examine natural enemies of the dominant native and introduced 

species in the most divergent site preparation treatments. During May 2006, foliar 
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herbivore and pathogen damage to the introduced grass L. multiflorum and native grasses 

Agrostis exarata Trin. (spike bent grass) and Deschampsia cespitosa (L.) P. Beauv. 

(tufted hair grass) were measured. Within each 15-m2 plot for the five site preparation 

treatments surveyed, three locations were randomly selected. The closest plant of the 

three species to those random locations was collected and measured. Percent visible foliar 

herbivore and pathogen damage were assessed on each of three randomly selected leaves 

from each plant. The values for the leaves of each species were averaged per plot, and 

each plot counted as one replicate in data analysis. We determined leaf phosphorus status 

by digesting foliage with 30% hydrogen peroxide and 100% sulfuric acid (Lowther, 

1980), and measuring phosphorus concentration on a Genesys 5 light spectrometer 

(Thermo Spectronic, Rochester, New York, USA).  Foliar nitrogen content was measured 

with a CN elemental combustion analyzer (Costech Analytical, Valencia, California, 

USA). 

 

Data analysis 

All analyses were performed using JMP version 7.0.1. To ascertain species and 

restoration treatment effects for the three species survey, we performed two-way 

ANOVAs for herbivory, pathogen damage, phosphorous content, and nitrogen content, 

with host species, treatment, and their interaction as the independent variables. Species 

was considered a random variable, while treatment was fixed. It was necessary to 

partition analyses because Lolium multiflorum was not present in the reference prairie, 

and the two native grasses were not present in the farm field. For each response variable, 

three ANOVAs were run: (i) all three plant species in only the five restoration treatments, 
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(ii) L. multiflorum only in the five restoration treatments plus the farm field, and (iii) A. 

exarata and D. cespitosa only in the five restoration treatments and the reference prairie. 

Post hoc Tukey’s HSD tests were performed to determine differences among individual 

treatments and species. For the L. multiflorum only, an a priori least squares contrast 

comparing the farm vs. the five restoration treatments was performed. We used least 

squares regression to compare phosphorous content and nitrogen content against 

herbivore and pathogen damage individually for each plant species. 

 

Results 

Natural enemy attack and restoration treatments 

Within the five restoration treatments, pathogen damage varied among grass 

species (F2,8 = 41.36, P < 0.0001), but not restoration treatments, farm, or reference 

prairie, and the effects of the two factors were not interdependent. The introduced Lolium 

multiflorum had more pathogen damage than either of the natives Agrostis exarata or 

Deschampsia cespitosa (Tukey’s HSD: P < 0.05) (Figure 3.1).  

Within the restoration treatments, the amount of herbivore damage depended on 

grass species (F2,8 = 5.67, P = 0.029) and, marginally, on treatment (F4,8 = 3.68, P = 

0.055) (Figure 3.1). The effects of species and treatment were not interdependent. The 

introduced L. multiflorum had more herbivory than the native D. cespitosa, with the 

native A. exarata being intermediate (Tukey’s HSD: P < 0.05). When testing the two 

native species only, we found that herbivory on A. exarata and D. cespitosa did not 

significantly differ among the reference wetland prairie or five restoration treatments. 
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Similarly, when tested by itself, herbivory on L. multiflorum did not significantly vary 

among the farm or restoration treatments. 

 

Figure 3.1. Herbivore and pathogen damage to Agrostis exarata, Deschampsia cespitosa, 
and Lolium multiflorum among restoration treatments, farm, and reference wetland prairie 
(+ standard error).
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Foliar nitrogen and phosphorus content among restoration treatments 

There were no significant differences in phosphorous content among treatments, 

and few differences in nitrogen content among treatments. Within the five restoration 

treatments, foliar nitrogen content differed among plant species (F2,8 = 16.76, P = 0.0014) 

and treatments (F4,8 = 6.03, P = 0.015) (Figure 3.2). The effects of the two factors were 

not interdependent. Agrostis exarata (Mean: 1.37 ± 0.09%) and D. cespitosa (Mean: 1.30 

± 0.07%) had significantly higher nitrogen content than L. multiflorum (Mean: 0.84 ± 

0.06%) (Tukey’s HSD: P < 0.05). The plants in the till + thermal treatment had higher 

nitrogen content than the plants in the two herbicide applications treatment, with no other 

differences among the restoration treatments (Tukey’s HSD: P < 0.05). Lolium 

multiflorum in the farm field had higher nitrogen content than in any of the restoration 

treatments (F5,24 = 25.69, P < 0.0001, Tukey’s HSD: P < 0.05). Nitrogen content of A. 

exarata and D. cespitosa varied among the restoration treatments and reference wetland 

prairie (F5,5 = 17.79, P = 0.003). Plants in the till + thermal treatment had higher nitrogen 

content than plants in the reference wetland prairie, two herbicide applications, till + two 

herbicide applications, and till + solarization treatments, with the till only treatment being 

intermediate (Tukey’s HSD: P < 0.05). 

Phosphorus content differed among plant species (F2,8 = 33.22, P < 0.0001) but 

not restoration treatments, and the effects of the two factors were not interdependent. 

Agrostis exarata had the highest phosphorous content (Mean: 0.19 ± 0.005%), D. 

cespitosa was intermediate (Mean: 0.15 ± 0.006%), and L. multiflorum had the lowest 

phosphorous content (Mean: 0.14 ± 0.007%, Tukey’s HSD: P <0.05). Phosphorus content 

of A. exarata and D. cespitosa varied among the restoration treatments and the reference 
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wetland prairie (F5,5 = 6.55, P = 0.030); there was no interaction between species and 

treatment. Phosphorus content was lower in the reference wetland prairie than in till + 2 

herbicide applications, till + thermal, and till + solarization, with 2 

 
Figure 3.2. Foliar nitrogen and phosphorus content among treatments for Agrostis 

exarata, Deschampsia cespitosa, and Lolium multiflorum.  The asterisk indicates a 
significant difference in nitrogen among treatments for L. multiflorum only. Uppercase 
letters indicate differences among restoration treatments for all three grass species. 
Lowercase letters represent significant differences among restoration treatments and 
reference wetland prairie for A. exarata and D. cespitosa only.  
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herbicide applications and till being intermediate (Tukey’s HSD: P < 0.05). Phosphorus 

content of L. multiflorum in the farm field trended toward being higher than in the 

restoration treatments (ANOVA: F5,24 = 2.29, P = 0.084, Least Squares Contrast: F1,20 = 

8.31, P = 0.009). 

Within plant species, we found only marginally significant correlations between 

enemy attack and nitrogen content. Pathogen attack on A. exarata increased as nitrogen 

content increased (r2 = 0.10, P = 0.088). Herbivore attack on L. multiflorum also 

increased with nitrogen content (r2 = 0.12, P = 0.065). Pathogen attack on L. multiflorum 

tended to decrease as phosphorus increased (r2 = 0.13, P = 0.068), but there was no 

correlation between phosphorus content and herbivory.  

 

Discussion 

 The strongest pattern that we found was higher pathogen attack rates on the 

Lolium multiflorum than on the other two grass species. We did not find compelling 

evidence of effects of restoration treatment on herbivore or pathogen attack. As expected, 

L. multiflorum had higher nitrogen content in the farm field than in the restoration 

experiment, but this was not the case for phosphorus. We found weak evidence of a 

positive correlation between nitrogen content and enemy attack on Agrostis exarata and 

L. multiflorum. Interestingly, there was no difference in enemy attack in the farm field, 

where nutrient levels were higher, relative to the restoration experiment. 

This study was motivated by our observation of large plant community 

differences among the five restoration treatments in the previous growing season. 

However, these differences dampened over time, and the restoration treatments became 
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more similar to the composition of the reference sites in the year of our survey (Pfeifer-

Meister 2008). Therefore the treatments may not have differed enough in plant 

community composition or other factors for us to detect an effect of treatment on natural 

enemy attack at the time of this study. 

Our finding that the introduced grass had more pathogen damage than the two 

native grasses is contrary to expectations of the enemy release hypothesis, in which we 

would expect introduced, “released” plants to have less damage by natural enemies than 

the native species. These results, however, are consistent with pathogen spillover from 

the introduced Lolium multiflorum to the native Agrostis exarata and Deschampsia 

cespitosa. The potential for spillover suggests that when considering restoration and 

eradication of introduced species, it may be helpful to focus eradication efforts on the 

unwanted plant species that are also competent hosts of generalist natural enemies. Local 

community context may play a role in the greater damage on L. multiflorum, as the 

majority of grass seed in the Willamette Valley region is from L. multiflorum, and the 

neighboring farm field was planted in this species. Also, enemy release tends to be more 

pronounced with recently introduced species(Hawkes 2007), and L. multiflorum has been 

common in the region for several decades. Our finding of potential spillover from the 

introduced to the native species is consistent with other recent studies of grassland 

communities (Malmstrom et al. 2007, Borer et al. 2007, Beckstead et al. 2010) and 

warrants further investigation of spillover as a mechanism of invasions by introduced 

species in restoration efforts and natural plant communities. 

When comparing enemy attack among plant species, life history traits of each 

species need to be considered. Agrostis exarata and D. cespitosa are perennial 
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bunchgrasses, but L. multiflorum is a winter annual. Because L. multiflorum leaves are 

short-lived, they may be less tough, less defended, and more vulnerable to enemy attack 

(Borer et al. 2009). Alternatively, because the plants only live for a maximum of one 

year, they may have less time to accumulate damage by natural enemies. Because of this 

and the small number of species surveyed, the result of more attack on the introduced 

species than the two native species should be interpreted with caution. Two other recent 

studies that included grasses found differing results. One included two native and three 

introduced grass species at each of three sites in Oregon, in which Roy and others 

(unpublished data) found no overall pattern of greater damage on the native versus 

introduced species. The second study, of tallgrass prairie grass, forb, and legume species 

in Kansas found more herbivore and more overall damage on native species than on 

introduced species (Han et al. 2008).  

The weak positive relationship between plant nitrogen status and enemy attack 

that we found may be due to the low variation in plant nutrient status among the 

restoration treatments, farm field, and reference site. Studies of the association between 

enemy attack and plant nutrient content have produced mixed findings (e.g., Borer et al. 

2006, 2009). The plant vigor hypothesis (Price 1991) predicts that larger, more vigorous 

plants will experience more attack by herbivores than smaller, stressed plants, while the 

plant stress hypothesis predicts that unhealthy plants will experience more herbivore 

attack (White 1974). In a meta-analysis of herbivore studies, Cornellisen and others 

(2008) found support for the plant vigor hypothesis, but not for the plant stress 

hypothesis. Rasmussen and others (2007) found that higher nutrient content in L. 

multiflorum led to weaker endophytic associations and lower alkaloid productions, 
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indicating reduced defense against natural enemy attack. Our findings are consistent with 

the plant vigor hypothesis or with weakened endophytic associations with plants having 

more nutrients. 

 

Bridge to Chapter IV 

 In the first studies, we examined correlations between natural enemy attack and 

restoration treatments, plant community variables, and individual plant traits. We did not 

find compelling evidence for community-wide patterns between community or individual 

plant variables and natural enemy attack, with the exception of a consistent but weak 

negative correlation between plant species diversity and enemy attack. We found 

compelling evidence for enemy spillover from the introduced to the native plant species, 

and wanted to further examine this relationship. In the next chapter, we used 

experimental communities of the six most common native and introduced perennial 

bunchgrasses, in order to further examine enemy spillover and dilution. We carried this 

experiment out for three growing seasons, and surveyed enemy attack on the six grass 

species each year, as well as over the course of the growing season during the second 

year. Our primary goal was to examine enemy spillover and dilution among the six native 

and introduced grass species. 
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CHAPTER IV 

A TEST OF THE RELATIVE STRENGTHS OF COMPETITION, ENEMY 

SPILLOVER, AND DILUTION AMONG NATIVE AND  

INTRODUCED PERENNIAL BUNCHGRASSES  

 

Author contributions: This study was designed by G. Kai Blaisdell, with substantial input 

from Bitty A. Roy and Scott D. Bridgham. The field experiment was carried out by G. 

Kai Blaisdell, with Bitty A. Roy’s contribution throughout the three growing seasons, and 

this chapter was written by G. Kai Blaisdell with contributions from Bitty A. Roy and 

Scott D. Bridgham.  

 

Introduction 

Natural enemies (pathogens and herbivores) can change population and 

community structure, because they reduce host survival and reproduction (Burdon et al. 

2006, Alexander 2010). Introduced plants sometimes bring generalist enemies with them 

to their new territory, and native plants, not having evolutionary history with the novel 

enemies, may be more susceptible than the introduced plants (Parker and Gilbert 2007). 

Some dramatic examples of abrupt community change due to pathogen introductions 

have involved plant pathogens, such as the current Phytophthora ramorum epidemic in 

California, which causes sudden oak death. Phytophthora ramorum infects several tree 

species, but is lethal only to some (Meentemeyer et al. 2004, 2008). This is an example of 

pathogen spillover, which occurs when a potential host is infected at higher levels when 

in the presence of another host that acts as a reservoir (Power and Mitchell 2004).  
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Recent studies in prairie systems suggest that pathogens play a key role in 

determining community composition and ecosystem function in grasslands (Garrett et al. 

2004, Malmstrom et al. 2005, 2007, Borer et al. 2007, Beckstead et al. 2010). Malmstrom 

and others (2005) found that the native grass Elymus glaucus in California is more often 

infected with barley/cereal yellow dwarf viruses in the presence of the introduced grass 

Avena fatua than in its absence. Furthermore, the diversity of barley/cereal yellow dwarf 

viruses in California proliferated at the approximate time that introduced grasses arrived, 

indicating that the hosts and pathogens were introduced together (Malmstrom et al. 

2007). More recently, Beckstead and others (2010) found that the presence of the 

introduced grass Bromus tectorum led to increased infection of co-occurring native 

grasses with the seed pathogen Pyrenophora semeniperda. These examples of pathogen 

spillover in grasslands involved introduced annual species and native perennial species, 

and life history was therefore confounded with geographic origin. In our study, we 

utilized three native and three introduced perennial grass species, to minimize life history 

differences between native and introduced plant species.   

In addition to pathogens, spillover of herbivores from one species to another has 

been documented in plant communities, especially in the case of the non-target effects of 

biological control. For example, Rand and Louda (2004) found more attack on the native 

thistle Cirsium undulatum by the biocontrol weevil Rhinocyllus conicus as the abundance 

of the introduced thistle Carduus nutans increased in the community.  

In contrast, dilution of natural enemies in a community can also occur, leading to 

the protection of a potentially susceptible host when in a community with unfavorable 

hosts. This phenomenon has been studied very little in natural plant communities (but see 



 

���

�

 

Mitchell et al. 2002, Borer et al. 2010), but it is a familiar concept with animal diseases 

(e.g., Ezenwa et al. 2006). For example, Ostfeld and Keesing (2000) found that the 

presence of wildlife hosts in a community with low rates of infection and transmission 

can reduce community pathogen loads of the tick-borne transmission of Borrelia 

burgdorferi (Lyme’s disease), and may reduce the risk of infection to humans. An 

introduced plant species in a novel community may suffer less attack by natural enemies 

simply because those enemies are less abundant in that novel community relative to a 

typical plant community in the introduced plant species’ native range.  

Separating out the effects of natural enemy attack from the effects of competition 

is an issue in field experiments, as removing neighboring plants may also lead to the 

removal of natural enemies that resided on them. In a study of meadow species in 

Canada, Reader (1992) used a combination of competitor removal and herbivore 

exclusion to tease out the effects of herbivory versus competition, and found that both 

were important factors. Another study found that the effect of herbivory relative to the 

effect of competition weakened as site biomass decreased (Bonser and Reader 1995). In a 

review and meta-analysis of the relative strength of competition and predation effects, 

Gurevitch and others (2000) found that herbivores generally have a stronger effect than 

competition on plant survival. Chase and others (2002) found a more complicated story, 

which depended largely on the measures of intensity of competition and predation that 

were used. When the competitive outcome of two species is due to the effects of shared 

natural enemies rather than direct resource competition, this is called apparent 

competition (Holt et al. 1994). 
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In addition to natural enemies, mutualisms can confound the effects of resource 

competition. Infection of Schedonorus with Neotyphodium endophytes has been studied 

extensively (Bacon and White 2000, Antunes et al. 2008), and other grass species can be 

infected as well (Cooke 2007, Rasmussen et al. 2007, Omacini et al. 2009). Alkaloids 

produced by Neotyphodium are toxic deterrents against herbivores (Tanaka et al. 2005), 

although they have been associated with increased survival of some herbivores 

(Saikkonen et al. 1999). Neotyphodium endophytes have allelopathic impacts on other 

plant species in the community (Antunes et al. 2008). These endophytes can also increase 

a plant’s tolerance for nutrient and water stress (Ravel et al. 1997, Hesse et al. 2003), 

although there is not always strong evidence of this in natural communities (Schulthess 

and Faeth 1998). 

In our study, we used different combinations of native and introduced species to 

test for enemy spillover and dilution among native and introduced plant species. To 

control for life history differences, we selected six species of perennial bunchgrasses that 

commonly co-occur. First, we hypothesized that, if enemy spillover from the introduced 

to the native grasses were occurring, enemy attack on the native species would be lowest 

when they were in a community with only other native species, and highest when in a 

community with the most introduced species. Second, we hypothesized that, if dilution of 

natural enemies on the introduced species by the native species were occurring, enemy 

attack on the introduced species would be lowest when in a community with the most 

native species, and highest when in a community with only other introduced species. We 

also tested the frequency of infection with Neotyphodium for each grass species. The 

primary goal of our study was to test enemy spillover and dilution by quantifying 
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variation in natural enemy attack among different plant communities on each native and 

introduced species. Because total plant cover (Alexander 1992, Folgarait et al. 1995) and 

density of each individual species (Burdon 1987, Kranz 1990) could affect natural enemy 

attack, we also measured these variables in the experiment. This information enabled us 

to make inferences about competition among all six grass species.  

 

Methods 

Experimental design and data collection 

 The field site was located in a seasonal wetland prairie in West Eugene, Oregon, 

USA, at the border of the restoration experiment and farm field planted in Lolium 

multiflorum discussed in Chapters II and III. The vegetation in the immediate area 

consisted primarily of Deschampsia cespitosa. Eugene has a Mediterranean climate, with 

average annual temperature 11.4° C, average maximum temperature 17.4° C, average 

minimum temperature 5.3° C, and average annual rainfall 0.99 m (Western Regional 

Climate Center 2009). To prepare the site, the experimental area was treated with 

glyphosate herbicide in October 2006. One week later, vegetation was removed from the 

plots by tilling. Following tilling, we seeded all plots by hand scattering seed.  

The three native species, Agrostis exarata Trin. (“spike bentgrass”), Danthonia 

californica Bol. (“California oatgrass”), and Deschampsia cespitosa (L.) P. Beauv. 

(“tufted hairgrass”), are native across most of the United States and Canada west of the 

Mississippi (Barkworth et al. 2007). The three introduced species, Anthoxanthum 

odoratum L. (“sweet vernal grass”), Holcus lanatus L. (“common velvetgrass”), and 

Schedonorus arundinaceus (Schreb.) Dumort (“tall fescue”), are native to Europe and 
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naturalized in the United States, and all are common in most of the 48 continental states. 

Schedonorus arundinaceus was introduced to the United States in the late 1800s, and 

became a widely used forage in the 1940s (Pedersen et al. 1990). Anthoxanthum 

odoratum and Holcus lanatus were also probably introduced in the 1800s, but are not 

widely used commercially. All seeds were obtained from local seed companies, and all 

were collected from the Southern Willamette Valley of Oregon, near the research site, or 

produced in nurseries that used seed sources from local populations. Seeds of these 

species are typically planted between September-January, and plant growth begins April-

May. Plants reach peak biomass in mid-late June, and then dry season senescence occurs 

in July-August.  

Our eight treatments were (i) a community of three native species, (ii) a 

community of three introduced species, (iii-v) three communities each with all of the 

native species plus one of the introduced species, and (vi-viii) three communities each 

with all of the introduced species plus one of the native species (Table 4.1). To minimize 

differences in plant species diversity, which may affect natural enemy attack (Mitchell et 

al. 2002), we chose to use communities that had either three or four plant species. Each 

plot was two by two meters, with five replicates in a randomized block design for a total 

of 40 plots. Each block contained one full replicate of the eight treatments, and consisted 

of eight adjacent plots. 

In October 2006, each treatment was planted with 1,500 viable seeds m-2. In each 

community, we planted an equal number of viable seeds of each plant species, calculated 

after adjusting for seed purity and germination rate, which varied among the six species. 

In Spring 2007 (year one) germination was sparse, and we reseeded all plots at 750 seeds 
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m-2. In two of the plots planted with A. odoratum, it was not found, so we reseeded these 

plots with 200 seeds m-2 of A. odoratum only in July of year one. In September of year 

one, we reseeded all plots again with 750 seeds m-2 of all species except D. cespitosa and 

S. arundinaceus, as these two species had ample germination. All species planted were 

present, and plots filled in to a desirable density in year two. Throughout all growing 

seasons we mowed between plots every two weeks and kept the plots well weeded of all 

species except those planted. The third and final growing season of this experiment was 

2009. 

 

Table 4.1. Eight different communities were planted to test for spillover and dilution of 
natural enemies among six native and introduced perennial grass species. Each species 
was planted in five of the eight treatments.  

3 Native Species 3 Introduced Species 

3 Native Species + A. odoratum 3 Introduced Species + A. exarata 

3 Native Species + H. lanatus 3 Introduced Species + D. californica 

3 Native Species + S. arundinaceus 3 Introduced Species + D. cespitosa 

 

 

We surveyed for damage in June 2007, May 2008, June 2008, August 2008, and 

June 2009. For each sampling date, we closely examined five randomly selected plants of 

each species in each plot for visible damage. Randomization was accomplished by 

throwing five markers into each plot, and selecting the plant of each species that was 

closest to that marker. We visually estimated percent of overall herbivore and pathogen 

damage on each plant, and visually estimated percent of each type of damage on one 

middle-aged leaf from a randomly selected tiller of each plant. Plants surveyed ranged in 

number of leaves from about three leaves to over one hundred leaves per plant. We also 

counted number of types of visibly distinct herbivore and pathogen symptoms per plant, 
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as a proxy for natural enemy richness. Immediately following the sampling in June of 

each growing season, at peak standing biomass, we collected plant cover data in each plot 

using the point intercept method (Jonasson 1988). To collect cover data, a 1-m2 pin frame 

with 25 pins was placed in the middle of the plot, and we counted each time a plant part 

touched a pin as one count. These counts were totaled for each plot and multiplied by 

four to calculate total cover of each species and thatch (dead plant material) in each plot. 

In July of year three, we measured above-ground biomass of each species and thatch in a 

0.2*0.6-m quadrat, placed 10 cm inside the northeast corner of each plant cover subplot, 

by clipping at the plant base and oven drying at 60� C for 48 hours.  

We cultured and identified fungal pathogens on all six grass species in the 

experiment. Leaves of each grass species with the most common symptoms were 

collected, surface sterilized in 3% hydrogen peroxide, and placed on crude agar plates. 

Alternatively, some leaves were incubated in humid chambers, or fungi were collected 

using tape mounts. Fungi were identified using morphological characteristics. In year 

three, we used sticky traps, pan traps, and pitfall traps to collect and identify arthropods 

in the experiment. In May 2010, we used an immunoblot assay (Agrinostics, 

Watkinsville, GA, USA) to test 25 plants of each grass species for the infection with the 

symbiotic Neotyphodium endophytes.  

 

Analyses 

Variation among treatments during three growing seasons 

 All analyses were performed in JMP Version 8. Plot was the unit of replication, 

and for all analyses, values for each species were averaged within each plot. Because 
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each of the six grass species was in a different subset of five of the eight treatments, each 

grass species was analyzed separately. To comply with the assumption of normality in 

ANOVA, we arcsine transformed percentage data, and square root transformed count 

data. All data were back-transformed after analysis for presentation.  

We were concerned that our two response variables for enemy attack rates, whole 

plant percent damage and number of symptoms per plant, may be redundant. To address 

this concern, we examined their correlations. Across all surveys, whole plant percent 

damage and number of symptoms per plant were positively correlated for each plant 

species (A. exarata: F1,131 = 224.04, P < 0.0001, r2 = 0.63,  A. odoratum: F1,135 = 112.47, 

P < 0.0001, r2 = 0.45,  D. californica: F1,134 = 73.30, P < 0.0001, r2 = 0.35, D. cespitosa: 

F1,148 = 259.84 P < 0.0001, r2 = 0.64,  S. arundinaceus: F1,146 = 76.89, P < 0.0001, r2 = 

0.34,  H. lanatus: F1,145 = 142.31, P < 0.0001, r2 = 0.50). Furthermore, we performed the 

analyses described below for both response variables and found similar trends.  To avoid 

redundancy and because we feel that number of types of symptoms per plant is a better 

measure of enemy attack, we focus here on that variable as a proxy for natural enemy 

richness. Number of species or types of natural enemies is commonly used as an estimate 

of natural enemy pressure in studies regarding invasions and natural enemies (Mitchell 

and Power 2003, van Kleunen and Fischer 2009). Finally, the process of identifying and 

counting distinct symptoms is a more objective measure than visually estimating percent 

damage. Here we focus on number of symptoms per plant. 

We used repeated measures to test the effect of plant community composition 

treatments on natural enemy attack over the three growing seasons, using the three June 

surveys to control for seasonality in enemy attack. Then, to testfor seasonal variation, we 
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used repeated measures to test the effects of treatments from May through August during 

the second growing season. For our repeated measures tests, we first used a multivariate 

approach to repeated measures. When the assumption of sphericity was not violated and 

missing values reduced our statistical power, we proceeded with an equivalent univariate 

split-plot approach for repeated measures, which has more power when some values are 

missing, because, unlike the multivariate repeated measures, it can retain individual 

subjects that are missing a value for one or more time points (Cole and Grizzle 1966). We 

used the univariate split-plot approach for S. arundinaceus only. When the assumption of 

sphericity was violated (D. cespitosa and H. lanatus only), we reported the Greenhouse-

Geyser adjusted statistics. When the assumption of sphericity was not violated, we 

reported the unadjusted statistics. 

 In cases where the repeated measures analysis indicated a significant treatment 

effect or treatment by time interaction, we performed mixed model ANOVA’s within 

each year, including block as a random factor and using restricted maximum likelihood to 

eliminate it as a nuisance factor (Corbeil and Searle 1976). When block explained < 1% 

of the variance, it was excluded from the analysis (Underwood 1981). When the overall 

ANOVA for any one season was not significant, we performed an a priori least squares 

contrast to compare the treatment with all introduced species to the treatment with all 

native species plus the focal introduced species, based on our hypothesis that if dilution 

by the native species were occurring, the most clear difference among treatments would 

be between these two treatments.  In no case for the native species did the repeated 

measures analyses indicate significant differences among the treatments or treatment by 

time interactions during the three growing seasons, so no a priori least squares contrasts 
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were performed to test spillover from the introduced to the native species. We used 

Tukey’s HSD tests to determine differences among the five treatments at individual time 

points.  

We considered using plant cover as a covariate, but found a treatment by cover 

interaction with respect to natural enemy attack, which precludes use of cover as a 

covariate. We checked for correlations between abundance of each grass species and 

enemy attack on that species by regressing enemy attack on cover of that species during 

each survey. We also explored the correlation between total plant cover and enemy attack 

on each species in this manner. 

 

Variation among treatments during second growing season 

 Analyses of seasonal variation among treatments were performed using repeated 

measures ANOVA in a similar manner to that of variation over the three year period, 

using the three surveys from year two. Because of late season senescence, there were 

substantial missing values. For A. exarata only, the natives + S. arundinaceus treatment 

was excluded from the repeated measures analysis, and the univariate split plot analysis 

was used. For all other species, the multivariate repeated measures analysis was used. 

 

Abundance of each plant species 

 To confirm that our cover data was representative of total above-ground biomass 

of each species, we regressed total per plot plant cover in year three against total above-

ground biomass collected in year three. We then used multivariate repeated measures 

analysis of the cover data to examine the abundance of each species over the three 
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growing seasons. When we found a treatment effect or treatment by time interaction, we 

followed up with individual univariate analyses, including block as a random factor only 

when block explained > 1% of variation in plant cover.  

 

Results 

Fungi, arthropods, and herbivores found 

Spores of Alternaria spp. and rust pustules were found on all six grass species in 

the experiment. Nigrospora sp. and Mastigosporium sp. were found only on Schedonorus 

arundinaceus, and a Drechslera sp.was found on Danthonia californica. We found 

evidence of rodent herbivory on all grass species except for Agrostis exarata. Potential 

arthropod herbivores found in the experiment included Coleoptera (beetles), Diptera 

(flies), Hemiptera (true bugs), Homoptera (aphids and leafhoppers), Lepidoptera (moths 

and butterflies), Orthoptera (grasshoppers), and Thysanoptera (thrips).  

Neotyphodium endophytes were not found in Danthonia californica or 

Schedonorus arundiaceus. We detected Neotyhodium in one of 25 Agrostis exarata and 

Holcus lanatus, three of 25 Anthoxanthum odoratum, and 15 of 25 Deschampsia 

cesptiosa plants. 

 Across all sampling dates and plant species, percent herbivore and percent 

pathogen attack were significantly negatively correlated, but the relationship was weak 

(F1,879 = 45.2, P < 0.0001, r2 = 0.05).  
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Variation among treatments during three growing seasons 

Spillover 

We found no compelling evidence of spillover from the introduced to the native 

plant species. Over the three growing seasons, number of symptoms per plant on all three 

native species significantly increased (Table 4.2, Figure 4.1a-c), but there were no 

significant treatment effects on natural enemy attack of any of the three native species, 

and the treatment effect did not change with time (Table 4.2). 

 

Dilution 

We found trends of reduced natural enemy attack on the introduced species when 

in treatments with the native species that are generally consistent with dilution of natural 

enemies by the native species. Number of symptoms on H. lanatus increased over time, 

and differed with marginal significance among treatments (Figure 4.1e). The effects of 

treatment varied over time. During the first growing season, differences among 

treatments in number of types of symptoms per plant on H. lanatus were marginally 

significant (F4,20 = 2.66, P = 0.063).  There was weak evidence that enemy attack on H. 

lanatus was higher in the natives + H. lanatus than in the introduced species (a priori 

least squares F1,20 = 8, P = 0.10), the reverse of dilution of natural enemy attack on H. 

lanatus by the native grasses. During the second season, differences among treatments 

were marginally significant again (F4,16 = 2.32, P = 0.10), and enemy attack was higher in 

the introduced species treatment than in the natives + H. lanatus (a priori least squares 

F1,16 = 7.20, P = 0.016), a reversal of the weak trend from the first growing season and 

consistent with dilution of natural enemy attack by the native grasses. 
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Table 4.2. Statistical results of repeated measures tests for variation among treatments in enemy attack and grass species abundance. 

Test Term A. exarata D. californica D. cespitosa A. odoratum H. lanatus S. 
arundinaceus 

# 
Symptoms 
3 years 

Time F2,40 = 54.29  
P < 0.0001 

F2,28 = 66.2 
P < 0.0001 

F1.6,31.1 = 240.4  
P < 0.0001 

F2,36 = 53.97  
P < 0.0001 

F1.5,29.8 = 60.02  
P < 0.0001  

F2,39.55 = 74.00  
P < 0.0001 

# 
Symptoms 
3 years 

Treatment  F4,20 = 1.21  
P = 0.34  

F4,14 = 0.41  
P = 0.80 

F4,20 = 0.68  
P = 0.61 

F4,18 = 1.21  
P = 0.12 

F4,20 = 2.71  
P = 0.06 

F4,20.11 = 0.90  
P = 0.48 

# 
Symptoms 
3 years 

T * T F8,40 = 0.62  
P = 0.75 

F8,28 = 1.43 
P = 0.23 

F6.21,31.07 = 1.38  
P = 0.25 

F8,40 = 0.62  
P = 0.75 

F7.68,36.49 = 2.11  
P = 0.0048 

F4,39.51 = 2.29  
P = 0.04 

# 
Symptoms 
Year 2 

Time F2,22.82 = 3.75  
P = 0.039 

F1.5,28.7 = 29.53  
P < 0.0001 

F2,40 = 5.44  
P = 0.0082 

F1.3,13.3 = 11.29  
P = 0.0030 

F1.4,23.4 = 25.51  
P < 0.0001 

F1.2,29.7 = 34.60  
P < 0.0001 

# 
Symptoms 
Year 2 

Treatment F3,15.78 = 1.61  
P = 0.23 

F4,19 = 0.42  
P = 0.79 

F4,20 = 0.60  
P = 0.67 

 F4,10 = 2.00  
P = 0.17 

F4,17 = 3.24  
P = 0.038 

F4,20 = 1.60  
P = 0.21 

# 
Symptoms 
Year 2 

T * T F6,22.38 = 2.42  
P = 0.059 

F6.04, 28.7 = 0.85  
P = 0.54 

F8,40 = 0.38  
P = 0.92 

F5.33,13.13 = 0.44  
P = 0.83 

F5.52,23.44 = 1.43  
P = 0.25 

F4.78.23.91 = 0.74  
P = 0.60 

Cover 3 
years 

Time F1.2,24.8 = 46.28  
P <0.0001 

F2,40 = 3.89  
P = 0.0018 

F2,40 = 165.21  
P < 0.0001 

F1.4,28.3 = 21.99  
P < 0.0001 

F1.3,25.7 = 32.25  
P < 0.0001 

F2,40 = 25.54  
P = < 0.0001 

Cover 3 
years 

Treatment F4,20 = 20.17  
P < 0.0001 

F4,20 = 1.31  
P = 0.30 

F4,20 = 1.30  
P = 0.30 

F4,20 = 7.32  
P = 0.0008 

F4,20 = 11.96  
P < 0.0001 

F4,20 = 5.46  
P = 0.0039 

Cover 3 
years 

T * T F4.95,24.77 = 7.47  
P = 0.0002 

F8,40 = 3.89  
P = 0.0018 

F8,40 = 0.61  
P = 0.77 

F5.7, 28.3 = 2.97  
P = 0.024 

F5.1, 25.7 = 8.60  
P < 0.0001 

F8,40= 4.28  
P = 0.0009 
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During the third growing season, there were highly significant differences in attack on H. 

lanatus among the five treatments (F4,20 = 6.30, P = 0.0019). Natural enemy attack was 

highest in the introduced species and introduced species + D. californica treatments, 

lowest in the natives + H. lanatus, and intermediate in the remaining two treatments 

(Tukey’s HSD P < 0.05). The results of the second two growing seasons are consistent 

with dilution of natural enemy attack on the introduced H. lanatus by the native grass 

species. 

Number of symptoms on S. arundinaceus increased over time. There was no main 

effect of treatments, but treatment effects varied over time (Table 4.2, Figure 4.1f). 

During the first growing season, number of types of symptoms per plant on S. 

arundinaceus varied among treatments with marginal significance (F4,20 = 2.21, P = 

0.10), and there was weak evidence that enemy attack in the  introduced species treatment 

was lower than in the  natives + S. arundianceus treatment  (a priori least squares F1,20 = 

3.60, P = 0.072), indicating a possible trend toward the reverse of natural enemy dilution 

by the native grasses. During the second growing season, number of types of symptoms 

on S. arundinaceus did not differ significantly among treatments (F4,16 = 0.95, P = 0.46), 

but attack was marginally higher in the introduced species treatment than in the natives + 

S. arundinaceus treatment (a priori least squares contrast F1,16 = 3.64, P = 0.075), 

indicating a reversal of the weak trend from the first growing season. During the third 

growing season, variation among treatments in enemy attack on S. arundinaceus was 

marginally significant (F4,15.23 = 2.81, P = 0.063), and enemy attack was higher in the 

introduced species treatment than the natives + S. arundinaceus treatment, with the three 

other communities being intermediate (Tukey’s HSD P <  0.05, Figure 4.1f). 
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Figure 4.1. Enemy attack (number of symptom types per plant) on the three native grass 
species Agrostis exarata, Danthonia californica, and Decschampsia cespitosa (a-c) and 
the three introduced grass species Anthoxanthum odoratum, Holcus lanatus, and 
Schedonorus arundinaceus (d-f) over the course of three growing seasons. Asterisks 
indicate a significant a priori least squares contrast of the two most diffferent treatments 
at one particular time point. Lowercase letters indicate differences in enemy attack 
among treatments in the final growing season (Tukey’s HSD P < 0.05). 
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The results of the second two growing seasons are consistent with dilution of natural 

enemy attack on the introduced S. arundinaceus by the native grass species. 

Number of symptoms on A. odoratum increased over time, but did not vary 

significantly among treatments, and the effects of treatment did not differ over time 

(Table 4.2). Natural enemy attack on A. odoratum shows a suggestive though not 

statistically significant trend of divergence among the treatments, and enemy attack in 

year three was highest in the introduced species treatment (Figure 4.1d).  

 

Variation among treatments over the second growing season 

Spillover 

Overall, we still found no support for enemy spillover from the introduced to the native 

species during the second growing season when all three sampling dates were considered. 

With natives + S. arundinaceus excluded from the repeated measures analysis due to low 

replication in August, enemy attack on the native A. exarata increased over the course of 

the growing season, and the treatment effect varied marginally over time, but there was 

no main treatment effect (Table 4.2, Figure 4.2a). In May of the second growing season, 

enemy attack on A. exarata differed among the four remaining treatments when natives + 

S. arundinaceus was excluded from the analysis (F3,12 = 3.95, P = 0.036), but this trend 

weakened when all five treatments were included (F4,16 = 2.30, P = 0.10). There was 

weak evidence of the reverse trend of enemy spillover, with more enemy attack in the 

natives treatment than in the introduced species + A. exarata treatment (a priori least 

squares contrast F1,16 = 4.87, P = 0.042). 
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Figure 4.2. Enemy attack (number of symptom types per plant) on the three native grass 
species Agrostis exarata, Danthonia californica, and Decschampsia cespitosa (a-c) and 
the three introduced grass species Anthoxanthum odoratum, Holcus lanatus, and 
Schedonorus arundinaceus (d-f) over the course of the second growing season. 
Lowercase letters indicate differences in enemy attack among treatments in August 
(Tukey’s HSD P < 0.05). 
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There was no significant variation among treatments in June (F3,16 = 1.86, P = 0.17) or 

August (F3,4 = 1.14, P = 0.43). Enemy attack on the natives D. californica and D. 

cespitosa varied over the growing season, but did not differ among treatments, and the 

effect of treatment did not vary over time (Table 4.2, Figure 4.2b-c).   

 

Dilution 

 Enemy attack on the introduced species A. odoratum and S. arundinaceus 

increased over the growing season. Treatments did not differ, and the effect of treatment 

did not change over time (Table 4.2, Figure 4.2d and 4.2f).  

Enemy attack on the introduced H. lanatus varied over the growing season, and 

differed among treatments, with no change in effect of treatment over time (Table 4.2) 

(Figure 4.2e).  Enemy attack on H. lanatus showed a general trend of stronger variation 

among the treatments over the growing season, with no significant variation in May (F4,16 

= 0.90, P = 0.49), marginally significant variation in June (F4,16 = 2.32, P = 0.10), and 

highly significant variation in August (F4,13.43 = 5.37, P = 0.0084). In August, there was 

more natural enemy attack on H. lanatus in the introduced species + D. californica 

treatment than in the introduced species + A. exarata treatment, with enemy attack being 

intermediate in the other three treatments (Tukey’s HSD P < 0.05).  

 

Total cover and abundances of each plant species 

 In year three, plot above-ground biomass was positively correlated with plot cover 

(F1,38 = 51.25, P < 0.0001, r2 = 0.57). Because our cover data were collected over a larger 
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area than biomass in each plot, and collected in the same manner each year, we report 

cover data here to describe abundances over the duration of the experiment.   

Total plant cover increased over the three growing seasons (F2,64 = 413.80, P < 0.0001), 

differed among the eight treatments (F7,32 = 22.62, P < 0.0001), and the effect of 

treatment varied over time (F14,64 = 8.33, P < 0.0001) (data not shown). In the first 

growing season, total cover differed among the eight treatments (F7,28 = 3.23, P = 0.012); 

total cover was highest in the natives + H. lanatus treatment and lowest in the introduced 

species + A. exarata treatment, with the other six treatments being intermediate (Tukey’s 

HSD P < 0.05; data not shown). In the second growing season total plant cover differed 

significantly among treatments (F7,28 = 35.08, P < 0.0001), and the five treatments 

containing D. cespitosa had significantly higher cover than the other three treatments 

(Tukey’s HSD P < 0.05, data not shown). In the third growing season (Figure 4.3), 

variation in total plant cover among treatments was again significant (F7,28 = 16.57, P < 

0.0001), with differences among treatments showing a similar trend to that in the second 

growing season. In treatments with D. cespitosa, it established as the dominant species, 

comprising from 20-99% of the total per plot cover in year one, 45-94% in year two, and 

60-99% in year three. 

Abundances of the native species A. exarata and D. californica varied over the 

three growing seasons (Table 4.2). Agrostis exarata abundance differed among the five 

treatments, but there was no main effect of treatment on abundance of D. californica.  

Effect of treatment varied over time for abundances of both species (Figure 4.4a-b). 

Abundances of A. exarata and D. californica did not vary among treatments during the 

first (A. exarata: F4,16 = 0.87, P = 0.50, D. californica: F4,20 = 0.95, P = 0.46) or second 
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Figure 4.3.  Total plant cover in the final growing season among the eight treatments. 
Lowercase letters indicate significant differences among treatments (Tukey’s HSD P < 
0.05). 
 

growing season (A. exarata: F4,16 = 1.50, P = 0.25, D. californica: F4,16 = 1.09, P =0.39), 

but treatments had diverged by the third growing season (A. exarata: F4,16 = 14.41, P < 

0.0001, D. californica: F4,16 = 4.34, P = 0.014). In the final growing season, the 

abundance of A. exarata was greater in the introduced species + A. exarata treatment than 

in the other four treatments, which were equivalent (Tukeys HSD P < 0.05). Similar to 

the A. exarata, D. californica was more abundant in the introduced species + D. 

californica treatment than in the other four treatments, which were equivalent (Tukeys 
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HSD P < 0.05), in the final growing season. Abundance of the native D. cespitosa varied 

over time, first increasing and then plateauing, but there was no main treatment effect, 

and effect of treatment did not depend on time (Table 4.2, Figure 4.4c). 

Abundance of all three introduced species, A. odoratum, H. lanatus, and S. 

arunidinaceus varied over the three growing seasons and among treatments. Treatment 

effect varied over time (Table 4.2, Figure 4.3d-f). Abundance of A. odoratum did not 

differ among treatments during the first (F4,16 = 0.49, P = 0.74) or second (F4,16 = 1.94, P 

= 0.15) growing season, but diverged by the third growing season (F4,16 = 8.37, P = 

0.0008). Abundance of A. odoratum was highest in the introduced species and introduced 

species + D. californica treatments, the introduced species + D. californica treatment was 

equivalent to the introduced species + A. exarata treatment, and A. odoratum abundance 

was lowest in the introduced species + A. exarata, natives + A. odoratum, and introduced 

species + D. cespitosa treatments (Tukey’s HSD P < 0.05).  

Abundance of S. arundinaceus varied with marginal significance among treatments in the 

first growing season (F4,16 = 2.52, P = 0.083), with cover in the introduced species and 

introduced species + D. californica trending toward being higher than in the other three 

treatments. The pattern of abundance of S. arundinaceus among the five treatments 

followed a similar trend during the second growing season (F4,16 = 3.04, P = 0.048), 

although a Tukey’s HSD test did not distinguish differences among the five treatments. 

During the final growing season, this trend strengthened (F4,20 = 11.68, P < 0.0001), and, 

similar to A. odoratum, abundance of S. arundinaceus was greater in the introduced 

species and introduced species + D. californica, which were equivalent, than in the other 

three treatments, which did not differ (Tukey’s HSD P < 0.05).  



 

���

�

 

 

Figure 4.4. Percent cover of the three native grass species Agrostis exarata, Danthonia 

californica, and Decschampsia cespitosa (a-c) and the three introduced grass species 
Anthoxanthum odoratum, Holcus lanatus, and Schedonorus arundinaceus (d-f) over the 
course of three growing seasons. Lowercase letters indicate differences in plant cover 
among treatments in the final growing season (Tukey’s HSD P < 0.05). Note scale 
difference in y axes among the six panels. 
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In the first growing season, abundance of H. lanatus differed with marginal 

significance among treatments (F4,16 = 2.39, P = 0.094), with cover in the introduced 

species treatment trending toward being higher than in the other four treatments. 

Abundance of H. lanatus did not differ among treatments in the second growing season. 

In the third growing season, H. lanatus differed strongly among the five treatments (F4,16 

= 15.64, P < 0.0001), and, similar to the trend in abundance of A. odoratum and S. 

arundinaceus, H. lanatus was more abundant in the introduced species and introduced 

species + D. californica treatments than in the other three treatments (Tukey’s HSD P < 

0.05).  

 Because natural enemy attack can vary with host density, we checked for 

correlations between abundance of each grass species and enemy attack on that species. 

Enemy attack on A. odoratum and A. exarata did not change with their own abundance 

during any of the five surveys. Enemy attack on the native D. californica increased as its 

abundance increased in year one only (F1,23 = 7.97, P = 0.0097, r2 = 0.26), but did not 

differ among treatments during any surveys. Enemy attack on the native D. cespitosa 

increased with marginal significance as its own abundance increased in August of year 

two (F1,23 = 3.25, P = 0.084, r2 = 0.12) and in year three (F1,23 = 3.06, P = 0.094, r2 = 

0.12), but did not differ among treatments during any surveys. Enemy attack on S. 

arundinaceus increased as its own abundance increased in August of year two only (F1,23 

= 4.96, P = 0.036, r2 = 0.18), but did not differ among treatments during that survey. 

Enemy attack on H. lanatus increased as its own abundance increased in year three only 

(F1,23 = 12.30, P = 0.0019, r2 = 0.35), which could be associated with the treatment effects 

on enemy attack that were found.    
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Total plant cover may also influence natural enemy attack rates. Enemy attack 

increased on D. cespitosa as total cover increased in August of year two only (F1,23 = 

6.53, P = 0.018, r2 = 0.22), but did not differ among treatments. Enemy attack on D. 

californica increased as total cover increased in year three only (F1,17 = 6.73, P = 0.019, 

r
2 = 0.28), but did not differ among treatments during that year. Enemy attack on A. 

exarata increased with marginal significance as total cover increased in May of year two 

(F1,23 = 3.06, P = 0.094, r2 = 0.12), but decreased with marginal significance as total plant  

cover increased in June of year two (F1,23 = 4.00, P = 0.057, r2 = 0.15). Enemy attack on 

H. lanatus decreased as total cover increased in June of year two with marginal 

signifance (F1,23 = 3.78, P = 0.064, r2 = 0.14) and in year three with stronger significance 

(F1,23 = 13.37, P = 0.0013, r2 = 0.37), which could be associated with treatment 

differences in enemy attack. Enemy attack on S. arundinaceus increased as total plant 

cover increased in year one (F1,23 = 6.59, P = 0.017, r2 = 0.22). Enemy attack on A. 

odoratum increased as total plant cover increased in year one (F1,23 = 4.45, P = 0.040, r2 = 

0.09), and followed the same trend with marginal significance in August of year two 

(F1,13 = 3.71, P = 0.076, r2 = 0.22), which could have obscured our ability to detect 

dilution on that species. In year three, however, enemy attack on A. odoratum reversed 

trends, decreasing with marginal significance as total plant cover increased (F1,23 = 3.32, 

P = 0.082, r2 = 0.13). 

 

Discussion 

We found compelling evidence of dilution of natural enemy attack on two of the 

three introduced species, Holcus lanatus and Schedonorus arundinaceus, with increasing 
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divergence in enemy attack among treatments over the course of the three growing 

seasons (Figure 4.1).  Anthoxanthum odoratum followed a similar suggestive trend, 

although a treatment effect on enemy attack was not found in our repeated measures 

analysis over the three growing seasons. It should be noted, however, that enemy attack 

on H. lanatus and S. arundinaceus were higher in treatments that also had higher 

abundance of these two species, and enemy attack on a particular host can increase as 

abundance of that host increases (Alexander 1992, Folgarait et al. 1995, Agrawal et al. 

2006). In contrast, abundance of the native species Agrostis exarata and Danthonia 

californica also varied significantly among treatments, while enemy attack on those two 

species did not, suggesting that host abundance may not have affected enemy attack in 

this experiment. Our finding of dilution of natural enemies on introduced grasses by 

native grasses warrants further study.  

We found no evidence of enemy spillover from the introduced to the native plant 

species. Natural enemy attack on the three native species did not vary among treatments 

in any of the three growing seasons. Our results are contrary to past findings of enemy 

spillover from introduced to native grasses (Malmstrom et al. 2005, 2007, Beckstead et 

al. 2010), which may have been confounded with the life history differences of annual 

versus perennial plants. Borer and others (Borer et al. 2009) found that aphids, the 

exclusive vectors of barley/cereal yellow dwarf viruses, preferred and had higher 

fecundity on annual than perennial host species, while host geographic origin and nutrient 

status were less influential. More recently, Cronin and others (2010) found that a host’s 

physiological phenotype, described in terms of metabolic rate, leaf nutrient concentration, 

and leaf mass per unit area, predicted its level of reservoir potential, while host life span, 
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provenance, and phylogeny did not. In addition to dilution and spillover, future studies of 

patterns of natural enemy attack should consider these other variables. We controlled for 

life history and phylogenetic variables by using closely related species with similar life 

histories. In two previous studies in the same location, foliar nitrogen and phosphorus 

concentrations had no or minimal effect on pathogen and herbivore attack (Blaisdell 2011 

- Chapter II and Chapter III). 

 We can make some inferences about the effects of enemy attack versus the effects 

of plant species competition by examining the plant cover data over the course of the 

three growing seasons. Abundance of the native Deschampsia cesptiosa and enemy 

attack on D. cespitosa were unaffected by treatment (Figure 4.4). Deschampsia cespitosa 

increased steeply in abundance as determined by cover between the first two growing 

seasons, then plateaued between the second and third growing seasons when it dominated 

all plots in which it was planted (Figure 4.3), which suggests that intraspecific 

competition was the dominant factor controlling abundance of this species. Pfeifer-

Meister (2008) found that D. cespitosa was the dominant competitive plant species in the 

nearby seasonal restored wetland prairies, with its dominance increasing over several 

years. This dominance may be due directly to its competitive ability, or to its relatively 

high rate of infection with the endophyte Neotyphodium. The other two native species A. 

exarata and D. californica increased over all three growing seasons only in the treatments 

where D. cespitosa was absent, but actually decreased from the second to third growing 

seasons in the treatments that contained D. cespitosa. This observation combined with the 

lack of treatment effect on natural enemy attack of these two species indicates that 

competition with D. cespitosa was the primary factor controlling their abundance.  
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In all treatments, the introduced A. odoratum, H. lanatus, and S. arundinaceus 

increased in abundance from the first to the second growing season (Figure 4.4). In the 

second growing season, all three introduced grass species shared similar abundances, but 

only H. lanatus increased between the second and third growing seasons (Figure 4.4). All 

three introduced species were much less abundant when the native D. cespitosa was 

present, indicating strong interspecific competition (Figure 4.4). Agrostis exarata also 

appeared to somewhat influence abundance of the introduced species in the final growing 

season. In the final year, the three introduced grass species achieved their highest 

abundance in the introduced species and introduced species + D. californica treatments, 

suggesting that D. californica is either a weak competitor or had a positive effect on the 

introduced species through enemy dilution. Danthonia californica had little to a modest 

effect on enemy dilution for the three introduced grasses (Figure 4.1), suggesting that 

competition was the dominant effect in their abundances.  

Sometimes the presence of one plant species can affect another species by 

harboring natural enemies, and this distinction between competition versus increased 

enemy populations has been addressed in past experiments by using exclosures to 

exclude natural enemies (Reader 1992, Bonser and Reader 1995, Hulme 1996, Van Der 

Wal et al. 2000, Borer et al. 2009). When one species affects another via shared natural 

enemies rather than via direct resource competition, this is called apparent competition 

(Holt et al. 1994). Our study did not directly manipulate natural enemy abundance in this 

manner, and we therefore cannot discern between the effects of enemy attack and 

competition with certainty. However, D. cespitosa had a dilution effect on H. lanatus and 

S. arundinaceus (Figure 4.1), and it also led to a reduction in abundance of both of these 
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species (Figure 4.4), which suggests that resource competition was the dominant 

influence. 

 Overall, natural enemy attack increased on all six grass species in all treatments 

over time, indicating an accumulation of natural enemies over the three growing seasons. 

Plant resistance to insect herbivores has been found to be higher in younger plants than in 

middle-aged plants, and then increase again in older plants (Stein and Price 1995). In the 

Northwestern United States, periodic field burning has traditionally been used to reduce 

pathogen load, which otherwise can build up in plant material over multiple years 

(Hardison 1980). This may explain the accumulation of natural enemies over the three 

growing seasons in this study. Plant size is also positively associated with enemy attack 

in some cases (Burdon 1987), but this has not been the case for these grasses in closely 

related studies (Blaisdell 2011- Chapter II and Chapter V). 

Our findings indicate dilution of natural enemy attack on introduced species by 

native species, rather than spillover of natural enemies from the introduced to the native 

species. In our study, the native D. cespitosa was the dominant species, and appeared to 

be unaffected by the introduced species. Despite the positive effect of native species on 

introduced species via enemy dilution, our results indicate that the primary effect of the 

native species on introduced species was negative through competitive interactions. 

Interestingly, abundance of the native species and enemy attack on the native species 

during this three-year experiment were not affected by the presence of the introduced 

species, suggesting that there may be larger effects of the native species on the introduced 

species. The relative strength of competitive interactions almost certainly will vary with 

the particular species involved, and in grass communities without such a strong 
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competitor as Dechampsia cespitosa, enemy dilution may play a more pronounced role in 

the success of introduced species. Invading genotypes in some cases are larger with 

higher reproductive output, but with relatively poorly defended leaves relative to 

genotypes in the plants’ native range, and could therefore benefit disproportionately from 

dilution of enemy attack (Siemann and Rogers 2001). 

 

Bridge to Chapter V 

 In this chapter, we experimentally tested our earlier findings from Chapters II and 

III that were suggestive of enemy spillover from introduced to native plant species, 

controlling for life history by using only perennial bunchgrasses. We also explored 

dilution of natural enemy attack on introduced species by native species. Our experiment 

yielded no evidence of enemy spillover from the introduced species, but instead we found 

evidence of dilution of natural enemies. This and the previous chapters did not directly 

address the enemy release hypothesis, which is the most popular proposed mechanism of 

invasions by introduced species. According to the enemy release hypothesis, plant 

species experience a decrease in regulation by herbivores and pathogens, resulting in a 

rapid increase in the plants’ distribution and abundance. In Chapter V, we tested enemy 

release of our three introduced species used in Chapter IV, by comparing natural enemy 

attack on existing populations from a broad geographic area in both their native and 

naturalize ranges, Europe and the United States.   
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CHAPTER V 

A TEST OF ENEMY RELEASE OF THREE COMMONLY CO-OCCURRING 

PERENNIAL BUNCHGRASS SPECIES NATIVE TO EUROPE  

AND INTRODUCED IN THE UNITED STATES 

 

Author contributions: This study was designed and implemented by G. Kai Blaisdell, and 

this chapter was written by her with contributions from Bitty A. Roy. Bitty A. Roy also 

contributed to the study by locating some populations, and collecting samples with G. 

Kai Blaisdell at one site.  

 

Introduction 

Invasive introduced plants threaten native biodiversity, alter ecosystem structure, 

and cost approximately $120 billion per year in the United States (Pimentel et al. 2005). 

The popularly cited enemy release hypothesis (Keane and Crawley 2002, Colautti et al. 

2004) proposes that introduced plants fare better than native plants because they are 

“released” from pathogens and herbivores that exist only in their native range. With 

fewer enemies, these introduced plants have a competitive advantage over native plants 

and become invasive.  

Various approaches have been used to test enemy release. For example, some 

studies tested for differences in herbivore and/or pathogen attack between closely related 

native and introduced species, or between co-occurring native and introduced species, on 

the premise that the introduced species, if indeed released from natural enemies, would 

have less enemy attack than their native congeners or neighbors (Agrawal and Kotanen 



 

���

�

 

2003, Dietz et al. 2004, Vilà et al. 2005, Carpenter and Cappuccino 2005, Agrawal et al. 

2005, Han et al. 2008). These studies found mixed results with respect to supporting or 

not supporting the enemy release hypothesis. Recently, Vermeij and others (2009) 

showed that comparison of herbivory on native and introduced algae in the naturalized 

range showed more herbivory on the introduced algae, yet a biogeographical comparison 

of the introduced algae in its native versus naturalized ranges showed reduced herbivory 

in its naturalized range relative to its native range. This finding indicates that comparing 

native and introduced plants in one area could lead to erroneous conclusions about enemy 

release.  

Alternative to contrasting native and introduced species in one geographic range, 

some scientists have compared natural enemy attack on plant species between their native 

and naturalized ranges. Consistent with enemy release, Adams and others (Adams et al. 

2009) found more leaf herbivory and fungal attack on Acer platanoides (L.) (Norway 

maple) in Europe, the native range, than in North America, the naturalized range. 

Similarly, Vermeij and others (Vermeij et al. 2009) found less grazing on algae in their 

naturalized range, Hawaii, than in their native range, the Caribbean. Genton and others 

(Genton et al. 2005) found evidence of enemy release from herbivores but not pathogens 

in populations of Ambrosia artimisiifolia (ragweed) native to North America and invasive 

in France. Roy and others (in press) found reduced pathogen and mollusk attack on 

Brachypodium sylvaticum in the United States, the naturalized range, versus Europe, the 

native range, but an increase in insect herbivory in the naturalized range. These 

biogeographical studies are small in number, and the majority surveyed a small 

geographic area in the native and naturalized ranges of their study species (but see Adams 
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et al 2009). Most studies focused only on one particular plant species (but see Vermeij et 

al 2009).  

Yet another approach besides the field studies mentioned above is to mine 

existing information by comparing species richness of already documented natural 

enemies on plant species in their native and naturalized ranges (i.e., host index 

compilations).A host index lists pathogens known to attack particular plant species or 

hosts. Mitchell and Power (Mitchell and Power 2003) used this approach, compiling data 

from existing host indices of viral and fungal pathogens on 471 plant species native in 

Europe and naturalized in the United States, and generally found higher numbers of 

viruses and fungal pathogens on plant species in Europe than in the United States. One 

potential weakness of this approach is that diseases are better documented in Europe than 

in the United States (Mitchell and Power 2003). Van Kleunen and Fischer (2009) used a 

correction for this literature bias, and found that the trend of enemy release, though 

reduced in magnitude, still held.  Furthermore, these authors compiled information on 

fungal pathogens of 140 plant species native in North America and naturalized in Europe, 

and found a similar but weaker trend of enemy release, as shown by fewer species of 

fungal pathogens per host species in the plants’ naturalized range than in the native range. 

This approach of measuring species richness of natural enemies per plant species assumes 

that greater amounts of attack are correlated with greater numbers of enemy species, 

which may not always be accurate. Van Kleunen and Fischer (2009) also examined the 

correlation of pathogen species richness per host species with geographic expansion of 

each host species in their naturalized range, and, contrary to the prediction of enemy 
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release, found that release from foliar pathogens was negatively correlated with the 

geographic expansion of the plant species in their naturalized range. 

To test the enemy release hypothesis, we used a combination of two approaches. 

First, we surveyed herbivore and pathogen attack on individual plants in populations of 

three commonly co-occurring perennial bunchgrasses, native in Europe and naturalized in 

North America. Multiple populations across a wide geographic area in both the native 

and naturalized ranges were surveyed. We measured both percent leaf area damaged by 

herbivores and pathogens, and, as a proxy for enemy species richness, number of types of 

herbivore and pathogen symptoms per plant. As an estimate of fitness, above-ground per 

plant biomass was measured. Second, for a comparison of field results to host index 

compilations, we then compared our findings from our field survey to the data compiled 

by Mitchell and Power (2003) for each of the three plant species we surveyed. 

 

Methods 

We surveyed three species of perennial bunchgrasses, Anthoxanthum odoratum L. 

(“sweet vernal grass”), Holcus lanatus L. (“common velvetgrass”), and Schedonorus 

arundinaceus (Schreb.) Dumort (“tall fescue”), synonym = Festuca arundinacea, (Flora 

of North America Editorial Committee 1993), that are native to Europe and naturalized in 

the United States. All are found widely across both Europe and the United States, and 

commonly co-occur in both their native and naturalized ranges.  

Populations were selected from as wide an area as logistically possible within 

each range, and were found using Nature Conservancy species lists, prior knowledge of 

populations by authors and colleagues, and surveys of areas likely to have one or more of 
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the three grass species. Sampling in the United States occurred in May, June, and August 

2008. Sampling in Europe occurred in July 2008. All populations that were found and 

could be surveyed during the 2008 growing season were sampled, which resulted in 

unequal replication. In the United States, populations were sampled in Oregon, 

Washington, Wisconsin, North Carolina, and New York, with seven populations of A. 

odoratum, eight of H. lanatus, and six of S. arundinaceus  (Figure 5.1, Table A.1 in the 

Appendix). In Europe, populations were sampled in Switzerland, Austria, Germany, and 

the Netherlands, with eight populations each of A. odoratum and H. lanatus, and three of 

S. arundinaceus.  

To sample each population, a 30-m transect was laid through the population. 

Density of each of the three grass species was estimated at three 1-m sections of the 

transect (4-5 m, 10-11 m, and 25-26 m): At each 1-m space, the number of stems of each 

plant touching the transect tape was counted. As an estimate of overall community vigor, 

three 20-cm2 quadrats of total above-ground community biomass were collected from 50 

cm away from the transect tape at 5, 15, and 25 m. The collected community biomass 

was oven-dried at 60�C for 72 hours and weighed. At each site, ten plants of each host 

species present were collected and surveyed for attack by natural enemies at each 

population. For this sampling, the nearest plant to the meter mark was taken every three 

meters along the transect. Percent foliar herbivore and pathogen damage were estimated 

visually for one randomly selected leaf from each plant. Plants surveyed ranged 

approximately from having three to fifty leaves. 
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Figure 5.1. Populations of three commonly co-occurring perennial bunchgrasses were 
sampled across a wide geographic range in both the native range (Europe) and the 
naturalized range (United States) in 2008. Each white dot represents a location sampled. 
The letters at each location correspond to which of the three plant species were sampled 
at that location: A = Anthoxanthum odoratum, H = Holcus lanatus, S = Schedonorus 

arundinaceus.  
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Additionally, the entire plant was examined for number of types of visibly distinct 

herbivore and pathogen attack, and percent total damage to the plant was estimated 

visually. Furthermore, chlorophyll content as an estimate of nutrient status (Gáborčík 

2003) and percent total senescence were recorded for each plant. Above-ground biomass 

of each plant at the time of sampling was measured by clipping and drying at 60°C for 72 

hours.  

All analyses were performed in JMP version 8. All percentage data were arcsine 

square root transformed, count data were square root transformed, and shoot biomass data 

were log transformed to better meet the assumptions of ANOVA. The two ranges, Europe 

and the United States, were compared as fixed factors, and population nested within 

range was included as a random factor for the following variables: percent herbivore 

damage per leaf, percent pathogen damage per leaf, total percent damage per leaf, 

number of types of herbivore per plant, types of pathogen per plant, total number per 

plant, total percent damage per plant, and total above-ground biomass per plant. All data 

were back-transformed for presentation. 

To explore potentially confounding factors, we first compared the plant level and 

site level variables between the native and naturalized ranges, using the same ANOVA 

model used to test differences in natural enemy attack between the two ranges. When we 

found a difference in variables between the two ranges, we explored further by 

performing least squares regressions of the plant or site variables versus percent leaf 

herbivore and pathogen damage.   

We admittedly performed many statistical tests, yet the results yielded tended to 

corroborate each other rather than being contradictory. The statistical model that we used 
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is conservative because site is treated as a random variable, and, especially in the case of 

S. arundinaceus, our low replication of sites led to relatively weak statistical power. 

Similar biogeographic studies have used a Student’s t-test (Wolfe 2002), which is a much 

less conservative model, to compare natural enemy attack between ranges. Student’s t-

tests fail to treat site within ranges as a random variable, limiting the ability to correctly 

extrapolate results from individual sites to the entire native and naturalized ranges. More 

recently, Adams and others (2009) and Roy and others (in press) have employed a 

statistical approach similar to what we used in this study.  

To compare the field and literature survey approaches to each other, we compared 

our field observations to data compiled from existing recorded information about 

pathogen attack on the three grass species (Mitchell and Power 2003). These authors 

shared their data on Schedonorus arundinaceus and Holcus lanatus with us. Additionally, 

we followed their protocol to collect similar data for Anthoxanthum odoratum. For A. 

odoratum, in addition to compiling data for rusts, smuts, and mildews as done by 

Mitchell and Power, we also compiled data for all other fungal pathogens found in the 

same sources (Gäumann 1959, Wilson and Henderson 1966, Gleason and Cronquist 

1991, Hickman 1993, Farr and Rossman 2010) used by Mitchell and Power.  

 

Results 

Percent damage per leaf 

Consistent with enemy release, both Holcus lanatus (F1,13.95 = 4.27, P = 0.03) and 

Schedonorus arundinaceus (F1,6.90 = 8.61, P = 0.02) had significantly more percent 

herbivore damage per leaf in the native than in the naturalized range (Figure 5.2). Percent 
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herbivore damage did not significantly differ between the two ranges on Anthoxhanthum 

odoratum (F1,13 = 0.25, P = 0.63). Pathogen damage did not significantly differ between 

the two ranges on any of the three grass species (A. odoratum: F1,13 = 0.17, P = 0.69, H. 

lanatus: (F1,13.97 = 0.23, P = 0.64, S. arundinaceus: (F1,6.95 = 1.07, P = 0.34, Figure 5.2). 

Total percent leaf damage was higher in the native than naturalized range with marginal 

significance on H. lanatus (F1,13.91 = 3.05, P = 0.10), but not on A. odoratum (F1,13 = 1.67, 

P = 0.22) or S. arundinaceus (F1,6.96 = 1.05, P = 0.33). Percent leaf herbivore damage was 

weakly, but significantly negatively correlated with percent leaf pathogen damage for the 

three grass species (F1,392 = 45.93, P < 0.0001, r2 = 0.10).  

 

Whole plant measurements 

Across all three grass species, number of types of symptoms per plant showed a 

positive correlation with percent leaf damage. Percent herbivore damage was correlated 

with number of types of herbivore symptoms (F1,392 = 144.30, P < 0.0001, r2 = 0.27), and 

percent pathogen damage was also positively correlated with number of types of 

pathogen symptoms (F1,392 = 98.15, P < 0.0001, r2 = 0.20).  

Number of types of symptoms per plant generally followed a similar pattern to 

that of percent leaf damage between ranges, but with weaker statistical significance 

(number of herbivore symptoms per plant: A. odoratum: F1,13 = 0.058, P = 0.81, H. 

lanatus: F1,14.13 = 3.35, P = 0.08, S. arundinaceus: F1,6.96 = 3.30, P = 0.11; number of 

pathogen symptoms per plant: A. odoratum: F1,13 = 0.53, P = 0.48, H. lanatus: F1,14.31 = 

0.060, P = 0.81, S. arundinaceus: F1,6.96 = 0.68, P = 0.44); total number of symptoms per 
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plant:  A. odoratum: F1,13 = 0.50, P = 0.49, H. lanatus: F1,14.19 = 1.42, P = 0.25, S. 

arundinaceus: F1,6.97 = 0.23, P = 0.65).  

 

Figure 5.2. Percent herbivore, pathogen, and total damage per leaf on three plant species 
(Anthoxanthum odoratum, Holcus lataus, Schedonorus arundinaceus), native in Europe 
and naturalized in the United States. P values are shown for all significant differences in 
herbivore, pathogen, and total damage per leaf between ranges. ns = not significant. 
 

Total percent damage per plant was significantly higher in the native range than 

the naturalized range on A. odoratum (F1,13,36 = 8.41, P = 0.01), and H. lanatus (F1,12 = 

40.68, P < 0.0001), but not on S. arundinaceus (F1,7.09 = 2.61, P = 0.15). For all three 

grass species, the difference between ranges trended in the same direction (Figure 5.3). 

Per plant above-ground biomass of A. odoratum was significantly higher in the 
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naturalized range than the native range (F1,13 = 12.53, P = 0.004), and H. lanatus 

followed the same trend, though marginally significant (F1,13.94 = 3.75, P = 0.07).  

 

 
Figure 5.3.  (a) Whole plant percent damage and (b) per plant above-ground biomass in 
the naturalized and native ranges on Anthoxanthum odoratum, Holcus lataus, and 
Schedonorus arundinaceus. P values are shown for differences in whole plant percent 
damage and per plant above-ground biomass between the native and naturalized ranges 
for each plant species. 

 

 

Potentially confounding plant level variables 

The plant vigor hypothesis  (Price 1991, Cornelissen et al. 2008) predicts that 

natural enemy attack will increase as plant health increases, and we explored shoot 
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biomass (Folgarait et al. 1995, Bradley 2003), chlorophyll content (Gáborčík 2003), and 

whole plant percent senescence as potentially confounding variables. Percent leaf 

herbivore damage (F1,389 = 0.69, P = 0.41, r2 = 0.002) and percent leaf pathogen damage 

(F1,389 = 0.80, P = 0.24, r2 = 0.004) were not significantly correlated with whole plant 

biomass. Chlorophyll content did not significantly vary between the two ranges for any of 

the three grass species (A. odoratum: F1,13.24 = 0.0021, P = 0.96, H. lanatus: F1,13.91 = 

0.33, P = 0.57, S. arundinaceus: F1,7.16 = 0.29, P = 0.60). Anthoxanthum odoratum 

(F1,13.03 = 6.29, P = 0.026) and H. lanatus (F1,13.32 = 24.21, P = 0.0003) had significantly 

higher percent per plant senescence in the US than in Europe. Percent senescence did not 

differ significantly between the two ranges on S. arundinaceus (F1,6.98 = .33, P = 0.58). 

Percent leaf herbivore damage (F1,391 = 0.14, P = 0.71, r2 = 0.0004) and percent leaf 

pathogen damage (F1,391 = 0.44, P = 0.51, r2 = 0.001) were not significantly correlated 

with percent senescence. Therefore, shoot biomass, chlorophyll content, and plant 

senescence would not have confounded our results. 

 

Potentially confounding site level variables 

 Overall, community plant biomass had some weak associations with herbivory 

that may have confounded our finding of release from herbivory. Community plant 

biomass per m2 differed with marginal significance between ranges at sites where A. 

odoratum was sampled, trending toward being higher in Europe than in the US (F1,13 = 

4.14, P = 0.063). Community plant biomass followed a similar trend between the native 

and naturalized ranges for sites where H. lanatus (F1,14 = 2.20, P = 0.16) and S. 

arundinaceus (F1,7 = 1.90, P = 0.21) were sampled, but with no statistical significance.  
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Across all three plant species, community biomass had a weak, positive correlation with 

herbivory in both ranges (F1,38 = 4.22, P = 0.047, r2 = 0.10). Therefore, the trend toward 

higher community biomass in Europe and its positive association with herbivory could 

have contributed to our finding of less herbivory in the US. Across all three plant species 

and both ranges, community biomass had no association with leaf pathogen attack (F1,38 = 

0.27, P = 0.61, r2 = 0.0007), indicating that community biomass would not have 

confounded our results with respect to pathogen attack.  

 Across all three plant species, elevation of sites sampled in Europe was 

significantly higher than elevation of sites sampled in the US (F1,20.32 = 14.71, P = 

0.0010).  Across all plant species, elevation had a low,  marginally significant positive 

correlation with leaf herbivore damage (F1,38 = 4.09, P = 0.0501, r2 = 0.097). This 

positive correlation of elevation and herbivory could reduce our ability to detect less 

herbivory in the naturalized than the native range. Across all three grass species, 

elevation was not significantly correlated with pathogen damage (F1,38 = 0.0029, P = 

0.96, r2 = 0.000008), indicating that elevation would not have confounded our results 

with respect to pathogen attack.  

 Each site in this study was sampled on one date only, and, on average, the sites in 

Europe were sampled at a later date in the growing season (F1,38 = 79.32, P < 0.0001). 

Across all three grass species, percent leaf pathogen damage had a weak, marginally 

significant positive association with sampling date (F1,38 = 3.72, P = 0.061, r2 = 0.089), 

indicating that slightly more pathogen damage may have been found later in the growing 

season. This association may have obscured our ability to detect enemy release from 

pathogens. Sampling date was not correlated with herbivory (F1,38 = 0.22, P = 0.64, r2 = 
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0.006), indicating that our results with respect to herbivore damage were not confounded 

by sample date.  

Mean density of A. odoratum (F1,11 = 7.79, P = 0.018) and H. lanatus (F1,9 = 6.12, 

P = 0.035) were significantly higher in the US than in Europe, and S. arundinaceus 

followed a similar but non-significant trend (F1,2 = 3.80, P = 0.19). On all three grass 

species, percent leaf herbivory was not significantly correlated with density of A. 

odoratum (F1,26 = 1.72, P = 0.20, r2 = 0.062) or S. arundinaceus (F1,18 = 0.009, P = 0.92, 

r
2 = 0.00005). Across all three species, leaf herbivory decreased as density of H. lanatus 

increased (F1,28 = 6.16, P = 0.019, r2 = 0.18). Within individual grass species, when a 

trend in correlation between herbivory and density of any single grass species was 

present, the direction of the relationship was negative. As densities of the three grass 

species were higher in the US than in Europe, this correlation of more herbivory at lower 

densities of the host species may have reduced our ability to detect release from 

herbivores. On all three grass species combined, percent leaf pathogen damage did not 

vary significantly with mean density of A. odoratum (F1,26 = 1.32, P = 0.26, r2 = 0.048), 

H. lanatus (F1,28 = 0.064, P = 0.80, r2 = 0.002), or S. arundinaceus (F1,18 = 1.40, P = 

0.25, r2 = 0.072). Therefore, density of each plant species would not have confounded our 

findings for pathogen attack.  

 

Comparison with literature survey 

Our finding that number of types of pathogen symptoms had a modest positive 

correlation with percent pathogen damage (r2 = 0.20) provides limited support that 

species richness of pathogens, as used by Mitchell and Power (2003) and Van Kleunen 
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and Fischer (2009), may be a reasonable predictor of degree of damage caused. For all 

three plant species, number of types of pathogen per plant was positively correlated with 

leaf percent pathogen damage (A. odoratum: F1,149 = 39.91, P < 0.0001, r2 = 0.21, H. 

lanatus: F1,151 = 26.30, P < 0.0001, r2 = 0.15, S. arundinaceus: F1,89 = 58.61, P < 0.0001, 

r
2 = 0.40). For all three plant species, percent herbivore damage was also positively 

correlated with number of types of herbivore symptoms (A. odoratum: F1,149 = 42.37 P < 

0.0001, r2 = 0.22, H. lanatus: F1,151 = 70.08, P < 0.0001, r2 = 0.32, S. arundinaceus: F1,89 

= 34.45, P < 0.0001, r2 = 0.28). 

 In our field survey, ANOVA revealed no significant differences in number of 

types of pathogen attack between the native and naturalized ranges on any of the three 

host species (Figure 5.4a), indicating that there was no evidence of enemy release with 

respect to pathogens.  According to Mitchell and Power’s data compilation (2003), A. 

odoratum and H. lanatus had a net release from fungal pathogens, as indicated by lower 

species richness of pathogens on each plant species in the naturalized than in the native 

range, while there was no difference in fungal species richness between the two ranges 

for S. arundinaceus. (Figure 5.4b). Following Mitchell and Power’s protocol, we also 

found a strong net release of A. odoratum from mildews, smuts, and rusts combined. 

However, for other fungi that we compiled from the same sources, we found 13 other 

pathogen species in Europe versus 19 other pathogens in the United States, indicating the 

reverse trend expected by enemy release for these other pathogens not considered by 

Mitchell and Power’s compilation.  
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Figure 5.4. (a) Results of field survey: axes represent number of types of symptoms per 
plant. H = Herbivores, P = Pathogens, T = Total. (b) Results of data compilation from 
literature survey: axes represent total number of rusts, smuts, and mildews found on each 
plant species in each range, except that the dark square represents the number of other 
pathogens on A. odoratum besides rusts, smuts, and mildews not considered by Mitchell 
and Power’s study. The diagonal lines across each graph represent the one to one ratio for 
which the number of enemies in both ranges would be equal.
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Discussion 

 We found a general trend of reduced enemy attack and increased per plant 

biomass in the naturalized range versus the native range that is consistent with enemy 

release, especially from herbivores, of the three grasses that we studied. On Holcus 

lanatus and Schedonorus arundinaceus, there was less percent herbivore damage per leaf 

in the naturalized range, while Anthoxantum odoratum showed no clear difference. 

However, A. odoratum and H. lanatus both had significantly less whole plant percent 

damage in the naturalized than in the native range, and S. arundinaceus followed the 

same pattern.  Shoot biomass of A. odoratum was significantly higher in the naturalized 

range, and the other two grass species followed the same trend. We found no clear 

evidence that foliar pathogen attack on any of the three grass species differed between the 

two ranges. 

Our finding of release from herbivores may be due to many contributing factors. 

Loss of one or more specialist herbivores in the plants’ native range upon introduction, 

which is an assumption of enemy release, could explain this pattern. Generalist 

herbivores already present in the naturalized range would account for the remaining 

herbivore attack. Another possible explanation is that associations between the grasses 

and beneficial mutualists may differ between the two ranges. Schedonorus arundinaceus 

is known to be commonly infected with endophytes in the genus Neotyphodium, which 

could act as a deterrent against herbivores (David P. Belesky and Charles W. Bacon 

2009). Williams and others  tested for both the effects of small-scale disturbance and 

enemy release, and found that each factor contributed to the invasiveness of Cynoglossum 

officinale (houndstongue) in its naturalized range. Selection and genetic drift that occur 
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during the introduction of species into a new range could lead to either an increase or 

decrease in resistance to natural enemy attack. Other variables that could influence 

invasions currently under debate include enemy spillover (Power and Mitchell 2004, 

Malmstrom et al. 2005, 2007, Beckstead et al. 2010), enemy dilution, allelopathy, 

disruption of mutualistic relationships (Antunes et al. 2008, Thieltges et al. 2009), 

phylogenetic relatedness of native to introduced species (Strauss et al. 2006), resource 

competition (Funk and Vitousek 2007), and the pre-invaded productivity (Davies et al. 

2007), diversity (Harrison et al. 2006, Crutsinger et al. 2008), or species composition 

(Emery and Gross 2007) of a given native community. Our findings could potentially be 

due to dilution of enemy attack by the novel plant community encountered in the 

naturalized range relative to that in the native range. Blaisdell (2011- Chapter 4) found 

evidence of dilution of natural enemy attack on both H. lanatus and S. arundinceus by 

co-occurring native grass species. More studies are needed that simultaneously test 

enemy release and other competing hypotheses (Liu and Stiling 2006).  

 While we found evidence of enemy release from herbivores, we found no 

differences in pathogen attack between the native and naturalized ranges. This may be 

due to a lack of specialist pathogens present on these three grass species relative to the 

herbivores. If predominately generalist pathogens were attacking the plants in both 

ranges, this could lead to equal attack rates in both ranges. 

Interestingly, the findings of Mitchell and Power (2003) and Van Kleunen and 

Fischer (2009) in support of enemy release from pathogens based on their compilations 

differed from our findings with respect to pathogen attack based on our field survey. 

With respect to the identity of pathogens considered, our field survey was more general 
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than Mitchell and Power’s data compilation (2003), which may contribute to our 

differences in findings. Mitchell and Power’s study included only rusts, smuts, and 

mildews, while we considered all fungal and herbivore symptoms that we found in the 

field. Many smut fungi are seed transmitted (Neergaard 1977), but rusts and mildews are 

not as commonly transmitted by seed. Because many plant introductions occur via seed, 

this selection of a subset of pathogens that are not commonly seed-borne may have led to 

a bias in Mitchell and Power’s (2003) and van Kleunen and Fischer’s (2009) findings of 

reduced pathogen species richness in the plants’ naturalized range. Van Kleunen and 

Fischer (2009) found that the pathogens lost upon introduction tended to be relatively 

rare pathogens, which could have led to a weak relationship between pathogen species 

richness and population fitness effects.  

Many methods of testing enemy release have been used, but for the most part 

these multiple approaches have not been combined into any one study. Future studies 

concerning biological invasions should carefully choose their method or methods of 

testing enemy release, but should also test other hypotheses concerning invasions with 

respect to the role of natural enemies, mutualisms, competition, and other potential 

mechanisms of invasion. 

Our comparison of natural enemy attack on populations of three species in their 

native and naturalized ranges as measured in the field to a literature compilation yielded 

conflicting results; our field survey found support for release from herbivores but not 

pathogens, while the literature compilation found evidence of enemy release from 

pathogens. The strength of the literature compilation is that primary information was 

gathered over many decades, using the resources of many scientists. The strengths of our 
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field survey are its empirical nature, consideration of the fitness effects, and the study of 

a broader taxonomic range of fungi. A plant may be released from a number of rare 

natural enemies that would all carry equal weight based on the literature compilation, but 

that would not matter in the field if that plant did not escape from the one or few natural 

enemies that cause major damage and are widespread.  

 
  



 


��

�

 

CHAPTER VI 

SUMMARY, SYNTHESIS, AND IMPLICATIONS OF RESULTS 

 In his book about the ecology of species invasions (1958), Charles Elton provided 

a collection of examples of species invasions and potential explanations for mechanisms 

of those invasions. His book is the most cited source in invasion ecology literature, and 

its citation frequency has been increasing each year since it was published (Richardson 

and Pyšek 2008), which indicates that the discipline of invasion ecology is growing. 

Some topics that Elton discussed, such as dispersal and spread of invasive species, their 

impact on biodiversity, and the role that disturbance and enemy release have with respect 

to invasions, are still being studied today. More recently in invasion ecology, there has 

been a stronger emphasis on using multiple methods to simultaneously test multiple 

explanations for species invasions (Liu and Stiling 2006), and to examine species 

invasions at multiple geographical scales (Byers and Noonburg 2003, Fridley et al. 2007). 

In my research, I used observational studies at very different geographical scales, a 

manipulated field experiment, and compilation of existing data about pathogens in their 

hosts’ native and naturalized ranges to test enemy release, spillover, and dilution, as well 

as other potential variables related to species invasions. 

 

Summary of results 

First, examination of a variety of community variables (Chapter II) and their 

associations with enemy attack on several native plant species in the community showed 

that (i) plant diversity had a weak but consistent negative correlation with pathogen 

attack across the host community, (ii) there was no relationship between enemy attack 
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and the individual plant traits shoot biomass or chlorophyll content, and (iii) the strongest 

effects of community characteristics on attack rates varied among plant species with no 

strong community-wide patterns, suggesting that no single hypothesis, such as spillover, 

dilution, total plant cover, or litter abundance, successfully predicted attack rates across 

this community. We did not find a strong effect of site preparation technique in the 

restoration experiment on natural enemy attack. 

Second, in a comparison of natural enemy attack on the most common introduced 

grass species (Chapter III) to the two most common native grass species, we learned that, 

contrary to predictions of enemy release, there was significantly more pathogen attack on 

the introduced species than on the two native species. Again, we found no strong effect of 

site preparation technique on natural enemy attack. 

Third, using experimental communities of six common native and introduced 

perennial bunchgrasses (Chapter IV), we found no evidence of enemy spillover from the 

introduced species, but instead we found evidence of dilution of natural enemies by the 

native species on the introduced species. This dilution effect becomebecame stronger 

over the course of three growing seasons. While enemy attack on two of the three 

introduced species was significantly lower in the treatments with native species, 

abundance of those introduced species did not increase in the treatments with less enemy 

attack, indicating that resource competition instead may have been the dominant force 

determining abundance of all six species. 

Finally, from our comparison of natural enemy attack on the same three 

introduced grasses used in our experimental communities (Chapter V), in both their 

native and naturalize ranges, we found evidence of enemy release from herbivore attack 
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for two of the three grass species, but not pathogen attack. In contrast to the field survey, 

a literature survey of pathogens on the same three grass species found evidence of release 

from pathogens for two of the three grass species.  

 

Synthesis and broader context 

 Natural enemies have been found to alter plant community structure by 

differentially affecting the fitness of different host species. In our experimental 

communities, we found some evidence of a reduction in abundance of two out of three 

introduced grass species by natural enemies (Chapter IV), but the other four species 

seemed to be affected more strongly by competition. In our biogeographical survey 

(Chapter V), one of the three grass species that we surveyed had significantly higher 

shoot biomass in its naturalized range relative to the native range, while the other two 

followed the same suggestive pattern. Additionally, populations of two grass species in 

that survey had higher density in their naturalized range than in their native range, and the 

third followed a similar pattern. This increase in individual plant size and population 

density could be a response to reduced natural enemy attack. Further studies, perhaps 

manipulating enemy attack using exclosures or pesticides, are needed to tease apart the 

effects of competition and enemy attack on these grasses. 

 Pathogen spillover from introduced to native grasses has been detected in 

grassland communities, (Malmstrom et al. 2005, Borer et al. 2007, Beckstead et al. 2010) 

and is thought to be a potential driver of invasions by those introduced species. Our study 

is the first to compare enemy attack on native and introduced grasses that share a similar 

life history (Chapter IV), and we did not find clear evidence of enemy spillover from the 
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introduced to native grass species. Instead, in our experimental communities of native 

and introduced grasses, we found stronger evidence of dilution of enemy attack on the 

introduced species by the native species. The results from our biogeographical survey 

(Chapter V) of reduced herbivore attack in the plants’ naturalized range could be due 

either to enemy release, or to this same dilution effect, as presumably the plants exist in a 

different plant community context in their naturalized range from that of their native 

range. Some might argue that dilution is equivalent to enemy release, but occurs at a 

much smaller scale. 

 Our findings of evidence for enemy release from herbivores or a dilution effect 

exemplify the necessity to simultaneously test multiple hypotheses in invasion ecology. If 

we had performed only the biogeographical survey without the manipulated field 

experiment, we may not have thought to consider dilution as a possible mechanism of 

species invasions. 

 The need for multiple approaches to testing enemy release or other mechanisms of 

species invasions is illustrated by the difference of findings between our field surveys and 

a literature survey. The results from our survey of enemy attack on three common native 

and introduced grasses in a restoration experiment (Chapter III) and from our 

biogeographical survey (Chapter V) were not consistent with enemy release from 

pathogens. Results from compilations of host indices, however, did point to enemy 

release of pathogens. Yet, the correlation between actual rates of enemy attack and 

enemy richness is not particularly strong, which may be a limitation of approach. host 

compilations Other approaches, such as a manipulative study, should be used to 
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corroborate or refute our finding of enemy release from herbivores in our biogegraphical 

survey (Chapter V).  

 Invasion ecology, which is a growing discipline, is often applied to restoration 

and management of plant communities. Practitioners and researchers alike often consider 

only the effects of competition against invading species, but in many cases other factors 

may drive the success or failure of native plant community restoration. Here we have 

considered various associations that herbivores and pathogens may have with species 

invasions. We found weak evidence that enemy spillover was a factor in shaping the 

grassland communities in our studies. Our results point to a stronger role of enemy 

release and dilution of natural enemies on introduced plant species as potential players in 

community invasions.  

  

  



 


��

�

 

APPENDIX 

SUPPLEMENTAL FIGURE AND TABLE 

 
Figure A.1. Detailed presentation of all results of AIC multi-model inference analysis: 
Average partial correlations from multiple regression models using AIC of 14 predictor 
variables regressed against percent herbivore and pathogen damage. Error bars (standard 
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error) are shown among partial correlations of each variable across all models in which 
that variable was selected. Numbers above each bar represent the proportion of models in 
which that variable was selected. Error bars represent variation in magnitude of partial 
correlation among selected models.  
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Table A.1. List of sites sampled and geographic information 

Site name Range State 
A 

odoratum 

H 

lanatus 

S 

arundinaceus Date Lat Long 
Elev 
(m) 

Comm 
biomass 
(g/m2 ) 

Acqua Rossa EU1 Switzerland 1 1 0 
24-Jul-
2008 46.467 8.921 886 260 

Bayreuth EU Germany 1 1 0 
17-Jul-
2008 49.922 11.583 351 389 

Crooked Creek US Wisconsin 0 0 1 
8-Aug-
2008 42.833 -88.477 276 394 

Flaach EU Switzerland 0 0 1 
8-Jul-
2008 47.589 8.607 347 778 

Gais EU Switzerland 1 1 0 
9-Jul-
2008 47.380 9.484 1137 298 

Glacial 
Heritage US Washington 1 1 0 

5-Jun-
2008 46.866 -123.049 43 137 

Hertogenbosch EU Netherlands 1 1 0 
22-Jul-
2008 51.673 5.308 1 485 

Hirzel EU Switzerland 1 1 1 
10-Jul-
2008 47.217 8.625 665 310 

Innsbruck EU Austria 1 1 0 
28-Jul-
2008 47.214 11.376 938 429 

Laufamholz EU Germany 0 1 0 
16-Jul-
2008 49.461 11.184 325 99 

Mima Mounds US Washington 1 1 0 
5-Jun-
2008 46.891 -123.051 70 188 

Morgan 
Property US Washington 0 1 0 

4-Jun-
2008 46.900 -122.732 138 109 
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Mount Pisgah US Oregon 1 1 1 
29-May-
2008 43.993 -122.951 175 295 

Carrboro US 
North 
Carolina 1 0 1 

12-Jun-
2008 35.913 -79.056 148 107 

Pigeon Butte US Oregon 0 1 1 
22-May-
2008 44.390 -123.323 83 570 

Postalm US Austria 1 0 0 
26-Jul-
2008 47.661 13.434 1300 61 

Rumlang EU Switzerland 1 1 1 
15-Jul-
2008 47.444 8.520 494 383 

South Weir US Washington 1 1 0 
4-Jun-
2008 46.904 -122.735 160 93 

Triangle Prairie US Washington 0 1 1 
5-Jun-
2008 47.013 -122.429 134 228 

Whipple Farm US New York 1 0 0 
25-Jun-
2008 42.492 -76.429 519 364 

Willow Corner US Oregon 1 1 1 
26-Jun-
2008 44.037 -123.166 125 233 

1 Note that EU does not refer to the European Union, but is simply an abbreviation for Europe. A odoratum = Anthoxanthum 

odoratum, H lanatus = Holcus lanatus, S arundinaceus = Schedonorus arundinaceus, Lat = Latitude, Long = Longitude, Elev = 

Elevation, Comm biomass = Community biomass.
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