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Complying with Norms. A Neurocomputational Exploration 
 

Abstract  The subject matter of this thesis can be summarized by a triplet of 

questions and answers. Showing what these questions and answers mean is, in 

essence, the goal of my project. The triplet goes like this: 

 

 Q: How can we make progress in our understanding of social norms and 

  norm compliance? 

 A: Adopting a neurocomputational framework is one effective way to 

  make progress in our understanding of social norms and norm  

  compliance. 

 Q: What could the neurocomputational mechanism of social norm  

  compliance be? 

 A: The mechanism of norm compliance probably consists of Bayesian - 

  Reinforcement Learning algorithms implemented by activity in certain 

  neural populations. 

 Q: What could information about this mechanism tell us about social 

  norms and social norm compliance? 

 A: Information about this mechanism tells us that: 

 a1: Social norms are uncertainty-minimizing devices. 

 a2: Social norm compliance is one trick that agents employ to interact co-

  adaptively and smoothly in their social environment. 

 

 Most of the existing treatments of norms and norm compliance (e.g. Bicchieri 

2006; Binmore 1993; Elster 1989; Gintis 2010; Lewis 1969; Pettit 1990; Sugden 

1986; Ullmann‐Margalit 1977) consist in what Cristina Bicchieri (2006) refers to as 

“rational reconstructions.” A rational reconstruction of the concept of social norm 

“specifies in which sense one may say that norms are rational, or compliance with a 

norm is rational” (Ibid., pp. 10-11). 

 What sets my project apart from these types of treatments is that it aims, first 

and foremost, at providing a description of some core aspects of the mechanism of 

norm compliance. 
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 The single most original idea put forth in my project is to bring an alternative 

explanatory framework to bear on social norm compliance. This is the framework of 

computational cognitive neuroscience. The chapters of this thesis describe some 

ways in which central issues concerning social norms can be fruitfully addressed 

within a neurocomputational framework. 

 In order to qualify and articulate the triplet above, my strategy consists firstly 

in laying down the beginnings of a model of the mechanism of norm compliance 

behaviour, and then zooming in on specific aspects of the model. Such a model, the 

chapters of this thesis argue, explains apparently important features of the 

psychology and neuroscience of norm compliance, and helps us to understand the 

nature of the social norms we live by. 
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Analytic Overview 

The thesis comprises 7 chapters an introduction and a conclusion. 

 The Introduction is in two parts. The first states and illustrates all the main 

claims that are articulated and defended in the following chapters. The second 

explains and justifies the neurocomputational perspective adopted in the thesis. 

 Chapter 1 lays down the beginnings of a model of norm compliance 

behaviour grounded on Bayesian - Reinforcement Learning neural computation. It 

explains in which sense the model describes some of the core features of the 

mechanism of norm compliance. It argues that the neurocomputational framework 

adopted is more progressive than alternatives to understand the mechanism of norm 

compliance. 

 Chapter 2 provides independent reason for a neurocomputational approach to 

norm compliance. It argues that the explanation of paradigmatic cases of norm 

compliance behaviour requires the appeal to neural representations. In so doing, it 

explains the notion of neural representation assumed in the thesis. 

 Chapter 3 addresses the question of what is the representational format of the 

background knowledge that supports norm compliance. It argues that a structured-

probabilistic approach is the more fruitful to make progress with respect to this 

question. 

 Chapter 4 focuses on moral judgement. It argues for two claims. First, some 

central aspects of the psychological mechanism of moral judgement can be described 

within the RL - Bayesian neurocomputational framework laid out in Chapter 1. 

Second, such neurocomputational description of moral judgement can shed new light 

on puzzling findings about specific patterns of moral judgement. 
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 Chapter 5 takes up the questions whether and in which sense language is a 

tool that constitutes moral thinking. It argues that language is unnecessary for moral 

thinking, and yet language can have important effects on moral thought and 

behaviour. 

 Chapter 6 gives grounds for the claim that the emotions are not ultimate 

motives of norm compliance. It distinguishes between different senses of reward 

(and punishment) and singles out the capacity for caring as fundamental for social 

norm compliance. 

 Chapter 7 describes an experimental, neurocomputational project I carried 

out. The project asks whether and to what extent social rewards, as opposed to non-

social rewards, affect our learning of social norms. The chapter provides me the 

opportunity to put at work some of the modelling tools and concepts used and 

explored in previous chapters. 

 The Conclusion glues all together. In light of my exploration, it reconsiders 

the triplet of questions and answers from which my neurocomputational journey 

began. 
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INTRODUCTION. 
Topic and Method 

One way to say what I am up to is by a triplet of questions and answers. Showing 

what these questions and answers mean is the goal of my project. The triplet goes 

like this: 

 

Q: How can we make progress in our understanding of social norms and 

norm compliance? 

A: Adopting a neurocomputational framework is one way to make progress 

in our understanding of social norms and norm compliance. 

Q: What could the neurocomputational mechanism of social norm 

compliance be? 

A: The mechanism of norm compliance probably consists of Bayesian - 

Reinforcement Learning algorithms implemented by activity in certain 

neural populations. 

Q: What could information about this mechanism tell us about social norms 

and social norm compliance? 

A: Information about this mechanism tells us that: 

a1: Social norms are uncertainty-minimizing devices. 

a2: Social norm compliance is one trick we employ to interact co-adaptively 

and smoothly in our social environment. 

 

 This question-answer triplet, in essence, is the subject of what follows. 
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 We live in an uncertain environment, and social interaction dramatically 

contributes to the uncertainty underlying our environment. Although uncertainty 

itself does not appear to possess any normative property, social norms are 

technologies that respond to and manage the uncertainty of our social environment. 

Moral cognition arose when agents began to interact engaging in different 

“experiments of social living”—to use John Stuart Mill’s phrase. The most 

successful social norms, those that are likely to survive and passed on across 

generations, are those that are most successful at facilitating minimization of entropy, 

or uncertainty, given rise by agents’ interactions within the social environment. 

 The idea that social behaviour is bound up with minimization of uncertainty 

is not new. Andrew Schotter (1981) analyses institutional organizations in 

information theoretic terms. He focuses on economic institutions and uses the 

frameworks of game theory and information theory to ground the claim that “social 

norms and institutions are devices that give structure or order to social situations” 

(Schotter 1981, p. 139). Schotter believes that institutions develop out of the 

strategies of agents interacting with each other to solve some economic problem. The 

process that leads to the development of institutions is described by Schotter as a 

“Markovian diffusion process”—that is, as a random process whose future states are 

determined by its most recent state and not by the entire past—whose absorbing 

points—that is, whose states that are impossible to leave—correspond to stable social 

institutions (Ibid., Ch. 3). Absorbing points are states where expectations about the 

behaviour of others become self-fulfilling: belief and reality correspond perfectly in 

that state. This analysis is congenial to what is to follow. But my theoretical 

framework and my focus are unlike Schotter’s. My theoretical framework is the 
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framework of what is called theoretical or computational cognitive neuroscience. 

My focus is the mechanism of social norm compliance. 

 The framework and the approach I adopt are unlike those of a number of 

philosophers and social scientists working, like Schotter, on social norms within the 

tradition of rational choice theory (Bicchieri 2006; Binmore 1994; Elster 1989; 

Gintis 2010; Lewis 1969; Pettit 1990; Sugden 1986; Ullmann‐Margalit 1977). I do 

not use game theory to analyze the creation, evolution and function of economic and 

social institutions. I do not start with a taxonomy that distinguishes social norms 

from other types of regularities. Nor do I provide a formal definition of what social 

norms are. My account is not intended as a conceptual analysis or as a 

systematization of the linguistic intuitions that people have about the word ‘social 

norm’ or about what is morally or socially (im)permissible. 

 Most of the existing treatments of norms and norm compliance consist in 

what Cristina Bicchieri (2006) calls “rational reconstructions.” A rational 

reconstruction of the concept of social norm “specifies in which sense one may say 

that norms are rational, or compliance with a norm is rational” (Ibid., pp. 10-11). 

Rational reconstructions are not aimed at describing the processes or the mechanisms 

of norm compliance. Although they can yield meaningful and testable predictions, 

they are generally not meant to provide an “account of the real beliefs and 

preferences people have or of the way in which they in fact deliberate” (Ibid., p. 3). 

My project does not consist in a rational reconstruction of this type. 

 What sets my project apart is that it is meant to provide a description of some 

core aspects of the mechanism of norm compliance. The single most original idea put 

forth in my project is to bring an alternative explanatory framework to bear on social 
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norm compliance. This is the framework of computational cognitive neuroscience. 

What follows describes some ways in which central issues concerning social norms 

and social norm compliance may be fruitfully addressed from a neurocomputational 

perspective. 

 In order to qualify and articulate the triplet above, my strategy consists in 

firstly laying down the beginnings of a model of some core aspects of the 

neurocomputational mechanisms of norm compliance behaviour, and then zooming 

in on specific aspects of the model. Such a model, I shall argue, explains causally 

relevant features of the psychology and neuroscience of norm compliance. The 

resolute neurocomputational perspective I am taking will lead me to cross the 

personal-subpersonal boundary during my exploration. Partly because of this, one 

may wonder what the “philosophical” contribution of my thesis is and what its 

“scientific” contribution is. 

 As long as a crisp and meaningful line can be drawn between scientific and 

philosophical inquiry or between a scientific and a philosophical issue, we can point 

to the first and third Q-As in the triplet above as the “more philosophical” since they 

plunge, with generality and abstraction, to the foundations of social norms by asking 

“How should we go about to understand social norms?” (first Q-A) and “What are 

social norms?” (third Q-A). The second part of this introduction, on the framework 

adopted here, will explain in what consists the neurocomputational perspective I am 

endorsing, and will start to shed light on these two Q-As. 

 More generally, without qualifying an issue as “philosophical” vs. 

“scientific”, one may ask what my project brings to the table. In what sense is my 

contribution an improvement over the current state of the art on social norms and 
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social behaviour? I maintain that by drawing on the conceptual and empirical 

resources of computational cognitive neuroscience we can integrate in a unifying 

framework the growing amount of data available about the psychology and 

neuroscience of social behaviour. This is likely to bring coherence to scattered issues 

concerning social norms, and open new possibilities for making progress in our 

understanding social and moral behaviour. Chapter 1 will elaborate on this point by 

providing further reasons for why a neurocomputational approach to social behaviour 

should be systematically pursued. 

 Here is an overview of what is to come. The Introduction does two things. 

First, it states the topic of this work by presenting all the major claims that will be 

articulated and defended in the following chapters; then it explains the 

neurocomputational perspective endorsed here. Chapter 1 lays down the beginnings 

of a neurocomputational model of norm compliance behaviour and explains in which 

sense the model describes some core features of the mechanism of norm compliance. 

Chapter 2 provides some more details on the neurocomputational account on offer. It 

argues that the explanation of paradigmatic cases of norm compliance behaviour 

requires the appeal to neural representations. Chapter 3 addresses the question of 

what is the representational format of the background knowledge that supports norm 

compliance, and what approach might be more fruitful to find it out. Chapter 4 

focuses on normative judgement and argues that there is an intimate relationship 

between (normative) judgement and uncertainty-minimization. Chapter 5 takes up 

the questions whether and in which sense language is a tool that constitutes moral 

thinking. Chapter 6 gives grounds for the claim that emotions are not ultimate 

motives of norm compliance. It singles out caring as a fundamental capacity for 
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social norm compliance. Chapter 7 describes an experimental, neurocomputational 

project I carried out. The project asks whether and how social rewards, as opposed to 

non-social rewards, affect our learning of social norms. The chapter provides me 

with the opportunity to put at work some of the modelling tools and concepts I used 

and explored in previous chapters. In the Conclusion, I reconsider the triplet of 

question-answer from which my journey into social norms began. 

17 

 



TOPIC 

I begin by describing six relatively uncontroversial situations, which will help me to 

introduce important facts and core ideas about social norms and norm compliance. 

The cases described in this section are meant to be no more than intuition tweakers. 

In section 1.2 I use these paradigm examples to extract and elaborate general claims 

that constitute explananda for any explanatory model of norm compliance. By 

extracting such explananda from these cases, I incur an inductive risk. The risk is 

that the paradigm cases I rely on may turn out to be examples of features belonging 

to different kinds of phenomena. This strategy is not unusual in science and 

philosophy, where objects of inquiry are often put into focus only as inquiry goes 

along. Despite such possible preliminary conflations, I hope to show that the 

following six cases are really about one kind of phenomenon: they are all about 

different features of one kind of behaviour. 

 

1. Six Tales about Norm Compliance 

(A) Suppose that you live in the United States and are a blunt smoker. Smoking 

blunts is an increasingly popular way to consume cannabis in the United States. A 

blunt is a tobacco cigar hollowed and filled with cannabis. Ethnographic data suggest 

that blunts users are a distinct group. Typically they are male, black, older teen, into 

Hip Hop and living in metropolitan areas in the United States (Ream et al. 2006). 

 Imagine that you are a blunt smoker. Some of your friends and you have 

pooled money to buy cannabis and a cigar. You gather to smoke somewhere. People 

within your group of blunt smokers share a number of expectations. You are 

expected to share the blunt with other members of the group. Each person is expected 
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to take a couple of puffs and then pass the blunt to another person. If other friends 

come along, they may smoke, but only if they are offered by one of those who have 

contributed money. They are not allowed to light the blunt. One who won’t pass the 

blunt when expected to can be sanctioned by being called “hedgehog.” One who will 

take more puffs than expected can be ridiculed as a “steamer” (Johnson et al. 2006). 

 Such shared expectations can be described as rules. These rules are enforced 

by an argot of social control and the risk of being shunned from the group. The 

majority of blunt users prefer to smoke blunts in groups. Interestingly, those who 

occasionally smoke blunts alone tend to replicate the group practice of taking only a 

few puffs and then putting the blunt out (Dunlap et al. 2006). 

 

(B) Queues are part of our everyday lives. We queue in front of ATMs, public 

bathrooms, at post offices, at concerts, and so forth. Queuing is a practice with many 

variants and local nuances. Probably, a supermarket line in Munich is not exactly like 

a line to get a ticket for a football match outside the San Siro stadium in Milan, or a 

queue to get a drink at a pub in Edinburgh, or a line to get a railway ticket at a station 

in Beijing. 

 Suppose you are queuing to buy a train ticket at a railway station in New 

York City. Somebody cuts in front of you. How would you react? In one of his last 

works, Stanley Milgram examined the reactions of queues to intruders (Milgram et 

al. 1986). Milgram had confederates cut into 129 queues at railway stations and other 

locations in New York City. All his confederates found the mere idea of cutting into 

a queue emotionally taxing, and some refused to take part in the experiment. Those 

who took part entered the queue at between the third and fourth person. The average 
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length of those queues was of 6 persons. The confederate stepped into the queue and 

faced forward while saying in a neutral tone: “Excuse me; I’d like to get in here.” On 

10% of occasions queue-jumpers were physically ejected from the queue. When two 

intruders cut the line right in front of a person, the percentage of people who reacted 

by verbal objections, dirty looks or physical action was 91%. Only 5% of people, 

however, reacted in any way when there were two other people between them and 

the queue jumper. One possible explanation of these results is that people felt a 

unique responsibility for rejecting intruders immediately in front of them. As 

distance from the line intruder increases, such a feeling of unique responsibility 

diminishes. 

 

(C) Suppose that you find a flyer under the windshield of your car parked outside 

a mall. Will you throw the flyer on the street? The answer to this question will 

probably depend on the state of the environment and on the behaviour of the people 

around you. 

 The social psychologist Robert Cialdini addressed the question under what 

conditions people litter with an experiment (Cialdini, Reno and Kallgren 1990). Like 

in the case you have just imagined, the experimenters gave people the opportunity to 

litter by placing flyers under the windshield wipers of their cars. Cialdini and his 

colleagues varied the state of the environment where the cars were parked. In one 

condition, the environment was fully littered; in a second condition, it was clean. 

People walking to their cars could witness a confederate who either dropped trash 

into the environment, picked up from the street empty cans and threw them into a 

bin, or simply walked through that street. Cialdini found that people threw on the 
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street the flyers they had found on their cars more often when the environment was 

already littered than when the environment was clean. The most littering occurred 

when people saw someone else dropping rubbish into a littered environment. Of the 

group who saw someone else picking up and bin the litter, almost none threw the 

flyers away on the street. 

 

(D) This morning, after you’d woken up and brushed your teeth, you got dressed. 

Did you consider being a nudist for the day? Presumably, you did not. Now, consider 

tipping in restaurants in North America. On an average day, approximately 10% of 

the people living in the United States eat at sit-down restaurants. This figure, on an 

average month, rises to 58% (Azar 2007a). After completing their meals, almost all 

of these diners add to their bills an additional payment, that is: they leave a tip. Do 

they consider leaving no tip? Almost all of them, presumably, do not. 

 Tips are not legally required. Tipping is not necessary to get good service 

since people leave a tip only after their meal. Diners typically don’t expect to meet 

again the servers who waited them. So, in this case, tipping cannot be sustained by 

repeated two-party interaction. People in North America, it seems, typically tip 

thoughtlessly, that is automatically and without paying attention to what they are 

doing, in the same way you “thoughtlessly” got dressed this morning. 

 

(E) Imagine that on the night of April 14, 1912 you are on the Titanic. The vessel 

is sinking, the captain issues to his officers and crew to abide by the norm WOMEN 

AND CHILDREN FIRST. You are neither a woman nor a child and your life is in 

danger, yet you may not follow your survival instinct. Imagine now that one night in 

21 

 



May of 1915 you are on the Lusitania. The ship is torpedoed by a German U-boat; 

your life is in danger. The captain issues the order to follow the norm WOMEN AND 

CHILDREN FIRST. In this case, however, you will probably follow your survival 

instinct and ignore the captain’s orders. The number and type of passengers on both 

the Titanic and the Lusitania were similar. Yet, the behaviour of the people on the 

two vessels was different. 

 Women and children aboard the Titanic were more likely to survive than 

males. On the Lusitania, instead, young males were more likely to survive than 

everyone else. This opposite pattern can be explained by taking into account the fact 

that the Lusitania sank in 18 minutes whereas the Titanic sank more slowly in 2 

hours and 40 minutes—long enough for specific social behavioural patterns to 

emerge. You would probably enforce the captain’s orders on the Titanic but not on 

the Lusitania because you have time to inhibit your survival instinct and follow a 

specific social norm only on the Titanic (Frey et al. 2010). 

 

(F) “Genie” is the pseudonym for a feral child from Los Angeles. She spent 

nearly all of the first thirteen years of her life in isolation, locked inside a bedroom 

strapped to a potty chair (Rymer 1993). When the authorities found Genie in 1970, 

she had one of her first interactions with other people. She had not been spoken since 

infancy. Genie’s cognitive and social abilities were found impaired. Genie had no 

knowledge of the social world; she could understand a handful of words and could 

say only “Stopit” and “Nomore.” After the first seven months of treatments at a 

Children’s Hospital, she was prevalently oblivious to the presence of people around 

her, she had very little social knowledge and displayed behaviour such as spitting 
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constantly and masturbating in the presence of other people. With the help of 

linguists, social workers and psychologists, after years of treatments in caring 

environments, Genie developed some verbal and nonverbal communication skills, 

she became sociable with people she was familiar with, displayed an interest in 

music and she learned to comply with basic social norms such as DO NOT SPIT IN 

PUBLIC. 

 

1.1 Norm Compliance. Nine Features 

With these examples in hand, I now describe nine apparent features of social norm 

compliance. The structure of this section is such that each heading is a specific claim 

related to one such feature. Any paragraphs under a given heading are intended to 

provide additional considerations or details to articulate the heading. 

 

1.1.1 Norm Compliance Depends on Shared, Mutual Expectations 

It seems that an essential characteristic of social norms is that they are constituted by 

people’s mutual expectations about a certain type of behaviour in a given situation 

(Bicchieri 2006; Elster 2009; Pettit 1990; Sugden 1986). So, people’s expectations 

that others don’t litter in the meadows, and that others expect them not to litter in the 

meadows constitute a social norm against littering in the meadows. If people comply 

with a social norm concerning a type of behaviour, they must have certain kinds of 

expectations concerning that behaviour. That people share certain expectations 

concerning behaviour of some sort with others is one reason why social norm 

compliance is social (Elster 2009). In general we don’t share expectations 
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concerning tooth brushing. When we brush (or fail to brush) our teeth we are not 

complying (or failing to comply) with a social norm. 

 If social norm compliance is constitutively dependent on shared expectations, 

then social norms need not correspond to written rules enforced by a legal system. 

Whether some social norm is also recognized by a legal code and enforced by a legal 

institution does not mean that social norms need be codified laws. Typically, people 

don’t receive a medal from the mayor when they comply with a norm of tipping, and 

they don’t risk troubles with the law if they fail to leave a tip in a restaurant. 

 Acting upon what seem to be shared expectations increases the predictability 

of social interaction and decreases uncertainty within society. If social norms are 

constituted by shared expectations and such expectations “encapsulate” past 

experience, then social norms encapsulate past experience. Thus, they act as guides 

“to what to expect from the future” (Douglas 1981, p. 48). The more fully social 

norms are constituted by expectations, the more “they put uncertainty under control;” 

under the pressure of social norms, behaviour tends to acquire distinct boundaries 

and “disorder and confusion disappear” (Ibid.). Douglas’ point on uncertainty is 

central to my thesis. It will be articulated in Chapters 1, 2 and 4 when I argue that to 

have an expectation is to have a certain representation and I explain the sense in 

which norms are entropy minimizing-devices. 

 

1.1.2 Norm Compliance is Intimately Related to Punishments and Rewards 

Violations of social norms typically engender attitudes like anger, contempt, blame, 

and punitive behaviour like avoidance, ostracism, gossip, verbal abuse and physical 

harm directed at the norm violator. Besides anecdotal evidence, there is a substantial 
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body of empirical evidence from experimental economics that underwrites the claim 

that social norms are closely connected with punishment (Andreoni et al. 2003; 

Clutton-Brock and Parker 1995; Sripada 2005). This link is so intimate that some 

philosophers and social scientists argue that social norms are social partly “because 

they are maintained by the sanctions that others impose on norm violators” (Elster 

2009, p. 197). 

 Other people need not intentionally impose punishments on norm violators 

for norm violators to incur punishment. Others may impose sanctions on norm 

violators, even though other people are not intentionally punishing them. To clarify 

the point, consider Milgram’s experiment described above in (B). 

 One form of punishment consists in feeling negative emotions. Feeling 

positive emotions, on the contrary, can be rewarding. Failing to comply with norms 

is typically emotionally taxing. If failing to complying with a norm is emotionally 

taxing, then norm violators typically incur punishment. But this punishment need not 

depend on other people’s intentionally imposing sanctions. Some of Milgram’s 

queue jumpers reported that they felt uneasy and embarrassed at the mere idea of 

breaching others’ expectations in a social situation. Many of them were not 

physically threatened in any way when they cut the queue. They recalled that they 

were nonetheless overwhelmed by negative emotions in jumping the queue. They 

incurred a form of punishment even though other people did not intentionally impose 

any punishment on them. It seems, then, that in general punishment and reward may 

partly be constitutive of social norm compliance. 

 The causal role of punishment seems especially weighty in comparison to 

rewards in giving rise to and sustaining the persistence of social norms (Andreoni et 
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al. 2003; Sigmund et al. 2001). A type of behaviour like TAKING TWO PUFFS AND 

PASSING THE BLUNT AROUND can become a social norm if members of a 

population engage in it because they believe other members will punish them—for 

example by ridiculing or avoiding them, if they don’t. The structure of the motivation 

to meet others’ expectations typically comprises expectations and desires of certain 

kinds. On the one hand, people may anticipate such feelings as unease, shame, guilt 

and embarrassment at the mere idea of breaching other people’s expectations. On the 

other, they may have the desire that others do not sanction, or think bad of them, and 

that others possibly think well of them. 

 Those who are about to jump a queue or diners who are about not to tip might 

feel uncomfortable and awkward anticipating other people’s reaction. They 

anticipate that victims of norm violations—for example the waitresses and patrons 

who do not receive a tip when they expect to be tipped—are likely to feel anger or 

disgust towards the violator. Third parties—like other diners—might feel contempt at 

the norm violator. Being the object of these kinds of attitudes, or just assuming or 

anticipating being the object of these kinds of attitudes, typically makes norm 

violators feel shame or guilt. The anticipation of feeling ashamed, or assuming that 

they will be the object of a negative attitude is often sufficient—it seems—to move 

people to comply with norms. 

 In comparison to punishment, rewards move some people to comply with 

norms, but do not prevent all of those who share certain expectations from norm 

violation. However, reward, in some sense, may also be causally related to norm 

compliance in some situations. A type of behaviour like LEAVING A TIP TO THE 
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PORTER AT A HOTEL can become a norm if people believe that porters are inclined 

to reward them for the tip, for example with a smile or with better service. 

 Although the last paragraphs could have suggested that reward and 

punishment are essentially emotional, it should be emphasized that reward and 

punishment need not be identified with (positive and negative) emotions. In general, 

rewards can be understood as objects or states that make us come back for more. 

Punishments, conversely, can be understood as objects or states that make us not 

come back for more (Schultz 2007b). More specifically, in one sense, we could say 

that reward is something desired because of a feeling of pleasure. In this sense, 

leaving a tip to the porter can be rewarding because it causes positive emotions: it 

feels good. Because it causes positive emotions, people may tend to engage in this 

type of behaviour under similar circumstances in the future. In a different non-

colloquial sense, which will be clarified in chapter 6, reward is something we “want” 

because of its perceived “incentive saliency,” that is, because of its capacity to stand 

out from its surroundings and motivate agents to approach it, regardless of its 

hedonic consequences (Berridge et al. 2009). Under certain circumstances leaving a 

tip to the porter is something we “want” to do because of its “incentive salience,” it is 

something likely to capture behavioural control without invariably triggering an 

emotional reaction. Chapter 6 articulates these claims concerning motivation, 

reward/punishment and emotion, and argues that the emotions are probably not the 

ultimate motive of norm compliance. For the moment, it is worth repeating that 

rewarding states or rewarding behaviour need not be identified with states or 

behaviour that engender hedonic reactions. 
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 Let us consider one last aspect of the relationship between reward, 

punishment and norm compliance. What is it that makes certain behaviour associated 

with rewards or punishments? Why in general do I get punished if I fail to comply 

with a social norm? Why may I get rewarded if I comply with norms? There are two 

types of answers to these kinds of questions. The first has to do with externalities, 

which are secondary or unintended (positive or negative) consequences of some 

activity. When people urinate in the swimming pool, spit in the street, litter in the 

park, or use the public coffee machine without contributing anything, they are 

imposing negative externalities to other members of society. Hence, when people 

engage in such types of behaviours they may get punished because they are engaging 

in behaviour that is harmful to the group. Norms against behaviour such as littering, 

which imposes negative externalities on society, are in the public interest. Violations 

of such norms, therefore, provoke punishment. Analogously, behaviour that brings 

about positive externalities to other members of society gets rewarded. 

 The second type of answer involves no appeal to direct harm or benefit to 

members of society. People’s behaving as expected is what makes certain behaviour 

rewarding. Failing to behave as expected is what provokes punishment. A given 

behaviour is rewarding, in this sense, to the extent that people are certain about what 

their social environment will be like when somebody engages in that behaviour. 

Instead, uncertainty, in some sense, will make a given social behaviour associated 

with punishment. One preliminary way to explain the value of certainty is by 

considering the ability of agents to make plans and engage with their environment. 

When agents are certain about what to expect from each other, they are in the best 

position to make plans and take decisions. Thus, we can say that a given behaviour is 
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associated with rewards because people engage in that behaviour as they are 

expected. Conversely, for raising uncertainty, certain behaviour in social situations 

engenders punishments. 

 

1.1.3 Norm Compliance is Conditional on Having the Right Kind of 

Representation 

Social norms can be stated as universally quantified conditionals of the form: 

 For every x, if Px then Mx 

where the domain of the variable x is any behaviour, P specifies the property that 

identifies the type of behaviour and M specifies some normative property. A 

normative property is a property that can be ascribed with normative predicates such 

as ‘is wrong,’ ‘is right,’ ‘is good’ and so forth. Social norms can involve small or 

large classes of agents. For example, a social norm like CHILDREN AND WOMEN 

FIRST involves a class of agents larger than the class of agents involved in the social 

norm WOMEN FIRST. Nonetheless, both social norms can be stated as universally 

quantified conditionals. The fact that social norms can be stated as universally 

quantified conditionals, therefore, does not mean that social norms do not possess 

many differences of nuance or that they do not admit of exceptions. 

 The preference to comply with norms—for example with a norm of queuing 

such as FIRST COME FIRST SERVED—seems to be conditional in fact. According to 

Bicchieri’s (2006) account, people have a preference to comply with a social norm in 

a situation of a certain type under the conditions that they expect others to comply 

with that norm in that type of situation, and they believe that others think they ought 

to comply with that norm in that type of situation. The cues present in a given 
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situation are important to determine the kinds of expectations that people have in that 

situation, and thereby they are important to determine a preference for norm 

compliance. 

 Consider Cialdini’s experiment on littering described above in (C). One way 

to describe those results is in terms of expectations. Cialdini and his collaborators 

elicited certain expectations in their subjects by manipulating the salience of the cues 

present in the environment. The fact that people dropped trash in the environment led 

subjects to expect that most people littered there. With this expectation activated, 

subjects were less likely to have a preference to comply with a norm against littering. 

Conversely, when people represented the environment as calling for an anti-littering 

norm—for example, when they saw another person picking up trash in an otherwise 

clean environment—they were more likely to have a preference to comply with a 

norm against littering. 

 How we acquire the right kinds of representations, in which sense they are 

“right” and what is their relationship with expectations are questions that I shall 

begin to answer in Chapter 1 and explore further in Chapter 2 and 4. 

 

1.1.4 Norm Compliance Does Not Depend on a Supply of Invariant General 

Principles 

That social norms can be described as universally quantified conditionals does not 

entail that people apply invariant general rules to cases when they comply with 

norms. Put differently, the fact that people’s behaviour displays regularities when 

people comply with norms does not entail that people’s behaviour is caused by 

internally represented, invariant rules when they comply with social norms. 
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 Take the case of tipping illustrated in (D) above. Tipping varies among 

cultures and by service industry. People in North America tip in restaurants, but they 

don’t tip in shoe shops. The fact that service is especially good in a restaurant may 

lead diners in the UK to tip the waitress or the waiter. But the same fact does not lead 

to the same behaviour in Japan. Waitresses and waiters in Japan would find it 

condescending or demeaning to receive a tip for their service. So, it seems that the 

features that count as cues that lead to norm compliance vary across contexts and 

between people. If a feature makes a given situation as one that calls for norm 

compliance, it does not follow that the feature always makes the same type of 

situation as one that calls for norm compliance. 

 Given a type of situation—say, having a meal at a restaurant—and a type of 

feature—say, good service quality at the restaurant—if the feature elicits different 

representations (and hence, different expectations, in a sense to be explained in 

Chapters 1 and 2) from one token-situation to another, then people comply with 

norms of tipping on a case-by-case basis, depending on the way they represent the 

situation. Whether a feature in a social situation counts as a cue for norm 

compliance, and if so, what exact role it is playing there will be sensitive to other 

features and to the learning trajectory of the agent in that situation. 

 People, in general, do not comply with social norms by applying invariant, 

internally represented, general rules to cases. This claim will be further motivated 

Chapter 3, where I explore alternative representational format of social norms and in 

Chapter 5, where I consider the relationship between linguistic rules and moral 

thought. 
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1.1.5 Social Norms Set the Boundaries of (In-)Appropriate Behaviour 

Social norms delimit the boundaries of appropriate behaviour in many different 

domains of social interaction by prescribing or proscribing certain types of action. 

Compare these two statements: 

 (1) Pass the blunt after a couple of puffs. 

 (2) Don’t jump the queue. 

 People’s decisions in case (A), described above, are shaped by the social 

norm stated in (1); people’s reactions in Milgram’s experiment, described in (B), is 

shaped by the social norm stated in (2). The first statement prescribes a type of 

action, whereas the latter proscribes an action. (1) specifies a type of action required 

in a certain social context; instead (2) tells us what is forbidden under certain 

circumstances. 

 A social norm can affect people’s behaviour in a population even if 

compliance to it is not observed. Imagine this social norm: WHOEVER FIRST 

MAKES A PROPOSAL THAT SOMETHING HAS TO BE DONE IS DIRECTLY 

RESPONSIBLE FOR MAKING SURE THE PROPOSAL IS CARRIED OUT. Imagine 

that students in a tutorial class have this social norm. During a seminar, those 

students may avoid suggesting a topic for discussion because they believe that that 

social norm will be followed, and, hence, they will have to prepare the talk. Nobody 

is violating the norm here. Everybody is avoiding it, and still the norm is guiding the 

students’ behaviour by specifying that if certain conditions are satisfied, a type of 

behaviour is likely to follow. 

 The way people move when they are in certain types of situations can make 

visible that social norms set some boundaries for our behaviour. By complying with 
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a norm like PASS THE BLUNT AFTER A COUPLE OF PUFFS, people’s behaviour 

involves movements of some sort. When people comply with prescriptive norms, 

they behave in such a way as to form a recognizable pattern of movements. So when 

people tip at restaurants—thereby complying with the norm LEAVE A TIP AFTER 

YOUR MEAIL AT THE RESTAURANT—they typically take a look at the bill, add a 

certain percentage of the bill and leave the total on the table where they are sitting. 

Other social norms tell people not to move in certain ways. When people comply 

with such a norm as DON’T JUMP THE QUEUE they refrain from moving in certain 

ways: they typically stop and wait in line after the last person in the queue. This does 

not mean, however, that movements of some type are conceptually required to 

comply with norms. Norm compliance cannot be identified with recurrent patterns of 

movements. 

 

1.1.6 People are Subject to Many Types of Motivations 

People at any given time have multiple types of motivation. Social norms are one of 

such types. Social norm compliance itself has a complex motivational structure 

underlain by many systems as I shall explain in Chapters 1 and 6. Let’s begin to 

consider the claim that people at any given time have multiple sources of 

motivations. 

 Social norms may have significant motivational effects on people who hold 

them, but they are not the only source of motivation. Frey et al.’s (2010) study 

presented above in (E), about the different pattern of behaviour displayed by the 

passengers on the Titanic and on the Lusitania, illustrates this point. Dramatic 

differences in behaviour may have different sources of motivation. One such source 
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is narrow self-interest. People motivated only by self-interest are concerned about 

their own welfare and they don’t care about other people’s preferences or welfare. If 

people are both narrowly self-interested and instrumentally rational, then, given the 

state of their knowledge about the outcomes of their possible actions, they will 

choose action a if a is the action they believe will lead to the outcome they prefer, 

regardless of what A may involve for other people’s welfare. If people are both self-

interested and instrumentally rational, then they would be motivated to comply with 

norms only if there is some clear benefit to themselves. But human motivation is 

complex and does not seem to consist of narrow self-interest only. 

 Instrumental motives can integrate, override, inhibit, compete or interfere 

with other motives such as the motivation to comply with norms of cooperation or 

altruism. Frey et al. (2010) suggest that passengers on the Lusitania were mainly 

motivated by self-interest, whereas on the Titanic people complied with norms for 

non-instrumental, non-selfish motives. People on the Titanic would have followed 

certain norms even though there was no obvious personal benefit to them from doing 

so. This difference in motivation would have led to differences in behaviour aboard 

the sinking ships. 

 Complying with pro-social norms might generally take more time than 

behaving out of self-interest. This might be the reason why self-interest had more 

motivational force than pro-social motives on the Lusitania, which was rapidly 

sinking. Because on the Lusitania, unlike the Titanic, people were under extreme 

time pressure, self-interest might have had more motivational force than pro-social 

motivation there. This is consistent with one of the conclusions that Darley and 

Batson (1973) draw from their famous “Good Samaritan experiment.” 
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 In a nutshell, Darley and Batson found that people in a hurry are less likely to 

help a “shabbily dressed person slumped by the side of the road,” even if they are 

going to speak on the parable of the Good Samaritan. Some literally stepped over the 

seemingly distressed person on their way to the next building, where they had an 

appointment. From their results, Darley and Batson suggest that it would not be 

unreasonable to claim that “ethics become a luxury as the speed of our daily lives 

increases (Darley and Batson 1973, p. 107). A different explanation they consider is 

that their subjects could have been blind to the scene; that is, “because of the time 

pressures, they did not perceive the scene in the alley as an occasion for an ethical 

decision” (Ibid., p. 108). 

 All in all, situational forces such as time constraints seem to have a strong 

influence on people’s motivational dynamics. 

 

1.1.7 Social Norms have Special Motivational Grip 

Many social norms have no obvious instrumental significance. For many social 

norms people don’t comply with them as a means to attain some further goal, for 

example because of the prospects for economic gain, or future reciprocation. 

 There are social norms that regulate behaviour in revenge. Such social norms 

can motivate people to impose suffering to others who have broken a deal or 

dishonored a woman at some cost or risk to themselves. Prima facie, complying with 

such norms is likely to produce suffering, pointless risks and exposure to harm. 

Complying with a norm of revenge involves no independent benefit, that is, no 

benefit independent from not being punished, if you comply with that norm. At least, 

it is dubious whether complying with such norms can be a means to attain some 
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further end (Elster 1990). It is reasonable to hold, therefore, that norms of revenge 

have powerful, non-instrumental, motivational effects on the people who have them. 

The same conclusion can be drawn about norms of tipping. It seems implausible to 

explain tipping at a highway diner that one will never visit again by appealing to 

instrumental rationality. 

 Sripada and Stich (2006) refer to the motivational grip that norms can have on 

people who hold them as “intrinsic motivation.” Their claim is that people “display 

an independent intrinsic source of motivation for norm compliance, and thus that 

people are motivated to comply with norms over and above (and to a substantial 

degree over and above), what would be predicted from instrumental reasons alone” 

(Sripada and Stich 2006, p. 285). This claim is underwritten both by the 

phenomenology of norms and by findings from experimental economics. 

 If we consider the subjective experience that often accompanies norm 

compliance, then it seems that many norms possess the authority to draw us to act in 

accordance with them unconditionally. We often don’t even question the authority of 

the norm; we don’t consider whether to comply or not. We just comply. 

 If we consider experimental evidence, a wealth of results shows that in 

variety of experimental games people comply with norms of fairness and cooperation 

even when that is not the most profitable thing to do (e.g. Camerer 2003). By 

complying with such norms, people behave very differently from the way 

instrumental rationality alone would predict. Once we recognize that many norms 

possess this type of motivational grip on people, we may want to explain the nature 

and origin of the intrinsic motivational power typically possessed by social norms. 
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1.1.8 Complying with Norms is Thoughtless 

Take the case of the blunt smokers described in (A) above. There is ethnographic 

evidence that those who smoke blunts alone tend to behave as if they were smoking 

in a group, where blunts are typically consumed: they have only a couple of puffs 

and then put the blunt out. Or consider the situation where you enter the bank, you 

get in line and you wait for your turn. The behaviour displayed in both cases, it 

seems, is “thoughtless.” 

 If thinking is computing, then the type of behaviour displayed in both cases 

requires little computation. Insofar as automatic and unconscious behaviour requires 

little computational effort, automatic and unconscious behaviour requires little 

thought. For example, we typically wait in queues without a thought, without being 

aware of our beliefs and preferences. Often, given certain cues, we behave 

automatically without conscious deliberation. Most of the time people don’t comply 

with norms such as WAIT FOR YOUR TURN IN LINE AT THE BANK because they 

consciously consider that most people engage in a pattern of behaviour under that 

type of circumstance and that most people expect them to do the same. People, 

instead, tend to thoughtlessly repeat the same patterns of behaviour that they have 

learned both in the case of social norm compliance and, more generally, when certain 

situational cues trigger a determinate behaviour. 

 If norms put uncertainty and confusion under control—as noted with Mary 

Douglas above—then they spare people from a lot of computing about how to 

behave in social circumstances. When people are learning how to behave in social 

situations they are also learning “how much to think about how to behave” (Epstein 

2001, p. 10). It seems, therefore, that another core feature of norm compliance is that 
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“individual thought – or computing – is inversely related to the strength of a social 

norm” (Ibid.). 

 Enforcing norm compliance, it’s important to note, might have the same 

feature: it may require little computational effort. If this is so, then there are grounds 

to resist the objection that norms cannot be sustained only by attitudes of approval or 

disapproval, or, more generally, only by reward and punishment. According to this 

objection there is always a motive not to enforce a norm because sanctioning of 

conformity and deviance is cognitively costly. Social norms—the objection goes 

on—can be sustained by rewards and punishments only if people have a prior, 

sufficiently strong, motive to maintain a system of sanctions. But being motivated to 

maintain such a system is also cognitively costly. Therefore social norms cannot be 

sustained only by people’s attitudes towards certain behaviour. 

 This objection loses its bite if individual thought is inversely related to the 

strength of the motivation that people have to enforce norms by punishing norm-

violators and rewarding compliers. This strength, in turn, might be directly related to 

the strength of the social norm that people are enforcing. Pettit (1990, pp. 739-740) 

makes a similar point. He notes that enforcement of norms doesn’t have to involve 

intentional action. Intentional action may involve much thinking. If intentional action 

was necessary to norm enforcement, then sanctioning deviance would be cognitively 

costly. But the enforcement of social norms doesn’t need to involve much thinking, 

as it need not rely on intentional action. 

 Pettit argues that in order to enforce norm compliance by means of rewards 

and punishments there is no need to go about and identify norm violators. There is no 

need to discipline norm violators intentionally either. It is generally sufficient that 
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enough people are around in a social situation that calls for punishment (or reward). 

The simple presence of a sufficient number of other people, in fact, will be enough to 

(i) make it likely that the norm violator will be noticed by somebody without any 

active, intentional search; (ii) ensure that the norm violator will suffer some 

punishment without the punisher incurring any cognitive cost. It is reasonable to hold 

that (ii) is true: people often get punished (and rewarded) simply by believing that 

others think badly (or well) of them. That norm violators (or norm compliers) have 

this belief can be enough for them to be punished (or rewarded) without others 

engaging in any intentional sanctioning. “Thus—Pettit (1990, p. 741) concludes—

people can be more or less involuntary enforcers of norms, automatically providing 

suitable rewards and punishments for acts of conformity or deviance.” 

 Even if people’s enforcement of social norms had some cognitive costs, there 

is evidence that enforcing social norms might be, in some sense, rewarding in itself. 

If the enforcement of social norms is, in some sense, rewarding in itself, then we 

might quickly and effortlessly overcome possible cognitive costs under the 

motivational pressure of the reward underlying social norm enforcement (Fehr 2009). 

A large number of studies in experimental economics have shown that people often 

punish norm violators even when the revenge brings them no personal gain, or is 

materially costly to them and this cost cannot be compensated in the future (Fehr and 

Gächter 2002). In public goods games, for example, people are willing to spend extra 

money to punish those who do not contribute to the public good. When non-

contributors are detected, people punish them without considering whether that is in 

their monetary self-interest. They do it as though it carried the sweet psychological 

taste of revenge (Knutson 2004). Other experimental games have shown that also 
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mere observers, who are not affected by others’ behaviour in the game, are willing to 

punish others for norm violations at some cost to themselves which will not be 

compensated in the future (Fehr and Fischbacher 2004). This type of results suggests 

that people may have an “intrinsic motivation” to punish norm violators. It may be a 

basic feature of people’s cognitive systems that the perception of a situation where a 

norm has been violated is sufficient to produce motivation to punish the violator. 

People may possess some “prior motive” to maintain a system of sanctions. I shall 

return on the motivational structure of norm compliance and on which sense 

enforcement might be rewarding in itself in Chapters 1 and 6 especially. 

 

1.1.9 Socialization is Necessary to the Development of Norm Compliance 

Social norms are found in all human societies. So, norms can be considered “cultural 

universals” (Sripada and Stich 2006, par. 2). This does not entail, however, that what 

is prescribed or proscribed by a norm is invariable across time and space or that the 

capacity to comply with norms is underlain by a dedicated mechanism. Different 

types of behaviours are proscribed or prescribed to different degrees in different 

groups. In the 1960’s, for example, few women in specific countries wore mini-

skirts, and typically they wore them only in specific situations such as in 

ballrooms—and then most of other people disapproved of them. Today, many 

women from many different places in the world wear miniskirts in a variety of 

circumstances—and no one gives it much thought in those places. 

 People of all cultures and heritages acquire the norms prevalent in their group 

in a reliable fashion and relatively early in life unless they already suffer some 

neuropsychological deficit. What seems to be necessary for the acquisition of 
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knowledge about social norms and the development of the ability to comply with 

norms is socialization. The case of Genie, described above in (F), illustrates this 

point. Genie had serious psychopathologies and could not comply with basic social 

norms mainly because she had spent the first years of her life in a socially deprived 

environment. 

 That social deprivation is very likely to produce florid psychopathologies was 

shown by Harry Harlow in a series of controlled experiments on rhesus monkeys in 

the 1950s and 60s (Harlow and Harlow 1962). In Harlow’s studies, the monkeys 

were placed in stainless-steel chambers from a few hours after birth until three, six, 

twelve, or forty-eighth months. The monkeys were raised with no maternal care or 

contact with any other living being, human or non-human; and so they couldn’t 

develop affectional ties with their mothers or peers. When released from their 

isolated chambers after two years, all monkeys showed psychopathological 

behaviour. Two of six monkeys who had been isolated for three months stopped 

eating. One of these died, the other was fed with force. All monkeys behaved as if 

they were under extreme threat in a completely alien environment: they often 

assumed crouching postures with which normal monkeys typically react to extreme 

threat. 

 When paired with other monkeys, they crouched or froze; they fled when 

approached. They made no effort to defend themselves from assaults. Those 

monkeys that raised in total or partial social deprivation for more than six months 

had no interest in social activities such as grooming, playing and mating. They all 

displayed compulsive avoidance of giving or receiving emotional nourishment. 

Socially-deprived monkeys generally showed a specific difficulty in paying attention 
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to other living beings. They behaved as if they could not perceive other monkeys as 

animal beings in their environment, and as if they were maximally uncertain as to 

what to do in those new circumstances. 

 The monkeys that could acquire approximately normal cognitive functions 

and display social behaviour after six months of isolation were the ones exposed to 

three-month old, normal monkeys (Harlow and Suomi 1971). For monkeys, and for 

humans alike, social deprivation is implicated in the development of important 

cognitive and behavioural deficits, and specifically in an inability to interact 

appropriately, or interact at all, with conspecifics. Social therapy consisting in 

interacting with others can facilitate the recovery of social capabilities impaired by 

being reared in isolation. This kind of study with monkeys and stories of “feral 

children” like Genie’s lead us to expect that socialization is essential for the 

development of social cognition in general, and particularly of norm compliance. 

 Note, finally, that the claim that socialization is necessary for the normal 

functioning of people’s cognitive abilities, together with the fact that social norms 

are a “cultural universal” (Sripada and Stich 2006) might suggest that there are innate 

mechanisms specifically dedicated to the acquisition and implementation of norms. 

Yet, current data about dynamics and connectivity of neuronal communication 

underlying social or moral behaviour strongly suggest that moral cognition is not 

identifiable through the activity of any dedicated brain sub-system (Adolphs 2010; 

Casebeer and Churchland 2003). 

 

 Summing up, I have described six cases (A-F) in light of which I identified 

nine seemingly core features of social norms or social norm compliance: 
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 I. Norm compliance depends constitutively on shared, mutual expectations. 

 II. Norm compliance is intimately related to punishments and rewards 

 III. Norm compliance is conditional on having the right kind of 

representations. 

 IV. Norm compliance does not depend on the application of general rules to 

situations. 

 V. Social norms set the boundaries of “appropriate” behaviour. 

 VI. People are subjects to many sources of motivations. 

 VII. Social norms have special motivational grip. 

 VIII. Complying with norms is thoughtless. 

 IX. Socialization is necessary for the development of norm compliance. 

 It is naïve to think that there is a single, unique, simple mechanism of norm 

compliance. So, I don’t claim that by providing a mechanistic model that could 

explain these features we thereby explain all there is to explain about norm 

compliance. Also I don’t claim that an explanation of those features will provide us 

with necessary and sufficient conditions to identify a given behaviour as an instance 

of norm compliance, or to always identify the conditions under which individuals 

will follow a social norm. 

 I hold, nonetheless, that I-IX point to seemingly central aspects of norm 

compliance and can help us to develop a descriptively adequate model of one 

important mechanism of norm compliance. If a mechanistic model explains these 

aspects, then—although incomplete—it is descriptively adequate in that it accounts 

for a large number of observed regularities underlying norm compliance. If a model 

is descriptively adequate, then we have reason to believe that it has counterparts in 
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the world and it can help us to learn about the nature of those counterparts. So when 

a model is descriptively adequate it can enable us to learn new things about the 

world. I now turn to explain the neurocomputational approach endorsed here. 
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FRAMEWORK 

The explanatory framework adopted in this work is informed by the thesis that the 

nervous system is a computing system. This is a generic form of computationalism 

according to which neural computation explains cognition and behaviour. This is 

also one type of subpersonal explanation. I now expand on neurocomputationalism, 

contrast personal and subpersonal explanation and explain how 

neurocomputationalism can have a bearing on personal-level explanations. 

 

1. Neurocomputationalism 

Neurocomputational explanations explain how the brain carries out cognitive 

functions and generates behavior. They make reference to brain components—to 

brain areas, populations of neurons, neurons, synaptic connections, chemical 

neurotransmitters—and their activities, but also to the informational transactions 

between neural populations. They describe how neural processes encode, transform 

and decode information carried by patterns of neural activity. In some sense, which 

will be made clear in Chapter 2, nervous systems compute by processing neural 

representations. 

 Neurons’ fundamental activity consists in generating all-or-none events 

known as spikes (or action potentials). Sequences of spikes are called neural spike 

trains. Depending on their biophysical properties and their connections with other 

neurons, neurons generate spiking trains with different properties. Neural spike trains 

are information-carriers and their dynamics can be described by algorithms. A neural 

computation, in the generic sense assumed here, is the transformation of neural spike 

trains according to an algorithm. Neurocomputational explanations consist in 
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specifying how organized brain components and their activities produce neural spike 

trains that carry out cognitive functions and generate behavior (e.g. Churchland and 

Sejnowski 1992; Piccinini 2006; 2007). 

 To further clarify what I take to be neurocomputational explanation, let me 

introduce one of the best-developed neurocomputational explanatory models. 

Dopamine is a neurotransmitter implicated in many aspects of learning and decision-

making. One widely accepted description of the phasic changes of activities in 

neurons that contain dopamine is within the framework of Reinforcement Learning 

(Sutton and Barto 1998). Reinforcement Learning (RL) is a field in computer science 

and machine learning offering a collection of algorithms to address the problem of 

learning what to do in the face of rewards and punishments received by taking 

different actions in an unfamiliar environment. 

 A wealth of evidence indicates that activity of dopaminergic neurons in the 

basal ganglia can be described as implementing a reward prediction-error, which is a 

signal used by some classes of RL-algorithms (Houk et al. 1995; Schultz et al. 1997). 

A reward prediction-error is the difference between obtained and expected reward. 

To say that dopamine neurons activity can be described as implementing a reward 

prediction-error is to say that some neurons can be described as performing 

computations by executing some RL-algorithm. By executing this algorithm, the 

brain would carry out the cognitive task of learning what to do in the face of 

expected rewards and punishments, and generate behavior accordingly. RL 

neurocomputation will be examined in more detail in Chapter 1. We can summarize 

the distinguishing features of neurocomputational explanations thus: 

• Explanatory Targets: 
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Why/How does the brain carry out cognitive functions and produce behavior? 

• Explanatory Patterns: 

Cognitive functions and behavior are explained by identifying and describing 

relevant mechanistic components, their organized activities, the computational 

routines they perform and the informational architecture of the system 

underlying those functions and behavior. 

• Constraints: 

The identification of neurocomputational mechanism is constrained by spatial, 

temporal, structural, functional, informational and causal considerations. 

• Taxonomy: 

The categories employed are extracted from computational cognitive 

neuroscience. 

• Vocabulary: 

‘Neural spiking pattern’, ‘Population of neurons’, ‘Algorithmic transformation 

of informational input’, and the other expressions typically used to refer to the 

brain (or parts thereof), its activities and the computational functions it 

performs. 

 

 It should be clear that this sort of explanation makes no direct reference to 

personal-level states like beliefs and desires and to the principles of rationality that 

govern them. It is explanation at the subpersonal level. In general, explanations that 

deal “with parts, or systems of the cognitive agent, rather than with the agent itself as 

thinking and acting organism” are at the subpersonal level (Bermúdez 2005, p. 28). 

 Note that neurocomputational explanation is just one type of subpersonal 

explanation: subpersonal mechanisms can be described solely in terms of biological 

and chemical functions with no reference to the computational routines performed by 
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neural activations. For example, an event like an action potential occurring at a 

particular time can be explained by citing distinct, antecedent events like the release 

of neurotransmitter molecules by a presynaptic neuron and the binding of these 

neurotransmitters to receptors on the postsynaptic cell. This is a case of subpersonal, 

non-computational explanation. 

 

2. Personal Explanation, the Interface Problem and the Co-evolutionary 

Research Ideology 

Explanation of people’s behavior couched in the vocabulary of folk-psychology (or 

commonsense psychology) is instead the paradigm case of explanation at the 

personal level. The distinguishing features of this type of explanation can be 

summarized thus: 

• Explanatory Targets: 

What are people doing when they behave thus and so? 

Why do people behave the way they do? 

• Explanatory Patterns: 

- Behavior that calls for explanation is redescribed by using concepts that 

make it intelligible so that one now knows what an agent is doing in or by 

behaving thus and so. 

- Propositional attitudes are ascribed to agents to pick out generalizations of 

the form: 

“If agent S in context C desires p and believes that by doing a she will get p, 

then S will, ceteris paribus, do a.” 

Such type of generalization allows us to identify the agent’s reasons for doing 

a. 
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• Constraints: 

The ascription of propositional attitudes is based on the presumption that the 

agent to whom they are ascribed is rational. 

• Taxonomy: 

The categories employed are extracted from people’s everyday, 

“commonsense” psychological explanations, and from facts about people and 

their situation. 

• Vocabulary: 

‘Belief’, ‘Desire’, ‘Intention’, ‘Emotion’, ‘Reason’ and other propositional-

attitude expressions. 

 

 Given the distinction between personal and subpersonal level, the interface 

problem arises. The interface problem asks “how does commonsense psychological 

explanation [which is the prominent form of explanation at the personal level] 

interface with the explanations of cognition and mental operations given by scientific 

psychology, cognitive science, cognitive neuroscience and the other levels in the 

explanatory hierarchy?” (Bermúdez 2005, p. 35). 

 The method endorsed in this thesis makes for a neurocomputationalist co-

evolutionary approach to the interface problem. The co-evolutionary research 

ideology is a centerpiece of the traditional neurocomputational picture of the mind 

(Churchland 1986). According to this position, the concepts and categories we use to 

understand cognition and behavior at any level of explanation “may need to be 

revised, and the revisionary rationales may come from research at any level” 

(Churchland 1993, p. 746). Hence, co-evolution involves explanations and concepts 
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at one level being susceptible to correction and reconceptualization in light of 

discoveries and conceptual refinements at other levels. 

 From this perspective, facts about subpersonal states and events can be 

constitutively (or conceptually) relevant to personal-level phenomena, and therefore 

knowledge of such facts can, and sometimes should, inform personal-level 

explanations. This is because of one central aspect of the ordinary personal-level 

explanatory strategy. We ordinarily explain somebody’s behavior by redescribing it 

employing different concepts. By redescribing somebody’s behavior with different 

concepts, we make intelligible what someone is doing in or by behaving thus and so. 

 If so, explanations of phenomena like social norm compliance at the personal-

level are not constitutively insulated from information yielded by knowledge of 

underlying subpersonal states and events; folk-psychological explanations of norm 

compliance in terms of preferences and expectations don’t enjoy any particular 

autonomy from the explanations in the cognitive sciences. The concepts used in 

explaining human beings and their behavior can be revised under the pressure of 

knowledge of facts about subpersonal states and events. The extent to which this 

kind of knowledge will lead to a revision of the folk-psychological concepts we use 

to explain personal-level phenomena depends on the proper identification of 

neurocomputational mechanisms. If we are to understand how facts about 

subpersonal states and events may lead to conceptual revisions of personal-level 

phenomena, we must attend to the distinctive details of the neurocomputational 

mechanisms we identify. This is one of the burdens of this work. In the conclusion, 

in light of our neurocomputational journey into social norm compliance, I shall put 
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forth some hypotheses about concepts we could use to describe this personal-level 

phenomenon. 

 It should be emphasized, finally, that adopting a neurocomputational 

perspective to the interface problem doesn’t entail an eliminativist stance toward 

folk-psychology. Some advocates of a neurocomputationalist approach to the mind 

have put emphasis on its discontinuities with folk psychology, thereby arguing that 

folk-psychology is radically false and should be replaced with explanations couched 

in terms of our best scientific theories of how the brain works (Churchland 1981; 

1995). Others like Clark (1989) argue for ecumenical views whereby folk-

psychology and neurocomputational approaches to the mind have distinctly different 

explanatory roles, and so can peacefully coexist. Rather than hostility to folk-

psychology, what motivates neurocomputationalism is a co-evolutionary conception 

of the relationship between different explanatory levels and frameworks. 
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CHAPTER 1. 
The Building Blocks of Norm-Hungriness 

This chapter describes and defends the beginning of a neurocomputational 

mechanistic model of social norm compliance. The workings of this mechanism can 

plausibly explain central features of social norm compliance. More precisely, the 

chapter identifies and describes putative neurocomputational building blocks of 

social norm compliance. In order to identify these building blocks, it firstly identifies 

two computational problems, which social cognition must solve to enable cognitive 

agents to comply with social norms. The following argument offers one way to 

identify the nature of such computational problems. 

 

 P1: Adaptive behaviour demands “uncertainty” minimization. 

 P2: Social norm compliance is an instance of adaptive behaviour. 

 Therefore, C: Social norm compliance demands “uncertainty” minimization. 

 

 The first part of the chapter explains each of the premises and the conclusion 

of this argument. In particular, it articulates the relevant notion of ‘uncertainty’ 

minimization. The second part of the chapter draws upon these explanations to 

describe what can be called neurocomputational building blocks of social norm 

compliance. 

 The first part comprises two sections. Section 1 explains the claim that 

adaptive behaviour demands “uncertainty” minimization (P1), by introducing Karl 

Friston’s “free-energy” principle of adaptive behaviour. Section 2 claims that when 

agents comply with social norms they thereby behave co-adaptively (P2). In making 
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this claim, it identifies two computational problems social cognition must solve to 

enable adaptive agents to comply with social norms, namely: 

 (i) To use sensory information to compute representations of social situations. 

 (ii) To consume these representations to determine future movements or 

internal changes in the presence of, and interaction with other agents. 

 The second part comprises three sections. It is suggested that a mechanism 

consisting of Bayesian-Reinforcement Learning systems can solve these problems. 

This suggestion leverages recent advances in (a) neural models of Bayesian inference 

and (b) Reinforcement Learning algorithmic accounts of how neural activity can 

enable learning and decision-making. By minimizing prediction-errors, this 

mechanism enables people to acquire and act upon social norms. On my account, the 

Bayesian system yields social representations, and the Reinforcement Learning 

system draws on social representations to generate actions so as to minimize reward 

prediction-error during social interaction. Sections 3 and 4 describe in detail the two 

systems comprised by this mechanism, and explain how they could ground norm 

compliance. Section 5 concludes by laying out three main arguments for why norm 

compliance is best understood within this Bayesian-Reinforcement Learning model. 
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PART I. Social Norm Compliance and Uncertainty Minimization 

1. Adaptive Behaviour and Uncertainty: A Free-Energy Principle 

What does it mean that adaptive behaviour demands “uncertainty” minimization? 

One way to address this question is by considering one recent proposal articulated by 

Karl Friston, which purports to connect and explain in a single unifying framework 

adaptive biological processes, brain function, and the relationships between cognitive 

functions such as action, perception and learning (Friston 2005, 2009, 2010; Friston 

and Stephan 2007). Uncertainty minimization is the fundamental notion in Friston’s 

framework. So, by introducing and explaining the main tenets of Friston’s 

framework, I hope to clarify and motivate the claim that adaptive behaviour demands 

uncertainty minimization. 

 A couple of caveats before I introduce Friston’s proposal. Friston’s theses are 

both controversial and interesting, partly because of the dramatic claims made for 

their explanatory power. I am not interested, however, in providing a critical 

evaluation of his proposal here (see e.g. Fiorillo 2010; Thornton 2010). Furthermore, 

the claim that brain function and adaptive behaviour are intimately related to 

“uncertainty” is not new (Dayan et al. 1995; Rao et al. 2002; von Helmholtz 1925). 

My choice of explaining premise P1 in the argument above from the angle of 

Friston’s proposal depends on its generality and its explicit reference to adaptive 

behaviour and self-organizing systems. 

 According to Friston, adaptive behaviour and the structure and function of the 

brain can be explained “starting from the very fact that we exist” by appealing to a 

“free-energy” principle (Friston 2009, p. 293). “The free-energy principle says that 

any self-organizing system that is at equilibrium with its environment must minimize 
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its free energy. The principle is essentially a mathematical formulation of how 

adaptive systems (that is, biological agents, like animals or brains) resist a natural 

tendency to disorder” (Friston 2010, p. 127). Let me elaborate. 

 Friston starts from the fact that homeostatic processes ground life. All 

biological, adaptive, self-organizing agents resist a tendency to disorder by 

maintaining their state and gross form in the face of a constantly changing 

environment. All adaptive agents, that is, possess homeostatic properties which 

enable them to maintain their physiological and sensory state within bounds. Without 

these properties, life would not be viable. Warm-blooded animals, for example, could 

not exist without their homeostatic properties, which maintain their temperature 

within a certain range. The repertoire of physiological and sensory states in which 

adaptive, biological systems can be is limited. If a biological system is in some 

physiological or sensory state outside certain bounds, its homeostatic relations will 

break down and it will soon die. Friston restates this fact by employing mathematical 

tools and notions from information theory. 

 The key concepts of his framework are the information-theoretic notions of 

entropy, surprise and free-energy. They are all intimately related to the notion of 

uncertainty, as information theory is precisely the branch of mathematics that 

describes how uncertainty should be quantified, manipulated and represented. 

Information for a system consists in the reduction of uncertainty for that system. So 

the uncertainty of a system decreases as it receives information (Shannon 1948; see 

MacKay 2003 for an advanced textbook treatment of information theory). Let me 

now introduce each notion, and explain how such concepts could bear on explaining 

adaptive behaviour and brain function. 
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 If we describe with a probability distribution all possible physiological and 

sensory states in which an adaptive agent can possibly be, then the point that 

adaptive agents must resist a tendency to disorder can be re-stated by saying that that 

distribution must have low entropy. Entropy, in information theory, measures the 

amount of uncertainty of a random quantity. That a probability distribution has low 

entropy means that the outcomes sampled from that distribution are relatively 

predictable. Conversely, outcomes sampled from distributions with high entropy are 

relatively unpredictable. If the probability distribution of the possible sensory and 

physiological states of an adaptive agent has low entropy, then the agent will occupy 

relatively predictable states. 

 One way to rigorously characterize the informal notion of a predictable state, 

or outcome is in terms of the amount of surprise (or surprisal) associated with that 

state. Surprise quantifies how much information an outcome carries for a system. 

The amount of surprise of a particular outcome is a function of the probability of that 

outcome, such that the less probable the outcome the more surprising the outcome is. 

The amount of surprise of two independent outcomes is the sum of the amount of 

surprise of each outcome. Given these two properties, the surprise of an outcome 

should be the negative log-probability of that outcome. Entropy of a probability 

distribution is just the average amount of surprise of outcomes sampled from it. 

 It should be clear that entropy and surprise are measures relative to a 

probability distribution, or an agent. For example, you may have high uncertainty 

about the result of the match tomorrow, but your teammate may not. This results in 

different entropies, or surprises associated to the same outcome (i.e. the result of the 

match). More on this point in a moment. 
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 Now, suppose that we describe with a probability distribution all possible 

physiological and sensory states in which a fish can possibly be. An improbable 

outcome from such a probability distribution is “fish out of water.” Because it is 

improbable, this outcome is surprising for the fish. Conversely, a probable outcome 

from that probability distribution is “fish in water.” This outcome is not surprising 

for the fish. Because surprising outcomes are those that correspond to a likely 

breakdown of the homeostatic relational properties of the fish, the fish must avoid 

surprising states in order to have highest probability to exist and keep on existing. 

The probability distribution describing its (viable) sensory and physiological states 

must have low entropy. Biological agents ensure that their sensory entropy remains 

low and that they live longer by minimizing the long-term average of surprise of the 

probability distribution describing all their possible states. 

 Three points are worth emphasizing. First, as mentioned above, entropy and 

surprise can only be defined in relation to an agent (or a probabilistic model). When 

applied to adaptive agents, average surprise, or entropy is a function of a sensory 

state and the agent’s internal model of the environmental causes of its sensory state. 

Agents could be thought of as maintaining internal, probabilistic models of the 

relevant variables in their environment causing their sensory states. These models are 

tuned by learning and experience, as the agent interacts with its environment. An 

agent’s model can be understood as corresponding to the agent’s uncertain “beliefs.” 

The next Chapter will distinguish between different senses of “belief” in terms of 

explicit, implicit, tacit, conscious and unconscious representations. For the moment, 

suffices to say that “belief” here does not necessarily refer to an introspectively 

accessible or conscious mental state. Rather it corresponds to an “implicit” 
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probabilistic internal representation, which affects the agent’s behaviour. It should be 

clear then that in function of an agent’s internal model, the same state can be 

surprising for one agent but not for another agent. Even for the same agent, the same 

state may carry different amount of surprise at different times. I shall return on 

“internal models” below in this chapter in relation to how agents acquire social 

representation through the workings of their Bayesian brains. 

 The second point is that “surprise,” in the context of Friston’s framework, 

should be distinguished from the subjective point of view of a conscious agent. The 

two notions are distinct. Avoiding subjective surprise need not imply avoiding 

surprise in the information-theoretic sense. For example, you may consciously judge 

that you are in a surprising situation if you perceive that your cat Piper is speaking to 

you. However, if Friston is right, and cognitive, biological agents are mandated to 

minimize the uncertainty of their sensory and physiological state over their lifetime, 

then this percept is the one that most effectively minimizes the long-term average of 

surprise (or entropy) of your sensory states—regardless of your subjective, conscious 

judgement. 

 Third, it can be considered a tautology to say that agents that are in 

unsurprising states are in those states frequently and they keep existing by being in 

those states. It would amount to a re-description in information-theoretic terms of 

one aspect of biological systems that exist. Information theory provides us with one 

possible quantitative framework whereby we can describe adaptive behaviour and 

cognition, but it is not clear how this would explain or provide special understanding 

on adaptive processes and cognitive phenomena. In other words, what is it that 

Friston brings to the table? 
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 Friston proposes a principle, which could explain how surprise minimization 

is carried out by computationally-bounded cognitive systems. Computationally-

bounded agents cannot evaluate and minimize surprise directly since this would 

entail that they “know” all the variables of the world causing their possible sensory 

states. Adaptive, computationally-bounded agents are proposed to minimize “free-

energy” instead, which is a quantity that provides an upper bound on surprise and 

can be directly evaluated and minimized by computationally-bounded agents. 

 Free-energy, as characterized by Friston, is an information-theoretic measure 

“that bounds or limits (by being greater than) the surprise on sampling some data 

given a generative model,” where a generative model describes a process assumed to 

give rise to some data (Friston 2009, p. 209; Friston 2010, p. 127). In this context, a 

generative model is defined in terms of both a prior distribution over the 

environmental causes of an agent’s sensory states and the generative distribution (or 

likelihood) of the agent’s sensory states, given the environmental causes of those 

states. The generative model generates sensory states from their causes. 

 Friston shows that free-energy provides a bound on surprise. So, to the extent 

that the bound is tight, minimizing free-energy minimizes the probability that agents 

occupy surprising states. Minimization of surprise via minimization of free-energy is 

a feasible process. The free-energy of an agent would depend only on its sensory 

states and its internal model of the environmental causes of its sensory states. Since 

both sensory state and internal model can be evaluated and manipulated by 

computationally-bounded agents, free-energy can be directly minimized by 

computationally-bounded agents. Since the free-energy of an agent is a function of 

the internal state of the agent’s brain, which embodies a model of relevant 
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environmental variables, and of sensory data, free-energy minimization would 

provide a mechanism by which adaptive agents can avoid surprising states and 

thereby live longer. 

 Summing up. I have explained the claim that adaptive behaviour demands 

uncertainty minimization by introducing the information-theoretic notions underlying 

Karl Friston’s “free-energy” framework. The specific value of Friston’s hypothesis is 

controversial and I have not tried to give a critical assessment of it. What I have 

hoped to have clarified is that we can view the process by which agents adapt and 

interact successfully with their environment as a process by which they reduce their 

uncertainty. Now I illustrate this claim by focusing on a case study and on the notion 

of prediction-error. 

 

1.1 Learning to Play and Uncertainty. Prediction-Error Signals 

TD-Gammon is a neural network that is able to achieve master level skills at the 

game of backgammon (Tesauro 1994; 1995). In backgammon two players take turn 

rolling a pair of dice. Each player has 15 pieces which can be moved on a board of 

24 locations. The roll of dice determines how far players can move their pieces. The 

first player to remove all of her pieces from the board wins. Backgammon is highly 

stochastic and good play requires strategic skills. With each roll of the dice, players 

have to choose from numerous options for moving their pieces. The pieces can 

interact as they pass each other going in different directions, and so players ought to 

anticipate possible moves by the opponent. Although the number of possible 

backgammon configurations is enormous, a complete description of the state of the 

game is available at all times and is given by the configuration of the board. The 
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outcome of the game is easily identifiable and can be treated as a final reward to be 

predicted. 

 TD-Gammon uses a standard multilayer perceptron (MLP) architecture 

(Figure 1). 

 

 

Figure 1. TD-Gammon: an artificial neural network trained by a form of temporal-difference learning. 
(From Sutton & Barto 1998, Figure11.2) 

 

 It has a layer of input units, a layer of hidden units and a layer yielding 

outputs. Each of the connections between units is parameterized by a real valued 

weight. The weights embody the network’s strategic knowledge of the game. The 

input to the network is a representation of a backgammon board configuration. For 

each input pattern, TD-Gammon yields an output vector indicating the predicted 

probability of winning the game. One strategy TD-Gammon can use to improve its 

game is to learn to make accurate predictions. One way to learn to make accurate 

prediction is by means of a reward prediction-error. To say that a system minimizes 

prediction-error is another way to say that it minimizes its uncertainty. 
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 TD-Gammon started with weights set at random, and so it had no knowledge 

about how to play good backgammon. It was trained by self-play: the same network 

chose the moves of two opposite players during training. At each time step, which 

corresponded to some move made by one side, TD-Gammon executed a non-linear 

form of temporal difference (TD) learning algorithm to minimize reward prediction-

error and change its weights. By executing the TD-algorithm the network learned a 

value function V that evaluated board configurations S. At each time step t, the 

network acquired a representation of the board state st in the game. From this 

representation, it produced a number V (st; w) which specified how good the state 

represented was. The weights w of the network were tuned during learning so that 

the evaluation function V could accurately describe the probability of winning the 

game moving from configuration st. 

 After a million games, TD-Gammon’s knowledge of how to play improved to 

the extent that it could play on a par with the best human players. The key of TD-

Gammon’s success is the reinforcement learning algorithm mentioned above: the 

temporal difference reward prediction-error, which we also encountered in the 

Introduction. 

 Reinforcement Learning (RL) studies the ways natural and artificial agents 

can learn to predict the consequences of their behaviour and optimize it in 

environments where actions lead from one state to the next and can lead to rewards 

and punishments. TD-Gammon illustrates a fundamental insight of RL-models: how 

agents can develop intelligence and flexible behaviour by interacting with other 

agents and their own environment. Prediction-error minimization is the engine of 

such processes. 
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 In general, the prediction-error approach consists in using past knowledge and 

current experience to predict what the future holds. A prediction-error is a difference 

between an actual and an expected outcome. This discrepancy is used to update 

expectations in order to make predictions more accurate. A reward prediction-error 

is a difference between two values associated with executing actions in some state. 

The value of a state is the expected sum of future rewards and punishments that can 

be achieved starting to act from that state. In its most simple form, the reward 

prediction error δt is the difference between the predicted value (Vt+1) and the current 

value (Vt) of a given state at time t: 

 [1] δt = Vt+1 - Vt 

 Equation [1] is foundational to many models in cognitive science, from 

conditioning models (Rescorla and Wagner 1972) to more elaborate connectionist 

models of cognition and learning (Rumelhart, McClelland, and the PDP Research 

Group 1986) to the most recent models of brain function (Dayan and Abbott 2001; 

Niv and Schoenbaum 2008). Friston himself claims that the free-energy of a system 

“is just the amount of prediction error” in the system (Friston 2009, p. 293). 

 Let us now ask: How did reward prediction-error minimization enable TD-

Gammon to play at grandmaster level? To reach expert play, TD-Gammon learned 

the value of various positions on the board in terms of the probability to win the 

game moving from that configuration. It learned these values by adjusting its weights 

in function of its predictions-errors: in function of the discrepancy between its 

predictions before and after a move. Given a board configuration st, TD-Gammon 

predicted the probability of winning before making a move from that board position. 

The move selected at each time step was the move with highest probability of 
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winning the game. TD-Gammon observed the actual outcome. If its prediction was 

wrong, the system would update the knowledge-base embodied in its weights to 

make its predictions more accurate. As the predictions became more and more 

accurate with experience, information about the value of making a certain move from 

a given position propagated towards the earlier stages of a game. If its predictions 

were correct, no prediction-error would have occurred because the prediction based 

on the configuration at time t would have been equal to the predicted outcome from 

one time step later t+1 and onward. So, by minimizing prediction-error, TD-

Gammon learned the objective probabilities of winning the game starting from a 

given position. Put differently, by minimizing prediction-error, TD-Gammon built a 

map of objective values for each of the possible configurations on the board. In order 

to be useful, however, this map should be able to influence behaviour that preempts 

the consequences of decisions. How could this happen? 

 Part of the answer is in the functional significance of error signals. Action 

selection can in fact be driven by error signals since they convey information about 

whether a certain action led the agent to a state with higher value than the previous 

state—recall that a state with higher value is a state predictive of more future reward 

(Sutton and Barto 1998, Ch. 6.6). If the prediction-error is positive, then the chosen 

action led the agent to a “better” state, for example a board configuration that 

improved the prospect of winning. Given the goals of the agent, for example winning 

the game, the tendency to select that action should be strengthened for the future. A 

negative prediction-error signals that the tendency to choose that action should be 

weakened since it brought about a state “worse” than the previous one. Thus, the 

agent can build an action plan (or decision policy) π (s, a), according to which the 
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probability Prob (a | s) to perform certain actions a at each state s is increased or 

decreased based on the error signal that follows each action: 

 [2] π (s, a)new = π (s, a)old + ηπδt 

where ηπ is the learning rate of the action plan and δt is the prediction error at time 

step t. Reward prediction-error minimization, therefore, can lead an agent both to 

build an accurate map of the predictive value of each state and to select the action 

that leads to a better state in its environment. 

 The prediction-error approach may be generalized in a number of ways. I 

shall argue that it can be fruitfully extended to the domain of social behaviour. Now I 

turn to explaining the claim that when agents comply with social norms they thereby 

behave (co)adaptively (which is premise P2 in the argument at the beginning of this 

chapter). I identify and explain two problems of prediction-error minimization that 

we face in our social world. By solving these problems, agents satisfy—at least 

partly—the demands for uncertainty minimization posed by social norm compliance 

(as stated in the conclusion C of the argument above). 

 

2. Social Brains and Uncertainty. 
Two Computational Problems for Social Cognition 

Human agents live in a world populated by other people. We are bound to act in the 

presence of others. But we are also bound to interact with others. Human beings are 

essentially social animals. Our interaction with others and the relationships we form 

with other people are enormously important to us, both for our material life and for 

our cognitive functioning. 

 We need to interact with others to fulfill most of our material needs. In 

general, the ways we get to live in a house, acquire food and most of other material 
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goods depend on social interactions. Without interacting with others it would be 

extremely difficult, if possible at all, to satisfy our basic needs for food and shelter. 

Our normal cognitive development, moreover, is dependent on being exposed to 

social stimuli and on caring relationships. Recall the cases of “Genie” and Harlow’s 

monkeys described in the Introduction. They illustrate that solitary confinement is 

the most significant cause of many psychopathological conditions, which can in fact 

be effectively treated with the help of social therapy and caring relationships. Some 

also argue that our cognitive flourishing is itself a socially embedded process (Doris 

and Nichols Forthcoming). If cognitive flourishing is a socially embedded process, 

then optimal cognitive functioning causally depends on and is sustained by sociality. 

Insofar as our cognitive flourishing is sustained by social interaction, we best judge 

and make good decisions when our judgements and decisions are part of a social 

process. Yet, it should be clear that the fact that we are social creatures and sociality 

is so important to us does not entail that interacting with others does not pose 

demanding computational challenges to social cognition. Rather, the importance of 

sociality makes these challenges more pressing. 

 The major computational challenges faced by social cognition are two: 

 

 (i) To use sensory information to recognize, that is, to compute 

representations of, social situations. 

 (ii) To consume these representations to determine future movements, or 

internal changes, in the presence of and interaction with other people. 
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 In a sense, any cognitive system needs to find some way to use sensory 

representations to determine bodily changes or future movements so that it can 

behave adaptively in the world. In a sense, then, (i) and (ii) are not computational 

problems specific to social cognition. In the domain of social interaction, however, 

they are much more complicated because living with others makes our surroundings 

more uncertain, complex, noisy and ambiguous. 

 If challenges (i) and (ii) are not specific to social cognition, then reliable 

computational solutions for perception and motor control might be extended to the 

domain of social interaction. One such solution is prediction-error minimization. 

Prediction-error minimization in a social environment can facilitate agents to adapt 

their behaviour to each other’s, and thereby to interact smoothly. Let me start to 

unpack what I mean by ‘co-adaptation’ and why it is important for sociality. 

 The behaviour of two or more agents is co-adaptive if it contributes to the 

agents’ satisfying their desires, preferences and needs in the environment in which 

they are embedded. Agents are best able to make plans and satisfy their desires when 

they are able to predict what their environment will be like over time. Since human 

agents are embedded in a social environment, they are best able to make plans and 

satisfy their desires when they are able to predict each other’s behaviour and changes 

in their social landscape. It is easier to make plans and satisfy one’s desires when we 

are surrounded by agents who routinely engage in “normal,” expected behaviours. 

By acting on such predictions about each other’s behaviour, agents can adjust their 

behaviour to each other’s. When agents adjust their behaviour to each other’s in this 

way, their predictions about each other become self-fulfilling, and thereby they can 

deal with their surroundings more intelligently and at little computational cost. If we 
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are bound to share the environment and interact with our conspecifics, then people’s 

behaviour must co-adapt to each others’ behaviour. When people behave intelligently 

and adaptively in their social world, they thereby generally interact smoothly with 

each other. 

 Smooth interaction with others is a process involving fluid, thoughtless, 

context-sensitive responses to incoming social stimuli. If, for each of our social 

interactions, we had to negotiate every decision we make by inquiring other people 

about their needs, their desires, their beliefs, their entitlements and so on, we would 

spend most of the time engaged in effortful, time-consuming thinking. We would not 

get much accomplished. We would not have even time to engage actively with 

others: we would just ponder about people rather than act with them. 

 If, for example, we always tried to figure out the distance we should keep 

from each of the people we meet to make them most comfortable, the flow of our 

interactions would be continuously interrupted and we would undergo massive 

cognitive costs. The number of parameters we would need to take into account to 

solve such a trivial problem would be enormous. In order to compute the right 

interpersonal distance for every person we may meet, we would need to sample 

people on the street and identify the right values of parameters such as gender, 

nationality, personal character, social context, and so forth. This kind of thinking 

would hardly facilitate us to navigate our social world. We would be occupied by 

unimportant activities like sampling people to find out what is their right 

interpersonal distance. This would prevent us from engaging in activities necessary 

for our material well-being and cognitive flourishing that require some cognitive 

load. Smooth interaction seems, therefore, to be necessary to navigate intelligently 
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our social surroundings so that we can more easily get those things that we regard as 

important to ourselves accomplished. 

 The prediction-error minimization approach can be used to solve the two 

problems stated above: 

 (i) To use sensory information to compute representations of social situations. 

 (ii) To consume these representations to determine future movements or 

internal changes in the presence of, and interaction with other agents. 

 By meeting these two challenges, prediction-error minimization enables 

people to acquire and act upon social norms. Acting upon social norms facilitates 

people to adapt their behaviour to each other’s, and contributes to make our social 

interactions smooth. The types of prediction errors being minimized to solve those 

challenges are three: 

 - a sensory input prediction-error, 

 - a reward prediction-error and 

 - a state prediction-error.  

 The first type of prediction error helps agents to solve challenge (i); the last 

two types to solve challenge (ii). TD-Gammon illustrates how the reward prediction-

error signal can be used to learn values for action choices that maximize expected 

future reward. Sensory input prediction-errors report discrepancies between the 

expected and the current sensory input. The next sections focus on these three types 

of prediction-error explaining how, by solving challenges (i) and (ii), the systems 

that generate them are building blocks of norm compliance behaviour. 
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PART II. Towards a Neurocomputational Model of Social Norm 

Compliance 

3. Social Representations and Bayesian Brains 

How do we acquire social representations? By minimizing reward prediction-error 

TD-Gammon came to “see,” at least indirectly, features in its world to which it was 

previously insensitive. TD-Gammon acquired a kind of perceptual skill that enabled 

it to play more and more proficiently. I wish to show in this section that people 

acquire a similar perceptual skill courtesy of the computation of richer and richer 

representations of their social situation. The computations of social representations 

are carried out by means of Bayesian inference. 

 The next Chapter focuses on the topic of neural representations and 

characterizes what neural representations could be and why we need them to explain 

norm compliance. To a first approximation, here a representation is understood as a 

neural event that carries information about some state or situation in the world. For 

now, by saying that some neural event encodes some representation I mean that some 

neurons or populations of neurons are the vehicles of some piece of information 

about some state in the world. 

 In general, a state (or a situation) is a set of variables in a process that 

generate sensory data or inputs. States, that is, cause sensory inputs. Typically such 

variables vary rapidly and continuously over time. Hence, states of the world change 

rapidly and continuously over time. In processes generating sensory inputs, some 

variables, however, change discretely and on a slower time scale. Sets of these 

discrete and slowly changing variables can be called contexts. The distinction 

between state and context is important, but for my argument it won’t make a 
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significant difference. For ease of discussion, if not otherwise specified, I use ‘state’ 

to refer to both states and contexts. 

 States in the environment stand in causal relationships between each other. 

Such causal relationships can be referred to as structure. Different relationships 

between states—different structures, that is—can be expressed in mathematical 

equations and depicted by means of graphical models (Vilares and Kording 2011). 

 The only access we have to the world is through our senses which can be 

viewed as sources of information about the states of the world and their structure. 

This information is generally corrupted by random fluctuations, noise and ambiguity. 

The same sensory information can be caused by many different states and the same 

states may cause different types of sensory information. When we act in the world, 

moreover, our motor signals are also corrupted by noise. Since intelligent and 

adaptive behaviour is tied to the ability to survive in a changing and uncertain 

environment, our cognitive system must handle sensory and motor uncertainty in 

order to extract information about which state obtains in the world. The Bayesian 

framework provides one principled way this sensory and motor uncertainty can be 

handled in order for us to behave adaptively in our world. 

 Bayesian inference is a type of statistical inference where data (or new 

information) are used to update the probability that a hypothesis is true. To say that a 

system performs Bayesian inference is to say that it updates the probability that a 

hypothesis H is true given some data D by executing Bayes’ rule: 

 [3] Prob (H|D) = Prob (D|H)Prob (H) / Prob (D) 

 We can read [3] thus: “the probability of the hypothesis given the data 

(P(H|D)) is the probability of the data given the hypothesis (P(D|H)) times the prior 
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probability of the hypothesis (P(H)) divided by the probability of the data (P(D)).” In 

the case of our cognitive system, hypotheses can consist of either structures or states 

of the world, and data correspond to sensory inputs. As our cognitive system receives 

sensory information, the probability distribution over the possible structures or states 

of the world is updated via [3]. 

 Our cognitive system can be described as having top-down and bottom-up 

signals. Top-town signals represent prior expectations about states in the world 

before we receive sensory information, formally: 

 Prob (State). 

Bottom-up signals represent sensory information conditional on prior expectations, 

formally: 

 Prob (Sensory Input | State). 

When the bottom-up signal does not make any difference to our cognitive system, 

then our expectations about the states in the world remain unchanged. No sensory 

prediction-error is generated. When the bottom-up signal makes a difference, then, 

by multiplying the prior by the likelihood and normalizing, our cognitive system can 

compute the posterior probability: 

 Prob (State | Sensory Input). 

This posterior, in turn, becomes the new prior about states obtaining in the world and 

can be further updated based on new sensory input. The execution of this updating is 

carried out by what can be called a sensory input prediction-error. If these errors in 

sensory prediction are systematically translated into changes in synaptic weights, 

then we would have a Bayesian neurocomputational mechanism of perception. The 
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Bayesian framework will be further discussed and put at work in Chapter 4 in 

relation to moral judgement. 

 The problem of how, given a structure in the sense above, our cognitive 

system can infer the hidden cause that generated sensory input is currently a major 

topic of research in computational neuroscience. There are accumulating pieces of 

evidence that indicate that the cortical network might implement Bayesian inference 

(Doya et al. 2007; Knill and Richards 1996; Rao et al. 2002). There are three sources 

of evidence. The most telling comes from psychophysical experiments where 

people’s performance is shown to approximate the Bayesian optimum. Besides 

psychophysical experiments, a number of computational models show how 

approximate Bayesian inference could be implemented in biologically plausible 

neural networks. Finally, broad features of biological sensory systems can be 

explained in a Bayesian framework. Let me expand on this last point. 

 Sensory processing takes place along a cascade of many processing stages 

over cortical areas arranged in a hierarchical structure. This basic structural feature 

would be explained by Hierarchical Bayesian models of sensory processing where 

Bayesian transformations are temporally sparse, with processing time scales getting 

progressively longer as one moves up the layers, and spatially distributed along 

multiple layers of a hierarchy (Lee and Mumford 2003). Moreover, the anatomy and 

physiology of inter-regional connections in the cortical hierarchy point to a 

functional asymmetry between forward and backward connections. Forward 

connections run from lower to higher cortical layers and seem to drive neural 

responses. Backward connections run from higher to lower layers and mainly play a 

modulatory role by affecting neural responsiveness to other inputs. This functional 
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asymmetry can also be explained within Hierarchical Bayesian models of sensory 

processing. According to one model (Friston 2008), cortical hierarchies generate 

sensory data from representations of causes at high-levels. Thus, prior knowledge 

about the causal structure of the environment would be encoded in the backward 

connections. Forward connections would provide feedback by transmitting sensory 

prediction-error up to higher levels. Perception would arise from mutually informed 

top-down and bottom-up transformations distributed along the hierarchy. 

 

3.1 Bayesian Computing of Social Representations 

What could social representations be? And how could a Bayesian mechanism 

compute them? 

 In general, a social state (or situation) is a set of social variables in a process 

that generates sensory input. Variables are social when they concern features of 

agents’ interactions. Social states are highly structured, in that the variables 

constituting a social state can be correlated in complicated ways. The most important 

of social feature is the hidden (mental) state of the other agents with whom we 

interact. The value of agents’ hidden state both affects and is affected by the social 

contexts where the agents interact. Social contexts, recall, are sets of slowly and 

discretely changing parameters. These parameters comprise both slower changing 

variables in the internal state of agents and external variables such as features of the 

physical configuration of the external environment. Examples of these features are 

the physical arrangements of buildings and of their internal spaces. Churches, 

universities, cinemas, houses, parks are all examples of social contexts. 
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 The hidden state of an agent is the most important social feature because it 

determines how that agent will interact with us, and how that agent will react to new 

sensory inputs. If we knew other agents’ state, then we would have a model of their 

behaviour. A model of their behaviour would allow us to predict their reactions to 

inputs that we or the environment provide to their sensory systems. When other 

agents also have a model of our behaviour, we have a means to adjust our behaviour 

to each other by predicting each other’s reactions to new inputs (Wolpert et al. 2003). 

 However, we don’t have direct access to other agents’ state. Our cognitive 

systems need to infer it by relying on information about the social context and about 

other social variables like facial expression, hand gestures, posture, physical 

appearance, dress, speech, tone of voice, and so on. Relying on this type of 

information is necessary for our computationally bounded cognitive system even if 

we had some direct access to other agents’ internal state. Other agents’ internal state, 

in fact, partly depends on their prior expectations about our state. During social 

interaction, their behaviour is both affecting and affected by our state. This would 

lead to an infinite hierarchy of priors in a computationally-unbounded agent. We are 

trying to infer another agent’s state who is trying to infer our state: What I expect 

another agent’s state is; what the other agent expects I expect about her state; what I 

expect another agent expects me to expect about her state, and so on. If we tried to 

infer other agents’ states by using only information about mutual expectations about 

each other’s state, then the infinity of priors about priors would make the 

computation of the state of the other agent unfeasible. 

 The approaches to this complexity can be twofold. On the one hand, our 

cognitive system can be thought of implementing finite rather than infinite prior 
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hierarchies. There is evidence on strategic thinking in economic games suggesting 

that in fact people’s hierarchy of priors about other agents’ state comprises on 

average 1.5 levels (Camerer et al. 2004). On the other hand, the Bayesian system can 

constrain inference about other agents’ state by relying more heavily on external 

social cues. All these cues need be extracted from many modalities, integrated, and 

combined with our prior expectations about the other agent’s state. Relying more 

heavily on this external information can spare the Bayesian system to execute an 

infinite number of iterations on a hierarchy of prior expectations. After we acquire 

familiarity with the structure of external social cues and with the way they correlate 

to other agents’ reactions to a given input, we need not rely on any prior about other 

agents’ prior. The external cues would tell it all. By forming social representations 

from extensive interaction with certain types of external cues, we can arrive to act as 

though we knew the hidden state of other agents. Other people’s reactions to a 

certain action would be predicted by the representation extracted from the cues 

present in the environment. 

 If this is so, then, in general, shared expectations in the form of mutual priors 

may not be constitutive of norm compliance. People’s preference to comply with 

norms would not be dependent on having the right kind of mutual expectations. It 

would rather be dependent on the right “reading” of the cues present in situations of 

social interaction. This reading would in turn depend on one’s acquaintance with 

those cues and ultimately on one’s learning trajectory in the social world. Evidence 

about autistic people’s behaviour in economic games seems to support this 

suggestion. 
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 Autistic people have an impairment in their capacity to “mentalize”: in their 

capacity to reason strategically about what other people think, feel or could do given 

their beliefs (Baron-Cohen 2000). Nonetheless, even though autistic people have 

difficulties in figuring out what other people expect, at least some central aspects of 

their moral knowledge and capacity to comply with norms appear to be spared in 

many circumstances (Blair 1996; Kennett 2002; Leslie et al. 2006, McGeer 2008). 

Just to give an example: Sally and Hill (2006) compared the behaviour of healthy 

children and adults with patients diagnosed with autistic spectrum disorder of the 

same age playing economic games. Games like the Ultimatum Game, where people 

are asked to offer or to accept/refuse a share of a certain amount of money, can be 

used to measure to what extent people comply with norms of fairness. Sally and Hill 

found that in comparison to healthy children autistic children offered significantly 

less in the ultimatum game, with nearly half of them offering zero or a share of one 

out of ten. Autistic adults, instead, showed a pattern of choices similar to that of 

healthy subjects. 

 This suggests that through extensive experience with repeated social 

interactions autistic subjects can build up social representations responsive to 

external contextual cues. The presence of certain external cues is often sufficient to 

activate such social representations, which enable autistic patients to implement the 

type of behaviour “called for” by the situation they are facing. In many situations, 

thus, autistics can comply with social norms, even though their capacity to mentalize 

with other people is impaired. An intact capacity to reason about other people’s 

expectations facilitates our acquisition of knowledge of social norms and of social 

situations that call for certain behaviour. Such a capacity, however, may in general 
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be unnecessary to enable social norm compliance. Therefore, norm compliance 

might in fact not depend constitutively on shared expectations. A statistical 

understanding of external social cues can be sufficient for people to be able to 

comply with social norms. After this detour, let’s go back to the neurocomputational 

account of norm compliance I am putting forward. 

 According to the model I am describing, the task of computing social 

representations from sensory input can be mapped onto a hierarchical Bayesian 

model, where the lowest level represents basic physical features like displacement, 

acceleration, mass, orientation, and wavelength that are combined into increasingly 

complex representations, up to higher levels that represent social states. When the 

value of the prior on state Y depends on other parameters Z at higher levels, given 

perceptual input Sx, the resulting posterior probability is: 

 [4] Prob (Y, Z | Sx) ∝ Prob (Sx | Y) Prob (Y | Z) Prob (Z) 

 This is the simplest example of a hierarchical Bayesian model. Figure 2 

illustrates a three-level hierarchical Bayesian model (modified from Shi and Griffiths 

2009, Figure 2). In the example, the function that our cognitive system would have to 

compute is the posterior probability function Prob [Z | Sx] of a high-level hidden 

state Z given sensory input Sx. In order to carry out this computation, the system 

would have to reverse a generative (or forward) model which describes the causal 

process that gives rise to data assigning a probability distribution to each step in the 

process. Given the generative model used by the cognitive system to determine how 

sensory inputs are generated, the system can infer the hidden state dependent on the 

sensory data by reversing the generative model. 
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Figure 2. A Hierarchical Bayesian Model. 
The generative model describes the causal process by which each variable is generated (in ovals). 
The inference process reverses this process (in boxes). Sx is the sensory input to the nervous 
system. X, Y, Z are neural representations at increasing level of abstraction, with X being the 
representation of some simple physical quantity like wavelength, Y the representation of some 
more abstract state like the identity of a person, and Z the representation of some social state like 
“diner in the United States.” 

 

 Now, if representations of basic physical features are encoded by spikes of 

single neurons, more complex and abstract representations are encoded up the 

hierarchy by larger populations of neurons. Thus, as suggested by Eliasmith (2003, p. 

503), we can build a “‘representational hierarchy’ that permits us to move further and 

further away from the neural-level description, while remaining responsible to it.” 

Lower-level representations would systematically depend on neural transformations 

taking place at low-levels in the hierarchy which are directly sensitive to raw sensory 

inputs. Lower-level representations would be combined in a Bayesian fashion to 

compute more and more abstract representations at higher level. The feedback, in the 

form of a sensory prediction-error carried by forward connections in these 

hierarchical Bayesian model, would provide a means to incorporate statistical 

dependencies between representations at different levels of abstractions (e.g. “If the 

person is a waitress and I am in a diner in the Unites States, then she is likely to get 
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angry if I don’t leave a tip”). Ultimately, the dependencies between the 

representations and their weights in the Hierarchical Bayesian model will vary in 

function of one’s personal learning trajectory. By interacting with waitresses in 

diners, for example, we shall learn to weigh certain cues more than others to update 

our model of waitresses’ state in that type of context. While we interact with other 

agents, our nervous system is constantly reorganizing so that the models of the social 

environment it encodes get updated, and can thus serve us as maps we can use to 

smoothly navigate the social world. 

 I conclude this section by acknowledging the speculative nature of my 

proposal. A Bayesian mechanism of sensory perception might be extended to 

account for the computation of social representations. But understanding how exactly 

social representations are learned, encoded and updated through neural activity is 

enormously difficult. The neural bases of Bayesian computations have only recently 

started to be studied for relatively simple problems of visual perception. How exactly 

the brain might perform Bayesian inference and represent uncertainty in these cases 

is poorly understood. The problem of understanding how exactly the brain might 

represent social states involves greater challenges. 

 As noted by Wolpert et al. (2003, p. 596), the degrees of freedom in the state 

space of another agent are enormous. The fact that nervous systems are similar 

across people might constrain the dimension of such state space. For we might 

bootstrap any learning of other people’s internal models by using information about 

the mappings between our actions and our own internal states. Yet it is often 

incorrect “to assign the same set of internal states to action mappings to everyone” 

(Ibid., p. 601). Learning the internal model of another person remains a daunting 
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computational task. In general, we can more easily learn a model of a system by 

identifying its range of responses to a large range of different inputs we provide to it. 

But in the case of people this is typically not feasible. “[Y]ou cannot give an 

arbitrary battery of inputs to another person for system identification purposes, as 

[…] another person has the option to withdraw communication once you have 

provided a ‘bad’ input” (Ibid.). 

 

4. Social Norm Compliance and Reinforcement Learning 

Granted that our cognitive system computes social representations in a Bayesian 

fashion, we need to explain how we use these representations to determine future 

movements or internal changes so as to engage in social norm compliance behaviour. 

We need to explain how our cognitive system tackles challenge (ii): To consume 

these representations to determine future movements or internal changes in the 

presence of, and interaction with other agents. 

 The second piece of neurocomputational machinery that would explain how 

social representations are transformed to enable us to engage in social norm 

compliance is the RL account of cortico-basal ganglia circuit. I already touched upon 

RL when I described TD-Gammon and in the Introduction. Now, I firstly describe in 

some detail the RL approach to cortico-basal ganglia activity. Then I explain how 

social reward prediction-error minimization meets challenge (ii). 

 RL offers models of optimal and approximately-optimal learning and 

decision-making in the face of uncertainty and rewards. The type of problem that RL 

models address can be defined by five ingredients (S, A, T, R, γ): 
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• States: S is the set of states which represents all possible configurations of the 

environment or of a system. 

• Actions: A is the set of actions the agent can execute in the environment or in the 

system. Actions can influence the next state of the environment and have different 

costs and payoffs. 

• State transition function: T: S x A → [0, 1] is the transition function. It specifies the 

likelihood of transitions from one state to the next in the environment. Given the 

current state s and an action a executed by the agent, T(s, a, s’) specifies the 

probability Prob (s’ | s, a) of moving to state s’. Note that the definition of T is 

typically based on the Markov assumption, according to which the transition 

probabilities only depend on the current state and action. 

• Reward function: R: S x A → ℝ is the reward function. It specifies the reward r 

obtained by the agent for executing a certain action in the current state. It models the 

immediate costs (or punishment) and payoffs (positive reward) incurred by 

performing different actions in the environment. 

• Discount factor: γ ∈ [0, 1) is a discount rate which allows a tradeoff between short-

term and long-term rewards. It specifies how much the agent cares about obtaining a 

given reward now rather than later in the future. 

 

 The goal of an agent behaving in the environment defined by S is to learn a 

policy function π which specifies a probability distribution over all available actions 

at each state such that the agent will maximize overall rewards. Goals, in general, can 

be conceived of as maximization of the integrated rewards obtained over many 

interactions within the environment. Given a change in the reward value of the 

choices of an agent in a state, the goal of the agent changes as well. The agent has a 

certain set of actions available in each state of the environment st. Actions give rise 
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to a reinforcement outcome, or reward rt, and cause a stochastic transition from state 

st to a new state st+1. Agents select actions so as to reach their goal, and maximize 

rewards over time. 

 A major problem for RL algorithms is how to balance optimally the 

“exploration” of the environment, to gather knowledge, and the “exploitation” of 

current knowledge to achieve a given goal. This problem is called “exploration-

exploitation” problem. To learn about the possible outcomes of particular actions in 

different states, the agent must try “exploratory” actions, it has not taken yet, to 

expand its knowledge-base. However, the agent must also “exploit” its current 

knowledge to makes choices leading towards its goal. Too much exploration could 

lead the agent to waste time trying to have a complete knowledge of the environment 

instead of accomplishing its task sooner with its current knowledge. Too little 

exploration could lead the agent to implement an inefficient policy. 

 There are two main families of algorithms capable of solving the RL-

problem: model-based and model-free algorithms. They differ in how they draw on 

experience to estimate quantities relevant to make choices and how they transform 

these quantities to reach a decision. Model-based algorithms draw on experience to 

build a model of the state transition and reward structure of the environment. They 

make choices by searching this model to find the most valuable action. Searching the 

model is time-consuming and computationally costly though it usually leads to 

accurate choices. 

 Model-free algorithms draw on experience to learn action values directly, 

without building and searching any model. Model-free algorithms don’t involve 

much computational cost, as they need not build or search a full map of state 
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transitions and reward structure of the environment to learn and select actions. What 

drives learning and action selection in model-free algorithms is a reward prediction-

error of the type we already encountered in the case of TD-Gammon. This signal 

allows the agent to learn the value of each state V(s) or the value of each state-action 

pair Q (s, a) from trial-and-error sampling and select the action with the current 

highest value. Yet much training is needed in order for model-free algorithms to 

learn and act upon accurate value estimates courtesy of reward prediction-error 

minimization. 

 Since model-based algorithms draw upon explicit representations of state 

transitions and reward structure of the environment to select actions, they allow 

action selection to be immediately sensitive to changes in the transition contingencies 

and in the reward structure of the outcomes of actions. For instance, in model-based 

RL the tendency to select actions leading to outcomes whose reward-values have 

decreased is immediately diminished. Model-free algorithms, whose predictions of 

value only change through reward prediction-errors and slow trial-and-error 

experience with the environment, are instead insensitive to changes in circumstances. 

They cannot adapt immediately to changes in contingency and outcome reward-

value. 

 One way to distinguish between model-based and model-free RL is in terms 

of goal-directed and habitual behaviour (Dayan 2009). Model-based RL underlies 

goal-directed behaviour, whereas model-free RL underlies habitual behaviour. These 

two types of behaviour have received a neat operationalization within research in 

animal conditioning (Dickinson 1985; Dickinson and Balleine 2002). Goal-directed 

behaviour “is defined as that is performed because: (a) the subject has appropriate 
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reason to believe it will achieve a particular goal, such as an outcome; and (b) the 

subject has a reason to seek that outcome” (Dayan 2009, p. 213). A hungry agent 

pressing a button in a vending machine to obtain food is an instance of goal-directed 

behaviour. Here the agent has appropriate reason to believe she will get food by 

selecting a certain action because, say, she has experience of the contingency 

between that action in that situation and a certain outcome. Goal-directed behaviour 

is flexible since the propensity of the agent to select a goal-directed action is 

sensitive to manipulation of either (a) or (b). Action selection, that is, is sensitive to 

(a’) changes in the contingency between action and outcome (for example, food is 

available also in the absence of the button press); and to (b’) changes in the 

desirability of the outcome (for example, when food is poisoned, or the agent is 

satiated). If behaviour is not affected by these manipulations, then it is habitual. 

Habitual behaviour is performed repeatedly, on cue, not because of a current or 

future goal. It is performed because of a previous goal and the antecedent trajectory 

of actions that were selected to achieve that goal. Habitual behaviour occurs despite 

of outcome devaluation, that is, despite of the fact that the desirability of a certain 

outcome is reduced so that it is no longer rewarding. 

 RL modelling has had profound impact on neuroscience. It has helped us to 

understand the possible computational function of specific neural signals and 

patterns of brain activity (Niv 2009). In particular, the phasic activity of dopamine 

neurons present many of the properties of the TD reward prediction-error, which is 

the engine of learning and action selection in model-free RL. In the mid ‘90s, in fact, 

it was discovered that the phasic firing of dopamine neurons in the midbrain 

substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) can be 
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described as encoding a reward prediction-error (Houk et al. 1995; Schultz, Dayan 

and Montague 1997). Like reward prediction-errors in TD-learning, the pattern of 

activity of dopamine neurons displays specific properties, as illustrated in Figure 3. 

 

 

Figure 3. 
Temporal Difference prediction-error and 
dopamine activity. 
The plots show the neural activity of 
dopaminergic neurons of monkey during a 
conditioning task. The monkeys in the 
experiment were trained to learn that a 
conditioned stimulus (CS) led to a juice 
reward (R) a few seconds later. 
On the top, is displayed a phasic burst of 
activity during the release of the unexpected 
reward (R) early in training. 
On the middle, after conditioning with a cue 
which predicted the juice reward, the phasic 
burst of activity occurred at the presentation 
of the cue (CS) instead of the reward. 

On the bottom, a dip of dopamine release when the reward was unexpectedly omitted. (Figure from 
Schultz et al. 1997) 
 

 “Dopamine neurons are […] excellent detectors of the ‘goodness’ of 

environmental events relative to learned predictions about those events” (Schultz et 

al. 1997, p. 1595). Bursts of activity in dopamine neurons occur when an agent 

receives an unexpected reward. In this case, dopamine activity would encode a 

positive reward prediction-error. After some training, once the agent has learned the 

association between a certain cue and the reward, bursts of dopamine activity occur 

when the agent is presented with the cue, as if the cue had acquired predictive value. 

Put differently, after a cue comes to predict a reward, it is the unexpected cue that 

informs you that the state in the environment is better than expected. If, at the time 

the reward obtains, the activity of dopaminergic neurons stays at baseline, then the 
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predicted reward occurred as expected, and hence no prediction-error is to occur. 

Finally, after training in the case of a cue followed by no reward, the activity 

decreases thereby signaling an error in the estimate of the value of the state following 

the cue. This dip of dopaminergic activity might translate into a negative reward 

prediction-error. Since the evidence indicates that positive reward prediction-errors 

change dopamine firing rates more than negative reward prediction-errors (Schultz et 

al. 1997), it is possible that positive and negative reward prediction-errors are 

encoded differentially in the dopamine neurons (Bayer and Glimcher 2005); another 

possibility is that dopamine codes positive and negative reward prediction-errors by 

working together with some other system (Daw et al. 2002). 

 If dopamine encodes reward prediction-errors, then the input to the basal 

ganglia received from many diverse afferents—including the medial prefrontal 

cortex, the central nucleus of the amygdala, lateral hypothalamus, the serotoninergic 

raphe—would convey information about the outcome of a given action and the 

motivational significance of the current state, respectively in terms of the reward 

yielded by the action and the value of the current state. Dopamine neurons would 

transform this information to compute a reward prediction-error that is passed on to 

striatal target areas to facilitate prediction learning and action learning by 

systematically gating synaptic plasticity. 

 Evidence that this “cartoon picture” of the computational function of 

dopamine neurons might describe some aspects of the cortico-basal ganglia circuit 

comes both from physiology and computational neuroscience (Glimcher 2011). 

Plasticity in the synapses between the cortex and the striatum seems to be in fact 

dependent on dopamine signaling from the basal ganglia (Reynolds and Wickens 
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2002). Actor-Critic RL architectures, where a “Critic” supplies an “Actor” with 

predictions of value so that it can guide action selection, capture some known basic 

aspects of the basal ganglia-striatal circuits such as the phasic activity of dopamine 

neurons and dopamine-dependent plasticity in the striatum (see e.g. Joel et al. 2002). 

According to this type of architecture, dopaminergic activity in the ventral tegmental 

area targeting the ventral striatum (or nucleus accumbens) and frontal areas (like the 

orbitofrontal cortex) are used to train predictions, whereas dopaminergic signaling in 

the subtsantia nigra pars compacta that targets dorsal striatal areas (like the putamen) 

is used to learn an action selection policy. 

 Not all forms of learning and action selection, as modeled in RL, are 

dependent on dopamine however. There is both behavioural and neural evidence for 

a multiplicity of mechanisms of decision-making, each with computational properties 

suitable to different features of real-world situations, and some that do not involve 

dopaminergic activity. For example, Daw et al. (2005) have suggested that the 

central neural system might implement not only model-free RL algorithms, but also 

model-based algorithms. They propose that activity in the prefrontal cortex is 

responsible for implementing model-based strategies (thereby supporting goal-

directed behaviour), whereas the dorsolateral striatum and its dopaminergic afferents 

would implement model-free strategies such as TD-learning (thereby supporting 

habitual behaviour). These two systems would represent “opposite extremes in a 

trade-off between the statistically efficient use of experience and computational 

tractability” (Daw et al. 2005, p. 1704). When the model-based and model-free 

strategies are in disagreement in recommending different courses of actions—Daw 

and colleagues argue—the criterion of arbitration used by the nervous system is 
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based on the relative accuracy of the evaluations of the two strategies. The relative 

accuracy of the evaluations of the two strategies depends on such factors as the 

amount of training (which increases accuracy in the model-free system) and the 

depth of search in the model (which increases computational noise, and consequently 

inaccuracy in the model-base system). 

 

4.1 RL Social Norm Compliance 

I now explain how social reward prediction-error minimization meets challenge (ii), 

and I articulate the claim that prediction-error minimization carried out by cortico-

basal ganglia circuits is a crucial component of the mechanism of norm compliance 

behaviour. 

 Prediction-error minimization of sensory input enables us to acquire social 

representations. But social representations, by themselves, do not motivate us to take 

a certain action. I suggest that the RL system bootstraps us into social behaviour and 

culture by transforming social representations so as to determine future movements 

or internal changes in the presence of, and interaction with, other people. When the 

RL system taps into social representations that concern the hidden state of other 

people, then RL system enables us to learn to comply with social norms by 

minimizing social reward prediction-error. An example can help me unpack these 

claims. 

 Imagine that you arrive in some foreign country. You have certain beliefs, or 

priors, about how situations of type Z look like and about how people typically 

behave in Z: you have priors concerning a social state. In particular, you have a prior 

over the hidden state of other people in Z. Yet you are uncertain about what 
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“grammar” governs situations of type Z in that country, as you have a low degree of 

confidence about the mapping between sensory input and social representation of Z 

in that country, you are uncertain about the state transition T (z, a, z’) and you are 

uncertain about the reward contingencies R: Z x A → ℝ. If you want to interact 

adaptively with other people in that country in the environment Z, then you must 

learn and use the “grammar” people live by in Z in that country. 

 The first task that your cognitive system has to carry out in order to learn that 

“grammar” is to update your prior over the social environment Z in light of the 

information provided by the data generated by states in that environment. This task—

I suggest—can be carried out courtesy of the Bayesian system described above. Let’s 

assume that you arrive to represent Z as a “diner” with high confidence. By relying 

on this representation, you expect that people in that environment behave in specific 

ways since Z typically correlates in specific ways to the hidden states of people in Z. 

So by relying on your social representation of Z, you expect that the environment has 

a certain causal structure. Because you are not confident about the state transition 

function, and about the reward contingencies in Z in that new country, you have to 

learn them if you wish to behave co-adaptively. Assumptions about the structure of 

the environment can reduce the space of states and actions to a learnable subset 

(Gershman and Niv 2010). More generally, your expectation about the structure 

inherent in that environment can greatly simplify your learning and decision-making 

(Kemp and Tenenbaum 2009). 

 Now, to learn these pieces of “social grammar” your cognitive system can 

rely on model-based and model-free RL systems. Given limited experience with that 
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new environment, initially you need to rely completely on an estimated model of the 

environment of the form: 

 Prob (new state | state, action). 

This estimated model of the environment can be constrained with information about 

the structure associated with your social representation of Z. Using this model you 

can perform a simulation of the consequences of your actions given current state z: If 

you take action at from current state z, then it’s likely that you will end up in state z’. 

You utilize experience with state transitions to update an estimated state transition 

function T (z, a, z’). Upon each of your choices, a state prediction-error is computed: 

 [5] δspe = 1 - T (z, a, z’). 

This state prediction-error is used to update the probability of the observed transition 

thus: 

 [6] T (z, a, z’) = T (z, a, z’) + ηδspe 

where η is a parameter controlling your learning rate. 

 Behaviour shaped by this model-based system reflects a goal-directed process 

in which a particular desired outcome, like getting along or avoiding frictions with 

other people in Z, is used to flexibly determine any complex sequence of actions 

needed to achieve it. Action selection is carried out by searching your model of the 

environment: you work out the consequences of each action available to you in z, and 

select the action that is more likely to lead you towards your desired outcome. This 

allows action selection to be sensitive to changes in the structure of the environment 

and in your motivational state. If, for example, you notice that people suddenly react 

differently than usual given z, or your motivational state is abnormal, you can 

immediately adjust your behaviour accordingly. 
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 Let’s assume that the service in that diner was good and you have to pay your 

bill. You are in state z and, by relying on your prior about the structure of the 

environment Z you believe that most people leave a certain amount of money as a tip 

after their meals in a diner. You also believe that others expect you to leave a tip 

after your meal, as you remember that people considered you miserly when you had 

failed to leave a tip in a restaurant somewhere else in the past. You wish to get along 

with people over there, or at least to avoid frictions between you and others. You 

have a number of different actions available corresponding to different amounts you 

may leave as a tip. But money is also important to you, so the number of actions you 

are willing to take into account is limited. Before choosing an action, you take into 

consideration the likely reactions of waitresses and other diners in that state. After 

your choice, you observe the new state of the environment and a state prediction 

error is computed as in [5]. This prediction-error measures the surprise in the new 

state given the current estimate of the state-action-state transition probabilities. By 

keeping track of the specific consequences of that action as well as the causal 

relationship between the action and your desired outcomes, you can learn a map of 

the environment Z. For example, by observing others—by observing what most other 

diners do in Z and how waitresses react to certain actions of diners—you learn that 

waitresses and owners of diners over there tend to get angry when your tip is lower 

than a certain amount. In this case frictions between people over there ensue. Thus 

you can arrive to understand that people expect others to take a particular action a 

when they are in state z. By taking this action, it is most likely that you will satisfy 

your desires, thereby avoiding frictions with other people. By learning a map of Z 
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and acting upon it courtesy of a model-based system, you have just learned to 

comply with a social norm. 

 Model-based socio-normative learning is supported by a distributed neural 

mechanism. “The behavioral neuroscience of such goal-directed actions suggests a 

key role in model-based RL (or at least in its components such as outcome 

evaluation) for the dorsomedial striatum (or its primate homologue, the caudate 

nucleus), prelimbic prefrontal cortex, the orbitofrontal cortex, the medial prefrontal 

cortex, and parts of the amygdala” (Dayan and Niv 2008, p. 186). Specifically, using 

functional magnetic resonance in humans, Gläscher et al. (2010) found a neural 

correlate of a state prediction-error in the intraparietal sulcus and lateral prefrontal 

cortex. This finding supports the existence of a unique learning signal in the brain, 

which, apart from guiding model-based learning and action selection, seems to drive 

learning of causal relationships between cues and consequences as well. The 

minimization of state prediction-errors in social situation Z is what drives your 

learning to comply with a social norm in Z. 

 Activity in the neural structures just singled out support “effortful” 

computational processes. Searching and updating your “map” of the environment is 

in fact computationally demanding both for working memory and for your 

“mentalizing competence.” You need to remember situations you encountered in the 

past similar to the one at hand, you need to work out what other people’s 

expectations may be, you have to consider many different actions and outcomes, and 

work out which is the best to achieve your goals. This can reduce the capacity for 

alternative computations and the smoothness of interaction, as the model-based 

system would engage valuable cognitive resources to identify which action you 
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should implement given your state and your goals. By relying on a model-based 

controller, learning and complying with social norms can be effortful and time 

consuming. 

 One crucial aspect of social-decision problems is that they typically recur. So 

with more experience with situation Z in that country, you need not to rely on the 

model-based system. After you have regularly encountered situations of type Z, the 

sensory data generated by Z have led your representation of Z to be more and more 

accurate. Thus your prior about the structure of that environment can impose further 

constraints on the state and action space, on which your learning and decision-

making systems tap. Now you can rely on a model-free system which drives learning 

and decision making by means of social reward prediction-errors encoded by 

dopamine activity. The reward is social because it is brought about by other people’s 

reactions to your behaviour: they may openly or more subtly approve or disapprove 

of your behaviour. By picking up on these rewards, you acquire ways of evaluating 

or predicting the long-term consequences associated with executing a particular 

action. You need not “mentalize” with others or search any map of the environment. 

You can come to comply with social norms automatically, quickly and at little 

computational costs. 

 The model-free system can operate effectively with little computational 

demands in familiar situations. This system operates on “cached” values that store 

experience about the overall future worth of a particular action. Such values can be 

used to implement certain behavioural responses in the face of stimuli that were 

consistently associated to a rewarding outcome in the past. Given reliable co-

variation between situational cues and certain behavioural patterns of people in Z, the 
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reward values of the behavioural responses become conditioned onto the cues. 

Features of the environment become to encode information about the reward 

structure of the environment, and you can outsource behavioural control on them. 

The cues present in the environment signal opportunities to perform particular 

“rewarding” actions. In this way, as your training with social situation Z proceeds, 

goal-directed behaviour becomes habitual and cue-driven. The representation of Z 

itself can drive behaviour with no need to work out what other people expect you to 

do in Z or to keep track of state transitions underlying Z. Features of Z, that is, 

acquire the capacity to motivate you to directly act upon your social representation of 

Z. Norm compliance in this case becomes perceptually-based. 

 Note, however, that the shift from model-based to model-free control is not 

sequential nor instantaneous, but highly parallel and dynamic. The early phase of 

model-free learning processes take place while behaviour still appear to be controlled 

by a model-based system. Tricomi et al. (2009) provide evidence of the dynamic 

recruitment of both model-based and model-free controllers during human decision-

making. In their imaging experiment they found that the dorsolateral striatum—

which is thought to support habit-learning—increases gradually, and not suddenly, 

over training in a task that initially calls for model-based control. Furthermore, 

activation of the ventromedial prefrontal cortex—which is thought to support goal-

directed behaviour by representing the value of action outcomes—was observed 

throughout all training sessions in their experiment in anticipation of reward 

outcomes. Habitual behaviour then seems to result not from repetition of a certain 

action per se, nor from a decrease in the anticipation of reward outcomes, but rather 

from the fact that extensive experience with a certain environment enhances the 
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sensitivity to cues associated with a particular behavioural response. Perception of 

environmental cues may thus directly drive us to comply with social norms. And 

complying with social norms by acting upon our perception of environmental cues 

facilitates us to behave smoothly and adaptively in the presence of others. 

 In sum: Our acquisition of the grammar that governs social situations can 

then be driven by minimization of three types of prediction-error: a sensory 

prediction-error that is produced and minimized by a Bayesian system, which gives 

rise to social representations; a state prediction-error that is produced and minimized 

by a model-based RL system; and a social reward prediction-error that is produced 

and minimized by a model-free RL system. These two RL systems enable us to act 

on our social representations so that we comply with social norms. Bayesian and RL 

algorithms may be implemented by cortico basal-ganglia circuits, where dopamine 

plays a central role in both learning and acting upon certain representations. 

 By working in concert, such a Bayesian-RL neurocomputational system 

ensures that our predictions about people’s behaviour become self-fulfilling 

prophecies. Our complying with norms is one trick we use to make these predictions 

come true in social environments. It ensures that our prior expectations about social 

sensory input are met and social uncertainty is avoided. When norm compliance 

becomes a habit, governed by a model-free system, social interaction becomes a 

fluid, flexible, context-specific, inferential response to incoming sensory input and 

their values. It enables co-adaptive, smooth interaction without access to hidden 

states of other agents in the world. 
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5. Bayesian-RL Neural Computing as Building Blocks of Norm 

Compliance. Three arguments 

I conclude this chapter by laying down three arguments for why the type of 

neurocomputational model I put forward should be used as a framework for 

understanding norm compliance behaviour. First, such neurocomputational model is 

supported by evidence from the neuroscience of social decision-making. Second, my 

neurocomputational model explains the nine core features of norm compliance 

identified in the Introduction. Third, understanding social norm compliance within a 

Bayesian-RL framework has an advantage over competing, non-computational, 

accounts since it a) warrants us from arbitrary descriptions and predictions of 

phenomena, and b) fosters integration of individual findings about social norm 

compliance from different disciplines. These three reasons are articulated in turn. 

 

5.1 Neural Evidence for a Bayesian-RL mechanism of norm compliance 

There is a substantial body of evidence that the neural circuits of the Bayesian-RL 

system I described are not only involved, but they also might be essential for the 

acquisition of and compliance with social norms (Fehr and Camerer 2007; Lee 

2008). In this section I illustrate this claim with two examples. 

 Game theory is the most widely used formal framework for studying social 

interactions. Recently, games such as the Prisoner’s Dilemma, the Trust Game and 

the Ultimatum Game have begun to be combined with technologies and methods 

from the cognitive neurosciences like brain imaging. From these studies, the theme 

common to social decision-making is the basal ganglia-based circuit. This circuit has 

widespread connections with limbic and sensorimotor mechanism. As pointed out by 
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Fehr and Camerer (2007, p.422), there is an apparent overlap between the areas like 

the orbitofrontal cortex and other prefrontal regions, and the dorsal and ventral 

striatum activated in tasks where social norms shape subjects’ behaviour, and 

activations observed in studies of reinforcement and habit learning. 

 Spitzer et al. (2007), for example, asked how the brain may process the threat 

of punishment when we decide whether or not to comply with a social norm. To 

answer this question they used fMRI while their subjects played a trust game where 

norm violation could be punished. In this game, player A (in the fMRI scanner) was 

given a sum of money which he could distribute between himself and player B who 

was anonymous. In the control condition, player B was a passive recipient of A’s 

offer. In the “punishment threat condition” player B could punish A after A’s offer 

was revealed. Player B had a monetary endowment which he could spend to reduce 

A’s payoff. The threat of punishment made people act more fairly. In the 

“punishment threat condition” people split the money close to equally. When player 

B had no recourse, the people who were given the money acted differently and gave 

away, on average, less than 10 percent of the money. 

 Individuals’ increase in norm compliance under the “punishment threat 

condition” correlated with activations in the lateral orbitofrontal cortex, right 

dorsolateral prefrontal cortex and caudate. Lateral orbitofrontal cortex activity was 

also found to be correlated with “Machiavellian personality traits” which were 

previously measured with a questionnaire. This questionnaire aimed to measure each 

subject’s combination of selfishness and opportunism. Notice that subjects with high 

Machiavellism scores gave less money in the control condition and were best at 

avoiding punishment in the “punishment threat condition”. The orbitofrontal cortex, 
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then, was most activated in the more selfish and opportunistic subjects. These results 

suggest that the role of the orbitofrontal cortex is to enable people to detect and 

evaluate social cues such as the threat of a punishment. 

 This type of result can receive a natural interpretation by appealing to 

computations of reward prediction-errors. Because BOLD signals may not directly 

reflect firing activity in a certain region, it is more appropriate to consider imaging results as 

reflecting the information that that region is receiving and processing, rather than the 

information transmitted to downstream targets (Niv and Schoenbamum 2008). So BOLD 

signals found in striatal and prefrontal cortical areas, which are primary target of 

dopamine neurons, may encode the information carried by prediction errors 

computed in the basal ganglia. 

 When target areas of reward prediction-errors are damaged from early age, 

our cognitive system might have difficulties in acquiring and acting upon social 

representations. Hence social behaviour and our capacity to comply with norms can 

be compromised. Anderson et al. (1999) studied two adult subjects whose ventral, 

medial and dorsal regions in the prefrontal cortex were damaged before sixteen 

months of age. These two patients exhibited an inability to interact adequately with 

other people and they could not retrieve explicit socio-normative knowledge. 

Because of dysfunction in cortical areas that might be necessary for Bayesian 

computation of social representation, the two subjects might never have acquired 

socially relevant knowledge in spite of extensive exposure to a variety of social 

information in their home and school environments. Treatment with social programs 

aimed at correcting their inappropriate behaviour during adolescence was 

unsuccessful. So their incapacity to comply with norms might have depended on 

incapacity to perceive and respond adequately to cues present in a given situation, 
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and this incapacity might ultimately depend on an inability to compute social 

representations. 

 

5.2 Nine features of norm compliance explained 

The Introduction identified nine seemingly core features of social norms or social 

norm compliance: 

  

 I. Norm compliance depends constitutively on shared, mutual expectations. 

 II. Norm compliance is intimately related to punishments and rewards. 

 III. Norm compliance is conditional on having the right kind of representations. 

 IV. Norm compliance does not depend on a supply of invariant general principles. 

 V. Social norms set the boundaries of “appropriate” behaviour. 

 VI. People are subject to many sources of motivations. 

 VII. Social norms have special motivational grip. 

 VIII. Complying with norms is thoughtless. 

 IX. Socialization is necessary for the development of norm compliance. 

 

A Bayesian RL model of norm compliance behaviour would explain, or explain 

away, all these features. Let me briefly consider each feature in turn. 

 

5.2.1 Why does norm compliance seem to depend constitutively on shared, 

mutual expectations? 

A person’s expectations can be described as the hidden state of that person. People’s 

hidden states are the most important social representations, as they directly determine 

how those people will interact with us and how they will react to new sensory inputs. 
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If in a given social situation we have reliable expectations about other people’s 

expectations, and other people have reliable expectations about our expectations, and 

these mutual expectations are common knowledge, this information can be used to 

behave co-adaptively. Therefore, norm compliance seems to be constitutively 

dependant on mutual, shared expectations. 

 However, as I argued in section 4.3, norm compliance is probably not 

constitutively dependent on mutual, shared expectations. We need not directly infer 

other people’s hidden state—which would be a computationally daunting task. The 

same type of information can be outsourced on external cues. By computing social 

representations from these cues, we can behave as though we acted upon each 

other’s expectations. 

 

5.2.2 Why is norm compliance intimately related to punishments and 

rewards? 

Because the capacity to act upon social representations depends on the workings of 

RL systems and model-free of RL systems. Such systems bootstrap us into a world of 

culture courtesy of social reward-prediction errors. At the level of RL systems, 

rewards and punishments are units of information which may not be identical to 

positive or negative feelings. These units of information colour by association 

otherwise neutral states in our social environment as states to be approached or 

avoided, states we care or care not about. The stamping-in of reward values to states 

in our environments is driven by prediction-errors and is ultimately a function of the 

goal of adapting one’s behaviour to other people’s behaviour. 
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5.2.3 Why is norm compliance conditional on having the right kind of 

representations? 

Because norm compliance depends on perceptual skills. We acquire social 

representations courtesy of a Bayesian system. That we have representations of the 

“right” kind means that the perception of a given social situation yielded by the 

Bayesian system is such that co-adaptive, fluid behaviour is likely to ensue if we act 

upon this perception. When we misperceive a given situation, the probability of 

social misbehaviour arises. Failing to correctly perceive a social situation is likely to 

cause a failure in norm compliance thereby engendering frictions with other people. 

Ultimately, in a given situation, a social representation is “accurate,” or “right” in so 

far as the information it encodes reliably correlates with other people’s hidden states 

in that situation. 

 

5.2.4 Why does social norm compliance not depend on a supply of invariant 

general principles? 

Because our social world is a dynamic, complex system. Features which function as 

drives of social norm compliance in one situation at a time need not function as 

drives of norm compliance at all in another situation or at another time. The way 

these features function at a given place and time can be described by means of a 

general principle. But this does not mean that people are always motivated to comply 

with a social norm at a given time and place because of that general principle. Two 

classes of rules by which we navigate this world consist in Bayesian inference and 

RL algorithms. These rules enable us to perceive certain social patterns at a given 

time and constrain the ways our social world changes over time because of the way 
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we perceive each other and act in the social world. Note that in general changes of 

our social world, or cultural evolution, can occur as effect of many factors: we may 

experiment with new behaviour; we may consciously start to imitate somebody else; 

we may instruct our children in certain ways; there may be random fluctuations of 

people’s beliefs and expectations; by migrating and meeting other people certain 

beliefs and expectations may be introduce or eliminated in a given place and time. 

 

5.2.5 Why do social norms set the boundaries of “appropriate” behaviour? 

The basal ganglia-based reward system is a device for leading agents to approach 

certain things rather than others. It estimates the reward value of acting upon one 

stimulus-representation rather than another, and thus it prepares a certain motor 

response. The reward value of a given representation is in function of the goal of co-

adaptive behaviour. Pursuing rewarding social states is one way we come to comply 

with norms and thereby we can behave co-adaptively and fluidly. So by pursuing 

rewarding social states, we behave “appropriately.” When we fail to pursue social 

states with high reward value, it is likely that we fail to comply with social norms. 

Thus we may behave “inappropriately.” Social norms and appropriate (inappropriate) 

behaviour can be described in function of the reward-value of social states in a given 

environment. 

 

5.2.6 Why are people subjects to many sources of motivations? 

Because our learning and decision-making are driven by multiple systems with 

different computational properties, and different types of circumstances favour 

different systems. Combining different systems can thus be advantageous given the 
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characteristics of the diverse environments where we behave. I have described two 

systems for learning and decision-making: model-based and model-free RL. The 

circumstances that favour model-based system are typically those in which we do not 

have sufficient experience such as when we face a new social situation in a foreign 

country. Because social-decision problems recur, when we are familiar with a certain 

situation, behaviour tends to be driven by model-free evaluations. 

 

5.2.7 Why do social norms have special motivational grip? 

Our social nature compels us to pursue co-adaptive, frictionless, fluid behaviour with 

other people. This goal has high-value to us. Because complying with norms is one 

prominent way we have devised to pursue this, social norms have special 

motivational grip. Furthermore, norm compliance serves best the goal of co-adaptive, 

frictionless social behaviour when it becomes a kind of habit. Habits have special 

motivational grip in that they are resistant to devaluation. So when norm compliance 

becomes a habit, it acquires extra-motivational grip in that it is resistant to 

devaluation. 

 

5.2.8 Why is norm compliance thoughtless? 

Because norm compliance is paradigmatically governed by a model-free, habitual 

system that involves little computational cost in terms of neural resources and time. 

When norm compliance becomes a cue-triggered, habitual response, action-selection 

is computationally cheap and automatic. In this sense norm compliance becomes 

thoughtless: we comply without thinking about it. 
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6.2.9 Why is socialization necessary for the development of norm 

compliance? 

Because social information is necessary for the Bayesian system to yield social 

representations and for the RL systems to implement certain actions so that we can 

comply with social norms. Malfunctioning of the Bayesian system or development in 

situations of social deprivation can engender incapacity to acquire complex social 

representations on which we have to rely to comply with social norms. 

Malfunctioning of the RL systems or being raised with a lack of caring relationships 

can engender incapacity to being sensitive to the reward values of the social states of 

a certain environment. Thus, although we may still have a data-base of social 

knowledge, we may fail to act upon it, as we may fail to attach any reward value to 

social representations thereby becoming motivationally insensitive to social 

representations. 

 

5.3 Virtues of a Neurocomputational Perspective 

There are already empirically informed models of social norms and social norm 

compliance. Both Bicchieri (2006) and Sripada and Stich (2006)—just to name two 

works on social norms carried out by philosophers—develop frameworks for the 

study of norms and norm compliance by relying on findings from social psychology, 

experimental economics, cognitive neuroscience and anthropology. 

 Sripada and Stich’s (2006) model is a “boxological” model of the mechanism 

underlying the acquisition and implementation of norms. Their model describes a set 

of functionally individuated components (black boxes) underlying such mechanisms, 

the processes they go through, and their organization. Bicchieri (2006) proposes a 
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model of norm compliance as the product of expected utility maximization by 

socialized, boundedly rational agents. Some concerns can be raised about both 

approaches. For example, it is controversial whether a boxological approach can in 

fact yield genuine explanations, as the boxes it postulates are not identified with 

concrete structures and internal states of a system; moreover it is not obvious to what 

extent “rational reconstructions” such as Bicchieri’s accurately model the psychology 

of individuals, as it is unclear to what extent the parameters posited in their utility 

functions pick out features of people’s psychological make-up. 

 These models, nonetheless, remain valuable tools for further research on 

norms. For at least they offer us with frameworks that can be used to understand 

known phenomena about social norms and to test new hypotheses about norm 

compliance behaviour. What would a neurocomputational model of norm 

compliance bring to the table? 

 There are several advantages of expressing a model of norm compliance in 

equations which aim to provide approximate descriptions of some of the features of 

its neurobiological mechanism. I focus on two virtues of neurocomputational models. 

First, the inferences we draw about the target system represented by the model are 

typically non-arbitrary. Second, neurocomputational models foster integration of 

disparate phenomena studied in different disciplines. 

 If the inferences drawn from a model about its target system are arbitrary, 

then that model cannot reliably be used to describe, predict or explain certain 

phenomena concerning the target system. Self-consistency is a warrant against 

arbitrariness. Inconsistent models cannot be (approximately) true descriptions of 

some features of a mechanism. So if neurocomputational models are used to extract 
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non-arbitrary descriptions of some features of their target systems, they must be self-

consistent. Neurocomputational models are expressed in equations which require a 

precise, quantitative, self-consistent formulation. So neurocomputational models can 

be used to extract non-arbitrary descriptions of some features of a mechanism 

(Abbott 2008). 

 It might be difficult to extract non-arbitrary, quantitative predictions about the 

outcomes of a mechanism in different situations from boxological models or 

“rational reconstructions” of norm compliance. In comparison to these two 

approaches, neurocomputational models are more explicit and precise in their 

commitments. The mathematical formulation of some ideas about the functions 

carried out by neural circuits underlying norm compliance behaviour allows us to 

completely work out the consequences of the model. It allows us to formulate 

quantitative predictions that can shed light on the neural or the informational 

constraints of the mechanism of norm compliance that the model represents. By 

incorporating knowledge of such constraints and of mechanistic details, 

neurocomputational models can make informative predictions that generalize across 

situations. This is one way neurocomputational models of norm compliance can 

become genuinely explanatory in that they can come to describe the relationship 

between neural responses and the stimuli that evoke them on the basis of known 

physiological features of our cognitive systems. These types of descriptions 

correspond to mechanistic explanations which allow us to identify which organized 

structures and processes are essential for norm compliance behaviour. 

 With their search for basic principles that could guide us through the 

complexity of the neural circuits and cognitive functions of social norm compliance, 
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neurocomputational models foster integration of disparate phenomena and theories 

in different fields. Linking various phenomena studied in different disciplines in the 

behavioural sciences can constitute a fruitful discovery heuristic and a force towards 

inter-theoretic coherence. 

 The basic principles used to account for a given set of phenomena can be 

used to understand a distinct set of phenomena by suggesting concepts to make sense 

of those phenomena, and new hypotheses that could be tested empirically. If the 

same basic principles account for two distinct sets of phenomena studied in different 

fields, then those two sets might not be disjoint and information about one set could 

be used to inform, constrain, reconfigure and displace existing taxonomies used in 

both fields. A neurocomputational model of norm compliance could rely on the same 

basic principles used to account for solutions in cognitive domains such as 

perception, motor control and learning (Wolpert, Doya and Kawato 2003; Behrens et 

al. 2009). By relying on basic computational principles such as Bayesian inference, 

scientists can use related research in one field to stimulate discovery at another. The 

use of the same computational principles can generate research that leads to the 

development of hypotheses about the connections between particular models 

employed to account for distinct phenomena like motor control and social 

interaction. Uncovering and developing connections between different phenomena 

studied in different fields amount to carrying forward a co-evolutionary research 

ideology, whereby research in one field can draw on concepts, empirical findings, 

and methodological tools from another field (Churchland 1986, Ch. 5). 

 Findings relevant to norm compliance from behavioural economics, social 

psychology, social neuroscience, biology, anthropology and artificial intelligence 
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could be understood within one explanatory framework grounded in “basic 

principles” like efficient coding, Bayesian inference, adaptive optimal control, and 

generative models (Abbott 2008). Such an explanatory framework could serve as a 

bridge between models and micro-theories of the various disciplines. Cross-

disciplinary links will force overlapping theories and models to cohere with each 

other (on the value of unification in the behavioural sciences see e.g. Gintis 2007). 

As explained by Pat Churchland, “[t]he unity of science is advocated as a working 

hypothesis not for to sake of puritanical neatness or ideological hegemony or hold 

positivistic tub thumping, but because theoretical coherence is the ‘principal criterion 

of belief-worthiness for epistemic units of all sizes from sentences on up’ (Paul M. 

Churchland 1980). Once a theory is exempt from having to cohere with the rest of 

science its confirmation ledger is suspect and its credibility plummets. To excuse a 

theory as hors de combat is to do it no favors” (P.S. Churchland 1986, p. 376). 
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CHAPTER 2. 
A Plea for Neural Representations 

 

NICE GUY EDDIE 
Okay, everybody cough up green for 

the little lady. 
Everybody whips out a buck, and throws it on the table. 

Everybody, that is, except Mr. Pink. 
NICE GUY EDDIE 

C'mon, throw in a buck. 
MR. PINK 

Uh-uh. I don't tip. 
NICE GUY EDDIE 

Whaddaya mean you don't tip? 
MR. PINK 

I don't believe in it. 
NICE GUY EDDIE 

You don't believe in tipping? 
 

Both philosophical and ordinary explanations of social norm compliance generally 

make fundamental reference to beliefs and preferences (or desires).1 But how should 

we understand the claim that people comply with a norm because they possess the 

right kinds of beliefs and preferences? The previous Chapter articulated a 

subpersonal explanatory framework and claimed that neural representations are an 

essential ingredient of explanations of norm compliance. Does this mean that we 

should understand beliefs and preferences in terms of neural representations? This 

chapter defends two claims: 

 1) The explanation of paradigmatic cases of norm compliance behaviour 

requires the appeal to representations. Hence, if computation requires representation, 

we would have independent support for explaining norm compliance from a 
                                                 
1 Decision theorists tend to talk of ‘preferences’ instead of ‘desires.’ In what follows I use ‘preference’ 
and ‘desire’ interchangeably, as my argument does not hinge on any distinction between them. 
Chapter 6 will further elaborate on the notions of preference and desire. 
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neurocomputational perspective since both explanation of norm compliance and 

neurocomputational explanations would require representations. 

 2) The appeal to belief and preference (or desire) in explanations of norm 

compliance is more fruitfully understood as an appeal to neural representations rather 

than to behavioural dispositions. In this sense, people comply with norms because 

they possess the right kinds of neural representations. 

 It is important to clarify at the outset the dialectic underlying this chapter. I do 

not presuppose the existence of beliefs and preferences (or desires) as folk-

psychological states. Rather, I explicate how the notions of belief and preference are 

employed in computational neuroscience in terms of neural representations, and 

examine their explanatory purchase. My argument is as follows: If beliefs and 

preferences are fruitfully understood in terms of neural representations, and positing 

neural representations gives non-trivial explanatory purchase with respect to norm 

compliance, then there is reason to appeal to neural representations in explanations of 

norm compliance. The argument presupposes that “explanatory relationships are 

relationships that are potentially exploitable for purposes of manipulation and 

control” (Woodward 2003, v). Accordingly, I presuppose that the adequacy of the 

explanatory relationship between belief-preference and norm compliance can be 

assessed in terms of the type of control and manipulations of norm compliance that 

such a relationship can facilitate. 

 There are five sections in this chapter. Section 1 sets the stage by rehearsing 

Cristina Bicchieri’s (2006) theory of norms. Bicchieri extends the seminal 

contributions of David Lewis, Philip Pettit and Bob Sugden in analyzing social 

norms by using the tools of belief-preference rational choice theory. In order to 
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explain norm compliance, Bicchieri conceives of beliefs and preferences as 

behavioural dispositions. Her account is useful to introduce different views about 

what it takes to have a belief or a preference. In particular, her account is useful to 

highlight the explanatory relationships between norm compliance behaviour and 

different ways to conceive of belief and preference. 

 Section 2 starts to put into focus the second claim defended in the chapter: it 

describes a case-study from computational neuroscience, and explicates the notions 

of belief and preference as neural representations typically assumed in computational 

neuroscience. 

 Section 3 puts forward a first argument for a version of representationalism. 

This argument relies on Clark and Toribio’s (1994) notion of “representation-

hungry” problem domain, and aims to show that explanation of paradigmatic cases of 

norm compliance behaviour requires the appeal to representations. 

 Section 4 tackles the objection that norm compliance does not consist in 

behaviour in representation-hungry domains by engaging with some aspects of 

Hubert Dreyfus’s anti-representationalism. 

 Section 5 articulates an independent argument for neural representationalism. 

If to have a belief or a desire is to have some neural representations rather than 

certain behavioural dispositions, then belief-desire explanations of norm compliance 

are especially apt to facilitate control, manipulation or prediction. Hence there is 

reason to prefer representationalism over certain versions of dispositionalism as an 

account of the beliefs and preferences featuring in explanations of norm compliance. 

 A few caveats before getting started: my target is neither Bicchieri’s account 

of social norms nor belief-desire “folk” psychology. For, on the one hand, Bicchieri’s 
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account remains silent about representations. On the other hand, the issue here does 

not concern the folk concepts of ‘belief’ and ‘desire;’ it concerns actual mental states 

and their explanatory relationship with norm compliance. My target is not any 

dispositionalist account of belief/desire either. I do not claim that any type of 

dispositionalist view of belief and desire is inconsistent with (neural) 

representationalism. I construe dispositionalism so as to better highlight the 

explanatory fruits of neural representationalism as a way to understand belief and 

desire. My general target is any anti-representationalist view according to which 

cognition and behaviour need not, and sometimes are not, to be explained in terms of 

representational structures and transformations over such structures. 

 

1. Belief, Preference and Norm Compliance 

As already noticed, Cristina Bicchieri offers a “constructivist” account of social 

norms, “one that explains norms in terms of the expectations and preferences of 

those who follow them” (Bicchieri 2006, p. 2). The basic idea is that “the very 

existence of a social norm depends on a sufficient number of people believing that it 

exists and pertains to a given type of situation, and expecting that enough other 

people are following it in those kinds of situations” (Ibid.). Social norms are social, 

for Bicchieri, because we prefer to comply with them only if we believe that most 

members of our society will do the same and we believe that most members of our 

society expects us to follow that norm. 

 What is important for my purposes is her claim that “the belief/desire model 

of choice […] does not commit us to avow that we always engage in conscious 

deliberation to decide whether to follow a norm. We may follow a norm 
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automatically and thoughtlessly and yet be able to explain our actions in terms of 

beliefs and desires” (Ibid., p. 3). Bicchieri’s argument for this claim is the following. 

 

 P1. Norm compliance behaviour does not generally involve deliberation. 

 P2. Deliberation involves “beliefs and desires of which we are aware” (p. 6). 

 C1. Norm compliance behaviour does not generally involve beliefs and desires of 

which we are aware. 

 C2. If beliefs and desires feature in the explanation of norm compliance behaviour, 

then they do not generally feature as conscious mental states (i.e. states of which we are 

aware). 

 P3. A dispositionalist account of beliefs and desires does not conceive of beliefs and 

desires as conscious mental states. 

 C3. If beliefs and desires feature in the explanation of norm compliance behaviour, 

then they can be conceived of as “dispositions to act in certain way in the appropriate 

circumstance” (p. 6). 

 

 Bicchieri begins by pointing out that most of the time we follow norms 

thoughtlessly, by relying on heuristics of which we are unaware. Heuristics are rules 

of thumb that can solve cognitive problems in little time and with little information. 

Heuristics, for Bicchieri, can underlie norm compliance by activating default rules 

cued by contextual stimuli. From this perspective, “norm compliance is an automatic 

response to situational cues that focus our attention on a particular norm, rather than 

a conscious decision to give priority to normative considerations” (Ibid., p. 5). 

 Bicchieri then contrasts the heuristic route to behaviour with deliberation. 

“Deliberation—Bicchieri writes—is the process of consciously choosing what we 
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most desire according to our beliefs” (Ibid., p. 6). If beliefs and desires are conscious 

mental states, then—Bicchieri goes on—they cannot play a role in the heuristic route 

to norm compliance, and they cannot generally play an explanatory role in norm 

compliance, as norm compliance is generally automatic, effortless and unconscious. 

Beliefs and desires, however, need not be conscious states. Therefore they can 

feature in our explanation of norm compliance even when behaviour is guided by 

heuristics. To motivate her position, Bicchieri embraces a dispositional account of 

belief and desire according to which beliefs and desires are dispositions to act in 

certain ways under appropriate circumstances. She characterizes what is to believe 

and to prefer thus: “to say that someone has a belief or preference implies that we 

expect such motives to manifest themselves in the relevant circumstances” (Ibid.). 

 Dispositionalism allows us to rely on preferences and beliefs for the 

explanation of norm compliance both when norm compliance is the outcome of 

deliberation and when it comes from the “heuristic route.” So, the fact that beliefs 

and desires should often feature as unconscious mental states in the explanation of 

norm compliance suggests that we can conceive of them as behavioural dispositions, 

since a dispositionalist account of belief and desire does not commit us to see belief 

and desire as mental states of which we are aware. Note that Bicchieri doesn’t claim 

that we should embrace dispositionalism; she doesn’t claim that what is essential to 

believing and preferring is the disposition to act in certain ways under certain 

circumstances. All she claims is that this type of dispositionalism is a natural way to 

conceive of beliefs and desires as unconscious states. 

 But, if dispositionalism is not the only available option to make room for 

unconscious beliefs and desires in the explanation of norm compliance, then we may 
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consider independent explanatory payoffs of alternative accounts of what it is to 

believe and desire something. The remainder of this section argues that a 

dispositional account of what is to believe is not needed to explain norm compliance. 

 

1.1. Dispositions and Representations 

For a dispositionalist what is essential to belief and preference is a certain pattern of 

potential and actual, verbal and nonverbal behaviour under appropriate 

circumstances. “For someone to believe some proposition P is for that person to 

possess one or more particular behavioral dispositions pertaining to P” 

(Schwitzgebel 2006/2010). In this sense, to say that Mr. Pink believes that P or 

desires that Q is on a par with saying that salt is soluble, or that your supervisor is 

irascible, or that glass is fragile. Dispositionalists are committed to the claim that 

having internal representations is not what is essential to possess mental states. 

Internal representations are only relevant to the extent that they underwrite 

behavioural dispositions; they do not ground explanations of behaviour in terms of 

belief and preferences. 

 Dispositionalism, in comparison to the view that believing (and preferring) is 

to having internal representations, seems to have a difficulty in distinguishing 

between those cognitions that are explicit, those that are implicit and those that are 

tacit (Haugeland 1998, Ch. 7). Appealing to representations, instead, provides a 

useful way to put into focus such distinctions. 

 One cognitive system has the explicit belief that P (or desire that Q) if it 

explicitly possesses cognitive states that carry the right sort of information tokened in 

it. If beliefs and desires are understood as representations, then one has the explicit 
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belief that P (or desire that Q) if some representational structure with the right sort of 

content is stored in the cognitive system. For example, Mr. Pink has the explicit 

belief that everybody is leaving a dollar on the table at the restaurant if a 

representation with that content is tokened in his cognitive system in the right way. 

 Beliefs and desires are implicit if they are not actually tokened in the system, 

but are swiftly derivable from explicit beliefs and desires in the cognitive system. In 

terms of representations, the distinction between explicit and implicit belief depends 

on whether the right representation is tokened in the system or not. Yet, as swiftness 

is a matter of degree, “there will not be a sharp line between what one believes 

implicitly and what, though derivable from one’s beliefs, one does not actually 

believe” even implicitly (Schwitzgebel 2006/2010). For example,2 Mr. Pink may 

want to leave a big tip for the waitress and believe that big tips impress waitresses. 

Mr. Pink held those mental states explicitly, but he doesn’t draw any logical 

implication—though his system could swiftly draw it. Thus, we can say that Mr. 

Pink also wants, implicitly, to impress the waitress. 

 ‘Tacit’ is used differently by different authors (Cf. Dennett 1982; Engel 2005; 

Fodor 1968). Here, by ‘tacit cognitions’ I refer to a kind of competence built into the 

system and evinced from the behaviour emerging from the workings of the whole 

cognitive system. Tacit cognitions are neither explicitly tokened nor implied by 

explicit representations. For example, if people’s performance in a number of 

perceptual tasks approximates Bayesian inference, it can be said that those people are 

sometimes tacit Bayesian observers. Any one component of their cognitive system 

                                                 
2 The following parallels an example in Haugeland (1998, p. 143). 

117 

 



need not map onto a single component of the Bayesian model. Instead, it is the 

cognitive system as a whole that performs Bayesian inference. 

 ‘Tacit,’ ‘explicit’ and ‘implicit’ are to be distinguished from ‘conscious’ and 

‘unconscious.’ Conscious beliefs are those that occur when people consciously 

entertain them. In representational terms, when Mr. Pink is asked to leave one dollar 

for tip, he accesses and retrieves some of the relevant representations stored in his 

cognitive system. He then consciously entertains the belief that all the other guys are 

leaving a dollar for tip. Thus, we can become conscious of beliefs and desires of 

which we were previously unaware. In a different sense, some mental states or 

processes are unconscious just in case they cannot be accessed. Thus, even if Mr. 

Pink tried to uncover the types of algorithms implemented by his brain activity when 

he learns a new social norm, he wouldn’t be able to have access to them. Identifying 

such processes would take deep, systematic investigation at both the personal and the 

subpersonal level. 

 There can be explicit beliefs that are inaccessible to consciousness. In 

representational terms, one has explicit beliefs that are inaccessible to consciousness 

if there are representations tokened in the system carrying the right sort of 

information, but that cannot be accessed or retrieved. Chomsky (1980), for example, 

argues for this possibility when he talks about the representation of a grammar in our 

head. In the sense employed here, these types of unconscious, inaccessible beliefs are 

not tacit since they are actually tokened in the system. 

 One last important distinction, which can be drawn in terms of 

representations, is between occurrent and dispositional mental states. We may say 

that Mr. Pink dispositionally believes that most people leave a tip in restaurants if he 
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has a representation with that content stored in his head but that representation has 

currently not been retrieved for active deployment for reasoning or decision-making. 

When, given eliciting circumstances, that representation is accessed and retrieved for 

active thinking and decision-making, Mr. Pink occurrently believes that most people 

leave a tip in restaurants. It should be clear then that “one needn’t adopt a 

dispositional approach to belief in general to regard some beliefs as dispositional in 

the sense here described” (Schwitzgebel 2006/2010). Bicchieri’s argument seems to 

understand beliefs and desires as behavioural dispositions. But to have beliefs and 

desires as behavioural dispositions is distinct from having representations that are 

dispositional viz. non-occurrent. To say that most of our beliefs and desires are 

dispositional does not entail a dispositionalist view of what it takes to believe and 

desire. One can maintain that representations of some sort are essential to believe and 

desire and still acknowledge that most of these representations are unconscious or 

dispositional. 

 Bicchieri suggests that a dispositionalist account of belief and desire fits 

nicely with the heuristic route to norm compliance. But “the heuristic way to 

behaviour” fits nicely also with a representationalist account of belief and desire 

since representationalism can also account for unconscious beliefs and desires. 

Furthermore, unlike dispositionalism, it seems that representationalism can make 

good sense of the distinctions between explicit, implicit and tacit cognitions. 

Therefore, a dispositionalist account of belief and desire is not required to allow for 

the fact that we are not aware of most of our beliefs and desires; and, in comparison 

to representationalism, it has probably more difficulty in drawing important 

distinctions between different types of cognitions. 
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2. Beliefs and Preferences in Computational Neuroscience 

Nice Guy Eddie’s decision to leave a tip after his meal is an example that involves a 

social preference. Mr. Pink’s decision to not leave a tip is also an example that 

involves a social preference. Theories of social preferences are concerned with how 

people make decisions when the outcomes of those decisions impact the outcomes of 

other people. In the last decade, a wealth of behavioural and neural data has been 

collected about how people make social decisions. Such data, together with the ideas 

of social preference and bounded rationality, are beginning to be modeled and put at 

work in computational neuroscience. I now describe a case study from this field in 

order to explicate one way to understand beliefs and preferences. 

 Ray et al. (2009) used a Bayesian framework to model important aspects of 

social decision-making. They focused on a multi-round, sequential Trust Game. In 

each round of a Trust Game, an agent (the investor) decides how much money out of 

an initial endowment to send to another agent (the trustee). This amount is multiplied 

by some factor—e.g. three—and then the trustee decides how much of the money 

received to send back to the investor. Both investor and trustee know that the game 

terminates after a certain number of rounds. The standard game-theoretic prediction 

for a single, anonymous interaction between two narrowly self-interested, rational 

agents is for the investor to send nothing since the investor should anticipate that the 

trustee will not reciprocate. Experimental results, however, are inconsistent with this 

prediction. The average investor sends a significant amount of the initial endowment, 

and most trustees reciprocate (Camerer 2003). 
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 Ray and colleagues accounted for these results by building a generative 

model of agents’ behaviour in the Trust Game. Recall that generative models 

describe processes that are assumed to give rise to some data. With a generative 

model in hand, one can compute the probability distribution of some quantity that 

depends on the data. The data, in Ray and colleagues’ study, consist in the other 

agent’s decisions about how much money to send. The quantity dependent on such 

data is the agent’s own decision policy. 

 Ray et al.’s model is informed by two facts about agents’ cognitive profile. 

First, people don’t have knowledge of the outcomes of the alternatives open to them: 

people may have some expectations about how a certain game may evolve, but they 

are typically uncertain as to whether such expectations will turn out to be true. 

Second, people lack knowledge about the types of people they are dealing with: 

people don’t know whether others with whom they have only some acquaintance are 

trustworthy. Ray and colleagues’ model assumes that agents have initial beliefs about 

the type of other agents; all players have prior beliefs about other players’ initial type 

and update their beliefs by implementing Bayesian inference as choices take place. 

 The types of agents in this model are defined by (i) to what extent they are 

averse to unequal outcomes and (ii) their level of strategic thinking. The idea of 

inequality aversion is that people often dislike inequality even when they benefit 

from the unequal distribution (Fehr and Schmidt 1999). So a type of agent in Ray 

and colleagues’ model is partly defined by how much the agent dislikes 

disadvantageous inequality (how much she feels envy when somebody else gets a 

payoff greater than hers) and by how much she dislikes advantageous inequality 

(how much she feels guilty when she gets a payoff greater than others). The agent’s 
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level of strategic thinking together with inequality aversion fully defines the agent’s 

type. Strategizing about what others will do involves thinking about what they think 

you will do. This sort of thinking can be iterated—so one can think about what others 

think she thinks others think … and so on. Zero-level players choose completely at 

random. One-level players think that other players are zero-level, and thereby choose 

randomly in response to them. Players with two-level strategic thinking think that 

others are one- and zero- level players, and thereby choose accordingly, and so forth. 

As explained in chapter 1, people seem to do only a few steps of iterated thinking; 

usually they just make one step: they decide as though others are choosing randomly. 

A few make two steps and decide as though others think that they are choosing 

randomly (Camerer et al. 2004). 

 On Ray and colleagues’ model each agent makes some initial guess about the 

other agent. The model generates an estimate of what the decisions in the game 

should be given incoming data: it generates a decision policy. Each player can then 

compare actual and expected decisions and, if the fit is good, infer that her 

assumptions were probably right. Each player is seeking to maximize her expected 

pay-off, given their preferences and beliefs about other players’ types and her level 

of strategic thinking. 

 One of the important features of Ray and colleagues’ model is the separation 

between a “utility (or value) signal” and the signal underlying the inferences 

generated by the model. As Ray and colleagues (2009) explain, “these distinct 

signals as to the inner workings of the algorithm […] can be extremely useful to 

capture neural findings.” This separation into distinct signals naturally lends itself to 

an interpretation in terms of preferences about payoffs in the game and beliefs-
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dynamics about other agents. The integration of such signals enables the agents to 

track changes in their social world and behave adaptively. So, given these details, 

how are beliefs and preferences understood in Ray and colleagues’ computational 

model? 

 If neurocomputational models such as the one built by Ray and colleagues 

describe the mechanism (or some aspect of the mechanism) of social decision-

making, beliefs and preferences just are probability distributions. Social interactions, 

as typically understood in computational neuroscience, consist in the transmission of 

messages between agents about their hidden states. Such messages influence the 

beliefs and preferences of other agents; they affect, that is, the probability 

distributions encoded by an agent’s nervous system. Agents’ beliefs and preferences 

change as they gather more data given rise by the unfolding of the social interaction. 

 In Ray and colleagues’ model, agents’ beliefs are probability distributions 

over the possible types of other players. Agents’ preferences are probability 

distributions over actions given the state obtaining in the world, which in this case is 

determined by the agent’s type and the sequence of plays in the game. If one’s 

beliefs are probability distributions over the possible types of the other agent, then 

they become more peaked as more observations are made about the other agent’s 

behaviour. One’s confidence in some particular hypothesis correspondingly 

increases. If one’ preferences depend on her type, her beliefs about other’s types and 

on the state of the game, and preferences are probability distributions over possible 

actions, then such distributions become more peaked as more observations are made 

about the other player’s decisions and about the history of the game. One will 

correspondingly be more likely to select a certain action. 
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 If neural systems deal with uncertainty and encode probability distributions, 

then my neural representations of your type and of the kind of game we are playing 

causally affect my neural representation about the utility (or value) of different 

payoffs distributions in the game. Such neural representations will be used to 

generate behaviour. 

 

2.1 What Could Neural Representations Be? 

Neurons carry information by generating patterns of action potentials, or spikes. 

Spike patterns carry information about internal and external variables. Cognitive 

capacities, including the capacity to comply with norms, are enabled by 

transformations of such patterns of neural activity. 

 If information is understood in terms of the statistical dependency between a 

source and receiver (Shannon 1948), then to say that neural spike trains carry 

information is to say that neural signals are statistically dependent on internal and 

external variables. Neural signals not only are statistically dependent on some source, 

but they also reliably correlate with their sources: neural signals and the variables 

with which they correlate seem to constitute a code. 

 “A neural code is a system of rules and mechanisms by which a signal carries 

information” (deCharms and Zador 2000, p. 614). This code specifies functional 

relationships between properties of neural activity and properties of internal or 

external variables. Although it is controversial what the precise rules and 

mechanisms underlying neural coding are (deCharms and Zador 2000; Dayan and 

Abbott 2001, Ch. 1), neural representations could be individuated as the constituents 

of the neural code. More precisely, neural representations could be individuated by 
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encoding and decoding mappings between two “alphabets” (Eliasmith 2003). And 

neural representing could be described as a two-stage encoding and decoding 

process. 

 Neural encoding refers to the mapping of some variable s onto the response of 

one or more neurons, r. It specifies the functional dependence of some neural 

property on some property of a stimulus. Action potentials are the basic units of the 

encoding alphabet. Neural decoding refers to the estimation of some property of 

some stimulus from some property of some neural response. It specifies how some 

value of some physical variable s can be readout from a neural response pattern r. 

Physical properties are plausibly the basic units of the decoding alphabet. The 

estimate ŝ yielded by the decoder is used by the system to generate behaviour. 

 To get to grips with the concept of neural representation as encoding-

decoding mappings, consider perceptual visual beliefs. Visual neurons code physical 

properties with their activity in response to stimuli. The action-potential firing rates 

of neurons in the primary visual cortex reliably co-varies with and selectively 

responds to properties such as spatial location, orientation, and direction of motion of 

visual stimuli (Hubel and Wiesel 1962). Neural encoding provides a mapping from 

stimulus to neural response. Given a stimulus, neural encoding determines how 

neural activation in a certain brain area transduces the stimulus in function of some 

non-neural variable or parameter. The standard tool to describe how neural activity 

depends on some physical property is the neural tuning curve: a plot of the average 

firing rate of the neuron in function of relevant stimulus values. 

 Neural decoding provides a mapping from neural response to stimulus. From 

neural tuning curves, it is possible to extract an estimate of which property is coded 
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by a particular neural activation. The tuning curve to a feature of a stimulus—e.g. the 

orientation of a bar—is the curve describing the average response of a neuron in 

function of the values of the feature. A decoder determines how the information 

carried by neural activity population is used by the rest of the system. Given a certain 

neural activation, the study of neural decoding amounts to estimating how likely it is 

that a certain stimulus is in the environment—e.g. amounts to determining the 

orientation of a bar of light given a pattern of activation in the primary visual cortex. 

The decoding corresponds to the task performed by neurons downstream when they 

read off the spike trains that are their inputs. 

 As Chapter 1 suggested, the neural code might comprise a “representational 

hierarchy”: complex, abstract representations might be encoded at higher levels in 

the hierarchy computed in function of low-level representations and some generative 

model. Transformations of some variable s to certain behavioural responses or 

internal changes—possibly driven by Bayesian inference—might be implemented 

along an encoding-decoding cascade. Provided that structural and mathematical 

relationships between levels in the hierarchy are defined, it might be possible to 

systematically relate higher-level neural representations to their lower level 

components (Cf. Eliasmith 2003). 

 In light of Ray et al’s (2009) work, when agents play a trust game, some of 

their high-level neural representations carry information about other players’ types, 

some carry information about the action to implement given the current state of the 

game. With their concerted activations and transformations, these neural 

representations lead to adaptive behaviour in response to other agents’ behaviour. 

Provided one player’s pattern of neural response, neural decoding can yield 
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probabilities for each value of s—where s spans over types of opponents—that such 

value has led to the observed firing pattern r, and then selects one appropriate value 

ŝ. How exactly the decoder estimates the stimulus that has led to a certain firing 

pattern and which value ŝ it yields depend on the information available to the system 

(e.g. on the detail of the generative model it could use) and on how the overall 

estimation errors are weighted (i.e. the type of loss function used by the system). 

 For example, under conditions of minimal information, if s is a parameter 

spanning over types of opponents, r is a spike train, and we only know the encoding 

mapping Prob (r|s), then one possible way to readout the spike trains is by means of 

maximum-likelihood decoding. The maximum-likelihood estimate ŝ is the stimulus 

that has maximal probability of having caused the response r, that is ŝ = argmaxs 

Prob (r|s). 

 Note that a probabilistic way to characterize the decoder underwrites the fact 

that neurons are noisy, have graded responses to stimuli, and that might also encode 

the uncertainty associated with a stimulus with their firing rates. In a sense, it is 

misleading then to say that neurons are detectors that determine, for example, that 

either one agent is trustworthy or not: “Neurons don’t ‘detect’ things (i.e. they don’t 

determine that there is an edge or there isn’t one), they respond selectively to input, 

the more similar the input, the more similar the response” (Eliasmith 2005, p. 118). 

 Having hinted at what neural representations could be, I now argue that norm 

compliance should be explained by appealing to representations; then I turn to argue 

that norm compliance should be explained by appealing to neural representations. 
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3. The Indispensability of (Neural) Representation. Or “Representational 

Hunger” Strikes Again! 

The argument for why norm compliance should be explained by appeal to 

representations has two premises. 

 

 P1. Internal representations give us unique explanatory leverage regarding 

agents’ behaviour in “representational-hungry” problem domains. 

 P2. Paradigm cases of social norm compliance consist in behaviour in 

“representational-hungry” problem domains. 

 C. Therefore internal representations give us unique explanatory leverage 

regarding paradigm cases of social norm compliance. 

 

 The argument is deductively valid. Premise 1 involves the notion of 

“representational hungry” problem domain. This notion is elaborated by Clark and 

Toribio (1994). As Clark and Toribio define it, a problem domain is 

“representational-hungry” just in case “one or both of the following conditions apply: 

 1. The problem involves reasoning about absent, non-existent, or 

counterfactual states of affairs. 

 2. The problem requires the agent to be selectively sensitive to parameters 

whose ambient physical manifestations are complex and unruly (for example, open-

endedly disjunctive)” (Ibid., p. 419). 

 Clark and Toribio argue persuasively—I think—that internal stands-in, or 

representations, are necessary to successfully tackle representational-hungry problem 

domains, and hence representations give us unique explanatory leverage regarding 
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agents’ behaviour in such domains. Here I take P1 for granted, and focus on P2 

which is more controversial. I argue that conditions 1 and 2 apply to paradigm cases 

of norm compliance, and therefore paradigm cases of norm compliance consist in 

behaviour in “representational-hungry” problem domains. As paradigm cases I focus 

on the type of trust game modeled by Ray and colleagues, and on a more ordinary 

case. If norm compliance paradigmatically takes place in representation-hungry 

problem domains, then internal representations give us unique explanatory leverage 

regarding paradigm cases of social norm compliance. Let’s consider the trust game. 

 To trust someone implies some degree of uncertainty: You take the risk of 

betrayal. You repay another’s trust even though that may go against your interest to 

maximize your profit. When you trust strangers you don’t know whether they are 

motivated only by a selfish desire to maximize their own profit. Finding out the type 

and beliefs of other agents in a trust game requires an ability to anticipate their 

actions and to reason counterfactually. Condition 1 then applies to this case. 

Anticipation and counterfactual reasoning, as argued by Clark and Toribio, seem to 

require the use of inner resources. Ray and colleagues’ generative model is one type 

of inner resource which enables an agent to behave appropriately even in absence of 

explicit inputs specific to other players’ type. Hence Trust Game- types of situations 

are “representational-hungry.” 

 Consider this other situation. There is this social norm in football: When a 

player goes down injured, the ball is usually kicked out of play to allow the player to 

receive treatment. If the ball is kicked out of play by the opponents, a further norm is 

to return the ball to them. These norms have never been formalized in the rules of the 

129 

 



game, but furious reactions are likely to ensue if somebody fails to comply with 

them. 

 Imagine now that you are playing an important football game. You notice that 

a football player from the opponent team looks as though he is injured. You have the 

ball and you can set up a team-mate for a goal. Should you put the ball out of play? 

The decision to pass the ball to your team mate or to throw it out to allow the 

opponent player to receive treatment takes fractions of seconds. It is very likely to be 

unconscious and driven by heuristics. Nonetheless, counterfactual reasoning and 

anticipation seem to play an important role in this occasion as well. You need make 

a rapid judgement concerning the actual state of the opponent. You need find out 

whether the opponent is in fact injured. You need judge what could happen if you 

played on and the opponent was in fact injured; you need anticipate the reactions of 

the opponents if he failed to put the ball out of play. Therefore, abilities for 

counterfactual reasoning and anticipation—if probably unconscious and driven by 

heuristics—seem essential to your decision to comply with the norm. 

 The same problem domain in football requires that the player who is to make 

a decision is “selectively sensitive to parameters whose ambient physical 

manifestations are complex and unruly” (Ibid.). Imagine that the ball has been kicked 

out of play because a player went down injured. It is time for a throw-in. It is known 

that you give the ball back, if an opponent player deliberately kicked the ball out of 

play because a team-mate of yours was injured. One condition for the player to 

comply with this norm is that he is sensitive to abstract, relational properties such as 

the value of “fair-play,” “reciprocity,” or “cheating.” The physical manifestation of 

such relational properties as “fair-play” is typically “complex” and “unruly,” since in 
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general whether a pattern of physical features in a social situation counts as “fair-

play” depends on other features obtaining or failing to obtain in that situation, and on 

the learning trajectory of the agents involved. So, people do not seem to rely on 

invariant general rules when they need to identify a certain pattern as “fair-play.” 

 In order to track such types of properties, one needs to rely on internal 

representations. Given his previous experience in the world of football, the football 

player has developed a capacity to track those abstract properties across situations. 

Clark (2000b) calls this capacity representational re-coding, whereby complex, 

abstract relations are re-coded into simple, usable objects—more on representational 

recoding in Chapter 5. Given a diverse array of perceptual inputs, courtesy of 

representational re-coding one can compress that array into an item whose content 

corresponds to an abstract property. The item can be stored in memory and retrieved 

for further processing without the need to store and retrieve all of the diverse 

perceptual inputs underlying it. Before the throw-in under those circumstances the 

player’s sensitivity to such properties as “fair-play” is important to explain his 

behaviour. Such sensitivity depends on representational re-coding. Since the idea of 

internal representation is essential to this kind of re-coding, it follows that the idea of 

internal representation is essential to explaining the player’s behaviour. The problem 

domain that our football player faces is an instance of “representational-hungry” 

problem. 

 If my accounts of the Trust Game and of two social norms of fair-play in 

football are correct, then paradigm cases of social norm compliance consist in 

behaviour in “representational-hungry” problem domains (P2). It follows from the 
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argument stated at the beginning of this section that internal representations give us 

unique explanatory leverage regarding paradigm cases of social norm compliance. 

 

4. Representational-Hungry? On Dreyfus’s Anti-Representationalist 

Contrary to what I just argued, according to Hubert Dreyfus, paradigm cases of 

social norm compliance do not consist in behaviour in “representational-hungry” 

problem domains. 

 Dreyfus claims that “some central cases of intelligent behavior do not involve 

mental representation” (Dreyfus 2002b, p. 414). And social norm compliance, most 

of the time, falls among those “central cases of intelligent behaviour.” Paradigmatic 

cases of social norm compliance, for Dreyfus, consist in non-representational hungry 

behaviour. If Dreyfus is right, then the argument laid down in section 3.1 is unsound. 

 Dreyfus (Ibid., p. 417-418) asks us to consider a situation in the elevator. The 

elevator stops at the seventh floor and two people step in. The people already in the 

elevator shuffle and move around until they are at appropriate distance from the 

others. This is a paradigmatic case of social norm compliance. According to Dreyfus, 

the situation just described is not hungry for representation. Rather, it is an instance 

of “skillful coping” which amounts to a spontaneous responsiveness to the demands 

of a situation. Skillful coping does not require either deliberation or attention, and 

importantly does not involve the representation of goals. If norm compliance is 

typically an instance of “absorbed skillful coping,” then we need and should not 

explain norm compliance with recourse to representations. 

 Dreyfus draws on Merleau-Ponty’s work to account for paradigm cases of 

norm compliance in terms of the intentional arc and the tendency to achieve maximal 
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grip. In order to give flesh to these two notions, he borrows from certain features of 

neural networks modelling and from Walter Freeman’s (1991) attractor theory of the 

brain dynamics underlying perception and action. For Dreyfus, “neural networks 

exhibit crucial structural features of the intentional arc,” and Freeman’s account 

might underlie maximal grip (Dreyfus 2002a, p. 413). The resulting explanatory 

framework is one where representation plays no role. 

 Dreyfus’s argument assumes a particular concept of representation, which is 

not the one I put forward. Now, after having introduced the notions of the intentional 

arc and of maximal grip, I explain why representational hungry domains need not 

involve representations as conceived of by Dreyfus. 

 

4.1 Representations After All? 

“The intentional arc—Dreyfus explains—names the tight connection between body 

and world” (2002a, p. 367). The intentional arc describes a relationship between 

agent’s skills and the world: when agents acquire a skill, becoming experts in doing 

something, the skill manifests itself spontaneously given certain solicitations of a 

situation. The intentional arc does not depend on representations stored in the head: 

skills underlain by the intentional arc are finer and finer dispositions to respond to 

cues in the world. This kind of body-world relationship grows via extensive 

interaction with other agents and by “dealing with things and situations.” 

 “Maximal grip names the body’s tendency to respond to these solicitations in 

such a way as to bring the current situation closer to the agent’s sense of an optimal 

gestalt” (Ibid., pp. 367-368). Maximal grip describes the process whereby the agent 

comes to “see” how to be drawn by environmental solicitations to realize a particular 
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goal without representing the goal. Dreyfus argues that the way neural networks 

learn vindicates the notion of intentional arc, and that Freeman’s attractor theory 

might be one way to flesh out the sub-personal mechanism of getting a maximal grip 

on a situation. 

 Dreyfus’s reliance on neural networks and dynamical system theory is 

indicative of how he conceives of representation. Dreyfus associates the notion of 

representation with the “classicist” idea of strings of symbols tokened in a system, 

which are isomorphic to propositional attitudes (e.g. Fodor and Pylyshyn 1988; 

Newell and Simon 1972). But such data structures are only one way of understanding 

representation. Representational hungry problem domains need not require this type 

of data structure. 

 Both connectionists and Freeman (1991) speak in fact of representations 

although they don’t have in mind the classicist notion. Andy Clark (2002b) 

commenting on Dreyfus raises exactly this worry: attractor states in dynamical 

systems and high-dimensional weight spaces of neural networks can be understood 

“as new powerful kinds of internal representations” (p. 386). The way I characterized 

neural representations in terms of encoding-decoding mappings fits with the way 

neural networks learn and with the way brain uses attractors. If this is so, then social 

situations like the one in the elevator described by Dreyfus can still be hungry for 

representations, although non-classicist representations. In order to establish this 

point, I consider Dreyfus’s response to Clark’s worry. 

 Dreyfus (2002b) has two complaints. He claims that the use of representation 

in neural networks and dynamical system theory is unwarranted. In those contexts 

the notion of representation is too weak “to do the job of showing that particular 
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brain states are correlated with particular items in the world, let alone that they have 

content, that is, that they represent such particular items under an aspect” (p. 420). 

The first complaint has to do with the quality of the correlation between neural 

activation and physical features in the world. The second has to do with how neural 

activations can represent external stimuli under an aspect—e.g. seeing a carrot under 

the aspect nourishment. 

 A characterization of neural representation in terms of encoding-decoding 

provides us with an answer to Dreyfus’s first concern. The input to a neural network 

is encoded by a certain pattern of activation. From a given neural activation, the 

system decodes information about the input. Although neural networks do not store 

particular rules for dealing with particular inputs, they give the same or similar 

outputs to same or similar inputs after training. Encoding-decoding mappings can be 

formalized as probability distributions, which can reliably specify correlations 

between particular neural activations and particular physical features in the world. 

Hence, the notion of representation I put forward is strong enough “to show that 

particular brain states are correlated with particular items in the world” (Ibid.). The 

same argument applies in the context of brain dynamics. 

 Dreyfus (2002b, p. 420) recognizes that Freeman himself claims that the brain 

uses attractors to represent causes in the sensorium (but see Freeman and Skarda 

1990). Dreyfus, however, asks us to resist representation-talk in this case. He points 

out that “when the rabbit smells and successfully eats a carrot, it forms a new 

attractor, and that attractor, in an appropriate context, will henceforth cause the rabbit 

to go for a carrot, this is just a complex physical event” (Ibid.). But here Dreyfus is 

describing an example where a particular brain state may be correlated with a 
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particular feature of the world. At a minimum, the attractor in the rabbit’s brain is 

capable to stand-in for the carrot, say when the carrot is not here and now, the rabbit 

is hungry and is directed towards carrots. In light of this, “[w]hat makes one want to 

use representation talk” is not as Dreyfus’s claim “that the complex event of the 

system relaxing into an attractor basin is isomorphic with the agent’s experience of 

being drawn towards an equilibrium” (Ibid.). Rather, it is the fact that appeal to 

representation is justified, minimally, when an entity stands-in for some possible 

state of affairs. Since the attractor in the rabbit’s brain stands-in for the carrot and is 

consumed by the system via decoding processes, we want to use representation talk 

also in the context of systems dynamics. 

 Dreyfus’s second complaint has to do with content. He wonders how 

representations in neural networks and system dynamics can represent “particular 

items under an aspect.” For example, can the attractor in the rabbit’s brain represent 

carrots under the aspect nourishment? Understanding neural representations as 

encoding-decoding mappings suggests one way in which the attractor in the rabbit’s 

brain does represent carrots as nourishment. Decoding determines the relevance of 

the encoding for the system. It specifies how neural activations are used by the 

system to produce behaviour. Particular activations decode certain features of the 

world in a larger system of encodings and decodings. Within this larger system, 

along an encoding-decoding cascade the representation of the carrot is probably 

associated with the representation of a high-level property like nourishment. 

Properties such as edible and dangerous may also be encoded in neural activity. 

Encodings of such properties might depend on encodings-decodings of “low-level” 

properties like “displacement,” “mass,” and “orientation” (Eliasmith 2003, p. 502). 
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There is no reason why the attractor in the rabbit’s brain cannot represent carrots 

under the aspect nourishment. Representation as encoding-decoding, therefore, might 

also do the job of showing that particular items are represented under an aspect. 

 Dreyfus has not established that the mechanisms that might underlie the 

intentional arc and maximal grip are representation-free. Even if the intentional arc 

and maximal grip are in place in situations where people comply with norms, those 

situations can still be representational-hungry. Let me expand on this point by 

reconsidering the situation in the elevator where a person steps in. 

 

4.2 Shuffling in the Elevator. Systemic Dynamics and Causal Couplings 

Why do people in the elevator shuffle until they get to an appropriate distance? For 

Dreyfus this is an example of “spontaneous absorbed coping.” Dreyfus’s explanation 

is that after repeated interaction with others in elevators, people have acquired a 

disposition to respond to the solicitations of that kind of situations by getting to an 

appropriate distance. Nobody can specify that distance. Nobody is trying to get to 

that distance. People in the elevator are drawn to get there by responding to the 

whole [elevator-person A-person B- person C- etc] situation. They do not respond to 

particular features. They do not represent the person who is stepping in as a separate 

feature of the situation. “The embodied agent—Dreyfus explains (2002b, p. 420)—

doesn’t think of doing what is solicited either. He just let himself be drawn to lower a 

tension and straightway finds his body doing what feels appropriate, without needing 

to, or being able to, represent some desired goal.” Dreyfus’s explanation is couched 

in terms of a perception-based fine-grained disposition in an extended body-

environment system. This explanatory framework has two features: (i) embodied 
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agents respond to the whole situation, (ii) embodied agents coping with their 

situation do not have any representation of their goal. 

 The main motivation for (i) is causal coupling. That agents are coupled with 

their surroundings means that the agents continuously both affect and are affected by 

what surrounds them. Coupling is usually taken as reason in support of the 

arbitrariness of distinguishing brain-centered cognitive systems from the 

environment where they are embedded (Beer 2008). Causal coupling would 

constitute a reason to doubt that the situation in the elevator is representational-

hungry. 

 To understand the interactive complexity underlying skilful coping—runs 

Dreyfus’s argument—we should adopt a “wholist” perspective. According to this 

argument, the situation in the elevator is best explained in terms of dynamics of the 

whole system [elevator-person A stepping in-other persons in the elevator] evolving 

towards an adaptive equilibrium. The bottom line is that paradigmatic cases of norm 

compliance may not involve either a behavioural or a neural ability, but systemic 

dynamics. If they essentially involve systemic dynamics, then it is mistaken to view 

such situations as involving specific representational components. 

 However, in cases of skillful coping we still have good, independent reason to 

ask about information-processing components representing specific features of a 

situation. A brain mechanism underlying the capacity to respond to certain external 

solicitations—e.g. a person stepping in the elevator—is taken to be coupled to the 

whole body-environment because we have a representational pre-understanding of its 

role: we have a pre-understanding of the type of information the mechanism could 

carry and manipulate. Without this kind of understanding it would be problematic to 
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identify where to apply the dynamicist analysis—whether at the level of brain-body-

environment system, or of body-neuromechanical interactions, or neural interactions. 

For there wouldn’t be an independent rationale to understanding why we should 

(de)couple possible components of the system in certain ways rather than others. 

 The second feature of Dreyfus’s account of the elevator case is (ii) that the 

embodied agent coping with her situation does not have any representation of her 

goal. Dreyfus starts with a puzzle. During skill-acquisition agents modify their 

behaviour in function of their results. When the action results in a failure, then 

something needs to be revised. But in order to adjust one’s behaviour in function of 

failure and success, some representation of a goal seems to be necessary. Such a 

representation specifies a target-state that determines appropriate adjustment in the 

agent’s behaviour. If this is so, then it seems that all skilful action requires goal-

representation. If one is acting skillfully, then there is something she is trying to do. 

If there is something she is trying to do, then she is pursuing a goal. Therefore, goal-

representations seem to be necessary for skillful action. 

 Dreyfus resolves the puzzle by rejecting the first conditional. It is not always 

the case that if one is acting skillfully, there is something she is trying to do. As 

mentioned above, Dreyfus claims that “[i]n general, we don’t have to try to comport 

ourselves in socially acceptable ways” (Dreyfus 2002b, p. 418). His argument is that 

we experience such kinds of situations “as drawing the movements out of us” 

(Dreyfus 2002a, p. 380). In “the experience of acting” the direction of causation is 

not from a represented goal to the world. It is the world itself that initiates certain of 

our bodily movements drawing us towards appropriate actions: No goal-state is 
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pursued in norm compliance. Success in complying with a social norm is assessed as 

experience of optimal gestalt. 

 In essence, Dreyfus’s argument is this: For some skillful action like some 

cases of norm compliance we experience the situation as drawing the appropriate 

action out of us. If this is so, then for some skillful action we do not experience our 

goals as causing our action. We experience that the direction of causation goes from 

the situation to the action itself. Hence we do not experience our goals. Therefore, 

the representation of goals is not involved in some skillful actions like certain 

instances of norm compliance. 

 I think this argument is a non-sequitur. Assume that we do not experience 

norm compliance as caused by the pursuit of a goal. Assume also that sometimes we 

cannot formulate the goal that we may pursue in certain contexts. For example, we 

cannot tell what is the socially appropriate distance to maintain in an elevator. From 

these, it does not follow that the representation of a goal is not involved in norm-

compliance. It only follows that the representation of a goal in certain instances of 

norm compliance is not explicit and conscious. In such cases, the representation of 

the goal may be tacit, unconscious, or dispositional as characterized in Section 1. 

 The explanatory leverage given by goal-representations in the case of norm 

compliance has to do with both the anticipatory and evaluative nature of goals. On 

the one hand, goals indicate potential future states of affairs towards which we are 

driven. They govern our behaviour towards the realization of that state. On the other 

hand, goals indicate valuable states of affairs. They allow us to evaluate the current 

state of affairs in function of the target-state. When a person steps in a crowded 

elevator, goal-representations provide us with a natural explanation of why people 

140 

 



start to shuffle until they reach a certain position. Each agent may have the goal of 

keeping a socially appropriate distance from the others. The current state is 

confronted with that goal. If the state fails to fit the goal, a prediction-error ensues 

and some adjustment is required. The goal-representation enables the agent both to 

anticipate what might happen if the target state fails to be reached and to evaluate 

that certain possible states are “bad” whereas others are “good.” 

 

5. Explanatory Virtues of Neural Representations 

Ramsey (2007) argues that it is always possible to treat a system as representational, 

but it is never necessary. Ramsey puts forward the challenge to specify what the 

positing of representations could give us in terms of non-trivial explanatory 

purchase. I now address this challenge by comparing representationalism with 

dispositionalism and focusing on the manipulation and control afforded by neural 

representations over behaviour. 

 Suppose that dispositionalism is the right way to think about belief and 

desire. Suppose that beliefs and desires understood as behavioural dispositions enter 

an explanatory, causal relationship with norm compliance behaviour. What is the 

type of control and manipulations of norm compliance behaviour that such a 

relationship can facilitate? To what extent understanding beliefs and desires as 

behavioural dispositions facilitates us to control, manipulate, and predict norm 

compliance? 

 There are two distinct questions here. The first has to do with metaphysics 

and asks whether beliefs as behavioural dispositions can be causes. The second has 

to do with explanation and asks whether beliefs understood as behavioural 
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dispositions carry extra explanatory value in a complete causal explanation of norm-

compliance behaviour. After some brief considerations on the first issue, my focus 

will be on the second question which is related to Ramsey’s challenge. 

 

5.1 Dispositions as Causes? 

Let’s distinguish between dispositions and their categorical bases. Fragility, 

irascibility, and perhaps expectations are examples of dispositions. The categorical 

basis of the fragility of a glass is its physico-chemical structure. If expectations are 

dispositions, then their categorical bases are certain brain states. Granted such a 

distinction, the argument for why dispositions cannot cause behaviour is analogous 

to Kim’s causal exclusion argument about mental causation (Kim 1998). If all 

physical effects have sufficient physical causes and no physical effects are caused 

twice (that is, there are no overdetermining causes) by distinct categorical and 

dispositional causes, then there cannot be dispositional causes. 

 Pursuing this line of argument, Prior, Pargetter and Jackson (1982) argued 

that dispositions do nothing. It is the categorical basis of a disposition that causes 

things. If this argument is sound and if beliefs are just dispositions, then beliefs do 

nothing. In one note Schwitzgebel (2002, note 18, p. 273)—who describes and 

defends a dispositional account of belief—acknowledges that one may be concerned 

that a dispositionalist view “doesn’t allow for beliefs to cause behaviour.” He 

suggests that one way to deal with the problem is to identify “believing with being in 

a certain categorical state.” Hence belief would cause behaviour. However, by 

following this strategy, it seems that believing will have more to do with having the 

right kind of internal categorical basis than with being disposed to do certain kinds of 
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things. Still, even if dispositions are not causes, and hence beliefs understood as 

dispositions are not causes, it does not follow that beliefs as dispositions would not 

give us some leverage in causal explanations. 

 

5.2 Manipulation and Control. Representations’ Explanatory Purchase 

There is good evidence that social norm compliance can be affected by what an agent 

expects others would do in a similar situation. An agent’s tendency towards norm 

compliance is also affected by other kinds of expectations: by what one believes 

others think she ought to do in that type of situation. Agents’ beliefs and expectations 

in some social situation can be manipulated by providing them with information 

about other agents’ judgements and behaviour in the same type of situation. By 

manipulating their beliefs and expectations, agents’ tendency to comply with a given 

norm in that situation can change (e.g. Bicchieri and Xiao 2009). 

 Assume that belief and preference are just dispositions to behave in certain 

ways under appropriate circumstances. Suppose that in a Trust Game the information 

provided to the players causally affect their disposition to reciprocate. Since 

preferences are dependent on beliefs in Ray et al.’s (2009) model3 (recall that in their 

model beliefs about your type influences my preferences about payoffs in the game), 

the provision of a certain type of information about the type of trustee causes the 

investor to be disposed to prefer, for example, to invest nothing. The investor’s 

beliefs are manipulated by the provision of a certain type of information, which 

affects the investor’s preferences about payoffs. If to prefer something to something 

                                                 
3 Also in Bicchieri’s (2006) account of norm compliance preferences are dependent on beliefs. On her 
model, an agent’s preferences are conditional on his or her own beliefs regarding other people’s 
actions and expectations. So one prefers to follow a norm if he or she believes that certain conditions 
occur. 
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else is just the disposition to do what realizes the former thing rather than the latter, 

we should say that information about the trustee’s type causes the investor “to be 

disposed to have a disposition” to invest nothing. This last expression sounds 

strange, as it seems that one cannot be “disposed to have a disposition.” But on a 

dispositionalist understanding of beliefs and preferences that is the way we should 

explain the investor’s decision to invest nothing under certain circumstances. The 

investor’s preferences would be second-order mental states elicited by beliefs. Here 

is a possible explanation of the investor’s behaviour. 

 The investor prefers to invest nothing in the game because she expects that 

the trustee will not reciprocate. She expects that the trustee will not reciprocate 

because she has received a certain type of information about her type. The ‘because’ 

is causal in both statements. The first ‘because’ connects two dispositions: an 

expectation and a preference. The second connects a type of disposition viz. an 

expectation, and a piece of information. In the second statement we can individuate 

the cause as a physical process viz. the transmission of messages about the trustee’s 

history of plays. This way of individuating the cause enables us to manipulate it: for 

example we can destroy the message before it reaches the investor or we can modify 

it by adding noise. 

 There are two questions that this explanation leaves unanswered. Why, or in 

virtue of what, does that message about the history of the game cause the investor to 

have a certain expectation? Why, or in virtue of what, does the expectation cause the 

investor to have a certain preference? The answers to these questions are important if 

we want to intervene causally on the investor’s expectations and preferences. 
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 To make the point stick, think about this question: “Why did your mug break 

when Courtney dropped it?” You can answer: “Because it was fragile and Courtney 

dropped it.” The problem with this explanation is analogous to that of the 

explanation above: it doesn’t tell us what we should do if we wanted to prevent the 

mug from breaking when dropped. It doesn’t facilitate us to individuate how we 

should intervene if we wanted to manipulate or control the effects of dropping the 

mug. Another possible answer to the question above is: “The mug broke because it 

has such and such atomic structure and Courtney dropped it.” This explanation 

places us in a better position to manipulate and control the effects of dropping the 

mug. For example, we can manipulate the atomic structure of the mug in order to 

control the effects of dropping the mug. There is no appeal to fragility here. Still we 

have provided a satisfactory explanation that can also facilitate manipulations and 

predictions regarding the behaviour of the mug. 

 It may be complained that routinely when ordinary people wish to control the 

effects of dropping a mug they intervene on fragility by protecting the mug with 

some packaging material. People don’t intervene on its micro-structure. Hence, when 

it comes to intervention the disposition-free explanation given above is irrelevant. 

This complaint, however, is misguided. 

 Mugs and other fragile objects are ordinarily protected with packaging 

material when they are shipped or transported. Under those circumstances we cannot 

use mugs as drinking cups. We have to unwrap them to use them as drinking cups. 

Mugs routinely break when they are used as drinking cups. Thus, if we intervene on 

the fragility of the cup by wrapping it with packaging material, the mug is useless as 

a drinking cup. That kind of intervention would prevent us from using the mug as a 
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mug. Instead, by intervening directly on the micro-structure of mugs, not only they 

could be shipped safely, they could also be used as drinking cups. The bottom line is 

that by explaining something we want to understand mechanisms. One of the reasons 

we want to understand mechanisms is that we should intervene on mechanisms, if we 

wish to control and manipulate effectively certain phenomena. 

 We ascribe dispositions as global properties of a whole system. So, the 

fragility of a glass is not localized in any distinct part of the glass. A glass is fragile 

throughout all its parts. The atomic microstructure of the glass instead can be 

inhomogeneous. It is because of the microstructure of the glass that we can say that 

the stem of a wine glass is more fragile than the bowl. By individuating where the 

glass has a certain structure, we can say that that part is more fragile than another and 

we can intervene locally on that part. To say that beliefs and desires are global 

dispositions of a whole system our belief-desire explanations would not facilitate us 

to identify where we should intervene in a cognitive system to make a difference in 

its behaviour. This is not to claim that beliefs and desires must be localized in some 

particular part of the system. To have a belief or a desire is to have some neural 

representation which typically arises from the activity of distributed, and yet 

identifiable, populations of neurons. 

 If we wanted to intervene causally on an agent’s mental states, would an 

explanation couched in terms of neural representations be a better guide than an 

explanation couched in terms of dispositions? Ray and colleagues’ case helps us 

answer this question in an affirmative way. The social utility function that they 

implemented represents the agent’s mental states in a way that “mandate probing, 

belief manipulation and the like” (Ray et al. 2009). An explanation couched in terms 
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of dispositions has difficulties, in comparison to an explanation couched in terms of 

neural representations, to provide us with an answer to the question why, or in virtue 

of what, a player manipulates another player’s beliefs. The ‘why’ here is causal. An 

answer to this question will enable us to individuate where and how to intervene to 

cause certain effects. 

 Suppose that two human subjects are playing a Trust Game. Some neural 

representations encode preferences in the form of utility (or value) signals. Other 

neural representations encode beliefs; neural computations might underlie belief-

dynamics in the form of inferential schemes embedded in a generative model. 

Assume that we appeal to these neural representations to explain why a player is 

playing fair. The two separate signals of utility and inference in the algorithm 

underlying Ray and colleagues’ model map onto the activity of identifiable neural 

populations. Suppose that Ray and colleagues’ model enables us to estimate in real 

time brain activity and to decode the information therein represented. The 

information encoded in neural representations can then be extracted and manipulated 

by altering some parameters of the algorithm carried out by the system. After 

manipulation the information can be fed back to the players’ brain courtesy of 

appropriate techniques. If successful, the manipulation would lead to changes in 

brain activity and behaviour. 

 Research in computational neuroscience and brain machine interface is 

beginning to make the scenario just described less science fiction than it can seem. 

Kawato (2008a) illustrates how the combination of computational models, brain-

network interfaces –which non-invasively estimate neural activity and read out the 
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information carried by neural activity—and decoding algorithms can foster what he 

calls manipulative neuroscience. 

 Kawato (2008b) reports on a project where a monkey’s brain activity could 

control a humanoid robot across the Pacific Ocean. In this project the pattern of 

activity of certain populations of neurons encoded in a monkey’s motor cortex were 

recorded while the monkey was engaging in a motor task in a lab in the United 

States. The kinematic features of the monkey’s motions were decoded from neural 

firing rates and sent via an internet connection in real time to a robot located in 

Japan. Courtesy of this signal, the robot could execute locomotion-like movements 

similar to those performed by the monkey. Another instance of manipulative 

neuroscience is the remote radio control of insect flight. Sato and Maharbiz (2010) 

review studies where insects in free flight are controlled courtesy of implantable 

interfaces. Courtesy of an implant for neural stimulation of an insect’s brain coupled 

with low power radio systems, the insect can be put into motion, stopped and 

controlled while it is in flight. In light of this type of research, manipulative 

neuroscience “has already moved beyond mere science-fiction fantasy in the domain 

of sensory reconstruction and central control repair as exemplified by artificial 

cochlear and deep brain stimulation” (Kawato 2008b, p. 139). It does not seem to be 

a mere whim of fantasy to expect that non-trivial choice behaviour in social contexts 

might be manipulated in similar ways. One of the reasons behind this type of 

research is to show that we do understand some aspects of behaviour well enough to 

carefully manipulate it. 

 The notion of a neural representation, it seems, yields non-trivial 

understanding here. To begin with, if behaviour depends on generative models, then 
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agents rely on assumptions—that is, on representations—about how cues concerning 

e.g. other agents’ types and decisions are generated. Agents transform these 

assumptions so as to determine which behaviour they should implement if they want 

to behave adaptively. For example, if the goal of the nervous system of agents 

playing the Trust game is to estimate the hidden variable “opponent’s type,” then, 

assuming that a particular opponent’s type generated the observed cues, the agent has 

to invert her generative model, and estimate the hidden variable other player’s type 

by combining the cues she observed. 

 Secondly, all the successful cases of manipulative neuroscience involve some 

aspect of the notion of a neural representation. Manipulations and control of agents’ 

behaviour, in fact, leverages encoding-decoding mappings between a neural alphabet 

and a physical alphabet. Identification of neural representations enables one to 

dissect them into components at lower-levels or to recombine them in ways sensitive 

to the information they carry. Furthermore, identification of neural representations 

could facilitate us to guide agents’ behaviour in the absence of the properties those 

representations are about. The notion of a neural representation, therefore, seems to 

be necessary to all successful cases of manipulative neuroscience. 

 Explanations of norm compliance couched in terms of neural representations, 

in comparison to explanations couched in terms of dispositions, may facilitate the 

direct manipulation of information carried by neural activity. They may provide 

information about where one should intervene in order to cause certain effects. 

Although the appeal to neural representation may lead one to think that the only 

types of manipulation facilitated by this framework are neurobiological, this is not 

the case. Emphasis is put on the informational content of neural activation. If we had 
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a better understanding of the precise nature of the neural code, there would be more 

reliable grounds to identify what kind of information causes certain changes in neural 

activations, which ultimately causes one to comply with a norm. 

 

Conclusion 

In so far as computationalism is bound up with representation, this chapter has 

provided independent reason in support of a neurocomputational approach to 

explanation of norm compliance. After having distinguished between 

dispositionalism and representationalism as ways to understand what it is to have a 

belief or a preference, the chapter has argued that the explanation of paradigmatic 

cases of norm compliance requires the appeal to neural representations. Furthermore, 

if we wish to control and manipulate effectively behaviours like norm compliance, 

beliefs and desires are better understood as neural representations instead of 

behavioural dispositions. 
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CHAPTER 3. 
On the Representational Format of Social Norms: A Map 

If the mechanism of norm compliance implements inductive inferences and deals 

with representations, then a question to be addressed for a Bayesian-RL model of 

norm compliance is this: What is the format of the background knowledge4 that 

supports such inferences? This chapter explores this issue. Specifically, it addresses 

how social representations, on which norm compliance would depend, could be 

stored in memory. This topic is important because a thorough assessment of 

arguments for or against a given account of the mechanism of social norm 

compliance requires that we have some grip on the representational format in which 

social representations could be stored in memory. 

 The aims of this chapter are neither to develop a theory of concepts nor to 

explain how exactly the content and identity of social representation are fixed. Some 

of the studies I consider appeal to the notion of “concept” (Murphy 2002 provides a 

review on the psychology of concepts), but I do not appeal to such a notion. I limit 

myself to the notion of a social (neural) representation as characterized in Chapters 1 

and 2. This is because the appeal to the notion of “concept” may engender confusion 

and give rise to problematic issues, like the issue of content invariance, which go 

beyond my aims here. 

 The aims of this chapter are twofold. First, the chapter aims at drawing a map 

of the main options for the format of social representations. Second, starting from the 

assumption that social representations need not be in one single format, the chapter 

urges that a probabilistic approach to social cognition is especially fruitful for 

                                                 
4  My use of ‘knowledge’ here is akin to the cognitive scientists’ use, as “body of information.” This 
use is noncommittal to truth or justification. 

152 

 



evaluating proposals about the different forms that social knowledge can take across 

different domains and tasks. 

 The chapter is in three sections. The first section begins by focusing on one of 

the functions of social representations, namely: categorization. The cognitive science 

of categorization will help me to sketch a map of the main possibilities to account for 

how social representations may be stored. 

 Note that I do not consider the view that social representations are stored as 

rules in a sentence-like format possibly regimented with deontic logic. This is for 

two reasons. First, the relationships between social norm compliance and linguaform 

rules will be considered in Chapters 4 and 5. Second, philosophers have lavished a 

great deal of attention on the relationship between rules and moral thought, while 

they have overlooked other possible formats in which moral knowledge can be 

represented (Stich 1993). Here, I consider three such alternative formats: prototypes, 

exemplars and scripts (for a similar, more nuanced map of “concepts” see Machery 

2009, Ch. 5). 

 The second section draws some of the empirical consequences of each 

alternative, and motivates what type of evidence could count for or against them. 

Although I don’t assess the evidence in greater detail, the last section notes that much 

of the contemporary research in the cognitive science of categorization assumes that 

there is telling evidence that we use representations stored in multiple formats. 

 Starting from this assumption—namely that social knowledge relevant to 

social norm compliance may well be stored in multiple representational formats—the 

last section presents a general probabilistic approach that can be useful to explore 
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how inductive inferences underlying social categorization and norm compliance can 

draw on knowledge in multiple formats. 

 

1. How Can Social Representations Be Stored? Three Formats 

The Godfather (1972, directed by Francis Ford Coppola) opens with a puzzling 

situation. Don Vito Corleone (Marlon Brando) is listening to pleas for favors in his 

office, while guests are celebrating his daughter’s wedding reception in the sunny 

outdoor veranda. Don Vito’s behaviour can appear to be socially inappropriate: Why 

is he not partying with her daughter and the other guests? Tom Hagen (Robert 

Duvall), family lawyer and Don Vito’s “consigliere,” explains: “It’s part of the 

wedding. No Sicilian can refuse any request on his daughter’s wedding day.” Tom 

appeals to a social norm in order to explain Don Vito’s behaviour. 

 Don Vito’s case illustrates one interesting aspect of social norms. In order to 

make sense of a social situation so that we can see what type of behaviour is 

appropriate or inappropriate in it, we rely on categorization. The activation of social 

norms requires that we categorize events, individuals, and objects in some specific 

ways. To make sense of Don Vito’s behaviour, a social situation has to be 

understood as a wedding reception, Don Vito must be seen as a Sicilian “padrino” 

(as a Sicilian godfather), and so forth. 

 Categorization can employ social representations. Social representations 

function as categorization devices by enabling the agent who possesses them to 

assign instances of events, individuals, objects and situations to their categories, and 

to make inferences about newly encountered events, individuals, objects and 

situations on the basis of stored knowledge about those categories. In what follows 
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the expressions ‘social representations’ and ‘categorical knowledge underlying norm 

compliance’ are used interchangeably. 

 The problem of categorization is to classify an item (e.g. some event, 

individual or object) as belonging to a particular category. Categories are knowledge 

structures corresponding to non-arbitrary classes of events, individuals or objects. 

This classification can be used in different ways for different purposes. Drawing 

upon our categorization of an item as belonging to a certain category, we can infer, 

for example, unobserved properties of the item based on common properties within 

the category. Socially appropriate behaviour requires an ability to learn social 

categories and to use them correctly across situations. By relying on our categories 

and categorization, we can recognize that a situation is such that it calls for certain 

actions rather than others—e.g. to kiss a Sicilian padrino’s hand after a meeting; not 

to kiss your teacher after class. 

 Categorization can in general be thought as two-step process. For some item 

and some set of categories, the similarity of the item to each category is firstly 

computed. Then, these similarity ratings are transformed to determine the category to 

which the item belongs. “In general, a model of categorization specifies three things: 

(1) the content and format of the internal categorical knowledge representation, (2) 

the process of matching a to-be-classified stimulus to that knowledge, and (3) a 

process of selecting a category based on the results of the matching process” 

(Kruschke 2008a, p. 269). 

 The focus here is (1): what is the format, or formats, of the categorical 

knowledge representations underlying social norm compliance? I begin to tackle this 

question by considering exemplars. 
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1.1 Exemplars 

Exemplars are bodies of knowledge about individual members of a category (Medin 

and Schaffer 1978). The wedding of Don Vito’s daughter is an exemplar of the 

category “Sicilian wedding.” Exemplars correspond to particular, actually 

experienced instances which we recall when we need to classify a novel item. Thus if 

we rely on exemplars to categorize Don Vito as a Sicilian “padrino,” we retrieve the 

features of particular people we have encountered in the same type of situation, and 

compute for each person his similarity to Don Vito. I now consider how we come to 

acquire and use exemplars when we comply with a social norm by presenting 

Sripada and Stich’s (2006) suggestion that norms may be stored as exemplars. 

 

1.1.1 Sripada & Stich on Social Exemplars 

Sripada and Stich (2006) suggest that social knowledge may be stored as exemplars. 

Norm compliance would depend on the representations of particular cases of norm 

abidance and norm breaking behaviour. These representations would contain 

contextual information about particular people behaving in situations at a given place 

and time. 

 On this account, when we face a new social situation—say the wedding of 

Don Vito Corleone’s daughter—we judge which behaviour is (in)appropriate by 

retrieving stored wedding-exemplars—say your schoolmate’s wedding in Vegas, 

Diana and Prince Charles’s wedding, your Italian cousin’s wedding, and so forth—

and by evaluating their similarity to the current instance. If the current situation is 

mostly similar to a stored exemplar where behaviour of type A is inappropriate, then 
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the current instance of A is likely to be judged to be inappropriate in the situation at 

hand. 

 People may search exhaustively through all their stored relevant exemplars 

and compare each of them to the behaviour to be evaluated. There may be no 

constraint on the exemplars-space to be searched: People would search and evaluate 

all of their stored exemplars in judging whether certain behaviour is appropriate in 

the current social situation. More plausibly, the set of exemplars taken into 

consideration may be constrained. One’s cognitive and emotional history may prime 

a certain subset of stored exemplars which are used to categorize a new social 

situation and to generate judgements about which behaviour is appropriate. In fact 

we tend to recall more easily the first or the last few exemplars of a category we have 

encountered; emotionally charged exemplars are likely to be recalled more often, 

vividly and with more details than emotionally-neutral exemplars. As Sripada and 

Stich (2006, sec. 5.3) surmise, people may make different judgements about the same 

type of situation on different occasions in function of the subset of their stored 

exemplars primed by current circumstances and their cognitive and emotional 

history. 

 Sripada and Stich’s (2006) acknowledge that their proposal is not backed by 

telling evidence. The type of argument in support of their suggestion is similar to the 

one sketched by Stich (1993). It has the form of an inference to the best explanation: 

Were social knowledge concerning norms stored as exemplars instead of tacitly 

known rules, some facts about social normativity would be plausibly explained. Stich 

(1993) indicates a number of explanatory payoffs that an exemplars-based account of 

social knowledge would have. 
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 If social representations consist of clusters of stored exemplars, then the fact 

that some instances of social situations are easier to categorize and easier to recall 

would be easily explained because exemplar-based categorization is sensitive to 

situational factors that may prime one or another stored exemplar. Such sensitivity 

would also explain much of the variability of normative judgements concerning 

appropriate behaviour in a given situation. The same type of behaviour in the same 

type of situation can be judged differently in function of the subset of exemplars 

more vivid in memory and easier to retrieve. Finally, Stich (1993) emphasizes the 

pedagogical importance of myths, parables and fables. If the preferred format in 

which our social representations are stored is that of exemplars, then social and 

moral knowledge cast in the form of rules may be ineffective since social 

representations in this format would not be easy to build and use. Fables, stories and 

myths, instead, would be particularly effective, since they would furnish our memory 

with a rich stock of social and moral exemplars which can be more readily used to 

judge and act appropriately in new social situations. 

 Sripada and Stich (2006) leave open the (likely) possibility that people use a 

variety of representational formats to store and recall knowledge important to 

categorize new social situations and comply with social norms. Social prototypes, 

exemplars, theories and narratives might be activated in function of different 

contexts. For example, Sripada and Stich speculate, exemplar-based processes might 

be primarily involved for categorization of socially appropriate behaviour “in the 

context of day-to-day norm-related cognition, especially when such judgement are 

made rapidly and ‘on the fly’” (Sripada and Stich 2006, p. 293). 
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1.2 Prototypes 

Prototypes are knowledge summaries extracted from information about the 

individual members of a category (Rosch 1978). Such summaries could be bodies of 

statistical knowledge about the features that are typical or diagnostic of events, 

individuals, and objects in a category. They describe a central tendency that can be 

expressed as an average of the category. This average need not correspond to any 

particular actually experienced instance. 

 If we use prototypes when we categorize Don Vito as a Sicilian “padrino,” we 

need not retrieve the features of any particular Sicilian godfather we have ever met. 

We may retrieve instead the standard, average, typical Sicilian godfather and 

compute his similarity to Don Vito. Plausibly, this prototype is the result of an 

average from the sample of all the Sicilian godfathers we have encountered. How 

could we come to acquire and use prototypes when we comply with a social norm? I 

answer this question by considering Paul Churchland’s account of social prototypes. 

 

1.2.1 Churchland on Social Prototypes 

Paul Churchland (1995, Ch. 6; 1998) defends the idea that knowledge of our social 

and moral world is represented as a family of prototypes embodied in the specific 

configurations of the many synaptic connections between neuronal layers. Chapter 5 

will expand on Churchland on moral thought, for the moment let’s focus on his 

argument concerning the representation of social and moral knowledge. On his 

account, social representations are stored as clusters of prototypes that carry 

information about especially typical examples of actions that are required or 

prohibited by the relevant social norm. Churchland makes two claims: first, social 
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and moral knowledge is stored in the nervous system as learned prototypes; second, 

prototypes are vectors (i.e. order sets of numerical values) that describe the structure 

of connections between neurons. 

 One example used by Churchland to explain and support these claims is 

EMPATH: an unsupervised neural network that can recognize emotions from human 

facial expressions (Cottrell and Metcalfe 1991). After a training session where the 

network was presented with twenty pictures of faces each displaying eight different 

emotions (160 pictures of faces in all), EMPATH could develop prototypical patterns 

of activation associated to facial expressions. Drawing on its prototype-style body of 

knowledge, EMPATH could achieve near perfect rate of successful discrimination 

between male and female faces; it could also successfully identify five out of the 

eight types of emotional expression. EMPATH had some limitations as well. In 

particular, its capacity for generalization to new faces was poor. Churchland 

maintains that, all in all, EMPATH provides an “existence proof” that nervous 

systems can learn to generate behaviourally appropriate outputs in social contexts by 

using knowledge stored in a “library of social prototypes” (Churchland 1995, p. 127). 

 Churchland’s connectionist account of social and moral knowledge has a 

number of interesting consequences that can help us to understand to what extent our 

knowledge of social norms is represented in prototypes. First, if we store social 

representations as prototypes, then social learning involves extensive training with 

numerous, distinct situations that display a variety of social features. We acquire 

social prototypes by repeated exposure to and practice with various examples of a 

given category. The training leading to the acquisition of prototypes constitutes a 

learning history which causes internal changes in certain populations of neurons. 
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Learning histories in social environments can in fact cause changes in synaptic 

connectivity between neurons. These changes can consist in the growth of new 

synapses on existing neurons or in chemical alterations in existing synapses. For an 

artificial neural network like EMPATH, the learning history causes particular sets of 

weights between processing units to become more stable. Each set of weights can be 

described with an ordered set of numerical values, that is, as a vector. The values in 

each vector correspond to variable social features; they may correspond, for example, 

to variable features of an action or to variable features of one’s facial expression like 

mouth width, eyebrow position, eye gaze direction, and so on. When, as a 

consequence of one’s learning history in a type of social situations, the features 

common to those situations become strongly associated courtesy of the formation of 

mutually excitatory links across some units of the network. The connection weights 

between these units tend to be stronger and encode specific, more stable values. The 

weight structure of the net thus becomes a background condition that enables the 

reliable detection of prototypical social features across situations of that type. Such 

prototypical social features can be used to categorize and to know what to expect 

from future social situations. 

 By categorizing a given social situation as a “tutorial class,” for example, we 

know what to expect from others and what others expect from us. If you mistakenly 

categorize a tutorial class as a “punk concert” and start to scream and to jump up and 

down, the people around may stare at you baffled. 

 Second, social prototypes need not correspond to any particular example of a 

category. When you categorize a social situation by relying on prototypes, the 

specific examples from which the prototypes were extracted need not to be internally 
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represented. During the processes of abstraction and storing over your learning 

history, much of the information concerning specific instances is discarded. A 

“Sicilian wedding party” prototype might include features such as pictures of Saints 

or statues, a lavish feast with one large family, a big meal outdoor, traditional music 

and dancing. It need not contain contextual information about particular people, 

places or times. 

 Third, the processes supporting the encoding of a social prototype are not 

specific to morality or social normativity. The difference between different kinds of 

prototypes depends on the type of set of training instances taken as input by the 

learning network. In the case of social normativity, this set comprises social features, 

whereas in other cases the training instances are purely physical features that may not 

concern any aspect of social behaviour. This suggests that there is no specific 

function computed by the activity of some neural circuit dedicated to the acquisition 

and storage of social knowledge. 

 Fourth, if social normative knowledge is encoded in prototypes, then fables, 

cartoons and parental example play an important causal role in building a stored 

library of “learned prototypes.” Fables, myths, cartoons and daily examples of 

appropriate social behaviour would be our main sources of moral and social 

prototypes. Social education would strongly rely on such sources because our 

cognitive system would be best suited to learn and use information in the form of 

prototypes. 

 Finally, Churchland’s account suggests that socially virtuous people are those 

who possess a bundle of perceptual and behavioural skills. Such skills depend upon 

the acquisition of a rich library of diverse social prototypes which can be used to 
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comprehend one’s and other’s social situation. By relying on their prototypes, 

virtuous people can see the same social situation from different angles, and correctly 

evaluate the appropriateness of different ways to interact with other people. Virtuous 

people, that is, can swiftly and successfully navigate the high-dimensional social 

space by recognizing their and other people’s position in it. Social misbehavior 

instead would primarily depend on a socially deprived or highly biased learning 

history. If the sample of training examples one is exposed to during learning is very 

small or highly skewed, then the resulting library of social prototypes will be 

excessively scant and unvarying. The lack of a rich and diverse library of social 

prototypes may cause a kind of perceptual failure which consists in an incapacity to 

appreciate the full range of dimensions and structure of the social domain. One likely 

result of this perceptual handicap is the failure to comply swiftly and reliably with 

social norms. 

 

1.3 Scripts 

Scripts (or schemata) are rich bodies of causal, functional, and nomological 

knowledge about categories of complex situations. Scripts specify sequences of 

events and actions that characterize the typical structure of well-known situations 

such as “a lecture,” “a birthday party,” or “a wedding reception” (Schank and 

Abelson 1977). For example, a script of some wedding reception may consist of a 

rundown of a typical sequence of events like toasting, cheering and dancing; it may 

comprise information about cakes, dresses, music, guests, family and friends. Scripts 

capture background knowledge about a given type of situation, enable us to make 

sense of it and behave appropriately. If we use scripts when we make sense of Don 
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Vito’s behaviour during his daughter’s wedding, then we do not compute a similarity 

rating between the current situation and past situations we have encountered, as we 

would do if we used exemplars or prototypes. The use of scripts relies on pattern 

completion functions. The activation of a subset of a stored pattern of events 

corresponding to a “Sicilian wedding reception” script triggers the filling in or 

completion of the remaining portion of the pattern. More on this in a moment. 

 Scripts appear to be knowledge structures more complex and more 

computationally expensive than exemplars and prototypes. Apart from early script-

based approaches to categorization and knowledge representation (Minsky 1974; 

Schank and Abelson 1977), more recent theories of categorization based on scripts 

have had limited formalization, partly because of the difficulty to formally specify all 

the relevant details of a complex knowledge structure (Kruschke 2008a). 

 Although we may doubt that our cognitive system employs such rich and 

computationally heavy bodies of knowledge, we should consider that scripts or 

schemata need not be explicitly stored neither need they cover all possible 

contingencies of a situation. Scripts can be modelled as knowledge structures 

emergent from the activity of a neural network that responds to the presence or 

absence of relevant microfeatures (Clark 1989, Ch. 5.4). From this perspective, 

“[t]here is no representational object which is a schema. Rather, schemata emerge at 

the moment they are needed from the interaction of large numbers of much simpler 

elements all working in concert with one another” (McClelland, Rumelhart, and the 

PDP Research Group 1986, p. 20). 

 I mentioned that the type of processes underlying the learning and application 

of scripts (or schemata) in neural network involve pattern completion functions. The 
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input pattern in this case spans rundowns of sequences of events instead of simple 

examples. Such sequences of events consist of ordered patterns of microfeatures. 

Given repeated exposure to complex patterns underlying a given type of situation, 

neural networks can learn a schema by settling on certain connectivity weights.  The 

connectivity weights learned by the network are such that they respect as far as 

possible the possible relationships and constraints associated to the ordered 

microfeatures corresponding to the sequence of events. Once a script has been 

learned, the presence or absence of some microfeatures activates a subset of a 

“known” pattern in the network. Such activation can be sufficient for the network to 

fill in or complete the remaining portion of the pattern in a way maximally coherent 

to its connectivity weight structure. Thus the network settles on a particular 

activation pattern from which the properties of the script emerge. Let us now focus 

on how clusters of social representations can be understood as scripts or schemata. 

 

1.3.1 Bicchieri on Scripts and Social Norms 

Bicchieri (2006, p. 96) argues that “social norms are embedded into scripts.” She 

understands schemata and scripts in terms of “theories of the way social situations 

and people work” (p. 81). Such theories enable us to navigate our social world 

because they support inductive inferences and predictions about people’s behaviour. 

 Bicchieri distinguishes categorization from script activation. Categories are 

knowledge structures that contain information about instances of the items of a class 

(e.g. the class of “waitresses”). Categorization, for Bicchieri, activates scripts which 

are knowledge structures that contain information about the attributes and 

relationships among categories (e.g. the script “dinner at a restaurant in Japan”). 
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Knowledge directly relevant to social norm compliance would be stored in scripts or 

schemata that “contain social roles and expected sequences of behaviours that help 

us to behave appropriately (and know what to expect) in specific settings” (p. 82). 

Bicchieri emphasizes that scripts and schemata need not be explicitly stored and need 

not be accessible to consciousness. 

 Like Sripada and Stich (2006), Bicchieri does not provide direct support for 

her claim by drawing on some particular experimental finding. The form of her 

argument is an inference to the best explanation with the following form: There are a 

number of facts related to social normativity. If norms are embedded into scripts, 

then many facts related to social normativity would be explained. Therefore, it is 

plausible that social norms are embedded into scripts. 

 It is noteworthy that while Sripada and Stich point to linguaform rules as 

prima facie rival hypothesis to exemplar-based social representations, Bicchieri does 

not point to any relevant alternative hypothesis to scripts. But the validity of 

inference to the best explanation is sensitive to the pool of explanations under 

consideration. The introduction of some relevant alternative explanation can 

invalidate the validity of a plausible inference to the best explanation even when the 

empirical evidence has remained unchanged. 

 This said, what are the explananda that scripts-based norm compliance would 

explain? Bicchieri singles out at least three explananda. The first fact recalled by 

Bicchieri is the difficulty in defining “general principles of fairness, or justice” (Ibid., 

p. 95). If we reason through schemata and scripts, then it is plausible that the 

meaning of e.g. “fair division” is understood by means of sequences of events in 

familiar situations involving certain divisions of a good. What is taken to be “fair” 
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would depend on knowledge about clusters of categories of particular people, events, 

and objects. Given the variety of the categories activated in a social exchange that we 

describe as “fair,” and given that the particular members of those categories may be 

very different from each other along many dimensions, there may be no context-

invariant features captured by general principles of fairness. 

 For Bicchieri, two other explananda would be explained if social knowledge 

is mainly embedded into scripts: what grounds the projectibility of certain 

behavioural patterns and what it is that confers legitimacy to other people’s 

expectations in certain social interactions (Ibid. 95-6). Consider Don Vito receiving 

pleas for favors in his private office during his daughter’s wedding. Why do his 

guests and his family perceive his behaviour as appropriate and legitimate? Why is 

that behavioural pattern taken to be projectible to future situations? We can answer 

both questions by appealing to scripts and considering that social interactions 

embedded in scripts tend to be regarded as “natural kinds”—classes that represent 

some real distinction in nature and that support inductive inferences. 

 If script-based social interactions are regarded as natural kinds, then scripts 

would ground people’s expectations concerning social situations. We would believe 

and expect certain things in a situation in function of the script we have activated. 

Since social norms, according to Bicchieri, are sets of mutual expectations, when 

particular expectations come to be prompted by the activation of a script, the 

behavioural regularity underlain by those expectations is automatically projected: 

“It’s part of the wedding” explains Tom Hagen. 

 The attribution of legitimacy to the expectations underlying that behaviour 

would also be explained by our propensity to regard scripted social interactions as 
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natural kinds. The existence of a script that represents knowledge about a type of 

situation is the source of legitimacy. If receiving quests for favors during your 

daughter’s wedding is embedded into a script, then the guests will believe it 

legitimate to ask for favors and to obtain them; and they will be angry if their 

expectations are frustrated. 

 

2. Exemplars, Prototypes or Scripts. What Difference Does It Make? 

Do people store social representations in a single format? To address this issue I 

review evidence from the cognitive neuroscience of categorization and category 

learning. Much of the results I present involve non-social, non-moral information. 

This is for two reasons. On the one hand “the empirical study of the representational 

format of norms has barely begun” (Sripada and Stich 2006, p. 293). On the other 

hand, the stimuli used in experimental tasks of categorization and category learning 

often consist of artificial objects characterized only by their perceptual properties. 

This is mainly to control for the effects that knowledge possessed by subjects about a 

domain may have on learning and categorization. 

 

2.1 Category-Learning and Categorization Tasks 

Imagine that you barely know Don Vito Corleone, yet you happen to be at his 

daughter’s wedding party and you must judge whether that particular circumstance is 

an instance of the category “Sicilian wedding.” 

 As a consequence of having participated to many weddings, you may have 

abstracted from particular instances a prototypical general tendency of various 

wedding categories—for example, based on the types of religious signs, music, and 
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food you have encountered in each wedding you have participated to. You note that 

the current situation is most similar to the prototype of a “Sicilian wedding” rather 

than “Jewish wedding” or “Polish wedding.” On this basis, you categorize the 

current situation as an instance of “Sicilian wedding.” This is, in a nutshell, the 

sequence of processes involved in categorization based on prototypes. 

 Categorization based on exemplars involves different processes. Because you 

have participated to many weddings, you may have stored many wedding exemplars 

in your long term memory. You notice that the current situation is most similar to the 

stored exemplar of “Angelica’s Sicilian wedding.” Drawing on such a similarity, you 

conclude that the wedding of Don Vito’s daughter is an instance of “Sicilian 

wedding” and thereby you can make sense of the situation and understand which 

behaviour is appropriate. 

 In relation to scripts, Bicchieri (2006) argues that people interpret and 

categorize a given context in function of the situational cues, or microfeatures, that 

spark their attention. The processes underlying script-based judgement rely on 

spreading activation and pattern-completion. The activation of the representation of 

a certain complex situation spreads to representations of situations related to it. 

Social categorization activates scripts that enable us to understand social situations, 

to predict others’ behaviour and to respond appropriately to their actions. Scripts—

recall—are theories that represent generic knowledge about well-known classes of 

situations. According to this theory-based approach, you judge whether the wedding 

reception of Don Vito’s daughter belongs to the category “Sicilian wedding” by 

determining whether the features of that instance are best accounted by the theory 
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underlying that category. Let’s now leave real-world, intuitive cases, and enter the 

lab. 

 In typical categorization and category-learning tasks, experimental subjects 

are required to learn and use some category. The task is generally in three phases. In 

a learning phase, the subjects are presented a number of items and are 

informed under which category each item falls. During this category-learning phase, 

the task of the subjects is to acquire some body of categorical knowledge from 

encountering some members of the extension of the relevant category. In a test 

phase, the subjects are presented both with items they had already encountered 

during the learning phase and with new ones. This is, strictly speaking, the 

categorization task which consists in judging whether certain items belong to a given 

category or whether some classes are included in a given category. Finally, a 

recognition memory task may follow. The subjects are asked to discriminate between 

“old,” already encountered items, and new ones. What may this type of task tell us 

about prototypes exemplars and scripts? 

 

2.2 Exemplars 

If we use exemplars instead of prototypes, then at least four empirical predictions 

follow with respect to people’s performance and its underlying mechanisms in 

category learning and categorization tasks. 

 First, the learnability of a category measured in terms of the time needed to 

learn that an item belongs to the category will not depend on the typicality of the 

item. It will depend on its similarity to known members of the category. In 

comparison to a typical item that is not similar to previously encountered category 
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members, we would learn more quickly that a less typical item belongs to a certain 

category, if this item is similar to previously encountered category members. It 

would be quicker to learn to categorize a woman pastor as a pastor than a man pastor 

because your sister is a pastor (on this effect see e.g. Medin and Schaffer 1978). 

 Second, the same would apply to categorization performance measured in 

terms of reaction time and accuracy. The time employed by people to categorize an 

item and their accuracy would not depend on the similarity of the item to the 

prototype of the category. Less typical items would be categorized more easily and 

accurately if they are similar to already stored exemplars. 

 Third, during a recognition task, old items would have an advantage over 

equally typical but new items. It would be easier to categorize your friend Don Vito 

as a Sicilian godfather than an unknown Sicilian godfather that is an equally typical 

Sicilian godfather (on this type of old-item advantage see e.g. Nosofsky 1992). 

 These effects suggest a fourth neuropsychological prediction. The same 

representations that enter the process of categorization would also be involved in 

recognition memory tasks. If categorization is exemplar-based and relies on the same 

representations involved in recognition tasks, then amnesic patients will exhibit 

abnormal performance in categorization. Let us expand on this type of prediction by 

presenting a famous case study. 

 Amnesic patients are impaired both in the ability to store new representations 

in declarative memory and in the ability to verbalize knowledge of exemplars already 

encountered. They typically display severe injuries in the medial temporal lobes in 

both hemispheres. Squire and Knowlton (1995) tested the hypothesis that no 

category learning should take place without the capacity to store exemplars (see also 
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Knowlton and Squire 1993). They examined the performance of a severely 

anterograde and retrograde amnesic patient, E.P., in a learning and categorization 

task. E.P. couldn’t recognize previously encountered objects, which suggests that he 

couldn’t acquire and store representations of new objects. Squire and Knowlton 

found that in spite of such impairment E.P. could perform normally in a dot-

distortion category task. In this task subjects are typically presented with patterns of 

nine dots generated by randomly distorting one of a number of prototype-patterns 

which define different categories (Posner and Keele 1968). In the test phase subjects 

are asked to classify both new patterns and patterns they had already encountered. 

Squire and Knowlton’s (1995) subject exhibited zero ability to recognize whether a 

given item was a new or an old, already encountered, exemplar. However, E.P. 

performed normally on the categorization task: E.P.’s categorization judgements 

were a function of the typicality of the target pattern. 

 E.P.’s performance is hard to explain by appealing to knowledge stored in 

declarative long term memory since the patient had no declarative memory abilities 

whatsoever. The patient must have used a categorization procedure different from an 

exemplar-based procedure. During training, E.P. could have learned a prototype of 

the category of dot patterns and retrieved this representation to categorize new 

patterns. Squire and Knowlton conclude: “These findings demonstrate that the ability 

to classify novel items, after experience with other items in the same category, is a 

separate and parallel memory function of the brain, independent of the limbic and 

diencephalic structures essential for remembering individual stimulus items 

(declarative memory)” (Squire and Knowlton 1995, p. 12470). 

172 

 



 This conclusion is coherent with the results found by Kolodny (1994). In this 

study, amnesic subjects were tested in the dot-pattern task, but also in a task designed 

to elicit exemplar-based processes. In this latter task, paintings of three Italian 

Renaissance artists were presented to the subjects who were required to learn which 

paintings were made by the same artist. The exemplars of each category lack obvious 

stylistic relations that could facilitate the acquisition of a prototype for each artist. 

Hence, it is plausible that such categories are learned courtesy of explicit 

memorization by storing exemplars after extensive experience. Amnesics’ 

performance in both learning and categorizing paintings was at chance. 

Unsurprisingly, they also performed poorly in the memory recognition task. 

 From these behavioural and neuropsychological results the following 

predictions might be extracted about social cognition. If people store social 

knowledge relevant to norm compliance in a single exemplar-based format, then 

judging which social context one is facing and whether an action is appropriate in 

that context will engage long term declarative memory. If structures supporting long 

term declarative memory are impaired, as in amnesic patients, we may expect 

inappropriate social behaviours also in situations already encountered. 

 

2.3 Prototypes 

Let’s now consider prototypes. If we use prototypes instead of exemplars, then at 

least four empirical predictions follow with respect to people’s performance and its 

underlying mechanisms in category learning and categorization tasks. 

 First, the learnability of a category will not depend on whether the item 

members are similar to some already encountered items. It will depend on their 
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similarity to the typical member of the category. We would learn more easily and 

quickly to classify a typical member of a category that has not been encountered 

during training than other non-typical members seen during training (on this effect 

see Posner and Keele 1968). 

 Second, categorization performance would depend on the similarity of the 

item to the prototype of the category. Most typical items would be categorized more 

accurately than other typical items even if they have not been already seen (Smith 

2002). The prototypical central tendency shared by the items we have encountered 

may give rise to a kind of “perceptual fluency.” After some experience, people may 

experience a sensation of fluency in categorizing exemplars that are most similar to a 

prototype. 

 Third, during a recognition task, old items would not have an advantage over 

equally typical but new items. The recognition of an item would depend more on its 

typicality than on the fact that it has been previously encountered. Because 

perceptual fluency may be based on perceptual inaccessible processes, people often 

cannot do any better than recalling general features defining a prototypical tendency 

to justify the basis of their categorizations and recollections. 

 Fourth, prototypes would engage declarative memory storage less than 

exemplars, as they need not contain any contextual information. A prototype might 

be abstracted and used by relying on knowledge that cannot be easily verbalizable. 

This would explain why amnesic patients are successful in dot-pattern categorization 

tasks but not in recognition which requires explicit, declarative memory. Retrieving 

representations with contextual associations requires an intact medial-temporal-

diencephalic system (Smith 2008). 
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 In light of these considerations, if people store social knowledge relevant to 

norm compliance in a single, prototype-based format, then they will perform poorly 

in unstructured situations such as the painting task where exemplars don’t share any 

obvious feature. If the social situations that one encounters don’t share any apparent 

pattern, it may be difficult to classify them by using a prototype. If amnesic patients 

can acquire and use prototypes and their social knowledge is stored as prototypes 

then they are not likely to behave inappropriately in typical social situations. 

 

2.4 Scripts 

A script-based account of social categorization has barely been investigated in 

cognitive neuroscience. This may be because scripts are complex knowledge 

structures of difficult computational formalization (Kruschke 2008a). Scripts (or 

schemata) contain information organized in large clusters that serve to generate 

inferences. Their activation is likely to depend on a number of mechanisms that 

support such functions as semantic knowledge, declarative and “implicit” memory, 

cognitive control, evaluation and information integration. It seems hard to isolate 

precise empirical predictions from the hypothesis that norms and social knowledge 

are embedded into scripts. Given the diversity of the cognitive functions that are 

likely to be involved in script-activation, it is probable that the prefrontal cortex 

(PFC) is essential for storing and using script-based social knowledge relevant to 

norm compliance. 

 Krueger et al. (2009) offer a framework to understand how complex 

knowledge structures akin to scripts and schemata are supported by brain activity in 

the PFC (see also Grafman 2002; Wood and Grafman 2003). They argue that “the 
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[medial prefrontal cortex] mPFC represents ‘event simulators’ (elators) that give rise 

to social event knowledge via structural and temporal binding with regions in the 

posterior cerebral cortex and limbic structures” (Krueger et al. 2009, p. 103). Before 

examining Krueger and colleagues’ proposal, it is worth repeating a theme that will 

be reiterated in Chapter 5: the precise computational architecture of the PFC is 

poorly understood. The mPFC comprises distinct, functionally diverse regions—the 

medial orbitofrontal cortex, ventromedial prefrontal cortex, dorsomedial prefrontal 

cortex—which have been found to be involved in many different social and non-

social tasks whose solutions may require the computation of distinct functions (see 

e.g. Fuster 2008; Miller et al. 2002). We should be wary about claiming that the PFC 

is engaged in particular tasks and computes particular functions. 

 For Krueger and colleagues, elators are abstracted from experience with 

multiple exemplars of social situations. Given the complexity of such knowledge 

structures, it is likely that acquiring and using elators engage various mnemonic 

abilities. Information about a social situation might be first stored as an exemplar 

associated with a specific place and time. With repetition and experience, such 

information might be involving semantic memory which stores our knowledge of the 

world, and procedural memory which store “implicit” knowledge of skills like 

driving a car. It is not clear whether elators’ formation relies on implicit prototypes, 

on exemplars or on both. In default of a detailed account, it remains difficult to 

assess what kind of evidence would count against the claim that “elators are 

abstracted from experience.” 

 Krueger and colleagues define “abstractions” as “dynamic summary 

representations,” which are also called “structured event complex” (Forbes and 
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Grafman 2010, p. 311; see also Wood and Grafman 2003). These abstractions, or 

structured event complexes, are set of events linked together to form a script or 

schema. They embody general knowledge about how situations unfold. More 

precisely, they can encode goal- or outcome-oriented set of events ordered 

sequentially around thematic activities such as “Checking in at the airport” or 

“Attending a lecture.” Goal-oriented knowledge, according to Krueger and 

colleagues, is about the likely actions that agent will take when they desire to 

accomplish a task or reach a certain aim. Outcome-oriented knowledge mainly 

concerns the likely affective response to goal attainment. 

 According to Krueger and colleagues, these types of knowledge structures 

guide our behaviour and perceptions by embodying information about social groups 

and norms. Knowledge about social norms and social groups would be localized in 

the left anterior ventromedial prefrontal cortex (VMPFC), related to outcome-

oriented events. Forbes and Grafman (2010, pp. 312-3) claim that “the VMPFC 

stores structured event complexes specific to social norms and scripts.” The evidence 

they provide for this claim is from studies that point to the involvement of the 

VMPFC in stereotype-based judgment. In particular, compared to healthy subjects 

and patients with damage to the dorsolateral prefrontal cortex, patients with VMPFC 

damage show reduced levels of stereotyping when gender-bias is assessed through an 

implicit association task (Milne and Grafman 2001). This indicates that the VMPFC 

may be necessary to automatically retrieving some aspects of (implicit) social 

knowledge, but does not give us strong reason to believe that VMPFC is the circuit 

where scripts embedding social norms are stored. Milne and Grafman’s VMPFC 

patients displayed normal explicit knowledge of gender stereotypes, moreover the 
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authors are careful in pointing out that their evidence is insufficient to distinguishing 

whether VMPFC patients’ deficit is “specific to social knowledge (versus other 

forms of stimulus-response compatibility)” (Milne and Grafman 2001, p. 5). Finally, 

it is likely that the cortical representation of scripts embedding social norms is 

distributed across several neural networks comprising the amygdala and the 

orbitofrontal cortex besides the VMPFC (e.g. Casebeer and Churchland 2003). 

 VMPFC might be necessary to respond smoothly to some contextual social 

cues and prime certain structured event complexes. The presence of particular people 

in some types of situations might prime scripts associated to those cues. Impairment 

in the capacity to automatically retrieve certain scripts—as in the case of VMPFC 

patients who seem to be insensitive to cues leading to implicit gender bias—may lead 

to inappropriate behaviour. Patients with VMPFC lesions often display a lack of 

compliance to social norms (see e.g. Dimitrov et al. 1999). “It may be—as Milne and 

Grafman (2001, p. 6) conclude—that a contributing factor to that social conduct 

impairment is the inability of those patients to automatically and rapidly associate 

differing aspects of social knowledge—a form of social agnosia.” 

 In light of these considerations, if people store social knowledge relevant to 

norm compliance in a single, script-based format supported by the activity of 

VMPFC, then we can draw at least four predictions. First, patients with ventromedial 

damage will show deficits in storing and retrieving social information that supports 

social norm compliance. Second, because of damage in the VMPFC, subjects will 

display poor performance in social tasks that require the activations of social 

knowledge structures that are goal- or outcome-oriented and temporally ordered. 

Third, they won’t be able to learn new social norms embedded in social scripts. 
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Fourth, they will have troubles in being sensitive to cues in situations that call for 

appropriate behaviour. 

 

3. Representational Pluralism from a Probabilistic Approach 

Research on categorization and human category learning has entered a “second 

generation” (Ashby and Maddox 2011). During the first generation, from the 1990s 

to the early 2000s, research in cognitive neuroscience addressed the question of 

whether there are multiple systems for categorization and category learning. Many 

researchers are now persuaded that there is telling evidence for multiple category-

learning systems (Smith and Grossman 2008, for a review). As a result, according to 

Ashby and Maddox (2011), “second-generation questions” have begun to be tackled. 

These questions start with the assumption that humans store and use bodies of 

knowledge in multiple formats for categorization and category-learning. This chapter 

concludes by making the same assumption. I argue for an approach that can be 

fruitful to explore how inductive inference underlying social categorization and norm 

compliance can draw on bodies of knowledge that can take a plurality of formats. I 

start by elaborating on the nature of the problems of categorization and category 

learning. 

 Categorization and category learning are problems that require uncertain 

conjecture from partial, noisy and ambiguous information. They can be understood 

as inductive inferences that we draw about the organizing structure of a dataset. 

Inductive inferences can be understood as computations on uncertain sensory input 

data. In the social case, categorization and category learning can be understood as 

computations on uncertain sensory input data that lead to the discovery of 
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relationships between agents, objects and events in our social landscape. The 

organizing structure of a dataset is provided by such relationships. These 

relationships can correspond to structured, non-arbitrary classes of agents, objects 

and events, or to structured classes of classes. They can correspond, that is, to social 

categories or to systems of categories. Information about these relationships allows 

us to build complex systems of knowledge about our social world and its underlying 

regularities. From this perspective, one of the deepest challenges in understanding 

social categorization and social category learning as types of inductive problems is 

this: How can we build complex systems of social knowledge from the sparse data 

yielded by our sensory systems? 

 This challenge can be addressed with the probabilistic approach we have 

already encountered when I explained the Bayesian mechanism that might underlie 

the acquisition of social representations. By focusing on the notion of structural form 

I now explain how this approach emphasizes the importance of representational 

diversity (Griffiths et al. 2010; Tenenbaum et al. 2011). I suggest that a probabilistic 

approach is particularly fruitful for evaluating proposals about the different forms 

social knowledge can take across different domains and tasks. Consider once again 

the case of the wedding reception of Don Vito’s daughter. 

 This situation generates a stream of sensory input data. Given the data set of 

your sensory inputs in that situation, you need to infer what type of situation you are 

facing so that you can understand what types of actions are appropriate there. The 

problem is that “any finite set of data is consistent with an infinite number of 

inductive hypotheses” (Holyoak 2008, p. 10637). Different hypotheses about the 

situation at hand are available to you—you can interpret it as a barbeque party in 
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fancy dress, as a Jewish wedding, or as a Sicilian wedding reception. The dynamics 

of our navigation in that situation will depend on the hypothesis we select. 

 The selection of one hypothesis rather than another might be carried out by a 

Bayesian mechanism. Chapter 1 made the suggestion that the acquisition of social 

representation might depend on a Bayesian mechanism. This mechanism would be a 

statistical inference engine that integrates abstract knowledge encoded in a 

probabilistic generative model with data from different sensory sources. The abstract 

knowledge supporting the inferences drawn by such a Bayesian machine can take 

multiple forms. The Bayesian machinery, that is, is not committed to process 

representations in a particular format. It works on probability distributions over 

observable data which can take any form. Before articulating this last point, let me 

clarify the role of abstract knowledge in the probabilistic approach I am describing. 

 The body of knowledge that guides social categorization, social category 

learning and social norm compliance needs not be specific to the particular situation 

at hand. It concerns whole classes of situations over which experience gained in a 

particular case can be used to make predictions and take appropriate actions. This 

body of knowledge captures the essential structural form of situations giving rise to 

the agent’s sensory input data. More precisely, knowledge about the essential 

structure of the situations we encounter is embodied in a constrained space of 

hypotheses that could explain the sensory data generated by a given situation. Each 

hypothesis comes with a certain probability distribution. The probability distribution 

specifies the agent’s degree of belief in a specific hypothesis about a structural form 

underlying a situation prior to the observation of sensory data. By combining prior 

hypotheses and sensory data in a Bayesian fashion, agents can come to identify the 
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hypothesis that account best for the data: the hypothesis that has highest probability 

conditional on the data. Identifying the structure underlying a situation provides us 

with significant constraints on our inductive inferences. Granted that bodies of 

abstract knowledge encoded in a probabilistic generative model constrain and guide 

social categorization and category learning, what does it mean that they ‘capture the 

essential structural form of a situation’? And what is the form of these bodies of 

knowledge? 

 In Chapter 1 I mentioned that states in the environment stand in causal 

relationships and that these causal relationships can be referred to as structure. 

Different relationships between states, different structures, can be depicted by means 

of graphical models. More generally, the structure of a situation consists in its 

underlying regularities. These regularities need not be causal. They can be 

conceptual, temporal, or spatial, for example. Hence, in a general sense, the structure 

of a situation needs not be causal. Different structures—either causal or non-causal—

underlying a situation can be depicted by means of graphical models, for example: 

partitions, chains, trees, grids and cylinders. So, to say that a body of knowledge 

captures the essential structure of a situation is to say that they contain information 

about the causal or non-causal relationships between the individuals, events and 

objects that constitute that situation. Such relationships can be represented as a tree, 

for example, with nodes and edges constituting a particular structural form. 

 Griffiths et al (2010, p. 358) claim that “connectionism makes strong pre-

commitments about the nature of people’s representations and inductive biases based 

on a certain view of neural mechanisms and development: representations are 

graded, continuous vector spaces, lacking explicit structure, and are shaped almost 
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exclusively by experience through gradual error-driven learning algorithms.” In a 

purely bottom-up, connectionist approach, that is, background knowledge is encoded 

in continuous vector spaces which lack explicit structure. These vector spaces 

describe the connectivity weight structure of the network which can embody social 

representations typically in the form of prototypes or schemata. At best the 

connectivity structure weight of a network can only approximate in an implicit 

fashion representational forms like trees or hierarchies that people appear to know 

and use explicitly (Griffiths et al. 2010, pp. 359-360; Gopnik et al. 2010). 

 In comparison to a purely bottom-up connectionist approach, the probabilistic 

approach makes no a priori assumptions about the form of social representations. 

Probabilistic models are apt to explore a larger space of representational possibilities. 

Representations in different formats can in fact be needed for different types of 

inferences underlying different cognitive functions. Kemp and Tenenbaum (2008), 

for example, showed how qualitatively different representations can explain human 

inferences in many different real-world domains. Inductive inference about different 

real-world domains seems to be best explained by appealing to representations with 

different structural forms (Kemp and Tenenbaum 2009). In a probabilistic approach, 

the fact that background knowledge is encoded in probabilistic generative models 

does not mean that the hypotheses constituting the background knowledge must be in 

a single particular representational form. The format that hypotheses and background 

knowledge can take span from weights in a neural network to structured symbolic 

representations. Now, how should we assess the claim that a probabilistic approach is 

fruitful to understand what is the representational format of the background 

knowledge that supports the inductive inferences underlying norm compliance? 
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 By operating on a broad range of candidate representational formats, 

probabilistic models can generate interesting empirical research also in the social and 

moral domain. We are interested in understanding the representational format of 

social norms; we are interested in identifying under what circumstances 

representations in a given format support social norm compliance. One way to do 

this is shown by Kemp and Tenenbaum (2008): A probabilistic model may be 

defined and social representations in a particular format specified within the model. 

When the probabilistic model does not fit behavioural data concerning, for example, 

social categorization and category learning, we may use a qualitatively different 

representation while retaining the explanatory framework of Bayesian computation. 

This will enable us to identify which representational format best explains 

behavioural performance in the social domain. We can thus evaluate different 

proposals within the same type of probabilistic explanatory framework. 

 The structured representations that might be used in probabilistic 

computations in the social domain need not be explicitly encoded in the brain. There 

is a growing wealth of research on how the brain might maintain a generative model 

of the environment, and how neurons might encode probability distributions and 

combine those distributions according to close approximations to Bayes’ rule (e.g. 

Berkes et al. 2011; Ma et al. 2006). Yet we are far from understanding how exactly 

representations in multiple formats supporting Bayesian inference are encoded in 

neural circuits. This “is arguably the greatest computational challenge in cognitive 

neuroscience more generally—our modern mind-body problem” (Tenenbaum et al. 

2011, p. 128). 
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Conclusion 

This chapter has distinguished three specific options about the format in which social 

representations relevant to norm compliance may be stored. I have discussed 

exemplars, prototypes and scripts, and related each option to the social and moral 

domain. For each option, empirical consequences have been drawn. After having 

noted that there seems to be telling evidence that we use representations in multiple 

formats, I have presented in broad strokes a probabilistic approach to cognition that 

allows for representations in multiple formats. I have argued that this approach, in 

comparison to a purely bottom-up, connectionist one, is probably more fruitful to 

understand what is the representational format of the background knowledge that 

supports the inductive inferences underlying norm compliance. 
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CHAPTER 4. 
Moral Judgement for Bayesian Brains 

This chapter argues for two claims. First, some central aspects of the psychological 

mechanism of moral judgement can be described within the RL-Bayesian 

neurocomputational framework laid out in Chapter 1. Second, such a 

neurocomputational description of moral judgement can shed new light on puzzling 

findings about specific patterns of moral judgement. 

 The chapter builds on the account of the Bayesian brain put forward in 

Chapters 1 and 3 and on the notion of social (neural) representation characterized in 

Chapters 1 and 2. In spite of my reference to brains and neural representations, the 

discussion here will be at a more abstract level most of the time. 

 There are three sections in the chapter. The first section distinguishes between 

two broad senses of ‘judgement.’ The second section identifies three 

neurocomputational ingredients, which can be used to describe aspects of the 

psychological mechanism of moral judgement. Such ingredients are: the norm prior, 

the likelihood of moral judgement and the continuous updating of norms courtesy of 

Bayesian inference. The last section argues for new ways of understanding 

traditionally controversial findings concerning psychopaths’ moral judgement and 

the ontogenesis of moral judgement. 

 A neurocomputational perspective on moral judgement promises to bear 

explanatory fruit because it forces us to move beyond either-or dichotomies, which 

have shaped and in some cases limited debates in the psychology of moral 

judgement. I have in mind such dichotomies as: emotion versus cognition, learned 

versus innate, rule-governed versus rule-free, moral norms versus conventions. 
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1. Judgement as a State and Judgement as a Process 

‘Judgement’ is an ambiguous term. Different senses are hardly made explicit in 

discussions of moral judgement. I now distinguish between two general ways of 

understanding the term, which will be helpful to avoid confusion in the account 

articulated in the remainder of the chapter. 

 One way to understand ‘moral judgement’ is in terms of a mental state. In this 

sense, moral judgement can refer to either representational or non-representational 

mental states. Accordingly, ‘judgement’ can refer to mental states that are not 

necessarily representational and that can be expressed by sentences or utterances. In 

a narrow sense, ‘judgement’ refers to representational mental states. Beliefs are the 

paradigmatic example of such mental states. Beliefs are generally considered to be 

mental states that represent something to be the case. Whenever we take something 

to be the case or take it as true, we believe that something. So, moral judgement may 

refer to some moral belief we have. That a mental state is representational does not 

entail that we must be aware of that mental state. Whatever the representational 

status of moral judgement, a separate issue is whether we are aware of the moral 

judgement we entertain or not. ‘Moral judgement’ need not refer to states of the 

mind, representational or not, that involve active reflection or awareness of anything 

specific. 

 The second way to understand ‘moral judgement’ is in terms of a mental 

process. As a process, ‘moral judgement’ can refer to deliberation (or practical 

reasoning), which is not necessarily a conscious process. Deliberation (or practical 

reasoning), as understood here, is the process that enables agents to answer the 
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question of what one ought to do. Courtesy of moral judgement (viz. deliberation), 

agents come to entertain such mental states as beliefs and attitudes expressing that 

one ought to behave in some way rather than another under certain types of 

circumstances. 

 Here I am concerned both with the process enabling agents to resolve what 

one ought to do under a certain type of circumstance, and with ‘moral judgement’ as 

a mental state expressible with a sentence or utterance. In neither of these senses, 

‘judgement’ refers necessarily to an introspectively accessible or conscious mental 

state or process. As I go along articulating my proposal, I shall make clear which 

sense is relevant to my argument. 

 Representations are an essential part of the account of norm compliance I put 

forward in Chapter 1. Chapter 2 argues that we should explain norm compliance by 

appealing to neural representations. It is worth noting, however, that the centrality of 

the notion of representation in my account does not mean that I maintain that in our 

cognitive system all signals, which can affect our social/moral behaviour, must be 

representational. As I build on those two chapters here, I shall sometimes 

characterize moral judgement in terms of representations. This does not entail that 

the states of the mind expressed by moral utterances are necessarily beliefs or that 

the processes underlying moral deliberation are necessarily “cognitive” as opposed to 

“emotional.” In fact, by embracing a neurocomputational perspective—let me 

emphasize it—one of the burdens of this chapter is to show some ways in which we 

may move beyond either-or dichotomies such as emotion versus cognition, or 

cognitivism versus non-cognitivism, which might hinder progress in our 

understanding of moral judgement. 
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2. Moral Judgement as Bayesian Inference 

The psychological mechanism of moral judgement can be described by appealing to 

three neurocomputational ingredients: 

• The prior representation of social norms concerning socially/morally 

(in)appropriate or right/wrong behaviour in a given context. 

• The relationship describing how likely it is that any moral judgement gives 

rise to certain sensory data. 

• The continuous updating of norms courtesy of Bayesian inference. 

The first two ingredients are relevant to explaining especially moral judgement as a 

state of the mind. The other helps us pick out important features of moral judgement 

as a process. 

 With these ingredients in place, making a moral judgement would amount to 

activate what can be called ‘norm priors’ and combine the information carried by 

norm priors with incoming sensory data. I shall now explain the three ingredients. 

 

2.1 Moral Judgement as Prior 

Agents’ knowledge about how one ought to behave under certain types of 

circumstances is a subset of their social and moral knowledge. For example, an 

agent’s knowledge that she ought to buy the next round of drinks at the pub is a 

subset of her social and moral knowledge. As the previous Chapter suggested, social 

knowledge can have multiple formats. It can be encoded as clusters of prototypes, 

exemplars, scripts or rules in a system. In Chapter 2 it was argued, furthermore, that 

one fruitful way to conceive of what it is to have beliefs and preferences is in terms 

189 

 



of probability distributions encoded by the nervous system. If agents’ social and 

moral knowledge is constituted by their social/moral beliefs, then one fruitful way to 

conceive of social and moral knowledge is in terms of probability distributions. Now 

I articulate a few points made in Chapters 1 and 2 and relate them to moral 

judgement. 

 A probability distribution, recall, describes the range of possible values that a 

random variable can attain and the probability that that variable is within some range. 

I call social distributions those distributions that encompass social random variables. 

Social random variables describe features relevant to interact appropriately with 

others. Such features can be facial expressions, motion dynamics, eye gaze direction, 

and ostensive social signals such as certain types of gestures or tones of speech used 

(typically deliberatively) to communicate determinate intentions. Each social random 

variable—for instance, a facial expression—can take different values—for instance, 

a facial expression can be sad, angry or happy. 

 There can be correlations among social variables, or among specific values of 

social random variables. For instance, a certain facial expression may be correlated 

with particular motion dynamics; or a particular tone of voice may be correlated with 

a certain posture and certain ostensive social signals. By long association, we can 

expect many social features and events to be almost always together in certain types 

of circumstances. The social distributions describing such features and events, which 

our cognitive system might encode, can be joint over multiple variables. Depending 

on the details of one’s learning trajectory, correlations among different social random 

variables and among different values of different social random variables have 

varying strength. 
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 It is worth recalling that if our cognitive system encodes multivariate social 

probability distributions, then we need not have infinite representational resources or 

infinite information processing capacity, since probability distributions can be 

represented with small sets of values—for example, it suffices to represent a 

multivariate normal distribution with its mean and covariance matrix—and 

transformations of such distributions can be carried out by algorithms that 

approximate exact Bayesian computations. For example, Monte Carlo or stochastic 

sampling-based approximations of Bayesian computation are algorithmic schemes, 

which neural activity might implement in feasible ways (see e.g. Fiser et al. 2010). 

 Agents’ social/moral knowledge—I suggest—is built on the multivariate 

social distributions encoded in a hierarchical way in their cognitive systems. From 

multivariate social distribution, agents would have knowledge about, for example, 

how one is expected to behave in a given situation, how other people are likely to 

react to one’s behaviour in some type of circumstance, how one will react to certain 

behaviour displayed by others or by her. 

 Social/moral knowledge, on which our moral judgements depend, might 

consist of distributions over a range of candidate hypotheses, which specify how one 

ought to behave across different types of situations in the social environment. Social 

distributions encoded in an agent’s cognitive systems specify the strength with which 

the agent entertains any hypothesis before any observation about the hypothesis is 

available. The subset of social distributions corresponding to such a priori mental 

states about (in)appropriate or right/wrong behaviour in the moral/social environment 

can be called norm priors. 
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 The moral qualities attached to any norm prior depend on representations at 

still higher levels in the hierarchy of distributions in our cognitive system. Such 

representations constitute a bedrock of general knowledge concerning how our 

attitudes and our actions should take into account the needs, the desires and 

expectations of others. The importance (or value) attached to a behaviour or an 

action is updated courtesy of reward-prediction errors, which are mainly, but not 

exclusively, triggered by the observation of the sensory- and reward-data given rise 

by that behaviour. More on this in section 2.3 below. 

 The normativity of moral judgement depends on this bedrock of value-

knowledge which infuses the world with value, with importance. Value-knowledge 

provides us with general moral convictions and moral concerns. It guides our 

behaviour by specifying goals we deem important, tracks changes in our 

motivational states and causally affects our normative judgements. This bedrock is 

shaped by the workings of value-based systems like the RL-systems described in 

Chapter 1. These systems not only enable smooth, adaptive interactions with others, 

but, as Chapters 5 and 6 will suggest, underlie our capacity to care about things and 

to create importance in our world as well. Let me now characterize norm priors more 

precisely. 

 Norm priors can be formalized thus: 

 [1] Prob (A ought to φ in S), 

where A is some agent, φ specifies an action and S is a type of situation. In our 

cognitive hierarchy, distributions of form [1] would be encoded at higher levels than 

distributions constituting our bedrock of value-knowledge. These distributions have 

the following form: 
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 [2] Prob (φ has value V | social representations Rs), 

where Rs is the representation of situation S. At still lower levels we would find 

social distributions of the form: 

 [3] Prob (Rs | situation S). 

Further down the hierarchy would lie encodings of objects, shapes, colors, textures, 

sounds, and so on, until we reach encodings of simple physical quantities such as 

velocity or orientation. 

 With this characterization in hand, I put forward the hypothesis that moral 

judgements as states of the mind can be fruitfully understood as norm priors encoded 

in our cognitive system. I now give some flesh to this hypothesis by highlighting four 

properties of moral judgements, which can be naturally accommodated if we 

understand moral judgements as norm priors. 

 

2.1.1 Moral Judgement. Prior to What? 

Norm priors are not prior to any experience or skill relevant to (in)appropriate or 

right/wrong behaviour. In general, priors refer to a learner’s degree of belief in a 

hypothesis before observing data relevant to that hypothesis in the situation at hand. 

This does not mean that the learner’s prior refers to her degree of belief in a 

hypothesis before she has acquired any body of knowledge or skill relevant to make 

a judgement or to act in the situation at hand. An agent’s norm prior, for example, 

might refer to her degree of belief in the hypothesis that she ought to buy the next 

round of drinks in that situation before she observes the sensory data given rise by 

that behaviour in that situation. 
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 The agent’s norm prior reflects her state of knowledge and practical 

competence as she faces a certain situation. The agent judging that she ought to buy 

the next round of drinks may in fact have much relevant prior experience with social 

behaviour in pubs. She may have gained this body of knowledge from direct 

apprenticeship or from testimony, by reading books or listening to some friends’ 

stories. This kind of prior experience is necessary in every aspect of ordinary moral 

affairs requiring some learned moral skills. 

 An agent’s norm prior, therefore, does not consist in a hypothesis about what 

one ought to do which the agent entertains “at the beginning of the beginning,” 

before the agent has undergone any experience or developed any skill (Suppes 2007). 

Rather, it is almost always the case that there has been some experience and that 

some skills have been developed prior to the elicitation of a norm prior in a particular 

situation. 

 Norm priors can accommodate that it is almost always the case that our moral 

judgements obtain against a background of moral experience and skills gained during 

continuous social apprenticeship. I shall have something to say about “the beginning 

of the beginning,” about which types of norm priors might be hardwired in our 

cognitive systems in section 3.2.1 below. 

 

2.1.2 Three Gradable Properties of Moral Judgement 

In general, the more spread out a random variable of a probability distribution, the 

greater the entropy of that distribution, and the greater the uncertainty the agent has 

towards the corresponding hypothesis (Kruschke 2008b). Both the value-knowledge 

and the social distributions encoded in an agent’s cognitive system have varying 
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degrees of uncertainty (or entropy). So, norm priors have varying degrees of 

uncertainty (or entropy). This can naturally accommodate the fact that moral 

judgement seems to have a number of “gradable” properties (on these properties see 

Smith 2002). 

 The first property, which moral judgement seems to share with all judgement, 

is the level of confidence or uncertainty that an agent has that a behaviour in some 

situation is good (or bad), right (or wrong), appropriate (or inappropriate) as she 

judges it to be. Agents may be more confident that stealing is wrong than they are 

that not buying the next round of drinks at the pub is wrong. 

 The second property of moral judgements is that they are more or less stable 

in the face of new information. This feature seems to apply generally to all 

judgement as well. Agents, for example, may be equally confident that stealing is 

wrong and not buying the next round of drinks at the pub is wrong. But, in the face 

of incoming new information, agents’ confidence in the former judgement is more 

stable than their confidence in the latter judgement. 

 The third property, which seems specific to normative judgement, is the 

degree of importance, or value that an agent assigns to some behaviour in some 

situation. Agents, for example, can assign high value (or high importance) to not to 

steal, but they can assign higher value to not to murder. 

 As pointed out by Smith (2002, Sec. 2), these three properties are relevant to 

explaining action. The more confidence agents have that they ought to do something 

under some type of circumstance, the more they will be motivated to do it, all else 

being equal. The more value they assign to certain behaviour under some type of 

circumstance, the more they will be motivated to do it. Over time, the motivation that 
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agents have to engage in some type of behaviour in some social situation co-varies 

with the level of stability of their judgement concerning that type of behaviour. 

 If we understand moral judgement as norm prior, then confidence in one’s 

moral judgement corresponds to the entropy of the underlying norm prior. So, the 

higher the entropy of an agent’s norm prior, the less certain the agent that she ought 

to do something, as specified by the norm prior. 

 Moreover, by considering that norm priors are constituted by a hierarchy of 

representational levels, with representations of value at higher levels, we can explain 

situations where agents are confident that some type of behaviour has certain social 

features, but they are less confident about the moral qualities of that type of 

behaviour. 

 Different distributions in the hierarchy can in fact have different levels of 

entropy. In particular, the entropy associated to some distributions underlying our 

body of value-knowledge can have high entropy, while social distributions at lower 

levels in the hierarchy might have lower entropy. As we learn how to successfully 

navigate our social space, and how to appropriately judge situations in our 

social/moral environment, the uncertainty (or entropy) of our norm priors decreases. 

As the uncertainty of an agent’s norm prior becomes lower and lower, the agent will 

be more motivated to engage in the type of behaviour specified by the norm prior, all 

else being equal. 

 

2.1.3 Bias and Moral Judgement 

One of the most robust findings in moral psychology is that moral judgement and 

social behaviour, more generally, can be affected by morally irrelevant situational 
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factors (for reviews see Bargh and Williams 2006; Sinnott-Armstrong 2008). Here 

are a couple of examples. People’s tendency to cheat or to act selfishly increases if 

they wear sunglasses or they are placed in a dimly lit room (Zhong et al. 2010); 

people’s moral judgement is less severe after they wash their hands with soap and 

water (Schnall et al. 2008). 

 Situational factors bias moral judgement in that they incline an agent to make 

one judgement, or a decision, over another. As such, ‘bias’ does not entail a 

deviation from a normative standard of judgement. Situational factors trigger specific 

informational processes, which lead agents to put more weight on certain sources of 

information, to prioritize some representations at the expense of others, and—

relevant to our topic—to activate some social distribution over others. 

 Because of such biases, people’s moral judgements vary across contexts even 

if their body of relevant moral knowledge and skills remain constant. Some biases 

influence the ease of retrieval of relevant information, or make available 

counterfactual alternatives to a given hypothesis, or make us focus only on particular 

features of some situation. Biases affect informational processes underlying distinct 

aspects of practical reasoning dependant on memory or attention (see Sunstein 2005). 

 If an agent’s moral judgement is understood as norm prior, then which norm 

prior is active in a given situation will depend on the factors present in the situation. 

These factors will bias the transformations carried out by our system along the 

hierarchy of social distributions leading to the construction and activation of norm 

priors. When two priors fit the sensory data equally well, biases are the only basis for 

deciding between them. 
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2.1.4 Verbalization 

Finally, it should be clear that some of the information carried by norm priors is 

available to consciousness and can be verbalized, expressed in utterances and 

sentences. The overwhelming bulk of our moral knowledge, however, might not be 

accurately or approximately verbalized, as people often have beliefs and attitudes 

they are not aware of having. Yet this knowledge can affect our moral behaviour. 

Here is an example: In spite of their self-reported beliefs and attitudes towards black 

people, European American and African American are more likely to misidentify a 

harmless object as a gun if they are first shown a picture of a black man rather than a 

picture of a white man (Payne 2006). 

 If moral judgement is understood as norm prior, and norm priors are the kinds 

of probabilistic internal representations that the previous chapters have described, 

then we can accommodate the fact that many of our moral judgements are not 

introspectable or conscious mental states. Within the neurocomputational framework 

I embrace, beliefs and desires are understood as probabilistic representations. They 

need not refer to mental states of which we are aware or which we can verbalize. 

Yet, probabilistic representations such as norm priors have effects on agents’ 

behaviour and can be controlled and manipulated. From this perspective, people can 

have some moral judgements, which they consciously “disbelief.” To put it another 

way, what people can have access to and verbalize is just a little, often inaccurate, 

and approximate portion of the rich body of moral and social knowledge encoded in 

their cognitive system. 

 By understanding moral judgement as norm prior, we can naturally separate 

questions about how moral judgements develop and affect our behaviour from 
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questions about how much we can verbalize of our moral judgements. With this 

separation, we can consider whether and how the moral judgements that are 

verbalized—or moral discourse more generally—can be used in important ways or 

can have some impact on moral thought. The relationship between language and 

moral thought will be the topic of the next Chapter. 

 

2.2 Likelihood of Moral Judgement 

The relationship describing how sensory data vary with any moral judgement can be 

called ‘likelihood function of moral judgement.’ Call ‘Sensory Input I’ the sensory 

consequences given rise to by the moral judgement ‘A ought to φ in S,’ the likelihood 

functions of moral judgement can be formalized thus: 

 [4] Prob (Sensory Input I | A ought to φ in S). 

This quantity is a function of both observed sensory data and moral judgement. The 

likelihood of a moral judgement is the probability of sensory input given the 

hypothesized moral judgement. It measures how expected some set of sensory inputs 

is for different moral judgements: it expresses to what extent a moral judgement fits 

some set of sensory inputs. Likelihood functions of moral judgements can be 

regarded as generative models of observing sensory input I under the hypothesis that 

one ought to φ in S. The likelihood of moral judgement reflects how probable it is 

that we receive, for example, the current sensory input given the judgement we 

entertain that one ought to take vengeance, or given the judgement we entertain that 

one ought to forgive. 

 It is noteworthy that the notion of likelihood is distinct from the notion of 

probability. Mathematically they are directly related to each other: The likelihood of 
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some particular moral judgement given some observed dataset of sensory inputs (I1, 

I2, …, In) is equal to the probability of the observed dataset given the moral 

judgement. For example, the likelihood of the judgement that one ought to buy the 

next round of drinks at the pub given such sensory inputs as a smile, a pat on the 

back, a ‘cheers’ is equal to the probability of those sensory inputs, given the moral 

judgement that one ought to buy the next round of drinks at the pub. But likelihoods 

and probabilities differ in what they represent. For probabilities, the hypotheses (or 

parameters) are known and the data are unobserved. For likelihoods, the data are 

observed and the values of the hypotheses (or parameter values) are unknown. So, 

for likelihoods of moral judgement we don’t know which particular moral judgement 

obtains in a particular situation. Likelihoods specify the probability of sensory data 

we receive given different possible moral judgements we could entertain. 

 Likelihoods of moral judgement can be relevant to describe the psychological 

mechanism of both moral judgement as a mental state and moral judgement as a 

process. On the one hand, the likelihood of norm compliance specifies how observed 

data are related to different moral judgements, understood as states. On the other 

hand, according to the view I favour, moral judgement as a process consists in 

combining norm priors with likelihoods. The next subsection will articulate this latter 

point. Let me expand on the former now. 

 Likelihoods of moral judgement are sensory estimates, which are relevant to 

understand the psychological mechanism of such aspects of our social and moral life 

as trusting, hoping and promising. Many of our moral judgements depend on trust 

and hope since they depend on trusting in the testimony of others or on hoping that 

something will be the case. For example, my judgement that one ought not to leave a 
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tip in restaurants in Japan depends solely on trust in the testimony of others. Many of 

our moral judgements, furthermore, concern trust, hope and promises. For example, 

we may judge that we ought to keep promises or ought not to betray those who trust 

us. It should be clear that thus trusting, promising and hoping allow us to form 

relationships with others. We may depend on these social relationships to satisfying 

our needs, our desires and to accomplishing the projects we consider important. 

 But trusting, hoping and promising involve uncertainty. We are uncertain, for 

example, that people we trust will not betray us. We are uncertain that this person is 

trustworthy, and therefore that we should trust her. If it were certain that some people 

would pull through without betraying us, then it would be unnecessary to trust them. 

If it were certain that something will be the case, then it would make no sense to 

hope for it. If there were guarantee that people keep their word, then we would have 

no need to make promises. 

 Likelihoods of moral judgement provide us with information about this 

uncertainty, as they specify the relationship between moral judgements and the 

sensory inputs they give rise to. Likelihoods of moral judgement describe how our 

moral/social environment changes so as to produce sensory inputs from different 

possible moral judgements—or from behaviour conforming to a certain judgement. 

Ray et al.’s (2009) study on the Trust Game, which was described in Chapter 2, 

clearly illustrates this point. In their study, agents’ likelihood functions specify the 

probability of observing a sequence of sensory data (e.g. the opponent’s observed 

actions), given the hypothesis that the opponent is of a certain type. That reflects—to 

repeat—how probable it is that we would observe the opponent’s current action, 

given that the opponent is trustworthy, or given that the opponent is shady. If 
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opponents are in fact of a certain type, then a player may hold the judgement that she 

ought (or ought not) to trust them since that player’s trust would successfully target 

trustworthy agents. 

 Likelihood functions of moral judgement, then, might enable agents to judge 

who is trustworthy, and therefore should be trusted, and to act on this judgement. 

Identifying how our cognitive system might encode and transform likelihood 

functions of moral judgement might shed new light on the psychological mechanism 

of at least trusting, hoping and promising. 

 

2.3 Norm Update 

We make a moral judgement—I hypothesize—by combining norm priors with 

likelihoods of moral judgements. More precisely, a moral judgement would be 

obtained by multiplying each norm prior by the value of the likelihood of moral 

judgement. At any given time, the moral judgement that we entertain is the least 

uncertain moral judgement, which is the peak of the posterior distribution Prob (A 

ought to φ in S | Sensory Input I). More formally: 

 

 [5] Prob (A ought to φ in S | Sensory Input I)  

    ∝ Prob (Sensory Input I | A ought to φ in S) Prob (A 

     ought to φ in S) 

 

From [5], two points should be clear. First, when we make a moral judgement, that 

is, when we entertain the judgement that one ought to do something in a certain 

situation, we incorporate prior moral knowledge to estimates of the sensory 
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consequences of possible moral judgements. Moral judgements are computed based 

on available moral knowledge and on incoming sensory input. Such computations 

might consist of Bayesian inferences carried out in the neural hierarchy underlying 

moral cognition. For any layer in the hierarchy, each posterior becomes a new norm 

prior and can be further updated based on incoming sensory input. 

 Second, even if we may not be aware of it, our moral knowledge is 

continuously updated based on new sensory information. The updating might be 

carried out courtesy of prediction-errors propagated along the hierarchy. Under the 

impact of new information, how stable the knowledge at each layer is depends on the 

shape of the distributions encoded at the immediate neighbour layers. The higher the 

entropy of some social distribution at some level, the more likely it is that the 

knowledge at that level will undergo revision. Let me illustrate the first point.5 

 Let i stand for the current sensory input; x1 stands for a random variable 

describing the possible values of the feature computed by neural populations at layer 

1 in the cortical hierarchy; xh stands for all knowledge encoded at higher layers, e.g. 

contextual information about the social situation and more abstract value-knowledge. 

Neural populations at layer 1 come to represent the most probable values of x1 by 

computing the a posteriori distribution that maximizes Prob (x1 | i, xh). Assuming for 

simplicity that Prob (i | x1, xh) does not depend on the higher-level information 

carried by xh, we can say that the transformations brought about at layer 1 consist in 

multiplying the likelihood of x1, Prob (i | x1), by the prior Prob (x1 | xh). The prior 

carries information about the degree of compatibility of every possible value of x1 

                                                 
5 This illustration relies on Lee and Mumford (2003, Sec. 2). 
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with the high level knowledge xh. The likelihood carries information about the 

impact of incoming input given any value of x1. 

 According to this view, each cortical layer is an expert for inferring certain 

features of our social/moral environment. Populations of neurons at each layer in the 

hierarchy are mainly interested in the computations carried out by their immediate 

neighbours. Inference carried out by neural activity at one layer is constrained by 

both bottom-up data coming from the feed-forward pathway and the top-down 

information feeding-back. 

 Let’s assume that our moral cognition is underlain by neural populations 

ordered hierarchically in four layers. Each layer computes a set of features with the 

top layer computing a moral judgement, or a “belief-state.” Call these features x1, x2, 

x3, the judgement j, and the incoming sensory input i. Each feature computed in the 

hierarchy is provided with a value-tag from the high-level body of value-knowledge. 

If we judge that an action is wrong or some behaviour is inappropriate, then it is 

wrong or inappropriate because of certain of its features and of their value-tags. 

Whether the behaviour is right/wrong or (in)appropriate is determined by the 

distributed probabilistic computations taking place along the hierarchy. Features 

represented by social distributions can be morally significant in some case, but can 

make a different moral difference in another type of circumstance. Features have 

variable moral relevance depending on the computations of other features of the case 

we face and on their value-tags. 

 Here is an example. We make the simplifying assumption that if in the 

sequence (i, x1, x2, x3, j) any variable is fixed, then the variables computed at the 

immediate neighbour layers are conditionally independent. The moral judgement 
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entertained by the system at a time, with incoming input i, can then be described with 

the multivariate distribution: 

 [6] Prob (i, x1, x2, x3, j) =  

   Prob (i | x1) Prob (x1 | x2) P (x2 | x3) Prob (x3 | j) Prob (j) 

From [6], it follows that the moral judgement entertained is computed thus: 

 [7] Prob (x1 | i,  x2, x3, j) ∝ Prob (i | x1) Prob (x1 | x2) 

  Prob (x2 | i,  x1, x3, j) ∝ Prob (x1 | x2) Prob (x2 | x3) 

And so forth until: 

 Prob (j | i, x1, x2, x3) ∝ Prob (x3 | j) Prob (j) 

Social feature x1 is computed through activity in neural populations in layer 1. The 

computation of x1 is affected by the bottom-up feed-forward data i and the 

probabilistic prior Prob (x1 | x2) fed back from layer 2. The feed-forward input drives 

the generation of a moral judgement; the feedback from higher layers provides the 

priors to constrain inference at lower layers. So the moral judgements, understood as 

mental states, we entertain at a time would just be the result of the interaction 

between these feed-forward and feedback signals. The least uncertain of our moral 

judgements is the moral judgement having more impact on our cognitive system and 

on our behaviour at a given time. 

 The second point highlighted by [5] is that moral knowledge is constantly 

revised and updated. There are at least three ways agents’ moral knowledge 

undergoes changes. First, moral knowledge undergoes changes through conscious 

reflection. Agents reflect on what one ought to do in a given situation by assessing 

and weighing their reasons for behaving in a certain way rather than another. 

Conscious reflection on what one ought to do can take place within a dialogue with 
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other agents, where different moral judgements are put forth for consideration and 

defended either by argument or by other persuasive means. This may lead to a 

revision of the shape of the distributions encoding the moral knowledge available for 

conscious reflection and verbalization. I shall get back to this point in the next 

Chapter. 

 The second way agents’ moral knowledge undergoes changes is through 

random fluctuations in its underlying distributions or in the value-tags attached to 

features represented by such distributions. Ongoing brain activity is found over a 

wide range of spatial and temporal scales. The functional significance of variations in 

spontaneous activity is not clear, but it is not unreasonable to believe that it might be 

also associated with variations in our body of social and moral knowledge (for a 

review on the functional significance of ongoing activity fluctuations see Sadaghiani 

et al. 2010). 

 Agents’ moral knowledge is constantly affected by the sensory input they 

receive. This is the third way it can undergo changes. An agent’s moral knowledge 

will not undergo changes under the impact of sensory input at a given time only if 

the agent’s moral knowledge at that time predicts exactly her incoming sensory 

input. If the agent’s moral knowledge fails to predict the incoming sensory input at a 

time, then a prediction-error is triggered, which will lead to a revision of the body of 

moral knowledge. Prediction-errors would be the part of the feed-forward signal that 

is not predicted by the prior knowledge encoded in higher layers. In this case, the 

more prediction-error, the more our social/moral knowledge will be revised. 

Prediction-errors can bring about a revision of the value-tag attached to some social 

distribution or of the social distribution itself. 
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 Here is an illustration of how new information can affect our moral 

judgement courtesy of prediction-errors. Other people’s utterances provide us with 

new information, which can impact our evaluative judgement. In an fMRI 

experiment, Klucharev et al. (2009) asked participants to rate the attractiveness of 

some faces while their brains were scanned. After each judgement, participants were 

informed about peers’ average rating. A conflict with the peers’ opinion elicited a 

response in the nucleus accumbens and the rostral cingulated zone similar to a 

prediction-error signal. The magnitude of this signal seems to have impacted on 

people’s evaluative judgement since it predicted conformity with peer rating. 

Participants, in fact, judged again the same faces outside fMRI scan after thirty 

minutes. Those initially in disagreement with the group rating tended to change their 

judgement toward conformity. Prediction-errors may trigger long-term conforming 

adjustment of an individual’s judgment. 

 

3. Neurocomputationalism at Work on Moral Judgement 

Thus far I have provided a description within a RL-Bayesian neurocomputational 

framework of some central aspects of the psychological mechanism of moral 

judgement. 

 It is now time to put this neurocomputational proposal at work and see what it 

can bring to the table. The remainder of the chapter argues that the 

neurocomputational description of moral judgement put forward above can shed new 

light on puzzling findings about specific patterns of moral judgement. I focus on the 

pattern of moral judgement displayed by psychopaths and small children. 
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3.1 The Moral Judgement of Psychopaths 

Psychopathy is a developmental disorder that involves pathological social behaviour. 

Psychopaths habitually violate important norms in their society. They are glib, 

impulsive, irresponsible, manipulative, egocentric, callous, lack empathy and have 

shallow emotions (Hare 2003). Psychopaths also make abnormal moral judgements. 

In particular, they have serious difficulty in drawing the so-called 

“moral/conventional distinction,” which I now introduce. 

 Most people treat judgements such as “You ought not to steal” differently 

from judgements such as “You ought not to leave a tip in restaurants in Japan.” The 

former, people would say, concerns a moral norm, whereas the latter a social norm 

(or convention). Most people would judge that violations of moral norms like hitting 

another person are more serious than violations of social norms like speaking without 

raising your hand. They would also deem the normative force of moral norms as less 

dependent upon authority figures and upon other people’s expectations than the force 

of conventions. So, it seems that moral violations can be characterised by their 

consequences for the liberty, wellbeing and welfare of others; violations of social 

norms (or conventions) can be characterised as violations of behavioural uniformities 

structuring social interaction within a given social environment. 

 There is good empirical evidence that the capacity to distinguishing between 

moral norms and conventions/social norms is central to the normal development of 

our normative competence (Turiel 1983). A number of psychological experiments, 

using what is known as the moral/conventional task, have been run across 

nationalities, cultures and ages to test putatively defining characteristics of moral 

norms and conventions. The task consists in presenting subjects with violations of 
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prototypical moral norms as well as with violations of other norms, and asking them 

a series of probe questions (e.g. “How wrong is the behaviour in the example?”; 

“Would the behaviour be wrong if some authority figure permitted it?”; “Would it be 

wrong also in a different place or at a different time in history?”; “Why is the 

behaviour wrong?”). Healthy subjects distinguish moral and conventional violations 

from the age of 39 months (Smetana 1993). Psychopaths have difficulty in drawing 

this distinction (Blair 1995). 

 There are two main puzzling findings about psychopaths’ judgement in the 

moral/conventional task. First, psychopaths tend to judge all transgressions as cases 

of moral transgressions (Blair et al. 1995a, 1995b). Psychopaths judge that, for 

example, it is not okay that a schoolboy walks out of the classroom without 

permission even if the teacher says it is permissible to do so. Second, unlike healthy 

controls, psychopaths ignore considerations about victims’ welfare or social disorder 

when they justify why some action is wrong. Psychopaths and healthy controls—it is 

noteworthy—do not differ in the way they draw, and justify, the moral/conventional 

distinction when they are confronted with positive acts like comforting a friend or 

wearing the uniform at school (Blair et al. 1995b). 

 

3.1.1 Not by Emotion Alone 

Authors like Jesse Prinz (2007) and Shaun Nichols (2004) link psychopaths’ 

incapacity to make judgements concerning moral and conventional/social norms to 

their emotional abnormality. Many discussions of psychopathy, in fact, identify lack 

of sympathy and incapacity to feel guilty as the deficits at the root of this disorder. 

Psychopaths appear to be indifferent to the concerns and some feelings of the others. 
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For example, in response to cues of distress such as the facial expression of a crying 

child they show no affective response (Blair et al. 1997). Psychopaths feel little 

remorse when they break moral or social norms. They show an incapacity to attribute 

guilt to violators of moral norms (Blair et al. 1995a). “The moral blindness of 

psychopaths—Prinz (2007, p. 46) writes—issues from an emotional blindness.” But 

the evidence does not warrant such a conclusion. 

 Psychopaths’ emotional profile is not flat: children with psychopathic 

tendencies, and adult psychopaths alike, are normal in their attributions of happiness, 

embarrassment and sadness to people described in short vignettes (Blair et al.1995a). 

So they don’t seem to have a general inability to experience emotion (Blair 1997). 

Psychopaths “show reduced skin conductance to sad, but not angry expressions. 

Moreover, children with psychopathic tendencies have been found to show selective 

recognition difficulties for sad and fearful expressions but not for angry, disgusted, 

surprised, or happy expressions” (Blair et al. 2001, p. 493). Psychopaths, thus, seem 

to be impaired in specific forms of emotional processing: they are probably impaired 

in emotional learning based on fear conditioning, and, as noted, in attribution of 

guilt. Although they show reduced emotional response in anticipation of punishment, 

they have normal response to reward (Blair et al. 2005). So, an appeal to an 

impairment in emotional processing might not suffice to explain psychopaths’ 

idiosyncratic pattern of normative judgement. 

 Neuropsychological research indicates that dysfunction in the amygdala is 

reliably associated to psychopathological behaviour (Blair 2003). The amygdala is 

one brain region most implicated in antisocial, aggressive and psychopathic 

behaviour (Raine and Yang 2006). Psychopathic individuals show a pattern of 
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functional impairments generally displayed by patients with a lesion or dysfunction 

in the amygdala: They have “deficits in aversive conditioning, the augmentation of 

startle response by visual threat primes and fearful expression recognition” (Blair 

2007, p. 388). More relevant here, psychopaths also show reduced activity in the 

amygdala during moral judgement (Glenn et al. 2009). 

 So, although “psychopathy is not associated with a lesion to a particular 

region, nor have all functions mediated by any particular region been shown to be 

compromised” (Blair 2007, p. 388), if psychopathy is reliably associated to a 

dysfunction in the amygdala, then one way to make progress in understanding 

psychopaths’ abnormal pattern of moral judgement is by identifying possible 

computational roles of this brain region. 

 

3.1.2 The Amygdala as Uncertainty-Detector and Psychopathy 

Here is my proposal. The general computational roles of amygdala activation might 

be twofold. On the one hand, the amygdala would contribute to detecting the 

uncertainty associated to the structure of a situation with respect to a probabilistic 

model of that situation. That is, amygdala would detect unpredictable or uncertain 

situations. On the other hand, given its detection of the uncertainty of the situation, it 

would signal a need to learn: Having computed that a situation is uncertain to a 

certain degree (or unpredictable), the amygdala would bias an organism towards 

greater sensitivity to the causal and reward structure of the environment. 

 In the case of moral judgement, amygdala activation would contribute in the 

detection of the level of uncertainty underlying a given moral situation in terms of 

the variance of the posterior of moral judgement activated by that situation. The 
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more uncertain the situation, the more active the amygdala will be. One way to 

capture the hypothesis that the amygdala might be sensitive to morally uncertain 

situations is in terms of a norm prior with maximum entropy, so that for any agent 

different actions seem equally (in)appropriate (or right/wrong) in that situation. 

Another possible way is in terms of a (nearly) “flat” (or constant) likelihood of moral 

judgement, such that different moral judgements fit equally well the sensory data, 

and so the cognitive system lacks information for selecting between competitive 

moral judgements. 

 The uncertainty underlying a moral situation might in turn be due to 

uncertainty with respect to the reward or the causal structure of a given environment. 

Having detected that a situation is morally uncertain, the amygdala would signal a 

need to learn about its structure, so that the entropy of the active prior could decrease 

and moral uncertainty resolved. I now make clearer and give some support to this 

hypothesis by describing Herry et al.’s (2007) experiment, which expands on 

findings about the amygdala in associative learning (for a review of amygdala 

functions see LeDoux 2008). 

 Herry and colleagues (2007) used a translational approach in humans and 

mice to ask whether the amygdala is essential “for processing sensory information 

that does not allow an exact prediction in time” (p. 5958). In their study, humans and 

mice were exposed to sound pulses. There was nothing specifically social or 

emotional about the pulses which were not associated with any other stimuli either. 

Herry and colleagues used two sound pulse sequences. One sequence was 

randomized so that the pulses occurred unpredictably at a variable interval. In the 

other sequence the sound pulses occurred predictably (every 200ms). It was found 
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that a sequence of unpredictably-timed sound pulses was associated to sustained 

amygdala activity both in mice and humans, measured as c-fos changes in the 

mice—where c-fos is a protein used as an indirect marker of neural activity—and 

fMRI responses in the humans. 

 This finding supports the hypothesis that uncertainty per se, rather than 

emotional or social dimensions of stimuli, is sufficient to engage amygdala 

processing. Thus, amygdala activity might be tuned to the level of uncertainty of the 

statistical structure of the environment. Recall that this level of uncertainty depends 

on the probabilistic model of the environment encoded in agents’ cognitive system. 

Amygdala activity, then, might contribute to the detection of whether there is a 

significant mismatch between the model and the structure of the environment an 

agent finds herself. More specifically, it might “track a quantity, known as 

associability, which reflects the extent to which each cue has previously been 

accompanied by surprise (positive or negative prediction errors” (Li et al. 2011, p. 

1250). 

 One possible function of such uncertainty-detection could then be connected 

to learning about the environment. Amygdala-based computation of uncertainty 

might bias the agent towards greater vigilance to the contingencies in that 

environment (Blackford et al. 2010). More specifically, amygdala activity might 

control “learning rates dynamically, accelerating learning to cues whose predictions 

are poor and decelerating it when predictions become reliable” (Li et al. 2011, p. 

1250). 

 The second part of Herry and colleagues’ study addressed the hypothesis that 

amygdala-based computations supports important aspects of learning about 
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environmental contingencies. They asked what behavioural effects amygdala 

response to uncertainty could have. In this second part, both humans and mice were 

engaged in tasks indexing stress and anxiety while one of the two sound pulse 

sequences played in the background. In particular, the human subjects were engaged 

in a dot-probe task where they viewed angry and neutral faces on a screen and had to 

press a button when a dot appeared in the location previously occupied by the face. 

 Compared with the predictable tone condition, in the unpredictable tone 

condition both mice and humans behaved more like anxious, hyper-vigilant subjects. 

Specifically, compared with the predictable tone condition, human subjects showed 

shorter reaction time when the dot occupied the position of the angry face instead of 

the neutral face when exposed to a sequence of unpredictable tones. Thus amygdala 

activity in response to an uncertain sensory environment seemed to bias responses 

towards greater sensitivity to threats, or more generally to biologically-relevant 

stimuli. By enhancing vigilance, amygdala activity might then signal the need to 

learn the structure of the environment (Whalen 1998). The role of the amygdala as 

uncertainty-detector might be more fundamental than—or even account for—its 

involvement in emotion and social cognition (Pessoa and Adolphs 2010). 

 

3.1.3 What’s Wrong with Psychopaths’ Moral Cognition? 

If psychopathy is a developmental condition, then psychopaths’ abnormality is 

probably linked with moral judgement as a process. Psychopaths would have moral 

knowledge but they would be incapable of updating it. The moral cognition of 

psychopaths might be deviant, first and foremost, as a result of an insensitivity to the 

uncertainty of a given situation measured with respect to an internal probabilistic 
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model of the situation. Because psychopaths would be unable to detect morally 

uncertain situations, they would lack signals enhancing their vigilance and 

disposition to learn about the structure of a given social situation. 

 Given the wealth of evidence indicating that amygdala activity can facilitate 

memory consolidation in other neural structures, sustained amygdala activity 

associated with detection of morally uncertain situations “may represent one possible 

mechanism by which prediction errors generated in one brain area may influence 

more widespread memory systems” (Herry et al. 2007, p. 5965). So, psychopaths’ 

capacity to update and revise their moral knowledge might be compromised due to a 

lack in some types of prediction-errors or because the prediction-errors they generate 

fail to influence storage of new moral information. 

 

Why Do Psychopaths Treat Conventional Wrongs As If They Were Moral 

Wrongs? 

Psychopaths treat conventional wrongs as if they were moral wrongs because they 

have difficulties in updating their moral knowledge, in particular their value-

knowledge. Such difficulty would ultimately depend on their blindness to uncertainty 

underlying social situations, which makes it difficult for their internal models of the 

social environment to be updated. 

 Abstract norms prohibiting harmful and unjust behaviour might be the norm 

priors hardwired in our cognitive system which constitute our moral knowledge at 

“the beginning of the beginning”—more on this in a moment. We would revise this 

body of “prior” moral knowledge and pick up other types of norms such as the local 
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social norms and conventions structuring our social environment by learning from 

repetitive social interaction or by being explicitly instructed. 

 Because psychopaths are blind to uncertainty, they will have difficulties in 

learning from direct interaction with their social environment. Given that detection of 

uncertainty typically triggers heightened vigilance towards biologically-relevant 

stimuli, towards threats in particular, psychopaths may be less vigilant to social 

punishments. Thus, psychopaths would not be able to update their moral knowledge 

via value-based learning, in particular via social-punishments. They would not be 

able to revise their normative knowledge on the basis of the reward-consequences of 

their behaviour either. 

 Explicit instruction can enable them to pick up at least some of the social 

norms and conventions that regulate interaction in their social environment. This 

type of learning may be insufficient, however, to convey the gradable properties of 

moral judgement since, in general, explicit instruction conveys information about 

rules as if they were exceptionless, non-gradable generalizations (Cf. Rogers and 

McClelland 2004). But conventions, unlike moral norms, are usually not treated as 

exceptionless generalizations. So, although along their learning trajectory 

psychopaths can acquire moral norms and conventions, the way they learn about 

them does not allow for distinguishing between the two types of norms. Hence they 

make judgements about conventional violations as if they were moral. 

 

Why Are Psychopaths Blind to the Welfare of Victims of Norm Violations? 

If psychopaths have a difficulty in learning about the structure of their social 

environment, then they will tend to have difficulties in representing reliably how 
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sensory input varies with any moral judgement. This is partly because of 

psychopaths’ lack of vigilance towards the sensory consequences of any norm-

compliant behaviour. If they are not vigilant in this sense, then the sensory 

consequences of any norm-compliant behaviour will provide unreliable data about 

any of their particular moral judgement. In other words, psychopaths’ likelihood 

function of moral judgement is “wide,” and consequently their moral judgement will 

be more strongly influenced by their norm prior. Being more strongly influenced by 

their norm priors, psychopaths will tend to put less weight on the consequences of a 

given moral or conventional transgression when they are asked to justify their 

judgement. Hence, when they justify their moral judgements, psychopaths will make 

predominant reference to information encoded in the norm prior, that is, to 

information about the norm itself (e.g. “It is not acceptable to do that”); compared to 

healthy controls, they will be less likely to make reference to other’s welfare (“Doing 

that will hurt that person”) or to the disruption caused by the transgression (“The 

class will be distracted if I do it”). 

 

Four Predictions 

Specific predictions can be drawn from this diagnosis. First, if psychopaths are 

insensitive to the uncertainty of a moral situation, then, in comparison to non-

psychopathic subjects, they will show less cognitive dissonance and less anxiety in 

judging a potentially problematic moral scenario, as they will be less prone to moral 

uncertainties. If amygdala activation detects uncertainty, and psychopaths are 

insensitive to the uncertainty of a moral situation, then given a moral scenario, 

psychopaths’ norm priors will generally display a smaller degree of entropy than 
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non-psychopaths’ norm priors, or their likelihoods of moral judgements will 

generally be more “peaked” than non-psychopaths’ likelihoods of moral judgements. 

 Second, psychopaths will be less vigilant—that is, they will show higher 

sensory thresholds throughout sensory cortex—when they have to judge a moral 

scenario; in particular, they will be less vigilant towards potentially-threatening 

stimuli in uncertain moral situations. 

 Third, psychopaths will be less disposed to revise their body of moral 

knowledge in comparison to non-psychopaths in the face of new relevant moral 

information. This learning impairment might be due to lack of prediction-errors or to 

a failure to consolidate memories courtesy of prediction-errors. 

 Fourth, if explicitly instructed about the authority-dependent nature of 

specific conventions, psychopaths will tend to show a normal capacity to draw the 

moral conventional distinction. 

 Rather than depending on an emotional deficit, therefore, the deficiencies in 

moral judgement of the psychopath might perhaps be consequence of a learning 

deficit, which ultimately would be consequence of an incapacity to detect and deal 

with uncertainty in morally significant situations. 

 

3.2 Children’s Moral Judgement 

Children as small as three years of age can distinguish between moral norms (e.g. 

norms involving justice and harm) and conventions. So, small children seem to be 

equipped with abstract information about the moral world. At the same time, children 

learn about their social and moral environment from direct experience. 
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 The type of information they acquire during development might not be 

sufficient to ground the moral/conventional distinction. The explicit moral education 

that children receive seems to be mainly directed towards social norms rather than 

moral ones. Casual observation suggests that most advice and corrections that 

children receive from caregivers and parents are directed towards social norms or 

conventions (“Don’t burp!”, “Wait for your turn!”) rather than moral norms (“Be 

just!” or “Don’t kill your mates”). Where does small children’s moral knowledge 

come from? 

 

3.2.1 Children as Probabilistic Learners and Their Built-In Priors 

I wish to suggest with Gopnik et al. (2010, p. 342) that “the child is a probabilistic 

learner, weighing the evidence to strengthen or reduce support for one hypothesis 

over another.” From this perspective, we might explain findings on small children’s 

judgement in the moral/conventional task by appealing to “evolutionarily built-in” 

norm priors. 

 One argument in support of this hypothesis goes like this: 

 

 P1. At least partly, natural selection has shaped our psychological tendencies. 

 P2. Humans are generally averse to risky states—where objective  

 probabilities are known—and to uncertain states—where objective 

 probabilities are missing. 

 P3. Risk aversion is evolutionary advantageous under many circumstances. 
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 P4. If risk aversion is evolutionary advantageous under many circumstances, 

 then, a fortiori, uncertainty aversion is evolutionary advantageous under 

 many circumstances. 

 P5. Actions that involve harm and injustice bring about highly uncertain 

 social states. 

 C. Therefore, humans may have inbuilt priors such that they averse to actions 

 that involve harm and injustice. 

 

I take it that P1 is non-contentious. P2 is underwritten by a substantial wealth of 

evidence (see e.g. Weber and Johnson 2009). P3 and P4 can be justified by appealing 

to Friston’s free-energy principle, which we encountered in Chapter 1, thus. In an 

evolutionary setting, “model”-selection (or agent-selection) is constrained by free-

energy minimization: models with the lowest average uncertainty are the ones who 

are likely to survive and passed on to the next generation. 

 P3 can receive independent justification as well. Here I draw on Samir 

Okasha (2007). Okasha’s argument is that, under realistic assumptions, types of 

organisms with a lower variance in their reproductive output—individuals who are 

risk-averse with respect to their offspring—have fitness advantage under a variety of 

circumstances. Suppose—Okasha argues—that there are only two types of organisms 

in a population. They reproduce asexually, and their types are transmitted faithfully 

from parent to offspring. Type A organisms have fixed reproductive output (e.g. 5 

offspring); type B organisms have a reproductive output that varies stochastically 

(e.g. 10 or 0 offspring with 0.5 probability). Although both A and B organisms have 

the same expected number of offspring E (E(B) = 0.5 * 10 + 0.5 + 0 = E(A) = 5), 
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they do not have the same expected frequency of offspring. The frequency of a type 

X after a generation is given by: 

 NUMBER of Offspring of Type X / TOTAL number of Offspring in the 

Population 

 In a population with 2 organisms, one of type A the other of type B, after one 

generation, the population will contain 5 A and 10 B with 0.5 probability and 5 A 

and 0 B with 0.5 probability. By applying the formula above, in the former case the 

frequency of the A type will be 1/3, in the latter 1. If we compute the expected 

frequencies F, we have: 

 F(A) = 0.5 *1/3 + 0.5 * 1 = 2/3; and 

 F(B) = 0.5 * 2/3 + 0.5 * 0 = 1/3. 

 Type A has higher expected frequency in the second generation. Since 

frequency is what matters for evolution, type A is fitter than B because its lower 

variance in reproductive output, or, put it in other words, because it is averse to risk. 

Therefore, under many circumstances evolution seems to favor risk-averse 

organisms. 

 If P3 is plausible, then P4 is plausible a fortiori. The consideration in support 

of P4 is simple. What is generally referred to as a ‘risk’ involves knowledge of 

objective probabilities. In the case of ‘uncertainty,’ instead, objective probabilities 

are unknown: they have to be guessed on the basis of prior experience. If risk-averse 

organisms have an evolutionary advantage over risk-seeking ones in many 

circumstances, then uncertainty-averse organisms will have an evolutionary 

advantage over risk-averse ones, as dealing with risk is less computationally-

consuming than having to deal with uncertainty. Uncertainty-averse behaviour may 

221 

 



be evolutionary advantageous. And our tendency to be averse to uncertainty might 

have an evolutionary explanation. 

 P5 seems plausible as well. Types of behaviours that are harmless or that 

promote justice seem to be particularly efficacious to minimize agents’ uncertainty. 

Social and moral institutions “create order out of chaos, […] make our lives more 

predictable, and thereby allow us to devote less of our resources to solving recurrent 

social problems repeatedly” (Schotter 1981, p. 143). Under most circumstances, 

behaviour that involves harm or injustice tends to bring about uncertain states. 

Breaking a promise or punching others are such types of behaviours: situations 

where injustice and violence are systematically pursued are highly chaotic. 

Compared to behaviour like keeping a promise, the sensory consequences of harmful 

or unjust behaviours seem to be relatively harder to estimate. 

 If my argument in this section is sound, then there are grounds to conclude 

that at “the beginning of the beginning” humans might have norm priors such that 

they judge behaviour involving harm and injustice as wrong. Such behaviours would 

be “wrong” partly because they are catalysts of uncertainty. We may have an evolved 

bias to avoid types of actions like breaking a promise or hurting others. This built-in 

norm prior might explain why small children can distinguish moral from 

conventional violations. 

 

Conclusion 

This chapter has expanded on the Bayesian Brain Hypothesis and brought the 

Bayesian framework to bear on moral judgement. Specifically, it has put forward the 

suggestion that some central aspect of the psychological mechanism of moral 
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judgement can be described within a RL-Bayesian neurocomputational framework. It 

has argued that this framework promises to shed new light on puzzling findings 

about psychopaths’ and children’s patterns of moral judgement, thereby helping us to 

explain them. 
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CHAPTER 5. 
Leges Sine Moribus Vanae.6 
Does Language Make Moral Thinking Possible? 

Does language make moral thought possible? After having put forth an account of 

moral judgement in the previous chapter, I now tackle this specific question. More 

generally, in this chapter I explore the relationship between language and moral 

cognition by engaging with some relevant aspects of Andy Clark’s work. I also point 

to one important capacity, the capacity for florid control, which might be enabled by 

the workings of RL algorithms implemented by dopaminergic circuits. 

 Clark’s unabashedly transdisciplinary work and argumentative style represent 

an ideal platform for advancing a debate such that concerning the relationship 

between language and moral cognition. By bringing insights and results from various 

disciplines to bear on the understanding of such a relationship, Clark claims that 

human language explains the possibility of moral thought. He argues for a supra-

communicative view of language according to which we use language not only, or 

mainly, to communicate (Clark 1998; 2006a; 2006b). Language, for Clark, augments 

our cognitive abilities, makes learning easier, facilitates us to offload our memory, 

helps us to structure the environment where we live, to manipulate and re-organize 

complex data-sets. We also use language to coordinate our interactions, make plans, 

persuade others and simplify complex tasks. Courtesy of language we can access our 

own cognitive practices from a second-order stance. Language, importantly, appears 

to make possible new domains of thinking (Bermúdez 2003; Carruthers 2002; Clark 

1997, Ch.10; Dennett 1991, Ch. 8). 

                                                 
6 From Horace, Odes, III, 24. Transl.: “Laws without morals [are] useless”. 
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 For Clark, the presence of language and the way people use it mark a 

fundamental divide between humans and all the other animals with respect to moral 

cognition. In an exchange with Paul Churchland, Clark writes: 

 

Recent work in cognitive science highlights the importance of exemplar-based know-how 

in supporting human expertise. Influenced by this model, certain accounts of moral 

knowledge now stress exemplar-based, non-sentential know-how at the expense of rule-

and-principle based accounts. I shall argue, however, moral thought and reason cannot be 

understood by reference to either of these roles alone. Moral cognition—like other forms 

of ‘advanced’ cognition—depends crucially on the subtle interplay and interaction of 

multiple factors and forces and especially (or so I argue) on the use of linguistic tools and 

formulations and more biologically basic forms of thought and reason (Clark 2000a, p. 

267). 

 

 More recently, in a debate with John Haugeland, Clark (2002a) presses the 

same point by arguing that linguistic objects like labels, words and sentences 

radically transform and expand the cognitive space our minds can explore. In 

particular, language would make available to our minds a “social-normative space.”7 

According to Clark, the unique profile of our moral cognition, which John 

Haugeland calls ‘norm-hungriness’, is a “secondary effect of getting language going” 

(Clark 2002a, p. 54, discussion). 

 I take issue with Clark and argue for two claims. First, language is probably 

not necessary for moral cognition: at bottom, moral cognition is probably a kind of 
                                                 
7 Here I use ‘moral cognition’ and ‘moral thinking’ interchangeably, I also use ‘social-normative 
space’ as akin to ‘moral space’. Although I acknowledge that there is a spectrum of social behaviours 
some of which tend to be called ‘moral’, for my purposes it is not necessary to precisely define 
‘morality’. My use of the terms furthermore is consistent with Clark’s, Churchland’s and Haugeland’s 
whose works are my main focus. 
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skill dependent on basic capacities of pattern-recognition and social learning. 

Second, our unique norm-hungriness could depend on our capacity for florid control 

rather than on language. This capacity will be further explained in the next chapter, 

in relation to the capacity to care. 

 The chapter is in four sections. The first section gains a broader perspective 

on the topic by rehearsing some of the central ideas in Clark’s exchanges with 

Churchland and Haugeland. Then, it reconstructs Clark’s main argument for why the 

moral domain of thinking is made possible by the presence and use of language. The 

second section is in three parts. It firstly challenges Clark’s view on the relationship 

between language and moral cognition. Secondly, it puts forward the hypothesis that 

norm-hungriness could depend on humans’ capacity for florid control. Finally, it 

considers to what extent my disagreement with Clark is merely terminological. The 

third section provides a succinct map of different effects that language can have on 

moral cognition. The last section summarizes the claims made and defended and 

points to questions for further research. 

 

1. Churchland, Haugeland and Clark’s “Discursive Construction of the 

Moral Space” 

I begin by introducing Paul Churchland’s argument for why language is probably 

unnecessary for moral cognition (Churchland 1995, Ch. 6 and Ch. 10; 1996; 2000). 

As we have seen in Chapter 3, Churchland claims that moral cognition is a kind of 

perceptual skill based on pattern recognition and prototype-based learning and 

categorization. As such, its possibility would not depend on certain uses of language 

or on linguistically codified rules. 
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 Churchland’s argument—as already noticed—is deeply influenced by results 

from cognitive neuroscience and by the requirements of neural networks modelling. 

One of its premises is that artificial neural networks are especially relevant for 

understanding human and animal cognition. 

 If neural networks don’t process information by relying on any system of 

linguistic symbols or linguaform rules, then cognition does not probably require any 

system of linguistic symbols or linguaform rules. Linguistic symbols or linguaform 

rules are not causally involved in neural networks’ processes. Therefore, cognition 

does not probably require any system of linguistic symbols or linguaform rules, to 

the extent that neural networks are relevant to understanding it. Churchland 

concludes that “a normal human capacity for moral perception, cognition, 

deliberation, and action, has rather less to do with rules, whether internal or external, 

than is commonly supposed” (Churchland 1996, p. 101). The possibility of moral 

cognition would not depend on language. 

 Moral thought would rather depend on perceptual skills acquired over a life-

time of social experience. For Churchland, we learn how to recognize a wide variety 

of situations and how to respond to them by relying on a library of moral prototypes 

that we acquire from interaction with others. Moral prototypes, recall, are statistical 

central tendencies extrapolated from concrete moral examples encountered in a 

variety of social interactions. They facilitate us to classify and comprehend new 

social situations, and to respond to them appropriately. The successful navigation of 

our social and moral environment would ultimately depend on our prototype-based 

perceptual or recognitional skills which are embodied in configurations of synaptic 

weights of appropriately trained neural networks. 
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 Clark agrees with Churchland on the relevance of artificial neural networks 

and cognitive neuroscience for understanding cognition. He argues, however, that 

language plays a fundamental role in constituting some of our social behaviours as 

genuinely moral. For Clark, the presence of language and certain uses of language set 

us apart from other animals by making us genuine moral agents. 

 In reaction to Churchland, Clark emphasises two points. First, moral 

judgement, moral deliberation and social decision-making are capacities that have a 

fundamental communal and collaborative dimension. Clark notices that “missing so 

far from the discussion [on the foundations of moral thought] is any proper 

appreciation of the special role of language and summary moral maxims within a 

cooperative moral community” (1996, pp. 120-121). 

 Moral judgement has a fundamental cooperative dimension since it involves 

being sensitive to the needs, reasons and desires of others. Such sensitivity demands 

a “commitment to finding routes through the moral space that accommodate multiple 

perspective and points of view” (Clark 2000b, pp. 309-10). In order to find such 

“routes through the moral space” language is essential because it makes possible to 

us to give and share reasons for our behaviour (Clark 1996; 2000b). 

 Second, for Clark, the domain of moral thinking is made available to us by 

linguistic objects such as moral labels, codified rules and social classifications. 

Churchland maintains that the role of this linguistic, external scaffolding is to 

offload, preserve and share our moral knowledge; but language, according to 

Churchland, is not causally necessary to make the moral space available to us. For 

Clark, instead, without a linguistic apparatus we would be blind to those behavioural 
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patterns and concepts in our life that constitute the moral domain of thinking. Thus, 

language, for Clark, is causally necessary (or constitutive) to moral thinking. 

 The conjunction of these two claims can be called the thesis of the discursive 

construction of the moral space. Clark’s thesis can be summarized thus: 

 

the moral realm comes into view, and moral cognition is partially constituted, only by the 

joint action of neural resources we share with other animals and the distinctively human 

infrastructure of linguaform moral debate and reason (Clark 2000b, p. 311). 

 

 More recently, Clark has articulated this thesis during an exchange with John 

Haugeland (Clapin 2002, Part I). Haugeland holds that humans have a peculiar norm-

sensitivity or insatiable norm-hungriness which is unique to our species and is prior 

to the development of our impressive linguistic abilities. Language, for Haugeland, 

could not get off the ground without this norm-sensitivity or norm-hungriness. 

 Although it’s not clear what Haugeland intends exactly by ‘norm-hungriness,’ 

one plausible way to understand this notion is in terms of a need or desire to create 

and abide by a multitude of norms. Such a need would lead to societies where the 

“structures of a community can rely on the fact that almost all its members will abide 

by almost all the norms almost all of the time” (Haugeland 2002, p. 32). 

 According to Haugeland, our norm-hungriness would depend on some neural 

innovation: “The native wetware endowment of homo sapiens—Haugeland writes 

(2002, p. 31)—has to have evolved so as to support our norm-susceptibility and 

norm-hungriness.” Such a neural innovation is distinct from any neural circuits 

implementing our linguistic capacities. It is the very possibility of language and 

language-use that depends on the neural circuits implementing norm-hungriness. 
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 Haugeland suggests that norm-hungriness and social norms exert “a kind of 

‘normative gravity’ [such that] … when an individual’s dispositions stray from 

producing [normal, conformist] behavior … they are ‘pulled back in’” (Haugeland 

2002, p. 32). Such normative gravity would promote “tight clumps [of sociality] 

separated by large empty gaps” (Ibid.). It would promote, that is, the emergence of 

discrete, identifiable types of social behaviour. This, in turn, would pave the road to 

digitalness which seems to be a prerequisite for the emergence of language. For 

Haugeland, therefore, “social norms may have laid the groundwork for language in a 

more basic way … by enabling the digitalization of behavioral types” (Ibid., p. 33). 

 According to Haugeland’s account, Clark would then be “norm-blind.” Clark 

is focused on language; and language is the wrong target for understanding the rise 

of moral cognition since moral cognition and norm-hungriness would be prerequisite 

rather than consequences of human language. In fact, Clark’s thesis of the discursive 

construction of moral cognition “depicts norm-sensitivity and norm-hunger as 

secondary effects of our linguistically enhanced capacity to target biologically basic 

processing resources on increasingly abstract and higher order domains” (Clark 

2002a, p. 40). 

 Clark, in reaction to Haugeland, argues that it was the emergence of language 

that allowed us to objectify “complex features and relations” which “ma[de] 

available new, quasi-perceptual, spaces for reasoning” (Ibid., p. 42); and it was this 

phenomenon that cranked up the unfolding of the social-normative space that our 

minds can explore. 

 Let me now explain more carefully Clark’s argument in support of his thesis 

of the discursive construction of moral cognition. 

230 

 



 

1.1 Chimps, Representational Re-Coding and Morals 

In his exchanges with Churchland and Haugeland (Clark 1996; 2000a; 2000b; 2002a) 

Clark’s main argument in support of his thesis of the discursive construction of the 

moral space is a study of analogical reasoning in chimps (pan troglodytes) by 

Thompson, Oden and Boysen (1997). Thompson and colleagues seemingly show that 

chimps trained to use arbitrary plastic tokens of different shapes and colors, which 

are consistently associated with pairs of identical objects (e.g. two shoes or two cups) 

or with pairs of different objects (e.g. one shoe and one cup), learn to grasp abstract 

relationships. 

 The task in Thompson and colleagues’ study was to identify higher-order 

relationships of sameness or difference by exploiting the plastic tokens as stand-ins 

for same-relationship and difference-relationship. The chimps had to recognize a 

display of Cup/Cup as an instance of the same-relationship and a display of 

Cup/Shoe as an instance of the difference-relationship. Experience with the external 

plastic tokens seemed to be necessary for the chimps to solve more abstract 

problems. Presented with a display of Cup/Cup and Shoe/Shoe, or a display of 

Cup/Shoe and Cup/Shoe, the chimps could identify the higher-order relationship of 

sameness also in this case. Chimps were also able to recognize that a display of 

Cup/Shoe and Cup/Cup instantiated the higher-order relationship of difference. 

Chimps that did not undergo that kind of symbolic training could not succeed in the 

task. Hence it seems that prior experience with the external tokens was necessary 

before the chimps could perform successfully. 
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 The conclusion drawn by Clark from this example concerns the capacity 

acquired by the chimps courtesy of objectification of abstract relationships—a 

process “akin to acquiring a new perceptual modality” (Clark 1998, p. 175). 

According to Clark, the chimps in Thompson and colleagues’ study learn to solve a 

complex problem because of representational re-coding—which was mentioned in 

Chapter 2. Chimps would be able to symbolically re-code complex abstract 

relationships into iconically equivalent, simple, usable objects. Clark suggests that 

this capacity leveraged on the experience with the plastic tokens which enabled the 

chimps to acquire new mental representations. Such mental representations could 

stand in for the abstract regularities instantiated by the plastic tokens. Thus, for 

example, when the chimps faced a pair of identical objects, they could retrieve a 

mental representation associated to the same-relationship. When the chimps were 

confronted with two pairs of objects like Shoe/Shoe and Cup/Cup, they could 

retrieve and use two representations of plastic tokens of the same type. The task was 

thereby reduced to the first-order problem of recognizing that two tokens were of the 

same type. Let’s now reconstruct Clark’s argument with his case-study in hand. 

 Clark’s first step consists in showing that words, labels and tags are tools that 

enable representational re-coding. Language, that is, enables us to objectify our 

thoughts and ideas in the same way experience with plastic tokens enabled the 

chimps to objectify abstract relationships. Language, according to Clark, would 

compress abstract regularities into basic cognitive objects. Such cognitive objects can 

make possible new domains of thinking. And in these new cognitive domains, the 

computational space we have to search in order to solve a certain problem would be 

dramatically reduced (Clark and Thornton 1997). These cognitive objects can enter a 
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process of objectification themselves, thereby allowing us to create and explore 

further cognitive domains. 

 The second step in Clark’s argument is important. Clark argues that moral 

cognition is a new domain of thinking made possible by the kind of representational 

re-coding enabled by language. Our use of public language enables us to compress 

abstract relations and features in cognitive objects anchored to moral labels and 

maxims. Normative talk would render certain features and abstract relationships 

visible and usable for us, just as experience with plastic tokens rendered abstract 

relations-between-relations visible and usable for chimps. The normative space of 

morality, according to Clark, is a virtual, higher-order cognitive realm; and norms, 

duties, rights, promises, commandments and obligations are examples of objects that 

populate such a realm. According to Clark, therefore, it is a process of objectification 

empowered by our use of language that makes moral thinking possible and builds up 

our unique norm-hungriness: our capacity to create, learn and act upon social norms. 

 I am not persuaded by Clark’s argument. I agree with Clark that language 

plays an important role in the unfolding of the social normative spaces we inhabit, 

but I am not convinced by the second step in his argument. Specifically, I am not 

convinced that the kind of representational re-coding described by Clark as 

empowered by language is necessary for the rise of moral thinking and in particular 

for making possible a social-normative space. Human norm-hungriness does not 

probably follow from “getting language going.” Our peculiar norm-hungriness would 

rather depend on florid control. 

 I am sympathetic, instead, with aspects of both Churchland’s and 

Haugeland’s accounts. On the one hand, I agree with Churchland that the very 
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possibility of moral cognition does not depend on a linguistic apparatus. The account 

of norm compliance laid out in Chapter 1, in fact, does not make reference to 

language or linguistic resources. On the other, I am attracted by Haugeland’s idea 

that humans’ peculiar norm-hungriness might depend on some neural innovation. 

 

2. Why Language Could Not Be Necessary for Moral Thinking 

Is the capacity enabled by re-coding, and displayed by the chimps in Thompson and 

colleagues’ study, causally necessary for creating and successfully navigating a 

social-normative space? To answer this question let’s consider the case of macaque 

monkeys. 

 Macaque monkeys can judge whether two objects are identical on the basis of 

their physical features or of category similarity. They fail, however, in the type of 

high-order reasoning task where chimps can succeed (Thompson and Oden 1998). 

So, they seem to lack a capacity for representational re-coding as rich as that of 

chimps. How does this affect their capacity to navigate their social space? Is 

representational re-coding causally necessary for the rise of social norms and for 

making possible complex social interactions? 

 One famous study by Dasser (1988) with long-tailed macaques shows that the 

ability to recognize others’ social relations—arguably an essential ability for 

successfully interacting with other agents—may depend on mechanisms other than 

representational re-coding. Macaques were trained to view photographs of other 

familiar members of their group. The photographs were either of a mother and her 

offspring, or of two unrelated group members. After training with the same mother-

offspring pairing, the monkeys could successfully judge whether novel combinations 
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were a mother-offspring pair or a pair of unrelated individuals. Macaques displayed a 

capacity to recognize a social concept such as mother-offspring independent of the 

physical characteristics of the particular individuals involved. In fact, the pictures of 

mother-offspring pairs included mothers with infant daughters, mothers with adult 

daughters, and mothers with sons. 

 Another study, by Bovet and Washburn (2003), shows that rhesus macaques 

(Macaca mulatta) are able to categorize unfamiliar conspecifics on the basis of their 

dominance relations. Here, the monkeys were confronting video-clips of agonistic 

interactions of unknown individuals of their same species. After some observations, 

the monkeys were able to successfully recognize the dominant monkey in each 

interaction. 

 These two examples show that animals such as macaque monkeys, who 

cannot reason analogically, can nevertheless build up complex social knowledge just 

from observation and experience with conspecifics. Although it is widely believed 

that chimpanzees, and great apes in general, have more complex social cognitive 

capacities than monkeys, the difference is not significant—and it is possible that this 

belief stems from a bias of researchers of animal cognition and behaviour in favor of 

chimps rather than from careful empirical investigation (Tomasello and Call 1997, p. 

350). The social space navigated by macaque monkeys is of comparable complexity 

as the social space of chimps notwithstanding their inability for the kind of 

representational re-coding required by analogical reasoning. Hence, representational 

re-coding is probably not causally necessary for making possible complex social 

knowledge and for proficient social navigation. If moral cognition enables the 

proficient navigation of one’s social space that is not because of the further capacity 
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to use tags and labels to represent abstract, complex relationships. This conclusion 

needs some qualification. 

 There is no claim in Clark’s argument that chimps have more complex social 

knowledge or social structures courtesy of their capacity for analogical reasoning. 

His point with the chimps’ case-study is to provide us with a (non-linguistic, non-

moral) example in support of the claim that language as an artifact makes possible 

new cognitive domains. 

 I agree on the general point that re-coding is a formidable way to make 

available new cognitive objects which can be used for further thought. Nonetheless, 

if animals like macaque monkeys who have a limited capacity for representational 

re-coding present a level of social expertise similar to that of animals like chimps 

that are more skillful in re-coding, then re-coding is probably not causally necessary 

for the emergence of a complex social-normative space. 

 At bottom, moral wisdom might be a type of know-how, enabled by 

Bayesian-RL neurocomputing, that we share with “baboon troops, wolf packs, 

dolphin schools, chimpanzee groups, lion prides, and so on” (Churchland 2000, p. 

297). In many of these animals we don’t witness a capacity for representational re-

coding, yet they do display “the same complex ebb and flow of thoughtful sharing, 

mutual defense, fair competition, familial sacrifice, staunch alliance, minor 

deception, major treachery, and the occasional outright ostracism that we see 

displayed in human societies” (Ibid.). 

 Pattern-recognition and certain types of social learning might suffice for 

animals like macaques to perform successfully in the tasks described above, and 

more generally to proficiently navigate their social-normative space (Churchland 
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2011). Those monkeys had extensive interaction with other conspecifics before 

confronting the experimental tasks. In the course of such interactions, macaques 

could learn that certain patterns of cues correspond to certain abstract relationships 

(e.g. grooming, parenting, sexual interaction, fights or alliances). The identification 

of different types of relationships need not depend on recollection of all the specific 

elements instantiated in particular cases. Rather, as suggested by Churchland, it can 

depend on prototype-based cognitive constructs which deliver the statistical central 

tendency of a large number of concrete exemplars many of which can differ in 

important ways from the others. If macaques can extract and keep track of different 

social prototypes across contexts and act upon them, then they may successfully deal 

with new social situations by recalling what prototype best corresponds to the 

particular pattern of cues in that context. 

 Such library of prototypes, as Chapters 1 and 4 argued, might get imbued 

with value after patterns of rewards and punishments are received in a given situation 

(Ibid., Ch.2). For example, assume that a sufficient number of macaques are willing 

to punish other macaques for behaving in a way b which is harmful to the group 

members. When macaques assist to behaviour b, they may have certain prototypes 

associated to b or to aspects of b. If some macaques engaging in b are punished, then 

b will probably get discounted: macaques will tend to avoid engaging in b in certain 

circumstances. While rewarding objects and events make agents come back for more, 

negative-valenced objects and events tend to be avoided. Thus some of the 

prototypes associated to b might acquire a negative valence. For example, when 

macaques that are at a lower level in the social hierarchy eat berries in certain 

circumstances, other macaques may punish them. Under certain circumstances, that 
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is, eating berries when you are at a lower level in the hierarchy is a behaviour that 

will tend to be discounted. Thus, the macaques might learn that some types of 

behaviours, which are represented in certain ways, cause the delivery of punishment, 

and if they want to avoid punishment, they should behave in certain ways rather than 

others in certain circumstances. 

 In this sense some prototypes can acquire value. There is in fact evidence that 

animals like macaques can “divide the world into distinct in-groups and out groups, 

associate and categorize novel stimuli associated with these groups, and valence 

these groups as ‘good’ or ‘bad’—all in the absence of language” (Mahajan et al. 

2011, p. 401). 

 Now, even if my argument thus far is sound, my proposal would still face two 

problems. First, the trial-and-error learning and pattern-recognition capacities on 

which moral cognition and social navigation might depend are common to most 

animal species. But humans—unlike other animals—do seem to display a peculiar 

norm-hungriness, as Haugeland suggests. If we take this apparent difference 

seriously, what could account for it? 

 Second, it seems that my disagreement with Clark is merely terminological. 

We agree that facts like chimps’ capacity for representational re-coding and 

macaques’ social categorization are relevant to explain the emergence and unfolding 

of moral thinking. Our dispute seems to concern merely the language used to 

describe this space. Are there substantive points of disagreement between Clark’s 

and my argument? 

 I tackle these two problems in the next two subsections. 
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2.1 Human Norm-Hungriness and Florid Control 

To begin addressing the first issue, one approach is to ask whether some capacity 

enabled by some neural innovation could account for our peculiar norm-hungriness 

as surmised by Haugeland. As the prefrontal cortex is reliably involved in most of 

what it’s taken to be distinctively human forms of thinking and capacities, one 

promising way to understand our idiosyncratic norm-hungriness is to point to some 

cognitive capacity enabled by the human prefrontal cortex (on this point see Preuss 

2009; Stone 2007). Pursuing this approach, my hypothesis is that humans’ peculiar 

norm-hungriness depends on human capacity for florid control which is enabled by 

the concerted interaction between our prefrontal cortex and the dopaminergic RL-

system. I now elaborate my hypothesis. 

 The prefrontal cortex (PFC), which we already encountered in previous 

chapters, is the neo-cortical region most complicated in primates. It comprises an 

ensemble of interconnected areas organized such that they can send and receive 

neural projections from the sensory and motor systems, and many sub-cortical areas. 

Compared to other mammals, humans evolved large brains, with a disproportional 

enlargement of the PFC relative to body size (Kaas and Preuss, 2008). Human PFC 

differs not just in size but also presents much more morphological complexity (Stone 

2007; Preuss 2011). Among the advantages derived from a larger and more 

complicated PFC, there seem to be sophisticated capacities such as high-level, 

flexible goal pursuit, planning, selective attention, and working memory (Fuster 

2008). 

 The dopaminergic system in the basal ganglia and brainstem is just behind the 

PFC. It should be clear at this point that the dopaminergic system is known to play 
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major roles in motor control, learning, motivation and reward-based decision-making 

(for reviews see Seamans and Durstewitz 2008; Redgrave 2007). Between the PFC 

and dopamine neurons in the basal ganglia there are strong bidirectional connections 

which probably indicates that the interaction between PFC and dopaminergic system 

in the basal ganglia could serve specialized cognitive functions: there is evidence that 

the PFC could exert top-down regulatory control over the ascending modulatory 

signals from the brainstem (Robbins and Arnsten 2009), while phasic dopamine 

signals could attend to the gating of new information to the PFC (Cohen, Braver and 

Brown 2002). Although the human neo-cortex does not seem to present an increase 

of dopaminergic innervation in comparison to the neo-cortex of other species, 

humans present some significant innovations in the morphology of dopamine cortical 

innervations, which also tells for a specialized role of dopamine in cortical 

organization occurred in the evolution of the human brain (Raghanti et al. 2008). 

Neuropharmacological research also shows that PFC functions such as self-control 

and attention are highly sensitive to changes in dopamine levels (Robbins and 

Arnsten 2009). 

 Given the possible computational roles of the PFC-Basal ganglia circuit in the 

RL-Bayesian mechanism laid out in Chapter 1, and given all the cognitive functions 

for which the concerted activity of the PFC and the dopaminergic system are 

necessary, it shouldn’t be surprising that they are also crucially implicated in social 

cognition and moral judgement (Forbes and Grafman 2010). But what could the 

interaction between PFC and dopaminergic system have to do with human norm-

hungriness? 
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 The hypothesis on offer is that among the cognitive functions enabled by such 

an interaction there is what can be called florid control. The apparent peculiarity of 

our norm-hungriness could be accounted for by the human cognitive capacity for 

florid control. This is the capacity to value and pursue biologically-arbitrary thoughts 

and behaviours in the face of distracting stimuli, disruptive emotions, competing 

drives and intentions. Florid control comprises two distinct cognitive capacities: the 

capacity to value biologically-arbitrary thoughts and behaviours, and the capacity to 

maintain and follow through thoughts and behaviours while ignoring potential 

distractive stimuli and suppressing competing and disruptive information. The 

human dopaminergic system would support mainly the former capacity; the PFC 

would be essential for the latter. 

 Biologically-arbitrary beliefs and behaviours are those that do not obviously 

contribute to life maintenance and reproduction. Chastity and hunger-strike are 

examples of biologically-arbitrary behaviours. The human dopaminergic system 

would enable any biologically-arbitrary belief and behaviour to be able to gain the 

status of primary reward like food and water. Read Montague (2007) describes such 

a capacity as a uniquely human “superpower.” What could make this “superpower” 

possible is a specific pattern of dopaminergic signaling that encourages the rest of 

our cognitive system to pursue certain beliefs and behaviours while increasing the 

relative valuation of stimuli that predict them. Phasic dopamine signals might allow 

such highly-valued beliefs and behaviours to gain access and hold onto the PFC 

(Montague et al. 2004). 

 Once such beliefs and behaviours gain this high-value status holding onto the 

PFC, they can become intrinsically motivating courtesy of the control enabled by 
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prefrontal activity. In some cases these beliefs and behaviours correspond to social 

norms and normative behaviour. They can lead us to comply with social norms “even 

when there is little prospect for instrumental gain, future reciprocation or enhanced 

reputation, and when the chance of being detected for failing to comply with the 

norm is very small” (Sripada and Stich, 2007, p. 285). Human norm-compliers would 

be able to ignore distracting stimuli and suppress disruptive, competing motivations 

in the pursuit of the social norms they are hungry for. 

 Note that florid control needs not be conscious. “A firmly held goal often 

means that potential distractions are nonconsciously ignored, and that disruptive 

emotions or drives are nonconsciously suppressed. When social niceties become 

‘second nature,’ one does not have to consciously work out what to do, or 

consciously suppress intentions that could intrude and make for awkwardness” 

(Suhler and Churchland 2009, p. 345). Consciousness therefore is not the mark of 

florid control or of norm-hungriness. 

 Because other animals lack florid control, they would not display norm-

hungriness of the kind displayed by humans. Other animals, unlike humans, cannot 

be motivated to comply with any arbitrary social norm. They do not appear to be 

able to bestow value onto biologically-arbitrary behavioural patterns. Although they 

display a capacity to exercise control and select appropriate actions in the pursuit of 

their goals, their control is not florid. Other animals do not seem to be able to display 

control over behaviours which do not bring any obvious benefit to their group or to 

themselves. 

 In social situations, other animals might pay attention to what others do, and 

rely on their past experience to learn what behaviour is most appropriate in that 
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situation. Once the appropriate behavioural pattern has been learned, they might act 

on it. But they cannot act on a pattern of behaviour in spite of the rewards and 

punishments delivered by others. Dogs, chimps and other non-human mammals have 

complex social knowledge, can be sensitive to subtle cues in their social 

environments, they can care for their juveniles, mates, kin and affiliates, can display 

articulate forms of social interaction, they might even attribute mental states 

(Churchland 2011; de Waal and Tyack 2003). What non-human animals cannot do is 

to comply with norms of chastity or hunger-strike. 

 

2.2 Beyond Terminological Disagreement. Local Moral Thought and 

Moral Systems 

Much of my disagreement with Clark seems to hinge on how ‘morality’ is best 

defined. I believe that in fact this is not the case: my disagreement with Clark isn’t 

merely a matter of terminology. While I can see at least two points of substantial 

disagreement, there are also two points where we can be in agreement. Clarifying 

these points will help us identify ways to make philosophical and scientific progress. 

 The first point of genuine disagreement is whether language is necessary for 

agents’ committing to certain ways of behaving in a community. Moral commitment, 

for Clark, appears only in moral debate. Moral behaviour, as noted above, would 

demand a “commitment to finding routes through moral space that accommodate 

multiple perspective and points of view” (Clark 2000b, pp. 309-10). Language would 

make such a commitment possible by creating the conditions for agents to enter and 

solve moral clashes. I disagree with this claim. 
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 Language does not create the conditions for moral commitment. I don’t 

question that moral debate is an important way to display and pursue one’s moral 

commitments in a community. But I’m not convinced that debate and argument are 

the only ways to make moral commitments and displays of such commitments 

possible. There are non-linguistic ways that create the conditions for agents to pursue 

practical agendas in a community. Non-linguistic agents can commit themselves to 

certain types of courses of action in a community, and display their commitments by 

relying, for example, on a suite of moral emotions. 

 Frank’s (1988) idea of emotions as commitment and signaling devices is 

relevant here. The idea is that emotions like anger or guilt can commit agents to 

pursue specific courses of actions even contrary to their immediate material self-

interest. Since emotions are typically visible to others and can be hard to fake, they 

also function as signaling devices. Anger, for example, would signal to others a 

commitment to aggressive behaviour. Being committed to aggressive behaviour and 

signaling this commitment could prevent other agents from acting on certain 

behavioural patterns and thereby clashes could be avoided. If clashes cannot be 

avoided, being committed to certain emotions can still prompt ways for solving 

practical issues. Sex or fights are two such ways: they are ways of solving moral 

clashes divorced from argument and debate. Hence, the emotions may be non-

linguistic means to “finding routes through moral space that accommodate multiple 

perspective and points of view.” 

 The second point of disagreement with Clark concerns the role of language in 

humans’ norm-hungriness. Clark holds that language, via the representational re-

coding it enables, is necessary to make available a normative domain of thinking. If, 
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for example, dogs cannot comply with a norm of chastity, that is because patterns of 

behaviour of certain types are unavailable to dogs’ minds. And, in turn, this is 

because dogs lack language. We can comply with a norm of chastity because we 

possess language, and language makes our minds sensitive to patterns of behaviour 

like chastity. For Clark, therefore, language is necessary for our peculiar norm-

hungriness. I deny this claim. 

 If we understand ‘chastity’ as abstention from all sexual intercourse, creatures 

with no language do not seem to be necessarily blind to the corresponding 

behavioural pattern. Non-human animals like macaques or baboons possess complex 

social knowledge. Macaques, we have seen, can recognize social concepts like 

mother-offspring. Baboons seem to understand “in what matriline every animal 

belongs, how the matrilines are ranked relative to each other, and who ranks where 

within each matriline” (Churchland 2011, p. 127). All this involves a lot of social 

knowledge which can be acquired courtesy of pattern recognition and social learning, 

based on other agents’ rewards and punishments and on imitation. Baboons’ social 

knowledge facilitates their social decision-making. For example, it facilitates them to 

act upon specific norms of cooperation, grooming and food sharing. 

 Given this capacity to acquire rich social knowledge and to act upon it, and 

given the saliency of a behavioural pattern like chastity, it does not appear wildly 

implausible that the concept of chastity could be available to the minds of some non-

human animals. 

 Even if such a concept is available to their minds, however, non-humans 

animals couldn’t comply with a norm of chastity because they lack florid control. As 

I suggested above, non-human animals could not value any biologically-arbitrary 
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behavioural pattern and they could not exercise control resistant to competing drives 

and distracting information so that they can act on such a pattern. It seems unlikely 

that dogs, baboons and macaques can act upon norms of chastity, but not because 

they lack language; they cannot comply with chastity because they lack florid 

control. 

 In spite of much disagreement, there are two points where Clark and I can 

find common grounds. To reach these common grounds we do not need firstly to 

tackle the question of how ‘morality’ should be defined. There’s room for substantial 

agreement once we bring Gibbard’s (1990) notion of accepting a norm to bear on our 

understanding of ‘norm-hungriness,’ and we distinguish between local moral thought 

and systemic moral thought. 

 Clark can agree with Churchland and me that other animals, even those with 

no capacity for representational re-coding, can display moral thought. They can 

possess knowledge of complex social relationships on which they can act, engage in 

altruistic behaviour, show empathy, punish norm violators, reconcile after fights, 

have subtle policies to regulate behaviour in their communities (see e.g. Churchland 

2011; de Waal 1996; de Waal and Tyack 2003). 

 Non-human animals, however, aren’t moral in the way humans are:8 They 

cannot accept a norm in the sense singled out by Gibbard (1990, Ch. 4); and they 

lack what I call systemic moral thought. Clark, Churchland, Haugeland and I can 

agree that language is probably an essential prerequisite for both accepting a norm 

and systemic moral thought. Let me explain. 

                                                 
8 Churchland (2011, p. 26) writes: ‘Of course only humans have human morality. But that is not news, 
simply a tedious tautology. One might as well note that only marmoset have marmoset morality, and 
so on down the line. We can agree that ants are not moral in the way humans are, and that baboon and 
bonobo social behavior is much closer to our own.’ 
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 The aim of Gibbard’s (1990) is to understand the nature of rationality and 

morality in a way that fits with a picture of ourselves as members of an evolved 

species facing recurrent bargaining situations. In order to reach his aim, the main 

notion to be explained is that of accepting a norm. Gibbard’s basic proposal is that 

“to think something rational is to accept norms that permit it” (Ibid., p. 55). 

 For Gibbard, accepting norms “is a significant kind of psychological state” 

unique to humans (Ibid.). He explains: “The state of accepting a norm, in short, is 

identified by its place in a syndrome of tendencies toward action and avowal—a 

syndrome produced by the language-infused system of coordination peculiar to 

human beings. The system works through discussion of absent situations, and it 

allows for the delicate adjustments of coordination that human social life requires” 

(Ibid., p. 75, emphasis added). 

 Accepting norms would be the capacity to be motivated to sincerely avow 

and to act upon certain behaviour patterns which evolved because of the advantages 

of coordination and planning through language. Successful coordination and 

planning in bargaining situations faced by complexly social species like ours would 

require normative discussion. This is the practice of evaluating with one another 

what to do, think or feel in various, typically absent, situations. Within normative 

discussion agents tend to be responsive to others’ demands and needs, and to be 

influenced by the avowals of others. The acceptance of norms arises from and is 

influenced by normative discussion. Since normative discussion is grounded in 

language, the acceptance of norms seems to depend on and be influenced by 

language. 
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 Now, Haugeland’s notion of norm-hungriness is vague. Above I provided one 

possible characterization and I argued that norm-hungriness does not depend on 

language. If norm-hungriness is understood in terms of Gibbard’s notion of accepting 

a norm, however, it should be clear that norm-hungriness does depend on language. 

Norm-hungriness, in this sense, would be a capacity that can only be acquired under 

the pressure of normative discussion, whereby we determine what it is to count as 

rational, or morally right or permissible, or what we should believe or feel. Norm-

hungriness, in this sense, would also lead to systemic moral thought. 

 By ‘systemic’ I refer to the kinds of effects of moral thought. Non-human 

animals’ moral cognition can have only local effects. Courtesy of language, instead, 

human moral thought can spread throughout space and time by creating cognitive 

niches that foster a normative explosion (Clark 2006b). Such niches correspond to 

social structures such as families, churches, governments, markets, legal systems, 

post offices, hospitals, universities, museums, theatres and so forth. In such niches 

norms get propagated and become themselves objects of moral thinking. Churches, 

schools and museums not only secure that norms are transmitted by facilitating that 

people are instructed in the endorsement of evaluative, behavioural and epistemic 

norms. More importantly, they provide us with the conditions to bring normative 

considerations to bear on norms themselves. Social structures like churches, schools 

and museums are niches where normative thought can be objectified thereby 

promoting a normative explosion where higher-order norms can emerge to manage 

our endorsement of lower-order norms. 

 Language, it seems, is an essential prerequisite for the creation and policing 

of these social structures (Searle 1995). Language would be necessary for the 
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creation of such structures because it provides us with a unique means to collectively 

represent something as having a certain status beyond its physical features. For 

example, once a certain building is collectively represented and accepted as having 

the status of a school, and such collective representation and acceptance is common 

knowledge, then that building can perform functions that it could not perform before. 

Language is a unique means to grant a certain status to a something and to make 

common knowledge its purposes, the legitimate moves with it and within it, the roles 

attached to different agents engaging with it and within in it. 

 Language makes possible also to effectively police and give shape to these 

structures. We can manage and direct such complex structures only because language 

enables us to reflect on maxims, labels and moral summaries and categories; 

language enables us to make normative considerations concerning norms themselves. 

Thus we can manage such social structures so as to facilitate the attainment of 

determinate effects on the community as a whole, or direct their function towards 

new purposes. 

 Therefore, although language probably does not constitute a moral domain of 

thinking, it dramatically changes its scope. Language is probably constitutive of 

systemic moral thought as it enables and fosters local effects of moral thought to 

spread systemically and reiteratively across space and time. 

 

3. Causal Influences of Language on Moral Cognition 

Language can have important specific causal consequences on moral cognition and 

social decision-making. Clark identifies and discusses one such consequence: 

language would bias selective attention during moral problem-solving (Clark 1996; 

249 

 



2000a, Sec. 3). The remainder of the chapter integrates Clark’s discussion by 

identifying three further consequences that rules, normative maxim, moral discourse, 

and language more generally can have on moral cognition. Moral instructions can 

modulate the degree to which rewards and punishments impact social learning; moral 

labels can trigger looping effects; language bootstraps moral thinking into meta-

ethics. I succinctly characterize each in turn, after having critically presented Clark’s 

suggestion about the effects of language on selective attention. 

 

3.1 Language and Selective Attention 

Clark argues for a special, although not exclusive, causal role of linguistically 

encoded norms and summary principles on individual processes of selective attention 

and decision-making. To illustrate the point Clark (1996, pp. 118-9) recalls Kirsh and 

Maglio’s (1992) analysis of the performance of Tetris players. Kirsh and Maglio 

argue that expert Tetris players rely both on reactive, pattern-completing cognitive 

mechanisms, and on linguaform, high-level normative policies which they use to 

monitor the processes of the former. Normative policies express how things ought to 

be, that is something the agent should be concerned about. Examples of these 

policies are “Don’t cluster in the center,” “Keep the contour flat,” “Avoid piece 

dependencies” (Kirsh and Maglio 1992, pp. 8-9, quoted in Clark, 1996, p. 119). Such 

policies would bias the processes of selective attention thereby determining the input 

to reactive, pattern-completing mechanisms. After this bias, Tetris players’ behaviour 

tends to be in line with the policy, and their performance improves. 

 Clark suggests that the same might apply in the moral domain: explicitly 

formulated summary rules and moral maxims “may help us monitor the outputs of 
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our online, morally reactive agencies. When such outputs depart from those 

demanded by such policies, we may be led to focus attention on such aspects of input 

vectors as might help us bring our outputs back into line” (Clark 1996, p. 119). The 

idea is that the maxims, laws, normative policies and the linguaform moral rules can 

bias the workings of our more basic pattern-recognition capacities. Rules would flag 

cases where current moral practices diverge from the normative ideal, and ultimately 

they influence our judgements and decisions and lead us to conform to what ought to 

be the case. 

 Clark’s suggestion needs qualification. Casual observation indicates that 

much social behaviour is inconsistent with linguistically-codified rules which people 

are aware of. One reason why this is so is because one’s decision to follow a rule in 

some situation is significantly influenced by what she believes most people do in that 

situation. When the majority’s behaviour in some situation is inconsistent with the 

rule, people may not expect to be punished if they break that rule. Hence, under the 

causal pressure of information about what people typically do, selective attention 

seems to discount what is prescribed or proscribed by some normative policy. 

 In the case of games like Tetris there are specific standards of success. If we 

don’t follow those standards and don’t try to implement some normative policy, the 

game will be over soon. In the social domain, instead, we don’t have specific 

standards of success. In general, if people don’t have a particular personal concern to 

follow a rule, and the rule flies in the face of typical behaviour of the majority, 

information collected courtesy of learning and direct observation will be the major 

causal determinant of their behaviour. 
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 It seems then that laws and linguistically encoded social norms tend to have 

grips on people’s selective attention and decision-making only if they are consistent 

with information about what most people do (Bicchieri and Xiao 2009). Normative 

messages that focus on evidence that most people engage in some desirable 

behaviour are more effective than messages that focus attention on the detrimental 

consequences of norm violation. For example, in hotel rooms we often find cards 

asking us to reuse our towels for the sake of helping save the environment or to save 

resource. But the message communicated by these cards is often ineffective: “Within 

the statement ‘Look at all the people who are doing this undesirable thing’ lurks the 

powerful and undercutting message… ‘Look at all the people who are doing it’” 

(Cialdini 2003, p. 105). When people’s attention is drawn to the fact that the majority 

of guests do reuse their towels when asked, towel reuse increases significantly 

(Goldstein et al. 2008). The causal effect of rules and normative policies is often 

optimized when they are aligned with information about what people typically do. 

 

3.2 Language and Reward-Learning 

A second effect that verbal instructions and rules can have on moral cognition 

concerns learning. Besides trial-and-error learning, verbal instruction is an efficient 

means to learn how to navigate the social environment. Recent computational and 

neuroimaging work indicates that verbal information can have significant impact on 

reward learning (Doll et al. 2009; Li, Delgado and Phelps 2011). When reliable 

verbal instructions are available, we can assign less weight to observed feedback 

which can spare us multiple errors and learn more quickly. 
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 Doll et al. (2009) developed two neurocomputational models that could 

explain the precise effect of verbal information on reward learning: an “override” 

and a “bias model.” In the first, the striatum—a subcortical brain region and major 

target of dopaminergic neurons—learns cue-reward probabilities as experienced, but 

is overridden by the PFC—where instructed information would be encoded—at the 

level of the decision output. In the bias model action selection and learning supported 

by the striatum are biased by rules and instructions encoded in the PFC. 

 These types of models are first attempts to explain the roles and interactions 

of different types of information affecting learning and decision-making. Yet, it is 

not clear why linguaform information influences learning and behaviour in some 

cases and do not in others. Perhaps, verbal instructions and linguaform moral rules 

have special impact on how people learn from feedback in complex and social 

situations where basic reinforcement learning may not be the most efficient way for 

social navigation. 

 

3.3. Language and Looping Effects 

Third, normative talk and moral labels can have a looping effect on our moral 

judgement and behaviour (Hacking 1995). Hacking argues that the creation and 

spread of labels like ‘child abuse,’ ‘multiple personality disorder,’ ‘teen-age 

pregnancy’ can causally affect the ways we think about and interact with the objects 

they refer to. The labels and classifications we use to identify a certain human kind 

influence social behaviour towards the individuals that fall into that category. At the 

same time such labels shape the self-understanding and behaviour of those that are 

categorized. 
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 The looping effect ‘is about how a causal understanding, if known by those 

who are understood, can change their character, can change the kind of person that 

they are. This can lead to a change in the causal understanding itself’ (Hacking 1995, 

p. 351). The use of linguistic labels to sort out people can affect what we classify, the 

classifier and the classifications itself, thereby making possible new ways of self-

knowledge. 

 

3.4 Language and Meta-Ethics 

Finally, language bootstraps thinking into meta-ethics: an abstract reflection on 

views, presuppositions and commitments of those who engage in moral debate and 

practice. Meta-ethics is a species of second-order thinking, which is probably a major 

consequence of language. 

 As already noticed, words and sentences can in fact serve as anchors for what 

Clark terms ‘thinking about thinking’ (Clark 1997, p. 209; Clark 2006b): The 

capacity to think about our own thoughts, reasons or cognitive profile. ‘To formulate 

a thought in words (or on paper) is to create an object available to ourselves and to 

others and, as an object, it is the kind of thing we can have thoughts about’ (Clark 

2006b, p. 372). 

 Linguistic formulations of moral thoughts create the conditions for meta-

ethics: ‘creates the stable attendable structure to which subsequent thinkings can 

attach.’ (Ibid.). Normative statements and moral discourse become ‘anchors’ for 

reflecting about the meaning, the psychological presuppositions, and the 

epistemological and metaphysical commitments of our own moral thinking. 
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Conclusion 

The chapter has explored the questions of whether and in which sense moral 

cognition could depend on language. These questions have been addressed by 

focusing on Andy Clark’s case for a discursive construction of the moral space. It has 

argued that language is probably not constitutive of the moral thinking and that 

humans’ peculiar norm-hungriness might be underlain by the unique human capacity 

for florid control. Linguaform normative policies, moral maxims and rules have 

many distinct effects on moral cognition and on our capacities for moral problem-

solving, moral reflection, social learning and decision-making. Four such effects 

have been identified. 

 There are a number of important questions I have overlooked. For example, 

how can language contribute to the persistence of certain norms? How can certain 

uses of language induce pro-social behaviour? Do language disorders impair the 

capacity to navigate the moral space? More generally, does it make sense to try and 

identify the aspects, if any, of our moral practice that fundamentally distinguish us 

from other animals? And what type of empirical evidence can bear on such an issue? 
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CHAPTER 6. 
Caring, Emotions and Social Norm Compliance 

This thesis has argued that the mechanism of norm compliance probably consists of 

RL-Bayesian neurocomputations. It has claimed that people in complying with 

norms are subject to many sources of motivation, and that social representations, by 

themselves, are not sufficient to motivate9 norm compliance. The reward-values 

attached to social representations courtesy of RL-systems are also necessary. Now, 

after having claimed in the previous chapter that humans’ peculiar norm-hungriness 

might depend on florid control, I want to examine more closely some of the aspects 

of the motivational structure of norm compliance, at both the personal and 

subpersonal level. 

 Emotion is the focus of this chapter since there is little doubt that it plays a 

crucial role in the regulation of our moral and social life. Yet, it is controversial in 

what sense emotion motivates people to abide by social norms. The empirical 

evidence doesn’t warrant firm conclusions and the philosophical debate has mainly 

focused either on emotion and norm violation, or on the relationship between 

emotion and normative judgement (see e.g. Sinnott-Armstrong 2008). This chapter 

asks three questions relevant to understanding the personal and subpersonal natures 

of the reward-values computed by the RL-system: 

 1) Are emotions or emotional processes generally the ultimate motivational 

source of social norm compliance? 

 2) Are the reward-values computed by RL-algorithms in the striatum best 

understood as emotions? 
                                                 
9 With ‘motivation’ I refer to processes that influence the triggering or direction of norm compliance 
behaviour. ‘Ultimate motives’ (sometimes also called ‘primary motives’) are the starting points of 
causal chains that lead to action. 
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 3) How could we characterize the capacity to care, on which the motivation to 

comply with social norms seems to depend, within the neurocomputational 

framework put forward in the previous chapters? 

 

The answers I shall argue for are: 

 1a) The emotions are not the ultimate motivational source of norm 

compliance. The capacity to care is probably necessary both to feel emotions and to 

comply with social norms. 

 2a) There is little evidence that the reward-values computed in the striatum 

should be understood as emotions—as hedonic units in particular. 

 3a) One way to give neurocomputational flesh to the capacity to care is in 

terms of the computational dynamics of various neuromodulatory systems. 

 

 The chapter is in three sections. Section 1 tackles the first question by 

engaging with one of the few explicit arguments that the emotions are the ultimate 

source of norm compliance: Robert Sugden’s Resentment Hypothesis (Sugden 1998; 

2000). Sugden’s argument is congenial to this chapter—which does not hinge on any 

sophisticated account of emotions—because it seems to assume a commonsensical 

view of emotions understood as feelings that people experience. I argue, contra 

Sugden, that the emotions—in this sense at least—are not the motivational source of 

norm compliance. 

 With the results of my critique to Sugden’s account in hand, I tackle the 

second and the third question. Section 2 argues that Fehr and Camerer’s (2007) 

hedonistic interpretation of neurobiological data about social norm compliance is 
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unjustified. The reward-values computed by the brain mechanisms that might 

implement RL algorithms should not be understood in terms of pleasure. The last 

section suggests that caring, which is probably bound up with social norm 

compliance, might depend on a fundamental aspect of the RL-system. What we care 

about might be determined by the setting and adjustment of several parameters in 

RL-algorithms courtesy of specific neuromodulatory systems. 

 

1. Emotion and Norm Compliance 

Imagine you are travelling on a crowded train without a seat. While you are tired of 

standing, someone leaves her seat to go to the toilet. Why don’t you take her seat? A 

plausible explanation may invoke the existence of a norm that bounds the set of 

appropriate actions in that type of context. In the vocabulary of folk-psychology: 

because you believe that taking the seat of someone who leaves it to go to the toilet 

falls outside that set and you find that norm reasonable, you don’t take the seat and 

you keep on standing. 

 Robert Sugden (1998; 2000) argues that it is not your acceptance of the norm 

that plays a fundamental role in motivating you to comply with it. Sugden develops 

an “emotional sanctioning” account of norm-compliance. One of the aims of his 

work is to explain where the “feeling of normativity” comes from. He aims to 

explain the emergence of social norms in general, and norm compliance in particular, 

with no appeal to normative concepts. 

 Sugden’s argument is in two stages (Sugden 2000, Sections 3-4). The first 

leads to the formulation of an empirical hypothesis called the Resentment 

Hypothesis, which provides us with sufficient conditions for the arousal of 
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resentment. Resentment, for Sugden, is a non-moral sentiment which does not 

depend on any moral code. What ultimately motivates norm compliance would be 

the sensation of resentment. The second stage in his argument aims to defend the 

psychological plausibility of the Resentment Hypothesis. 

 Before examining Sugden’s Resentment Hypothesis, I succinctly clarify how 

‘emotion’ is used here. ‘Emotion’ is a contentious term. Sugden uses ‘emotion’ 

interchangeably with ‘sensation,’ ‘sentiment,’ ‘affect,’ and ‘feeling.’ He seems to be 

influenced by Adam Smith’s (1759/1976) theory of moral sentiments (see also 

Sugden 2002 on this point). Smith in fact provides a commonsensical account of 

various feelings such as resentment and sympathy, which we are invited to test 

against our own experience. Accordingly, I use ‘emotion’ in an ordinary sense, as a 

type of feeling (see Bennett and Hacker 2003, Ch. 7; for accounts that deny that 

emotions are types of feelings see e.g. de Sousa 2010). 

 In this sense, emotions are mental episodes that one experiences, and their 

essential feature is their qualitative character. This ordinary notion of ‘emotion’ has 

two distinct aspects, which will be important in relation to Sugden’s argument. 

‘Emotion’ can refer both to emotional perturbations and emotional attitudes. 

Emotional perturbations are episodic, short-lived states. Some emotional 

perturbations, such as outbursts of anger, are accompanied by characteristic somatic 

changes, which can include increased heart-beat rate, sweating, muscular tension and 

throbbing temples. Other emotional perturbations, such as feelings of pride, manifest 

in expressive behaviours such as when one issues utterances of pride, changes in 

posture or in tone of voice. 
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 Emotional attitudes last for longer periods. Love and hate, guilt and regret are 

emotional attitudes that can last for years. For example, love as a standing attitude of 

fraternal feeling is distinct from love as the episodic perturbation of falling in love 

with a boy. Love as an emotional attitude is persistent; it can motivate certain kinds 

of actions and thoughts towards the beloved even after the initial perturbation has 

gone. Both emotional perturbations and emotional attitudes often motivate people to 

comply with social norms. For example, you may refrain from taking somebody 

else’s seat on a crowded train because of a negative emotional pang, or because of a 

long-standing shame of misbehaving in social situations like that. Having clarified 

my usage of ‘emotion,’ I now examine Sugden’s Resentment Hypothesis on the 

relationship between emotion and norm compliance. 

 

1.1 Bob Sugden’s Resentment Hypothesis 

Sugden begins by claiming that when other people’s actions constitute a predictable 

behavioural pattern, they thereby seem to impose “some obligation on me to conform 

to that pattern” (Sugden 2000, p. 112). The claim is not about the existence of a 

general moral principle. It is not that there exists some obligation to conform to 

behavioural patterns in virtue of their being predictable. The claim is that “people are 

in fact motivated as if by some such principle” (Ibid.). Certain behavioural patterns 

are associated with particular normative expectations. And normative expectations 

motivate us to comply with norms courtesy of specific affective signatures. When 

one has a normative expectation, she expects that others expect her to do something. 

But how is it that the fact that some people expect one to do Φ in a certain type of 

situation S makes her want to do Φ in S? 
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 According to Sugden, we naturally feel resentment against those who act 

contrary to our expectations and we also feel aversion towards frustrating others’ 

expectations. By ‘resentment’ Sugden means “a sensation or sentiment which 

compounds disappointment at the frustration of one’s expectations with anger and 

hostility directed at the person who is frustrating (or has frustrated) them” (Ibid., p. 

113). Aversion depends on resentment. One conforms to a behavioural pattern 

because others will resent her otherwise, she knows this, and she is emotionally 

averse to others’ resentment. In many situations resentment and aversion are 

intertwined with cognitions. ‘Cognition,’ recall, here refers to processes supporting 

such mental states as knowledge or belief that contrast with affective or emotional 

processes. 

 There are two ways in which cognitions enter Sugden’s account of norm 

compliance. First, he acknowledges that sometimes people feel resentment and they 

have knowledge that they have been wronged, given some normative standard. But 

people do not feel resentment because of their normative knowledge. That person j 

feels resentment at person i’s doing Φ doesn’t presuppose that j believes that i ought 

not to Φ. For example, your friend and you have agreed to meet for lunch. You are 

waiting for her, when she phones you telling you that she is ill and she cannot make 

it. Although you know that your feeling is unjustified, you may feel resentment 

towards your friend in this situation. Similarly, that person i feels aversion towards 

doing Φ doesn’t presuppose any belief by j that he ought not to Φ. 

 For Sugden, resentment and aversion are more fundamental than ought-

beliefs in two ways. On the one hand, resentment and aversion as sensations are 

evolutionarily more primitive than cognitions, such as ought-beliefs. On the other, 
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many of our ought-beliefs “are nothing more than generalizations of more primitive 

sentiments” like resentment and aversion (Ibid., p. 115). When ought-beliefs have the 

power to motivate people to comply with norms in particular cases, they do so in 

virtue of resentment and aversion of which they are generalizations. Hence, 

resentment and aversion are also more fundamental than ought-beliefs in motivating 

norm compliance in particular cases. 

 There is a second way in which cognitions may be linked to resentment and 

aversion. This leads us to the formulation of the Resentment Hypothesis, which relies 

on common knowledge conditions. Specifically: 

 

 Let P be a population and I a behavioural pattern dependent on some interaction 

among the individuals in P. Let i and j be any two individuals from P that engage in I. Let Φ 

and Ψ alternative actions that i can take in situation S. Whichever action i decides to take, it 

will be common knowledge after the event. Assume that it is common knowledge within P 

that individuals in i’s position normally do Φ rather than Ψ. It is also common knowledge 

within P that people in j’s position have grounds to expect i to Φ and that they normally 

prefer that people’s in i’s position do Φ rather than Ψ. Granted that j has that preference, then 

i’s doing Ψ will induce in j a feeling of resentment towards i; and i’s being aware of this will 

induce in i a feeling of aversion towards doing Ψ (Sugden 2000, pp. 114-116). 

 

 Sugden’s Resentment Hypothesis says that people will feel resentment 

towards those who fail to conform to their expectations. Because this tendency of 

people feeling resentment is common knowledge, people will tend to avoid acting in 

ways so as to provoke feelings of resentment. The hypothesis is stated as sufficient 

condition for the arousal of resentment. The bottom line is that a “person can be 
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motivated to meet other people’s expectations about him” and this motivation is 

grounded in an emotion (Ibid.). 

 Sugden illustrates how the sentiment of resentment explains norm compliance 

with the following type of example. It is well-known that diners in the United States 

leave tips of at least 15% of the bill. I know this fact. I have good reason to expect 

that waitresses in the United States expect me to leave a 15% tip if I dine out in the 

US. I go to a restaurant in the US, but I am Italian and it’s not in my interest to meet 

the waitress’ expectation. Still, the existence of the expectation will motivate me to 

tip her. If I don’t tip, I will feel uneasy and embarrassed. I am emotionally averse to 

those emotions, and this aversion motivates me to comply with the norm of tipping. 

 

1.2 Not by Resentment Alone 

I believe that Sugden’s hypothesis is not sufficient. My claim is that the Resentment 

Hypothesis seems plausible only within a population where people care for each 

others’ preferences, expectations and behaviour. The notion of caring I have in mind 

will be articulated firstly by ostension, by pointing to the relevant phenomenon with 

a number of cases. Then, in the following subsection, I shall attempt to elucidate 

what ‘caring’ means here more carefully. 

 

The argument developed in this section can be summarized thus: 

 

 P1. Sugden’s Resentment Hypothesis depends on an individual j preferring 

 agent i doing Φ. 
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 P2. If an individual j feels resentment about agent i doing Φ then j cares about 

 i doing Φ. 

 P3. Caring is distinct from preferring. 

 P4. Sometimes an individual j prefers things about which she doesn’t care 

 about. 

 P4’. Sometimes j prefers i to do Φ while j doesn’t care about i doing Φ. 

 C1. Sometimes j doesn’t feel resentment that i doesn’t do Φ even if j prefers i 

 to do Φ. 

 C2. Sugden’s Resentment Hypothesis is in general insufficient. 

  

 P1 describes one of the conditions in the Resentment Hypothesis. P2 claims 

that caring about something is necessary for feeling emotions about it. More 

precisely, we should distinguish between two issues: under what conditions we feel 

resentment, and under what conditions we are affected by other people’s resentment 

towards us. P2 can be understood as making two claims: we feel emotions only for 

people, objects, behavioural patterns we care about; we are emotionally affected by 

other people’s resentment towards us only if we care about what other people feel, 

prefer or think about us. P3 and P4 are related. P4’ is a special case of P4. C1 and C2 

follow from the five premises. I start by focusing on P2. 

 Elizabeth Anderson’s (2000) can help motivate such claims. Anderson argues 

that Sugden’s account is incoherent. She focuses on the conditions under which 

people’s decision to comply with norms is affected by others’ resentment towards 

them. Sugden—she reasons—assumes that people can feel resentment on behalf of 

others since we all share the same basic non-moral sentiments. But then norm 
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violators should resent themselves: They need not be averse to others’ resentment to 

be motivated to comply with norms. “Given the impartiality of moral sentiments, 

they can just as easily be directed against [themselves] as against any other person” 

(Ibid., p. 184). Hence, other people’s normative expectations could be superfluous in 

motivating one to comply with norms. If self-resentment can be enough for norm 

compliance, then one can care about complying (or not complying) with social norms 

independently of what others expect her to do. In other words, people can have an 

intrinsic motivation to comply with norms: they can “comply with norms as ultimate 

ends, rather than as a means to other ends” (Sripada and Stich 2006 p. 281). 

 A criticism to Anderson’s argument is that in general the motivating power of 

normative expectations, or others’ resentment, is greater than self-resentment. 

Others’ resentment causes embarrassment and shame in the violator. These 

emotional sanctions work as norm-enforcers, and it is the aversion or fear towards 

such emotions, rather than some sort of intrinsic motivation, that generally motivates 

norm compliance. If aversion or fear of others’ resentment—as opposed to self-

resentment or other sorts of intrinsic motivations—has generally more grips on norm 

compliance behaviour, then people will tend to be less norm-compliant or behave 

much less pro-socially in anonymous or private conditions compared to what they do 

publicly. There is in fact experimental evidence that when their choices cannot be 

detected by other players, participants of economic games tend to behave more 

selfishly, or so as to merely appear to be fair without being fair (Bicchieri and 

Chavez 2010; Dana et al. 2007). Norm-abidance and pro-social behaviour would 

then depend more on what other people expect from the decision-maker than on 

some intrinsic motivation. 
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 But there are two problems with this criticism. First, a large number of studies 

in experimental economics also show that people are often motivated to repay gifts 

and punish violations of certain social norms in anonymous, one-shot interactions 

with genetically unrelated strangers, even at substantial costs to themselves (Fehr et 

al. 2002; Gintis et al. 2003). Even in games with asymmetric information like Dana 

et al.’s (2007), a significant proportion of participants behave pro-socially both in 

public and in private conditions. This body of evidence indicates that in experimental 

situations people generally behave pro-socially or comply with norms not only 

because they are averse to others’ resentment, but also out of intrinsic motives. In 

real-life situations, depending on the cues and the information available in a given 

context at a given time, aversion or fear of others’ resentment can have more or less 

motivational grip than self-resentment or other sorts of intrinsic motives (Cialdini 

and Goldstein 2004). People can therefore care about complying with social norms 

independently of what others expect them to do. 

 Secondly, conceptually, it seems that people should already care about others’ 

normative expectations in order for those emotions to have some grip on their minds. 

If I don’t care about others’ expectations, preferences and behaviour in a certain 

situation, then I shall probably be indifferent to their resentment. Along these lines, 

Anderson concludes “[emotional] sanctions are only a supplementary motive to the 

original motive for compliance, without which the norm would never have been 

established” (Ibid., p. 184). What I wish to emphasize here with Anderson’s 

argument is that, psychologically, the motivational source of compliance appears to 

reside in the capacity to care. To illustrate and give grounds for this point I now 

provide some counterexamples to Sugden’s Resentment Hypothesis aiming to show 
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that its conditions are insufficient for the arousal of resentment. The bottom line is 

that caring for other people’s preferences, expectations and behaviour is a necessary 

condition for the arousal of resentment—and for norm compliance. 

 Consider this situation. After their weekly reading group the participants 

regularly go to the pub. Ana Maria and Angelica are two of the reading group goers 

who normally go to the pub. “Going to the pub” and “Not-going to the pub” are 

alternative actions open to Ana Maria in that type of situation. Within the reading 

group goers it is common knowledge that a person in Ana Maria’s position normally 

goes to the pub rather than not. It is common knowledge that Angelica has good 

grounds to expect that Ana Maria will go to the pub. It is also common knowledge 

that people in Angelica’s position prefer that people in Ana Maria’s position go to 

the pub rather than not. Would this be sufficient for Angelica to feel resentment if 

Ana Maria doesn’t go to the pub today after their reading group? 

 I don’t think so. Sugden’s Resentment Hypothesis is fulfilled, yet this fails to 

qualify as a case where resentment is aroused. Ana Maria and Angelica are not close 

friends; Angelica might be surprised or curious for why Ana Maria is not going to 

the pub, but she hardly will resent her. To explain why I don’t think Angelica would 

resent Ana Maria, consider another situation. 

 It’s Kirsty’s birthday and Rhiannon is Kirsty’s best friend. Kirsty has invited 

Rhiannon to her birthday party. “Going to the party” and “Not-going to the party” are 

alternative actions open to Rhiannon. Now, would the Resentment Hypothesis be 

sufficient for the arousal of resentment in Kirsty if Rhiannon doesn’t go to her party? 

It is reasonable to believe that in this case Kirsty would feel resentment. In contrast 

to the situation above, now Kirsty and Rhiannon are friends and they care for each 
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other. To better illustrate the relevant phenomenon of caring, I point to yet another 

example. 

 I live in the Edinburgh area. I read in the newspaper that Miss Carr was found 

driving on the wrong side of the road in Leith, which is part of the Edinburgh area. I 

don’t know anyone in Leith, I have never been there, and don’t plan to go there. Is it 

plausible that I would feel resentment, in Sugden’s sense, towards Miss Carr? Again, 

I think it is not. In this case, both Miss Carr and I are part of the general population P 

of drivers in the Edinburgh area. P is quite large. The conditions in Sugden’s 

Resentment Hypothesis are fulfilled, yet it would be implausible to think that I will 

feel “a sensation or sentiment which compounds disappointment at the frustration of 

one’s expectations with anger and hostility directed at the person who is frustrating 

(or has frustrated) them.” I won’t resent Miss Carr even though she frustrates my 

expectations in this situation and I may interact with her in the future because her 

behaviour does not matter to me. 

 This last example also illustrates that in real-life situations, when we deal 

with less close people, we tend to care less about their preferences, expectations and 

behaviour. Such people are typically members of other groups, so they are not close 

to us in a literal sense as well: both spatially and temporally (on ingroup-outgroup 

and social preference see Bernard et al. 2006; Chen and Xin Li 2009). In real-life 

situations, especially when a population is large and it is unlikely that one individual 

will come to know and interact personally with another individual j, i will not tend to 

resent actions by j that frustrate her expectations. Also, in general, i will not tend to 

resent actions by j that frustrate her and another individual k’s expectations if it is 

unlikely that i will come to know and interact personally with either j or k. In real-
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life, that is, we seem to care more for people we are close to, people we regard as 

important to ourselves. Note that this claim is consistent with the experimental 

evidence mentioned above that participants often have an intrinsic motivation to 

comply with social norms. And in fact in experimental settings that more closely 

resemble everyday life participants tend to behave more generously with closer 

individuals (Hoffman et al. 1996; Charness and Gneezy 2008). 

 If the analysis of these cases is roughly correct, then Sugden’s hypothesis is 

probably insufficient for the arousal of resentment. Feelings of resentment arise in an 

individual not just because her expectations are disappointed. People seem to feel 

emotions only about things that matter to them, things they care about. If people feel 

no emotion about things which they don’t care about, then they will feel resented 

when their expectations are disappointed only if they care about the object of those 

expectations. If feeling resentment and aversion of being the focus of others’ 

resentment depend on caring, then the Resentment Hypothesis is not sufficient to 

explain in general norm abiding behaviour. 

 

1.2.1 Caring and Preferring 

Here is an objection to the claim that Sugden’s Resentment Hypothesis is insufficient 

because people feel emotions only about things they care about: ‘Preference’ can be 

considered a free parameter in Sugden’s account and can take different strengths. 

Caring about something would amount to having a strong preference for that 

something, and so P3 would be false—and P4 and P4’ would be incoherent. 

Therefore my argument would be entirely consistent with Sugden’s Resentment 

Hypothesis. 
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 This objection is problematic however. To begin with, even if we agree that 

preferences have different strengths and that ‘care’ can be treated as ‘strong 

preference,’ nothing in Sugden’s formulation of the Resentment Hypothesis suggests 

how to identify an adequate threshold for the preference parameter. An individual j 

may prefer that people in i position do Φ rather than Ψ. Still these pairwise 

preferences (for i doing Φ over i doing Ψ) might remain below a certain threshold. 

For example, if the strength of a preference is measured on an interval from 0 to 1, 

the preference of j for i doing Φ can be 0.2 while j’s preference for i doing Ψ can be 

0.1. Sugden’s conditions are satisfied, but if the preferences are so weak, it seems 

implausible to think that the Resentment Hypothesis is sufficient to raise resentment 

in j when i does Ψ instead of Φ. A further condition is required in Sugden’s 

formulation that specifies a suitable threshold such that i’s preferences, expectations 

and decisions do matter to j. 

 Yet, it may be protested that we could empirically uncover the value of the 

preference parameter such that if one’s preference is unsatisfied she will feel 

resentment. Different people may care more or less about the expectations and 

beliefs of others, or perhaps in different situations we care more than in others. By 

examining possible correlations between choice behaviour and non-choice data like 

emotional reactions in a given context, a threshold for the preference parameter for 

resentment arousal could be identified. In this sense, Sugden’s account is sufficient 

as it stands. 

 But in this sense, the concepts of what one cares about and what one prefers 

are assumed to be identical. If preferring is not the same as caring—as P3 above 

claims—then there are grounds to argue that in some sense Sugden’s Resentment 
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Hypothesis is insufficient. For—as claimed by P4 and P4’—it might be the case that, 

in some sense, j’s preference about i’s behaviour and expectations are strong but 

those expectations and behaviour don’t really matter to j: j doesn’t care about them. 

And if one does not feel resentment about something unless it matters to her, then j 

won’t feel resentment when her preferences are frustrated. 

 There are two questions then: First, what does it mean to care about 

something? Second, what is the relationship between caring and preferring? Would it 

make sense to say that an individual (strongly) prefers A over B and yet she doesn’t 

really care about A? My answers to these questions heavily rely on Harry Frankfurt’s 

(1982; 2004) analysis of caring. Let’s start from the latter question. 

 To care about something is not simply to prefer, desire or want it. Attributing 

a preference “to a person does not in itself convey that the person cares about the 

object” she prefers over another (Frankfurt 2004, p. 11). Many of our preferences 

and desires are “utterly inconsequential. We don’t really care about those desires. 

Satisfying them is of no importance to us whatever” (Ibid.). For example, in this 

moment I prefer to drink water over coke. As I am drinking coke, my preference is 

unsatisfied. But I don’t feel any frustration since I don’t really care about such a 

preference. Note, however, that my drinking coke now does make some difference to 

me, as everything does make some difference to us. This suggests that things we 

deem important to us, and hence things we care about, are not simply things that 

make some difference to us. Having coke and not water right now is a difference 

unimportant to me: it’s a difference that does not make difference to me. As argued 
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by Frankfurt, “nothing is important unless the difference it makes is an important 

one” (Frankfurt 1982, p. 259).10 

 This lack of caring and frustration need not be because my preference is 

weak, or has low intensity. “Sheer intensity […] implies nothing as to whether we 

really care about what we want.” Frankfurt goes on to explain: “Differences in 

strengths of desires […] may be radically incommensurate with the relative 

importance to us of the desired objects” (Ibid.). In the case of preference, from the 

higher strength of my preference for reading a book over doing the laundry, it does 

not follow that I especially care about the object of this preference. Even if I 

intensely prefer one over the other, the difference that reading a book instead of 

doing the laundry makes to me is not especially important to me now. 

 Furthermore, “a person who wants one thing more than another may not 

regard the former as being any more important to him than the latter” (Ibid., p. 12). 

Frankfurt makes this claim stick with an example. Suppose that you need to kill time 

and you decide to watch the television. You start to watch a certain program because 

you prefer it to the others that are available. “We cannot legitimately conclude that 

watching this program is something that [you] care about.” After all you are killing 

time. “The fact that you prefer it to the others does not entail that you care more 

about watching it than about watching them, because it does not entail that you care 

about watching it at all” (Ibid.). By the same argument, the fact that the individual i 

prefers that j does Φ rather than Ψ does not entail that i cares more, or at all, about j 

doing Φ than j doing Ψ. 

                                                 
10 It should be noted with Frankfurt that “whether a useful account of the concept can be developed 
without running into this circularity is unclear” (Frankfurt 1982, p. 259). 
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 Suggesting that preferring and caring are distinct concepts is also the 

empirical finding that our preferences are subject to powerful contextual influences 

(Lichtenstein and Slovic 2006). There may not be stable facts about one’s 

preferences independent of the way a given choice situation is framed. Caring, 

understood in a way to be made clearer in a moment, is more stable. “A person can 

care about something over some more or less extended period of time. It is possible 

to desire something, or to think it valuable only for a moment. […] But the notion of 

caring implies a certain consistency or steadiness of behaviour; and this presupposes 

some degree of persistence” (Frankfurt 1982, p. 261). 

 If caring and preferring are distinct, what does it mean to care about 

something? To care about something is not simply to desire it, or want it, or prefer it 

over something else. Caring is not the same as factoring in things that make some 

difference. In general “caring about something may be a complex mode of wanting 

it” (Frankfurt 2004, p. 11). For Frankfurt, the capacity to care about something can 

be understood more precisely as the capacity to commit ourselves to our own desires, 

wants and preferences. Caring, that is, is a mode of the will. 

 When people care about something, according to Frankfurt, they desire to 

have a desire for it, and they endorse such a desire. If a person cares about 

something, then she is willingly committed to her desire about that thing: she desires 

that she desires it (Ibid., p. 16). Thus, Frankfurt explains: “by its very nature, caring 

manifests and depends upon our distinctive capacity to have thoughts, desires, and 

attitudes that are about our own attitudes, desires, and thoughts” (Ibid., p. 17). 

 Note that this does not mean that all we fundamentally care about is ourselves 

and our well-being. It does not mean that we care about other people’s preferences, 
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expectations, and behaviour only because we care about our welfare and well-being. 

I can care about a waitress expecting me to leave a tip after my dinner and comply 

with a norm of tipping, even if I am aware that by meeting her expectation I won’t 

feel or be better off—next chapter will provide some experimental results relevant to 

this claim. 

 In sum, according to Frankfurt, “these alternative possibilities—commitment 

to one’s own desires or an absence of commitment to them—define the difference 

between caring and not caring” (Ibid., p. 21). It should be clear that, as Frankfurt 

characterizes it, caring about something is peculiar to members of our species since it 

requires the ability to reflexively deal with higher-order desires. This ability, it 

appears, is related to what I called florid control and to Gibbard’s accepting a norm, 

which we encountered in the previous chapter. These three abilities—it seems—are 

grounded on reflexive thinking on the one hand, and on the ability to commit oneself 

resiliently to distinct courses of actions on the other. So, strictly speaking, non-

human animals cannot care in Frankfurt’s sense. 

 Yet, we can understand caring more broadly than Frankfurt so that we can 

make room for the possibility of non-human animals that care. Fisher and Tronto 

(1990) offer a broader characterization, according to which caring is “a species of 

activity that includes everything we do to maintain, contain, and repair our ‘world’ 

so that we can live in it as well as possible. That world includes our bodies, ourselves 

and our environment, all of which we seek to interweave in a complex, life-

sustaining web” (Fisher and Tronto 1990, p. 40). 

 This definition is in line with Frankfurt’s: it construes caring as a complex 

activity supported and informed by a commitment to those desires and goals we 
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deem important for us and for our lives. According to this definition, however, 

commitment to one’s own desires need not be reflexive nor involve self-awareness, 

or florid control. Agents can hold on to their desires in a persistent, steady way 

without being conscious of their commitment. Caring, in this sense, would 

correspond to a relatively stable volitional profile, something with reference to which 

agents steadily orient themselves in their behaviour and in their environment in the 

pursuit of a good life. 

 Also non-human animals, in this sense, would have the capacity to care. And, 

as a matter of fact, also non-human animals care about staying alive, about avoiding 

injuries, predators, hunger, thirst and disorder; they may care about close kins, 

friends and other members of their group; and some may even care for strangers 

under certain circumstances (Churchland 2011, Ch. 3). So, caring can both be self- 

and other-directed. And both humans and some non-human animals can care not only 

about self, but also about others. 

 It is not obvious what mechanism could ground the capacity to care. Patricia 

Churchland has recently suggested that hormones such as oxytocin and vasopressin, 

which originally evolved to promote self-preservation and care for offspring, 

probably constitute basic features of the mechanism for caring. In their evolutionary 

trajectory, these hormones would have later been co-opted to serve new jobs so as to 

enable wider forms of sociability and ultimately to foster moral cognition. 

 The last section of this chapter integrates Churchland’s proposal by pointing 

to some neurocomputational features of a putative mechanism for caring within the 

RL-system elaborated in Chapters 1 and 4. 
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1.3 Evolutionary Origins of the Resentment Hypothesis 

The target of the second stage of Sugden’s argument is the objection that the 

Resentment Hypothesis is not reducible to psychology because it is loaded with 

social and cultural content. To counter this objection Sugden considers the possible 

evolutionary origin of normative expectations. He asks us to consider an 

environment akin to a mixed-motive game such as Chicken which is assumed to 

stand for the environment of evolutionary adaptedness of our ancestors’ 

neurocognitive mechanisms. In such an environment individuals of the same species 

have to compete repeatedly and enter conflicts for fitness-enhancing resources that 

are scarce. An adaptive strategy in this game is to act aggressively with weak 

opponents, and to back down with aggressive stronger players. 

 The abilities that would enable agents to pursue this type of strategy are three 

according to Sugden. Firstly, agents should recognize and project patterns in the 

behaviour of others. A capacity for pattern-recognition would enable agents to 

identify behavioural patterns of different types of other agents. This would be a 

prerequisite for behaving in function of the situation and the agents that one is facing. 

Second, agents should desire to act aggressively against weak individuals. Finally, 

agents should be averse to acting aggressively against angry individuals. Endowed 

with these abilities agents can behave so as to get as many resources as possible. 

Agents can identify that some opponent is trying to frustrate their desire for the 

resource; but in that type of situation, against that type of opponent, those agents 

normally get the resource. They can then act aggressively at their opponent, thereby 

raising their probability of obtaining the resources. Since anger and fear—Sugden 

(2000, p. 118) reasons—are intrinsic components of the second and third ability 
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respectively, anyone acting on these emotions behaves adaptively. Hence, in a world 

akin to a game of chicken, anger and fear are adaptive. But what do anger and fear 

have to do with resentment? 

 Recall that Sugden defines resentment as “a sensation or sentiment which 

compounds disappointment at the frustration of one’s expectations with anger and 

hostility directed at the person who is frustrating (or has frustrated) them” (Ibid., p. 

113). Resentment is different from anger. As Sugden acknowledges, resentment is 

typically backward looking since it is characteristically experienced when one is 

“looking backward to past injuries” (Ibid., p. 118). How could resentment be 

evolutionary adaptive? 

 Sugden draws on Frank’s (1988) account of the emotions, which was 

introduced in the previous chapter, and argues that anger is a commitment and 

signaling device. Anger predisposes the angry agent to act aggressively in her next 

interaction with another agent. The angry individual could incur an immediate cost, 

but may derive greater benefit in the long run by deterring future frustrations of her 

desires or injuries. Angry agents would be more likely to get away with some 

resource for which they are competing with others. This advantage leverages anger 

as functioning as a signaling device. Other agents need reliably identify angry agents 

so that they have the opportunity to avoid them. By functioning as a signaling device, 

anger provides other agents with information about the state of the individual they 

are confronting. Thus, they will be in the best position to identify agents committed 

to aggressive behaviour. Put differently, by signaling their commitment to aggressive 

behaviour, angry agents will be more likely to be avoided by other agents, and 

consequently to attain some resource without having to fight for it. Resentment, 
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Sugden suggests, may be the side-effect of the evolutionary advantage attached to 

anger as a commitment device because commitment to aggression could depend on 

looking back at past injuries. “Backward-looking resentment—Sugden concludes—is 

the evolutionary price that has to be paid for the advantage[s] of anger” (Ibid, p. 

119). 

 Sugden recognizes that he’s telling us an evolutionary tale about how 

resentment may be a basic feature of human psychology. His aim is to argue for the 

possibility of reducing the Resentment Hypothesis to psychological features thereby 

countering the objection that it cannot be reduced since it has too much cultural and 

social content. I argue, however, that we have more reason to think that resentment, 

as understood by Sugden, is not a basic feature of our psychological make-up. It is 

unclear that anger is an adapted feature of human psychology, and it is controversial, 

at best, that resentment is a by-product of anger. In the remainder of this section I 

first argue that anger might not be an adaptation, and then I question the link Sugden 

draws between anger and resentment. 

 Sugden’s argument is endorsed on more or less the same grounds by 

evolutionary psychologists such as Tooby and Cosmides (2008, p. 131-132). They 

argue that anger is an adaptation, which was selected in response to survival 

challenges faced by our Pleistocene ancestors. Some arguments put forward by some 

evolutionary psychologists are often charged with mistaking explanation for 

evidence for the explanandum itself (Griffiths 1997). To carry weight, evolutionary 

explanations of psychological traits should be backed by independent evidence since 

“adaptive hypotheses are too easy to form and too difficult to test” (Griffiths 1997, p. 

71). In the case of emotions, they should be supported at least by evidence about 
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their purported mechanisms and actual functional significance (Machery 

Forthcoming). 

 I agree with Sugden that in a mixed-motive game like Chicken it can pay off 

to act aggressively with anger. It could be true that angry agents often get away with 

resources, and thereby they have evolutionary advantage over competitors. However, 

it also could be that they incur long-term costs—especially if chicken was not one of 

the games our ancestors played more frequently. On the one hand, anger prepares 

people to overcome obstacles to goal attainment. On the other, however, display of 

anger leads others to not deal with angry agents (Marsh et al. 2005). Elster (1998, p. 

72) argues that angry people will probably “gain more in each interaction, but 

interact more rarely.” Hence, they will not receive resources and feedback which are 

only available from cooperation with others. The effects of anger, therefore, may be 

negative overall. “One cannot show that [the effect of anger is] positive simply by 

citing a positive impact in isolation from other effects” (Ibid.). 

 Sugden might object to this conclusion that his goal is more modest than we 

have assumed it to be. He aims to provide something like an existence proof for the 

evolutionary origin of anger. This doesn’t entail an adaptationist approach towards 

anger. It entails that anger is a universal emotion and it emerges very early in 

infancy. That anger is universal means that people in all cultures have a similar 

emotional reaction to things that offend them. That anger appears early in infancy 

means that culture and socialization don’t make a crucial contribution to its 

emergence. 

 The problem is that there is evidence that supports the hypothesis that anger 

may be an emotion differentiated from a generalized, more basic, evolved negative 
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emotion. The innate correspondence between facial expressions and the emotions—

which has been traditionally taken as evidence for the evolutionary origin of the 

emotions since Darwin (Ekman and Friesen 1971)—has been challenged from a 

developmental perspective. Camras (1992), for example, presents data from a study 

of infants’ early expressive development that show that sadness, anger, discomfort, 

pain are characteristically displayed together across situations such as being bathed, 

having a pacifier taken away, exposition to unusual masks, and so forth. Infants often 

appear to display facial expressions customarily caused by distinct situations within 

the same burst of cry. These findings give us ground to conclude that anger may 

emerge as discrete emotion from a basic undifferentiated state of distress through a 

complex process of socialization (Lemerise and Dodge 2008). 

 Let us now consider the alleged universality of anger. Prinz (2004, p. 151) 

reviews anthropological evidence that indicate that some populations lack a word for 

anger and that people in different cultures respond in different ways to things that 

annoy them. If the language used to describe and express anger varies across cultures 

and times in history, and if angry reactions to annoying or offending things are 

significantly different, then culture might play an important role in the construction 

of angry reactions. Anger itself might not be a single universal emotion. From this 

type of evidence, Prinz (2004, p. 151) concludes that although anger is extremely 

likely to emerge, it is not inevitable. Anger not only regulates social interaction, but 

is itself partly constituted and comes to be regulated by social dynamics. Therefore, 

there’s reason to doubt that anger is an adapted basic emotion as required by 

Sugden’s argument. 
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 Moreover, if culture and socialization are necessary for anger to emerge, then 

it seems that social norms should be already in place to give rise to anger-displays, 

and hence to backward looking resentment. So, in a sense, Sugden’s evolutionary 

argument about the origins of anger and resentment might depend on the pre-

existence of social norms. Rather than being explained by the emotions, social norm 

compliance would explain the emergence of certain emotions. 

 What about the link between anger and resentment? Sugden claims that 

resentment would be one of the effects of the evolutionary advantages reaped by 

angry agents since being committed to aggressive behaviour would depend, to a great 

extent, on looking back with anger to past injuries. There are two reasons to think 

that this claim is unjustified. The first draws on the distinction made above between 

emotional attitudes and emotional perturbations and distinguish between two senses 

of anger. The second reason draws on people’s memory for their past emotional 

reactions. 

 In one sense, anger corresponds to a stable attitude to respond aggressively to 

certain eliciting conditions. Anger, that is, would correspond to a more or less stable 

emotional feature of one’s personality. An irascible person is angry in this sense. In 

another sense anger is a perturbation: a state whereby an agent has an urge to act 

aggressively. As a perturbation, anger has relatively short duration, while as an 

emotional attitude anger is a permanent personality trait. Anger works best as a 

signaling device when it consists in an emotional perturbation. Agents, in fact, 

characteristically display certain physical cues such as facial expression, tone of 

voice and posture when they feel an emotional perturbation. Such cues can indicate 

an urge to yell out their rage and behave aggressively. But in this sense anger tends 
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to “spend itself” quickly (Frijda 1986, p. 43). After an outburst of anger people tend 

to calm down and the display of anger fades away even if the conditions that elicited 

that reaction still remain. So in this sense anger is not an enduring indicator of an 

agent’s future behaviour. It is not a reliable indicator either since outbursts of anger 

need not signal irascible agents. Irascible agents have a permanent predisposition to 

act aggressively, but they don’t display permanently such a commitment. Sugden’s 

argument requires that agents can reliably recognize what type of individuals they 

are interacting with; it requires that agents can reliably recognize irascible 

individuals. But irascible individuals do not permanently display their commitment 

to aggression. 

 Irascible people, however, might display the short-term cues fairly often 

given the right circumstances, and thus they could be reliably identified in fairly 

small communities. But then they will find themselves shunned and miss 

opportunities for mutually beneficial interactions with others. As already noted with 

Elster (1998, p. 72): “They may gain more in each interaction, but interact more 

rarely. They will not, moreover, be able to learn that their emotional disposition 

works against them, and hence will have no incentive to control themselves.” Hence, 

being reliably identified as irascible could not pay off in small communities. The link 

between the evolutionary advantages of anger as commitment and as signaling 

device on which Sugden builds his argument for the emergence of resentment seems 

lost. 

 The appeal to retrospective evaluation of past injuries may fail to establish the 

link between anger as a commitment device (which shapes our preferences) and 

backward-looking resentment for a second reason. If anger as a commitment device 
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doesn’t depend in any systematic way on looking back in anger at past injuries, then 

agents may often prefer not to behave aggressively by acting on their remembered 

anger. For the intensity of the emotion felt by retrospective evaluation of past injuries 

may often be attenuated, and so past anger may not shape agents’ preference towards 

aggressive behaviour in a durable way. If this is so, then looking back in anger may 

fail to commit agents to a certain course of action. 

 Now, there are multiple factors that can influence people’s memory for past 

emotions (Levine et al. 2006, for review). So, memories for past emotional reactions 

are often inaccurate. Specifically, there is evidence that current appraisals concerning 

whether or not an individual is responsible or not for negative circumstances predict 

whether the intensity of remembered anger is over or under-estimated: emotions 

inconsistent with current appraisals are underestimated (Levine et al. 2001). 

Furthermore, retrospective evaluation of emotional experience have been found to be 

explained by a peak-and-end rule according to which people’s estimates of past 

emotional experience can be reliably predicted as the average of the peak emotional 

intensity and the end emotional intensity of the experience (Fredrickson and 

Kahneman 1993). Two of the consequences of such rule are that the net 

(un)pleasantness and how long the experience lasted are not taken into account in our 

memory for emotional experience. Given two angry affective episodes A and B, 

adding an extra period of anger to A but not to B will attenuate the intensity of 

remembered anger in A if the added period ends less angrily. Backward-looking 

anger, then, may often be attenuated or fade away. 
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 Even assuming that anger is both evolutionary advantageous and a basic 

emotion, Sugden’s conclusion that “backward-looking resentment is the evolutionary 

price that has to be paid for this advantage” doesn’t rest on solid grounds. 

 

2. Hedonism and Norm Compliance 

Sugden’s argument focuses on negative emotions like anger, fear and resentment. 

Even if his argument fails, it would still be possible that positive emotions are the 

ultimate motivational source of norm compliance behaviour. Pleasure is the main 

candidate here, as it has traditionally been linked to motivation. 

 It has been suggested that data on the neurobiological processes underlying 

social preference are best understood in hedonic terms. From this perspective, 

pleasure would be the ultimate motivation for norm compliance. I now defend the 

claim that the current neurocomputational evidence does not establish a hedonist 

interpretation. 

 Let me start by briefly recalling what social preferences are. Theories of 

social preference model how people rank allocations of material payoff to self and 

others during strategic interaction (Fehr 2009). According to these theories, 

individuals are also concerned with the payoff, preferences and beliefs of other 

individuals. Notice that theories of social preferences are not committed to any 

specific interpretation of the processes underlying decision-making. In particular 

they do not make any claim with respect to the hedonic significance of norm 

compliance behaviour. 

 Ernst Fehr and Colin Camerer have argued that a hedonic interpretation of 

theories of social preference provides a good explanatory framework for interpreting 
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the neurobiological data on norm compliance (Fehr and Camerer 2007). They draw 

on experimental findings from neuroeconomics to support the claim that individuals 

derive “higher hedonic value” from outcomes associated to the decision to comply 

with norms of cooperation or fairness (Ibid., p. 420). Fehr and Camerer’s (2007) 

argument can be reconstructed as follows. 

 

 P1. Norm compliance, in general, and “altruistic, fair and trusting behaviors” in 

 particular, “are consistently associated” with neural activity in the striatum (p. 419). 

 P2. Activity in the striatum represents anticipated or experienced reward. 

 C1. Norm compliance is rewarding. 

 C2. People comply with social norms because it is rewarding. 

 

 If we assume that reward is just hedonic value or pleasure, then C2 is a 

version of motivational hedonism. Motivational hedonism, in its strongest 

formulation, is the claim that only pleasure (or pain) motivates us. Fehr and Camerer 

(2007) do not claim that the evidence they review is sufficient to establish C2. Still, 

they claim that the evidence strongly supports the hypothesis that norm compliance 

and pro-social behaviour have special reward value. To evaluate Fehr and Camerer’s 

argument we need answer two questions: First, what does reward amount to here? 

Second, can the same data considered by Fehr and Camerer be plausibly explained 

with no appeal to pleasure? After having recalled the types of findings that 

purportedly support C1, I engage with P2 by considering different computational 

roles of the striatum. Different meaning of ‘rewards’ are distinguished, and I argue 

that pleasure does not ground norm compliance. 
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 Fehr and Camerer review evidence from three types of sources. First, they 

cite an unpublished work by Kosfeld, Fehr, and Weibull where questionnaire data 

would support the view that “mutual cooperation in social exchanges has special 

subjective value, beyond the value that is associated with monetary earnings” (p. 

420). Second, they survey the findings of a number of neuroimaging experiments 

where striatum activity has been observed to be significantly correlated with 

cooperative outcomes. Third, they notice that striatal activity in one experimental 

condition can be used to predict choice behaviour in a different experimental 

condition, thereby lending support to C2, that is to the claim that norm compliance 

occurs because it is rewarding. 

 Since Fehr and Camerer do not provide details of Kosfeld et al’s 

questionnaire, it is difficult to assess whether, and to what extent, a hedonic 

component plays a role in the subjects’ ratings. There is some evidence that 

dopamine activity does not most reliably correlate with ratings of the hedonic 

experience associated with a drug. For example, in spite of significant loss of most 

dopamine neurons in the basal ganglia, patients with Parkinson’s disease have been 

reported to have normal subjective pleasure ratings for sweet food (Sienkiewicz-

Jarosz et al. 2005). 

 However, the strongest reason provided by Fehr and Camerer in support of 

hedonic interpretations of theories of social preferences is that other-regarding and 

norm-compliance behaviour is consistently associated with activation in the striatum. 

The striatum is part of what is called the “reward circuit.” Camerer and Fehr interpret 

the processes carried out by activity in this area in terms of hedonic processes. But 

‘reward’ and ‘hedonic processes’ are equivocal. And in light of current evidence the 
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computational role of the striatum is probably complex and may well comprise a 

number of sub-computational routines, as Chapter 1 suggested. A brief description of 

the anatomy of the striatum should highlight this last point. 

 As mentioned in Chapter 1, the striatum is a subcortical part of the brain. It is 

the main input station of the basal ganglia which are primarily implicated in motor 

control, learning and decision-making. Because dopamine is the major striatal 

neuromodulator, the striatum is thought to be one of the main hubs of the reward 

circuit. However, it is not the only area associated with “reward” processing: the 

ventral tegmental area, the amygdala, the prefrontal cortex and certain parts of the 

thalamus are also involved in reward processing. The ventral part of the striatum 

consists in the caudate nucleus and the putamen. The ventral striatum—or nucleus 

accumbens—constitutes a third subdivision of the striatum. These three striatal 

regions are anatomically and functionally distinct. Current evidence suggests that 

discrete regions of the striatum are differentially involved in the integration of 

sensorimotor, cognitive and emotional information, and in action selection and 

initiation (Knutson et al. 2009). But what does it mean that the striatum processes 

“rewards”? 

 Here are examples of rewards that seem to be processed by such a circuit are: 

sweet tastes, cocaine, sex, money, smiling faces, and norm compliance. In a general 

sense, rewards can be understood as objects or states that make us come back for 

more. In narrower sense, reward refers to subpersonal informational signals that play 

specific roles in RL algorithms implemented by certain populations of neurons. 

 Reward as a psychological notion has distinct aspects. The neuroscientist 

Kent Berridge identifies three dissociable aspects of reward: liking, wanting and 
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learning (e.g. Berridge 2003; Berridge et al. 2009). ‘Liking’ refers to the hedonic 

experience of a subject. Reward here is a state or outcome that generates a pleasant 

feeling. ‘Wanting’ (or ‘incentive salience’) refers to a drive towards the pursuit 

and/or consumption of some, typically salient, state or outcome. It need not be 

conscious. Reward in this sense is what is desired, often unconsciously, regardless of 

its hedonic properties. Learning involves the capacity to associate stimuli, and 

actions to consequences. Reward here consists in states, events and stimuli that guide 

agents’ learning. 

 In light of these distinctions, to say that the striatum processes reward can 

mean at least three different things. Since the relevant sense for Fehr and Camerer’s 

argument is the hedonic one, we should read P2 above as: Activity in the stratum 

represents anticipated or experienced pleasure. To assess P2 we should then turn to 

consider the evidence about the neurobiological underpinnings of hedonic 

experience. 

 Berridge and collaborators provide substantial evidence that liking or hedonic 

experience is generated by opioid, endocannabinoid and GABA-benzodiazepine 

neurotransmitter systems. Two “hedonic hot-spots” have been found respectively in 

the nucleus accumbens and in the ventral pallidum which are two regions of the 

striatum in fact. The first hot-spot comprises 10% of the volume of the nucleus 

accumbens: a relatively small portion of the striatum. Outside those hot-spots, in the 

same two regions, opioids do not enhance liking: enhancement of hedonic experience 

is then anatomically restricted to small portions of the striatum (Berridge and 

Kringelbach 2008). Hence, the claim that the striatum is a hedonic area need be 

strongly qualified. 
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 One main reason for interpreting the striatum as a pleasure-centre has been 

that its major afferents come from dopamine neurons, which have been traditionally 

considered “pleasure neurotransmitters.” However, manipulations of dopamine 

activity do not appear to have systematic effects on hedonic experience (Berridge 

and Robinson 1998). This suggests that dopamine activity is neither necessary nor 

sufficient for generating hedonic experience, but, psychologically, is probably 

necessary for “wanting,” and neurocomputationally—as we have seen—for 

implementing certain forms of RL algorithms (see Berridge 2007 on “wanting”; 

Schultz 2007a for distinct computational roles of dopamine). 

 If hedonic experience is the ultimate motive of norm compliance, pleasure 

should be the triggering cause of the selection of a certain action. Pleasure should be 

prior to “wanting” and should determine what we shall do. Evidence needed to 

confirm or refute this claim might be gained by focusing on the causal relationship 

between mechanisms of action selection and “liking.” 

 Computational models of the basal ganglia, of which the striatum is the major 

nucleus, provide one way to approach this issue. Recall that in the framework of 

reinforcement learning, as Chapter 1 made clear, one of the best models of the basal 

ganglia mechanism is the Actor-Critic architecture (Houk 2007). This class of 

models seems to capture important principles of dopaminergically controlled 

plasticity in the striatum (e.g. Joel et al. 2002). In such models an “Actor” selects the 

action to be taken given the current input while the “Critic” drives the learning 

process by assessing how well the outcome of one action tallies with the attainment 

of a certain goal. Neurobiological data suggests that the ventral striatum is associated 

with the Critic, while the dorsal striatum is associated with the Actor (Daw, Niv and 
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Dayan 2005, Sec. 4). Although these computational models are simplistic if 

compared to the complex anatomy and physiology of the striatum, we can still draw 

some conclusions about the relationship between action selection and pleasure. 

 From the characterization of the computational architecture of the striatum, 

and the localization of hedonic hotspots thereof, it seems that the main computational 

business of the striatum is not hedonic-processing. Hedonic hotspots might be 

activated after the Critic has computed to what extent the outcome of the action 

taken matches with what was expected. They would register the pleasure of learning 

rather than driving learning itself. If this is so, then hedonic experience would be the 

output of decision-making systems over which pleasure has no direct control. The 

causal interplay between learning and what we want would then make pleasure a 

contingent result of the appraisal of the outcomes of our actions. Pleasure, therefore, 

is probably not the ultimate motive of norm compliance: people generally do not 

comply with norms because it feels good. If the story on offer in this thesis is roughly 

correct, then people generally comply with norms to minimize sensory- and reward-

prediction errors, and sensory and reward-prediction errors should not be identified 

with emotions agents feel. I now fill in my neurocomputational proposal by focusing 

on caring. 

 

3. Neurocomputation and Caring 

Caring, I have agreed with Frankfurt, is a complex mode of the will. It consists in 

committing oneself to one’s own desire. It corresponds to a relatively stable 

volitional profile that steadily and persistently orients and guides one’s behaviour. I 

conclude this chapter by proposing that caring might depend on as a fundamental 
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aspect of the RL-system. The mechanism for caring understood in this way might be 

necessary both to feel emotions and to act on certain social representations so as to 

comply with norms. Here is my proposal. 

 The capacity to care about something might depend on particular parameter-

values of RL algorithms being in a specific range. Chapter 1 argued that RL neural 

computations are crucial to agents’ capacities to act upon social representations so as 

to comply with norms. As already pointed out, the proper workings of RL algorithms 

depend on several parameters (also called meta-parameters). The experiment 

reported in the next chapter attempts to estimate some of these parameters, which 

may regulate subjects’ learning of social norms and decision-making in social 

contexts. For the moment, let me focus on three important parameters in RL 

algorithms: the learning rate η, the discount factor γ, and the temperature τ. 

 The learning rate η controls how quickly old information is updated by 

experience; for small values of η, learning will be slow, while for large values of η, 

what has already been learned may be quickly updated. When η is too large, the 

learning process becomes unstable. 

 The discount factor γ controls the time scale of reward prediction. More 

precisely, it determines how far in the future rewards should be taken into account. 

This is particularly important in case of possible conflicts between immediate and 

long-term outcomes. The smaller γ, the more the agent will be focused on short-term 

outcomes only. Too large γ can lead to unreliable predictions of future reward. 

 The temperature τ controls the randomness of the action choice. Small values 

of τ promote “explorative” behaviour by which more information is gathered about 

the mapping of which actions are rewarding. Large values of τ favor “exploitative” 
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behaviour whereby action selection is at making the best use of what has already 

been learned; as τ tends to infinity all actions have the same probability of being 

selected. 

 The setting and adjustment of these parameters are crucial for RL algorithms 

to successfully carrying out cognitive functions. If agents’ capacity to act upon social 

representations so as to comply with norms is enabled by RL neural computations, 

then the setting and adjustment of these parameters are crucial to successfully 

navigate our social environment and comply with norms. 

 Based on neurobiological data and computational results, Doya (2002) puts 

forward a hypothesis concerning the role of specific neuromodulatory systems in 

computing these parameters (see also Schweighofer and Doya 2003). 

Neuromodulators are neurotransmitters that have spatially distributed and temporally 

extended effects on their receptors. They affect globally and at longer time scale the 

computations that brains carry out. Doya’s hypothesis is that ascending 

neuromodulatory systems are the media for signaling and adjusting the parameters 

that regulate the workings of RL systems in the brain with their concerted 

interaction. Specifically, according to Doya’s hypothesis, the acetylcholinergic 

system controls the learning rate η; the serotonergic controls the discount factor γ; 

the noradrenergic system controls the temperature τ. Let me now expand a little on 

some details of Doya’s hypothesis. 

 Acetylcholine seems to modulate synaptic plasticity in the cerebral cortex, 

stratum, amygdala and hippocampus. Depletion of acetylcholine neurons is 

associated to memory disorders. So the acetylcholine system, Doya surmises, may 

modulate “the information coding in the cortex and the hippocampus so that their 
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response properties are not simply determined by the statistics of the sensory input 

but are also dependent on the importance of the sensory inputs” (Doya 2002, p. 503). 

The acetylcholine system then might control the learning rate η by affecting the 

storage and update dynamics of memory at both cellular and circuit levels. 

 Higher levels of serotonin would determine higher setting of γ which would 

lead agents to be sensitive to reward predictions longer in the future. Low levels of 

serotonin instead would lead agents to be insensitive to larger delayed rewards and so 

to behave impulsively. Serotonin might control the discount factor in RL systems by 

directly influencing the computations of reward-prediction errors in the basal 

ganglia, which receive serotonergic input from the dorsal raphe nucleus, or more 

diffusely by differentially enhancing or inhibiting the activity of parallel RL 

algorithms which might be implemented in distinct neural populations across the 

brain. 

 Noradrenaline is known to be involved in the control of fight-or-flight 

response and noradrenalinergic neurons are especially active in urgent situations. 

This is consistent with the idea that noradrenaline regulates the randomness in action 

selection, which should be sensitive to the urgency of the situation and the stage in 

learning: higher levels of noradrenaline would determine higher setting of τ which 

leads to “exploitative behaviour,” noradrenaline levels, Doya notices, should 

decrease when the action value function which determines the agent’s decisions has a 

high variance for a given state. 

 Now, the complex, concerted neurocomputational activity of these 

neurotransmitters might, at least partly, determine what an agent cares about. If 

caring is individuated by whether and when some novel action should be taken 

293 

 



instead some old course of action, by how far into the future outcomes of one’s 

action should be taken into account, and by what needs be retained in memory and 

what can be overwritten, then the concerted neurocomputational activity of these 

neurotransmitters would underlie the capacity to commit oneself to a certain desire, 

that is, the capacity to care. Given specific tunings of η, γ, and τ, the progress of 

one’s learning and the structure of the environment, an agent will be committed to a 

certain desire and tend to act in specific ways, feel certain emotions in determinate 

circumstances, and think in certain ways rather than others. The mechanism for 

caring understood in this way might be necessary both to feel emotions and to act on 

certain social representations so as to comply with norms and behave smoothly and 

co-adaptively with other agents in the social environment. 

 

Conclusion 

This chapter has filled in the neurocomputational mechanism of norm compliance on 

offer in this thesis with another detail. It characterized the capacity to care in terms of 

the concerted setting and adjustment of specific RL-parameters. Such parameter-

dynamics might be underlain by particular neuromodulatory systems. It argued that 

emotion is probably not the ultimate motive of norm compliance behaviour: caring 

might be the source of both feeling certain emotions and complying with norms. The 

focused on the notion of reward in RL-computation, and argued that hedonic 

interpretations of rewards are unjustified. 

 The next and last chapter of this thesis will elaborate further on the 

relationship between reward and norm compliance behaviour. It will address the 

questions of whether and how the nature of the rewards received by people after they 
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make decisions in a social situation affects their propensity to learn a social norm. 

The chapter will present experimental and computational results relevant to those 

questions, and provide me with the opportunity to put some of the ideas explored in 

this thesis at work. 
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CHAPTER 7. 
Social Rewards and Learning Social Norms. 
An Experimental Study 
(Joint work with Aistis Stankevicius and Peggy Seriès) 

The goals of this chapter are twofold. First, the chapter will illustrate how some of 

the concepts and modelling tools used in previous chapters can be put to work. 

Second, it will address two questions concerning the relationship between rewards 

and the learning of social norms by reporting and discussing the results of an 

experimental project, to which I have contributed. In so doing, it will clarify, by 

means of experimental data, the impact of distinct types of rewards on people’s 

motivation to comply with norms, which was explored both in the introduction and 

in the previous chapter. Specifically, the questions addressed here are: 

 (i) Does the type of the reward outcomes obtained by people after they make 

decisions in social situations affect the way they learn a social norm? 

 (ii) When people are learning a social norm, how do social reward outcomes, 

as opposed to non-social reward outcomes, affect their decision-making processes? 

 The chapter has four sections. The first presents and motivates alternative 

hypotheses concerning questions (i) and (ii). The second reports the results of a 

model-based experiment I have collaborated to. The third section discusses these 

results. The fourth concludes. 

 

1. Social and Non-Social Rewards 

Consider question (i). One hypothesis is that the type of reward outcomes (or 

feedback cues) per se does not have significant impact on learning and social 
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decision-making because both social and non-social reward outcomes would be 

processed in the same way by the same neural circuit. Support for this hypothesis 

comes from two classes of findings in neuroeconomics. First, there seems to be 

substantial overlap between the neural circuits active in tasks where behaviour is 

guided by social norms, and neural activations observed in reinforcement learning 

tasks (for reviews see Fehr and Camerer 2007; Lee 2008). Second, both social and 

non-social reward outcomes—including money, food, juice, facial expressions and 

verbal feedback—engage overlapping neural substrates during reinforcement 

learning computations (e.g. Delgado et al. 2000; Berns et al. 2001; O’Doherty et al. 

2002; Walter et al. 2005; Behrens et al. 2008; Izuma et al. 2008; Spreckelmeyer et al. 

2009; Lin et al 2011). These types of neurobiological findings suggest, therefore, that 

the type of reward outcomes per se should not make any significant difference on the 

way people learn social norms. 

 An alternative hypothesis is that different types of reward outcomes (or 

feedback cues) have different impact on learning and decision-making. If widely 

different, both social and non-social environmental cues have large impact on 

people’s social behaviour, then different types of reward outcomes may also 

differently affect the way people change their behaviour to adapt to novel social 

situations. A substantial amount of evidence from experimental economics and social 

psychology indicates that in fact social behaviour is sensitive to very subtle 

situational cues. For example, people are more likely to litter in a particular 

environment when it is heavily littered than when the same environment is clean 

(Cialdini et al. 1990; Cialdini 2003). Showing experimental participants a picture of 

a library and instructing them to go to the library after the experiment can lead them 
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to whisper during the experiment (Aarts and Dijksterhuis 2003). Finding a dime in 

the coin return slot of a public telephone makes it twenty-two times more likely that 

one will help a woman who has dropped a folder full of papers (Isen and Levin 

1972). More relevant here, contributions to public goods tend to increase when 

people make decisions while they are “watched” by a pair of eyes drawn on an 

honesty box (Bateson et al 2006; see also Haley and Fessler 2005; Rigdon et al 

2009). 

 Findings such as these demonstrate, therefore, a strong influence of 

apparently insignificant cues in the environment on social behaviour (see e.g. Bargh 

and Williams 2006; Doris 2002 for a critical review). This suggests that different 

types of reward outcomes (or feedback cues) observed multiple times in a given 

social situation may differently affect the way a social norm is learned in that 

situation. 

 Consider question (ii) now: when people are learning a social norm, how 

could social reward outcomes, as opposed to non-social reward outcomes, affect 

their decision-making processes? Some of the studies reviewed above indicate that 

social cues can have substantial impact on decision-making. Emotional expressions 

can systematically bias learning processes and decision-making (Averbeck and 

Duchaine 2009; Evans et al. 2011). Evidence indicates that social cues can increase 

pro-social behaviour: images of a pair of eyes can significantly increase cooperative 

behaviour not only in a laboratory condition, but also in real-world contexts (Bateson 

et al. 2006; Ernest-Jones et al. 2011). With respect to learning performance, some 

studies on a feedback-guided item-category association task show that learning is 

more effective when the feedback provided to participants consists of facial 
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expressions of emotion (happy or angry faces) instead of non-social cues such as red 

and green lights, and that this effect is supported by brain regions such as the 

amygdala, distinct from the dopamine-based reward circuit (Hurlemann et al. 2010; 

Mihov et al. 2010). Results from a recent study also indicate that feedback 

information provided by some social cues is processed by different neural circuits 

than non-social, cognitive feedback (Evans et al. 2011). 

 These findings, therefore, underwrite the hypotheses that social cues 

significantly affect cooperative behaviour and social reward outcomes, in 

comparison to non-social reward outcomes, often enhance learning performance. 

These effects would be mediated by brain regions besides dopamine-based reward 

circuits. 

 In light of this body of evidence, relevant to address the two questions above, 

three hypotheses were tested in the present study. First, different types of reward 

outcomes have different effects on learning and social-decision making. Specifically, 

social reward outcomes have a different impact on learning and social decision-

making than non-social reward outcomes. Second, when compared to non-social 

cognitive feedback, social reward outcomes in the form of facial expressions lead 

participants to display more pro-social behaviour. Third, when compared to 

participants who are provided with non-social cognitive feedback, participants 

receiving feedback in the form of facial expressions learn a social norm more 

effectively. 

 The study presented in what follows tested these hypotheses by using an 

associative learning task, which we called “the tipping game.” The task allowed us to 
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examine the effects of social reward outcomes, as opposed to non-social reward 

outcomes, on learning and decision-making. 

 

2. The Tipping-Game 

2.1 Methods 

Participants 

Forty participants (17 females), between the ages of 19 and 37 (Mean = 26.22; 

Standard Deviation = 4.31), performed a decision-making task. The majority of the 

participants were students in the University of Edinburgh recruited through an 

internal university mailing list. All participants signed informed consent and were 

compensated with £6/hour for taking part in the experiment. The study was approved 

by the University of Edinburgh, School of Informatics Ethics Committee. 

Task 

Participants were initially given five short questionnaires to fill in: the “Empathy 

Quotient” (EQ) questionnaire (Baron-Cohen and Wheelwright 2004), one version of 

the “Reading the Mind in the Eyes” test (Baron-Cohen et al. 1997), the “Self Report 

Altruism” questionnaire (Rushton et al. 1981), the “Sensitivity to Punishment and 

Sensitivity to Reward Questionnaire” (SPSRQ) (Torrubia et al. 2001), and the 

“Behavioural Inhibition/Approach” (BIS/BAS) questionnaire (Carver and White 

1994). These questionnaires measured the levels of empathy, mentalizing, altruism, 

and punishment and reward sensitivity of the participants. 

 The aims of collecting questionnaire data about participant’s personality traits 

were twofold. Firstly, we were interested in understanding whether performance in 
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the tipping game could be explained solely by some relatively stable personal trait, 

rather than by the feedback provided. Secondly, information about personality traits 

could be used to better characterize qualitatively the nature of the behavioural results 

observed. 

 Once they completed the questionnaires, participants took part in a decision-

making task. In the task, participants were instructed to pretend that they were 

visiting a foreign country far-away, and that they repeatedly were going to dine at 

restaurants. They were endowed with fictional monetary units (mu), with which they 

had to pay for restaurant bills and for any tip they decided to leave. Their goal was to 

learn how much they were expected to tip at the end of a meal in that country without 

spending too much money. The goal, put differently, was to learn a social norm of 

tipping so as to display adaptive behaviour in the social situation they were facing 

(the exact instructions given to participants are reported in Appendix A, at the end of 

the chapter). 

 To motivate participants to pursue this goal, they were informed at the 

beginning of the task that the best performance would be rewarded with £20 and that 

this performance would be measured in function of both how well the social norm 

was learned and how much fictional money (mu) was saved. 

 The task represented tipping situations as sequential interactions, where a 

server chooses the service quality, and then the diner chooses the tip. After each 

decision, a reward outcome is revealed and can be used by the diner to learn how to 

adapt to the social situation she or he is facing (Figure 1). 
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Figure 1. Sequence of events during one trial. The state of the environment is initially 
revealed: it corresponds either to good or to bad service received at a restaurant. A decision 
screen follows, which informs the participant about how much money mu is available and 
how much the bill is. The participant is then asked to make a decision about how much he or 
she wants to tip. The last screen provides feedback. The feedback depends stochastically on 
state-action pairs and the underlying social norm of tipping. In the social condition, the 
feedback consists of either happy or angry faces, while in the non-social condition it 
consisted of a tick or a cross mark. 
 

The task consisted of three blocks each of which comprised forty trials. At the 

beginning of each block, participants were endowed with 1,100 mu. For each trial, 

the service quality could be either good or bad. In each trial across the three blocks, 

the chance of getting good service was 0.5. After the service quality was revealed, 

participants were informed about how much mu they had left and the amount of the 

bill they had to pay. Bills were drawn from a distribution with mean 18 and standard 

deviation 5, truncated to [3, 45]. Participants were then asked to make decisions 
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about how much they wanted to tip. Any sum equal or greater than zero could be 

tipped. The bill and the amount tipped were subtracted from this endowment after 

each trial so that participants could keep track of the mu they were spending. After 

participants made a decision, either positive or negative feedback was shown. This 

ended a trial. 

 Participants were informed at the beginning of the task that there could be 

some manipulations across blocks. In fact, two types of manipulations took place. 

The first type of manipulation consisted in changing the underlying social norm of 

tipping. In the first block the social norm of tipping was 23% of the bill. In the 

second block the social norm was 50%. In the third block it was 23% again. 

 The second type of manipulation across blocks was the variation in the 

reliability of the reward outcomes: the feedback provided had different levels of 

noise. Reward outcomes, in fact, depended stochastically on the underlying social 

norm of tipping and on the pair service quality-amount tipped (Table 1). 

 

 Action (tip < norm / tip ≥ norm) 

 Block 1  
(Norm: 23%) 

Block 2  
(Norm: 50%) 

Block 3  
(Norm 23%) 

Good State 20/80 20/80 35/65 

Bad State 30/70 30/70 40/60 

Table 1. Mapping from state-action pairs and underlying norm to outcomes. 
Numbers in the cells refer to the chance (in percentage) of obtaining a positive reward-
outcome, which was a function of the state observed, the underlying norm of tipping and the 
action taken. In each cell, the first number refers to the chance of obtaining a positive reward 
outcome when the action taken was less than the social norm of tipping; the second number 
refers to the chance of obtaining a positive reward outcome when the action taken was 
greater or equal to the underlying social norm. 
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In the first and second blocks, if the service quality was good and the amount tipped 

by the participant was equal or greater than the social norm, then there was an 80% 

chance to receive a positive reward outcome and a 20% chance to receive a negative 

reward outcome. If the service quality was good, but the amount tipped was less than 

the social norm, then there was a 20% chance to receive a positive reward outcome 

and an 80% chance to receive a negative reward outcome. 

 If the service quality was bad and the amount tipped was equal or greater than 

the social norm, then there was a 70% chance to receive a positive reward outcome 

and a 30% chance to receive a negative reward outcome. If the service quality was 

bad and the amount tipped was less than the norm, then there was a 30% chance to 

receive a positive reward outcome and a 70% chance to receive a negative reward 

outcome. 

 In the third block, if the service quality was good and the amount tipped was 

equal or greater than the social norm, then there was a 65% chance to receive a 

positive reward outcome and a 35% chance to receive a negative reward outcome. If 

the service quality was good, but the amount tipped was less than the norm, then 

there was a 35% chance to get a positive reward outcome and a 65% chance to get a 

negative reward outcome. If the service quality was bad and the amount tipped was 

equal or greater than the norm, then there was a 60% chance to receive a positive 

reward outcome and a 40% chance to receive a negative reward outcome. If the 

service quality was bad but the amount tipped was less than the norm, then there was 

a 40% chance to receive a positive reward outcome and a 60% chance to receive a 

negative reward outcome. 
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 The between-subjects independent variable in the task was the type of the 

reward outcomes provided to the participants after they made a decision about how 

much to tip. In one condition (Social Condition), twenty participants (7 females), 

between the ages of 20 and 33 (Mean = 25.7; Standard Deviation = 3.82), received 

feedback in the form of a happy or an angry face. In a second condition (Non-social 

Condition), twenty participants (10 females), between the ages of 19 and 37 (Mean = 

26.75; Standard Deviation = 4.78), received non-social feedback in the form of a tick 

or an X mark after their decisions. 

 In the Social Condition, two types of facial expressions were used: one had a 

happy expression and the other had an angry expression. Two different identities for 

the facial expressions were also used; they were alternated pseudo-randomly across 

the three blocks. Four pictures were used in total: two happy facial expressions and 

two angry facial expressions (Figure 2). The pictures were selected from the 

Japanese Female Facial Expression (JAFFE) database (Lyons et al 1998). 

Figure 2. Feedback stimuli in the social condition. In the social condition positive feedback 
consisted of happy faces, while negative feedback consisted of angry faces. Feedback stimuli 
were selected from the Japanese Female Facial Expression (JAFFE) database (Lyons et al. 
1998). 
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All participants displayed normal capacity for recognition of facial expressions. On 

average, they also presented normal levels of altruism, empathy and attitudes towards 

reward and punishment as measured by the personality questionnaires they answered 

(Table 2). 

 

BIS/BAS REW. SEN.
Faces Altruism BAS Drive BAS FS BAS RR BIS EQ SR SP

SOCIAL
MEAN 18.0 55.4 10.3 11.9 15.8 21.3 39.1 11.0 11.5
STD 2.0 10.3 1.6 3.0 2.4 3.5 15.0 3.9 5.4

NON-SOCIAL
MEAN 18.1 56.3 11.0 11.8 17.4 21.1 44.6 10.3 10.2
STD 1.3 8.8 1.9 2.0 2.2 3.2 9.2 3.9 4.3

ALL
MEAN 18.0 55.8 10.7 11.8 16.6 21.2 41.8 10.6 10.8
STD 1.7 9.5 1.8 2.5 2.4 3.3 12.6 3.9 4.8

Table 2. Average scores per group. Table entries indicate average scores for “Reading the 
Mind in the Eyes” (Faces), “Self Report Altruism”, “Behavioural Inhibition/Approach” 
(BIS/BAS) questionnaires, “Empathy Quotient” (EQ), “Sensitivity to Punishment and 
Sensitivity to Reward Questionnaire” (SPSRQ). All scores are in “normal” ranges. 
 

In the Non-social Condition, two types of symbols were used: a tick (also known as a 

check mark or check) and an X mark. The tick is a symbol generally used to indicate 

that the action taken is good or correct. The X mark, instead, generally indicates that 

the action taken is bad or incorrect. Although there are cross-cultural differences in 

the way the tick mark and the X mark are understood, all participants in the present 

experiment stated in a debriefing questionnaire administered after the task that they 

recognised the symbols as the notation respectively for “good” (or “correct”) and for 

“bad” (or “incorrect”) (the debriefing questionnaire is found in Appendix B, at the 

end of this chapter). 
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2.2 Results 

From the debriefing questionnaires, it was found that one participant reported that he 

had not understood the task. This participant’s results were then excluded from data 

analysis. To examine our hypotheses, paired two tailed t-tests were used. The t-tests 

were run on data concerning the decisions of 39 participants (20 participants for the 

Social Condition; 19 participants for the Non-social condition) averaged for each 

trial. 

 

Figure 3. Comparison between participants in the social and non-social condition with 
respect to the average amount tipped over trials in the three blocks in the task. The blue and 
green lines correspond to the average amounts (as percentage of the bill) tipped per trial by 
participants receiving respectively social and non-social feedback. The dotted red line 
corresponds to the underlying social norm of tipping (as percentage of the bill). Blue and 
green shades refer to standard deviations from the group-average amounts tipped. 
 

As shown in Figures 3-4, social reward outcomes were found to have a different 

impact on learning and social decision-making than non-social reward outcomes, 

thus confirming our first hypothesis. Specifically, it was found that: first, participants 
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in the social condition tipped significantly more than participants in the non-social 

condition (across all blocks, mean difference = 4.17%, p < 0.001; in Block 1, mean 

difference = 0.99%, p = 0.043 ; in Block 2, mean difference = 4.94%, p < 0.001; in 

Block 3, mean difference = 8.19%, p = 0.019). 

 

 
Figure 4. A: Amount tipped in the social (black bars) and non-social (white bars) condition. 
The leftmost histogram pair shows the average amount tipped by participants in the social 
and non-social groups with respect to the whole task. The other three pairs of histograms 
show results with respect to single blocks. B: Absolute difference between the social 
norm and the amount tipped in the social and non-social condition. The leftmost histogram 
pair shows results over the whole task. The other three pairs of histograms display results for 
single blocks. C: Time (in seconds) taken to make decisions. The leftmost histogram pair 
shows results over the whole task. The other three display results for single blocks. 
Asterisk indicates that the difference between the two groups is statistically significant (p-
value < 0.05). 
 

Second, the absolute difference between the social norm and the amount tipped by 

participants in the social condition was significantly lower than the absolute 

difference between the social norm and the amount tipped by participants in the non-

social condition (across all block, mean difference = - 4.17%, p < 0.001; in Block 1, 

mean difference = - 0.99%, p = 0.043; in Block 2, mean difference = - 4.94%, p < 

0.001; in Block 3, mean difference = - 8.19%, p = 0.019). 

308 

 



 Third, participants in the social condition made significantly quicker 

decisions than participants in the non-social condition (across all blocks, mean 

difference = - 749 ms, p < 0.001; in Block 1, mean difference = - 409 ms, p = 0.176; 

in Block 2, mean difference = -1538 ms, p < 0.001; in Block 3, mean difference = - 

301 ms, p = 0.047). 

 These three differences were observed across all blocks. The first finding 

confirms the second hypothesis: social reward outcomes in the form of facial 

expressions led participants to display higher degree of pro-social behaviour. The 

second and third findings confirm the third hypothesis: learning is facilitated by 

social feedback. 

 A large inter-individual variability of performance was observed at the task, 

with some subjects learning to adapt their decisions to conform to the norm much 

better than other subjects, who seemed to behave independently of feedback 

throughout the experiment (Figure 5). 
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 Figure 5. Two examples of subjects’ learning performance: subject 10 (social group) at the 
top, subject 35 (non-social group) at the bottom. Blue or green solid curves represent the 
percentages tipped, coloured areas in the background represent the cumulative rewards 
received and dotted black curve is the underlying norm of tipping. Subject 10 is an example 
of a good performer: the subject displayed significant changes in behaviour towards the 
social norm across blocks. Subject 35 is an example of a bad performer, as the behaviour the 
subject displayed across blocks does not significantly change towards the social norm. 
Coloured dashed curves represent percentages tipped by the corresponding model. The 
actions with maximum Q-values are plotted to show how much actions with the maximum 
likelihood differ from the ones chosen by the subject. 
 

 With respect to our third hypothesis, we observed that significantly more 

participants displayed learning in the social condition than participants in the non-

social condition. More specifically, to identify the number of learners in the task, we 

assumed that if the mean amount tipped by a participant was significant different 

from one block to the next and moved towards the underlying social norm, then that 

participant displayed learning. According to this criterion, we found that 12/20 

displayed learning in the social group, vs. 7/19 in the non-social group (Figure 6). 
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Figure 6. Individual data plots for tipping percentages, cumulative rewards and learning 
criteria satisfaction. Red (good learners) or black (bad learners) coloured curves represent the 
percentages tipped, and blue curves show the cumulative rewards received. 
 

Two further points should be noted about the behavioural results that we observed. 

First, although the absolute difference between the social norm and the amount 

tipped by participants in the social condition was significantly lower than that for 

participants in the non-social condition, in the first two blocks, participants in both 

groups failed to learn the underlying social norms: they always tipped much less than 

the norm. One hypothesis is that they had a strong prior bias towards a specific 

action different from the social norms in our task. Second, standard deviations from 

average percentages tipped in both groups were high, especially in the third block 

(see Figure 1). In the first block, standard deviations were respectively 2.99 mu and 

3.03 mu for the social and non-social group respectively. In the second block, they 

were: 6.9 and 3.79, while in the third they were 20 and 6.34. Finally, considering the 
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whole experiment, the standard deviation from the average percentage tipped by the 

social group was 5.6402 mu, vs. 3.3948 mu for the non-social group. So, in general, 

we observed high variability in the behavioural data; in particular, participants in the 

social group took actions, which were more spread out over a larger range of values 

in comparison to the actions taken by participants in the non-social group. 

 

2.3 Model 

To further describe quantitatively the nature of the effects that we observed, we 

explored whether the behaviour of participants could be modeled with a type of 

Rescorla-Wagner reinforcement learning algorithm (Rescorla and Wagner 1972). 

The model algorithm could make decisions in our task with the goal of maximizing 

its total reward. It could do this by learning action values Q for state-action pairs, and 

selecting, at each trial, actions in function of their estimated Q-values. 

 The possible states were two, corresponding to “good” or “bad” service 

quality. The action space comprised 101 actions, corresponding to tip percentages 

from 0% increasing in steps of 1% to 100%. For each of the two states, the action 

taken by the model was assigned a value, which was a function of both the reward 

outcome obtained for taking that action, the economic cost incurred, and the Q-value 

of that state-action pair stored in memory. This is expressed by the Q-update 

equation: 

 

 [1] Q(state, action)new = Q(state, action)old + α(reward– Q(state, action)old) 
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where α is the learning rate (0 ≤ α ≤ 1), which determines the learning step-size, that 

is, how fast learning takes place. The smaller α, the least the existing knowledge is 

modified. Conversely, as α tends to 1, what has already been learned can be quickly 

overwritten. 

 The action selection mechanism was governed by a softmax function. At any 

given trial, the model chose action a from among the possible actions with 

probability: 

 [2] ( )
( )

( )∑
N

=j

tjaτQ

ttaτQ

tt state,
e

state,e=state|aProb

0

 

where N is the number of actions the agent can take. τ is a positive parameter called 

inverse temperature. As τ tends to ∞, the action with highest Q-value has a much 

higher probability of being selected than the others. As τ tends to 0, all actions 

become equally probable. 

 Given the questions and hypotheses that motivated our study, we focused on 

the reward signal in our model. The reward consisted of the weighted average of two 

components: an economic component and a reward outcome component. Formally: 

 

 [3] 
maxw

wrwr=Reward econeconoutout +
 

where recon is an economic factor and is equal to the Tip/Bill ratio, which could take 

any value in the interval [0, 1]. The economic weight wecon (-wmax ≤ wecon ≤ wmax) is a 

parameter that determined to what extent spending money was valued in the tipping 

game. If wecon was – wmax, then spending money was valued very negatively, thereby 

characterizing a type of agent with a “stingy” attitude; if wecon was wmax, then 
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spending money was valued very positively, thereby characterizing a type of agent 

with a “generous” attitude. rout is a reward outcome factor, which was associated to 

the two possible outcomes in the task: either positive feedback or negative feedback. 

The reward magnitude of both happy facial expressions and the tick mark was 

assumed to be 1. The reward magnitude of both angry facial expressions and the X 

mark was assumed to be – 1. The outcome weight wout (-wmax ≤ wout ≤ wmax) is a 

parameter that determined to what extent positive feedback was valued in the tipping 

game. If wout was – wmax, then positive feedback was valued very negatively, and 

negative feedback was valued very positively. Agents with a negative wout could be 

characterized as “punishment-seeking” types. If wout was wmax, then positive feedback 

was valued very positively, and negative feedback was valued very negatively. 

Agents with a positive wout could be characterized as “reward-seeking” types. Four 

types of agents could be distinguished in function of the values of the two reward 

parameters, that is, in function of their attitudes towards economic costs and reward 

outcomes. 

 

2.4 Modelling Results 

To estimate parameters values, for each block in the task we fitted the model to 

participants’ data using maximum likelihood estimation. For each participant, we 

rounded each of his or her action to the corresponding entry in the Q-table of the 

action space. Each entry in the Q-table represented the value of selecting a particular 

action a for a given state s in our task. The actions that our model could take were 

“clamped” to the actions taken by each of our participants. We then fitted the model 

by using maximum likelihood estimation. By searching the parameter space, we 
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found the set of parameters that maximized the likelihood of each participant’s 

observed sequence of actions. 

 Our model could describe the behavioural data reasonably well, for both 

group and individual performance (Figure 5 for two examples). For the social 

condition, the mean difference between percentages tipped by participants and those 

tipped by the fitted models was 4.2% (standard error 0.16%). For the non-social 

condition, the mean difference was 4.4% (standard error 0.17%). 

 The parameter values thus obtained confirmed that participants in the social 

group displayed learning and decision-making profiles different from the non-social 

group. Specifically, across blocks average parameter values governing learning and 

decision-making for participants in the social condition differed from parameter 

values for participants in the non-social condition (Table 3 A). Such variation 

indicates that participants’ learning and decision-making were affected by the nature 

of the feedback outcomes received as well as by the changes in the underlying norm 

and reliability of the feedback that took place across blocks. 

 Considering the modelling results for the whole task, instead of per individual 

blocks, participants in the social condition displayed on average higher learning rate 

α and economic weight wecon than participants in the non-social condition. On the 

contrary, they displayed smaller inverse temperature τ and outcome weight wout 

(Table 3 B). These results indicate that on average, in comparison to participants in 

the non-social condition, participants in the social condition: learned more quickly, 

explored more actions, sought positive feedback less, and cared less about spending 

extra mu for tips. 
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  α τ wout wecon 

Block 1 

Social 0.56 4.80 2.15 5.125

Non 
Social 

0.46 8.50 1.725 5.30 

Block 2 

Social 0.44 6.50 1.225 4.025

Non 
Social 

0.53 5.60 2.275 6.375

Block 3 

Social 0.60 4.40 2.375 4.05 

Non 
Social 

0.48 5.20 2.80 6.15 

Table 3. A). Average parameter values per block for participants in the social and non-social 
condition. 
 

  α τ wout wecon 

Tipping 
Game 

Social 0.42 3.60 2.575 5.75 

Non 
Social 

0.31 5.80 3.225 4.00 

Table 3. B). Average parameter values per experiment for participants in the social and non-
social condition 
 

The most significant differences between the two groups concerned the learning rate 

α and the inverse temperature parameter τ. Except for the second block in the task, 

the learning rate was significantly greater for participants in the social group than for 

participants in the non-social group. Except for the second block, the average values 

of the temperature parameter τ for participants in the social group were significantly 
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smaller than those for participants in the non-social group. These two findings were 

confirmed by modelling results for the whole task. 

 From results concerning mean values of the weights wout and wecon, it was 

found that four participants (three in the social condition) were “stingy reward-

seekers” (i.e. wecon was negative, while wout was positive), two (one per group) were 

generous punishment-seekers” (i.e. wecon was positive, while wout was negative), the 

rest of the participants in the task were of the “generous reward-seeker” type (i.e. 

both parameter weights wout and wecon were greater than zero). So, attitudes towards 

economic cost and reward outcomes were not abnormal. This was independently 

confirmed by questionnaires results, given the “normal range” of our participants’ 

personality scores (Table 2 above). 

 Finally, the hypothesis that the behavioural effects observed in the tipping 

game could be explained solely by some stable personality trait was ruled out. In 

fact, no pattern of significant correlations was found between questionnaire scores 

one the one hand, and behavioural and modelling results on the other. 

 

3. Discussion 

Our study asked whether and how the type of the reward outcomes obtained by 

people after they make decisions in social situations affects the way they learn a 

social norm. We addressed these questions by determining whether the influence of 

facial expressions on participants’ decisions in an associative learning task, called the 

“tipping game”, was significantly different from the influence of non-social feedback 

in the form of conventional marks. We found that participants receiving feedback in 

the form of happy or angry facial expressions behaved significantly different from 
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participants receiving feedback in the form of tick or cross marks. This effect was 

observed across all the blocks in our task, and, specifically, had impact on: how 

much participants were willing to give as a tip, how well they learned the underlying 

social norm and how fast they made decisions. 

 Interestingly, results about reaction time together with self-reported 

information about the strategy used to make decisions indicate that participants’ 

decision-making processes were distinctively affected by the type of reward 

outcomes received (Appendix C at the end of this chapter). Unlike participants in the 

non-social condition, nearly all participants in the social condition stated that they 

relied on the feedback provided, either positive or negative, without attempting to 

work out the right amount they were expected to tip. Thus, in comparison to 

participants in the non-social condition, their learning and decision-making relied 

more on quick, unconscious, and apparently more effective processes. 

 In blocks one and two, on average, no participant learned the value of the 

underlying social norm. The most significant differences between groups were 

observed in blocks two and three. One plausible explanation for this finding is that, 

when they started the task, participants had an initial bias in favor of a specific 

amount that one should leave as a tip in restaurants. Results from the debriefing 

questionnaire (Appendix C) indicate that in fact most of the participants had specific 

expectations about tipping in restaurants, namely: they generally expected that tips 

should be in the range of 15-20% of the bill. As confirmed by the average amount 

tipped in the first block, participants may have initially relied more heavily on such 

prior expectation. Systematic exposure to feedback stimuli may have then gradually 
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overcome the effect of this initial bias, and led participants to acquire new beliefs 

about how much one should tip in the situations they faced in our task. 

 Taken together, our findings are prima facie inconsistent with the hypothesis 

that the type of reward outcomes per se does not have significant impact on learning 

and social decision-making. It should be pointed out, however, that this conclusion 

holds only if we assume that the magnitudes of the reward outcomes in the two 

conditions of our experiment were perfectly matched. Based on behavioural results 

alone, it might be granted that angry faces and cross marks were aversive and that 

happy faces and tick marks were appetitive. However, one might hypothesize that 

their magnitudes were different, so that participants found more rewarding viewing a 

happy face than a tick mark (or more punishing viewing an angry face than a cross 

mark). Thus, in comparison to tick and cross marks, viewing angry and happy facial 

expressions could have had more impact on the computations driving learning and 

decision-making because of their differential magnitudes, and not because of their 

social or non-social nature—in other words, they could have more impact because 

rout would be greater in the case of facial expressions. This would be consistent with 

the hypothesis that because all types of reward outcomes are processed through a 

common circuitry different types of reward outcomes per se do not make significant 

difference in learning and decision-making. 

 Whether different types of reward outcomes are perfectly matched for 

magnitude cannot be determined easily using behavioural results (see Evans et al. 

2011). It is important to notice, however, that although shared neural circuits might 

be involved in the computation of both social and non-social reward outcomes—as 

suggested, for example, by Lin et al. (2011) and Jones et al (2011)—the full network 
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involved in processing both types of reward outcomes is probably not identical. 

Hence, when considered in the context of neuroimaging studies investigating the 

impact of social stimuli on reward-based decision processes (Evans et al. 2011; Lin 

et al. 2011; Walter et al. 2005), and if we take into account results about reaction 

times in our task, our findings provide increasing support to the hypothesis that 

social reward outcomes bias learning and decision-making differently from non-

social outcomes. 

 Our modelling results provided one possible way to quantitatively 

characterize this bias whose effects were observed in the behaviour of our 

participants. The parameter values that we estimated suggest that obtaining social, 

instead of non-social, reward outcomes may have greater impact on (1) the rate to 

which newly acquired information overrides old knowledge and (2) the tendency to 

explore more of the action space available. According to our modelling results, in 

fact, the behavioural differences observed between groups in our task were better 

accounted for by differences in their rate of learning and action selection strategy 

than by differences in the attitudes that participants could have towards different 

types of reward outcomes. This conclusion was independently underwritten by our 

questionnaires results, where no significant difference was found between the two 

groups with respect to their level of empathy, altruism, and sensitivity to rewards and 

punishments. 

 Feedback in the form of facial expressions could lead people, who are 

learning a social norm in a new environment, to adapt more effectively to the social 

situation they are facing. Angry facial expressions, in particular, might drive such 

learning by affecting the decision-making strategy underlying social behaviour. 
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Angry facial expressions might signal social disapproval of a failure to comply with 

a certain norm. Such a failure might be due to a lack of knowledge of the social 

environment. Thus, learners of a social norm might feel anxious and uncomfortable 

in observing an angry reaction, which might draw their attention to their ignorance of 

the structure of the social situation they are facing (on the role of punishment on the 

emergence of norms of cooperation see e.g. Fehr and Gächter 2002). Interestingly, 

the desire to avoid social disapproval is in fact one of the main factors that may 

motivate people to tip in restaurants (Azar 2007b; Conlin et al 2003). 

 If discomfort is to be avoided and knowledge of how one ought to act is to be 

acquired in that situation, then people should, at least initially, sample extensively the 

action space by trying many different actions until an accurate representation of the 

environment is gained. Even after people are confident that they have come to 

possess accurate knowledge of the environment, it could still be effective to trying 

new actions occasionally. Using this type of action selection strategy, people would 

make sure that nothing has changed in the structure of the environment. This is 

especially important in social situations, also involving social norms of tipping, 

where new social norms can appear, existing social norms change and old ones 

disappear relatively quickly across places and over time (see Azar 2004a, 2004b on 

the evolution of tipping). 

 Accordingly, the tendency of our participants in the social condition to 

display a less “greedy” action selection strategy could be explained if social negative 

feedback was especially effective in drawing their attention to the need to gain a 

better representation of the structure of the environment. Awareness of their need to 

have accurate knowledge of the situation along with a desire to steer clear from 
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social disapproval could have stimulated a willingness to explore a bigger portion of 

the action space available. By exploring more actions, participants could improve 

estimates of non-greedy action values and, at the same time, display on average more 

generous behaviour. Ultimately, exploration along with a relatively higher learning 

rate could lead participants in the social condition to better adapt to the situation they 

were facing. 

 Two limitations of our study should be noted before we conclude. The first 

concerns the distinction between social and emotional cues. The stimuli that we used 

in the social condition of our task did not help us to determine whether the 

behavioural effects we observed depended on social rather than on only the 

emotional dimension of facial expressions. Facial expressions are in fact means to 

convey both social and emotional information. Besides communicating information 

about other agents, facial expressions can often elicit emotional reactions in the 

observers. In order to identify the role of emotional cues alone, in contrast to facial 

expressions, on participants’ learning and social decision-making, a third condition 

for our task may employ emotional, non-social reward outcomes. 

 Second, one reason why our subjects did not generally perform well in the 

tipping game might be that its reward structure made the learning task especially 

hard. The level of noise in the mapping between state-action pairs and reward 

outcomes was high across the three blocks, making the feedback provided not very 

reliable. Moreover, the reliability of the feedback was independent from the distance 

between amount tipped and underlying social norm, so that tips well above the social 

norm could still receive negative feedback outcomes. In order to improve learning 

performance, the reward structure of the task may be modified in two ways. On the 
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one hand, the level of noise in the mapping between state-action pairs and reward 

outcomes may be diminished across all blocks. On the other hand, the reliability of 

the feedback provided may be made dependant on the distance between amount 

tipped and underlying social norm, so as to strengthen the reliability of feedback 

outcomes for tips well above or well below the social norm. 

 

Conclusion 

Our study confirmed the hypothesis that different types of reward outcomes 

differentially affect the way people learn a social norm and make-decisions. Results 

from our tipping game demonstrated that social reward outcomes in the form of 

facial expressions, if compared to non-social reward outcomes in the form of 

conventional feedback marks, can lead people to learn more effectively a social norm 

of tipping. Specifically, social reward outcomes in the form of facial expressions can 

lead people to make relatively quicker and more pro-social decisions, and ultimately 

to adapt more easily to novel social situations. In order to explore quantitatively our 

participants’ behaviour, we used a version of the Rescorla-Wagner algorithm to 

model performance in the tipping game. Modelling results suggest that the different 

pattern of performance between participants in the social and non-social condition 

could be better explained by a drive, displayed by participants in the non-social 

condition, to acquire knowledge by trying more novel actions. 
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Appendix A: Instructions provided to participants of the Tipping Game 

Imagine that you are a stranger just arrived in a foreign country. You believe that when 
people go to a restaurant they normally leave a tip at the end of their meal. You also believe 
that how much people tip in a restaurant depends on the quality of the service they receive in 
that restaurant. But you may be wrong. You are going to have a number of meals at 
restaurants in that new country. Imagine that this is the type of situation you are about to face 
in this experiment. 

The experiment consists of three parts. There are 40 trials in each part. Each trial 
corresponds to a meal that you have in a restaurant while you are in that country. Each part 
of the experiment corresponds to a new visit to that country. So each time you go to that 
country you have 40 meals at restaurants. You believe that some things might have changed 
since your last visit. But you are not sure. 

Imagine that every time you arrive in that country you have mu 1,100 in your pocket – mu is 
the local currency. You need to use this money to pay your bills and for any tip you wish to 
leave at the end of your meals. 

In each trial in the experiment, you will initially be revealed the quality of the service you 
receive in the restaurant. Here is an example: 

[service quality screen] 

You will then be reminded how much you have left in your pocket, and you will be 
presented with your bill. You will be asked how much you wish to leave as a tip in that 
situation on top of your bill. You can tip any sum greater than or equal to zero by pressing 
the appropriate keys on the keyboard. When you have decided press ENTER to confirm your 
decision. 

Here is an example: 

[decision screen] 

After your decision you will receive some feedback. 

[face or symbol] 

This is an example of feedback you may receive. 

In each part of the experiment, do your best to adapt your behaviour to the new situation 
without spending too much money. 

At the end of the experiment you will receive a score based on how well you have adapted in 
that type of social situation in that country and on the amount of money left in your pocket. 

You will receive an extra prize in cash depending on your score in the task. 

Remember that you are making a non-negligible contribution to science… and that you have 
the chance to win extra money. Thanks in advance for your participation and attention. 
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RECAP 

- You have to imagine that you are a stranger just arrived in a foreign country, and that you 
are going out for dinners in that country. 

- The service quality in that restaurant is revealed. 

- Imagine you have eaten your dinner and you pay the bill. 

- You decide how much you want to leave as a tip. 

- Some feedback is displayed. 
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Appendix B: Debriefing Questionnaire 

1. Did you find the first, second or the third part harder, or were they both the same? 
 
1st part harder 2nd part harder 3rd part harder  about the same 
 
2. Did you notice any change across the three parts of the experiment? 
 
Yes  No 
 
3. If you answered yes in the question above, then please explain what changes you noticed 
between: 
 
1st and 2nd part:____ 
 
2nd and 3rd part:____ 
 
1st and 3rd part:____ 
 
4. What do you think was the social norm of tipping (please give a percentage of the bill, e.g. 
32% of the bill): 
 
1st part:___ 
 
2nd part:___ 
 
3rd part:___ 
 
5. What do these signs mean? 
 

 _____ 
       X _____ 
 
6. Did you use the feedback provided to make your decisions? 
 
YES  NO 
 
7. Which of the following descriptions best describes the strategy you used to make your 
decisions? (tick statement that you most agree with) 
 
a. I relied on the feedback and I tried to work out the right percentage. 
 
b. I relied on the feedback provided without working out the right percentage. 
 
c. I relied on the positive feedback mostly without spending too much time thinking. 
 
d. I relied on the negative feedback mostly without spending too much time thinking. 
 
e. I considered the norm of tipping in my country. (Please indicate your country of origin:__) 
 
f. Don’t know. 
 
g. Other. (Please give a short description): _____ 
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Appendix C: Debriefing Questionnaires Statistics 
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CONCLUSIONS 

This neurocomputational investigation into social norm compliance began with a 

triplet of questions and answers. The triplet—recall—goes like this: 

 

Q: How can we make progress in our understanding of social norms and 

norm compliance? 

A: Adopting a neurocomputational framework is one effective way to make 

progress in our understanding of social norms and norm compliance. 

Q: What could the neurocomputational mechanism of social norm 

compliance be? 

A: The mechanism of norm compliance probably consists of Bayesian-

Reinforcement Learning algorithms implemented by activity in certain 

neural populations. 

Q: What could information about this mechanism tell us about social norms 

and social norm compliance behaviour? 

A: Information about this mechanism tells us that: 

a1 Social norms are uncertainty-minimizing devices. 

a2 Social norm compliance is one trick we have devised to interact co-

adaptively and smoothly in our social environment. 

 

This journey now concludes by considering each of the Q-As in light of the claims 

articulated and defended by the previous chapters. 

 Progress with respect to research questions such as “What are social norms? 

And why do people comply with them?” is due to empirical discoveries, 
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mathematical advances, but also to development of new theoretical frameworks. 

Establishing a novel framework to studies of human normativity is in fact a 

significant contribution in itself. 

 The first main claim defended by this thesis is that social norms and norm 

compliance can be effectively understood within a neurocomputational framework, 

whereby the workings of the mechanism of social and moral behaviour can be 

identified and described. Analytical tools and concepts from fields such as statistical 

decision theory, machine learning, computer science and reinforcement learning have 

been increasingly used to make sense of data about the neural bases of social norm 

compliance. The marriage between theoretical approaches and experimental research 

in social neuroscience has helped to unify results from such disciplines as 

philosophy, economics, anthropology, psychology and artificial intelligence, to 

articulate more sophisticated theories of social behaviour and to address more 

complex empirical problems concerning norm compliance in a precise and reliable 

way. In the last section of Chapter 1, these reasons were given in support of the claim 

that our understanding of social norms and norm compliance can make effective 

progress if we examine social and moral behaviour within a neurocomputational 

framework. Chapters 2 and 3 argued, more specifically, that adopting a 

neurocomputational perspective is fruitful to understanding whether (Chapter 2) and 

how (Chapter 3) explanations of social norm compliance should appeal to 

representations; Chapter 6 argued that a neurocomputational perspective can help us 

to identify the motivational structure of norm compliance. Finally, the experiment 

described in Chapter 7 attempted to showcase some of the fruits that a 
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neurocomputational exploration of norm compliance can yield. My hope is that 

future research will vindicate the claims I put forward in those chapters. 

 Bayesian decision theory and Reinforcement Learning have proved 

successful in uncovering important features of the mechanisms of perception and 

action. Drawing upon such successes, the second main claim advanced in the thesis 

is that the building blocks of the mechanism of social norm compliance probably 

consist of Bayesian and Reinforcement Learning algorithms running on certain 

neural circuits. The suggestion is that social/moral behaviour piggybacks on neural 

computations that enable agents to process incoming sensory input so as to form 

probabilistic beliefs about the states of the world causing that input, and to choose 

actions so as to maximize the value of their future reward outcomes in the social 

world. Thus, social norms could be grounded in features of human nature, which are 

more fundamental than either the beliefs and preferences of individuals or the 

idiosyncratic characteristics of the culture in which they live. 

 Chapter 1 laid down the beginnings of such a neurocomputational model of 

norm compliance and pointed to possible neural circuits for perception and action in 

the social/moral domain. The concerted activity of these circuits would be geared 

towards minimizing uncertainty over interactions with other agents in the social 

environment. Chapters 4, 5 and 6 articulated particular aspects of the model put 

forward in Chapter 1. Putative Bayesian, explanatory ingredients of the mechanism 

of normative judgement were considered in Chapter 4. Chapter 5 examined the 

relationship between language and moral cognition, and suggested that the peculiar 

“norm-hungriness” of humans is dependent on the capacity for florid-control, which 

might be enabled by neural computations executed by basal ganglia-prefrontal cortex 
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activations. In focusing on the relationship between emotion and the motivational 

structure of norm compliance, Chapter 6 argued that the capacity to care, which is 

essential to motivate norm compliance, is enabled by certain interactions between 

specific neuromodulators. The dynamics of these neuromodulators—the chapter 

claimed—might correspond to specific settings of the parameters that control 

Reinforcement Learning algorithms. 

 A full neurocomputational account of social norm compliance—it should be 

clear—is far from being simple. Here, I point to two important challenges. First, if 

the neural system carries out Bayesian and Reinforcement Learning algorithms so as 

to enable norm compliance, then such algorithms must run quickly and efficiently. 

Rapid adaptation to changes in real-world social circumstances often requires that the 

learning of new pieces of social knowledge and that the decision of whether one 

ought to comply with a certain social norm should be “thoughtless” and effortless. 

Yet, Bayesian computations seem to be too resource demanding, especially in the 

social domain, where hidden states of the environment are extremely high-

dimensional and continuous. Moreover, Reinforcement Learning algorithms are 

often too slow when confronted with real-world situations where the number of 

possible states and actions that an agent can take is huge. This means that there are 

two key challenges for a descriptively adequate neurocomputational model of social 

norm compliance. One challenge is to identify appropriate forms of approximate 

Bayesian inference; the other challenge is to explore more sophisticated learning 

algorithms, which could operate quickly upon suitable representations of the 

environment. Approximate Bayesian inferences and sophisticated learning 

algorithms might enable us to deal with the complexity of the social world, while 
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making feasible demands on our resource-bounded brains. These types of 

algorithmic models should be explored systematically in the context of social 

navigation. 

 The second challenge for an adequate neurocomputational model of norm 

compliance is to identify algorithms with richer dynamical interactions between 

perceptual, motivational-valuation and control systems. As Gershman and Daw 

(Forthcoming) put it: “Perception, action and utility are ensnared in a tangled skein.” 

Although the model I put forward in this thesis may suggest that perception and 

action underlying norm compliance are supported by separate signals, with a clean 

separation between inference-driven perception and reward-based action selection, it 

is likely that (social) perception is in fact modulated through and through by reward-

information. Accordingly, motivational-valuation and perceptual systems may not 

consist of separate, dedicated neurocomputational mechanisms. As research on the 

neurocomputational foundations of social norms proceeds, it is plausible that the 

building blocks of the mechanism of social norm compliance will include algorithms 

beyond “pure” Bayesian and Reinforcement Learning ones. 

 If the mechanistic model I have proposed is roughly on the right track, there 

are two properties that appear to be essential to social norms and social norm 

compliance. Social norms would be uncertainty-minimizing devices and social norm 

compliance would be one of the tricks we can employ to interact co-adaptively and 

smoothly in our social environment. These two properties are uncovered by the 

mathematical concepts from statistical decision theory, which I have used to 

investigate the neurocomputational foundations of norm compliance. Accordingly, 

the notions of “uncertainty” and “management of social uncertainty” would be 
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crucial to describe and make sense of social norm compliance. If this is so, then the 

concepts we use to account for why people comply with norms should be informed 

by the fact that norms are intimately related to social uncertainty. Chapters 1 and 4 

explained in which sense uncertainty is bounded up with social norms and moral 

judgement. Chapters 5 and 6 were partly concerned on how co-adaptive and smooth 

interaction is facilitated by norm compliance. 

 One way to summarize the thrust of the argument developed over these 

chapters is with Mary Douglas’s words: 

 

 “Institutional structures [can be seen as] forms of informational complexity. Past 

experience is encapsulated in an institution’s rules, so that it acts as a guide to what to expect 

from the future. The more fully the institutions encode expectations, the more they put 

uncertainty under control, with the further effect that behavior tends to conform to the 

institutional matrix […]. They start with rules of thumb, and norms; eventually, they can end 

by storing all the useful information” (Douglas 1986, p. 48). 

 

 From a neurocomputational perspective, the idea is that by minimizing 

uncertainty over their social interactions, agents’ cognitive systems become models 

of the social environment in which the agents are embedded. To perceive our social 

world would then be to successfully predict our own sensory states brought about by 

social states. A normative system can be understood as one device for 

communicating, sharing and acting upon information concerning states in our social 

landscape. The more a social norm is entrenched in a society, the less computing is 

needed in order to take the right action. To comply with norms would then be one 

means to make social predictions come true at little computational cost, so that we 
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can “thoughtlessly” occupy high-valued, low-uncertainty states in our social 

landscape. 

 Human life and thought exhibit a range of normative features. One cluster of 

such features can be brought under the head of social/moral normativity. Humans are 

first and foremost social creatures who are deeply concerned about what is right or 

wrong and tend to care for the people with whom they interact. These are among the 

most theoretically intriguing and practically important characteristics of human life. 

Understanding social norms and social norm compliance in terms that allow us to see 

them as aspects of the natural world is a challenging as well as fascinating project, 

whose significance cannot be overestimated. My neurocomputational journey into 

norm compliance—I hope—constitutes a step forward towards the realization of that 

project. 
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