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THESIS ABSTRACT 

 

Brittney Lane Dlouhy 

 

Master of Science 

 

Department of Biology 

 

March 2012 

 

Title:  Thread Drifting by Juvenile Bivalves in the Coos Bay Estuary, Oregon:  Species 

Identification and the Influence of Estuarine Hydrodynamics and Diel Migration 

 

 

 

 From September 2009 to July 2011 I collected vertically stratified zooplankton 

samples and recorded estuarine water parameters on a monthly basis in the Coos Bay 

estuary, Oregon during flood and ebb tides.  I identified five taxa of juvenile bivalves in 

the plankton: Macoma spp., Siliqua spp., Clinocardium nuttallii, Mytilus spp. and 

individuals from the superfamily Tellinoidea.  The presence/absence of juvenile bivalves 

in the plankton was influenced by Julian Day, a result of reproductive cycles.  The 

abundance of Macoma spp. was significantly higher during ebb tides while Mytilus spp. 

were significantly more abundant during flood tides.  Estuarine hydrodynamic data 

suggested that other taxa were more abundant during ebb tides.  An interaction between 

diel variation and tidal cycle was observed during the twenty-four hour cruises.  Juvenile 

Mytilus spp. were more abundant in the plankton during flood tides during the day, and 

all other taxa were more abundant during ebb tides at night likely a result of predator 

avoidance.  Thread drifting during ebb tides was more favorable than during flood tides 

due to the increased current speed.         



v 

 

CURRICULUM VITAE 

 

NAME OF AUTHOR:  Brittney Lane Dlouhy 

 

 

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 

 

 University of Oregon, Eugene 

 Clovis Community College, Clovis, NM 

 

 

DEGREES AWARDED: 

 

 Master of Science, Biology, 2012, University of Oregon 

 Bachelor of Science, Marine Biology, 2009, University of Oregon 

 Associate of Arts, Liberal Arts, 2005, Clovis Community College 

 

 

AREAS OF SPECIAL INTEREST: 

 

 Marine Biology 

 

 

PROFESSIONAL EXPERIENCE: 

 

 Research Assistant, Dr. Alan Shanks, University of Oregon, 2009-2011 

  

Research Assistant, Dr. Cynthia Trowbridge and Dr. Colin Little, Lough Hyne 

Marine  Reserve, Co. Cork, Ireland, August 2010 and 2011 

 

 

GRANTS, AWARDS, AND HONORS: 

 

Graduate Teaching Fellowship, Biology, 2012 

 

Jordan Cove Energy Inc Research Fellowship, 2009 – 2011 

 

Neil Richmond Memorial Fellowship, 2011 

 

Western Society of Malacologists Fellowship, 2011 

 

Lillian Haynes Scholarship, 2010 

 

Laura Bickerstaff Scholarship, 2009 

 

Alumni Association Scholarship, 2009 



vi 

 

Cum Laude Graduation Honors, 2010  

 

Golden Key International Honour Society, 2007 

 

Phi Theta Kappa, 2005 

 

  

  



vii 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank Dr. Alan Shanks for giving me the opportunity to study with 

him, for being an amazing advisor whose door was always open, and for his assistance 

with the preparation of this manuscript.  Dr. Cynthia Trowbridge has provided continued 

support and encouragement.  Her level of enthusiasm for marine biology is, luckily, 

contagious.  Dr. Steven Rumrill has provided insight regarding local bivalves, provided 

equipment that otherwise would have not been available and always helped me realize 

the broader impacts of my research.  Without help in the field this research would not 

have been possible and for that I would like to thank Larry Draper, Stephanie Schroeder, 

Laura Garcia-Peterio, and Lisa “Z” Ziccarelli.  Laura also provided teaching and support 

with statistical analyses, and extra thanks are warranted.  I would also like to thank 

Svetlana Maslakova for assistance with the molecular chapter and for undergraduate 

students who helped with molecular procedures.  Shirley, Joyce, Bill and Mike have been 

a great help.  The rest of the OIMB faculty and the graduate students have provided 

tremendous support and made my time at OIMB unforgettable.  This research was funded 

by the Jordan Cove Inc.   



viii 

 

 

 

 

 

 

 

For my grandparents, who have always encouraged and believed in me.  Without 

them I would not be who I am today. 

 

  



ix 

 

TABLE OF CONTENTS 

 

 

Chapter              Page 

 

I. GENERAL INTRODUCTION .........................................................................       1 

 

 

II. MORPHOLOGIC, MOLECULAR AND PHYLOGENETIC ANALYSIS  

 TO IDENTIFY JUVENILE BIVALVES IN THE PLANKTON IN COOS  

 ESTUARY, OREGON .....................................................................................       5 

 Introduction ...........................................................................................       5 

 Methods.................................................................................................       7 

 Results and Discussion .........................................................................       9 

 

 

III. THREAD DRIFTING BY JUVENILE BIVALVES IN COOS ESTUARY,   

OREGON: INFLUENCE OF ESTUARINE HYDRODYNAMICS ON  

SECONDARY DISPERSAL  ...........................................................................     20 

  Introduction ...........................................................................................     20 

  Methods.................................................................................................     22 

   Data Collection .........................................................................     22 

   Data Analysis ............................................................................     23 

  Results ...................................................................................................     25 

   Estuarine Hydrographic Data .....................................................    25 

   Bivalve Species .........................................................................     26 

   Size and Abundance Data .........................................................     26 

   General Additive Models ..........................................................     30 

    Macoma spp. .................................................................     30 

    Siliqua spp. ....................................................................     31 

    Superfamily Tellinoidea................................................     33 

    Clinocardium nuttallii ...................................................     33 

    Mytilus spp. ...................................................................     35 

  Discussion .............................................................................................     35 

  

 

IV.  TIDAL TRANSPORT AND DIEL MIGRATION OF FIVE TAXA OF  

 JUVENILE BIVALVES IN COOS ESTUARY, OREGON ............................     44 

  Introduction ...........................................................................................     44 

  Methods.................................................................................................     45 

   Data Collection .........................................................................     45 

   Data Analysis ............................................................................     47 

  Results ...................................................................................................     48 

   Acoustic Doppler Current Profiler ............................................     50 

   October 2009 ..............................................................................    50 

   March 2010 ...............................................................................     52 



x 

 

    

 

Chapter              Page 

    

   May 2010 ..................................................................................     56 

   July 2010 ...................................................................................     58 

   October 2010. ............................................................................     58 

   February 2011 ...........................................................................     62 

   May 2011 ..................................................................................     64 

  Discussion .............................................................................................     65 

          

 

V. CONCLUSION .................................................................................................     70 

 

 

APPENDICES  

 A. SAMPLES FROM NCBI GENBANK  .......................................................     72 

 B. RESULTS FROM THE GENERALIZED ADDITIVE MODELS FOR 

      CHAPTER III ...............................................................................................    73 

 B. RESULTS FROM THE GENERALIZED ADDITIVE MODELS FOR 

      CHAPTER IV ...............................................................................................    76 

  

 

REFERENCES CITED .................................................................................................     81       

  



xi 

 

LIST OF FIGURES 

 

 

Figure               Page 

 

Chapter II 

 

1. Juvenile bivalves .....................................................................................................       8 

2. Distance trees (NJ) of samples from this study .......................................................     12 

3. Distance tree (NJ) of Mytilus spp. samples .............................................................     14 

4. Maximum parsimony tree of group B samples .......................................................     15 

5. Maximum parsimony tree of group B samples II ....................................................     17 

6. Maximum parsimony trees of group C samples ......................................................     18 

 

 

Chapter III 

   

1. Temperature, Salinity, and Chlorophyll a ...............................................................     25 

2. Length frequency distributions ................................................................................     27 

3. Average bivalve length (posterior to anterior) ........................................................     28 

4. Average abundance of bivalves ...............................................................................     29 

5. GAM plots for probability of presence of Macoma spp. ........................................     30 

6. GAM plots for abundance of Macoma spp. ............................................................     31 

7. GAM plots for probability of presence of Siliqua spp. ...........................................     32 

8. GAM plots for abundance of Siliqua spp. ...............................................................     32 

9. GAM plots for probability of presence of C. nuttallii .............................................     34 

10. GAM plots for abundance of C. nuttallii ................................................................     34 

11. GAM plots for probability of presence of Mytilus spp. ..........................................     35 

 

 

Chapter IV 

 

  1. Average abundance of bivalves ..............................................................................     49 

  2. ADCP Data for May 2011 Cruise ...........................................................................     50 

  3. October 2009 Cruise Macoma spp., Siliqua spp., Tellinoidea, C. nuttallii ............     51 

  4. October 2009 Cruise Mytilus spp. ............................................................................    52 

  5. March 2010 Cruise Macoma spp. ...........................................................................     53 

  6. March 2010 Cruise Tellinoidea ..............................................................................     54 

  7. March 2010 Cruise C. nuttallii ...............................................................................     55 

  8. March 2010 Cruise Siliqua spp. and Mytilus spp. ..................................................     56 

  9. May 2010 Cruise Macoma spp. ..............................................................................     57 

10. July 2010 Cruise Siliqua spp...................................................................................     59 

11. July 2010 Cruise Macoma spp., C. nuttallii, Mytilus spp. ......................................     60 

12. October 2010 Cruise C. nuttallii .............................................................................     61 

13. October 2010 Cruise Macoma spp., Siliqua spp., Mytilus spp. ..............................     62 

14. February 2011 Cruise Mytilus spp. .........................................................................     63 



xii 

 

Figure               Page 

 

 

15. February 2011 Cruise Macoma spp., Tellinoidea, C. nuttallii spp. ........................     64 

16. May 2011 Cruise Macoma spp. ..............................................................................     65 

 

  



xiii 

 

 

LIST OF TABLES 

 

Table               Page 

 

 

Chapter II 

 

1. Successfully amplified samples ................................................................................     11 

 

 

 

 

 



1 

 

CHAPTER I 

 

GENERAL INTRODUCTION 

 

 

Complex life cycles are a common trait among many marine invertebrate phyla 

including Echinodermata, Arthropoda, Annelida, and Mollusca.  The cycle begins with 

eggs and sperm being shed into the water, fertilization occurs and the embryo develops in 

the water column.  In some cases internal fertilization occurs and the embryo is brooded 

until a later stage of development and then released.  Once in the water column larvae can 

be lecithotrophic, subsisting off yolk reserves, or planktotrophic in which they spend time 

feeding in the water column.  Larvae go through a metamorphic process and settle onto 

the benthos and occupy these habitats as adults.   

Some species have the ability to re-enter the plankton as juveniles. For example, 

Armonies and Hartke (1995) collected juvenile Hydrobia ulvae, a European mud snail, in 

the plankton.  Several species of juvenile gastropods including Lacuna spp., Littorina 

spp. and Nucella spp. were collected above the benthos in Vancouver Island, British 

Columbia (Martel and Chia 1991).  During laboratory experiments juvenile Nereis 

diversicolor and Streblospio benedicti, polychaetes, were observed emigrating from the 

benthos (Armonies 1988; Stocks 2002).  Bivalves are common among species that have 

the ability to re-enter the plankton as juveniles.  Baggerman (1953) observed post-

metamorphic Cerastoderma edule, the European cockle, in areas which had been 

previously cleared and Bayne (1964) documented large populations of post-larval Mytilus 

edulis entering the water column.   
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The mechanism of how juvenile clams, with no swimming organ, enter the water 

column became better understood about a decade later.  Sigurdsson et al. (1976) observed 

post-larval bivalves drifting in the water column via a long mucous thread and since this 

time this behavior has been referred to as byssus drifting or thread drifting.  This is 

analogous to a dispersal technique used by young spiders (Humphrey 1987).  Tiny 

arachnids climb to the top of a tall object (i.e. blade of grass, twig), release a silk thread 

and are transported by wind.   The mucous thread secreted by bivalves is very thin and 

difficult to see with the naked eye; however, it can be observed by pulling a fine probe 

through the water which results in movement of the attached bivalve (Beaumont and 

Barnes 1992, pers obs).   

Several studies have investigated this secondary mode of dispersal in juvenile 

bivalves and certain species have received great attention.  The most well studied bivalve 

is probably Macoma balthica and topics have included distribution (Beukema and de 

Vlas 1989; Beukema 1993; Armonies 1996) and migratory rhythms (Armonies 1992; 

Hiddink 2002) and behavior (Sörlin 1988).  Other well studied species include Mytilus 

spp. (Bayne 1964; de Bolk 1977; Lane et al. 1982; Board 1983; Lane et al. 1985; Shanks 

and Shearman 2011), Mya arenaria (Roegner et al. 1995; Strasser et al. 1999; LeBlanc 

and Miron 2006) and Cerastoderma edule (Yankson 1986; de Montaudouin et al. 2003).    

As pointed out by Baker and Mann (1997) over 48 species of bivalves are known 

to drift with mucuos threads: consequently, it is not unlikely that bivalves in the Coos 

estuary (Coos Bay, Oregon) also exhibit thread drifting behavior.  However, the 

assumption should not be made that all local species display secondary dispersal and that 

they follow the same patterns as other taxa in different parts of the world.   
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The first objective of this study was to determine which local species drift with 

mucous threads.  In order to address this first objective I collected bivalves from the 

plankton and identified them to the lowest possible taxonomic level.  Taxonomic 

identification using conventional methods is difficult due to a lack of distinct 

morphological features at the juvenile stage.  It is conceivable that in the laboratory I 

could rear juveniles collected in plankton until they reach a stage that morphological 

features would be useful, but this is time consuming and often difficult.  In recent years 

molecular techniques have been employed to identify marine larvae (Hart et al. 2003; 

Barber and Boyce 2006; Heimeier et al. 2010).   I used molecular techniques in 

combination with phylogenetic analysis and morphological features to identify juvenile 

bivalve. 

Following determination of which local species may exhibit thread drifting 

behaviors I investigated how estuarine hydrodynamics influence the behavior.  Beukema 

and de Vlas (1989) indicated juvenile Macoma balthica were more abundant during the 

ebb phases of the tidal cycle.  The influence of tidal cycle was also observed for this 

species on the US east coast; however, abundance was higher at a during the flood phase 

(Garrison and Morgan 1999).  Cummings et al. (1992) observed variations in the number 

of juvenile bivalve drifters depending on food availability.  Diurnal migration patterns 

were observed for Cerastoderma edule, Ensis directus, and M. balthica (Armonies 1992).  

I investigated similar factors to determine whether observed patterns are species or locale 

specific.   

This thesis provides the first evidence of five taxa of bivalves that exhibit thread 

drifting behaviors in Coos Bay estuary (Chapter II) and investigates the size of thread 
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drifters and the influence of tidal cycles, salinity, temperature and chlorophyll a levels 

(Chapter III).  The results of the second chapter warranted a further investigation of tidal 

cycles and this was accomplished with differently sampling methods which also provided 

an opportunity to look at diel variation (Chapter IV).  This thesis provides insight into an 

important phase in the life cycles of bivalves and the information presented will be useful 

for the management of commercial and recreational important species.   
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CHAPTER II 

 

MORPHOLOGIC, MOLECULAR AND PHYLOGENETIC ANALYSIS TO  

IDENTIFY JUVENILE BIVALVES IN THE PLANKTON 

IN COOS ESTUARY, OREGON 

 

INTRODUCTION 

Identification of organisms is an extremely important aspect in a number of 

scientific fields.  Historically taxonomists identified specimens primarily by 

morphological traits; however, in recent years technological advancements have provided 

other means for identification.  The use of molecular techniques in combination with 

traditional morphological identification could aid in uncovering species diversity (Hebert 

et al. 2003a).  

Many marine invertebrates have complex life cycles, meaning the larval forms are 

morphologically distinct from their adult form (i.e. pluteus larvae and adult sea urchins, 

bipinnaira larvae and adult sea stars, pilidium larvae and adult nemerteans, nauplii and 

adult barnacles, etc.).  This difference in body plans at species stages makes larval 

identification difficult, and as a result larval identification keys are few in number 

compared to adult guides.  One method to identify larvae is to collect them in the 

plankton, rear them through metamorphosis and keep them alive until they reach a stage 

at which adult morphological features can be used.  Another option is to collect adults, 

spawn them in the laboratory, rear the larvae, and try to match their larvae with 

unidentified larvae (Shanks 2001).  Both of these options are often time consuming and 
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involve raising larvae in a laboratory setting, which is often difficult; however, molecular 

methods provide an alternative.   

In the last two decades molecular techniques have been used in various areas 

around the world to help identify marine invertebrate larvae and uncover cryptic species 

diversity.  In the Coral Triangle, Barber and Boyce (2006) used DNA barcoding to 

identify five larvae to species level and in the process discovered three species whose 

adult forms are unknown.  Molecular analysis indicated Australian populations of the 

asteroid Patiriella pseudoexigua were composed of individuals with unique 

mitochondrial DNA sequences and reproductive strategies (Hart et al. 2003).  Heimeier et 

al. (2010) used a combination of molecular techniques and morphological taxonomic 

methods to identify nearly 700 Antarctic larvae from four different phyla.  The present 

study investigated the use of molecular techniques to identify juvenile marine bivalves 

from the southern Oregon coast.       

Bivalves are a group of marine invertebrates that also have complex life cycles.  

Similar to other marine invertebrates, the larvae spend a period of time in the water 

column feeding on plankton until competent to metamorphose.  During the process of 

metamorphosis, larvae settle into an appropriate habitat.  It was previously thought that 

after this initial settlement the dispersal stage was over.  A study by Sigurdsson et al. 

(1976) indicated that bivalves have the ability and potential to disperse during post-larval 

and juvenile phases using a method referred to as “byssus drifting.”  It is characterized by 

the secretion of a very thin mucous thread which leads to an increase in viscous drag 

allowing the organism to be carried long distances by relatively weak currents 
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(Sigurdsson et al. 1976; Lane et al. 1985; Yankson 1986).  This is analogous to a 

behavior exhibited by young spiders (Humphrey 1987).   

Over the last three to four decades numerous studies have documented mucous 

thread drifting in a wide variety of bivalve taxa.  Data compiled by Baker and Mann 

(1997) indicated the occurrence of post-larval byssal drifting in at least 48 species across 

16 families.  This behavior has been documented in species from the North Sea 

(Armonies 1992), the Wadden Sea (Beukema and de Vlas 1989; Armonies 1996; Hiddink 

et al. 2002), New Zealand (Cummings et al. 1992), and Asia (Wang and Xu 1997).  

However, along the southwest Oregon coast few studies have occurred, thus warranting 

an investigation of what species in the local area exhibit this secondary dispersal 

behavior.        

Species identification was a key component of this investigation.  As mentioned 

earlier, identification of organisms at early stages is often difficult.  Even at the juvenile 

stage, using morphological features to distinguish species is not ideal.  In this study, 

rather than attempt to rear juveniles from the plankton in a laboratory setting, molecular 

techniques were used, in combination with morphology, to identify juvenile bivalves 

collected in the plankton in Coos Bay estuary.   

 

METHODS 

Stratified plankton tows were taken in Coos Estuary, Oregon (N 43°25’16’’, W 

124°16’19’’) using a 500 µm net from September 2009 to July 2011.  Only samples 

collected from April 2011 to March 2011 were preserved in ethanol (all others were 

preserved in 5% buffered formalin) and could be used in this analysis.  In the laboratory 
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juvenile bivalves were sorted into five groups based on similar morphology.  The groups 

were classified as A, B, C, Clinocardium nuttallii, and Mytilus spp. (Figure 1).  

Specimens were placed in vials filled with 95% ethanol and stored at room temperature.  

In October 2011 students from the Estuarine Biology course at the Oregon Institute of 

Marine Biology collected adults of nine species of bivalves from a mudflat in Charleston, 

OR.  Small pieces of the mantle were clipped from live adult specimens and stored at -

80°C.   

 
Figure 1. Juvenile bivalves:  Juvenile bivalves collected in the 

Coos Bay plankton depicting a representative from each of the 

five groups.  From left to right, Clinocardium nuttallii, Group 

A, Group B, Group C, and Mytilus spp. 

 

 I extracted DNA from 33 juvenile specimens and 9 adult tissue samples with 

DNeasy Blood and Tissue (Qiagen).   I used primers 16SarL (5’-

CGCCTGTTTATCAAAAACAT-3’) and 16SbrH (5’-CCGGTCTGAACTCAGATCA 

CGT-3’) from Palumbi et al. (1991) to amplify a ~ 500 bp region of the 16SrRNA gene.  

PCR parameters were as follows: initial denaturation at 95°C for 2 minutes, 35 cycles at 

95°C for 40 seconds, 52°C for 40 seconds, 72°C for 1 minute, and a final extension of 

72°C for 2 minutes.  For some samples the annealing temperatures were set higher (55°C) 

or lower (49°C) to allow for single product amplification.   I used primers LCO1419 (5’-

GTCAACAAATCATAAAGATATTGG-3’) and HCO2198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’) from Folmer et al. (1994) to amplify the 

~ 650 bp “barcoding” region of the cytochrome oxidase c subunit I  gene (COI).  PCR 
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parameters were as follows: 95°C for 2 minutes, 35 cycles at 95°C for 40 seconds, 45°C 

for 40 seconds, 72°C for 1 minute, and a final extension at 72°C for 2 minutes.  PCR 

products were viewed on a 1% agarose gel.   I purified samples that had a single bright 

band with SV Wizard Gel and PCR clean up Kit (Promega) and quantified on 1% agarose 

gels with Low Mass DNA ladder (Promega).  I sent a total of 25 16S rRNA amplicons 

and 11 COI amplicons to Sequetech DNA sequencing service (http://sequetech.com/) for 

sequencing in one direction using one of the PCR primers.   

I viewed chromatograms in Codon Code Aligner 3.7.1 and clipped off low-quality 

ends and primers.  I performed a NCBI blastn, and in one instance a blastp, search for 

initial sequence identification and to check for contamination or mislabeling.  I aligned 

sequences with ClustalX 2.1 and created Neighbor-Joining (NJ) distance trees and 

viewed these in TreeView X 0.5.0.  I analyzed phylogenetic relationships with PAUP 

4b10 using maximum parsimony as optimality criterion.  When juvenile samples did not 

match to an adult sample I created a distance tree with “BLAST.”  See Appendix 1 for 

GeneBank Accession numbers of sequences included in the phylogenetic analysis.   

 

RESULTS AND DISCUSSION 

 Amplification success for 16S was 100% for adults and 24.2% for juveniles and 

for COI was 66.6% for adults and 18.2% for juveniles.  Overall the 16S region amplified 

better than the COI region and adults samples amplified better than juveniles.  The reason 

for low amplification success of juveniles could be a result of too little tissue in the 

sample.  Another possibility may be a result of poor preservation.  It is possible the 

bivalve shells were tightly closed and the ethanol could not reach the tissue fast enough. 

http://sequetech.com/
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Overall lower amplification success for COI may be due to primer mismatch. Using 

mollusk or bivalve-specific PCR primers may increase amplification success for COI.   

I successfully obtained 16S rRNA sequences from eight juvenile samples: one 

from group A, five from group B, one from group C, and one from Mytilus spp. group 

(Table 1).  A distance tree suggests that these represent 5 different types (or taxa) (Figure 

2).  Samples from groups A, C, and Mytilus spp. were each represented by a single 

specimen, and the five samples from group B formed a monophyletic clade with two 

subclades.  The COI amplification was successful for six juvenile samples: one from 

group C, three from Mytilus spp. group, and two from Clinocardium nuttallii group 

(Table 1). A distance tree for COI samples placed these six juveniles into four different 

clades (Figure 2).  The two juvenile samples provisionally identified as C. nuttallii were 

identical and formed a clade with the sequence derived from the adult of C. nuttallii.  The 

three Mytilus spp. samples formed two sister clades.  Amplification for both genes was 

only successful for one juvenile sample, a Mytilus sp.  Overall, results indicate at least 

five, possibly eight, different taxa of juvenile bivalves from Coos Bay plankton exhibit 

thread-drifting behavior.   

The main purpose of this study was to determine the identity of juvenile bivalves 

collected in the Coos Bay plankton to the lowest possible taxonomic level.  One way I 

accomplished this was to match up sequences of juvenile samples to adult samples with 

known identities.  Using 16S sequences I determined that the successfully amplified 

sample from group A belonged to Macoma inquinata (0% sequence divergence) (Figure 

2).  Due to a lack of other sequences from group A samples, I was unable to determine 

whether all individuals from this group belonged to the same species.  The locally 
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occurring species of Macoma, M. inquinata, M. balthica, and M. nasuta, are difficult to 

distinguish, therefore it is very possible that group A includes multiple Macoma species.   

Table 1.  Successfully amplified samples:  Samples successfully amplified, 

whether they were juvenile or adults, identity prior to this study, and genes 

successfully amplified.  Samples not shown were not successfully amplified. 

Sample Life Stage Identity Prior to Study Gene Amplified 

B1 Adult Mya arenaria 16S and COI 

B2 Adult Tresus capax 16S and COI 

B3 Adult Clinocardium nuttallii 16S and COI 

B4 Adult Saxidomus gigantean 16S and COI 

B5 Adult Macoma nasuta 16S 

B6 Adult Macoma inquinata 16S 

B7 Adult Macoma balthica 16S 

B8 Adult Cryptomya californiensis 16S and COI 

B9 Adult Leukoma staminea 16S and COI 

B18 Juvenile Group C COI 

B20 Juvenile Group B 16S 

B23 Juvenile Group C 16S 

B26 Juvenile Mytilus spp. 16S and COI 

B27 Juvenile Group A 16S 

B29 Juvenile Group B 16S 

B30 Juvenile Group B 16S 

B33 Juvenile Group B 16S 

B34 Juvenile Group B 16S 

B35 Juvenile Clinocardium nuttallii COI 

B37 Juvenile Clinocardium nuttallii COI 

B38 Juvenile Mytilus spp. COI 

B40 Juvenile Mytilus spp. COI 

 

The two juvenile samples initially identified as Clinocardium nuttallii matched 

exactly to the sequence derived from the adult C. nuttallii (0% sequence divergence) 

confirming my initial identification (Figure 2).  Radial ridges and the spherical shape of 

the shell made this bivalve very different from other juveniles.  No other individuals from 

the C. nuttallii group were successfully amplified; however, the distinct morphology 

indicated all individuals in this group likely belonged to C. nuttallii.  In the local area, the 

only other bivalve with radial ridges is Leukoma stamina; however, this species also has 

concentric ridges and our sample did not match the adult tissue from L. stamina.   
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Figure 2.  Distance trees (NJ) of samples from this study:  Distance (NJ) tree of 

16S rRNA (upper) and COI rRNA (lower) sequences of juvenile and adult 

samples from this study. Samples B1-B9 are adult samples. The remaining 

samples are juveniles collected from plankton.   
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None of the Mytilus spp. samples matched to the adults.  This was expected 

because I did not sequence any adult mussels.  The NCBI blastn indicated samples B26 

and B40 were Mytilus trossulus (100% sequence similarity), a locally abundant intertidal 

species.  When I performed a nucleotide blastn search Mytilus spp. sample (B38) no COI 

match was found; however, a blastp search matched the juvenile sequence to several 

Mytilus spp. all with 90% similarity.  I created a distance tree with the three Mytilus spp. 

samples from this study and all available Mytilus spp. and Modiolus spp. (another 

mytilid) sequences from NCBI Genbank (Figure 3).  Sample B38 nested within a clade 

that contained only species of Mytilus.  A phylogenetic analysis that included local 

Mytilus spp. indicated the genus is monophyletic; however, this study did not include all 

known Mytilus species (Distel 2000).  It appeared sample 38 was a Mytilus spp., but 

without knowing for sure whether the genus is monophyletic there was some uncertainty.   

Previous studies indicate southern latitudes are dominated by Mytilus 

galloprovincialis, while northern latitudes are dominated by M. trossulus (Suchanek et al. 

1997), and these two species are sympatric between Monterey Peninsula and Cape 

Mendocino (Rawson et al. 1999).  Braby and Somero (2006) found that 100% (n=93) of 

mussels collected from the Charleston boat basin, near Coos Bay, OR, were M. trossulus; 

however, both M. trossulus and M. galloprovincialis were collected from Isthmus Slough 

in Coos Bay (Suchanek et al. 1997).  I obtained sequences from GenBank for M. 

trossulus and M. galloprovincialis, but sample 38 does not match either of these.  The 

current study sequenced mitochondrial DNA, and if this sample was a hybrid of M. 

trossulus and M. galloprovincialis it would have matched to one of these two sequences. 
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A possible explanation for these results is that sample 38 is an introduced species.  Geller 

et al. (1993) indicated M. galloprovincialis was very abundant in ballast water of ships 

that came into ports along the North American west coast and it is likely ballast water 

acts as a means of transport for all species of Mytilus.  Extensive sampling and DNA 

extraction of individuals near our study site would provide more insight.   

 
Figure 3.  Distance tree (NJ) of Mytilus spp. samples:  Distance tree created from 

COI sequences of juvenile Mytilus spp. samples (B26, B38, and B40) from this 

study and NCBI GenBank sequences of Mytilidae species (Appendix A).   

 

The five samples from group B that were successfully amplified formed two 

different clades (Figure 2).  Samples 33 and 34 had zero divergence between each other 

and likewise did samples 20, 29 and 30, thus I used only one sample from each group, 

sample 20 and 34, for the remaining analysis.  Neither Group B sample matched any 

adult sequence.  The closest blastn match was Sinonovacula rivularis (92% similarity).  
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The distance tree created from the blastn search revealed group B samples were nested 

within the superfamily Solenoidea.  Using two group B samples, B20 and B34, and NCBI 

Genbank sequences of Solenoidea spp. I created a maximum parsimony tree (Figure 4).   

The phylogenetic analysis indicated group B samples grouped together forming a sister 

clade with the razor clam Siliqua minima.  This clade was sister to a clade containing 

other razor clams Ensis spp. and Phaxas pellucidus.  S. minima, Ensis spp., and P. 

pellucidus are all members of the family Pharidae, thus, it is very likely the group B 

samples are also within this family. 

 

 

Figure 4.  Maximum parsimony tree of group B samples:  Maximum 

parsimony tree created from 16S sequences of juvenile samples (B20 

and B34) from this study and NCBI Genbank sequences of 

Solenoidea species (Appendix A). 
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I wanted to further investigate this result.  Local Pacific razor clams can be 

collected from intertidal flats in the lower part of the estuary, but due to time constraints I 

obtained a specimen from a local seafood store.  The specimen from the seafood store 

was not collected locally but shipped frozen from Alaska.  According to the Alaska 

Department of Fish and Game their commercial razor clam is Siliqua patula (Alaska 

Department of Fish and Game. Accessed 9 Feb. www.adfg.alaska.gov), and this species 

is the same species found in the local area (Coan et al. 2000; Coan and Valentich-Scott 

2007).  Terra Heibert, a fellow graduate student, sequenced the specimen and it matched 

with 100% sequence similarity to sample 20 from this study (Figure 5).  Sample 34 was 

most closely related to S. patula but without known divergence rates I am unable to 

determine whether it is the same species or another species of the same genus.   

Two samples from group C were successfully amplified, however, for sample 

B18 only COI amplification was successful and for sample B23 only 16S amplification 

was successful.  Neither sample matched to any of my sequences from local adults.  The 

closest blastn match for B18 COI was M. balthica (83%) and for B23 16S was Abra 

longicallus (87%).  Both of these species belong to the superfamily Tellinoidea.  I created 

a maximum parsimony tree for COI and 16S sequences (Figure 6) including group C 

samples from this study and NCBI GenBank sequences for selected members of 

Tellinoidea.   The maximum parsimony tree for COI sequences places C18 sister to a 

clade containing Semele solida and A. longicallus, both of the family Semelidae.  The 

16S results indicated sample C23 was sister to a clade containing Macoma spp. 

(Tellinidae) and A. longicallus (Semelidae).  This indicated samples from group C most 

likely belong to the superfamily Tellinoidea.   Data at hand are insufficient to determine 

http://www.adfg.alaska.gov/
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whether both samples from group C belong to the same species or not, and to identify 

them to a lower taxonomic level.   However, a juvenile illustration identification guide 

suggested, based on morphology, that group C species might be Tellina modesta (Dethier 

and Catton (2001) unpublished), which is local species that belongs to the superfamily 

Tellinoidea. 

 

Figure 5.  Maximum parsimony tree of group B samples II:  Maximum parsimony 

tree created from 16S sequences of juvenile samples (B20 and B34) from this 

study, local razor clam sample, and NCBI Genbank sequences of Solenoidea 

species (Appendix A). 
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Figure 6.  Maximum parsimony trees of group C samples:  Maximum parsimony 

tree created from COI sequences of group C juvenile samples (B18) (upper) and 

16S sequences of group C juvenile sample (B23) (lower) from this study and 

NCBI Genbank sequences of Tellinoidea species (Appendix A).  
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For this study, the overall amplification success of the juvenile bivalves was low; 

however, this is not uncommon.  Webb et al. (2006) attempted to identify Antarctic 

larvae but had only 22% success (14/64) and only two of the fourteen were identified to 

species level.  The success from my study was partly due to the sequences obtained from 

adult bivalves in the local area, and a more exhaustive collection of local adults could 

provide more insight into this study.   

A combination of morphological characteristics, sequence data and phylogenetic 

analysis allowed me to identify juvenile bivalves.  Results indicated that Macoma spp., 

Siliqua spp., Mytilus spp. and Clinocardium nuttallii juvenile bivalves were found 

drifting in the Coos Bay plankton.  Individuals from the superfamily Tellinoidea were 

also collected in plankton tows.  This was the first study in which molecular techniques 

were used to identify juvenile bivalves from the Coos estuary.  These local juveniles are 

exhibiting a behavior that has been observed in other areas of the world.  The next step 

is to determine how environmental factors such a tidal cycle, salinity, and chlorophyll 

influence the drifting behavior.     
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CHAPTER III 

THREAD DRIFTING BY JUVENILE BIVALVES IN COOS ESTUARY, OREGON: 

 

INFLUENCE OF ESTUARINE HYDRODYNAMICS  

ON SECONDARY DISPERSAL 

 

INTRODUCTION 

Larval dispersal is an important aspect of life history in many marine organisms, 

including bivalves.  The majority of bivalve larvae are planktotrophic meaning they 

spend time in the water column feeding on plankton until competent to metamorphose.  

During the process of metamorphosis, larvae settle into an appropriate habitat.  It was 

previously thought that after this initial settlement the dispersal stage was over.  A study 

by Sigurdsson et al (1976) indicated that many types of bivalve larvae have the ability 

and potential to disperse during post-larval and juvenile phases using a method referred 

to as “byssus drifting.”  It is characterized by the secretion of a very thin mucous thread 

which leads to an increase in viscous drag allowing the organism to be carried long 

distances by relatively weak currents (Sigurdsson et al. 1976; Lane 1985; Yankson 1986).   

Over the last three to four decades several studies have documented byssal 

drifting in a wide variety of bivalve taxa.  Data compiled by Baker and Mann (1997) 

indicated the occurrence of post-larval byssal drifting in at least 48 species across 16 

families.  The size of bivalves which exhibit thread drifting behavior varies across taxa.  

Lane et al. (1985) observed Mytilus edulis post-larval individuals up to two mm 

exhibiting drifting behavior.  In the lagoon cockle, Cerastoderma glaucum, byssal threads 

were observed on individuals between two to four mm in length (Yankson 1986).  
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Macoma balthica juveniles up to ten mm in length were captured using plankton nets 

(Beukema and de Vlas 1989).  The length of time after metamorphosis during which 

drifting occurs appears to be species specific.  Yankson (1986) indicated that in the 

laboratory C. glaucum continued to display drifting behavior until the individuals were 

77 days old.  In contrast, a bivalve native to Asia, Sinonovacula constricta, was observed 

to exhibit drifting behavior nine to 30 days after metamorphosis (Wang and Xu 1997).   

Both biotic and abiotic factors are thought to influence bivalve thread drifting 

behavior.  Laboratory experiments indicated when adult densities were high 

Cerastoderma edule juveniles drift to avoid intraspecific competition (de Montaudouin 

and Bachelet 1995).  A diurnal pattern for Macoma balthica, C. edule, and Ensis directus 

was observed in the field with these species occurring in the water column in greater 

abundance at night (Armonies 1992).  In the Wadden Sea, M. balthica was collected in 

higher numbers during ebb tides compared to flood tides (Beukema and de Vlas 1989).  

A lunar periodicity was observed in C. edule and E. directus with a higher abundance of 

individuals in the water column during spring tides compared to neap tides (Armonies 

1992).  Laboratory experiments indicated that when burned sand, denuded of any 

organics, was the provided substrate Macomona liliana readily emerged and exhibited 

drifting behavior (Cummings et al. 1992).  

Many of these studies were conducted in coastal waters around Europe and little 

is known about this behavior on the west coast of the US. This study focused on how 

physical factors influenced presence, absence and abundance of multiple species of 

juvenile bivalves found drifting in the plankton in Coos Bay, Oregon.   
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METHODS 

Data Collection 

 I took monthly plankton tows from September 2009 to July 2011 during flood 

and ebb tides.  From September to November 2009 I sampled the flood and ebb tides on 

separate days.  To increase the efficiency of sampling, I sampled the flood and ebb tide 

samples on the same day, starting in December 2009. Sampling started about three hours 

before the tide changed.  The plankton tows were in the Coos Estuary, OR near the 

Southwest Oregon Regional Airport (N 43°25’16’’, W 124°16’19’’).   

I collected plankton with a 1 m Tucker trawl with 0.5 mm mesh.  The Tucker 

trawl was equipped with two nets that could be opened and closed at different depths. 

Vertically stratified oblique tows were made with each net.  On each tow, one net 

sampled from within 2 meters of the bottom to mid-depth and the second net sampled 

from mid-depth to the surface.  The duration of each tow at each depth was 10 minutes 

and I measured flow through the nets with a mechanical flowmeter.  I took three replicate 

sets of tows with each net during the flood and ebb tide.  Depending on the tidal height 

water depth ranged from 13 m to 15 m.   

I collected measurements of estuarine water parameters with a SeaBird model 19 

CTD equipped with a WetStar fluorometer to measure chlorophyll a.  I made three CTD 

casts during each flood and ebb tide sample collection.  I made the first cast before the 

first tow and the second and third casts after the second and third tow, respectively.  The 

CTD records measurements every half-second throughout the entire water column.  

 I preserved samples on the boat using borax buffered 5% formalin and preserved 

samples collected from April to July 2011 in 95% ethanol to allow for molecular 
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analysis.  In the laboratory, using a dissecting microscope, I enumerated bivalves and 

measured the length from the anterior to the posterior with an ocular micrometer to one-

tenth mm.  I placed bivalves into groups based on similar morphological features and 

adult identification guides (Coan et al. 2000; Mikkelsen et al. 2006; Coan and Valentich-

Scott 2007).   

Data Analysis 

I analyzed the data with the statistical program R
TM

 version 2.13.1.  I analyzed the 

relationships between the explanatory variables, the presence and abundance, log(Ab+1) 

of bivalve thread drifters for each of the taxa identified using General Additive Models 

(GAM) as implemented in the mgcv library, a non-parametric regression package, of R 

(R Development Core Team 2010). GAMs are similar to stepwise regressions in that 

initially all variables are included and the least significant variables are removed on a 

step-by-step basis until all variables remaining are significant.  GAMs, however, allow 

the exploration of non-linear functional relationships between dependent and explanatory 

variables, fitting predictor variables by smooth functions (Guisan et al. 2002). The 

general model form of a GAM is  

 

 

Where E(Y) is the estimated value of the response variable, is the population intercept, 

Xj are the covariates, fj are the smooth unknown functions estimated for each covariate, 

and Ɛ is the error term (Wood 2006).    

Abundance data were characterized by many zero-valued observations and a long 

right tail. Zero-inflated data are a common feature in species abundance studies, which 
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prevents the use of common assumptions of data distribution for modelling (Barry and 

Welsh 2002).  Therefore, data were modelled in two steps.  The first step modelled the 

association between the presence and absence of bivalves and the available covariates 

and the second step modelled the relationship between abundance and the covariates, 

conditionally on the presence of the organism (Barry and Welsh 2002). 

I reported the abundance of bivalves as number/m
2
 or number/100 m

2
 and to 

calculate this divided the raw number of bivalves by the volume of water filtered and 

multiplied by the depth of water sampled (i.e.  if the tow was from the surface to 7 meters 

the depth was 7).  I multiplied by 100 for number/100 m
2
.  I introduced tidal cycle (flood 

or ebb) and depth (upper or lower net) as fixed factors.  I considered continuous variables 

(salinity, temperature, chlorophyll a, and date in Julian Days) as smoothed terms in the 

model and estimated with thin plate regression splines (Guisan et al. 2002).  I divided the 

water column in half creating an upper and lower portion.  I averaged the CTD data 

collected to obtain a single measurement for each portion of the water column for every 

cast and used these values in the statistical analysis of the biological data.  To look at 

temperature, salinity and chlorophyll a patterns over the two-year sampling period, I 

averaged the values for each tow to obtain a single measurement for each monthly 

sampling.    

The presence-absence data were modelled using a binomial distribution with a 

logit-link and Akaike’s information criterion (AIC) was used to select the optimal set of 

variables for inclusion in the models (Zurr et al. 2009).  Model validation included the 

verification of homogeneity, normality and independence assumptions (Zuur et al. 2009). 
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RESULTS 

Estuarine Hydrographic Data 

The CTD recorded salinity, temperature and chlorophyll a along the sampling 

transect.  The average water temperature, integrated across depth, over the two-year 

sampling period ranged from approximately 9°C to 17°C; however, in December 2009 

the temperature dropped to 6.9°C (Figure 1A). Water temperature was highest during 

July through September.  Average salinity ranged from 21.5 to 32.4 with highest 

salinities during July through October (Figure 1A).  Chlorophyll a varied little from 

September 2009 to June 2010 (ranging from 0.5 to 0.8 µg/L).  It peaked in August 2010 

(5.9 µg/L); decreased and leveled out from December 2010 to March 2011; then peaked 

again in April 2011 (6.5 µg/L) and reached its highest concentration (7.4 µg/L) in June 

2011 (Figure 1B). 

A.   

B.  

   
 

Figure 1.  Temperature, Salinity, and Chlorophyll a: Average (±SE) of A) water 

temperature (°C) and salinity and B) chlorophyll a (µg/L) for the entire sampling 

period, September 2009 through July 2011. 
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Bivalve Species 

I recorded five taxa of bivalves from plankton samples collected in Coos estuary 

from September 2009 to 2011. Morphology and molecular techniques (Chapter II) 

indicated juvenile bivalves collected included Clinocardium nuttallii, Macoma spp., 

Siliqua spp., and Mytilus spp.  One taxon could not be identified to genus level, but 

molecular analysis indicated it grouped with the superfamily Tellinoidea (Chapter II).   

Size and Abundance Data 

The smallest bivalve collected during this study was a 0.6 mm Mytilus spp.; 

however, over 80% of the Mytilus spp. collected were 1.0 mm or larger.  Ninety-nine 

percent of Macoma spp. and Clinocardium nuttallii bivalves collected and 100% of 

Siliqua spp. and Tellinoidea individuals were >1.5 mm in length.  The average size (±SE) 

of Macoma spp. was 2.24 mm ± 0.02, of Siliqua spp. was 2.52 mm ± 0.24, of Tellinoidea 

was 2.21mm ± 0.06, of C. nuttallii was 2.33 mm  ± 0.04 and of Mytilus spp. was 1.57 

mm ± 0.04.  Size frequency data indicated the majority of bivalves collected in the 

plankton were in the middle of the size range and the smaller and larger individuals were 

less frequent (Figure 2). 

I found juvenile bivalves in the upper (surface to 7 m depth) and lower (7 to 14 m 

depth) part of the water column.  There was a significant difference in bivalve length 

between the upper and lower parts of the water column for two of the five taxa (Figure 3).  

Macoma spp. juveniles collected with the lower net were larger than those collected with 

the upper net (ANOVA test, p<0.005, F=10.11, n=981).  Clinocardium nuttalli juveniles 

showed a different trend with larger individuals in the upper net compared to those 

collected with the lower net (ANOVA test, p<0.001, F=18.72, n=281).   
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Size (mm) 

A. 

 B.  

 C.    

 D.   

E.   

    
 

Figure 2.  Length frequency distributions: Length (mm) frequency distributions 

for A) Macoma spp. (n=981), B) Siliqua spp. (n=159), C) Tellinoidea (n=34), D) 

C. nuttallii (n=281), and E) Mytilus spp. (n=282). 
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Figure 3.   Average bivalve length (posterior to anterior):  Length (mm ±SE) in 

the upper (gray) and lower (white) part of the water column for Macoma spp. 

(ANOVA: F=10.11; df=1; p <0.005; n=981), Siliqua spp. (ANOVA: F=1.21; 

df=1; p=0.27; n=159), Tellinoidea (ANOVA: F=0.16; df=1; p=0.70; n=34), C. 

nuttalli (ANOVA: F=18.72; df=1; p<0.001; n=281), and Mytilus spp. (ANOVA: 

F=0.16; df=1; p=0.69; n=282). 

 

The abundance of juvenile bivalves (all taxa summed) collected in the plankton 

varied over the two year sampling period.  It peaked during early spring and summer of 

2010 and there was a smaller peak in late winter and early spring of 2011 (Figure 4A).  

The most abundant taxon was Macoma spp. with the highest average (±SE) abundance 

for a single sampling day of 86.7/100 m
2
 ± 22.4

 
(Figure 4B).  The average abundances for 

Siliqua spp., Clinocardium nuttallii, and Mytilus spp. taxa were all similar, 25.6/100 m
2
 ± 

24.6, 15.1/100 m
2
 ± 6.0, 18.5/100 m

2 
± 4.23, respectively (Figure 4C, D, and F).  

Tellinoidea was the least abundant taxon collected with an average of 3.0/100 m
2
 ± 1.23 

(Figure E).   
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A. 

 B.    

 C.  

 D.  

 E.  

 F.  

    
Figure 4.  Average abundance of bivalves. Log of the average (log #/100 

m
2  

+.01) ± SE of A) all taxa summed B) Macoma spp., C) Siliqua spp., D) 

Tellinoidea, E) C. nuttallii, and F) Mytilus spp. from the entire sampling 

period, September 2009 through July 2011.  
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General Additive Models 

Macoma spp. 

Presence/Absence:  The GAM model that included depth, Julian Day, and chlorophyll a 

concentration explained 23.9% of the observed deviance (Table 1A – Tables are located 

in Appendix B).  The probability of Macoma spp. being present in the lower part of the 

water column was 3.8 times higher than in the upper part of the water column.  The 

highest probability of catching Macoma spp. was from April through early June when the 

probability of their being present was > 80%, (Figure 5A).  The probability of their being 

present decreased as chlorophyll a concentration increased; however, once concentrations 

reached approximately 7 µg/L, the probability increased (Figure 5B).   

A. B. 

             
    

 

Figure 5.  Generalized additive model (GAM) plots for probability of presence of 

Macoma spp.: Influence of A) day of the year (Julian Day) and B) chlorophyll a 

(µg/L) on the probability of presence of Macoma spp. GAM results: see Table 1 

(A).  Solid line is the mean probability, dashed lines are the 95% CI and inner 

ticks are the data points.  

   

Abundance:  The GAM model that included depth, tide, salinity, temperature, and 

chlorophyll a explained 55.1% of the observed deviance (Table 1B).  Juvenile Macoma 

spp. abundance was higher in the lower part of the water column compared to the upper 

and they were more abundant during ebb than flood tides.  There was significant 
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interaction between tidal cycle and depth: there was a larger difference in abundance 

between the upper and lower parts of the water column during flood tide than during ebb 

tide.  Abundance was influenced by temperature, salinity, and chlorophyll a with higher 

abundance at warmer temperatures, lower salinities, and lower chlorophyll a 

concentrations (Figure 6A, B and C).   

A. B.       C. 

  
 

 

Figure 6.  Generalized additive model (GAM) plots for abundance of Macoma 

spp.  Partial effect of A) temperature (°C), B) salinity, and C) chlorophyll a 

(µg/L) on Macoma spp. abundance (log number/m
2
).  GAM results: see Table 1 

(B).  Solid line is the mean partial effect, dashed lines are 95% CI and inner ticks 

are data points. 

 

Siliqua spp. 

Presence/Absence: Similar to the Macoma spp. analysis, initially I determined how 

estuarine hydrodynamics affect the presence and absence of the Siliqua spp. species.  The 

GAM model that included depth, Julian Day and chlorophyll a concentration explained 

21.0% of the observed deviance (Table 2A).  It was 3.1 times more likely that Siliqua 

spp. were present in the lower part of the water column than the upper part.  During late 

winter, February and early March, the probability of presence was approximately 75%, 

which was the highest throughout the year (Figure 7A).  The probability that Siliqua spp. 

were present decreased as chlorophyll a concentration increased; however, once 

concentrations reached approximately 4 µg/L the probability increased (Figure 7B). 
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A.       B. 

       
 

 

Figure 7. Generalized additive model (GAM) plots for probability of presence for 

Siliqua spp.  Influence of A) day of the year (Julian Day) and B) chlorophyll a 

(µg/L) on the probability of presence for Siliqua spp.  GAM results: see Table 2 

(A).  Solid line is the mean probability, dashed lines are the 95% CI and inner 

ticks are the data points. 

 

Abundance:  When Siliqua spp. were present, estuarine hydrodynamics influenced their 

abundance.  The model that included depth and salinity explained 44.3% of the observed 

deviance (Table 2B).  The GAM indicated Siliqua spp. abundance was affected by 

salinity with highest abundance above salinity 32 (Figure 8) which occur during the rainy 

season usually early fall to late spring.  

  
 

Figure 8.  Generalized additive model (GAM) plots for abundance of Siliqua spp.  

Partial effect of salinity on Siliqua spp. abundance (log number/m
2
).  GAM 

results: see Table 2 (B).  Solid line is the mean partial effect, dashed lines are the 

95% CI and inner ticks are the data points. 
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Superfamily Tellinoidea 

Presence/Absence:  These bivalves were rare compared to the other taxa.  Tide and depth 

were included in the GAM model that explained 9.23% of deviance (Table 3).  There was 

a 4 times greater chance of their being found in the lower water column and a 3.4 greater 

chance of their being present during ebb compared to flood tides.  Other variables tested 

were not significant. 

Abundance: The analysis for abundance indicated none of the variables tested were 

significant. 

Clinocardium nuttallii 

Presence/Absence:  The presence and absence of Clinocardium nuttallii was influenced 

by estuarine hydrodynamics.  The model that included depth, Julian Day and salinity 

explained 15.4% of the observed deviance (Table 4A).  There was a 3.5 times greater 

chance of finding juvenile C. nuttallii in the lower part of the water column than the 

upper part of the water column.  The presence of this species appeared to have a seasonal 

trend indicated by the high probability of presence during late July and early August 

(Figure 9A).  The presence of C. nuttallii varied with salinity with lower probabilities of 

their being present as salinity increased (Figure 9B).  
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A. B. 

    
 

 

Figure 9. Generalized additive model (GAM) plots for probability of presence for 

C. nuttallii.  Influence of A) day of the year (Julian Day) and B) salinity on the 

probability of presence for C. nuttallii.  GAM results: see Table 4 (A).  Solid line 

is the mean partial effect, dashed lines are the 95% CI and inner ticks are the data 

points. 

 

Abundance:  Estuarine hydrodynamics played a role in the abundance of Clinocardium 

nuttallii when it was present.  The model that included depth, day, salinity and 

chlorophyll a explained 27.1% of the observed deviance (Table 4B).  The results of the 

GAM indicated juvenile C. nuttallii abundance was higher in the lower part of the water 

column and abundance decreased as salinity increased (Figure 10). 

 
 

 

Figure 10. Generalized additive model (GAM) plots for abundance for C. 

nuttallii. Partial effect of salinity on C. nuttallii abundance (log number/m
2
).  

GAM results: see Table 4 (B).  Solid line is the mean partial effect, dashed lines 

are the 95% CI and inner ticks are the data points. 
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Mytilus spp. 

Presence/Absence:  For this species the GAM model that included depth, tide and Julian 

Day explained 22.8% of the observed deviance (Table 5).  The model indicated the 

chance of finding juvenile Mytilus spp. in the lower part of the water column was 7.2 

times higher than in the upper water column and a 2.2 times greater chance of their being 

present during flood than ebb tides.  The highest probability of presence, approximately 

85%, was during fall, specifically late September and early October (Figure 11).    

Abundance:  The model that included depth explained 11.7% with higher abundance in 

the lower part of the water column.  None of the variables were significant. 

 
 

 

Figure 11.   Generalized additive model (GAM) plots for probability of presence 

of Mytilus spp.  Influence of day of the year (Julian Day) on the probability of 

presence for Mytilus spp.  GAM results: see Table 5.  Solid lines are mean 

probability, dashed lines are the 95% CI and inner ticks are the data points. 

 

DISCUSSION 

Juvenile bivalves collected in the Coos estuary included Clinocardium nuttallii, 

Macoma spp., Mytilus spp., Siliqua spp., and individuals from the superfamily 

Tellinoidea.  Morphological features and molecular techniques were used to confirm the 

taxonomic identification (Chapter II).  Size data indicated the bivalves collected during 
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this study were well over the size of bivalves at the time of metamorphosis.  The length 

of metamorphosis for Macoma spp. is between 255-330 µm (Brink 2001), for Siliqua 

spp. is about 300 µm (Breese and Robinson 1981),  for C. nuttallii is less than 1.0 mm 

(Liu et al. 2009), and for Mytilus spp. is 320-330 µm (Strathmann 1987; Brink 2001).  

The size of metamorphosis for the Tellinoidea individuals is not reported due to the 

uncertainty of species or genus identification.  Size at metamorphosis varies depending 

on species and the temperature, salinity, and food availability during larval development; 

however, the majority of bivalves reach metamorphosis and settle well before they reach 

1 mm in length (Strathmann 1987; Brink 2001; Gosling 2003).  Bivalves caught in the 

plankton during this study were much larger than the size at metamorphosis.  These 

individuals were much too large to be larvae or even newly settled larvae.  Their size 

indicates that they were juveniles that had spent time as settled individuals growing on 

the bottom.  Determining the age of the juvenile bivalves is quite difficult but they were 

likely between a few months to one-year post-metamorphosis.  

During this study Macoma spp. was the most abundant species collected from the 

plankton with almost 3.5 times as many individuals compared to the other four taxa.  The 

reason for this is not clear.  Macoma spp. are a fairly abundant taxon in Coos Bay 

mudflats, but Clinocardium nuttallii is also abundant (personal observation) and both are 

recreationally harvested.  It is likely the Macoma spp. complex is a mixture of M. 

inquinata, M. balthica, and M. nasuta.   

Depth was an important factor for all five taxa of bivalves and I observed a higher 

probability of presence (for all five taxa) and higher abundance (for three taxa) in the 

lower part of the water column.  Juveniles settle on the benthos, and have the ability to 
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secrete a thread, which provides an opportunity for lift, and, once lifted off the bottom 

horizontal currents carry the drifting juvenile clam.  As a result of being lifted off the 

bottom, they would occur more frequently and more abundantly near the bottom.  What 

was surprising is that juveniles were collected in the upper part of the water column, 

which sampled from the surface to approximately 7 meters depth; a significant number of 

thread drifters were caught between 7 and 15 m off the bottom.  During larval stages, 

bivalves possess a velum which is used for swimming; however, at the juvenile stage 

they no longer have this structure.  Without swimming capability, vertical movement is 

more difficult, but apparently not impossible.  To try to determine how they are being 

transported into the surface waters I looked at a terrestrial animal with a similar behavior.     

Juvenile spiders exhibit a behavior, similar to thread drifting, known as 

ballooning in which they use wind currents and silk threads for transport.  Humphrey 

(1987) reported that ballooning occurs when forces on the spider and the silk thread, 

spider-filament system (SFS), are able to overcome the weight of the spider and the 

thread, plus the force of attachment to the substratum.   SFS will continue to rise as long 

as the vertical component of wind is greater than the system’s free-fall terminal velocity.  

Basically without lift the SFS will sink, but it lift continues the system will continue to 

rise.  Juvenile bivalves are likely exposed to forces which are greater than the weight of 

the bivalve and the thread.  Shanks and Shearman (2011) collected juvenile Mytilus spp. 

40 m from the bottom and found they were significantly more abundant during 

downwelling/relaxation events compared to upwelling events.  This is an offshore 

example of physical processes in the marine environment that generate lift that allows the 

bivalves to reach more shallow waters.  A different physical process occurring in the 
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estuary could have the same effect.  The bottom topography can result in separations of 

flow at a crest and reattachments at a trough which can lead to the formation of a mixing 

layer and depending on the turbulence and the amount of flow a boil can be generated 

(Müller and Gyr 1986).  These boils are difficult to study in the field, but using infrared 

imaging and Chickadel et al. (2009) captured surface eruptions of meter sized boils in the 

Snohomish River estuary in Washington.  These localized upwelling events could 

provide the lift that allows the juvenile bivalves to move from depths to higher surface 

waters.   

The maximum size of individuals collected was 4.9 mm and in general larger 

individuals were less frequent. The spider study indicated individuals have to be exposed 

to forces greater than their own weight; thus as bivalves grow the shell thickens, 

increasing their weight, which makes it harder to obtain initial lift from the bottom.  For 

two of the taxa there was also a relationship between their size and whether they were in 

the upper or lower part of the water column.  Macoma spp. collected in the lower net 

were larger than those collected in the upper net; however, the opposite trend was found 

for Clinocardium nuttallii.  These two species have quite different shell morphologies 

(personal observation).  If measuring the width from the dorsal side to the ventral side 

juvenile C. nuttallii is much wider than Macoma spp.  C. nuttallii is spherical in shape 

while Macoma spp. is more flattened.  There was no significant size difference between 

nets for Mytilus spp. but the body shape for this species is kind of a mixture between the 

two previously mentioned species; it is normally wider than Macoma spp., but not round 

like C. nuttallii.   
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 For all taxa, except the Tellinoidea, the probability of being present was 

significantly influenced by Julian Day and this was most likely due to reproductive 

seasonality.  The results from the statistical analysis revealed each taxon had more than 

one peak of probability of presence throughout the year.  If the probability of presence 

corresponds with the reproductive cycle then multiple peaks would be consistent with 

bivalve reproductive biology.  In England M. balthica was reported to have two spawning 

occurrences, a major pulse in April-May and a minor pulse in November (Caddy 1969).  

Siliqua patula, the Pacific razor clam, has a spawning period of May-June and another 

peak in late fall (Lassuy and Simmons 1989).  M. edulis has a partial spawning event in 

the spring and a second event in the fall after gonad recovery (Gosling 2003).  

Histological samples from C. nuttallii in Garrison Bay, Washington revealed mature 

bivalves had an extended period, six months, during which their gonads were ripe, which 

could indicate two spawning events (Gallucci and Gallucci 1982).  C. nuttallii along the 

Oregon coast also display an extending spawning period, June through October, 

(Robinson and Breese 1982).   

I attempted to match up peaks in probability of finding drifters with post 

spawning periods documented in the literature; however, this is quite difficult.  Exact 

spawning times for taxa in this study are unknown, even for the well-studied M. balthica.  

Rae (1978) reported in central California Macoma spp. were ripe from February through 

August.  A study in British Columbia by McGreer (1983) found M. balthica spawning 

occurred during June and July.  Strathmann (1987) reported spawning occurs over an 

extended period, spring-summer.  In addition to variability in reproduction, M. balthica 

growth rates of all stages vary with environmental factors specifically faster growth in 
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warmer temperature (Gilbert 1973; McGreer 1983).  I was unable to determine when the 

drifters were spawned and how long they were in the plankton.  The data suggested that 

the probabilities of finding them in the plankton increases during certain times of the year 

which is likely a result of reproductive cycle. 

Macoma spp. abundance was significantly affected by tidal cycle with higher 

abundances occurring during ebb tides.  The estuarine hydrodynamic data supported this 

pattern.  Abundance was higher at warmer temperature, lower salinities and lower 

chlorophyll a concentrations which are all characteristics of ebb tides.  Roegner and 

Shanks (2001) found that chlorophyll a was transported into the estuary from the 

nearshore ocean which resulted in higher concentrations during flood tides compared to 

ebb tides.  A possible explanation for this observed pattern are that Macoma spp. are 

trying to leave the estuary or move to a lower part of the estuary.  In the Wadden Sea, 

Beukema and de Vlas (1989) found drifting M. balthica abundance was higher during 

ebb tides suggesting initial settlement was in the estuary and secondary dispersal was 

directed toward the North Sea.  Another possibility is juveniles are displaying an 

ontogenetic shift.  If initial settlement occurs in the high intertidal, Macoma spp. may be 

moving to lower intertidal and subtidal habitats and this would be done most efficiently 

during ebb tides.  In the North Sea, higher growth rates, higher annual survival, and lower 

parasite infections for juveniles were found in the lower intertidal compared to higher 

intertidal populations (Hulscher 1973; Beukema et al. 1977; Moorsel 1979 in Beukema et 

al. 1977).   

The individuals from the superfamily Tellinoidea were influenced by tidal cycle 

with a higher probability of presence during ebb tides.  It is somewhat difficult to 



41 

 

determine why this pattern was observed without knowing to which species or genus 

these individuals belong.  While the exact identification is not certain, knowing the 

superfamily may allow some general conclusions to be drawn.  Macoma spp. are also a 

member of the superfamily Tellinoidea, and Macoma spp. collected in this study were 

more abundant during ebb tides.  It is possible bivalves from the same superfamily have a 

similar life history, thus, maybe these unidentified Tellinoideas initially settle in the 

upper intertidal and move to the lower area, during ebb tides, for similar reasons as the 

Macoma spp.      

The probability of presence of Mytilus spp. was influenced by tidal cycle with 

higher probabilities of being present during flood tides compared to ebb tides.  This is 

different than the pattern observed for Macoma spp.  One reason for the difference could 

be the variation in life histories for the two genera.  Macoma spp. are benthic bivalves 

that live solitarily in a burrow while Mytilus spp. are gregarious bivalves, that primarily 

live attached to substrate in the intertidal or wave exposed areas.  Mytilus spp. are thought 

to normally occur in the intertidal zone; however, M. trossulus populations occur in 

subtidal habitats as well (Selin and Lysenko 2006).  Shanks and Shearman (2011) 

collected M. trossulus juveniles at depth and these individuals had not been in the 

intertidal as indicated from the lack of darkening on their shell (Trevelyan and Chang 

1987).  The juveniles I collected during flood tides were possibly from a subtidal 

population and they were drifting to a more suitable habitat.  

Clinocardium nuttallii was influenced by salinity in way similar to Macoma spp. 

with a decrease in drifters as salinity increased.  Unlike Macoma spp., C. nuttallii was not 

influenced by tidal cycle.  There are a few possibilities for this pattern: lower salinities 
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create an unfavorable habitat increasing the likelihood of drifting or exposure to 

increased salinities in the water column is unfavorable and the juveniles prefer to stay on 

the substrate. Both of these possibilities are related to salinity tolerances.  The European 

cockles, Cerastoderma spp., have different shell morphologies depending on the salinity 

of their environment suggesting they are able to adapt to variations in physical 

parameters (Mariani et al. 2002).  If this were also true for the species in this study this 

could indicate a range of salinity tolerances and changes in salinity may not have a direct 

effect.  It is possible C. nuttallii also is more abundant during falling tides despite the lack 

of significance of the statistical analysis. 

Siliqua spp. were also influenced by salinity and abundance was highest at very 

high salinities.  Razor clams normally occur on the open coast and in high surf areas 

which are normally higher in salinities.  It is possible these juvenile clams are being 

brought into the estuary from the outer coast during flood tides; however, tidal cycle was 

not significant.  Chlorophyll a concentrations were important for the presence and 

absence of Siliqua spp.  The results suggested they are more likely to drift at low (<2 

µg/L) and high (>4 µg/L) chlorophyll a concentrations.  Previous studies concluded lack 

of food can lead to an increase in drifting behavior in Cerastoderma glaucum, C. edule 

(Yankson 1986) and Macomona liliana (Cummings et al. 1992), but when particle 

concentration is high filter feeders have been shown to decrease ingestion rates (Iglesias 

et al. 1996; Denis et al. 1999; Gosling 2003).    This suggests there is an optimal 

chlorophyll a concentration level and Siliqua spp. may be leaving their habitat when 

conditions vary from this level.  The reason this pattern was not observed in Macoma 

spp. could be due to the differences in feeding techniques.  Macoma spp. have long split 
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siphons allowing them to switch to deposit feeding while  Siliqua spp. have a relatively 

short fused siphon limiting them to filter feeding.   

This study suggested bivalves in the Coos estuary disperse during juvenile stages 

and focused on how several factors, including size, tidal cycle, seasonality, depth in the 

water column, temperature, salinity, and chlorophyll a, influence the behavior.  Analysis 

of physical estuarine water parameters strongly suggested the juvenile abundance of 

drifters, with the exception of Mytilus spp., increased during ebb tides; however, 

differences in tidal cycle, specifically, were only observed for Macoma spp. and 

Tellinoidea.  Other studies which have detected variations in abundance as a result of 

tidal cycle sampled over a period which encompassed a full ebb and flood cycle 

(Beukema and de Vlas 1989; Hiddink et al. 2002).   

The tides in Coos Bay are categorized as mixed, semi-diurnal meaning there are 

two highs and two lows every 24 hours, but there is variation in heights of the two highs 

and the two lows.  While the bay is about 20 km long, the tidal influence extends 43 km 

from the mouth upstream in the South Fork Coos River (ACOE 1975).  Coos Bay has the 

2
nd

 largest tidal prism, the amount of water that leaves the estuary between the highest 

high tide and the lowest low tide, out of 12 Oregon estuaries excluding the Columbia 

River (ACOE 1994).  Substantial tidal currents are generated as a result of the tidal flow 

(ACOE 1994).  During this two year period I also sampled over a twenty-four hour 

period which encompasses two full tidal cycles.  Analyzing these data will provide more 

insight on the effect of tidal cycles on juvenile bivalve thread drifting.   
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CHAPTER IV 

TIDAL TRANSPORT AND DIEL MIGRATION OF FIVE TAXA  

OF JUVENILE BIVALVES IN COOS ESTUARY, OREGON  

 

INTRODUCTION 

 Bivalve dispersal occurs during the planktonic larval stages, but for many species 

it continues in the post-larval stages.  After initial settlement, secondary dispersal occurs 

by secretion of a mucous thread which increases viscous drag resulting in the potential 

for a juvenile clam to be carried along even via relatively weak currents (Sigurdsson et al. 

1976).  This dispersal mechanism is analogous to a techniques used by juvenile spiders in 

which they climb to the top of a blade of grass, release a silk thread, and use wind 

currents to transport and disperse them (Humphrey 1987).  For juvenile bivalves, the 

duration of dispersal stage and the size of the individuals that display the behavior varies 

depending on the species (Yankson 1986; Beukema and de Vlas 1989; Wang and Xu 

1997).   

There is evidence that the likelihood of bivalves displaying this behavior is 

dependent on biological conditions and the physical environment.  Previous studies have 

tested the effects of predator interactions (Hiddink et al. 2002), food concentrations 

(Cummings et al. 1992) and the physical parameters such as tidal cycles (Garrison and 

Morgan 1999) or diel migrations (Armonies 1992) on thread drifting.  A majority of the 

previous studies examined tidal cycles and diel migration separately.  Armonies (1992) 

found a trend in regard to the diel rhythm for Macoma balthica, Cerastoderma edule (the 

European cockle), and Ensis directus with higher abundance during the night.  The 
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plankton nets were stationary and samples were only retrieved during low tide, thus, there 

was no way to determine if drifting bivalves were entering the plankton net during the 

flood or ebb tide.  Beukema and de Vlas (1989) found nearly ten times more M. balthica 

drifters during flood tides compared to ebb tides; however, their study did not consider 

diel variation.   

Like many behaviors in the marine environment, the act of thread drifting is likely 

influenced by more than one factor and it is also likely that these factors interact with one 

another.  The Coos estuary is characterized by mixed semi-diurnal tides, two high tides 

and two low tides within a twenty-four hour period.  By sampling over this period I was 

able to investigate whether tidal cycle or diurnal variation had an influence on thread 

drifting behavior and whether an interaction between the two occurs.     

 

METHODS 

 

Data Collection 

 

 From October 2009 until May 2011, I took plankton tows on a ca. quarterly basis.  

I sampled in October 2009, March, May, July, and October of 2010, and February and 

May 2011.  I made plankton tows in the Coos Estuary, Coos Bay, Oregon near the airport 

(N 43°25’16’’, W 124°16’19’’).  Depending on the tidal height water depth ranged from 

13 m to 15 m.  I used a 1 m Tucker trawl with 0.5 mm mesh equipped with two nets that 

could be opened and closed at different depths. Vertically stratified oblique tows were 

made with each net.  On each tow, one net was sampled from within 2 meters of the 

bottom to mid-depth and the second net was sampled from mid-depth to the surface.    I 

towed at each depth for 10 minutes and measured flow through the nets with a 
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mechanical flowmeter.  During each sampling day tows were taken every two hours for 

twenty-four hours or until a total of 12 samples, for each net, were collected.     

 Samples were preserved using borax buffered 5% formalin.  Samples collected in 

May 2011 were preserved in 95% ethanol to allow for molecular analysis.  In the 

laboratory, using a dissecting microscope, I enumerated bivalves and measured the length 

from the anterior to the posterior with an ocular micrometer to one-tenth mm.  I identified 

juveniles with adult identification guides (Coan et al. 2000; Mikkelsen et al. 2006; Coan 

and Valentich-Scott 2007) and molecular techniques (Chapter II). 

 I obtained tidal information and sunrise/sunset times for Empire, Coos Bay (about 

1.5 miles south of the sampling site) from Nobeltec
®
 Tides and Currents version 3.7.  To 

indicate whether it was a flood or ebb tide, I multiplied the tidal heights by -1, thus all 

negative values represented an ebb tide while all positive values represented a flood tide.  

In the data analysis I refer to this term as tidal height.  I considered the hour before sunset 

and the hour after sunrise as night time to account for low light levels experienced under 

water.   

During the May 2011 cruise I deployed an Argonuat XR Acoustic Doppler 

Current Profiler (ADCP) near the study site and it remained there during the 24 hour 

sampling period.  The ADCP was attached to a small platform, with lead weights, that 

allowed the device to set about .25 m off the estuary bottom.  I used a winch equipped 

with a trigger mechanism to lower the ADCP to the bottom.  I set the ADCP sampling 

parameters to divide the water column into six cells and to take measurements every 15 

minutes.  I averaged cells 4 and 5 to obtain a speed for the upper part of the water column 

and averaged cells 2 and 3 for the lower part of the water column.   
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Data Analysis 

 

To analyze the results I used the statistical program R
TM

 version 2.13.1.  I analyzed 

the relationships between the explanatory variables and the log transformed abundance of 

bivalve thread drifters, log (Ab +1), for each of the taxa identified using General Additive 

Models (GAM) as implemented in the mgcv library, a non-parametric regression package 

of R (R Development Core Team 2010).  GAMs are similar to stepwise regressions in 

that initially all variables are included and the least significant variables are removed on a 

step-by-step basis until all variable remaining are significant.  GAMs, however, allow the 

exploration of non-linear functional relationships between dependent and explanatory 

variables, fitting predictor variables by smooth functions (Guisan et al. 2002). The 

general model form of a GAM is  

    


p

j

jjfY
1

)(  

 

Where E(Y) is the estimated value of the response variable, α is the population intercept, 

Xj are the covariates and fj are the smooth unknown functions estimated for each 

covariate, and Ɛ is the error term (Wood 2006).  

I reported the abundance of bivalves as number/100 m
2
 and to calculate this divided 

the raw number of bivalves by the volume of water filtered and multiplied by the depth of 

water sampled.  For example, if the tow was from the surface to 7 meters the depth was 7.  

I multiplied by 100 to obtain number/100 m
2
.  I introduced depth (upper or lower net) and 

diel variation (day or night) as factors and considered the continuous variable tidal height  

as smoothed terms in the model and estimated with thin plate regression splines.  I tested 

for interactions between tidal height and diel variation.   
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Akaike’s information criterion (AIC) was used to select the optimal set of variables 

for inclusion in the models. Model validation included the verification of homogeneity, 

normality and independence assumptions (Zuur et al. 2009). Initially I attempted to 

combine all seven cruises in a single analysis; however there was high variation in 

abundance between cruises (Figure 1), most likely a result of the species seasonal pattern 

of spawning (Chapter III), and the data did not meet the above mentioned assumptions.  

To overcome this I analyzed each cruise separately.  During a number of the cruises some 

of the taxa were not collected in any of the samples or were only collected in one sample.  

Due to the extremely low abundance these taxa were not analyzed for that specific cruise.   

 

RESULTS 

 

I collected five types of bivalves from the Coos Bay plankton during October 

2009 through July 2011. Morphological features and molecular techniques indicated 

juvenile bivalves collected included Clinocardium nuttallii, Macoma spp., Siliqua spp., 

Mytilus spp. and individuals from the group Tellinoidea, possible Tellina modesta 

(Chapter II).  The size data indicated the bivalves collected during this study were well 

over the size of bivalves at the time of metamorphosis, confirming they were definitely 

juveniles and not larvae (Chapter III).   

The average abundance of each taxa varied between cruises (Figure 1).  The 

maximum average (±SE) abundance for Macoma spp. was 310.3/100 m
2
 ± 55.7 and 

occurred during at night during the March 2010 cruise.  Siliqua spp. and C. nuttallii were 

most abundant during the July 2010 cruise at night with an average (±SE) of 290.3/100 

m
2 

± 115.2 and 379.3/100 m
2 

± 150.3, respectively.  The highest abundance for 

Tellinoidea was in the October 2009 night samples with an average (±SE) of 33.1/100 m
2 
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± 18.0.  Mytilus spp. was also most abundant during the October 2009 cruise but during 

the day.  The average (±SE) was 36.7/100 m
2 

± 6.6.  During the May 2011 cruise overall 

bivalve abundance was extremely low. 

A. 

B.      

C.      

D.      

E.      

         
 

Figure 1.  Average abundance of bivalves:  Average abundance (log #/100 m
2
 

+.01) ±SE for each cruise during the day (white) and night (gray). 
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Acoustic Doppler Current Profiler 

 Data from the ADCP indicated that maximum current speeds were during ebb tide 

and minimum speeds were during slack tide (Figure 2).  This pattern was true for the 

upper and lower part of the water column.  There was a difference in speed between the 

upper and lower part of the water column and the largest difference occurred after slack 

high tide as water began leaving the estuary.   

Figure 2.  ADCP Data for May 2011 Cruise.  Tidal height (m) and average current 

speed (m/s) in the upper and lower part of the water column over the 24 hour 

sampling period.  The tidal height is plotted pre and post sampling period to show 

more of the tidal cycle. 

 

October 2009 

 

 During the October 2009 cruise Macoma spp., Siliqua spp., Clinocardium 

nuttallii and Tellinoidea abundances higher during falling tide at night (Fig 3A).  For 

each of these taxa the GAM model that included tidal height and diel variation explained 

>70% of the observed deviance (Table 1A-D – All tables in Appendix C).  For these taxa 

there was a significant interaction between tidal height and diel variation.  During the day 

there was no difference in abundance between flood and ebb tide; however, during the 

night there was a maximum in abundance during falling tide (Figure 3B-E).  The pattern 

for Mytilus spp. was different (Figure 4A). The GAM model that included depth and diel 
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variation explained 59.8% of the observed deviance (Table 1E).  Mytilus spp. abundance 

was higher during the day and in the lower part of the water column.   

A. 

 
  B.        C.  

    
D.        E. 

    
    

Figure 3.  October 2009 Cruise Macoma spp., Siliqua spp., Tellinoidea, C. 

nuttallii: A) Abundance (log number/m
2
) during the 24 hour sampling period.  

The black line represents tidal height (m) and the shaded box represents night.   

Partial effect of tidal height (m) on abundance (log number/m
2
) of B) Macoma 

spp., C) Siliqua spp., D) Tellinoidea, and E) C. nuttallii at night.  Negative tidal 

heights represent ebb tides and positive tidal heights represent flood tides.  Solid 

line is the mean partial effect, dashed lines are the 95% CI and inner ticks are the 

data points.   
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A. 

 
Figure 4.  October 2009 Cruise Mytilus spp.:  A) Abundance (log number/m

2
)
 
of 

Mytilus spp. during the 24 hour sampling period.  The black line represents tidal 

height (m) and the shaded box represents night.   

 

March 2010 

 The pattern of abundance of Macoma spp., Tellinoidea, and Clinocardium 

nuttallii was similar in October 2009 and March 2010 (Figure 5A, 6A, and 7A).  For 

these species the GAM model that included tidal height and diel variation explained 

>60% of the observed deviance (Table 2A, B, and C).  Abundance was highest during 

ebb tides at night (Figure 5A, 6B, and 7C).  The results for Siliqua spp. and Mytilus spp. 

indicated none of the variables were significant; however, the data suggested juvenile 

bivalve abundance was higher at night (Figure 8A and B). 
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A. 

  
B.     

 
 

 

Figure 5.  March 2010 Cruise Macoma spp.:  A) Abundance (log number/m
2
) of 

Macoma spp. during the 24 hour sampling period.  The black line represents tidal 

height (m) and the shaded box represents night.  Partial effect of tidal height (m) 

on abundance (log number/m
2
) of Macoma spp. and night.  Negative tidal heights 

represent ebb tides and positive tidal heights represent flood tides.  Solid line is 

the mean partial effect, dashed lines are the 95% CI and inner ticks are the data 

points. 
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A. 

 
 B.       

 
 

 

Figure 6.  March 2010 Cruise Tellinoidea:  A) Abundance (log number/m
2
) of 

Tellinoidea during the 24 hour sampling period.  The black line represents tidal 

height (m) and the shaded box represents night.  B) Partial effect of tidal height 

(m) on abundance (log number/m
2
) of Tellinoidea at night.  Negative tidal heights 

represent ebb tides and positive tidal heights represent flood tides.  Solid line is 

the mean partial effect, dashed lines are the 95% CI and inner ticks are the data 

points. 
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A. 

 
 B.              C. 

 
 

 

Figure 7.  March 2010 Cruise Clinocardium nuttallii:  A) Abundance (log 

number/m
2
) of C. nuttallii during the 24 hour sampling period.  The black line 

represents tidal height (m) and the shaded box represents night. B)  Partial effect 

of tidal height (m) on abundance (log number/m
2
) of C. nuttallii during at night.  

Negative tidal heights represent ebb tides and positive tidal heights represent 

flood tides.  Solid line is the mean partial effect, dashed lines are the 95% CI and 

inner ticks are the data points. 
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A. 

 
B. 

.  

 

Figure 8.  March 2010 Cruise Siliqua spp. and Mytilus spp.:  Abundance (log 

number/m
2
) of A) Siliqua spp. and B) Mytilus spp. during the 24 hour sampling 

period.  The black line represents tidal height (m) and the shaded box represents 

night.   

 

May 2010 

 During this cruise there were no Siliqua spp. in any of the twelve samples, and 

Clinocardium nuttallii and Mytilus spp. were only collected in one sample, therefore, 

these three taxa were not analyzed.  For Macoma spp. although they were again more 

abundant during ebb tides, during this cruise they were more abundant during the day 

(Figure 9A). The GAM model that included day/night, tidal height and depth explained 
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70.5% of the observed deviance (Table 3).  There was a significant interaction between 

diel variation and tidal height.  During the day there was a greater abundance of juveniles 

during ebb tides than during the flood tides (Figure 9B).  During the night there was no 

difference between ebb and flood tides. 

A. 

 
B. 

  
 

 

Figure 9.  May 2010 Cruise Macoma spp.:  A) Abundance (log number/m
2
) 

during the 24 hour sampling period.  The black line represents tidal height (m) 

and the shaded box represents night.  Partial effect of tidal height (m) on 

abundance (log number/m
2
) of Macoma spp. during the day.  Negative tidal 

heights represent ebb tides and positive tidal heights represent flood tides.  Solid 

line is the mean partial effect, dashed lines are the 95% CI and inner ticks are tge 

data points. 
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July 2010 

During this cruise, only one sample had Tellinoidea bivalves, thus this taxon was 

not analyzed.  For Siliqua spp. abundance was higher again during the night, but during 

low slack tide (Figure 10A).  The GAM model that included tidal height, diel variation 

and depth explained 66.5% of the observed deviance (Table 4A).  There was a significant 

interaction between tidal height and day/night.  While there was no difference in 

abundance between the two tides during the day, at night there was greater abundance 

during slack tide (Figure 10B).  For Macoma spp., Clinocardium nuttallii and Mytilus 

spp. there were no clear patterns related to tidal height or day/night (Figure 11A, B and 

C).  The GAM model for C. nuttallii that included day/night explained 23% of the 

observed deviance (Table 4B) and indicated abundance was higher at night.  Mytilus spp. 

was significantly more abundant in the lower part of the water column, and the GAM 

model that included depth explained 33% of the observed deviance (Table 4C).     

 

October 2010 

 There were no Tellinoidea individuals collected during any of the tows during this 

cruise.  The abundance of Clinocardium nuttallii suggested juveniles were more abundant 

during ebb tides at night time (Figure 12); however, neither tidal cycle nor diel variation 

were significant.  The GAM models for C. nuttallii only included depth as a significant 

variable and explained 18% of the observed deviance (Table 5).  For Macoma spp., 

Siliqua spp., and Mytilus spp. no clear patterns were observed (Figure 13 A, B, and C) 

and none of the variables included in the GAM were significant.   
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A. 

 
B. 

    
 

 

Figure 10.  July 2010 Cruise Siliqua spp.:  A) Abundance (log number/m
2
) during 

the 24 hour sampling period.  The black line represents tidal height (m) and the 

shaded box represents night.  B) Partial effect of tidal height (m) on abundance 

(log number/m
2
) of Siliqua spp. during the night.  Negative tidal heights represent 

ebb tides and positive tidal heights represent flood tides.  Solid line is the mean 

partial effect, dashed lines are the 95% CI and inner ticks are the data points. 
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A. 

B.  

C.  

     
Figure 11.  July 2010 Cruise Macoma spp., C. nuttallii, Mytilus spp.:  Abundance 

(log number/m
2
) during the 24 hour sampling period.  The black line represents 

tidal height (m) and the shaded box represents night.   
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Figure 12.  October 2010 Cruise C. nuttallii:  Abundance (log number/m

2
) during 

the 24 hour sampling period.  The black line represents tidal height (m) and the 

shaded box represents night.   
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A. 

B.  

C.  

     
Figure 13.  October 2010 Cruise Macoma spp., Siliqua spp., Mytilus spp.:  

Abundance (log number/m
2
) of during the 24 hour sampling period.  The black 

line represents tidal height (m) and the shaded box represents night.   

 

February 2011 
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14A).  The GAM model that included tidal height, day/night and depth explained 76.8% 

of the observed deviance (Table 6A).  There was a higher abundance during flood tides 

compared to ebb tides during the day  (Figure 14B), but no difference during tides at 
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night.  Mytilus spp. was significantly more abundant in the lower part of the water 

column.  I observed no clear patterns relating abundance and tidal height or day/night for 

Macoma spp., Tellinoidea and C. nuttallii (Figure 15A, B, and C).  Macoma spp. and 

Tellinoidea were more abundant in the lower part of the water column, but this was the 

only significant variable for these taxa.  The GAM models that included depth explained 

21.9% and 24.4% of the observed deviance, respectively (Table 6B and C).   

A. 

 
B. 

 
 

Figure 14.  February 2011 Cruise Mytilus spp.:  A) Abundance (log number/m
2
) 

during the 24 hour sampling period.  The black line represents tidal height (m) 

and the shaded box represents night.  B) Partial effect of tidal height (m) on 

abundance (log number/m
2
) of Mytilus spp. during the day.  Negative tidal heights 

represent ebb tides and positive tidal heights represent flood tides.  Solid line is 

the mean partial effect, dashed lines are the 95% CI and inner ticks are the data 

points. 
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A. 

B.  

C.  

     
Figure 15.  February 2011 Cruise Macoma spp., Tellinoidea, C. nuttallii spp.:  

Abundance (log number/m
2
) of A) Macoma spp., B) Tellinoidea and C. nuttallii 

spp. during the 24 hour sampling period.  The black line represents tidal height 

(m) and the shaded box represents night.   

 

May 2011 

 During this cruise no C. nuttallii were collected and Siliqua spp., Tellinoidea and 

Mytilus spp. were only collected in one sample.  The data suggested that Macoma spp. 

was more abundant at night during rising tides (Figure 16).  However, the GAM model 

for Macoma spp. indicated none of the variables were significant.     
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Figure 16.  May 2011 Cruise Macoma spp.:  Abundance (log number/m
2
) of 

Macoma spp. during the 24 hour sampling period.  The black line represents tidal 

height (m) and the shaded box represents night.   

 

DISCUSSION 
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the plankton of the Coos estuary: Macoma spp., Siliqua spp., Clinocardium nuttalli, 
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stimuli rather than circadian rhythm (Hiddink et al. 2002).  If juvenile bivalves were able 

to avoid predators by thread drifting at night this would be highly advantageous.   

During the May 2010 cruise Macoma spp. abundance peaked during the daytime 

ebb tide.  This indicated there was likely another variable playing an important role.  

Beukema and de Vlas (1989) collected the highest number of Macoma spp. at maximum 

current speeds, and during slack tide juveniles were mostly absent.  In the laboratory, de 

Montaudouin et al. (2003) observed a higher percentage of Cerastoderma edule drifting 

from an unsuitable habitat at higher (24 cm s
-1

) than at lower (10 or 20 cm s
-1

) current 

speeds.  The ADCP was not deployed during this cruise but the data from May 2011 

when the ADCP was deployed is still informative.  Current speed data indicated that 

fastest current speeds occurred right after slack tide and through the ebbing tide.  During 

the May 2010 cruise the maximum bivalve abundance was during the middle of the ebb 

tide.  It would be interesting to analyze the May 2011 abundance data with the ADCP 

current speed data.  Unfortunately, only one taxa of bivalve was present during that 

cruise, it was present in less than half the samples, and in the samples it was present it 

was 10 times less abundant than on the May 2010 cruise.   

As discussed in Chapter III thread drifters require a physical force, a current, great 

enough to overcome their weight and thus, lift them from the benthos.  The strength of 

the tidal current, or current speed, depends on the volume of water that moves in and out 

of the estuary (Gross 1993).  Coos Bay is an “ebb dominated” estuary (Steve Rumrill, 

pers comm) meaning more water moves out during ebb tides than comes in during flood 

tides.  This suggests the current speed is highest during ebb tides and this is what the 
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ADCP data from May 2011 indicated.  Therefore, if higher velocities are needed to lift 

juveniles from the bottom then bivalves would be lifted more easily during ebb tides. 

The physical characteristics of an ebb tide could make drifting more likely, but 

thread drifting during this portion of the tidal cycle could also have biological 

significance.  Garrison and Morgan (1999) indicated drifting Macoma spp. displayed 

selective tidal transport in the York River, Virginia with higher abundances during 

nocturnal flood and high tides indicating upstream dispersal.  Their results are similar to 

the present study with respect to diel variation; however, in this study there was no 

indication of upstream dispersal.  Juvenile bivalves in Coos Bay estuary, with the 

exception of Mytilus spp., were drifting during ebbing tides.  One possibility is that M. 

balthica initially settle into the high intertidal and later move into the lower intertidal 

similar to a pattern observed for this species in the Wadden Sea (Beukema and de Vlas 

1989).  Initial spat fall of M. balthica was found to be much higher in upper tidal flats 

compared to lower in the intertidal zone (Armonies and Armonies 1992).   However, as 

the bivalves grow the higher intertidal area becomes unfavorable.  In the lower intertidal 

the percent of time immersed is greater than in the higher intertidal, allowing for longer 

durations for feeding and thus increased M. balthica growth rates (Beukema et al. 1977).  

Hulscher (1973) found that M. balthica trematode infection was higher in the upper 

intertidal and larger individuals were infected more often than smaller individuals.  This 

could indicate that as settled bivalves become larger their risk of infection increases, thus 

there is a benefit to moving to the lower intertidal.  There appear to be a number of 

potential benefits resulting from relocating to the lower intertidal.   
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Four of the bivalve taxa, Macoma spp., Siliqua spp., Clinocardium nuttallii and 

Tellinoidea, had similar behaviors during many of the cruises, but Mytilus spp. tended to 

respond differently.  Mytilus spp. were often more abundant during the daytime flood 

tides, and this was consistent over the two year study (Chapter III).  Drifting on a flood 

tide could indicate transport from the subtidal into the intertidal or up the estuary.  

Mussels are viewed as an intertidal species.  Local subtidal populations of Mytilus spp. 

have not been surveyed; however, subtidal populations do exist in other parts of the 

world, such as, from Baja California to Washington (Chan 1973; Paine 1976; Love et al. 

1999), the Kamchatka Peninsula (Selin and Lysenko 2006) and Lough Hyne Marine 

Reserve, Ireland (pers obs.).  The present study site is located in the portion of the estuary 

that is dredged on a regular basis to allow large ships to enter.  Dredging could limit the 

amount of available substrate which mussels need for attachment, thus, they may be 

drifting to the intertidal to obtain a more suitable habitat.   

Thread drifting during increased current speeds did not appear to be as important 

for Mytilus spp. as it was for the other four taxa.  The average size of Mytilus spp. was 

smaller than the other taxa of clams (Chapter III).  Laboratory experiments indicated 

smaller C. edule required less current speed to obtain lift off from the benthos (de 

Montaudouin et al. 2003).  Due to their smaller size the Mytilus spp. may be able to be 

lifted by lower current speeds that are present during rising tides.  It is unclear why 

Mytilus spp. abundance did not increase at night.  Hiddink et al. (2002) found small M. 

edulis in the stomachs of sprat indicating they are preyed on by visual predators.   

Five taxa of juvenile bivalves were found in the plankton suggesting they were 

drifting via mucous threads.  Four of the taxa displayed this secondary dispersal method 
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during ebb tides suggesting they may have been migrating from the upper intertidal to the 

shallow subtidal or migrating to lower parts of the estuary.  Ontogenetic shifts have been 

documented for M. balthica; however, this is the first study on the west coast of the 

United States that suggests local species could be actively changing their habitat.  The 

timing of their migration is based on both physical and biological parameters.  Juveniles 

may be taking advantage of increased current speeds which occur during ebb tides, but 

this is done most often at night perhaps to avoid visual predators.   
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CHAPTER V 

CONCLUSION 

  

In this study I found five taxa of juvenile bivalves, Macoma spp., Siliqua spp., 

Tellinoidea, Clinocardium nuttallii and Mytilus spp., in Coos estuary, Coos Bay, OR, 

USA displaying a method of secondary dispersal known as thread drifting.  While thread 

drifting has been well studied in other parts of the world, this thesis is the first 

documentation of juvenile bivalves in the plankton of the local nearshore environment.  

This also appears to be the first record of juveniles of the genus Siliqua thread drifting.  

This identification was surprising because at this size the shape of the shell does not 

resemble the rectangular shape of the adult razor clams.  Drifting has been documented in 

other razor clam species, but not this genus.   

During this study I also discovered a novel species of Mytilus spp.  It is possible 

this “unknown” mussel is an invasive species.  Mussels are well-known invaders and can 

colonize new areas quickly as exemplified by the fresh water zebra mussel.  It will be 

important to determine if a new species of mussel has been transported into Coos Bay.   

This research suggested tidal transport may carry juvenile bivalves into different 

habitats, such as into the lower intertidal or further down the estuary.  To understand 

community ecology and population structure it is important to know them.  Some of the 

bivalves I found in the plankton, Clinocardium nuttallii, are of commercial importance 

and all of the taxa I found are harvested recreationally.  From 1989-1999 Coos Bay was 

responsible for 23% of clams commercially harvested in Oregon, and C. nuttallii made 

up 70% of the catch (ODFW 2001).  In 1985 recreational catch for the Pacific razor 
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clams along the Oregon coast was approximately 26,308 kg and valued at $115,000 

(Lassuy and Simmons 1989); however, these harvest levels have dropped considerable 

over the last few years.  In 1971 ODFW estimated that in eleven Oregon estuaries 1.8 

million clams were recreationally harvested (ODFW 2001).  Bivalves are economically 

important and thus it is important to understand their life history in full to help maintain 

and manage populations. 

Lastly, this research demonstrated that aspects of thread drifting are species 

specific.  The time during the year in which thread drifters are found in the plankton 

depends on reproductive cycle of the taxa, but more interesting is the difference in 

abundance of thread drifters depending on tidal cycles and the time of day.  Current speed 

appeared to be playing an important role, but was more important for some species than 

others and this is possible due to the size of the thread drifting clams.  Bigger clams need 

more force to be lifted from the bottom, but bivalves of smaller size require less force.  

The results in this study differed from an east coast study that found Macoma spp. 

juveniles more abundant during rising tides.  This indicates that the same taxa can behave 

differently in different locations and this is likely due to the physical processes of the 

environment.  When trying to understand the biology of the organisms in an area it is 

important to consider the hydrodynamics.   
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APPENDIX A 

 

SAMPLES FROM NCBI GENBANK 

 

Sample Name GenBank Acquisition # Gene Length (bp) 

Abra longicallus JF496754.1 16S 478 

Cultellus scalprum EU169033.1 16S 479 

Donax trunculus EF417553.1 16S 470 

Ensis arcuatus AJ586446.1 16S 471 

Ensis directus GQ166561.1 16S 470 

Ensis ensis AJ548775.1 16S 470 

Ensis siliqua AJ586469.1 16S 470 

Nuttallia japonica AB476462.1 16S 482 

Phaxas pellucidus DQ2800361.1 16S 473 

Siliqua minima EU169034.1 16S 460 

Sinonovacula constricta EU169035.1 16S 472 

Sinonovacula rivularis EU169036.1 16S 476 

Abra longicallus JF496762.1 COI 431 

Donax asper GQ868451.1 COI 567 

Donax canniformis AY673020.1 COI 463 

Donax hanleyanus GQ8684481.1 COI 567 

Donax obesulus GQ868484.1 COI 567 

Macoma balthica EF044126.1 COI 573 

Macoma pentalum EF044136.1 COI 573 

Modiolus arelatus DQ917604.1 COI 614 

Modiolus auriculatus GQ480317.1 COI 658 

Modiolus brasiliensis DQ264392.1 COI 610 

Modiolus computus GQ480316.1 COI 658 

Modiolus elongatus GQ480318.1 COI 661 

Modiolus metcalfei GQ480322.1 COI 658 

Modiolus modiolus FJ890501.1 COI 579 

Mytilus californianus GQ902240.1 COI 661 

Mytilus coruscus GQ480295.1 COI 661 

Mytilus edulis JN241970.1 COI 638 

Mytilus galloprovincialis  JF912374.1 COI 572 

Mytilus trossulus GQ902685.1 COI 661 

Semele solida JF301888.1 COI 636 

Tagelus dombeii JF301916.1 COI 645 
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APPENDIX B 

 

 

RESULTS FROM THE GENERALIZED ADDITIVE MODELS FOR CHAPTER III 

 

Table 1. Results of the GAM for A) presence versus absence and B) abundance of 

Macoma spp. 

A. 

 

 

 

 

 

 

 

 

 

 

 

B. 

Parametric coefficients  

Parameter  Estimate S.E. z p 

Intercept -1.342 0.081 -16.513 <0.001 

Net 0.688 0.101 6.782 <0.001 

Tide 0.430 0.116 3.720 <0.001 

Net*Tide -0.369 0.142 -2.594 0.0107 

Smooth terms (non parametrics) 

Parameter  e.d.f. F P   

Salinity 2.263 25.364 <0.001   

Temperature 3.816 8.830 <0.001   

Chlorophyll a 0.856 7.068 0.009   

n = 126        R
2
 adjusted: 0.512      % Deviance explained: 55.1 

 

  

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept -1.325 0.212 -6.255 <0.001 

Net 1.352 0.278 4.867 <0.001
 

Smooth terms (non parametrics)  

Parameter  e.d.f. χ
2
 P   

Julian Day 7.653 33.91 <0.001   

Chlorophyll a 2.249 34.45 <0.001  

n = 324        R
2
 adjusted: 0.261      % Deviance explained: 23.9 
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Table 2. Results of the GAM for A) presence versus absence and B) abundance of 

Siliqua spp. 

 A. 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept -3.170 0.380 -8.332 <0.001 

Net 1.127 0.408 2.762 0.006 

Smooth terms (non parametrics)  

Parameter  e.d.f. χ
 2
 P   

Julian Day 4.831 23.19 <0.001   

Chlorophyll a 3.474 13.42 0.011   

n = 324        R
2
 adjusted: 0.156      % Deviance explained: 21.0 

 B. 

  

 

  

 

  

 

 

 

 

 

 

Table 3. Results of the GAM for presence versus absence of Tellinoidea. 

 

 

 

 

 

 

 

 

 

Parametric coefficients  

Parameter  Estimate S.E. z p 

Intercept -1.190 0.093 -12.835 <0.001 

Net 0.207 0.112 1.847 0.074 

Smooth terms (non parametrics) 

Parameter  e.d.f. F P   

Salinity 4.638 3.601 0.009   

n = 38        R
2
 adjusted: 0.343      % Deviance explained: 44.3 

Parametric coefficients  

Parameter  Estimate S.E. Z P 

Intercept -4.205 0.587 -7.166 <0.001 

Tide 1.223 0.494 2.476 0.013 

Net 1.394 0.528 2.666 0.008 

n = 324        R
2
 adjusted: 0.0355    % Deviance explained: 9.23 
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Table 4.  Results of the GAM for A) presence versus absence and B) abundance 

of Clinocardium nuttallii. 

 A. 

 

 

 

 

 

 

 

 

 

 

 

 B. 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept -1.230 0.074 -17.454 <0.001 

Net 0.385 0.093 4.131 <0.001 

Smooth terms (non parametrics) 

Parameter  e.d.f. F P   

Julian Day 2.082 2.699 0.061  

Salinity 1.937 3.290 0.033   

n = 77          R
2
 adjusted: 0.22        % Deviance explained: 27.1 

 

 

Table 5. Results of the GAM for presence versus absence of Mytilus spp. 

 

 

 

 

 

 

 

 

 

 

 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept -2.068 0.255 -8.133 <0.001 

Net 1.239 0.310 3.993 <0.001 

Smooth terms (non parametrics)  

Parameter  e.d.f. χ
 2
 P   

Julian Day 7.446 18.47 0.017   

Salinity 1.540 8.96 0.013  

n = 324        R
2
 adjusted: 0.139      % Deviance explained: 15.4 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept -1.884 0.278 -6.781 <0.001 

Tide -0.786 0.290 -2.709 0.007 

Net 1.967 0.310 6.343 <0.001 

Smooth terms (non parametrics)  

Parameter  e.d.f. χ
 2
 P   

Julian Day 6.054 28.18 <0.001   

n = 324        R
2
 adjusted: 0.238      % Deviance explained: 22.8 
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APPENDIX C 

 

 

 

RESULTS FROM THE GENERALIZED ADDITIVE MODELS FOR CHAPTER IV 

 

Table 1. October 2009 Cruise: Results of the GAM for A) Macoma spp., B) 

Siliqua spp., C) Tellinoidea, D) Clinocardium nuttallii, E) Mytilus spp. 

A. 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 C. 

  

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.036 0.016 2.23 0.040 

Day/Night 0.038 0.022 1.72 0.104
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.495 0.491 

Tidal Height (Night) 4.404 7.744 <0.001 

n = 24        R
2
 adjusted: 0.629      % Deviance explained: 73.2 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.053 0.029 1.793 0.092 

Day/Night 0.090 0.040 2.211 0.042
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 1.296 0.271 

Tidal Height (Night) 4.59 10.202 <0.001 

n = 24        R
2
 adjusted: 0.703     % Deviance explained: 78.8 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.011 0.010 1.155 0.265 

Day/Night 0.037 0.014 2.628 0.018
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.00 0.012 0.915 

Tidal Height (Night) 4.848 17.564 <0.001 

n = 24        R
2
 adjusted: 0.803      % Deviance explained: 86.2 
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Table 1 Continued 

 

D. 

 

 

 

 

 

 

 

 

 

 

 

E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept <0.001
 

0.004
 

0.000 1.000           

Day/Night 0.024
 

0.006
 

4.07 <0.001
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.00 1 

Tidal Height (Night) 4.923 28.34 <0.001
 

n = 24        R
2
 adjusted: 0.873      % Deviance explained: 91.1 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.102 0.013 7.795 <0.001
 

Day/Night 0.067 0.014 -4.680 <0.001 

Net -0.043 0.014 -3.063 0.005 

n = 24        R
2
 adjusted: 0.56    % Deviance explained: 59.8 
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Table 2. March 2011 Cruise: Results of the GAM for A) Macoma spp., B) 

Tellinoidea and C) Clinocardium nuttallii 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 C. 

 

 

 

 

 

 

 

 

  

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.067 0.058 1.162 0.261 

Day/Night 0.204 0.071 2.869 0.011 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.000 0.999 

Tidal Height (Night) 4.102 7.435 <0.001 

n = 24        R
2
 adjusted: 0.661    % Deviance explained: 75.1 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept <0.001 0.006 0.000 1.000
 

Day/Night 0.012 0.007 1.709 0.105
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.000 1.000 

Tidal Height (Night) 3.814 4.81 0.008
 

n = 24        R
2
 adjusted: 0.505     % Deviance explained: 63.0 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.011 0.020 0.514 0.614 

Day/Night 0.044 0.025 1.741 0.099
 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.016 0.902 

Tidal Height (Night) 4.094 4.047 0.015 

n = 24        R
2
 adjusted: 0.472     % Deviance explained: 61.2 
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Table 3. May 2011 Cruise: Results of the GAM for Macoma spp.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. July 2011 Cruise: Results of the GAM for A) Siliqua spp., B) 

Clinocardium nuttallii and  C) Mytilus spp. 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

C. 

 

 

 

 

 

 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.256 0.044 5.772 <0.001
 

Day/Night -0.133 0.049 -2.721 0.015 

Net -0.114 0.039 -2.891 0.011 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 3.889 5.709 0.005
 

Tidal Height (Night) 1.0 0.326 0.576 

n = 24        R
2
 adjusted: 0.579     % Deviance explained: 70.5 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.078 0.061 1.280 0.217 

Day/Night 0.206 0.073 2.835 0.011 

Net -0.051 0.027 -1.910 0.072 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 1.000 0.006 0.940 

Tidal Height (Night) 1.943 10.457 <0.001 

n = 24        R
2
 adjusted: 0.573     % Deviance explained: 66.5 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.016 0.067 0.235 0.816
 

Day/Night 0.244 0.095 2.562 0.018
 

n = 24        R
2
 adjusted: 0.195     % Deviance explained: 23 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.033 0.006 4.905 <0.001
 

Net -0.031 0.009 -3.290 0.003
 

n = 24        R
2
 adjusted: 0.299     % Deviance explained: 33 
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Table 5. October 2011 Cruise: Results of the GAM for C. nuttallii. 

 

 

 

 

 

 

 

 

 

Table 6.February 2011 Cruise: Results of the GAM for A) Mytilus spp., B) 

Macoma spp. and C) Tellinoidea. 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 C. 

 

 

 

 

 

 

 

 

  

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.046 0.013 3.559 0.002 

Net -0.040 0.01821 -2.196 0.039 

n = 24        R
2
 adjusted: 0.143     % Deviance explained: 18.0 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept <0.001 0.018 0.012 0.990 

Day/Night 0.16 0.018 0.909 0.377 

Net -0.018 0.008 -2.292 0.036 

Smooth terms (non parametrics)  

Parameter  e.d.f. F P   

Tidal Height (Day) 3.888 6.787 0.002 

Tidal Height (Night) 1.00 0.011 0.919 

n = 24        R
2
 adjusted: 0.669     % Deviance explained 76.8 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.049 0.013 3.629 0.001
 

Net -0.043 0.018 -2.426 0.024
 

n = 24        R
2
 adjusted: 0.175     % Deviance explained: 21.1 

Parametric coefficients  

Parameter  Estimate S.E. z P 

Intercept 0.013 0.003 3.693 0.001 

Net -0.013 0.005 -2.611 0.016
 

n = 24        R
2
 adjusted: 0.202      % Deviance explained: 23.7 
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