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We present experimental and theoretical studies of a hemispherical, high-solid-
angle external optical micro-cavity strongly coupled to nanoscale optical centers for
cavity-quantum electrodynamics (QED) strong coupling and efficient single-photon
SOUrces.

[mplementations of single-photon sources based on various optical centers have
been reported in the last three decades. The need for efficient single-photon sources,
however, is still a major challenge in the context of quantum information processing.
In order to efficiently produce single photons, single optical centers are coupled to a
resonant high-finesse optical micro-cavity. A cavity can channel the spontaneously
emitted photons into a well-defined spatial mode and in a desired direction to improve
the overall efficiency, and can alter the spectral width of the emission. It can also
provide an environment where dissipative mechanisms are overcome so that a pure-
quantum-state emission takes place,

We engineered a hemispherical optical micro-cavity that is comprised of a planar
distributed Bragg reflector (DBR) mirror, and a concave dielectric mirror having a

radius of curvature 60 um. Nanoscale semiconductor optical centers {quantum dots)




v

are placed at the cavity mode waist at the planar mirror and are located at an antinode
of the cavity fleld to maximize the coherent interaction rate. The three-dimensional
scannable optical cavity allows both spatial and spectral selection to ensure addressing
single optical centers. This unique micro-cavity design will potentially enable reaching
the cavity-QED strong-coupling regime and realize the deterministic production of
single photons. This cavity can also be operated with a standard planar dielectric
‘mirror replacing the semiconductor DBR, mirror. Such an all-dielectric cavity may
find uses in atomic cavity-QED or cold-atom studies.

We formulated a theory of single-photon emission in the cavity-QED strong-
coupling regime that includes pure dipole dephasing and radiative decay both through
the cavity mirror and into the side directions. This allows, for the first time, full
modeling of the emission quantum efficiency, and the spectrum of the single photons

emitted into the useful cutput mode of the cavity.
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CHAPTER I

INTRODUCTION

In this opening chapter, we first review the motivation why we chose this
research topic, namely an optical micro-cavity strongly coupled to optical centers,
semiconductor quantum dots (QDs) in this research, for efficient single-photon sources
(SPS). Following this we give an introduction to the problem and identify what
the tasks are, both scientific and technological, to be accomplished. Oriented by
the objective, we then describe how to develop the methodology and construct the
tools that are necessary to solve the problem. That is: designing. and constructing
a composite micro-cavity-QJD system; understanding the essential dynamics of the
interacting cavity-QD system; and developing the theoretical models to define and
optimize the quantum efficiency for a SPS. Then, we give the goal and show the
accomplishment of this dissertation: what goal we want to reach, what we have
accomplished and what foundation we have laid down that is necessary for the future
work, before pointing out the challenges. Finally we outline the organization of this

dissertation.

1.1 Motivation

The study of optical cavities or resonators has a long history that can be dated
as far back as 1897 by Charles Fabry and Alfred Pérot using a transparent plate
with two reflecting surfaces, namely a Fabry-Pérot interferometer [1]. Such a device
confines light in a volume by resonant recirculation, and due to the effect of multiple
beam interference, only certain spatial patterns and frequencies of light field will he

sustained while others are suppressed. The Fabry-Pérot interferometer turned out to



be a convenient resonator system in more than one respect, which accounts for its
still remaining one of the most widely used geometries for optical resonators.

New physical processes appear as the physical sizes of the optical resonators
approach the wavelength of the light. This has resulted in the concept of the micro-
cavity. Quality factor (Q) and mode volume figure prominently in applications of
these devices. The Q of a cavity is proportional to the confinement time in units of
optical period or inversely to the energy dissipation rate relative to the oscillation
frequency. Due to its small mode volume along with a high Q, not only does a micro-
cavity modify the modes of the vacuum dramatically, giving more sparsely distributed
resonant frequencies than that of a macro-cavity, but also changes the radiative
behavior of an atom or a semiconductor QD or any optical centers placed inside
it. We define optical center as an object, or certain bound electric charges within
an object, that could radiate photons at optical frequencies when interacting with
electromagnetic fields. For example, an atom, a molecule or an ion, or single defects
or color centers in semiconductor nano-structures and diamonds; or either bound
electron-ion pairs or bound electron-hole pairs in these objects. The research of high
Q, small mode volume optical micro-cavities has been a distinct subject dominating
the past decades [2, 3, 4].

As cavities have been reduced in sizes from the conventional Fabry-Pérot micro-
cavities having two separable dielectric mirrors [5], with continued improvement
in micro-fabrication techniques, the solid-state integrated Fabry-Pérot structure
consisting of two semiconductor distributed Bragg reflector (DBR) mirrors have been
developed and widely used for vertical-cavity surface-emitting lasers (VCSELSs) [3].
A hybrid external Fabry-Pérot micro-cavity consisting of one dielectric mirror and
one semiconductor DBR mirror has also been developed recently in our group [6].
Active optical centers such as semiconductor QDs, are incorporated in the cavity

for studying light-matter interaction. This is the main topic and focus of this



dissertation. Moreover, other optical centers such as color centers in diamond may
also be integrated in such an optical cavity.

In addition to the size reduction, the geometries of optical micro-cavities have
been differentiated to various types such as whispering gallery [7] and photonic
crystal [8] resonators. Whispering gallery resonators are typically but not limited
to dielectric spherical [9] or toroidal [10] structures in which waves are confined by
continuous total internal reflection (TIR). The modes of the micro-sphere and micro-
toroid resonators are called whispering gallery modes (WGMs) feature ultra-high
Q, due to the formation of these structures through surface tension, providing a near
atomically smooth surface. Generically, a planar photonic crystal was proposed, which
is essentially a two-dimensional (2D} photonic crystal with a finite third dimension.
One typical example is an optically thin slab surrounded with lower refractive index
material and pattered with a 2D lattice of holes. In such a structure, light is confined
in the lateral direction hy distributed Bragg reflection, while in the vertical direction
by conventional waveguiding or TIR. The modes of the photonic crystals are called
defect modes, due to a ‘defect’, relative to otherwise periodic structure introduced
in the 2D lattice. Micro-resonators based on these structures can provide extremely
small mode volumes [11]. At present, however, Q values in fabricated photonic crystals
are well below theoretical optima [12, 13].

Each of these type of resonators has their own advantages and disadvantages.
For the purpose of optical mode coupling, Fabry-Pérot cavities can be free-space
coupled in and out along the cavity axis efficiently. For W(GMs, however, input
beams must be phase matched in order to excite those ultra-high @ modes, which is
typically achieved using TIR from the back face of a prism or an optical fiber taper.
Other coupling methods such as free-space coupling into a slightly deformed sphere
have also been demonstrated [14]. For the application with ultra-high Q modes,
there are technological limits imposed by mirror technology in optimizing Fabry-

Pérot micro-cavities for cavity quantum electrodynamics {(QED) strong coupling



[15]. As noted earlier, photonic crystal defect micro-cavities can provide extremely
small mode volumes and large theoretical Q values for certain design, however, the
fabricated structures have much lower QQ values due to surface roughness introduced
in the lithography process. Nonetheless, these optical resonators have found their
applications in areas as diverse as optical telecommunication, nonlinear optics,
chemical physics, biological and chemical sensing, quantum optics, and cavity QED
(16, 2, 3, 4].

Beyond their already important roles in commercial technologies, suéh as VCSELs,
optical micro-cavities are destined to become an essential ingredient in the emerging
field of quantum information science and technology. The optical resonator has
a size- and geometry-dependent resonant frequency spectrum, upon which the
applications strongly depend. For instance, at wavelength-sized cavities, enhanced
and suppressed spontaneous emission, squeezed states and chaos are readily observed.
More interestingly, if an atom or any other optical center interacts so stron:gly with
a single mode of a micro-cavity that the coherent interaction rate overwhelms all
other dissipations to enter the cavity-QED strong-coupling regime [16], a quantum
entangled atom-cavity system is possible. Such a system is crucial for a number of
applications in quantum information processing (QIP) [17, 18, 19]. Controlling the
emission of single photons for example, has been a priority for quantum encryption
systems, which is also one of the major practical motivations for this research.

Conventional sources of light, such as light-emitting diodes (LEDs) and lasers,
usually consist of a macroscopic number of photons and have a statistical distribution,
for instance Poisson statistics in the number of photons. On the other hand, many
applications in quantum information science (QIS) require efficient optical sources
with strong correlations between single photons. For example, encoding information
on gingle photons provides a means to test the security of optical communications,
which could soon be applied to the problem of sharing secret key in quantum

cryptography [20]. Although guantum-key-distribution systems based on faint laser



pulses have already been realized for simple point-to-point links, a true single-photon
source, an optical source emitting a train of pulses that contain one and only one
photon, would improve its ultimate security [21, 22]. Furthermore, a single-photon
source that can also produce entangled photon pairs, is important for future quantum
communication protocols, such as quantum teleportation—the transfer of an unknown
quantum state from one object to a like object [23]. Here quantum networks sharing
entanglement could be used to distribute keys over longer distances or through more
complex topologies [24].

It is relatively straightforward to use single photons for quantum cryptography
and communication. It is not easy, however, to apply single photons for quantum
computation because single photons do not interact strongly with each other, which
is a prerequisite for a quantum logic gate. Linear-optics quantum computing
(LOQC) [25], on the other hand, can get around this problem by using all-linear
optical elements such as mirrors and beam splitters plus projective measurements
to introduce an effective inferaction between the photons. One of the stringent
requirements is a high-efficiency SPS, in addition to another crucial requirement that
photons be produced in pure states. Please note for secure quantum key distribution,
it is important to have a high-efficiency SPS, but is not required for this application
that photons be in pure states; but for LOQC, it is required to be able to produce
pure-state single-photon wave-packets on demand. These photon packets can then be
made to interfere with high visibility, leading to effective quantum computing. Other
than the potential applications in QIP, a true single photon source will also become
increasingly important for other applications such as weak absorption and precision
optical measurements [26, 27, 28] and random number generation [29].

Semiconductor materials offer many potential advantages for efficient single-
and pair-photon generations, including high speed, tailored properties and device
integration, other than already extensive studies in nonlinear optics and cavity QED

[30, 31] and their applications in laser industry. Furthermore, they are optically



addressable and potentially offer scaling up using nanofabrication. Omne of the
guantum systems based on semiconductor materials, semiconductor QDs, or confined
electron-hole pairs, are often referred to as ‘artificial atoms’, as their electron motion is
quantized in all three directions, resulting in a discrete energy-level spectrum like that
of an atom. In just a few years, remarkable progress has been made in generating
indistinguishable single photons and entangled-photon pairs using such structurés
[32]. Tt seems possible to realize compact, robust, LED-like semiconductor quantum
light sources in the near future. An efficient SPS exploiting semiconductor QDs,
however, requires the ability to integrate a single QD with an optical micro-cavity
and locate it at an antinode of the cavity field, as this ensures the largest possible
coupling and removes background emission, as well as other undesirable effects due
to other dots in the cavity.

We believe that before the eventual advent of the all solid-state semiconductor
devices for single-photon sources and for QIP, it is important to study the physics of
strongly coupled cavity-QD system for single-photon sources using a flexible system
such as presented in this dissertation. All these concerns motivated us at the
beginning to choose this research topic, and now result in the successful design and
construction of a system to incorporate semiconductor QDs into an external optical
micro-cavity for efficient SPS, preliminary experimental results showing signatures
of significant cavity-QD interaction, and a theory formulated to understand the
dynamics of a strongly coupled cavity-QD system and to optimize the quantum

efficiency of a single-photon source in the cavity-QED strong-coupling regime.

1.2 Introduction to the Problem

Albeit various implementations of SPS based on atom-like optical centers have
been reported based on different systems in the last three decades, such as calcium
atoms {33], single ions in traps [34], single molecules [35], a color center in diamond

[36], and semiconductor nanocrystals [37] or QDs [38, 39], the need for efficient



single-photon sources, however, is still a major challenge in the context of QIP
[40, 41]. In order to efliciently produce single photons on demand, the single optical
center is coupled to a resonant high-finesse optical cavity. A cavity can channel
the spontaneously emitted photons into a well-defined spatial mode and in a desired
direction to improve the collection efficiency, and can alter the spectral width of
the emission. It can also provide an environment where dissipative mechanisms are
overcome so that a pure-quantum-state emission takes place [42]. The major questions
are: how to integrate single optical centers into a cavity and make the interaction
strong, what is the dynamics of the interacting single optical centers with a single
cavity mode, what are the emission spectra of the compaosite system when the coherent
interaction overwhelms dissipations, and what is the quantum efficiency (QE) of the
emission from on such a system?

Achieving cavity-QED strong coupling in semiconductor QD systems is itself
very interesting [43], following early studies using planar quantum-well cavity
systems, which themselves cannot reach this regime [30]. Cavity-QED strong
coupling is also necessarily required for efficient and pure-quantum-state single
photons emission. Recent experiments showed signatures of strong coupling in
some monolithic semiconductor structures such as micro-pillar [44], photonic crystal
nano-cavity [45], micro-sphere [46] and micro-disk [47, 48]. Obvious advantages
of using QDs in such schemes are that the QDs stay in a solid-state system and
are stationary and do not move a lot as atoms do. Beside, they can be optically
or electrically addressed and pumped [39]. The principal disadvantages in these
monolithic structures, however, are the lack of efficient control of the spatial and
spectral overlap between (QDs resonance and cavity modes. It needs careful design
followed by a precise fabrication procedure to preset these conditions. It is also
challenging to address single QDs spatially and tune the cavity-QD resonance or
change samples once a structure has been fabricated. For instance, temperature

tuning of the QD has to be used to tune through cavity resonance [44, 45, 47|, which



is undesirable because the dipole dephasing rate increases at elevated temperatures
[49, 50].

Therefore, the problems may be nailed down to: first, how to incorporatc
optical centers into a micro-cavity and make them overlap with cavity modes both
spatially and spectrally; second, how to design and engineer a composite cavity-optical
center system such that the coherent interaction overwhelms all other dissipations to
maximize the useful light-matter interaction; third, what is the emission spectra and
QE in the useful cavity direction of SPS in the cavity—QED strong coupling regime;
fourth, how does the pure dephasing affect the emission spectra and QE when it is

introduced unavoidably?

1.3 Dissertation Goal and Accomplishment

This dissertation provides one of the many elegant but unique methods to address
the above questions. We chose molecular beam epitaxy (MBE}-grown semiconductor
QDs as our optical centers and a hemispherical design for our micro-cavity, taking
advantage that, first, high quality semiconductor mirror can be grown by MBE:
second, relatively large oscillator strength semiconductor QDs can be grown by
interface fluctuation in a one-wavelength spacer layer on top of the mirror; third, a
hemispherical optical micro-cavity gives a diffraction-limited beam size at the location
of @Ds and hence a small mode volume. With the experimental design, we expect to
reach the cavity-QED strong-coupling regime, which is challenging by itself, and to
make efficient single-photon sources. Theoretically, we want to study the dynamics
of the strongly coupled cavity-QD system, the emission spectra and the quantum
efficiency of the composite system based on realistic experimental parameters in the
cavity-QED strong-coupling regime.

This dissertation presents experimental and theoretfical studies of a hemispherical,
high-solid-angle, external optical cavity strongly coupled to nanoscale optical centers

for cavity-QED strong coupling and efficient production of single photons on demand.



By taking advantages of standard semiconductor growth and processing techniques,
our collaborators (H. Gibbs and G. Khitrova) were able to grow QDs formed by
interface fluctuation in a thin quantum well and integrate them into a high-reflectivity
mirror as one side of the micro-cavity. Furthermore, by design we locate the QDs
at an antinode of the cavity fleld to maximize the interaction. The external cavity
approach provides maximum flexibility in scanning laterally to position a QD at the
focus of the cavity, as well as providing the capability of scanning the cavity resonance
to the spectral position of the isolated QD.

We engineered a hemispherical, high-solid-angle optical cavity [6] that is comprised
of a planar semiconductor DBR. mirror, and a concave dielectric mirror having a
radius of curvature 60 pgm. Nanoscale optical centers such as semiconductor QDs
are placed at the cavity mode waist at the planar mirror and are designed to be
located at an antinode of the cavity field to maximize the coherent interaction. The
three-dimensional scannable optical cavity allows both spatial and spectral selection
to ensure addressing single optical centers. This unique hybrid micro-cavity design
will potentially enable reaching the cavity-QED strong-coupling regime and realize
the deterministic generation of single photons on demand.

We formulated a theory using Weisskopf-Wigner method to calculate the emission
spectra of interacting cavity-QDs system and the quantum efficiency of single-photon
emission in the cavity-QED strong-coupling regime [51] that includes pure dipole
dephasing and radiative decay both through the cavity mirrors as well as into the
side directions [52]. This allows, for the first time, full modeling of the emission
quantum efliciency, as well as the spectrum of the single photons emitted into the
useful output mode of the cavity. '

Our cavity can also be operated with a standard planar dielectric mirror replacing
the semiconductor DBR, mirror. Such an all-dielectric cavity may find uses in atomic
cavity-QED or cold-atom studies [53], or novel forms of microscopy or interferometry.

Atom chips were recently reported using similar hybrid Fabry-Pérot resonators [54].



10

Other optical centers such as color centers in diamond may also be incorporated in
such a cavity. The challenge mainly lays in the stringent fabrication conditions for

growing diamond nanocrystals in thin films.

1.4 Dissertation Organization

The dissertation is organized as follows. In Chapter II, we first overview the
concept of single-photon sources and the method to generate efficient single-photon
sources using a single optical center inside a high-finesse optical micro-cavity. Two
light-matter interaction regimes, weak coupling and strong coupling, are discussed.
Following that, we describe the advantages to use the hemispherical design and the
hybrid dielectric-semiconductor mirror combination for the cavity. Then we discuss
the advantages of the interface fluctuation QDs in a thin QW for cavity-QED studies
and the MBE growth method to integrate them with a DBR mirror. Finally, we
briefly review the physics of designing a DBR mirror to locate optical centers at an
antinode of a light field.

In Chapter III, we first describe the detailed procedure to fabricate micro-sized
concave mirrors and how to estimate their physical parameters such as the dimple
depth and the radius of curvature. Then we discuss the optical coating design for
such a highly curved mirror to give a reflectivity of 99.5% or higher over a high-
solid angle range. After assembling the micro-cavity onto a sophisticated mechanical
system located inside an ultra-high vacuum chamber, we characterize the cavity by
investigating mode-matching of a laser beam into a cavity mode and probing the
cavity mode structure. Finally, we show some preliminary spectroscopic results of
cavity transmission spectra at both room temperature and cryogenic temperatures.

In Chapter IV, using the Weisskopf-Wigner theory for an impulse-cxcited optical
center, we derive analytical formulas for the forward emission and side emission
spectra of cavity-modified single-photon sources, as well as the corresponding

vacuum Rabi oscillations in the cavity-QED strong-coupling regime. We calculate



11

the integrated-pulse quantum efficiency of a single-photon source. An analytical
expression for the quantum efficiency is obtained. Optimal conditions for a high
quantum efficiency and a temporally localized photon emission rate are examined.

In Chapter V, we investigate the effects of pure dephasing, treated in the phase-
diffusion model based on a Wiener-Levy process, on the vacuum Rabi oscillations,
quantum efficiency and emission spectra, and extend our results in Chapter IV fo
include the pure dephasing process. We find that the depths of the vacuum Rabi
oscillations are reduced, the quantum efficiency is decreased and the spectra are
breadened in the presence of pure dephasing.

In Chapter VI, the last chapter, we summarize and conclude the dissertation and

give an outlook for the future work.
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CHAPTER II

OVERVIEW OF CONCEPTS AND SYSTEM

In this chapter, we first give an overview of concepts of a single-photon source
and using a single optical center interacting with an optical micro-cavity for efficient
production of single photons. The dynamics of the composite system can be different,
depending upon the coupling strength between an optical center and a cavity mode.
Two different light-matter coupling regimes, strong- and weak-coupling regimes, are
considered. The different efficiencies that determine the overall efficiency of a single
photon source are discussed. Then we give a description of a physical system we
designed and constructed that is suitable for fulfilling the purpose. Finally we give a
brief review of how to design a distributed Bragg reflector (DBR) mirror and how to

integrate optical centers with it.

2.1 Overview of Concepts

In 1900, when trying to explain the experimentally observed black-body spectrum,
the spectral distribution of the electromagnetic energy radiated by a thermal source,
Max Planck found that he could account for the measurements by assuming that
the electromagnetic energy E could be emitted only in quantized form [55]. In other
words, the energy could only be an integer multiple of an elementary unit & = hv, or
a quantum of electromagnetic radiation, where h is Planck’s constant, and v is the
frequency of the radiation. The concept of photon, however was not introduced until
1905 by Einstein to interpret the photoelectric effect [56]. The word ‘photon’ is now
widely used to describe a quantum of electromagnetic radiation, or a minimum-energy

packet of electromagnetic radiation. Although there were some arguments in the past
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[67] for its usage, it is now largely adopted by the quantum-optics cormmunity. One of
the most common classical light sources is a thermal source, a light source in thermal
equilibrium at a certain temperature, described by Planck’s law. The photon number
distribution in such a source falls off monotonically with increasing photon number,
and is naturally called the thermal distribution or the geometric distribution. It
reflects the chaotic nature of a thermal source, as compared with other light sources
such as a laser.

In 1916, Einstein laid the foundation for the invention of the laser, which also
consists of a macroscopic number of photons, and its predecessor the mascr, in a
ground-breaking re-derivation of Max Planck’s law of radiation based on the concepts
of spontaneous and stimulated emissions [58]. The laser, however, was not made
until much later in 1960s. Theodore H. Maiman at Hughes Research Laboratories
in Malibu, California invented the first working laser in 1960 [59]. The concept of
the laser diode was proposed by Nicolay G. Basov in 1959 [60]. A laser diode is a
laser where the active medium is typically a semiconductor p-n junction. The first
semiconductor laser diode was demonstrated by Robert N. Hall three years later [61].
The early semiconductor lasers, however, could be used only in pulsed operation, and
indeed only when cooled to liquid nitrogen temperatures. In 1969 and 1970, Zhores
I. Alferov et al. in the Soviet Union and Morton B. Panish et al. of Bell Telephone
Laboratories independently developed continuously operating laser diodes at room
temperature [62, 63]. The photon number distribution of a laser follows a Poisson
distribution, indicating the randomness of the light source. So what is a single-photon

source?

2.1.1 Single-photon Sources

Right after the invention of lasers, mainly under Roy J. Glauber’s impulsion [64],
researchers began to look for specific quantum properties of light that could not be

understood in a classical regime. For his contribution to the quantum theory of
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optical coherence [65], Glauber shared the 2005 Nobel Prize in Physics. In his work
[64], published in 1963, he created a model for photodetection and explained the
fundamental characteristics of different types of light, such as a laser light and an
ideal single-photon source. Photons in a laser beam follow a Poisson distribution,
which refers to the statistical tendency for photons to arrive at a detector randomly.
An ideal single-photon source will deliver one and only one quantum of light each
time it. triggered, which is referred to as antibunching effect, in contrast to a laser.
The photon number distribution of a true single photon source is said to be the
sub-Poisson distribution, since that of a laser exhibits a Poisson distribution.

One straightforward and maybe naive method to approximately produce single
photons is to properly attenuate a pulsed laser such that there is on average only
one quantum of light equivalent energy per pulse. However, such strongly attenuated
laser pulses differ from ‘true’ single photons in at least two respects: first, the vacuum
probability is much higher than the probability of detecting a photon, so one gets
predominantly a ‘no-photon’ regime with occasional detection of a photon; second,
the probability of getting two photons is never zero, because the attenuated pulses are
still in coherent states and essentially follow a Poisson distribution. There are other
approximated single photon sources: heralded single photons from atomic cascade,
spontaneous parametric down-conversion, and spontaneous four-wave mixing [66].
They will be discussed later.

A single-photon source can be achieved using the spontanecus emission of a single
optical center, such as an atom in gaseous phase. Early successful generation of single
photons showing the antibunching effect was performed using heralded photons based
on cascade transitions of calcium atoms, followed by proper spectral filtering and
conditional detection [33, 67]. Single photons were also observed in the resonance
fluorescence from an attenuated sodium atomic beam, where at most one atom was
present in the excitation focus at any time [68]. Although the cascading calcium atoms

and the faint sodium beam were the first sources of single photons, their brightness
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and efficiency were very low, and a further drawback was that the operation of the
source was limited by the density and transit times of the atoms, and could not be
controlled.

In parallel, a different mechanism to generate single photons based on nonlinear
optical processes had also been developed about at the same time. Optically pumping
a nonlinear crystal using a He-Cd laser, pairs of photons, signal and idler photons,
highly correlated both in space and time were generated at high rates by spontaneous
parametric down-conversion in 1970 [69]. A similar nonlinear process, spontaneous
four-wave mixing has also been used to generate correlated pair photons. Provided
that the probability of generating two pairs at the same time remains negligible,
such correlated pairs can be used as sources of heralded single photons [70]. Please
note that in the absence of a convenient way to produce controllable single-photon
sources, the parametric sources played an important role in most early experiments
in quantum optics [71, 72, 73, 74, 75| and are still the workhorses to date [76, 77].

It is preferable to generate single photons in a controllable faghion like a ‘photon
gun’, an ideal device that delivers photons one by one and is synchronized with an
external excitation and trigger source. From the mid-1980s, single ions in magnetic
traps provided long observation times with one and the same ion [34]. The long
streams of antibunched photons produced in this way came closer to a photon gun,
but by nc means close encugh to a ‘photon gun’.

Due to the sensitive detection of fluorescence in single molecules [78] and in single
semiconductor heterostructures [79, 80] in the early 1990s, single-photon emissions
were detected from single molecules [35] and in other single nano-objects in condensed
matter. Since in condensed matter, single objects are much easier to be manipulated
as compared to the atoms and ions in gaseous phase, nano-objects were therefor
proposed as possible sources of single photons [81, 82]. Soon after, single-photon
emissions from semiconductor nanocrystals [83, 84, 85|, color centers in diamond

[86, 36], single QDs in various geometries [37, 38] and much more were reported.
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For most of the applications in QIP, single-photon sources that generate pure
single-photon states on demand in response to an external trigger signal are required.
Antibunching is an essential test of single photons. But it only means that the
probability of emitting two or more photons per trigger is zero and is not sufficlent for
creating single photons on demand. In addition, we require that the source emits one
photon with certainty. That is, the excited state of the optical center must be prepared
with certainty, and the emission quantum efficiency need to be unity or as close to
it as possible. Other crucial performance measures for an on-demand source are the
overall efficiency of such a source, which is the product of the excitation efficiency,
quantum efficiency, collection efficiency and detection efficiency which is defined as
the fraction of photons collected and detected in the experiment per trigger, and the
indistinguishability of single photons emitted from the source at different times.

Then the question is how to meet these requirements and reach the goal. We
start with spontaneous emission in free space. Consider a one-electron atom with
two electronic levels |e) and |g) separated by an emergy interval B, — E, = Fwq.
Spontaneous emission appears as a jump of the electron from level |e) to |g)
accompanied by the emission of a photon, which can be emitted into any directions.
The spontaneous emission process can be understood as resulting from coupling of
an atomic electron to the electromagnetic field in its vacuum state. Typical only a
fraction of spontaneously emitted photons can be collected and detected, depending
upon how large a solid angle is subtended by the collection and detection optics. An
essential feature of spontaneous emission in free space is that a photon can be emitted
into any mode that enables the conservation of energy and momentum. The time of
emission and the particular mode in which the photon is observed are random.

As pointed out above, spontaneous emission is not an intrinsic atomic property,
but rather results from the coupling of an atom to the vacuum modes of the
electromagnetic field. The most distinctive feature of spontaneous emission is its

irreversibility, which comes about because an infinity of vacuum states is available to
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the radiated photons. As such, it can be modified by tailoring the electromagnetic
states into which the atom can radiate, for instance, by placing an excited atom into
a cavity.

The spontaneous emission rate can be enhanced if an atom at rest inside a
cavity is resonant with one of the cavity modes [87]; it can also be inhibited if
the mode density to which the sponftaneous emission is small compared with that
in free space [88]. It has also been recognized that spontaneous emission need
not be an irreversible process. Indeed, the Schddinger equation always leads to
reversible dynamics. Spontanecus decay only appears to be irreversible when the
electromagnetic field modes are treated as a Markovian reservoir. If the vacuum
modes can not be approximated in this way, qualitatively different types of dynamics
can be achieved. Depending upon the ratios of the coherent interaction rate between
an optical center and an optical cavity, to the intracavity field decay rate, and to
the optical center population decay rate, one can distinguish two regimes of coupling
between an optical center and a cavity: strong-coupling and weak-coupling regimes,
which are to be discussed in more detall in the following.

In the cavity-QED weak-coupling regime, where the dissipations are still greater
than the coherent interaction rate, an optical cavity can channel the spontaneously
emitted photons into a well-defined spatial mode and in a desired direction to improve
the out-coupling and collection efficiency, and can alter the spontaneous emission rate
and the spectral width of the emission. Only if it is coupled to a resonant mode of
a high-Q) optical cavity, can an optical center realize its full potential as an efficient
single-photon emitter. An optical cavity can also provide an environment where
dissipative mechanisms are overcome to enter the cavity-QED strong-coupling regime
so that a highly-pure-state single-photon emission takes place.

One of the most feasible approaches to the efficient creation of single photons in
a well-defined mode is believed to be placing an optical center at an anti-node of the

field in a high-finesse optical micro-cavity and optically exciting the optical center at
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a known time. In the limit of strong coupling, the ensuing process of spontaneous
emission becomes deterministic. That is, the coupling of the optical center’s dipole
to a privileged cavity mode is far stronger than its coupling to all other modes. Then
there will be virtually no emission into the other modes. In addition, there needs
to be almost no dephasing of the dipole during the emission process. In this case,
the photon is emitted through the cavity mirror in a known, pure wave-packet state
that has a well-defined time delay following the excitation. These wave-packets are
also emitted as a Gaussian beam in a well-defined direction and can be efficiently
coupled out of the cavity and into the subsequent optics. Photon correlation and
indistinguishability can be tested with Hanbury-Brown and Twiss (HBT) [89] type

photon correlation measurements or balanced-homodyne detection (BHD) [90].

2.1.2 Cavity-QED Weak Coupling versus Strong Coupling

In order to examine and justify the claims made above, we start with a theoretical
model of light-matter interaction. The majority of the optical phenomena involving
light-matter interaction is the coupling of a two-level optical center with a single
mode of an electromagnetic field. The elementary system in cavity QED is a two-
level optical center, an atom or QD, interacting resonantly with a single cavity mode
as in Fig. 2.1. We know an atom or QD is not a system with only two energy levels,
but really multiple levels. A two-level optical system description is valid if the two
energy levels involved are resonant or near resonant with the driving field or the cavity
mode, while all other levels are highly detuned.

Under certain realistic approximations, an optical center behaves as a simple
harmonic oscillator, which couples to the electromagnetic field through its electric
moment, typically electric-dipole moment. The electric-dipole interaction energy that
results when an atom or QD interacts with a cavity mode is H,q, = ﬁeg-Emc(Fg) = figo.
Here figy is the electric dipole moment for an atomic or excitonic transition and

Emc(ﬁj) is the electric field vector associated with the vacuum or quantum mechanical
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FIGURE 2.1: Schematic description of a lossy two-level optical center interacting
with a single mode in a leaky optical cavity. gy is the coupling constant between the
optical center and the cavity field. 2 and 2« are the optical center population decay
rate to the sides of the cavity and the cavity field decay rate, respectively.

zero-point motion, at the location of the optical center 7. And gy is the vacuum Rabi

frequency in unit of rad/s. The vacuum-field vector is given by

= - h“-’c ¥ 7t
Eyae(70) = \/ %0 U(7%), (2-1)

where U (7,) is the normalized spatial distribution of the mode’s electric field vector.

The cavity effective mode volume, Vs, which depends on the location of the optical
center T, is defined as the spatial integral of the field intensity, normalized to unity

at the maximum,
f T@)Pdr = 1 = [T(F) x Vigs, (2.2)

where the integral is over all space () between the cavity mirrors.
For example, if the mode amplitude can be described as a (paraxial) Gaussian
function with 1/e amplitude contours that define a spot size w(z) at the position z

along the cavity axis as, and with the field maximized at the boundaries, then
2

()| = %‘ﬁ (2.3)

where Uy is a complex number containing the phase information. Plug Eq. (2.3) into

Eq. (2.2), and let p* = 2° + 3, then we get
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Then the cavity effective mode volume is,

1 .
Verr = f’lﬂﬁfa (2.5)

where wyg is the beam waist, L is the cavity length and it is assumed that the optical
center is located at an antinode of the standing wave. Clearly we need to make the
beam waist and the cavity length both as small as possible, and make certain that
the optical center is located at an antinode near the waist.

If we assume the electric-dipole transition is in the electric field direction (%)
with matrix element u,, having frequency wy, resonant with the cavity mode with

frequency w,, then the coupling constant gy is related to the cavity effective mode

[+
o =2 2.
o = H 2hegVery (6)

The atomic or excitonic transition also has a dipole decay (dephasing) rate y. Here we

volume V. ¢s by

consider only the radiative decay, not including the non-radiative decay. The cavity
decay rate is 2k given by the total mirror transmission-plus-scattering loss 7+ 5 and

the cavity length L through

26 = 5= (T +8). (2.7)

Cavity-QED weak coupling results when dissipation overwhelms the coherent
Rabi dynamics. In this regime, the main role of the micro-cavity is to control
the spontaneous emission through the Purcell effect, determined by the ratio of the
spontaneous rate inside the cavity to that in free space, to enhance radiative decay
into a cavity mode of interest and thereby achieve a stream of single-photon pulses.
The Purcell spontaneous emission enhancement factor is given by [87]

3 Q
T An? Vg

(2.8)

where the @@ = (2L/A)F is the cavity quality factor with a cavity finesse F, and Vz¢

is the effective volume of the interacting mode. If the cavity has a preferential output
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direction, the Purcell effect will ensure fast and directional emission from the two-
level system. These features are highly desirable for improving the overall emission
efficiency of single photons. In this regime, for instance, Santori et al. [91] showed
the ability to produce largely indistinguishable photons by a semiconductor QD in a
micro-cavity using a large Purcell factor.

Cavity-QED strong coupling occurs when the electric-dipole interaction rate
between an atom or QD and a single, unoccupied mode exceeds the energy decay
rates of the composite system. It means that the coherent coupling frequency gq is
greater than the cavity and atom or QD decay rates, assuming no atomic or excitonic

pure dephasing,

[ 2 Ky Y- (29)

In the super-strong coupling limit, go > &,7, coherent dynamics {Rabi dynamics)
takes place on time scales much shorter than the dephasing times. Use of a weak
optical probe reveals that the presence of the QD splits the cavity’s transmission
spectrum into two distinct peaks, which correspond to eigen-frequencies of the
quantum entangled cavity-QD states (states that are not factorable into cavity and
QD components).

In the cavity-QED strong-coupling regime, a single photon can saturate an atomic
or excitonic state of an optical center, allowing coherent control over the internal
state of the optical center; and furthermore the optical center can strongly influence
the optical field in the cavity, enabling transfer of information from matter to field.
For example, in the cavity-QED strong-coupling regime, one potential application is
for quantum communication, where optical centers serve ag stationary quantum bits
(qubits) storing information while photons as flying qubits transfer information from
one storage location to another. The other priority is to control the emission of single
photons to deterministically produce single photons on demand. The realizations of
cavity-QED strong coupling in the atom-cavity [5] and QD-cavity systems [44, 45, 47,

48] allow researchers to deterministically generate single photons [92, 93, 42]. It is also
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possible to observe (even weak) nonlinear optical effects [94] in these strongly coupled
systems to provide a mechanism for quantum logic and quantum computation.

The quantum efliciency of a SPS, which is intrinsic to the composite quantum
system, can be different in these two regimes because the dynamics of the composite
system are different. The overall efficiency of a SPS will also depend on the excitation
efficiency [95], collection efficiency and detection efficiency, which are not intrinsic to
the composite quantum system; however, they can be greatly affected by the energy
structure of the optical center and the geometry of the cavity.

In this dissertation, we intend to exploit a novel approach for generating single
photons on demand using a single semiconductor QD interacting strongly with a mode
of a hemispherical optical micro-cavity. Why did we choose this approach? As we
have already said in Chapter I, we believe that before the eventual advent of the fully
integrated and scaled up devices for on-demand production of single photons, it is
important to study the physics of strongly coupled optical center/cavity system using
a flexible composite system, an external optical micro-cavity with semiconductor QDs.
Besides, other solid-state optical centers such as color centers in diamonds may also
be integrated in such a cavity for efficient single photon sources. In the next section,

we will give a detailed description of our system.

2.2 Overview of System

We have successfully designed and constructed a small-effective-volume, low-f-
number, high-Q hemispherical micro-cavity as in Fig. 2.2. In such a geometry the
cavity effective volume is given by Eq. (2.5). The minimum mode radius wg that is
allowed by diffraction in such an open cavity is of the order of one-half the optical
wavelength.

The composite cavity-QD system that we use is comprised of an integrated
semiconductor distributed Bragg reflector (DBR) mirror adjacent to the QD layer, at

the focal plane of a hemispherical diclectric mirror, having a radius of curvature 60 zm.
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10 mm

FIGURE 2.2: A hemispherical cavity, comprised of an integrated semiconductor DBR
mirror with @QDs and a concave dielectric mirror having a radius of curvature 60 um.

The hemispherical, external-mirror design provides maximum flexibility in spatial and
spectral scanning in order to address single QDs, together with a diffraction-limited
beam size at the plane of QDs. The method to integrate semiconductor QDs into
a cavity has an advantage compared with atomic systems: the QDs are fixed in a
solid-state matrix, and do not need to be trapped and held, as do atoms. Moreover,
the future practical systems are likely be semiconductor-based, hybrid opto-electronic
systems. Our device can be a key ingredient in such a system. Eventually, it may
even be possible to integrate photon emission, logic, memory and detection elements
into single semiconductor chips to form a photonic integrated circuit for QIP.

The semiconductor DBR mirror is mounted on a tripod system, supported by
three Burleigh UHVL Inchworm Motors with a typical mechanical resolution 2 nm,
to control precisely its longitudinal position and its angle with respect to the curved
mirror. The tripod also contains an z-y nano-scanner, which can laterally scan the

mode waist in a 50 x 50 um? region, essential for scanning and addressing single
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QDs, and a piezoelectric transducer (PZT) driven by a laser-referenced feedback loop
for stabilizing the length of the cavity. Ultra-high-purity copper wires connect the
cold finger and the low temperature holder for cooling the DBR mirror to cryogenic
temperatures. The thermal insulator between the low temperature holder and the
PZT allows cooling down the semiconductor sample to cryogenic temperatures while
keeping the PZT at room temperature, preventing from degrading its performance

and damaging it. The whole system is shown in Fig. 2.3.

v-1 Nano-Scanner

Inchworm Stage:

FIGURE 2.3: The cavity assembly: the semiconductor sample is mounted on a five-
axis tripod system, sitting on three inchworm stages; curved micro-mirror is glued on
top of a high numerical aperture (NA) microscope objective for coupling and focusing
an input laser beam properly.

The system operates inside an ultra-high vacaum (UHV) chamber (107% — 107°
mbar), to allow cooling the DBR mirror to around 10-17 K to reduce QD dephasing
rates and to avoid coating of the DBR mirror by cryopumping and attendant
absorption and scattering. The UHV chamber, together with the turbo-pump and

the ion pump is shown in Fig. 2.4. The turbo pump is used for pre-pumping the
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chamber to 107® mbar. After the turbo pump is shut down, the ion pump starts

working and keeps working all the time during the experiment.
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FIGURE 2.4: The ultra-high vacuum chamber with a turbo pump and an ion pump
connected.

2.2.1 External Optical Cavity—The Hemispherical Design

As pointed out in Chapter I, there are various geometries of optical resonators.
The simplest and most widely used optical resonator is the Fabry-Pérot type,
consisting of two curved mirrors facing each other. If the curvatures of these two
mirrors correspond to a stable periodic focusing system, and if their transverse
dimensions are large enough so that we can neglect edge-diffraction effects, these
mirrors thus form an optical resonator which can support a set of lowest-order

and higher-order Gaussian modes or beams that will circulate between the two
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mirrors. These trapped Hermite-Gauss or Laguerre-Gauss modes form, to a first-
order approximation, a set of resonant modes for the two-mirror Gaussian resonator.

In practice, instead of being given a Gaussian beam and asked to fit mirrors to it,
we are likely to be asked to find the right Gaussian beam that will just fit properly
between two curved mirrors M; and M,y with spacing L, and radii of curvature Ry
and Ry, respectively. See Fig. 2.5, wy is the radius of the beam spot at the Gaussian
beam waist. w; and w, are the beam spot radii at two cavity mirrors M; and M; at
positions z; and z; respectively. We will further discuss how to mode-match a beam

into the fundamental spatial mode of a Gaussian resonator in Chapter III.

FIGURE 2.5: Model and notation for a stable two-mirror cavity.

Assume that the Gaussian beam has an initially known spot size wy and a
wavelength \ or Rayleigh range zp = mwp®/), and the mirrors locate at distances
2 and zy from the location of the beam waist at 2 = 0. Then all the important
parameters of this Gaussian beam can be related to the waist spot size wqy and the

ratio 2/zp by the formulas:
2
w(z) = wyy/l+ (—) ) (2.10)
2
25 .
— 2.11
: 2.11)

$(z) = tan~! (i> , (2.12)
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where w(z) is the Gaussian spot size at a transverse plane at 2z, R(z) is the wavefront
curvature at plane z and ¢(z) is a phase angle at plane 2, or the so-called Gouy
phase shift [96]. The essential conditions are then that the wavefront curvature R{z)
of the Gaussian beam, as given above, must match the mirror curvature at each
mirror, taking into account the specified mirror spacing L. This provides us with

three equations, namely,

R(Zl) = 21+ 2122/21 = "Rh (213)
R(Zg) = 2+ 2322/22 = +R2, (214:)
L = 2y — 2. (215)

The Gaussian wavefront curvature R(z) is usually taken as positive for a diverging
beam, or negative for a converging beam, traveling to the right; whereas the mirror
curvatures R; and Ry are usually taken as positive numbers for mirror that are concave
inward.

The g Factor

Define a pair of resonator g parameters, ¢, and g¢,, given by

L ' L

In terms of these parameters we can rewrite the Rayleigh range the beam spot radius

as:
2 = 9nll=0g) . (2.17)
(g1 + g2 — 29192)2
wg — E 9192(1 - glgz) ] (2-18)
T\ {91+ g2 — 2192)*

The locations of the two mirrors relative to the Gaussian beam waist will be given by

Ly = 2l-g) g (2.19)
g1+ 3 — 20192
]_ .
w = gl=92) (2.20)

a1+ g2 — 29192
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And the spot size w; and w, at the ends of the resonator are

= 22
™ 9‘1(1—9‘192)

LA g1

7V g2(1 —g162)

(2.21)

wi = (2.22)

Resonator Stability Criterion
It is not difficult to find from the above equations that the real and finite solutions
for the Gaussian beam parameters and spot size can exist only if the ¢; and ¢

parameters are confined to a stability range defined by
0< g < 1. ] (2.23)

This is known as the stability criterion because this is also the condition required for
two mirrors with radii Ry, Ry and spacing L to form a stable periodic focusing system
for rays.

A (near) hemispherical optical cavity is an optical resonator bounded by a concave
spherical mirror and a planar mirror that is located at the center of curvature of the
concave mirror, for which the resonator parameters are B, = Ry = L + AL and
Ry = o0, and hence ¢y = AL/L = 0 and g, = 1. This resonator has a very small

(diffraction-limited) spot size wy at the planar mirror end given by

Lh JAL
2 = 2o 2 2.24
Wy wa p 7 (2.24)
LA L
2 o D/ 2.2
wl T AL ( 5)

for AL > 0and AL < L.

Justification of Hemispherical Limit—the Order of AL

When a collimated Gaussian beam is focused by an ideal lens, the actual focal
spot, meaning the position of minimum spot size and maximum energy density, does
not in fact occur exactly at the geometric focus of the lens; but rather is located just

slightly inside the lens focal length, as shown in Fig. 2.6. The actual waist of the
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focused Gaussian beam is at a distance z; from the position of the ideal thin lens,
which is shorter than the focal length f. The radius of curvature of the curved mirror
is Ry = HRu. Please note that a hemispherical cavity is indeed a self-focusing imaging
system with a focal length Ry/2, for a point source at the spherical center of the

curved mirror. By definition, a collimated beam passing through a thin lens of focal

Geometric
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FIGURE 2.6: A collimated Gaussian beam is focused by an ideal thin lens with a

focal length f.

length f acquires a wavefront curvature equal to f, therefore

Ruleg) = 2+ 2 = 1. (2.26)
For convenience, here all parameters are used with their absolute value. Subsequently,
the difference between the focal length f and the actual distance z; to the waist is
given by

_ % . %R

Similarly, for our hemispherical cavity, the derivation of the cavity length from exactly

hemispherical is

AL=Ry-L="Rx22, (2.28)
M L Ry ¥ '
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Let us make an estimate of the order of the AL for our micro-cavity. Assuming the
beam waist wg at the planar mirror is about the size of the incident laser wavelength
), then the Rayleigh range zg = nwi/A &~ wA. Therefor AL ~ #?)?/L. Given a
nominal wavelength A = 765 nm for a probe laser and a cavity length L = 60 yum, we
have AL = 96 nm, which is much larger than the Burleigh UHVI, Inchworm Motors’
mechanical resolution 2 nm, and we are able to control the cavity length finely enough
to reach and probe the hemispherical limit.

The great advantage of the hemispherical design is that the mode alignment
difficulties in this design are largely if not completely eliminated. In addition, the use

of a hemispherical micro-cavity offers the following advantages:

1. The hemispherical cavity is geometrically stable, in terms of laser cavity

stability;

2. The hemispherical mode has a waist size wy at the planar DBR mirror that is

diffraction limited and consequently leads to a large coupling constant gg;

3. Our system uses a cavity with adjustable length and a transversely movable
focal region, allowing good spatial and spectral overlap of QD resonances with

high-Q cavity modes.

4. Tt enables direct out-coupling of the spontaneously emitted photons into a

single-mode traveling wave along the cavity axis;

5. The fundamental modes of the cavity (Gaussian modes) can be efficiently

coupled into lens, fiber and other optical components.

Please note that the QD-cavity mode coupling strength is proportional to the
amplitude of the normalized cavity mode at the location of the QDs. In order to
make the coupling strong, it is necessary to localize highly the transverse extent of
the mode function in the vicinity of the QDs, and align the mode polarization vector

with the dipole transition matrix elements of the QDs. Determining the precise degree
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to which this localization is possible is nontrivial, since the mode structure for such
a small cavity is non-paraxial, is non-separable into polarization components, and is

non-separable into longitudinal and transverse functions [97, 98].

2.2.2 GaAs Semiconductor Quantum Dots

The optical center used in this research is semiconductor QDs. In this section, we
introduce the central physical concepts and results of semiconductor QDs. Rather
than provide an exhaustive review, we only highlight important concepts in an
introductory manner with experimental or theoretical results that serve our purposes.
The QDs used in our experiment are the natural QDs formed by fluctuations in the
well width in a thin (3-6 nm) GaAs QW, arising in part from monolayer-high interface
islands. However, most of the concepts and results are common to all semiconductor
QDs. We will first give a brief introduction of the natural interface fluctuation QDs
and the technology to fabricate them. Then we will discuss how to model the energy
structures and spectra of the excitons and biexcitons in this type of QDs.

QDs are particles of semiconductor crystals (nano-structures), often embedded
in a barrier material, with dimensions that are small enough (10-100 nm) such
that guantum confinement of electrons plays a central role in their physics. Their
discrete energy spectra and relatively wide energy level spacings minimize many of
the relaxation processes that dbminate in bulk or two-dimensional samples, resulting
in homogeneous linewidths that are generally narrower in QDs. Optical oscillator
strengths are also relatively large, and in combination with narrowband lasers or a
single mode of a very high finesse micro-cavity tuned to the discrete optical transitions
of QDs, strong interaction between light and matter can be achieved in composite
QD-cavity systems.

One dominant technology for the production of QDs is epitaxy. The epitaxial
growth of QDs is dominated by molecular beam epitaxy (MBE). MBE-grown QDs
are mostly from III-V group materials, such as GaAs, InGaAs, InAs and InP, and
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occasionally from other groups, such as PbSe and CdSe. The MBE technique allows
one to control thickness within one or two monolayers in the growth direction (z).
Nearly perfect heterojunctions produced this way give good passivation and therefore
most MBE-grown nano-structures are free from surface states. These heterojunctions
provide quantum confinement along the growth direction. In the plane (z-y) of
the epilayer, quantum confinement is produced either by naturally formed interface
fluctuations [99, 100, 101], self-organization [102, 103, 104] or via patterning and
lithography [80, 105, 106]. Another dominant technology for the production of QDs
is chemical synthesis. Chemically synthesized QDs are also known as semiconductor
nanocrystals [107]. Typically, II-VI materials, such as CdSe, CdS, CoQ and ZnS,
form the QD core and are passivated to form a core-shell structure [108, 109, 110].

The GaAs QDs that we use are naturally formed by interface fluctuations. During
MBE-growth of a QW, large monolayer-high islands can be developed at the well-
barrier interface during interrupts of a minute or more under an arsenic flux. Much of
this roughness persists at an interface as subsequent layers are grown. During growth
interrupts, the islands can grow to lateral size about 50-100 nm across, larger than the
Bohr diameter of the exciton (bound electron-hole pair), and an order of magnitude
larger than the well width (3-6 nm), leading to elliptical disk-like shapes. These types
of natural QDs are often referred to as “interface fluctuation quantum dots (IFQDs)”
[111, 101, 112]. Figure 2.7 shows the top surface of a GaAs QW imaged with scanning
tunneling microscopy (STM). As seen in the figure, the structures tend to clongate
along the [110] crystal axis,

Semiconductor DBR, mirrors with exceptionally good surface smoothness can be
grown by MBE techniques. The high-reflectivity DBR. mirror that we use are also
grown by MBE. The MBE growth for this study is performed by our collaborators
H. Gibbs and G. Khitrova at the University of Arizona (UA). They found that the
surface roughness on transverse length scales relevant for our needs (~ 1 pm) is

equal to that of the very best polished super dielectric mirrors of the type used in
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FIGURE 2.7: STM image of a GaAs QW surface showing the large monolayer-high
islands. The circled region is referred to as an IFQD, Ref. [110].

atomic cavity-QED experiments [5]. The relevant length scale is about one micron
because our cavity design yields a waist size at the DBR mirror of this size. The UA
group has succeeded in growing good-quality IFQDs embedded in the middle of a
one-wavelength spacer layer on the top surface of high-quality DBRs. Due to the 3D
quantum confinement, QDs have atom-like energy-level spectra. The modeling of QDs
is relatively simple compared to higher-dimensional systems despite many variables,
such as the shapes and the sizes of the QDs. However, we need to introduce the
concepts of exciton and biexciton first in order to further model the energy spectra
of QDs.

In bulk semiconductors, due to the Coulomb interaction between optically excited
electrons and holes, the excitonic effects dominate the optical response below the
bandedge. Under the effective mass approximation, an exciton can be regarded as
a well-defined single quasi-particle containing an electron and a hole [113, 114]. Its
envelope function can be separated into the center-of-mass motion (plane wave in
bulk semiconductors) and the relative motion between the electron and the hole.
The equation that determines the electron-hole relative motion is called the Wannier

equation which has a solution that resembles the electron-ion relative motion in a
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hydrogen atom. The Bohr diameter of the exciton, determined by material parameters
such as the effective mass of the electron and the hole, must be significantly larger
than the lattice constant for the effective mass approximation to hold. This is indeed
the case for most materials. For example, GaAs has a Bohr diameter of about 25 nm,
compared to the lattice constant of 0.56 nm. This type of exciton is known as Wannier
exciton. In the other case that the Bohr diameter of the exciton is comparable to or
smaller than the lattice constant, this type of exciton is called Frenkel exciton [115].

In semiconductor QDs, an interacting electron-hole pair is subject to 3D quantum
confinement, which generally results from a bandedge offset between the dot material
and the surrounding matrix which is usually a semiconductor of higher bandgap. In
QDs with weak lateral confinement, such as the natural GaAs IFQDs used in our
experiment, the exciton binding energy is larger than the confinement energy, and
it is the center-of-mass wavefunction of the exciton that is localized. Localization
changes the energy spectrum of the exciton from a continuum into a set of discrete
levels, which are referred to as QD exciton states, as shown in Fig, 2.8, The QD
energy continuum, for instance can be free electron-hole pairs in the 2D QW.

Excitons in an IFQD are confined in three dimensions by an imperfect GaAs
QW. Vertical confinement (in the epitaxial growth direction) is provided by the QW
barriers (Al,Ga,_yAs), while lateral confinement in the QW plane results from natural
variations in the effective thickness of the GaAs QW as shown in Fig. 2.9(a). This
confinement results from the level mismatch between QW subbands in regions of the
well with different thickness. The potential barrier formed by the monolayer-high
steps (a few meV), as shown in Fig. 2,9(b), is an order of magnitude less than that
for the Al,Ga;_,As potential barrier in the vertical direction (a few hundred meV).
Therefore the QD, though providing strong confinement in the vertical direction, is
weak in the lateral directions.

The above analysis assumes that only the Coulomb attraction within each

particular electron-hole pair state needs to be considered. These discrete states are the



35

G

FIGURE 2.8: Schematic diagram of energy levels of a QD. G stands for the ground
state of the crystal, or exciton vacuum. Ey, E; and E; are the ground state, the first
two (possible) excited states of the QD. Cont. denotes the QD energy continuum,
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FIGURE 2.9: Schematic diagram of a 3-6 nm QW with large monolayer-high islands
at the interface that lead to confinement of the exciton (a), and the corresponding
lateral confinement potentials associated with the interface islands (b).
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eigenstates of the system where only one electron-hole pair is created. In the case that
two electron-hole pairs are excited, the Coulomb interaction between the two electron-
hole pairs needs to be considered. Therefore the energy of the two-exciton state does
not equal to sum of the two exciton states. The difference reflects the interaction
energy between the two excitons. In the perturbation theory, it appears as a higher-
order correction and is therefore referred to as a higher-order Coulomb correlation
[116]. Tts sign and strength are determined by factors such as the electron/hole
effective mass ratio, the quantum confinement and the spins of the electrons and
holes. The stable binding of the exciton-exciton molecule (with negative binding
energy) is referred to as a biexciton. Despite the weak confinement in the lateral
directions in TFQDs, evidence for complete localization of excitons and biexcitons has
been found using different approaches, including the quantification of the confinement
energy, the direct microscopy image of excitons via emission and resonant coherent
nonlinear response of excitons. Evidence for localized complex states containing more
than two excitons are not observed, possibly due to the limited confinement [117].
As a useful approximation, the energy spectrum of a QD can be separated into
energies assoclated with the vertical and lateral directions. The strong confinement
along the z-axis governs many of the properties of the exciton, such as the electron g-
factor and exchange Coulomb energies. Here the electron g-factor is a dimensionless
quantity which characterizes the magnetic moments of an electron. (Please do no
confuse this electron g-factor with the cavity ¢ factor defined in Eq. (2.16) in Sec.
2.2.1.) The low-energy excited states are determined primarily by the lateral size
and shape of the QD and have energy splitting on the order of a few meV. Because
the light-hole exciton is shifted by tens of meV, the spectra and other properties of
these low energy QD states are derived primarily from the lowest energy heavy-hole
subband of the QW, and light-hole mixing is weak. The level diagrams that include

the crystal ground state (exciton vacuum), the two lowest orthogonal heavy-hole



37

bright exciton states and the bound biexciton state of relevance to optical studies are

shown in Fig. 2.10 below.
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FIGURE 2.10: Model for a GaAs QD. G, X and BX denote the ground, the exciton
and the biexciton states respectively. AE is the biexciton binding energy. The optical
selection rules for transitions in a symmetric and an asymmetric QD are shown in (a)
and (b), respectively.

I1,(I1,) is the linear polarization perpendicular {parallel) to the QD elongation
(crystal [110] axis or —Z direction) in the plane of the GaAs layer. Without the
magnetic fleld, the two exciton states are excited using the linearly polarized light
and are labeled as |z} and |y). An externally applied magnetic field can diminish
the mixing within the heavy hole states [118, 119]. The transitions become circularly
polarized. The exciton states are represented by |4} and |—). The dipole moment
of various transitions are denoted by u;;, where i and j are indices representing the
final states (b and —, + or z,y) and initial states (—,+ or z,y and g) of the dipole
transition, respectively.

In the ideal situation, the optical transitions for excitons in QDs of zinc-blend

semiconductors such as GaAs are circularly polarized, as indicated by the solid arrows
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in Fig. 2.10(a). The right-hand circularly polarized (o) transition leading to the

|+) exciton state is between spin-up state of the s-like conduction bandedge with

magnetic quantum number m; = +1/2 and the heavy-hole bandedge state with
magnetic quantum number m; = +3/2. The left-hand circularly polarized (o_)
transition leading to the |—) exciton state, however, is between the m; = —1/2

conduction bandedge state and the m; = —3/2 heavy-hole bandedge state.

For the GaAs interface fiuctuation QDs under study, however, they are elongated
along the crystal [110] axis due to the dynamics in the growth, leading to band
mixing and modified optical selection rules due to the long range part of the
exchange interaction [114, 120, 119]. Tt is found that the two excitonic states become
mixed and slightly split (a few tens of peV) and the optical transitions become
linearly polarized [111, 121, 119]. This is shown in Fig. 2.10(b}. In an ideal and
symmetric QD, the cascade exciton emission will produce polarization-entangled
photon pairs [122]. The splitting, however, provides ‘which-path’ information,
preventing polarization entanglement of the intermediate exciton emissions. So if
the ‘which-path’ information caused by the frequency splitting can be erased, one
would again be able to produce polarization-entangled photon pairs. An externally
applied magnetic field can be used to tune the splitting to zero, and polarization-
entangled photon pairs have been generated in this way [123]. We will discuss how
to use radiative decay cascade of a biexciton in an [FQD based on our system to

produce polarization-entangled photon pairs in Chapter VL.

2.3 Distributed Bragg Reflectors

The highly reflective semiconductor planar mirror that we use in our cavity is a
distributed Bragg reflector (DBR) mirror with semiconductor QDs embedded in the
middle of a one-wavelength spacer layer on top of it. In this section, we give a brief

background of a DBR mirror and how to integrate optical centers with it.
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There are two well known geometries that utilize interference effects to produce
high reflectivity mirrors: one is the quarter wavelength (QWL) stack, typically called
a distributed Bragg reflector; the other is the Bragg crystal [124, 125, 126, 127]. The
QWL stack gives the fastest increase in reflectivity with increasing number of layers,
but deteriorates fast in the performance if one of the layers is absorbing. The Bragg
crystal minimizes absorption by positioning the absorbing layers into the nodes of
the standing wave produced by the superposition of the incident and reflected waves.
A Bragg mirror designed in both ways present a wavelength interval centered at a
target wavelength in which the reflection coefficient at normal incidence can be very
close to one. In addition, the phase of the reflection coefficient within this region of
high reflectivity, called “stop-band”, behaves linearly as a function of the frequency.

The QWL stack consists of alternating layers of high (H) and low (L) refractive
indices, each of the same optical thickness of a quarter of the target wavelength
for normal incidence, such that all boundaries add with equal phase to the reflected
wave. For the case that both layer materials are coinpletely absorption free, the QWL
stack gives the highest reflectivity with the fewest number of layers and approach a
reflectivity very close to one. In a QWL stack, each layer extends from a node to
an antinode; if one or both layers are only slightly absorbing the performance of the
QWL stack deteriorates fast due to the large absorption losses at the antinodes of
the standing wave.

The Bragg crystal consists of unit cells with half wavelength (HWL} optical
thickness for normal incidence, which contribute in phase to the reflected wave.
An unit cell typically has two constituent layer materials (binary design) with one,
usually absorbing, much thinner than the other less absorbing or absorbing free one to
suppress the absorption. Each inner layer of an unit cell, however, will not necessarily
add up in phase with reflected wave, leading to a narrower stop-band.

For certain demanding applications, unit cell may consist of three materials

(ternary design) to compensate the phase differences between the incident and
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reflected waves and to locate the most absorbing layers to the nodes of the standing
wave fields. This is made plausible due to the fact that the field intensity increases
quadratically with distance from the node. This leads to an absorption that decreases
as the third power of the thickness for a very thin film [124]. The reflectivity of a
very thin film decreases only quadratically with thickness. Therefore, the absorption
losses can be greatly reduced compared to the reflectivity if thinner absorbing layers
are used. So we can reduce the absorption and optimize the figure of merit using a
Bragg crystal, either a binary or a ternary design, to locate the absorbing layers at
the nodes of the standing wave field. For the highest possible reflectivity, materials

should be selected by the following rules:

1. Select a first material with the lowest possible absorption constant as a spacer

masterial.

2. Find a second material with the largest possible reflection coefficient at the

boundary with material one.

3. If several materials give similar reflection coeflicients, choose the one with the

smaller absorption coefficient.

4. Make sure that the material can be deposited with sharp, smooth boundary in

order to eliminate scattering.

Optical centers can be grown in the middle of a spacer, either half-wavelength
thick or one-wavelength thick, to locate the optical centers at an antinode of the
cavity field. The spacer is on top of a good optical quality DBR. mirror, which can be
tailored to have a high reflectivity while still maintaining a transmission much larger
than the absorption and scattering, at the same time. Such an integrated structure

will look like in Fig. 2.11.
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FIGURE 2.11: Schematic structural design of an integrated DBR mirror with active
optical centers in the middle of a spacer layer.

2.4 Summary

To summarize, in this chapter, we first gave an overview of concepts using an
optical micro-cavity interacting strongly with a single optical center for efficient
production of single photons in Sec. 2.1. We developed a method and gave a
description of a physical system we designed and constructed that is necessary for
fulfilling our purpose. Two different light-matter coupling regimes (strong- and weak-
coupling regimes) are considered. Sec. 2.2.1 presents the detailed physical system we
constructed. In the last section Sec. 2.3, we gave a brief introduction of how to design
a DBR mirror and how to integrate optical centers with it. Armed with concepts
introduced in this chapter, we will show how we design, construct and characterize
the micro-cavity. Then in the later chapters we will examine this system to see if we

can reach our goal.
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CHAPTER III

OPTICAL MICRO-CAVITY WITH SEMICONDUCTOR
QDS

We have given an overview of the systermn in Chapter II. In this chapter, we
describe the details of design and construction of the whole system, specifically on
the state-of-the-art fabrication of a hemispherical micro-cavity that is comprised of
a planar semiconductor DBR mirror integrated with QDs, and an external, concave
dielectric micro-mirror. Then we discuss the characterization of the micro-cavity
system. We model match an input laser beam to the fundamental mode of the
micro-cavity in order to excite the mode efficiently so that it interacts with a QD
strongly, by adjusting the laser beam’s walist size and position. The micro-cavity
system operates inside an ultra-high vacuum chamber, to allow cooling the sample to
around 10-17 K and to avoid coating of the samples by cryopumping. We tested the
cavity transmission spectra at both room temperature and cryogenic temperatures
and obtained preliminary spectroscopic results showing evidence of significant cavity-

QDs interaction at 17 K. Part of this chapter has been published in Ref. [6].

3.1 Introduction

As pointed out in the previous two chapters, optical micro-cavities have played
a central role in achieving strong coupling between a single atom and a mode of an
optical cavity, which enables a range of novel phenomena. that rely on the control of the
mode structure of the vacuum (so-called cavity-QED effects). These include enhanced
or suppressed spontaneous emission [87, 128, 129, 130, 131, 132], thresholdless lasing
[133, 134], normal-mode splitting [5], and optical nonlinearity at the single-photon
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level [135, 136, 94]. In the last two decades, such strong coupling has been achieved
in free-space atomic systems, such as a dilute atomic beam passing through a short
(10-100 pm length) optical cavity [137, 138, 139], or through a cold microwave cavity
[140].

There is also interest in achieving strong cavity-QED coupling in semiconductor
systéms. The research on semiconductor or excitonic cavity QED started in the late
1980s. The early experiments belong to the weak-coupling regime, for which the
spontaneous emission process is still an irreversible process. However, a modified
spontaneous emission rate and altered radiation pattern have been demonstrated. It
is expected that the quantum efficiency, response time and intensity noise of a single
semiconductor light source can be improved by cavity-QED effects. The research on
semiconductor cavity QED entered into the strong-coupling regime in the early 1990s
with the pioneering experimental work of Claude Weisbuch and coworkers [141, 126],
where many excitons in the QW interact collectively with the optical cavity. The QW
excitons and the cavity exchange energy coherently, and thus spontaneous emission
becomes partially reversible. This rapidly growing field has produced numerous
interesting results in the fundamental sciences in the past decade. However, the
practical applications of semiconductor cavity QED in the strong-coupling regime
have yet to be identified. Semiconductor cavity-QED strong coupling in this context
means that a single photon in the cavity can saturate one exciton, and conversely a
single exciton can strongly influence the optical field in the cavity, which is different
from those early researches mentioned above.

Following early studies using planar QW-cavity systems, which themselves cannot
reach this regime [30], recent experiments showed signatures of strong coupling in
some monolithic structures such as micro-pillar [44], photonic crystal nano-cavity
[45] and micro-disk [47, 48]. Obvious advantages of using QDs in such schemes are
that the QDs are stationary and they exist in a solid-state system, which can be

optically or electrically pumped [39]. The principal disadvantages in these monolithic
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structures, however, are the lack of efficient control of the spatial and spectral overlap
between QQDs resonance and cavity modes. For instance, temperature tuning of the
QD has to be used to tune through cavity resonance, which is undesirable becﬁuse
the dipole dephasing rate increases at elevated temperatures [49, 50].

So we want to use a more flexible system to study this problem. This
dissertation, particularly this chapter, focuses on the design, fabrication, modeling
and performance of an external, hemispherical micro-cavity for semiconductor cavity
QED. The cavity parameters are in a novel range: cavity length = 40-60 pm, finesse
= 260 (which should be amenable to increase by an order of magnitude), mode-waist
size /= 1 um, mode divergence angle £40 deg. This cavity design contains two unique
features—the use of a concave micro-mirror with high-reflectivity over a large-solid
angle and the use of an integrated DBR mirror containing the QD sample in an
external-cavity configuration. The 40-60-micron curved mirror substrate has a high
degree of sphericity and an excellent surface quality, enabling the application of a
custom-designed multilayer dielectric coating with 99.5% reflectivity over a highﬁsolid
angle [142]. Such large solid angle is unique compared with, for example, a recently
reported half-monolithic micro-cavity design for atomic cavity QED [143].

One potential application of such a cavity-QD system is for semiconductor cavity-
QED studies; the other is for on-demand generation of single photons or polarization-
entangled pair photons. The cavity can also be operated with a standard planar
dielectric mirror replacing the semiconductor DBR mirror. Such an all-dielectric
cavity may find uses in atomic cavity QED or cold-atom studies [53, 54], or in novel
forms of microscopy or interferometry. The cavity components have been fabricated
in our collective laboratories—the concave micro-mirror by a novel gas-bubble inside
glass technique here at the University of Oregon and the DBR/QD structure by MBE

at the University of Arizona.



45

3.2 Cavity Design Overview

Figure 3.1 shows a real structure and a schematic diagram of the cavity. A
transparent, planar substrate with a multilayer DBR coating (made either of
semiconductors or optical coating dielectrics) forms one end of the cavity. A
transparent concave glass surface with a dielectric multilayer reflective coating forms
the other end. In between is air or vacuum. The radius of curvature of the mirror
is denoted Ry, and can be fabricated in the range 40-100 ym. d is the depth of the
dimple, which typically is around one half of the radius of curvature of the dimple.
The on-axis distance L between the surfaces of the two mirrors is referred to as the
cavity length. In a hemispherical cavity these lengths are equal, L = Ry. This
places the cavity on the boundary for stability, and (in the paraxial approximation,
which actually fails here) leads to the interesting property that the modes fall into

groups with a high degree of frequency degeneracy [96]. The radius of the mode waist,

FIGURE 3.1: Hemispherical cavity, comprised of a planar substrate and a concave
glass surface with layer reflective coating (shown as grey region). The dashed lines
approximate the 1/e intensity contours of the fundamental mode in the cavity and
its continuation outside. The blow-up shows the DBR and the mode contours in the
walist region.
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located at the planar mirror, is denoted wy. Since the QD is to be placed in this waist,
this radius should be minimized in order to maximize the coupling between the QD
and the field. The angular half-width of the cavity mode is §.. Diffraction dictates
that the smaller wy is made, the larger §. becomes. When wy equals one optical
wavelength, the angle 8. is roughly 40 deg. For such large angles, the electromagnetic
fleld cannot be completely transverse to the cavity axis, as would be the case in the
paraxial limit where 8, is restricted to very small values. This indicates a need for a

theory, summarized below, beyond the common paraxial treatment.

3.2.1 Concave Micro-mirror Substrates

A unique component of our cavity is the concave micro-mirror. We developed a
technique for its in-house fabrication. For use in a high-finesse cavity, it is crucial
that the curved surface of the mirror substrate be smooth on nanometer scales. This
prevents undue amounts of light scattering that would act as a loss, spoiling the
finesse.

Our technique, shown in Fig. 3.2(a), proceeds by melting a stack of small,
high-quality borosilicate glass tubes under a nitrogen atmosphere, trapping small
gas bubbles. By surface tension the gas bubbles are naturally created with a high
degree of sphericity. After the glass cools and hardens, we grind and polish it on a
simple optical polishing wheel so that about one-third of a selected bubble remains
embedded in the surface. The top surface, where a few bubbles are open, is finished
with diamond discs featuring nickel-plated diamonds in a raised dot matrix pattern of
6 pm grit size on a polishing wheel. The bottom surface is polished using a 0.05 ym
colloidal silica suspension on a polishing cloth, to achieve an optical-quality finish.
Finally, we obtain a flat sample of about 150 gm thickness, which forms our concave
mirror substrate. For details of the optical properties of the glass we use and the

fabrication procedure, please refer to Appendix A.
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FIGURE 3.2: (a) Melting borosilicate glass tubes to form nitrogen gas-bubbles in the
glass and polishing the glass bulk into a 150 um-thick slide. (b) 40x pictures of a
dimple. Diameter of the dimple = 100 ym.

Figure 3.2(b) shows an image of a typical dimple at 40x magnification. The
planar surface on the top side, surrounding the dimples, is very rough, as a result of
the final 6 pum-grit used on this side. This was chosen to minimize the amount of
contaminating sub-micron glass dust produced during polishing. The inside of the
dimple (out of focus here) is far smoother. The dimples will ideally have an opening
half-angle of 6, ~ 40 deg, a radius of curvature of Ry =~ 60 um and a surface with
sub-nm roughness.

We expected a good sphericity of the dimple surfaces since for decreasing
dimensions the surface tension is an increasingly strong force compared to other forces
like gravity., The sphericity has been measured at UA with a Wyko interferometer
[144]. Figure 3.3 shows a typical surface scan of the dimples. At the bottom of a
dimple, in a circle of 15 um diameter, the deviations from perfect sphericity where
found to be less than 10 nm.

The surface roughness was also measured using a Wyko interferometer that carries
out a Fourier-analysis of the surface to determine the power (spatial) spectral density
(PSD) of surface roughness as a function of the lateral size of the errors. Figure
3.4 shows the measured PSD of five dimples and that of a commercially polished
super dielectric mirror, provided by the Kimble group at Caltech. For errors with a

transverse spatial frequency greater than 50 mm™" and up to 500 mm™!, the surface
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FIGURE 3.3: Measured sphericity at the bottom of a dimple with a Wyko
interferometer at the University of Arizona.

quality competes with the best polished super dielectric mirror. Assuming the trend
in the data goes on, for length scales smaller than one micron, our dimples should
be much smoother than the super dielectric mirror. However the roughness increases
dramatically for smaller spatial frequencies (larger length scales). We are not sure

whether this represents intrinsic errors like wrinkles formed in the cooling process or

debris left from polishing.
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FIGURE 3.4: Measured surface roughness of five dimples fabricated at the University
of Oregon and the super dielectric mirror used at Caltech with a Wyko interferometer

at the University of Arizona.
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3.2.2 Optical Coating for a Curved Micro-mirror

Optical coating of such a small and highly curved dimple substrate is a
nonstandard procedure and is challenging. One problem is that the atomic coating
beam is incident on the curved surface at a different angle at each different location.
This alters the deposition rate in a location-dependent manner, which leads to
systematic variation of the layer thickness and therefore of the edge wavelengths of
the coating’s stop-band. Therefore, we designed a coating scheme (using TFCalc), in
a way that compensates for the large change of coating-beam angle across the surface
of the substrate.

Our goal is a coating with high reflectivity over a large area of the dimple, with
a center wavelength at 765 nm. First, we choose a high-index-contrast TiO,/SiO,
coating in order to minimize the required number of coating layers for a given target
reflectivity; second, we have a stop-band shifted to longer wavelength (775 nm)
at the center of the dimple in order to further compensate for the layer thickness
variation towards the edge. Figure 3.5(a) shows a coating design with 6.5 pairs
of Ti02/8i02 quarter-wavelength stack, giving a peak reflectivity 99.61% at the
reference wavelength 775 nm. The refractive indices used for the plot are 2.32 and
1.44 for TiO, and SiO; respectively, at 775 nm, also assuming no absorption for both
materials in the plotting wavelength range. For the working wavelength 765 nm, the
reflectivity at the dimple center is greater than 99.5% between 738 nm and 813 nm
as shown in Fig. 3.5(b).

For locations away from the center, the coating layers become thinner, shifting the
stop-band to shorter wavelengths. At some location on the dimple surface (or angle
from the optical axis at the mode focus region), the stop-band edge suddenly shifts
past the working wavelength, causing a sudden drop of mirror reflectivity, as has also
been ohserved in [143]. The concave-mirror substrate was coated by Spectrum Thin
Films [142] using a standard commercial technology, pulsed ion beam technology,

which allows coating fragile optics at near room temperature and gives less stress.
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FIGURE 3.5: (a) TFCalc design of a multilayer diclectric coating for the dimples.
(b) Wavelength region where the reflectivity is greater than 99.5%.

Our measurements, shown in Fig. 3.6, of the dimple-mirror transmission versus angle
from the optical axis confirms that our design and fabrication has succeeded in giving
a high reflectivity (99.5% or higher) over a wide angular range of £40 deg, which is
wide enough to support the hemispherical modes of interest.

The coated curved dimple was then glued, using index-matched, UHV-compatible,
ultra-violet (UV) cured optical adhesive {(Norland Optical Adhesive 88), to the face of
a 100X immersion-microscope objective (Zeiss Plan-NEOFLUAR) with a numerical
aperture NA=1.3, in order for efficient mode-coupling over a high-solid angle and
proper focusing to get a diffraction-limited beam spot at the focus. To ensure
proper positioning of the dimple, we glue it while monitoring interferometrically
by a Twyman-Green interferometer [145], in which a laser beam passes into the
objective, reflects from the dimple surface and interferes with a reference beam.
Figure 3.7(a) shows a set-up used in our experiment, which was initially built by
Ruediger Loeckenhoff [146].

A reference laser beam coming from an optical fiber out-coupler, after expanded

in size, is directed into a 50/50 cube beam splitter. One branch propagates straight
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FIGURE 3.6: Measured dimple-mirror transmission versus angle from the optical
axis at the mode focus region.

forward hitting a flat mirror and is then reflected back as a reference beam; the
other branch is reflected upwards passing through the Zeiss microscope objective
(not showing in the Figure) and is reflected by the dimple back to interfere with
the reference beam. The Twyman-Green interference patterns are monitored using
a CCD camera (also not showing) at the location where the glass slide is, to make
sure that the beam wavefronts are aligned to the dimple surface, as shown in 3.7(b),
indicated by the proper Twyman-Green interference patterns.

After the optical adhesive is cured, it is desirable to remove the edge of the dimple
substrate. This helps prevent the DBR. mirror at the other side of the cavity from
touching or crashing the substrate when the DBR mirror is slightly tilted, because
the gap between the two is only about 20 pm, as shown in Fig. 3.1. We put the
microscope objective with the dimple substrate on a lathe and grind the substrate
carefully using a tiny drum sander so that a small mesa with a diameter about 3
mm is left. During the grinding, the dimple is covered and protected by Crystalbond
509 from contamination, which can be easily cleaned afterwards. Figure 3.8 shows

the finished piece of a glued dimple substrate on top of a Zeiss microscope objective,
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FIGURE 3.7: (a) A Twyman-Green interferometer. (b) A coated dimple is glued
using index-matched optical adhesive to the face of a microscope objective in such a
way that the beam wavefronts match the dimple surface.
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which now is one end of our micro-cavity. The mesa on top of the objective is the
micro-concave mirror substrate. The dimple is in the center of the mesa and is too

small to be seen clearly.

(a) (b)

FIGURE 3.8: Top view (a), and side view (b) of a glued micro-concave mirror
substrate on top of a Zeiss microscope objective (NA = 1.3).

There are two factors that can change the optical path length inside the optical
adhesive layer, which consequently causes the beam wavefronts mismatch to the
dimple. One factor is the change of the refractive index of the optical adhesive during
UV curing. In order to compensate for this effect, we offset the dimple position a
little bit empirically before curing so that after curing the dimple position is close
enough if not perfectly, to the right position. The other is the change of the physical
thickness of the optical adhesive layer, for instance caused by relatively large change
of ambient temperature. Therefore, it is not easy to match the beam wavefronts with
the dimple surface perfectly. Even if it is perfectly aligned in the first place, it can still
change under other circumstances, for example when cooling down the semiconductor
sample at the other side of the cavity. So we need to be able to further control an
input beam wavefronts by mode-matching optics, which will be discussed in the next

section.
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3.2.3 Integrated DBR Mirror with QDs

Semiconductor planar DBR. mirrors with exceptionally good surface smoothness
and high reflectivity can be grown by MBE techniques [147]. Our UA collaborators
found that the surface roughness on transverse length scales relevant for our needs
(~ 1um) is equal to that of the best polished super dielectric mirrors of the type
used in atomic cavity-QED experiments. Figure 3.9 shows a comparison of two
kinds of mirrors—the MBE-grown and a commercial super dielectric mirror. The
figure plots the power spectral density (PSD) of surface roughness versus transverse
spatial frequency, measured with a Wyko interferometer. It is seen that the planar
semiconductor mirror has far larger roughness for low spatial frequencies, while the
commercial super dielectric mirror is slightly rougher at spatial frequencies above
1000 mm ™!, or length scales larger than one micron, the region of interest for our

cavity, since the mode waist is on this scale.
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FIGURE 3.9: Measured surface roughness of a DBR mirror grown at the University of
Arizona and the super dielectric mirror used at Caltech with a Wyko interferometer.
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The GaAs QDs that we use are interface-fluctuation quantum dots (IFQDs). They
are formed through the influence of monolayer-thick interface fluctuations during the
MBE-growth of a quantum well (QW) [100, 111]. Our team has succeeded in growing
good-quality IFQDs on top surface of high-quality DBRs. The sample used in this
experiment is CAT96 and its design is shown in Fig. 3.10. The bottom mirror
consists of 22.5 pairs of Alg24GagreAs/AlAs quarter-wavelength stack grown on a
GaAs substrate, which is removed later to reduce optical absorption. The GaAs
IFQDs are formed in a 3.86-nm-thick QW embedded in the middle of a wavelength-
thick spacer layer on top of the DBR mirror to place the QDs at an antinode of
the cavity. The exciton transition in these QDs has a relatively large dipole matrix
element (~ 60 Debye), enabling it to interact strongly with the cavity field.

Cap Layer: 3.28 nm GaAs
QW with [FQDs: 3.86 nm GaAs

1A Spacer: Bottomrmr: Substrate:
Al,,,Ga,, As 22.5 pairs Al,,,Ga, ., As/AlAs GaAs

FIGURE 3.10: The design of CAT96. GaAs IFQDs are formed in a 3.86 nm GaAs
QW in the middle of the one-wavelength spacer layer (Alg24Gag76As). The cap layer
is for preventing the spacer layer from oxidizing.

The reflectivity of the DBR mirror versus wavelength at room temperature has
also been measured. Figure 3.11 shows the measurements on two different spots on
CAT96. Figure 3.11(a) shows the data taken from a spot 10 mm from growth center
(GC). The theoretical peak reflectivity of this example is 98.12% at the wavelength
794.83 nm. The dip at the wavelength 773.8 nm in the reflectivity measurement is due

to the one-wavelength spacer layer acting as a micro-cavity. This means that a laser
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at this wavelength is in resonance with the spacer layer and the light field will have
an anti-node right in the middle of the spacer layer where the QDs are. Therefore, it
is important to probe the cavity-QD interaction areund this wavelength to maximize
the interaction.

Since the farther from GC, the thinner the sample is and hence the spacer layer,
the dip in the reflectivity measurement will shift to shorter wavelengths. Figure
3.11(b) shows the data taken from a spot 13 mm from GC. The theoretical peak
reflectivity is still 98.12% at the wavelength 794.83 nm, but the dip shifts to a shorter
wavelength 765.2 nm, as expected. Thus it is also important to scan the sample
laterally so that we can probe the cavity-QD interaction at different spectral or
wavelength regions. When the DBR mirror is cooled down to 10-17 K, the reflectivity
measurement (spectrum) shifts about 10 nm to shorter wavelength as a whole, mainly
due to the changes in the refractive indices of the layer materials and their physical
thicknesses.

The presence of QDs is verified by photoluminescence (PL) spectra in free space
at low temperature (7 K), showing broad (quasi-continuous) emissions in the 750-770
nm wavelength region for CAT96, and 750-790 nm wavelength region for a gimilar
DBR CAT97 (22.5 pairs of AlyesGagrsAs/AlAs), as shown in Fig. 3.12(a) and (b)
respectively. This indicates many QDs overlap spectrally on both DBRs. The PL
spectrum was excited with a diode laser at a wavelength 685 nm with a power 33
#W. The difference between x values (0.24 and 0.25) in Al,Ga; L As for two samples
is within the uncertainty of the growth rates.

As shown above, there are many QDs overlap spectrally. It is not easy to identify
both spatially and spectfally isolated single QDs, which requires a nano-scope and
a high-resolution spectrometer. Figure 3.13 shows a set of nano-scope PL spectra
[101] for a sequence of different locations with a spatial step of 300 nm in the QW
plane on the DBR CAT97. The broader PL emission lines in the upper traces are

inhomogeneously broadened and can be fit approximately by Gaussian distributions,
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FIGURE 3.11: Reflectivity versus wavelength of CAT96. The data (solid lines) were
taken on spots about 10 mm (a), and 13 mm (b) from GC on the sample at 300 K.
The dot lines are the theoretical fits. The fitting parameters are: Aiarges = 770 nm,
n(Alg24GagreAs) = 3.524337 and n(AlAs) = 3.003109 [University of Arizona).
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FIGURE 3.12: PL spectra of samples CAT96 (a), and CAT97 (b) at 7 K. The
excitation laser wavelength is 685 nm with an excitation power 33 uW [University of
Arizona).
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FIGURE 3.13: Nano-scope spectral scans of different spatial locations on UA-grown
sample (CATI7) at 7 K, showing spectrally and spatially well isolated single QD
emission lines (circled) [University of Arizona).
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and are likely caused by emissions from spatially close QDs with different lateral sizes
and hence different emission frequencies. Some of the narrower PL emission lines in
the lower traces can be fit by Lorentzian distributions, which are homogeneously
broadened, signifying isolated single quantum emitters, and can be identified as
emissions from single QDs, for example, the circled ones. One of them is in our
750-760 nm target region and is spectrally well isolated. The emission lines at the
same energy (wavelength) in the adjacent traces are also from this specific QD and
indicate that it is also spatially well isolated (~ 600nm) from other QDs. Based on
this measurement on CAT97, we expect there are also isolated single QDs on CAT96.

Before being used as a cavity mirror, the GaAs substrate for growing the DBR
mirror needs to be removed in order to reduce absorptions. Figure 3.14 shows the

procedure to prepare the sample onto a sapphire disk ready for using in a cavity. We

ﬁ}aAs
Etchant Jet l

CS{,B_%:-éil“ o Tl
1 L

I 1]
[ T
I |
|
| []
Optical l
Adhesive DBR

[ — e
i ™ 2 |

FIGURE 3.14: The procedure to remove the GaAs substrate of a DBR mirror and
to glue it onto a sapphire plate.
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first glue the spacer layer side of the DBR mirror using a heat adhesive Crystalbond
509 (C509) onto a sapphire plate with GaAs substrate facing upward. Then we glue
the sapphire disk onto the mounting block of a lapping fixture (South Bay Technology,
Inc.), still with C509. After that, we mechanically polish away most of the GaAs
substrate so there is about 25-40-pm-thick sample left, including both the DBR mirror
and the leftover GaAs substrate, because we do not want to polish the sample too
thin and damage the DBR mirror. The total thickness of the DBR, mirror with QDs is
about 3 um thick. The rest of the GaAs substrate will be selectively etched away using
a method described in [148]. The sample is placed into position of a Jet Thinning
Instrument (South Bay Technology, Inc.) under the jet stream of the etching solution.
The etching solution is a mixture of hydrogen peroxide (H20,) 30% concentrated and
ammonium hydroxide (NH,OH) 58% concentrated. After removing all the GaAs so
that the first layer of AlAs is exposed, we mount a second sapphire plate onto the
AlAs side using the UV-cured optical adhesive (Norland Optical Adhesive 88). AlAs
can get easily oxidized in the air, so extra carc should be taken during this step and
should be finished as quickly as possible. Finally, after curing the optical adhesive, we
remove the first sapphire plate so that the spacer layer of the DBR mirror is exposed

and will be ready for use as a cavity mirror.

3.3 Cavity Construction, Testing and Modeling

Once both of the cavity mirrors are fabricated and ready for use, like described
in Sec. 3.2, we assemble them together with other components and construct a
high-quality hemispherical cavity using our 60-micron concave mirror and a planar
semiconductor DBR {CATY96), as shown in Fig. 2.2. The sapphire plate with the
semiconductor DBR mirror is first glued to a low-temperature holder using thermally
conductive epoxy (Epo-Tec T7110); then mounted to a PZT actuator jointed by
a thermal insulator, as shown in Fig. 2.3, which is a hollow cylinder made from

a polymer (Vespel from DuPont) having a low coefficient of thermal conductivity.
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This allows us to cool down the sample while not affecting the PZT. The PZT is
driven by a laser-referenced feedback loop for stabilizing the length of the cavity. The
sample assembly is mounted on a tripod system, supported by three Burleigh UHVL
Inchworm Motors, to control precisely its longitudinal position and its angle with
respect to the curved mirror. The tripod also contains an z-y nano-positioner, which
can laterally scan the mode waist in a 50 x 50 ym?® region, essential for scanning and
addressing a single QD, as also shown in Fig. 2.3. The system operates inside a high-
vacuum chamber (107% — 107*® mbar), to allow cooling the DBR, mirror to around
10-17 K to reduce QD dephasing rates and to avoid coating of the DBR, mirror by
cryopumping and attendant absorption and scattering.

As we have mentioned in the previous section, we need to be able to control the
input laser beam’s wavefronts in order to match it to the dimple, after we have closed
up the UHV chamber. In this section, we first discuss how to mode match an input
laser beam efficiently into the fundamental mode of the micro-cavity. Then we will
discuss tests of the cavity mode structure and compare the mode properties at both
room temperature and low temperature. Based on numerical modeling of this hybrid
hemispherical cavity, we highlight some interesting phenomena associated with the

high solid-angle design and the semiconductor DBR mirror.

3.3.1 Mode-matching a Laser Beam into a Cavity Mode

The strongest interaction between an optical center and a cavity mode is its
interaction with the lowest-order transverse mode of the cavity, since the lowest-
order transverse mode by definition has the highest spatial confinement and smallest
waist size and the lowest leakage or diffraction losses; or in other words, the field has
the largest strength (intensity) per photon. For an optical center, the cavity-QED
strong coupling will likely first happen between the lowest-order transverse mode and
the optical center. In order to probe the interaction between a QD and a cavity

mode, we need to be able to mode match a probe laser beam into a desired cawvity



63

mode properly, for example into the HGOO mode. Moreover, there may be other
complications associated with higher order spatial modes of a hemispherical cavity,
for instance, certain frequency splittings in higher order spatial modes predicted in
Ref. [98].

We assume, for a given cavity, that its length has already been stabilized, either
passively by filtering and damping or/and actively by a feedback control loop such
as the Pound-Drever-Hall scheme [149, 150]. In other words, we have already mode-
matched the longitudinal degree of freedom of the cavity. There are two major types of
misalignments of the transverse degrees of freedom [151]. Here we use term alignment
to mean transverse displacement and angular orientation of an input beam; and mode-
matching to indicate waist size and position control. Sometimes, where there is no
ambiguity, we use alignment to mean both.

If an input laser beam is slightly misaligned in angle or transversely displaced with
respect to the cavity optical axis, first-order HG modes are introduced. Similarly, if
‘a beam waist’s size and position do not match the cavity waist’s size and position,
second-order HG modes (first-order LG modes) are introduced. In terms of phase,
a transverse displacement and mismatch of waist size of an input beam with respect
to the cavity axis and waist size give rise to inphase coupling to, respectively, the
first- and second-order transverse HG modes of the cavity. On the other hand,
angular misalignments and waist position mismatch lead to coupling to these modes
in quadrature phase.

To excite the fundamental transverse cavity mode efficiently, it is necessary to align
an input beam correctly with respect to the cavity optical axis and also shape and
focus the input laser beam use mode-matching optics. Let’s consider the alignment
of a two-mirror Gaussian cavity having two spherical mirrors as discussed in Chapter
I1, again shown here in Fig. 3.15.

Associated with every stable optical cavity in the paraxial limit is a set of

spatial eigenmodes, either HG modes or LG modes, both of which form a complete
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FIGURE 3.15: Analytical model and notation for a stable two-mirror cavity. wg is
the radius of the beam spot at the Gaussian beam waist z = 0. w; and ws are the
beam spot sizes at two cavity mirrors M; and My with radii of curvatures R; and Ry
at positions z, and zs, respectively. L is the cavity length.

set. Physically, these eigenmodes describe electric field distributions which can
propagate back and forth between the mirrors along the cavity optical axis with
minimum diffraction losses and without changing shapes. A general input beam
can be expanded and expressed as a linear combination of these eigenmodes. There
are six parameters which describe an input beam alignment and mode matching:
two rotations, two transverse translations and the walist size and axial position, all
measured at or from the cavity waist at z = 0. _

For simplicity, we discuss the transverse displacement and angular rotations only
in the x dimension, since the y dimension will have identical expressions. The
normalized spatial eigenmodes in Cartesian coordinates are HG modes; the three

lowest orders are:

o - (&) (]
Ulz) = (ﬂi%)lﬂi—iexp [— (%)T (3.2)

o - ()" (G)=[ @] e

where wy is the waist size, as defined and given in Eq. (2.18) by cavity-g factors.
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(b)

FIGURE 3.16: Misalignments of an input beam axis with respect to the cavity axis:
(a) transverse displacement a.; (b) tilt through an angle a,.

Rewrite it explicitly using the cavity mirrors’ radii of curvatures and the cavity length

L,

w (3.4)

> A |L(Ri = L)(Ry — L)(Ri + Ry — L)
T (Ry + R, — 2L)? ‘

Uy describes the fundamental mode, U and U, are the first and second off-axis modes,
respectively. We assume that the input beam U(z) is Gaussian and aligned, so that
V(z) = AUp(z) and if we translate the input beam a small amount a,, as in Fig,

3.16(a), ¥(z) becomes

U(z) = AUs(z — as) (3.5)

— A (Fiw%yﬂ exp [— (m ;D““’)2] .. (3.6)

The exponential can be expanded and if a./wy < 1, we keep only the first order

B(z) ~ A (W%{%) . (1 + 2%53) exp [— (%)2] , (3.7)

term:
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U(z) ~ A [Ug(m) + i—zvl(x) . (3.8)

Thus we see that a small transverse displacement of the input beam gives rise to an
in-phase coupling of the first off-axis mode of the cavity.

Now we consider the case when an input beam is traveling along the cavity axis
z and is tilted with respect to the cavity axis. In general, the wave-front curvature
along the axis of travel is spherical so that the off-axis phase is different from the
on-axis phase. At the waist, however, the curvature is infinite so that the phase is
constant along the transverse plane. We will assume here that the input beam waist
matches the cavity waist and it is rotated about the cavity waist through a small
angle o, as shown in Fig. 3.16(b). As we project the input beam onto the cavity
transverse plane, we see in Eq. (3.10) that its magnitude is no different from the

input to first order in «,

[U(z)] = [¥(a")|(cos o)™ (3.9)
~ W) (1+ 2/2 + Oal)). (3.10)

However, the phase of the wave now varies along z

27 ) 270 T
w(z) = (7) TS oG ~ ——, (3.11)
or
U(z) = AUp(z) exp (?;271-;14@) : (3.12)

The exponential may be expanded, and only the lowest-order terms are kept when
(2ragwy) /A <« 1. Physically this limit says that the tilt angle is smaller than the

far-field divergence angle of the beam. ¥(z) becomes

U(x) ~ Aly(x) (1 + @2“0;\"’“"“ + O(aﬁ.)) , (3.13)
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ar

U(z)~ A |:U0($) + ?;'JTOJ;TUU

()] (3.14)

In words, a tilt couples into the first off-axis mode as does a transverse displacement
but with a 90° phase shift.

Then we calculate coupling due to small mode-mismatching, it is more convenient
to work in polar coordinates [96]. The eigenmodes of the cavity are given by the
generalized Laguerre polynomials L} weighted by a Gaussian. p and [ are the radial
and angular mode numbers, respectively. We are inferested here in the modes with

no angular dependence and so set { = 0. At the waist the two lowest-order radial

21 r?

Vo(r) = \/;a exp (_%)! (3.15)
2 1 2r? r?

Vl(?") = \/;% (1 — ?_U—g> exp (—w—(%), (316)

where r is the radial coordinate and the cavity waist size is still wy. Note that the

modes are

first order LG mode is similar and equivalent to second order HG mode.
This time suppose that the input beam is alighed and almost mode-matched
except that the beam waist size wy is different from the cavity waist size wy by a

small fraction &, wj = wy(1 + €) as in Fig. 3.17(a). Now the wavefunction is

T

() =A\/§i(1+e)exp [——2(1+e)2]. (3.17)

T Wy wh

Expanding the exponential and retaining terms to first order in &
U(r) ~ AlVo(r) + eVa(r)]. (3.18)

Thus a small size mismatching excites a fraction & of the first order LG radial mode,
or equivalently second order HG mode.
The last case to be treated is the one in which the beam size is correctly matched,

but the position of the waist is not as shown in Fig. 3.17(b). The input beam waist
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2wl =2{1+ &)w,

FIGURE 3.17: Mode Mismatch of an input beam (dashed curve) with respect to the
cavity mode (solid curve): (a) walst size mismatch; (b) axial waist position shift.

is displaced a distance b along the cavity axis z from the cavity walst position at
z = 0. This means that at the cavity waist the input beam has a finite radius of
curvature. In order to describe the modes evolve along the z axis, we need to express
the eigenmodes in a more general form. Neglecting a common phase factor, the two

lowest-order modes are

Pﬁﬁyz)==w/%;i%36xp{—4j (uﬁtz)*'éAﬁiz))}’ (3.19)

Hiln2) = \/gﬁ (- %—()) P ["’“2 (- A&))] (3.20)

w(z) and R(z) are the spot size and the radius of curvature of the wave front at

position z along the cavity axis, respectively, as given in Eqs. (2.10) and (2.11)

ZR

w(z) = w 1+(i)i (3.21)

2
Z

=

o
o3

o —
Il

(3.22)
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where zp = ?r'wg /X is the Rayleigh range. At a short distance b from the cavity walst
so that 8 = b/zp < 1, the curvature becomes R(b) = 87%. And, to first order in
8, the spot size is essentially that of the waist w(b) ~ wy. Therefore, the axially
translated input beam at the cavity waist looks like

U(r, b) = A\/gwig exp [—% (1— ?ﬂ)] : (3.23)
Expanding an exponential gives the expression for the translated beam in terms of

eigenmodes
b
Ulr,z) = A [Vg(?’, z)+i— Wi, z)} . (3.24)
QZR

We see that an axial displacement of the input waist with respect to the cavity
walst causes a coupling to the first order LG radial eigenmode or second order HG
eigenmode, but in quadrature with the fundamental mode. We conclude that any
small misalignments causes a coupling into one of the lowest-order modes with a
phase dependent upon the types of misalignment.

Looking from a different point of view, a misalighment can occur not only by
changing the input beam direction and so forth but also by changing the orientation
or position of the cavity mirrors. The positions are usually fixed, but the orientations
are often subject to drift. In general, a mirror tilt through an angle ¢ will cause a
transverse displacement as well as a rotation of the optical axis, thereby giving rise to
a linear combination of the inphase and inquadrature components of the first off-axis
mode. Conversely, for each dimension, a proper linear combination of tilts from the
two mirrors will give rise to a pure transverse displacement and a pure rotation of
the optical axis.

Name the mirror tilts #; and #;. The distances |2;| and |zs| of the waist from the

mirrors as shown in Fig. 3.15 are given by Eq. (3.26)

92(1 - 91)
2 = - 3.25
' g1+ g2 — 20160 (3.25)
]_ _
by = —oll=a) (3.26)

G+ g2 — 2152
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Note that if mirror M; is located to the left of the beam waist, so that the waist
is inside the cavity as in Fig. 3.15, the z; as measured from the walist will be a
negative number. Geometrical considerations show that the optical axis executes a

pure transverse displacement when

I
fo = —0 3.27
2 RQ 1, ( )
giving a transverse displacement
a = Ry sinf, (3.28)

and a pure rotation about the waist when

. 1—2/Ry
fy=—"—"sind 3.29
sin 8, = [al/Bs sin #, (3.29)
giving a tilt angle
sin &
singy = ————. 3.30
1-— |21|/R1 ( )

In the above expressions R, and R, are both positive if the centers of curvatures
are as drawn in Fig. 3.15; z; is negative and 2, is positive as shown. Positive 8 is
counterclockwise.

For a hemispherical cavity, we will see that a tilt of the planar mirror causes
a pure rotation, a tilt of the concave mirror induces a pure displacement, both of
which will give rise to first order off-axis HG modes misalignments. In experiment,
the misalignments, for a hemispherical cavity, can be greatly suppressed and even
eliminated by careful alighments of the input probe laser, however, it is not easy to
eliminate the mode mismatch without additional mode-matching opfics. We use a
system consisting three lenses, two convex lenses and a concave lens, which is similar
to an afocal system, or a zoom-lens system, to control the mode matching of our
hemispherical cavity, see Fig. 3.18.

We mount our mode-matching optics on a linear rail. The optics can be easily

inserted into and removed away from the optical path without ruining the beam
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FIGURE 3.18: The zoom-lens system used in our experiment: f1 = fo = f, (—f3) <
f/2. dys is the distance between the two convex lenses and d,; is the distance between
the first convex lens and the concave lens.

alignment, enabling us to compare the cavity transmission spectra with and without
mode-matching optics. Figure 3.19 shows six well-defined cavity mode images
observed for different cavity lengthes or frequencies without mode-matching optics
in position. We label them using HG and LG notations, since they are qualitatively
similar to the Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes that are applicable

in the paraxial limit [96].

FIGURE 3.19: Measured mode images of the 60 um hemispherical cavity. The modes
are HG00, HGO1, and LGOI, top left to right; HG02, HG11, and HG13, bottom left
to right, respectively.
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By using this zoom-lens mode-matching system, for a given Gaussian beam, we
are able to mode-match most of the beam into the fundamental mode of the cavity
HGOO0 or LHOO, by varying dy3. Figure 3.20(a) shows a laser-wavelength scan of the
cavity transmission versus laser wavelength without the mode-matching optics. The
strorigest mode is the fundamental mode of the cavity, HG00 or LG0O0 mode, by which
there are two higher-order even modes: HG02 (HG11) and HG13 (HG04 or HG22).
The structure repeats itself every cavity free spectral range (FSR). The two small
peaks at half FSR in between are two odd modes HGO1 and HG03 (HG12). Figure
3.20(b}), (c} and (d) show three laser-wavelength scans of the cavity transmission
corresponding to three different d)3 while keeping dis = 330 mm, as compared with
that of no mode-matching optics, as shown in Fig. 3.20(a). We can see that there is an
optimal lens spacing dy3 = 110 mm where the second order and the fourth order HG
modes are greatly suppressed. But when the lens spacing is either longer or shorter
than it, the higher order HG even modes come back. The third order HG mode
is also suppressed, which is mainly due to better displacement and tilt alignments
rather than the zoom-lens system. This example is for a given Gaussian beam used
in our experiment. In general for other input beams, one can still achieve better mode

matching by adjusting both dy and dy3, or even using different lens combinations.

3.3.2 Testing and Modeling the Cavity Modes

Once we gained the ability to control the mode matching, we tested the cavity by
passing a laser light through it and observing the cavity transmission and measuring
its finesse. We probed and measured the transmission versus laser wavelength for
a cavity containing a layer of QDs. Figure 3.21 shows four scans over the range of
wavelength where the QDs absorb (745-765 nm).

The transverse-mode frequency-spacings become smaller as we approach the
hemispherical limit by making the cavity longer. Our results are consistent with

‘predictions for the hemispherical limit, paraxial-mode theory [96], which predicts
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FIGURE 3.21: 60 pm hemispherical cavity transmission versus laser wavelength at
room temperature. The cavity finesse is about 50 and the FWHM of the HGO0 mode
is about 50 GHz.
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degenerate sets of modes, separated by c¢/4L, where L is the cavity length. The
finesse is about 50 at room temperature and the full linewidth at half maximum
(FWHM) of the HG0O0O mode is about 50 GHz. When we do a similar scan near 780
nm, where there is less absorption, the finesse increases to 200. This is an indication
at room temperature that we are observing optical absorption of the QD layer in
745-755 nm range. The predicted finesse is 600 based on reflectivity measurements
of the mirror alone. The lowered finesse is likely due to residual contamination in the
mirror dimple.

When the DBR with (JDs is cooled down to cryogenic temperature, there will be
less absorption compared with that at room temperature, mainly due to fact that
the absorption shifts about 10 nm to shorter wavelength such that we are probing
at the red side of QDs distribution {absorption) where there are fewer QDs. Figure
3.22 shows three scans at 16.6 K. The highest finesse measured is 260, giving a cavity
linewidth as narrow as 10 GHz. The typical homogenous linewidth of GaAs IFQDs
that we use is broader than 15 GHz. The inhomogeneous linewidth of these ()Ds,
however, can be as broad as hundreds of GHz. So with these parameters, our micro-
cavity is capable of spectrally resolving single QDs.

If an input laser beam, typically a Gaussian beam, is not properly aligned and
mode-matched to the transverse pattern of the lowest-order mode or the fundamental
mode of the cavity HGO0O0, the laser will also excite other higher-order transverse
modes in the cavity, such as HG01, HG11 and LGO01 modes, as shown in Fig. 3.19,
or even a mixture of these modes. Since these transverse modes usually have slightly
different resonant frequencies, tuning the probe laser allows us to observe a number
of separate and frequency-shifted resonances for different transverse modes; but since
the higher-order modes often have larger diffraction losses and thus lower Q values,
the cavity response in the higher-order modes is often weaker than in the lower-order

transverse mode, as shown in both Fig. 3.21 and Fig. 3.22.



76

(41 [+

s

[\

Transmission Intensity {a.u.)
- o

o

751 752 753 754 755 786 757
Probe Laser Wavelength {nm)

g

Short, Cavity with 3 modes

Transmission Infensity {a.u.}
(43

"E._

750 751 752 753 7B4 755 788 V5V
Probe Laser Wavelength {nm)

Short Cavity with 2 modes

Transmission Intensity (a.u.)
[#]
1

780 751 752 753 754 755 756 757
Probe Laser Wavelength {nm)

Hemispherical Limit

FIGURE 3.22: 60 gm hemispherical cavity transmission spectra with QDs at 16.6 K.
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The cavity mode-QD coupling strength is proportional to the amplitude of the
normalized cavity mode at the location of the QD. In order to make the coupling very
strong, it is necessary to localize highly the transverse extent of the mode function
in the vicinity of the QD, and align the mode polarization vector with the dipole
transition matrix element of the QD. Determining the precise degree to which this
localization is possible is nontrivial, since the mode structure for such a small cavity
is non-paraxial, is non-separable into polarization components, and is non-separable
into longitudinal and transverse functions [97].

Our collaborators have taken two approaches to modeling the modes of the near-
hemispherical micro-cavity. The two approaches are a fully numerical one—finite-
difference-time-domain (FDTD) [152], and a hybrid analytic-numerical method [97].
The computations account fully for the distributed nature of the planar DBR mirror,
an important aspect since plane waves of different incident angles undergo different
phase shifts upon reflection there. The curved mirror is treated as a perfect reflector,
an approximation expected to be adequate since the mode wave fronts are well
matched to the mirror curvature. An example of the FDTD method, showing the

calculated energy density of the mode versus position, is shown in Fig. 3.23. The QD

FIGURE 3.23: Numerical model for micro-cavity mode energy density, where the
planar DBR structure is at the top and the curved mirror is in the lower half of the
figure [151].
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sits in a bright local maximum region in the first layer of the DBR. The calculations
show that even in the presence of the DBR angle-dependent phase shifts, the mode
waist in the non-paraxial regime is smaller than one wavelength.

An interesting result of the hybrid analytic-numerical method is a novel DBR-
induced spin-orbit coupling of modes, which leads to small frequency splitting
previously not identified [97]. The method also predicts a spatial splitting of the
fundamental Gaussian mode (and other Gaussian modes) into a non-axis-symrmetric

inverted “V” shape.

3.4 Preliminary Spectroscopic Results and Potential
Applications

In previous sections, we have characterized each component of the micro-cavity
and tested the cavity as a whole. From the PL spectra in free space, we know certainly
there are both spatially and spectrally isolated single QDs in the semiconductor DBR
sample. And it is possible to find single QDs using a nano-scope in combination
with a narrowband laser. We also learned from the cavity transmission spectra that
the fundamental mode of the cavity is capable of spectrally resolving single (}Ds.
In addition, numerical calculation predicts that the cavity mode waist in the non-
paraxial regime is smaller than one wavelength. Now assume we are able to find
a single (JD. In order to make the coherent interaction between a single QD and a
single cavity mode strong, which is through dipole coupling, we need to optimize
three conditions: using a QD with large dipole moment, making the cavity mode
volume small and locating the QD at an antinode of the cavity fleld with its dipole
matrix element aligned with the mode polarizing direction. In this section, we address
these issues in order to optimize the cavity-QD interaction. Through the preliminary .
spectroscopic results, we recognized the QDs polarizing direction, identified the
spectral region of interest, and observed evidence of significant interaction between

Ds and cavity modes.
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3.4.1 Preliminary Spectroscopic Results

The dipole transition moments of the QDs can be obtained through fitting the
linear absorption data from single QD states. Based on the studies carried out in this
kind of IFQDs by our collaborators and from others, we know that the dipole matrix
elements of these IFQDs range from 50-100 Debye [153, 117], which is large enough
and suitable for studying cavity-QED strong coupling and is one of the reasons that
we chose them for this purpose. Based on our DBR mirror (CAT96) design, the QDs
are grown in the middle of a one-wavelength Aly24GagesAs spacer layer. For a laser
resonating with the spacer layer, this automatically puts them at an antinode of the
cavity field. So the tasks left for us now are to find a single QD, align the polarization
of a probe laser to be parallel with its dipole matrix element and make the beam
spot at the QDs location as small as possible and hence minimize the effective cavity
mode volume. Let’s start with PL spectra, which is now filtered by the cavity and is
compared with that in free space.

As shown in Sec. 3.2.3, based on nano-scope PL spectra measured in free space at
7 K, there are both spatially and spectrally isolated single QDs at certain locations
on the sample. However, it is not easy to isolate a single QD spatially alone, which
requires a spatial resolution better than 600 nm, as shown in Fig. 3.13. For our micro-
cavity operating near hemispherical limit, the beam waist is typically 1 pm for the
Tundamental mode at the planar mirror. For the worst scenario estimate, there can be
as many as 400 QDs within the beam spot assuming that QDs have nominal lateral
sizes B0 nm and are closely packed. So we need to combine the spectral selection
~ ability in order to address single QDs.

In experiment, an excitation laser beam having a wavelength 658 nm is coupled
co-linearly with the probe laser beam into the micro-cavity from the curved-mirror
side, and the QDs in the DBR mirror at the other side of the cavity are excited.
PL signals are collected by an aspherical lens (NA=0.65) after the DBR mirror and

are recorded by a spectrometer. Figure 3.24 shows four PL spectra at one specific
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location on the sample taken at 17 K. The PL emission (envelope) is in the 750-770
nm wavelength region and is consistent with the PL measurement taken by UA group,
as shown in Fig. 3.12(a), but is now filtered by the cavity. The PL data are taken
with the cavity operating near hemispherical limit, where the beam spot is close to
minimum. The wavelength spacing between the peaks are about 2.2 nm, which is
roughly half of a cavity FSR. The three strongest modes separated about 4.4 nm in
the central part of the spectra are nearly degenerate even-order modes, while nearly
degenerate odd-order modes are in between them alternatively. This effect is very
clear in wavelength range 757.5-768.0 nm because this region is where our cavity has
higher finesse and is where the cavity effect is manifested.

By scanning the DBR mirror in the z-y plane, we are able to map out the regions
where there are fewer (JDs indicating by weaker PL signals. Furthermore, we want
to probe the red tail of the PL spectra where presumably there are even fewer
(}Ds, giving higher chance to address single QDs spectrally. The other important
information we can obtain from PL is that we can find out the polarization orientation
of the QDs after they were incorporated with the cavity, which is now inside the
vacuum chamber. We know from STM image of the GaAs QW where IFQDs are
formed as shown in Fig. 2.7, that they tend to elongate along the crystal [110] axis
and hence are maximally polarized in this direction. But we do not know in which
physical direction they are maximally polarized, particularly after putting the sample
inside the vacuum chamber. By putting a polarizer in the optical path before sending
the PL signal into the spectrometer, we are able to recognize the direction in which
the PL signal is maximized by changing the angles of the polarizer in the transverse
plane, as shown in Fig. 3.24. The PL spectrum with maximum intensity is designated
as the QDs’ polarizing direction and the angle of the polarizer is thus defined as 0°.
The one with minimum intensity is with the polarizer angle changed +90° from the
0° angle position. The other two in between correspond to +30° and +60° angle

changes from the 0° position, respectively.
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FIGURE 3.24: Four PL spectra showing the polarizing direction (0°) of the GaAs
IFQDs. The excitation laser has a wavelength 658 nm with a power 318 uW before
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micro-cavity.
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Once we know the polarization of the QDs, we couple a spectroscopic laser at
this polarization into the cavity to probe the interaction between the QDs and a
cavity mode. We operate the cavity near hemispherical limit, where the beam spot
is close to the diffraction limit, yielding a one-micron spot size. We first stabilize the
cavity length through a feedback control loop and lock it with a reference laser beam
at a specific wavelength that is monitoréd and calibrated by a wavelength meter;
then we scan the probe laser’s wavelength and measure the spectrum. By adjusting
the reference laser wavelength step by step, we are able to tune a cavity resonance
through a QD (or QDs) at a specific absorbing wavelength. Figure 3.25 shows eight
transmission scans obtained in this way. The four traces (a}-(d) are with the reference
lager wavelength at 785.72 nm, 785.75 nm, 785.77 nm and 785.80 nm, respectively.
At this wavelength, 0.01 nm wavelength step corresponds to 4.86 GHz frequency step.
The four traces {e)-(h) correspond to the reference laser with wavelength at 785.81
nm, 785.82 nm, 785.83 nm and 785.85 nm respectively.

The two strongest modes in the transmission in Fig. 3.25(a) are HGOO or LG00
modes and are separated by one cavity free spectral range (FSR}, which is 5.0 nm
in wavelength, corresponding to 2.6 GHz in frequency. The small hump at half FSR
in between the two HG00 modes is the group of nearly degenerate odd-order modes.
The weaker hump adjacent to the HGO0 mode is either the broadened HG0O2 (HG11)
mode or few closely clustered higher order even modes. From these data, we can
deduce that the cavity length in this case is 57.7 uym. The maximum cavity finesse
for the HGO0 mode is 79, giving a linewidth about 0.06 nm (33 GHz). The wavelength
step for taking the data is 0.01-0.03 nm increasing, equivalently with a frequency step
4.86-14.6 GHz at the reference wavelength 785.8 nm.

One can see that the HG00O mode initially at 759.40 nm becomes weaker and
weaker as we tune the cavity resonance through the wavelength 759.43 nm, as
indicated by the dashed arrow line. We believe that there is a strong absorption at

the wavelength 759.43 nm. It could be either a single QD or a few inhomogeneously
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FIGURE 3.25: Eight transmission scans of the composite cavity-QD system by tuning
the cavity length or cavity resonance through QDs resonance.
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broadened Ds lying within the cavity linewidth. We cannot discriminate these two
cases at this moment. Please note that the modes one FSR away arcund 754.2
nm are not affected by the wavelength tuning. We think there is no noticeable
absorption happening (no QD resonance) there and therefore use it as a reference.
The other interesting phenomenon that needs pointing out is that the higher-order
mode (modes) around 759.50 nm becomes stronger and stronger as the adjacent HG0OG
mode gets absorbed. One possible explanation is that the photons on the blue side
of the spectra get absorbed and re-emitted into the red side of the spectra at 759.5
nm which is in resonance with the cavity mode.

According to the PL spectra inside the cavity shown in Fig. 3.24, there are still
a lot of QDs around the 759.0 nm wavelength region. It is not easy to address single
QDs around there. There will be a better chance to address single QDs in the red
side of the PL spectra while still being within the cavity stop-band in the vicinity
of 765.0 nm, where presumably there are fewer QDs. Unfortunately, we do not have
the right laser which can scan in 760.0-770.0 nm region in our lab at this moment.
We are working to have the right laser to probe this spectral region. The other thing
that needs mentioning is that we have scanned the 2z-y plane of the DBR mirror in
a 50 x 50 um® region. We found that there are QDs almost everywhere. Without
opening the UHV chamber and manually changing the sample lateral position by a
few millimeter, we are not able to scan the z-y more than this to investigate other
locations where potentially there are fewer QDs. So in the future, we want to move to
other locations where there are fewer QDs and probe the cavity-QD interaction with
the right laser. We believe we will have a better chance to address single QDs and
study the strong interaction between single QDs and a single cavity mode, which in
turn will enable us to apply this flexible external micro-cavity with integrated QDs

in cavity QED and for eflicient production of single photons.
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3.4.2 Potential Applications

The hemispherical micro-cavity we have fabricated has an excellent prospect to
achieve both strong coupling and efficient generation of single photons on demand.
The hemispherical design is geometrically stable with the only loss (other than surface
scatter) being by transmission through the end mirrors, not by diffraction losses as
occurs in other micro-structures [154]. The use of a concave micro-mirror with high-
reflectivity over a high-solid angle makes the mode waist size at the planar DBR
diffraction limited and consequently leads to a large coupling strength. It enables a
direct out-coupling of the spontaneously emitted single photons into a single-mode
traveling wave, which is highly desirable for the cfficient and on-demand single-
photon generation. In addition, our system uses a cavity with adjustable length
and a transversely movable focal region, allowing good spatial and spectral overlap
of QD resonances with high-Q cavity modes. The preliminary spectroscopic results
presented in the previous section are very promising. In the rest of this chapter, we
give a brief discussion of two potential applications of this micro-cavity: cavity QED
strong coupling and photons on demand.

Cavity-QED Strong Coupling

Ag stated in the earlier parts of this chapter, cavity-QED strong coupling occurs
when the electric-dipole interaction frequency between an atom or (QD and a single,
unoccupied mode exceeds the energy decay rates of the composite system. The
signature of strong coupling is a frequency splitting in the laser transmission spectrum
approximately equal to twice the coupling constant, the so called normal-mode-
splitting, which arises from the coherent interaction of two degenerate systems—the
single QD and the single cavity mode. Such splitting can be viewed as a lifting of
degeneracy. In the next chapter, we will examine this carefully and calculate the
emission spectra, both into the useful forward direction and the open sides of the
cavity, based on a single optical center interacting strongly with a single cavity mode

in the Weisskopf-Wigner approximation.
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IFQDs can have dipole matrix eclements as large as 50-100 Debye [153, 117],
yiclding a vacuum Rabi splitting of 49-81 ueV, assuming a cavity waist of 1 micron
and a cavity length of 60 microns. As required for strong coupling, this projected
splitting would exceed the sum of the oscillator dissipation linewidth, typically 15
neV, and the cavity dissipation linewidth, 8 ueV for a length of 50 microns and a
reflectivity of 99.6%.

The transmission of an empty Fabry-Perot cavity has a series of single peaks with
high transmission at each resonance, as shown in Fig. 3.22. In the strong-coupling
regime, one of the peaks, preferably the HG00 mode, splits into two peaks; with a
minimum located at the position of former peak. This shows a strong enhancement
of system absorption at resonance. This interaction is suitable for coherent quantum
engineering concepts, such as those being developed in attempts to achieve quantum-
information processing [155, 156].

Photons on Demand

Another important application of such strongly coupled cavity-QD systems is the
deterministic gencration of single photons [92, 157, 93, 42] or of photon pairs on
demand [158]. Such sources have wide applications in the emerging field of quantum
information sciences [159]. This is particularly true for quantum cryptography, in
which an essential element of secure quantum key distribution (QKD) is an optical
source emitting a train of pulses that contain one and only one photon [160]. For
example, a source having zero probability for gencrating two or more photons in a
pulse and greater than 20% probability of gencrating one photon would lead to a
great advance in QKD in daylight through the atmosphere [161, 162, 163]. A high
quantum efficiency single-photon source will certainly make the QKD more secure,
For other applications in quantum information processing such as in linear-optics
quantum computing, one of the stringent requirements is a single-photon source with

high cfficiency (> 99.9%). But the questions are: what is the quantum efficiency of a
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single-photon source in the cavity-QED strong-coupling regime and how to optimize

it? We will study these issues in Chapter V.

3.5 Summary

In this chapter, we first showed the state-of-the-art fabrication of a hemispherical
micro-cavity that is comprised of a planar integrated semiconductor DBR mirror, and
an external, concave micro-mirror. Then we characterized each component of the
micro-cavity system: the concave micro-mirror and the semiconductor mirror with
integrated QDs. We described different cases that can lead to modal mismatch of an
input laser beam to the fundamental mode of the micro-cavity and used a simple afocal
system to correct the mode mismatch., We tested the cavity transmission spectra at
both room temperature and liquid helium temperature. We obtained preliminary
spectroscopic results of cavity-filtered PL spectra and cavity transmission spectra
showing evidence of significant cavity-(QDs interaction at cryogenic temperature. At
the end, we gave two examples of potential applications of this novel system operating
in the cavity-QED strong-coupling regime. In the next two chapters we will show
detailed calculations of the emission spectra and the quantum efliciency of single-
photon sources in the cavity-QED strong-coupling regime respectively, in a more

general way.
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CHAPTER IV

THEORY OF SINGLE-PHOTON SOURCES IN THE
CAVITY-QED STRONG-COUPLING REGIME

In Chapter ITI, we have discussed the design and the fabrication of a micro-cavity
with semiconductor QDs as optical centers located at an antinode of a cavity field. It
is believed that this system will find its applications in both cavity-QED studies and
efficient production of single photons. In this chapter, we build a theoretical model
for the interaction of a single optical center and a quantized single-mode field in a
cavity and examine the claims made in the previous chapters. The state of the field
that is generated in the process of emission from the cavity in which the photon is
can be regarded as a single-photon wave-packet state. The composite system can be
used as a single-photon source. In this chapter, we present the first calculation of
the quantum efficiency and the spectra of single photons emitted both to the open
sides and in the forward beam in the cavity-QED strong-coupling regime. All results
are obtained in the Weisskopf-Wigner approximation for an impulse-excited optical

center. Part of the work presented here has been published in Refs. [51, 52].

4.1 Introduction

In free space, an optical center interacts with a continuum of modes of a radiation
field, the vacuum, and spontaneously emits photons to all 4n of solid angle of
free space, as long as the conservation of energy and momentum is satisfied. The
interaction is through electric dipole coupling. The coupling is characterized by a
coupling constant go, which is often referred to as the Rabi frequency of the vacuum,

is the frequency at which the optical center and the fleld exchanges energy, given that
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there is only a single mode of the field. The photon emission rate, the probability
of photon emission per unit time, is proportional to the square of the vacuum Rabi
frequency ¢y and to the mode density. Assuming an optical center is excited to its
excited state at time zero, the probability of finding an optical center is still in its
excited state at time £ obeys an exponential decay law, leading to an irreversible
process. The source of irreversibility is the continuum of fleld modes resonantly
coupled to the optical center. The vacuum field acts as a huge reservoir in which the
phase information of the electric dipole is lost.

When an optical center is placed inside a two-mirror cavity, it will interact with
an altered vacuum, where the density of states is structured due to the boundary
conditions imposed on the region enclosed by the cavity mirrors. If the cavity mirrors
are not ahle to cover all solid angle, the optical center inside the cavity can still
spontaneously emit photons into the open sides of the cavity which acts as a reservoir,
leading to dissipation. How an optical center inside the cavity behaves depends upon
the ratio of the vacuum Rabi frequency gy to the cavity linewidth s, whose inverse
will be the density of modes “seen” by the optical center, or the lifetime of a photon
in the cavity. If the ratio go/& is smaller the one, the spontaneously emitted photon is
dissipated rapidly and an optical center behaves much as it does in free space but at
an enhanced rate if it is resonant with the cavity. The emission may also be inhibited
if the optical center is not in resonance with any cavity mode.

However, if the ratio go/# is larger than one and the coupling between the optical
center and a cavity mode is stronger than its coupling to side modes, new behavior
takes place: a radiated photon can stay in the cavity so long that it has a high
probability to be re-absorbed by the optical center before it dissipates. Spontaneous
emission becomes reversible and oscillating, as the optical center and field exchanges
energy at a rate go. Such behavior is well known for the interaction of an atom with
a classical monochromatic field and is called “Rabi oscillation” in optical transient

experiments [164]. In cavity QED we are discussing here, however, the optical center
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couples to its own one-photon field without an external applied field. This effect is
called “vacuum Rabi oscillation”.

In this chapter, we discuss the coherent interaction of a quantized radiation field
inside a cavity with a two-level optical center described by a Hamiltonian in the
dipolc and the rotating-wave approximations. This problem was studied as early as
in 1963 by Edwin T. Jaynes and Frederick W. Cummings [165] for an ideal lossless
system. For a single-mode field it reduces to a relatively simple form yet still gives a
lot illuminating results in the cavity QED and quantum optics. In our calculations
presented here, we include dissipations, such as losses to the open sides of a cavity
and emission into the forward direction of a cavity, to model realistic experiments.
Perhaps most importantly, the results can be tested experimentally through the
recently spectacular advances in the development of various high-Q micro-cavities
already discussed in Chapter 1.

Based on the solutions of the probability amplitudes using Weisskopf-Wigner
theory [166], we first examine the widely cited Purcell effect in the cavity-QED weak-
coupling regime. Then we derive the vacuum Rabi oscillations, or normal mode
oscillations in the cavity-QED strong-coupling regime in Sec. 4.2. We define and
calculate the integrated-pulse quantum efficiency of a single-photon source in this
regime in Sec. 4.3. Then we generalize the definition of the Wiener-Khintchine
spectrum for a stationary and ergodic process to a non-stationary process appropriate
in this case, and derive the analytical formulas for the cavity-modified forward
emission and side emission spectra of single photons emitted from a cavity in Sec.

4.4,

4.2 Probability Amplitude Method—Weisskopf-Wigner
Theory

Our model system consists of a two-level optical center, an atom or QD, located at

an antinode of the field in an optical microcavity with a length L. Damping plays an
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important role in this model. These include the decay of an atom/QD in an excited
state to the lower (ground) state and the decay of the radiation field inside a cavity
with partially transparent mirrors. In general, damping of a system is described by
its interaction with a reservoir with a large number of degrees of freedom, which can
be represented by an infinite number of harmonic oscillators, as in Fig. 4.1. M, is
a perfect 100%-reflecting mirror and M, is a partially transparent one, from which a

sequence of single photons emerges.

Apr 4y % dy, @,

l

FIGURE 4.1: Analytical model for a lossy two-level optical center interacting with a
single mode in a leaky optical cavity. gg is the vacuum Rabi frequency. 2y and 2k
are the optical center population decay rate to the sides and the cavity field decay
rate to the forward direction, respectively.

The coupling constant or the vacuum Rabi frequency gy has been introduced in

Chapter II, given by

We

— - 4.1
TheaViyy (4.1)

Go = Mz

where p, is the dipole matrix element of either atomic or excitonic transition in the
electric field direction & having frequency wg. w, is the frequency of the cavity mode of
interest. V.ss is the effective cavity mode volume, defined in Eq. (2.5). The coupling
between either the optical center or the cavity field to their respective reservoirs R,

and Ry can be the decay of the excited-state population associated with all processes
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(radiative recombination and nonradiative relaxations) except emission into the single
cavity mode of interest in the case of optical center or simple cavity damping in the
case of field. In both cases, the net result is to dampen the mode of interest, in which
the single photons are. We model these dampings by linear interaction terms in the
Hamiltonian. The coupling constants between the two-level optical center, a single
photon and their respective reservoir fields are Az, 43 and By, B%.

The total Hamiltonian A for this system in the Schrédinger picture in the dipole

approximation and the rotating wave approximation (RWA) is well-known [167]
H=Hy+ H;, (4.2)
where

Hy = ﬁwo% + Fuw.ata + EZ wpdlﬁg—i— EZ wkg;%gg (4.3)
P k
Ap=Hgo (ora+6-a") +nY (A5-di+He)+hY (Babl+He).  (44)
7 :

H, consists of the energies of the two-level optical center (atom or QD), the single-
mode field of the cavity, both the side reservoir modes and the free field reservoir
modes. H; is the interaction energy and takes form of a sum of the atom-cavity
interaction, atom-reservoir and fleld-reservoir interaction terms. The operators 4 and
al are the annihilation and creation operators for the single mode of the cavity under
consideration, while &, and &4 are the Pauli operators for the atomic {Fermionic QD)
inversion, raising, and lowering, respectively. wy and w, are the atomic and cavity
resonance frequencies. Here we assume that both reservoirs consist of many Bosonic
oscillators {e.g. phonons, other photon modes etc.) with closely spaced frequencies
wp and wy, annihilation and creation operators d\ﬁ, 55, d}, 5;, respectively.

Tt is convenient to work in the interaction picture, in which the Hamiltonian V (£)
is obtained by an unitary transformation of the Hamiltonian H in the Schrédinger

picture

V(t) — iHot/Rfy —~ifot/h (4.5)
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For two operators A and B that do not necessarily commute, the operator expansion
PN . . “ A ()52 - PR

theorem says e®*Be 4 = B+ «lA, B+ ?[A, [A, B]]+ ..., where a is a c-number. It

can be readily seen that the interaction Hamiltonian V (£) in the interaction picture

for this system in the dipole approximation and the RWA is [167]

V(t) =hgo (640" + Hee.)

+h Zp: (Az0-die 4+ Hec.) ws)

+RY (Bjable™ + He.)
k

where A = wy — w,, 8, = wy — Wy, and & = wy — w, are the detunings of the optical
center-cavity, optical center-reservoir, and cavity-reservoir. Here we treat the atomic
or excitonic transition frequency wy as constant. Later in the next chapter we allow
it to fluctuate, to model pure dephasing.

Given that there is only one excitation in the system and the optical center is
excited to its excited state at time ¢ = 0, then at any time £, the state vector is a
linear superposition of the states |e, 0}, |g,0) and side- and forward-reservoir modes.

The state vector is therefore

[4(2)) =E(t)le, 0}[0} 10} r, + C(t)l9,1)|0) 2,
+ Z Sp(t)]9, 0)|15) £, 10) &,

0)n,
(4.7)
+ ZO |91 |0 Rs|1 )

Here |e, 0) is the state in which the optical center is in the excited state and the cavity
field has zero photon. A similar description exists for |g,0}. However, due to the side
and forward reservoirs, a photon can also be lost to the open sides or emitted to the
forward direction of the cavity. |jz)r.|lz)r, (4,1 = 0,1) corresponds to j photons in
the ¥ mode (other than the privileged cavity mode) of the side reservoir R, and {

photons in a single-mode (E) traveling wave of the one-dimensional photon reservoir
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Ry in the forward direction of the cavity. E(¢), C(t), Sp(t), and Oz(¢) are the slowly
varying probability amplitudes, as we are using interaction picture.
The equations of motion for the probability amplitudes are obtained by

substituting [¢(¢)) and 1EAf(t) into the Schrodinger equation in the interaction picture

i W) = V(2) (). )

and then projecting the resulting equations onto different bra states respectively. We

then obtain

E(t) = —ige™C(t) —i ) Ape % 55(1), - (4.9)
7

C(t) = —igoe "MBE(t) —i ) Bpe ™ 05(1), (4.10)
7

Syt) = —iA™'E(2), (4.11)

Ox(t) = —iBxE™'C(@), (4.12)

where dots indicate time derivatives. In this context, we assume the optical center is
prepared in an excited state E(0) = 1, C(0) = 0 at time ¢; = 0 {more generally, it can
be prepared in an arbitrary single-quantum state), and there is no photon elsewhere.
By first integrating Eqs. (4.11) and (4.12), then substituting them into Egs. (4.9)
and {4.10) we obtain

L
E(t) = —ige™C(t) = |4’ / di''e %t (), (4.13)
=~ 0
k2
’ . ¢ R )
Clt) = —igee ™ E({) — ) |Bgl* / dt' e BN o), (4.14)
— 0
k

These are non-perturbative equations. We have replaced four linear differential
equations by two linear differential-integral equations. In order to solve these coupled
equations, we have to make approximations and we do so using Weisskopf-Wigner

theory {166, 167).
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Since the side reservoir modes are closely spaced in frequency, we first replace the

summation over the wave vector 7 in Eq. (4.13) by an integral:

s o [Tt = [ dn [ ey
— . d} dpp” = dafl Ay, 4,15
27 o fre 0, @rcf Jup o, B, Bewens (41D)

where Vg, is the quantization volume of the side reservoir K., {2, is the solid angle

covered by the cavity and p is the amplitude of the wave vector |p], given by w,/c.

Eq. (4.13) becomes

E(t) = — igee™C 1)

4
_ Wn, / dQ / dwyiwp?| Alw,)|? f dt’ e~ B,
(27e)® Jame Qo

In the emission spectrum, the intensity of light associated with the emitted radiation

(4.16)

is going to be centered about the atomic or excitonic transition frequency wgy. The

frequency w? and |A(wy)|? vary little around w, = wy for which the time integral

?
in Eq. (4.16) is not negligible. We can therefore replace w? by w? and |A{w,)* by
|A(wo)|?* and the lower limit in the w, integration by —oo. Using the definition for
the delta function

/ du, e~ er—woe=t") — opg(y  41), (4.17)

— oo

we obtain the following equation for E(t), in the WWA
BE(t) = —igee™Ct) —vE(®), (4.18)

where 2y = Vg, /(4n%c*)] f dOuw?| A(wo)f* is the atomic population decay rate
into the modes other tlldn4t1_1§ cavity mode, and can be given approximately by
2y & 29 (1 — Q./47), with 27 being the free-space spontaneous emission rate, if £,
is small compared with 4.

However, for the photons escaping from the cavity, they are going to be in a

one-dimensional traveling-mode (continuous-mode) state propagating in the forward

direction from the cavity. It is advantageous to take the limit of a quantization axis of
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infinite extent parallel to the cavity axis (2) but to retain a finite cross-sectional area
perpendicular to the axis. Then the one-dimensional continuous-mode variable can be
taken equivalently as the wavevectors k = +(wy/c)% or the frequency wy = c|k|. The
one-dimensional mode spacing is thus 2w¢/ L, which is just the inverse of the density
of states for the one-dimensional photon reservoir D{w,) = L/2xc [168]. Similarly we

obtain the equation for C(¢) in the WWA
Ct) = —igee ™ E(t) — rC(t), (4.19)

where k£ = 7D(w,)|B(w,)|* [168], is one-half the decay rate of the intracavity field.
The solutions to Sz(t) and Oy(¢) are straightforward once we can solve E(¢) and C(¢),
by integrating Eqgs. (4.11) and (4.12). To summarize, we have the following results:

E() = —igee'®Ct) — vE(#), (4.20)

Ct) = —igee ™™ E(t) — kC(D), (4.21)
t

Sa(t) = —iAy f dt"et B, (4.22)
0
t

Oit) = —iB: / e C(#), (4.93)
0

where 7y and & are one-half the radiative decay rates of the atomic population (other
than the privileged cavity mode) and the intracavity field, respectively. The general
solutions to the coupled differential Fgs. (4.20) and (4.21) are

E(#) K JRISZP 0
cw | 0 et

o [ 27 4x ) e [ 2T 4 )
X |e % 1, A%ar te % 1 Rear
2 2 " 4 2\ 2 4\

where K = xk+7v, I'sk—v,and A= \/gg— (T —iA)/2]2.
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4.2.1 Cavity-QED Weak Coupling

As we have claimed in Chapter II, in the cavity-QED weak-coupling regime, the
main role of the cavity is to control the spontaneous emission through the Purcell
effect to enhance radiative decay into a cavity mode of interest. Now we can examine
the claim based on the results obtained above. Let’s consider the case when the
optical center is in resonance with a cavity mode, A = wy —w, = 0. The cavity-QED
weak-coupling regime is defined by (x — ¥)? > g2 so that the complex frequency A is
purely imaginary and equals 14/ (T'/2)% — ¢2. For convenience, define A = idg with Ag
is purely real. The solutions to the probability amplitudes simplify to

E(t
0 _ xie
Ct)
1 r 9o 1 I o
e [ 27T TR | Lpw| 20D iy E(0)
N " UG S Ik R S v B WSV &
22 2 4 2o 2 4
(4.25)

and the solutions subject to the initial condition, £{0) = 1 (atom in excited state),

C(0) = 0 {cavity empty) at time ¢y = 0 are

1 r 1 T
— —Kif2 - —Ant - Apt
E(t) e {(2 —4/\0) € + (2 + —4/\0) € } , (4.26)
Clt) = —% e K2 (gm0t _ ghot) (4.27)

For a low-(} cavity that subtends a large solid angle at the optical center so that
the spontanecous emission to the sides is negligible, k¥ > -, then in the cavity-QED
weak coupling regime, we can approximate (I'/2)? > g2 as do = I/2 — g3/T. We
keep both terms of Ay in the exponential functions and only the first term in their

coefficients. Then the probability amplitudes become, to first order in go/x,

B = e—'v[lJrgS;’(m)]t} (4.98)
= m@ —y[1+a2 /et _ —ni
Clt) p {e e } . (4.29)
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We know that in free space the atomic population decay obeys an exponential law
with a decay rate 2v,. With the cavity, based on the results given in Eqs. (4.28)

and (4.28), we find that the atomic population now decays with an enhanced rate
' =7 [1+g3/ ()], or

%-1:%% (4.30)

The Purcell factor, widely referred to in the cavity-QED weak-coupling regime,

is given in Ref. [87] by F, = (3)\%/4r?) - (Q/V), which can be shown to be equal to

g2/ (k7). Therefore, we can readily see from Eq. (4.28) and the first term of Eq.

(4.29) that the cavity indeed enhances both the spontaneous emissions to the sides

and to the cavity mode by a factor that is exactly the Purcell factor F,

(4.31)

Yo

This justifies our claim made before. The Purcell factor is usually calculated based
on Fermi’s golden rule by comparing the density of modes in a cavity with that of
in free space. Here we showed that it can be derived from solving the dynamics of
the coupled system in the time domain. This has also been shown in Refs. [169, 170]
by solving the equations of motion in Heisenberg picture. The other point we would
like to point out is that the photon emission from the cavity now is dominated by
the atomic spontaneous emission since the second term in Eq. (4.29) is much smaller
than the first term, which results from the enhanced spontaneous emission.

Another case that is complementary to the above example is that when v > &,
for a relatively high-Q cavity while the spontaneous emission to the sides is not
negligible, v &= ~,. Similarly one obtains the solutions to the probability amplitudes,

to first order in go/~y as follows

E#) = ¢ (4.32)
_ ko o r[Itgg/em]e _ e .
o) . { } (4.33)
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In this case one would find that the spontaneous emissions into both the sides and
the cavity are not affected, as seen from Eq. (4.32) and the second term in Eq.
(4.33); but the photon emission from the cavity now is dominated by the cavity itself
with an enhanced factor g3 /(k7y) that is almost exactly the Purccll factor g3/(kvo).
The enhanced cavity decay rate reflects the fact that the cavity Q is spoiled and
the linewidth is broadened by an absorber inside the cavity, as also discussed in Ref.

[174].

4.2.2 Cavity-QED Strong Coupling

In the cavity-QED strong-coupling regime, defined by gg = &, v, the real part of
A is much larger than its imaginary part. Then A can be approximated as A = g =

\/ g¢ + (A/2)2 — (T'/2)2, which is the generalized vacuum Rabi frequency. Note that

for the case when the optical center and cavity arc in resonance, A = wy—w, = 0, the
complex frequency A is purely real and equals 1/g3 — (I'/2)2. This leads to sinusoidal
oscillation rather than an exponential decay and will be justified below. The general
solutions to the probability amplitudes in the cavity-QED strong-coupling regime are

re-written as

TALf2
E(t) — e'_(K?{Q)t e 'Lf U
O(t) 0 e—z’AL;‘Q
['—iA 9o .
cos(gt) + 2; sin(gt) —z% sin(gt) B(0)
X , 4.34)
| Y FAN > (
—i %2 sin(gt) cos(gt) — ——= sin(gt) o(0)
g 2g
and the solutions subject to the same initial conditions used above are
‘ [—iA
E(t) = e E=8/2t |oog(gt) + ———= sin(gt) (4.35)
Clt) = 10 —itEiny/2l sin(gt). (4.36)

g

From a quick examination of these solutions, we can get a hint that the

probabilities will undergo a number of oscillations before finally being damped away.
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This is the so-called vacuum Rabi oscillations or the normal-mode oscillations and
is a characteristic of the cavity-QED strong coupling. The normal-mode oscillations
can be viewed either in the dressed-state picture or in the bare-state picture. Here we
look at them in the bare-state picture where the oscillations are easier to calculate.

The probability of finding the system in the excited atomic state is

P.(t) = |B)[’

eKE[ T2 4 A2 T2 4+ A2 T (4.37)
= 14+ ——— l— — — sin(2gt
5 [ + i + ( 17 ) cos(2gt) + . sin(2gt) | ,
and the probability of finding the photon in the single cavity mode is
2
P(t) = |C)? = L e Bt sin2(gt). (4.38)

g

The strong interaction between an excited two-level optical center and a single
cavity mode leads to single-quantum Rabi oscillation in the time domain or a
frequency splitting in the frequency domain, the so-called normal-mode splitting,
which arises from the coherent interaction of two degenerate systems—the single
optical center and the single cavity mode. In this section, we discuss the normal-
mode oscillations of such a system in the cavity-QED strong-coupling regime, while
the emission spectra will be discussed in the next section. We first investigate the
normal-mode oscillations by calculating the probabilities of finding the composite
system in different states.

Consider the case when the optical center and cavity are in resonance, A =
wy — w, = 0. Figure 4.2 shows plots of the two probabilities with both linear
and logarithmic scales. The probabilities oscillate sinusoidally with an exponential
decay envelope. However, they have opposite phases, which indicate the coherent
oscillatory energy exchange between the excited optical center and the cavity field.
And the envelope decay rate now is the sum of the spontaneous emission rate and the
cavity decay rate, not just either of them; neither is the enhanced nor the suppressed

spontaneous emission rate.
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FIGURE 4.2: The probability of finding the optical center in its excited state
and the probability of finding a photon in the single cavity mode, square and dot
curves respectively: (a) linear scale, and (b) logarithmic scale, given (go, %, v)/27 =
(8.0, 1.6, 0.32) GHz.
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4.3 Quantum Efficiency of a Single-photon Source in the
Cavity-QED Strong-coupling Regime

The realizations of cavity-QED strong coupling in the atom-cavity [5] and QD-
cavity systems [44, 45, 47, 48] allow researchers to deterministically generate single
photons [93, 92, 42]. Single-atom lasers in the strong-coupling regime have also been
studied [171]. A major question is what is the quantum efficiency (QE) of the emission
from such systems. While not in the strong-coupling regime, Santori et al. [91] showed
the ability to produce largely indistinguishable photons by a semiconductor QD in
a micro-cavity using a large Purcell effect [87]. The QE of a single-photon source
(SPS), which is intrinsic to the composite quantum system, can be different in these
two regimes because the dynamics of the composite system is different, like we have
shown in the previous section. The overall efficiency of SIS will also depend on the
excitation efficiency [95], collection efficiency and detection efficiency, which are not
intrinsic to the composite quantum system; however, they can be greatly affected by
the energy structure of the optical center and the geometry of the cavity, Qualitative
discussions of different efficiencies based on a particular system in the Purcell regime
have been reported in the literature elsewhere [38]. In the following section, we define
the quantum efficiency for a single-photon source in the cavity-QED strong-coupling
regime, based on the theory developed in the previous sections and compare it with

another definition defined by Law and Kimble that is often referred to [172].

4.3.1 Calculation of Quantum Efficiency

A single photon will certainly be emitted from the excited optical center, but it
might not be coupled into a single-mode traveling wavepacket because it can also
spontaneously decay to the side reservoir. We define the emission probability B,(Z) to

be the probability of finding a single photon in the output mode of the cavity between
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the initial time #; = 0 and a later time ¢. This equals
2

g K K
P,(t)= 2&/ dt' |eh)? = n, {1 — e Kt [1 + 5 sin?(gt) + 5 sin(2gt)] } , (4.39)
0

where

e = [98/(95 + k)] [/ (k+ )], (4.40)

given by the single-photon emission probability P,(t) in the sufficiently long-time
limit ¢ 3> K. It may be decomposed as 1, = 7, - 7., with

2
2
o= o= 2 (4.41)
g5 +ry  20C,+1
- = (4.42)
o= .

where Cj = g3 /(2+7y) is the cooperativity parameter per optical center [173].

We define 7, as the quantum efficiency of a SPS in the cavity-QED strong-coupling
regime, which can be viewed as the product of the coupling efficiency (7,) of the optical
center to the cavity mode and the extraction efficiency (7, ) of the single photon into
a single-mode traveling wavepacket. Despite extensive past study of this system, this
general formula for quantum efficiency had not been published prior to our study
[51]. The coupling efficiency characterizes how strong the optical center is coupled
to the privileged cavity mode. The extraction efficiency determines how large the
fraction of light is coupled to a single wave-packet, outward-traveling-wave mode. We
emphasize that the cavity decay is not considered as a loss, but rather as a coherent
out-coupling, because our goal is to extract single photons from the cavity.

The photon emission rate n(t), defined as the time derivative of the emission
probability, gives the rate of a single photon emerging from the cavity mirror M, and
is

ary(t)

2
n{t) = e 2&9—28'}“ sin’(gt) (4.43)

We expect the shape of n(t) to be sufficiently narrow in time as to define a well-

localized photon wavepacket and a well-specified fime interval between successively

emitted single photons.
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From Egs. (4.41) and (4.42), we can see that the larger the ratios g3 /(x7y) and
&/, the higher the coupling efficiency and the extraction cfficiency, respectively.
For a given optical center, with no pure dephasing, the dipole dephasing rate is
limited by its population decay rate. However, we can design a cavity with a proper
cavity decay rate s to optimize the QFE of a SPS and the shape of the photon-
emission rate. Figure 4.3 shows plots of the emission probabilities and the emission
rates for three (optimal, good and bad) cavity regimes where we varied the cavity
decay rate, with x£/27 = (8.0, 3.2, 16) GHz respectively, given realistic parameters
(g0, v)/27 = (8.0, 0.16) GHz in each case. We find that the optimal condition for a
high QE and a temporally narrow emission rate, by optimizing the three parameters
in Eq. (4.40), is & = gZ/x >> v, as shown by the dotted curves in Fig. 4.3. The QE
is 96%, predicted by Eq. (4.40) in this example. The photon cmission rate is well
localized on the time axis. The width of n(¢) is about 32 ps.

4.3.2 Discussion of Quantum Efficiency

An earlier result obtained in the bad-cavity limit by Law and Kimble is given by
[172],

20,
P(t) = 207 + 1

where Cy = g3 /() is is the single-atom cooperativity parameter. Note that the v, in

(4.44)

definition Eq. (4.44) is the full width of the atomic absorption line. The cooperativity
parameter defined in this context is Cy = ¢2/(2k7) because here vy is the half width,
80 these definitions are the same. Comparing our analytical result with that given by
Eq. (4.44), we see that Eq. (4.44) is valid in the limit that spontaneous atomic decay
is negligible, as treated in [172], or equivalently the extraction efficiency 7. is unity.
This is not necessary for strong coupling and is also not implied by the strong-coupling
condition. However, for deterministic production of single photons on demand, we
not only require that the coupling of the optical center to the single cavity mode is

far stronger than its coupling to all other modes (g2/x > ), but also that there
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FIGURE 4.3: (a) The emission probability P,(t) of single photons, and (b) the
emission rate n(t), in three different cavity regimes: optimal cavity regime for
Kk = g3/k > 7, good cavity regime for g/k > k > <, and bad cavity regime for
K > go/k > v, (dot, square and triangle, respectively).
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needs to be almost no dephasing of the optical center during the emission process
(v~! 3 x!). This keeps the emission process deterministic and hence guarantees
that the consecutively emitted photons are indistinguishable.

Using the definition of the Purcell factor, we can relate it to the cooperativity
parameter Cy by F, = ¢5/(kv) = 2Co - f, where f = v/ is the fraction of the
spontaneous emission to the side modes and is often very close to one. So our result

for QE can also be written as [51]
K K K
SRt f sty T sty

where § = F,,/(F,+ f) is called the spontaneous-emission coupling factor, the fraction

7 (4.45)

of the light emitted by an.optical center that is coupled into one particular mode
[154, 174]. In Ref. [175], the authors discussed the coupling factor and the extraction
efficiency in terms of the quality factor of the mode. The result Eq. (4.45) quantifies
this discussion.

To conclude, our result for the QE of a SPS in the cavity-QED strong-coupling
regime is more general than earlier results in [172, 175]. It can be used to estimate
the QE of single photons deterministically generated in the cavity output in the
cavity-QED strong-coupling regime [48], instead of using the Mandel-Q parameter
[93]. One can improve the QE and performance of a SPS by optimizing the three
parameters in the analytical result Eq. (4.40). The QE is crucial for a practical use
of a SPS, for example, a high efficiency is required for implementing the linear-optics
quantum computation schemes proposed by Knill et al. in [25]; while a low efficiency
will severely limit the practical application of a SPS in quantum key distribution, as

shown in [21].

4.4 Emission Spectra of a Single-photon Source in the
Cavity-QED Strong-coupling Regime

It may seem strange to talk about the spectrum of a single-mode field since we

normally associate a single mode with a single frequency. Here we are dealing,
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however, with what should more correctly be called a quasimode, a mode defined
in a leaky optical cavity, which therefore has a finite linewidth. For a stationary
and ergodic process, the Wiener-Khintchine theorem [176] states that the spectrum
is given by the Fourier transform of the two-time correlation function of the radiated
field. In the strong-coupling regime and for an impulsive excitation of the system,
however, this relation between the correlation function and spectrum fails because
the coherent interaction overwhelms the relaxations here. There is no time ¢ after
which the correlation function depends only on the time difference. Thus the dipole
correlation and the emitted fleld correlation cannot be stationary. We need to
generalize the definition of the Wiener-Khintchine spectrum appropriate in this case.
We first introduce the forward emission, the emission of single photons through
the cavity mirror into a single wave-packet, outward-traveling wave, and the side
emigsion, the spontaneous emission of the excited optical center into the free-space
other than the cavity (side modes or leak modes). We recognize from Eq. (4.23) that
O;(t) is proportional to the Fourier transform of the probability amplitude C(t'),

i
Oi(t) = —iB} / dt! el O, (4.46)
0

We define the spectrum as the absolute value squared of the Fourier transform of
the probability amplitude in the long-time limit, which is proportional to the Fourier
transform of the convolution of the probability amplitude, as will be shown later. For
simplicity, we consider the case that the atom/QD-cavity is in resonance. Therefore,

the forward emission spectrum is given by
Srelw —we) = lim D(we) [OL()]*, (4.47)

where we have changed the probability amplitude from Oy(t) to O, (f) by using the
density of states for the one-dimensional photon reservoir D(w.) = L/2m¢. Using the

solution to the probability amplitude C(£) and the expression of Oz(t) in Eq. (4.46),
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we can calculate the spectrum

Sf.e, (w - wc) ZD(wc) |B(wc)|2
(4.48)

4

£
x lim [ dt’ @ O f e~ Hwmwel O (1Y,

. t—oo 0 0
Then using the definition of the decay rate of the intracavity field & = wD(w, )| B(w,)|?
[168] and defining a new variable Q = w — w,, the emission frequency centered at the
cavity resonance w,, and 7 =t — ", we obtain the forward emission spectrum
1 20 . >
St (Q) = Qm;Re {f dre*” [/ dt'C(t + T)O*(t’)] } . (4.49)
0 0

The normalized forward emission spectrum is

Sfe = (% fo " |C(t)|2) B Ste.. (4.50)

Similarly the side emigsion spectrum and the normalized side cmission spectrum, in

the long time limit, are given by
See Q) = 2*}/1Re {/ dre®tT [f dt’E(t'-\—r)E*(t’)}} (4.51)
n 0 0
o0 -1
s = (2 [ @lE@) S (4.52)
0

In the long-time limit (¢ >»> K '), substituting the Egs. (4.35) and (4.36) into

Egs. (4.51) and (4.49), we obtain the unnormalized emission spectra

‘ 2
Sy (Q) = I» K ‘ Z(Q+.A)2 | (4.53)
T|(K/2—inj2—i) + ¢
. 2
fi —t4o
s, =~ 4.54
re ) ?T‘(K/2+iA/2—iQ)2+g2 (4:54)

The side emission spectrum here is the same as the spontaneous emission spectrum
calculated alternatively by solving the master equation by Carmichael and others
[177]. The forward emission spectrum is what we expect to measure by an ideal
detection system at the output of the cavity in the forward direction, and has not been

presented previously, to our knowledge. For zero atom-cavity detuning A = 0, where
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the atom and cavity resonances are degenerate, both the side emission and forward

emission spectra show the normal-mode splittings, which however, are different. The

splittings are Aw; = 2\/ [g5 + 2¢2(k + 7)]1/2 — K2 for the side emission, and Aw; =

2\/ g8 — (2 +~2)/2 for the forward emission, as shown by the thicker curves in Figs.
4.4(a) and 4.4(b) respectively. Both are different from the generalized Rabi splitting
2g.

Beyond the energy-splitting difference at zero atom-cavity detuning, it is also
illuminating to investigate the dependence of the energy eigenvalue structure on
the atom-cavity detuning. Shown in Fig. 4.4 are plots of the spectra, in the
strong-coupling regime, for seven different values of atom-cavity detuning A. As
|A| increases, the vacuum Rabi splitting also increases for both the side emission
and forward emission spectra. At the same time, for the side emission spectra, the
cavity-like peak features stronger emission and the atom-like peak grows smaller. For

the forward emission spectra, however, both peaks show the same emission intensity.

4.5 Summary

In this chapter, we built a theoretical model for the interaction of a single two-level
optical center and a quantized single-mode field in a cavity. Using Weisskopf-Wigner
theory, we examined the Purcell effect when an optical center is weakly coupled to a
cavity and derived the vacuum Rabi oscillations when the optical center is strongly
coupled to a single mode of a cavity field. The state of the field that is generated in the
process of emission from the cavity can be regarded as a single-photon wave-packet
state and the composite system can be used as a single-photon source. We defined
and calculated the integrated-pulse quantum efficiency for such a single-photon source
in the cavity-QED strong-coupling regime. In the last section, we generalized the
definition of the Wiener-Khintchine spectrum for a stationary and ergodic process to

a non-stationary process appropriate in this case, and derived the analytical formula
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for the cavity-modified forward emission (useful cavity output) and side emission
spectra of single photons emitted from a cavity.

In real experiments, all single-quantum systems inevitably interact with certain
heat baths, leading to dephasing or loss of coherence, even without change in the
populations of the system, the so-called pure dephasing. All the results derived
in this chapter are subject to modification by pure dephasing, particularly when
temperature tuning of the QD has to be used to tune through cavity resonance. In
the next chapter, we study the influence of pure dephasing process on the vacuum

Rabi oscillations, the quantum efficiency and the emission spectra.
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CHAPTER V

INFLUENCE OF PURE DEPHASING

In this chapter, we investigate the influence of pure dephasing, treated in the
phase-diffusion model based on a Wiener-Levy process, on the single-photon sources
in the cavity-QED strong-coupling regime. The pure dephasing process can affect
several characteristics of a single-photon source: broadening the emission linewidths
of the single photons emitted from the source, preventing them from lifetime limited;
smearing the visibility of two-photon interference, spoiling the indistinguishability of
consecutively emitted photons; and decreasing the quantum efficiency of the single-

photon source.

5.1 Introduction

Most if not all single-quantum systems, like an optical center either in gaseous
phase or in a solid state matrix, inevitably interacts with certain heat baths, leading
to dephasing or loss of coherence, which results from a randomization of the phases
of the optical center’s wave functions by thermal fluctuations in the environmental
fields. Population relaxation processes, treated in the previous chapter, contribute to
dephasing with a dephasing rate given by half the population decay rate. It is often
necessary to account for other dephasing interactions, such as elastic collisions in an
atomic vapor, or elastic phonon scattering in a solid, the so-called pure dephasing
process.

Generally speaking, pure dephasing means the decay of the dipole coherence
without change in the populations of the system. Any real transition to other states

leads to population decay. Thus the pure dephasing is caused by virtual processes
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which start from a relevant state and, through some excursion in the intermediate
states, return to the same initial state. These virtual processes give rise to the
temporal fluctuations of phases of the wave functions, which consequently lead to
pure dephasing. Pure dephasing causes the coherent overlap of the upper and lower
state wave functions to decay in time, while not affecting the state populations. For
example, the pure dephasing rate can be small and ignored for resonant excitation of
a single QD at cryogenic temperature (6 K) and low power density [101]. While
at elevated temperatures, howcver, experiments [49, 50| reveal a pure dephasing
contribution that dominates excitonic dephasing, Our results are directly applicable
to experimental data presented in Refs. [44, 45, 47, 48].

In this chapter, we investigate the effects of pure dephasing, treated in the phase-
diffusion model based on a Wiener-Levy process on all the results obtained in Chapter
IV. In Sec. 5.2, we built the phase-diffusion model described by a stochastic model
of random frequency modulation. Based on this model, we solve the stochastic
equations of motion and calculate the influence of pure dephasing on the vacuum Rabi
oscillations and the quantum efficiency in Secs. 5.3 and 5.4, respectively. Finally, in
Sec. 5.5 we calculate the emission spectra in the presence of the pure dephasing.
We found that the depths of the vacuum Rabi oscillations are reduced, the quantum
efficiency is decreased, and the emission spectra are broadened in the presence of pure

dephasing. Part of the work discussed here has been published in Ref. [52].

5.2 Phase-diffusion Model for Pure Dephasing

The effects of pure dephasing can be calculated numerically, based on the Green
function formalism by considering the microscopic details of various virtual processes
[178]. Instead, for simplicity we treat this problem analytically in the phase-diffusion
model where the incoherence due to elastic collisions or elastic phonon scattering is
described by a stochastic model of random frequency modulation, as shown in Fig.

5.1, replacing the previously constant atomic transition frequency as in Eq. (4.6) or
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the phase of the wave function by an instantaneous one

wo — wo(t) = wo + f() or
t (5.1)
wot — / dt'wo(t) = wot + (2),
0
where f(t) is the instantaneous deviation of the transition frequency due to the elastic
t
collisions or scattering process and ¢(t) = / f(t')dt' is the instantaneous stochastic
0

phase of the wave function. We assume the phase of the wave function is a Wiener-

w+ /(1) (f())=0
(F0f))=2y,8(~1)

- - -

FIGURE 5.1: Schematic diagram and analytical description of pure dephasing
processes in the phase-diffusion model.

Levy process [179]. In this phase-diffusion model f(t) = (¢) is a random, stationary,

Gaussian variable with the mean value and the mean-square correlation given by

(f(£)) =0, (f(O)F(¥)) = 273 6(¢ — ¥). (5.2)

The angular brackets indicate a statistical average over the random variables of the
stochastic process. The Markovian nature of the process is reflected by the presence of
the delta function §(¢ —¢'). The Gaussian property is introduced such that all higher
correlation functions can be obtained from the second-order correlation function by
permutations and multiplications [176]. 2+, is the pure dephasing rate.

Taking into account the pure dephasing modeled by the stochastic process, the
net changes for equations of motion of E(t) and C(t), as given in Chapter IV, are

that the phase terms €*** in Eqs. (4.20) and (4.21) should be replaced by efl&*+¢(®)],
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such that

E(t) = —igee®OlO(t) —yE(1), (5.3)
Oy = —igee el E(1) — kC(1). (5.4)

We note that the above equations with stochastic random variables are examples
of a multiplicative stochastic process, studied intensively previously by various
researchers, as shown in Refs. [180, 181, 182]. We solve these equations exactly, using
the method developed by Wodkiewicz [182] for a multiplicative stochastic process

described by the following general vector equation

45ty = [Mo + 1 (6) My 7(2), (5.5)

i
where #(f) i3 an n-dimensional vector, My and M) are arbitrary n x n matrices,
in general complex and time independent, and f(t) is the random variable of the
stochastic process described by Eq. (5.2). The equations of the type (5.5) can
be solved for the quantum expectation value of ¥(¢) exactly [182]. For a Wiener-
Levy process, the stochastic average of the equation satisfies the following differential
equation

£ 0) = [Mo — %M} (70 56)

z
The solution to Eq. (5.6) can be written in the Laplace-transform form

70) = [ 5w ON" (2} GO, (5.7

where the matrix N71(z) is the inverse to N(2), which itself is given by the formula
N(z) = 2l — (My — ~M?). In Eq. (5.7), the contour of integration C' lies parallel
to the imaginary axis in the complex z plane, to the right of all singularities of
the integrands. In order to find the time behavior of (¥(#)}, we have to invert the
matrix N(z), whose determinant plays an essential role because the roots of its secular

equation are the poles of the integration in Eq. (5.7).
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5.3 Vacuum Rabi Oscillations in the Presence of Pure
Dephasing

We proceed to solve the stochastic Egs. (5.3) and (5.4). For simplicity, we
consider the case when the emitter and the cavity are in resonance, A = 0. The
detuning can always be put back without difficulty. First, by making the substitutions
E(t) = E(t)e™ and C(t) = C(t)e™™ for convenience, we obtain the following simpler

equations

g

(t) = —igee T OC(1), (5.8)
C@) = —igeee PO E(L). (5.9)

Then by defining variable Y (t) = e 70 (1) so that the differential equation for

E(t) does not explicitly depend on the random variable ¢(f), we obtain a matrix
equation of the type (5.5) for a multiplicative stochastic process, with
E( 0 —4 00

O R T ) a4 5.10)

and a statistically independent initial condition (#(0))* = (£(0),Y(0)). The inverse

matrix to the matrix N(z) is

1 2+ T+ —ig

N = v

(5.11)
—i90 z

Plugging Eq. (5.11) back into Eq. (5.7), using the Laplace transform technique and
choosing properly the contour of integration () we obtain the quantum expectation

value of the probability amplitude (£/(t)),

(Bw) = /C LG F(jfif((f)_ Zfﬁm)

— e~ THr)t/2 _ (5.12)

x {lcos(glt) 45 ; i sin(glt)} E(0) - {@ sin(glt)} Y(O)},

1 (51
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where g, = \/gg — (T'+7,)2/4. Similarly, if we define X(t) = " *WE(t), while
keeping C(t) unchanged, we obtain

<é(t)> _o(T=w)t/2

x {[COS(ta) _ Fg" Y sin(ggt)} C(0) — r@ Sin(ggt)] X(O)}? (5.13)

g2 g0

where g, = \/ 92 — (' — ~,)?/4. Taking into account the definitions of £(¢) and C'(¢),

as well as the fact that X(0) = £(0) = E(0) and Y(0) = C(0) = C(0), we transform
back to E(t) and C(t),

(Et)) — o= (K2
(@)

'+, . igo .
cos(git) + 3 To sin{g) _Hp sin{g ) E(0)
X ia g S ” . (5.14)
A sin(gat) cos(gat) — £ sin(gqt) C(0)
G2 209

The generalized Rabi frequencies for (E(¢)) and (C(¢)) now are different from
each other, as compared to Eq. (4.24) in Chapter IV, where they were the same
for both (£(t)) and (C(¢)). This implies the destroying of coherence between the
two eigenstates of the system, due to the pure dephasing process. We will show this
phase-destroying effect on the vacuum Rabi oscillations explicitly later in this section.

We are more interested in finding the influence of the pure dephasing on the
probabilities |C'(¢)|? and |E(#)|?, or I(t) = |C(2)|? and J(t) = |E(¢)|%, because they
give the normal-mode oscillations and are what one measures in experiment. [n order
to find the equations of motion for them, we have to introduce two other one-time
functions H(t) = E(#)C*(t) and H*(t) = E*(¢)C(t). The equations of motion for

these functions are

H() H()
d| 2O | | B
7| e = M(t) o | (5.15)
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with the matrix M (¢) being

0 0 g e~ Titip®) 9 el t+io(t)
- 0 0 igoe T _jguelt—ielt
T = . (516
) —igoe T jggelttiel®) ¢ 0 0
igoe T —jgge TRl 0 0

We solve these equations assuming the optical center is prepared in an excited state
E(0) = 1, C(0) = 0 at time ¢, = 0. We solve these one-time functions one by one
as we did above for solving {(E(¢)) and {(C(¢)). For example, to find the solution
to (I(t)), defining Uz (t) = %O H(®), Up = T E (1), Z1(t) = e®J(t) and
keeping I{t) unchanged, we obtain a matrix equation as the standard vector form of

Eq. (5.5), with [77(8)]T = [U;(8), Uz(®), I(t), Z:(8)], and

I 0 —ige g -1 000
0 T gy —i ¢ 100

My = AL I ¥ A (5.17)
—igy gy O 0 0 000 |

and a statistically independent initial condition (#;(0)}" = (0, 0, 0, 1), where we have

used the initial conditions at £, = 0, as well as the definitions of E(t), C(¢) and 7;(2).

In the cavity-QED strong-coupling regime, (4g2 — I'?) > I‘z,f‘;ﬁ , the solution for
{I(1)) is found to be well approximated by (see Appendix B)

2

Ity = 29—9"2eif—%[1+€)f21f [e%msfw? _ z—; sin(2gt) — cos(2gt) | , (5.18)

where ¢ = (['/29)%, and ¢ = /g2 — (I'/2)? is the generalized Rabi frequency, as

defined before. Treating +v,/g as a perturbation parameter, we kept the order to

O(7,/g) in the coeflicients and the order to O(~,e/g) in the exponential arguments.

Similarly, after some tedious algebra, we find the time evolutions of {J(t)) and {(H(¢)}
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are (see Appendixes B),
9 [THyp(1+€) /2]
— - +e)/2t
((0) = e
2

- 2
X {evp(1+3€)tf2 - lﬁ _ 9= %/2) ;p/Q)} sin{2gt) ~ (1 - %) cos(2gt)} , (5.19)
49 9 9

890 vy (34e)L/2
Hit =_J’Yp(+)"-/
(1 (e)) = e

I'— , I
X [%e'ﬁ?(l_?&)if? _ —%E_"TP(]-—QE)UZ _ % Cos(2gt) _|_ Sln(2gt):| . (520)
g g

Finally, the quantum expectation value of the complex conjugate of H() is just
the complex conjugate of its quantum expectation value (H*(¢)} = (H(¢)}*. Using the
definitions of £(t) and C(¢), we can easily find the solutions for {|E(£)|*} = e=2*{J(2)}
and {|C(£)|*) = e **(I(t)). Therefore, the probability of finding the system in the

excited atomic state, including the pure dephasing, is

2
‘ g _ e
(P.(1)) = (|E@)?) = 2L e Krmlite)/2lt

=57
_ 2

X {e%“HEW — {ﬁ — M} sin(2gt) — (1 — 2%) cos[?gt]} . {5.21)
4g 90 9

Shown in Fig. 5.2(a) and 5.2(b) are plots of the probability P.(¢) with linear and
logarithmic scales respectively, in the presence of pure dephasing. And the probability
of finding the system in the single cavity mode P,(t), subject to pure dephasing process
is
(Pet)) = (IC®)F)
2

QQ—;B_IKJF%(HEW]* gwilser/z _ o sin{2gt) — cos{2gt) | .

(5.22)

Shown in Fig. 5.3(a) and 5.3(b) are plots of the probability P.(t) in the presence of
pure dephasing. The plotting parameters are the same as those in Fig. 5.2. The

modulation depths of the dot and triangle curves, with pure dephasing rates +,/27 =

(1.0, 2.5) GHz, are reduced, as compared with the square curves where there is no
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FIGURE 5.2: The probability of finding the optical center in its excited state: (a)
linear scale, and (b) logarithmic scale for three different pure-dephasing rates v, /2r =

(0, 1.0, 2.5) GHz (square, dot and triangle respectively), given (g, &, 7)/27m =
(8.0, 1.6, 0.32) GHz.
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FIGURE 5.3: The probability of finding a photon in the cavity mode: (a) linear scale,
and (b) logarithmic scale for three different pure-dephasing rates ~,/2r = (0, 1.0, 2.5)
GHz (square, dot and triangle respectively).
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pure dephasing. The normal-mode oscillation frequency secms unaffected because
we solved for the probabilities only up to first order in 7,/¢. In fact, it will change
slightly from 2g to 2g{1 — 'yf, /324%) if we approximate to second order in 7,/g. The

normal-mode oscillations arc smeared in the presence of the pure dephasing process.

5.4 Quantum Efficiency in the Presence of Pure Dephasing

Consequently, the emission probability of a single photon into the forward beam

and the QE with the pure dephasing process, as defined before, are

(P8 =2 [ @ (Cir)

_ rgs | 1—e Kl K+ (1 +¢/2)
g2 K — 7,6 [K +7,(1+¢)/2]° + (29)?
,Lg_gg e_[K+f}’P(1+E)/12]t

9 [K + (1 +¢)/2]" + (29)?
Yo . Yo .
X {[K + (1 +¢)/2| [Zé sin(2gt) + cos(2gt)} +2g [Zg_ cos(2gt) — sm(2gt)] } ,
(5.23)

and

Ta(p) = (Folt — 00))

_g_- {1 (K o) K+ (1 +¢/2) } 5.2
9K — e K + (1 +8)/2° + (29)2
These results reduce to our earlier results, given in Chapter IV, in the limit v, — 0.
Figure 5.4(a) are plots of the emission probabilities with and without pure dephasing,
and Fig. 5.4(b) is the QE 7, as a function of the pure dephasing rate. Other plotting
parameters are the same as in Fig. 5.2. The emission probability is also smeared for
a pure dephasing rate <y, /27 = 4 GHz compared with no pure dephasing. The QE

decreases only about 1% as the dephasing rate increases from 0 to 4 GHz.
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FIGURE 5.4: (a) Emission probabilities without and with pure dephasing v,/27 = 4
GHZ (square and dot curves respectively). (b) The QE 7, as a function of the pure

dephasing rate.
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5.5 Emission Spectra in the Presence of Pure Dephasing

In order to calculate the emission spectra, we need to find the two-time correlation
functions because the emission spectra in the long-time limit are proportional to
the Fourier transform of their convolutions. The two-time correlation functions are

defined as follows:

Qlt,t) = E@E*(), Rt,t)=CRE®), (5.25)
F(t,t) = EBHC, G, t) = CHOIC ). (5.26)

Of these Q(¢,t) and G(¢,¢') are required for calculating the emission spectra. The
quantum regression theorem [183, 168], which provides a framework to calculate two-
time correlation functions, states that the equations of motion for two-time correlation
functions @(¢,t') and R(¢,¢') and F(¢,¢) and G(t,t") with respect to variable ¢ obey

the same equations of motion as those for (¢) and C(¢), respectively,

QY)Y = —igee TRt F), (5.27)
AR, YY) = —igeelte DQ(t, 1), (5.28)
OF(t,t) = —igee TeDG( 1Y), (5.29)
B.G(t, ) = —igeelte O F(t, 1), (5.30)
but now with initial conditions
Qit=t.t) = |EQ)}=J@), (5.31)
Rt =1t,t) = CEYE ()= H*{), (5.32)
Fit=t,t) = EC)=H{E), (5.33)
Git=t,t) = |CH)|?=I(t), (5.34)

which are already solved and given explicitly by Egs. (5.18) to (5.20).
We now specialize to the case ¢t > ¢ and define ¢t = ¢ + 7. We are particularly

interested in the expectation values of (Q(t' + 7,¢)) and (G({' + 7,t)) as pointed
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out before. The solutions for their expectation values, according to the quantum
regression theorem, have the same forms as the solutions for the one-time averages of

(E(#)) and {C(#)) in Eqgs. (5.12) and (5.13), with the initial conditions given above:

QU +7,8)) = e~ T+ m)r/2
] [eostarr) + S sintonn)| ) - [Lsntan)| 0} (539

q1

(G + 7, 1)) = eT+w)r/2
X { [008(921") T Sin(gz'r)} Ity — [;i: Sin(g2q-)] (H(t’))} (538

By substituting E(t') = E(#)e, Ct) = C(#)e™ and the initial conditions into
Eqgs. (6.35) and (5.36), we obtain the explicit solutions for (FE{t' + 7)E*(#')) and

{C(t +7)C*{t)). The side emission and forward emission spectra are then

Sse () = 2?r)/PLe {fom dre’t {/Ooo dt' (Bt + T)E*(f»} } (5.37)
= g—%Re v/
g (K +) /2 -9 + g2
—-3ar 2= [K+%B+e)/2T/2+ ) I'—,
2+ + dye) K+, (34¢) /2] + (29)° K + 2y, — 4y,e
Fopes T E+y —i)
W {[(Kﬂp) /2 —iQ)" +g%}
y 1 K —4g°/gs + ([l + (1 —29°/8)e/2]
K — e (K + v (1+¢€) /2" + (29)
;o () = i—HRe { ,/o " drei [ fu T (c + T)C*(f’))] } (5.38)
= ﬁRe 5/
g (K +7,) /2 —iQ) + ¢
y 3r 2 —[K+%B+e)/2lT/2+)  T—x
2(K + 7 + dme) K+, (34¢) /2 + (29)° K + 2y, — dv,e
+@%{(wmw+%—M)}{ L K+p(+e/) }
K +w) 2=+ g | | K-we [K+vnl+e) /20 +29)° |
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Shown in Figs. 5.5(a) and 5.5(b) are the side emission and forward emission spectra
in the long-time limit, for different dephasing rates -y,, while other plotting parameters
are the same as those in Fig. 5.2. The effect of pure dephasing is twofold. The phase
fluctuations decrease the peak intensities of the spectra, and broaden the linewidths
of the two peaks and hence smear out the splittings, which correspond to damping
rates of the vacuum Rabi oscillations in the time domain as shown in Figs. 5.2 and 5.3.

This effect is further seen to increase with increasing values of pure dephasing rate

Yo-

5.6 Summary

In this chapter, we studied the influence of the pure dephasing process on the
single-photon sources, in the case that the pure dephasing rate is significantly less than
the coherent coupling rate, that is, up to first order in +,/g. These results should be
useful in analyzing photoluminescence spectra from strongly coupled semiconductor-
QD micro-cavities, whete pure dephasing cannot always be assumed negligible because
often temperature tuning of the QD has to be used to tune through cavity resonance
[44, 45, 47]. One can use this method, for example, to model the time jitter of
solid-state SPS, where the excited state of the QD or color center in diamond is often
populated by spontaneous phonon emission, by averaging over nonradiative relaxation
time. One may also calculate the two-photon interference visibility assuming having
two independent buf identical SPS and investigate how the pure dephasing processes

affect the indistinguishability of the consecutively emitted single photons.
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and triangle respectively).
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CHAPTER VI

CONCLUSIONS AND OUTLOOK

In this closing chapter, we first conclude the dissertation with our experimental
accomplishment and theoretical contribution, before pointing out the challenges we
are facing now. As designed and constructed, this external optical micro-cavity has
the flexibility to adapt to other optical centers such as cold atoms in gaseous phase and
defect centers in solids for efficient single-photon sources. Then, we give an outlook
for possible incorporation of cold atoms on chips and color centers in diamond into
this unique system, and for other applications in quantum information science and

techinology, such as generation of pairs of polarization-entangled photons.

6.1 Conclusions

For the research presented in this dissertation, we have been mainly exploiting
the unique properties of nanoscale semiconductor QDs integrated with an external
optical micro-cavity for cavity-QED studies, on both experimental and theoretical
aspects [6, 52], particularly for efficient single-photon sources [51]. We have designed
and constructed a hemispherical, high-solid-angle, external optical micro-cavity with
semiconductor QDs at the focus of the cavity and at an antinode of the fleld to
maximize the light-matter interaction.

A unigue component of our cavity is the concave micro-mirror. We developed a
technique, based on gas bubbles formed by surface tension inside molten glass, for
its in-house fabrication, giving a surface roughiness on nanometer scale for the dimple
surface that is crucial for use in a high-finesse optical cavity. Optical coating of such a

small and highly curved micro-mirror is nonstandard and is challenging. We designed
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a dielectric coating that succeeded in giving a high reflectivity {99.5% or higher) over
a wide angular range of £40 deg.

We constructed the micro-cavity system on a sophisticated five-axis mechanical
assembly to give all the necessary spatial and spectral controls. The whole micro-
cavity system operates inside an ultra-high vabuum chamber, to allow cooling the
sample to around 10-17 K and to avoid coating of the samples by cryopumping.
We tested and characterized the optical properties of the micro-cavity to optimize
the coherent interaction rate between the QDs and the micro-cavity. Preliminary
spectroscopic results show significant of strong QD-field interaction. We also
developed a theory of single-photon sources operating in the cavity-QED strong-
coupling regime and investigated the influence of pure dephasing on its behavior in
both the time domain and the frequency domain.

Major achievements and contributions are summarized below:

On the experimental side: we engineered a hemispherical, high-solid-angle, optical
micro-cavity with a length of 60 pm. The external micro-cavity is comprised of
a planar distributed Bragg reflector {DBR) mirror and a concave dielectric mirror.
Nanoscale semiconductor QDs are embedded in the center of a one-wavelength spacer
layer on top of the DBR mirror, to be placed at the focus of the hemispherical micro-
cavity and an antinode of the cavity field to maximize the light-matter interaction.
The hemispherical design gives a diffraction-limited spot at the QDs location, leading
to higher spatial resolution and smaller cavity mode volume; the external-mirror
approach provides maximum flexibility in scanning laterally to position QDs in the
center of the cavity as well as providing the capability of scanning the cavity resonance
to the spectral position of the isolated QQDs, all of which are necessary and crucial for
cavity-QED strong coupling and for efficient single-photon generation.

On the theoretical side: We formulated a theory of the interaction between a single
quantum optical center and a single mode of a cavity field based on Weisskopf-Wigner

theory dealing with spontaneous emission in free space. By solving the dynamics of
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the composite system, we derived the Purcell effect in the cavity-QED weak-coupling
regime and the vacuum Rabi oscillations in the cavity-QED strong-coupling regime.
We advanced thc understanding of single-photon emission in the cavity-QED strong-
coupling regime that includes intrinsic dissipations of the coupled system. We also
calculated the influence of pure dipole dephasing, treated in the phase-diffusion model
based on a Wiener-Levy process, on the vacuum Rabi oscillations and the quantum
efficicncy in the time domain and the emission spectra in the frequency domain. This
allows, for the first time, full modeling of the emission quantum efficiency, as well as

the spectrum of the single photons emitted into the useful output mode of the cavity.

6.2 Future Work and Outlook

It is ideal to locate a single semiconductor QD in the QW plane in the middle of
the one-wavelength spacer layer on the transverse plane of the DBR. mirror; however,
it is hard to single out an individual QD spatially that is also resonant with a single
cavity mode. Most of the times, we observe signatures of interaction betwecn many
(QDs and a single cavity mode which may also contain multiple photons, as shown by
those spectroscopic scans in Chapter I11. It is relatively easier to make one photon on
average per cavity lifetime occupying a single mode, but it is still difficult to identify
single QDs. It could be due to the statistical distribution of the QDs such that there
are too many QDs in this particular location at which we are locking at, and also
too many in this wavelength region where we are probing. The next logical step is to
use a proper laser to probe the right spectral region where the (QDs see the strongest
field intensity due to their resonance with the spacer layer, as designed. We may also
need to manually move the semiconductor sample to a different location by a large
amount when opening the UHV chamber next time, if necessary. It is desirable, in
the future, to theoretically modify multiple optical centers interacting with a single
cavity mode both in the cavity-QED weak-coupling and strong-coupling regimes in

order to better understand the physics and simulate the real experiments.
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There are two general aspects about the semiconductor QDs that we can possibly
improve for making better single-photon sources: the sizes of the QDs and the
positions of the QDs on the growth plane. In terms of the uniformity of the sizes of
the semiconductor QDs, the self-assembled QDs have more evenly distributed sizes
[184], reducing size-dependent emissions, as compared with the [FQDs that we use
whose emission wavelengths depend on their sizes. A less desirable feature of these
self-assembled QDs is that they still form at random positions on the growth plane,
as IFQDs do. However, great progress has been made to control the self-assembled
QDs positions within the device structure by patterning nanoscale pits on the growth
surface [185, 186]. So in the future, we could use patterned self-assembled QDs as
our optical centers for efficient single-photon sources.

Semiconductor QDs are very promising on one hand, but théy are intrinsically
non-identical, albeit considerable progress has been made [185, 186] towards this goal.
Diamond-based optical centers offer a better possibility to have identical emitters,
since they are essentially ions or molecules embedded in well-defined, reproducible
lattice sites [187]. Their envisioned role in QIP is promising, due to the tight
localization of the electron spin and charge at the defect and long dephasing times of
ground state spins. Researchers have tried to deposit natural diamond nanocrystals
onto silica micro-spheres for cavity-QED studies. Signature of strong interaction
betﬁeen a nitrogen vacancy in diamond and a whispering gallery mode of a micro-
sphere has been reported [188].

However, it is not straightforward to integrate diamond with other devices, mainly
due to extremely demanding growth conditions for diamond thin films [189]. It is
only recently demonstrated that good optical quality diamond thin films with color
centers can be grown on certain substrates [190]. In Ref. [191], the author designed
a resonator made of a cylindrical or spherical piece of a polymer squeezed between
two flat dielectric mirrors. Diamond nanocrystals can be embedded in the polymer

for single-photon generation. Another scheme, as reported in Ref. [192], proposed
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a diamond based photonic crystal micro-cavity operating in the cavity-QED strong-
coupling regime for quantum computing. But it is still challenging to incorporate
diamond thin films onto a highly reflective mirror as a substrate, which is required
to build a high-finesse optical cavity, because coatings for the commercially available
mirrors all fail under the demanding growth conditions for diamond. We investigated
this problem and think it is feasible to directly grow diamond in a SizN, spacer
layer on top a specially designed SizN,/SiO2 DBR mirror [193, 194], or on top of a
SisNg/SiON/Si0; one if minimizing the weak absorption introduced by SigNy layer
in the near infrared region is desired, as pointed out in Chapter II. Another design
using AIN/SiO, DBR mirror [195, 196, 197] is also promising, since AIN has better
optical properties (less absorption in the near infrared region) compared with SizNy
but with more demanding growth conditions. In the future, we could incorporate
diamond into our external optical micro-cavity for efficient single-photon sources and
for quantum information processing (QIP).

Trapped atoms and ions are intrinsically identical, offering many advantages and
already leading to important advances in the field of QIP [16, 159], but typically
need relatively large setups, such as a magneto-optical trap, to trap and hold them.
The recent developments on atom chips may get around this problem in the future, in
combination with the state-of-the-art high-finesse optical micro-cavities [54, 198, 199)].
We believe that a micro-cavity/atom chip device operating in the cavity-QED strong-
coupling regime will expand the scientific application scope of the ultra-cold atoms
in quantum information science and technology, in addition to efficient single-photon
sources. |

Other than the cavity-QED strong coupling and beyond the efficient single-photon
generation. This composite micro-cavity system is also good for producing pairs of
polarization-entangled photons [158], which are useful as a resource for quantum
communication (teleportation). Entangled photon pairs based on radiative decay

cascade of a biexciton in asymmetric semiconductor QDs in free space, like the ones
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used in our experiment, have been proposed [200] and demonstrated [123, 201]. A
semiconductor QD biexciton decays radiatively through two intermediate optically
active exciton states, as shown in Fig. 2.10. In an ideal and symmetric QD, the
cascade exciton emission will produce polarization-entangled photon pairs [122]. But
in real semiconductor QDs, the frequency degeneracy of the intermediate exciton state
is often broken, causing a small frequency splitting between the z-polarized and y-
polarized excitons [122]. This is because of the in-plane anisotropy and asymmetry of
the structural properties of the QDs, such as elongation of the QD along one crystal
axis [111] and in-built strain in the crystal [184]. The splitting in turn provides
‘which-path’ information, preventing polarization entanglement of the intermediate
exciton emissions.

The essential condition that must be met for two photons to be polarization
entangled is that two possible paths for creating them must be indistinguishable. So
if the ‘which-path’ information caused by the frequency splitting can be erased, one
would again be able to produce polarization-entangled photon pairs. In Ref. [123],
researchers used carefully selected unsplit InAs/GaAs QDs, or alternatively use split
(QDs but tuned to zero by an externally applied in-plane magnetic field to successfully
generate polarization-entangled photon pairs. While in Ref, [201], researchers showed
they can erase the ‘which-path’ information by careful spectral-filtering, thus also
produce polarization-entangled photon pairs.

Based on the proposal for entangled pair-photon generation in Ref. [158], one can
use adjacent longitudinal modes of a cavity to erase the ‘which-path’ information,
ensuring two photons emitted in a cascade from a biexciton state of a QD to be in
an indistinguishable fashion and therefore producing polarization-entangled photon
pairs. The proposed technique relies on the principle that a QD inside a strongly
coupled cavity can emit light only into one of the cavity modes. This determines the
possible frequencies of any emitted photons, independently of the center frequency of

the exciton emission line. When two exciton emission lines with frequencies are near
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a cavity-mode frequency, the cavity can force the two exciton emissions into a cavity
mode. Any photon found to be in the cavity mode could have originated from either
emission, ensuring indistinguishability.

Considering spectroscopic properties of a biexciton in an [FQD, the biexciton shift
AE, as shown in Fig. 2.10, is about a few meV and the fine structure splitting ¢E
between the the z-polarized and y-polarized excitons is of the order tens of peV. Our
micro-cavity is in a special length regime (50-500 pm), corresponding to a FSR 1.2-12
meV, and has a linewidth about tens of pueV. It is thus feasible make the 'SR equal
to the biexciton shift AE and the linewidth equal to the fine structure splitting 6K for
certain IFQDs. Therefore, it should be possible to bring both doublets caused by the
fine splitting close to cavity modes simultaneously by fine tuning the cavity length or
the FSIRR to meet the requirements for generating polarization-entangled photon pairs.
If necessary, an external DC electric field can be applied to introduce a Stark shift
in the doublet, in addition to tune the cavity length alone. To generate polarization-
entangle photon pairs based on our system is another promising direction to go for
the future.

There have remarkable progresses been made during the past decades in generating
efficient single-photon sources and entangled pair photons [83, 32]. Despite all these
efforts, there are still many remaining challenges to make integrated and compact,
reliable and bright quantum light sources for QIP. Our work demonstrates that we
can devise the state-of-the-art facilities in the lab to exploit the quantum nature of
light-matter interaction, and develop cutting-edge technology potential for industrial
applications as well as for other academic applications, such as for QIP in cavity-QED
with cold atoms on chips and color centers in diamond. We consider this research to

be an indispensable step towards ultimate integrated devices for QIP in cavity-QED.
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APPENDIX A

FABRICATION OF THE MICRO-CONCAVE MIRROR

In this appendix, we describe the detailed procedure of fabricating micro-concave
mirror substrates and give a simple method for measuring their radii of curvatures
and depths. We thank Ruediger Loeckenhoff for carrying out the initial work in our

lab leading to successful fabrication of the micro-mirrors [146].

A.1 Procedure of Fabricating Micro-concave Mirror
Substrates

We start with micro-capillaries (Drummond Microcaps} that are usually used
to measure exactly one micro-liter of chemicals [202]. They are made of N-51A
borosilicate glass from Kimble Glass with a refractive index n = 1.49 and a softening
point of 785°C [203]. About 50 capillaries are put into a graphife crucible as shown in
Fig. A.l(a) and are melted in a tube-furnace (Lindberg/Blue) at 1100°C in a nitrogen
(or argon} atmosphere. While the capillaries collapse they enclose gas-bubbles of 40-
100 pm in diameter. The melted glass is cooled down at 3 degree Celsius per minute.
~ In the end, one gets an elliptically shaped glass bulk with major lateral sizes about
10-15 mm and minor sizes about 5-10 mm, as shown in Fig. A.1(b). A faster cooling
rate might result in wrinkles.

After it is hardened, we grind and polish the glass bulk on a polishing station
using first a 50 pm, and followed by a 15 ym and later a 6 pum grit-size diamond disc
(Allied High Tech Products, Inc. [204]), featuring nickel-plated diamonds in a raised
dot matrix pattern. By polishing to an arbitrary depth about 50 bubbles are opened.
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FIGURE A.1: (a) Glass tubes in a graphite crucible; (b) A hardened glass bulk with
trapped gas bubbles; (c) A coated micro-concave mirror substrate.

We examine them under a microscope and if necessary will polish the glass bulk again
using the 6 pum grit-size diamond disc until finding the most suitable dimples.

Glass particles sticking to the inner surface of the dimple is a major problem.
Below a certain size about 5 um they are bonded so tightly by Van der Waals force,
that they can no longer be removed in the sonicator. By flowing cool soap water
during polishing, we found that it forms a monolayer on the surface of the particles
and the dimples and prevents sticking. This reduces the number of particles stuck to
the inner surface of the dimple to about 1/5 based on our experiments.

The polished surface is temporarily glued to the center of an aluminum plate with
Crystalbond 509 heat adhesive [205]. The dimples are thus protected from debris
from contamination from the following polishing steps. Together with the sample
three 170 pum thick microscope cover glass are glued to the aluminum plate periphery.
In the following polishing steps they stabilize the plate and slow down the polishing
so that we obtain a flat sample of about 150 um thick.

A 30 pm grit-size diamond grinding disc is used for roughing followed by 15 um
and 6 pum grit-size diamond discs. The sample is then polished with diamond slurries
(Polycrystalline Diamond Suspension, Glycol Based from Allied High Tech Products,
Inc. [204]) of 6 um and 1 um grit-size on polishing cloths. An optical finish is achieved
using a 0.05 pm colloidal silica suspension on a polishing cloth. The resulting thin

slide is removed from the sample holder and cleaned in the sonicator with acetone
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first to remove the remaining Crystalbond 509 heat adhesive. Soap water, purified
water and methanol are then used in sequence to clean the dimple. The dimple is
finished cleaning with isopropanol. Later the surface where the dimples are open will
be coated with a highly reflective dielectric coating for use in a high-finesse optical
cavity, while the other side of the slide with optical finishing is left uncoated. Figure

A.1(c) shows the coated surface of a micro-concave mirror substrate.

A.2 Measuring the Radius of Curvature and Depth of a
Dimple

For an uncoated clean dimple, we can estimate the radius of curvature of a dimple
by measuring the diameter of the rim of the dimple, which is a cross section of
the spherical gas bubble and is no larger than the diameter of the dimple. The
diameter of the rim can be easily measured with a measuring eyepiece under a
microscope. Determining the depth and the radius of curvature of a dimple is much
harder since there are no structures at the bottom of a clean dimple that could
be imaged. Fortunately for a coated dimple, we developed a simple but effective
method to measure the radius of curvature and the depth of a dimple, described in
the following.

We use the image of the illumination filament of the microscope that is situated
in a distance S in front of the focal plane of the 25x objective. Moving a flat mirror
by the distance §/2 = 1000 pum towards the objective we could see the image of the
filament through the microscope. Compared to the size of the dimple (Ry = 50 pm)
we can set S = oo. If we put a dimple under the microscope it will act as a concave
spherical mirror imaging the filament at its focus with a distance Rp/2 from its
bottom. Consequently if we see an image of the polished surface and the filament at
the sé,me time through the microscope, the dimple is exactly polished to Ry/2 and
will have a half angle of 60 deg. Otherwise the sample has to be moved by a distance

h to image the filament instead of the surface, as shown in Fig. A.2. Knowing the
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FIGURE A.2: Schematic diagram showing the filament image is above the polished
surface, defined by h > 0; the opposite case is that the image is below the polished
surface and A < 0.

diameter of the rim of a dimple 2¢ and the offset &, the radius of curvature Ry and

the depth d of a dimple can then be calculated and they are related by

Ry = -2?; (M+h) , (A1)
d = % (VAR +307 - 21) . (A.2)

Use positive values for A when the image of the filament is above the polished surface
and negative values when the image is below the polished surface.

We expect a good sphericity of the dimple since the surface tension is an
increasingly strong force compared to other forces like gravity for decreasing
dimensions. A Twyman-Green interferometer can be used to check the sphericity
of the dimple qualitatively. The sphericity was measured quantitatively with a Wyko
interferometer. One example is shown in Fig. 3.3. The surface roughness was also
measured using a Wyko interferometer that carries out a Fourier-analysis of the
surface to determine the power (spatial) spectral density (PSD) of surface roughness
ag a function of the lateral size of the errors. Figure 3.4 gives the PSD data of five
dimples fabricated in this way presented here, as compared with the best polished

dielectric mirrors used elsewhere,
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APPENDIX B

TORREY SOLUTIONS TO THE SECULAR EQUATIONS

Here, we give the solutions to the secular equations based on an approximation

discussed by H. C. Torrey [206].

B.1 Approximate Solution for (I(t))

From the Eq. (5.17) in the context, define matrix M = My —~y, MZ, given explicitly
by

=~ 0 —ign igo
0 I'— ) —1
M= Yo g0 Go . (Bl)
—iGo 190 0 0

?:gg —’&.gg 0 2l

Then the matrix N;(2) = 2I — M and its determinant are

z+9p—T 0 o —ign
0 2+ —I —ige  igo
Ni(z) = ’ (B.2)
190 —1Gg z 0
—1Gs 90 0 z-2I
and
det [N7(2)] = (2 +7 = T) [2 (2 = 20) (2 + v = ) + 495 (= — )] . (B.3)

The secular equation is given by the vanishing of the determinant Eq. (B.3), which

reduces to a cubic equation, for z; =T" — 7,

(z—T) [(z = T)* + 9z = T') + 4g5 — T?] =17, (B.4)
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which is the standard Torrey equation [206, 207]. This cubic equation can be solved
exactly [208], although only in an implicit form. As Torrey has pointed out, in the
special case of interest, this equation has a relatively simple explicit solution. We
solve it in the strong-coupling regime, (4¢3 — I'?) 3 I'?, 42, in which case there are
two kinds of roots. The first of these follows the assumption that (z — I')? is small
compared with (4¢3 — I'?), allowing one to rearrange the cubic equation (B.4) and

solve by iteration

. z-T)(z-T+w)]"
z—1 = T [1 1gE = T2 ,
710
2 m I'+ve+0 l: j‘ (B.5)

where £ = (T'/2g)?, and note that g = 4/ g2 — (I'/2)2. The second kind of root occurs

when (z — P)2 is as large as (493 — I‘Q), but with opposite sign. The cubic equation

(B.4) can be written as

(z—T) 4+ 4g2 —T? = —p(z =T [1 - (Z—EZF)—Q] : (B.6)

To first order in -, the factor (2 — I')* on the right-hand side, Eq. (B.6) can be
replaced by —(4g5 —T'?). This gives a quadratic equation for (z —T'), {z—=T)?+,(1+
£)(z — ') + 4¢*> = 0, whose solutions are the third and fourth roots

234 W ——2—(1"‘5):&?’29’\!1—(%/49) +0 [(9)1
~ r—%(ue)ﬁ:fagﬁo{(%ﬂ. (B.7)

The inverse matrix to the matrix N;(z) in Eq. (B.2) is

1 (] (] (] (]

NE) =

Tzl Maa Taz TNag
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with

na = —igp(z—20(z+v-T)
Nas = ’&'_gg (Z - 2F) (2 —+ Yo — F)
ngg = (2+%—0)[(z~20) (2 +7 —~T) + 26]

ny = 2g5(z+7 —T)

where we only calculate the elements of the third row of N;'(z) because they are

required to calculate (/(t)}, which is then

aw = [ 5= ot

2w (z2—2z)(2—20) (2 — 23) (2 — zy)

__ /’ dz ezt 29%
c2nt (z—2) (2 — 23) (2 — 24)

2
ne 0T/t | vedez _ To oio oy :
2928 e 10 sin(2gt) — cos(2¢gt)|, (B.8)

where we have used the initial condition that {#;(0))" = (0, 0, 0, 1). Treating v,/g
as a perturbation parameter, we kept the order to O(7,/g) in the coefficients and the

order to O(v,£/g) in the exponential arguments.

B.2 Approximate Solution for {(J(f)}

As it is clear from the definition of ¥7(¢}, we can only obtain the solution for
{I(t)) in the above calculation. In order to obtain the solution for {(J{t)}, we have
to derive another equation of the type Eq. (5.5) with the definition of the vector
[G5)])F = [Us(t), Ule), Wi(t), J(t)], and the following matrices:

-1 0 0 0 -I 0 —’&.g[] ?:gn
0 100 0 e ) —3
M, = M, = to T (B.9)
0 000 igo  —igo O 0
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and with the initial condition {#,(0))7 = (0, 0, 0, 1), where U;(t) = e T*=%® F (1),
Us(t) = e THe0 (1), Wi () = e 2FH(2).
The calculation of N;(#z) is almost the same as the calculation in Sec. B.1. The

matrix M = My — v, M; is

-I'— Yo 0 —igo o
0 - - i —1
M= Yoo o T (B.10)
—?:gg %gg =2 0
90 —1go 0 0
Then the matrix N;(2) = 2I — M and its determinant are, respectively,
2+ +T 0 g0 —igo
0 z+9+0 —i i
Ny(z) = Yp g0 9o
90 —24g z+2I 0
—%4o igo 0 <
and
det [Ny(z)] = (z+ v+ D) [2(2+2T) (z + v + T) + 493 (z+ T}, (B.11)

which is the same as Eq. (B.3) provided that we change I" to —I". So the roots of the

secular equation of the matrix Ny(z) are

3
2z =T — vy, zzﬁ-I‘-i—fyps-l—O[(%) },

)]

(B.12)
zgq~ ~T — %3(1+£):Ei29+0

The inverse matrix to the matrix N 7(2) is therefore
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with

nag = g (z+2D){(z+v+T),

Ny = —igo(z+2I)(z+v+1),

nag = 203 (z+ %+ 1),

ny = (z4+7%+T) [(Z+2P)(Z+’Yp+r)+29§}:

where we only calculate the elements of the fourth row of N;'(2) because they are

required to calculate (J(t)}, which is then

ey = [ gme® fas

21 (z—2) (2 — ) (2 — 23) (2 — 24)

=f dz o (z+20) (24T + ) + 263
2mi (2= 2m){(z—z3) (2 — z4) .
c2;- (B.13)
s J0_—[Trpl1+e)/20t
2¢°
B 2
% {e-,fp(uae)t/z _ [ﬁ — M] sin{2gt) — (1 - g%w) cos(2gt)} ;
49’ 9y 1251

where we have used the initial condition that (7;(0))" = (0, 0,0,1) and kept the
order to O {v,/g) and O (I'/¢) in the coefficients and the order to O (yy¢/g) in the

exponential arguments.

B.3 Approximate Solution for (H(t))

In order to obtain the solution for (H(t)), we derive another equation of the type
Eq. (5.5) with the definition of the vector [#x(¢)] = [H(t), Un(t), Wg(t), Zx ()],

and the following matrices:

0 000 0 0  —igy g
0 2 00 0 0 g —1
M, = M, = o G0
0010 —igg  igs —I 0
0 001 ige —igo O r
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and with the initial condition (#z(0))" = (0,0,0,1), where Ug(t) = 2¢O H*(¢),
Wi(t) = e TH¥O (1), Zy(t) = S0 J(#). The matrix M for the vector Tg(t) is

0 0 —1igo g0
0 —4 7 —1
M — MU . ’}’le2 _ | ) Yo Go o
—igy 4G —LI—7% O
igy  —igo 0 I'—v
Therefore
Z 0 100 —1iGn
0 z+4y —%gn 100
NH (Z) = ) . ?
g0 —igo 2+ (T +y) 0
—igy 1Go 0 2= (T =)

and the determinant of the matrix Ny(z2) is
det[Ny(2)] = 2(z + 4%) [z + %) —T°] +4f (2 + %) (2 +2%) . (B14)

The secular equation is given by setting det[Ng(2)] = 0, which gives

(z+%)" (2 + 2%)" + 465 (2 + %) (2 + 2%)
—T? (2 +27,)" — 492 (2 + %) = —42T% (B.15)

In the most general case, no simple factorizations occur, and a quartic equation
must be solved. Again the roots are implicit in the general case [209], but explicit
in the strong-coupling regime. Similarly, there are two kinds of roots in the strong-
coupling regime. The first of these follows from the assumption that both (z + ”;@,)2
and {2z + 2'yp)2 are small compared with (493 - Fg), in which case it is natural to

rearrange Eq. (B.15) into the form

(z+ %) (2 +2%) [(24+ W) (z + 2%) + (495 — T? — 472)] = —4y;T?,  (B.16)

. + 27, z+ 7,
where we used the assumptions (4¢2 — %) 3 T2, 72, 22| & 1 and |22 | »
p (dg; — T) 13l e P
1. Then
—dypT? (z+m) (2+2%)]"
2 ~~ P 1 E £ ) B.17
(o) ) ot |1+ T
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which is solved by iteration. The roots are

2 & —y(l4+4e)+ 0

)]
()]

The second kind of root aceurs if (2 + ) (2 + 27,) is as large as (4g3 — ['*), but has

29 R —2v(1—-2)4+0

the opposite sign. Then the alternative rearrangement of Eq. (B.15) is

Z2—2%
z2+7%) (2 +2v)

(z+ ) (24 2v) + (495 — T? —492) &, I [ ( ] . (B.19)

To first order in v, the factor (2 +,) (2 +2v,) on the right hand side of Eq. (B.20)
can be replaced by — (4g§ — I’z). This gives a simple quadratic equation for z, 2% +

Yo(34+6)z+4g% — 42 +2+42(1 — &) = 0, whose solutions are the third and fourth roots
L b2 P
¥ %\’
a0~ ~ (40 wigy/1- (/e + 0| (2) ]
o\
(_ﬁ) ] . (B.20)
g

o> —%(3—0—5):&:@'29—#0

The inverse matrix to Ny(z) is

11 Mz N1z Ry

i 1 s o &
N (=) = det[N (2)] . . . . ’

with

nn o= {(z2+4%) [(z+%) ~ T + 26 (2 + ),
iz = 0, ‘
ms = —igo(z+4y) (z+% 1),

nuy = iggz+4y) (2+%+1).



Therefore (H(t)) is given by

_ dz .
(H(E) Je omi (z—21){z—20) (2 — 23) (2 — 2z4)
_ ﬁeﬁ igo (z+4%) (z+ 9% + 1)
c2mt (z—z)(z—2)(2—2z) (2 — 21)
10 (3ot
29

14

o {ge'yp(l —Te)t/2 ﬂe—%(l—ge)ﬂ/z _+2%

2g g
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(B.21)

cos(2gt) +sin(2gt) | ,

where we have used the initial condition that (#%(0))” = (0, 0, 0, 1) and kept the

order to O (v,/¢) and O(T'/g) in the coefficients and the order to O (yp¢/g) in the

exponential arguments.
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