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An Abstract of the Dissertation of 

Guoqiang Cui  for  the degree of  Doctor of Philosophy 

in the Department of Physics  to be  taken  March 2008 

Title:   AN  EXTERNAL OPTICAL MICRO­CAVITY STRONGLY 

COUPLED TO OPTICAL CENTERS FOR EFFICIENT 

SINGLE­PHOTON SOURCES 

Approved: 

Dr.  Michael  G.  Raymer 

We  present  experimental  and  theoretical  studies  of  a  hemispherical,  high­solid-

angle  external optical micro­cavity strongly coupled  to nanoscale optical centers  for 

cavity­quantum  electrodynamics  (QED)  strong  coupling  and  efficient  single­photon 

sources. 

Implementations  of  single­photon  sources  based  on  various  optical  centers  have 

been reported in the last  three decades.  The need for  efficient single­photon sources, 

however,  is  still a major challenge in the context of quantum information processing. 

In order to efficiently produce single  photons,  single  optical centers are  coupled to a 

resonant  high­finesse  optical  micro­cavity.  A  cavity  can  channel  the  spontaneously 

emitted photons into a well­defined spatial mode and in a desired direction to improve 

the  overall  efficiency,  and  can  alter  the  spectral  width  of  the  emission.  It  can  also 

provide  an environment where  dissipative  mechanisms  are  overcome  so  that a  pure-

quantum­state emission takes  place. 

We  engineered a  hemispherical optical micro­cavity that is  comprised of a  planar 

distributed  Bragg  reflector  (DBR)  mirror,  and  a  concave  dielectric  mirror  having  a 

radius of curvature 60  11m. Nanoscale semiconductor optical centers  (quantum dots) 
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are placed at the cavity mode waist at the planar mirror and are located at an antinode 

of the cavity field  to maximize the coherent interaction rate.  The three­dimensional 

scannable optical cavity allows both spatial and spectral selection to ensure addressing 

single optical centers.  This unique micro­cavity design will potentially enable reaching 

the  cavity­QED  strong­coupling  regime  and  realize  the  deterministic  production  of 

single  photons.  This  cavity  can  also  be operated  with  a  standard  planar  dielectric 

.mirror  replacing  the semiconductor  DBR mirror.  Such  an all­dielectric  cavity  may 

find  uses  in atomic cavity­QED  or cold­atom studies. 

We  formulated  a  theory  of  single­photon  emission  in  the  cavity­QED  strong­

coupling regime that includes pure dipole dephasing and radiative decay both through 

the cavity mirror and into the side directions. This allows, for the first time, full 

modeling of the emission quantum efficiency, and the spectrum of the single photons 

emitted into the useful output mode of the cavity. 
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CHAPTER I  

INTRODUCTION  

In this opening chapter, we first review the motivation why we chose this 

research topic, namely an optical micro-cavity strongly coupled to optical centers, 

semiconductor quantum dots (QDs) in this research, for efficient single-photon sources 

(SPS). Following this we give an introduction to the problem and identify what 

the tasks are, both scientific and technological, to be accomplished. Oriented by 

the objective, we then describe how to develop the methodology and construct the 

tools that are necessary to solve the problem. That is: designing and constructing 

a composite micro-cavity-QD system; understanding the essential dynamics of the 

interacting cavity-QD system; and developing the theoretical models to define and 

optimize the quantum efficiency for a SPS. Then, we give the goal and show the 

accomplishment of this dissertation: what goal we want to reach, what we have 

accomplished and what foundation we have laid down that is necessary for the future 

work, before pointing out the challenges. Finally we outline the organization of this 

dissertation. 

1.1 Motivation 

The study of optical cavities or resonators has a long history that can be dated 

as far back as 1897 by Charles Fabry and Alfred Perot using a transparent plate 

with two reflecting surfaces, namely a Fabry-Perot interferometer [1]. Such a device 

confines light in a volume by resonant recirculation, and due to the effect of multiple 

beam interference, only certain spatial patterns and frequencies of light field will be 

sustained while others are suppressed. The Fabry-Perot interferometer turned out to 
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be a convenient resonator system in more than one respect, which accounts for its 

still remaining one of the most widely used geometries for optical resonators. 

New physical processes appear as the physical sizes of the optical resonators 

approach the wavelength of the light. This has resulted in the concept of the micro­

cavity. Quality factor (Q) and mode volume figure prominently in applications of 

these devices. The Q of a cavity is proportional to the confinement time in units of 

optical period or inversely to the energy dissipation rate relative to the oscillation 

frequency. Due to its small mode volume along with a high Q, not only does a micro­

cavity modify the modes of the vacuum dramatically, giving more sparsely distributed 

resonant frequencies than that of a macro-cavity, but also changes the radiative 

behavior of an atom or a semiconductor QD or any optical centers placed inside 

it. We define optical center as an object, or certain bound electric charges within 

an object, that could radiate photons at optical frequencies when interacting with 

electromagnetic fields. For example, an atom, a molecule or an ion, or single defects 

or color centers in semiconductor nano-structures and diamonds; or either bound 

electron-ion pairs or bound electron-hole pairs in these objects. The research of high 

Q, small mode volume optical micro-cavities has been a distinct subject dominating 

the past decades [2, 3, 4]. 

As cavities have been reduced in sizes from the conventional Fabry-Perot micro­

cavities having two separable dielectric mirrors [5], with continued improvement 

in micro-fabrication techniques, the solid-state integrated Fabry-Perot structure 

consisting of two semiconductor distributed Bragg reflector (DBR) mirrors have been 

developed and widely used for vertical-cavity surface-emitting lasers (VCSELs) [3]. 

A hybrid external Fabry-Perot micro-cavity consisting of one dielectric mirror and 

one semiconductor DBR mirror has also been developed recently in our group [6]. 

Active optical centers such as semiconductor QDs, are incorporated in the cavity 

for studying light-matter interaction. This is the main topic and focus of this 
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dissertation. Moreover, other optical centers such as color centers in diamond may 

also be integrated in such an optical cavity. 

In addition to the size reduction, the geometries of optical micro-cavities have 

been differentiated to various types such as whispering gallery [7] and photonic 

crystal [8] resonators. Whispering gallery resonators are typically but not limited 

to dielectric spherical [9] or toroidal [10] structures in which waves are confined by 

continuous total internal reflection (TIR). The modes of the micro-sphere and micro­

toroid resonators are called whispering gallery modes (WGMs) feature ultra-high 

Q, due to the formation of these structures through surface tension, providing a near 

atomically smooth surface. Generically, a planar photonic crystal was proposed, which 

is essentially a two-dimensional (2D) photonic crystal with a finite third dimension. 

One typical example is an optically thin slab surrounded with lower refractive index 

material and pattered with a 2D lattice of holes. In such a structure, light is confined 

in the lateral direction by distributed Bragg reflection, while in the vertical direction 

by conventional waveguiding or TIR. The modes of the photonic crystals are called 

defect modes, due to a 'defect', relative to otherwise periodic structure introduced 

in the 2D lattice. Micro-resonators based on these structures can provide extremely 

small mode volumes [11]. At present, however, Q values in fabricated photonic crystals 

are well below theoretical optima [12, 13]. 

Each of these type of resonators has their own advantages and disadvantages. 

For the purpose of optical mode coupling, Fabry-Perot cavities can be free-space 

coupled in and out along the cavity axis efficiently. For WGMs, however, input 

beams must be phase matched in order to excite those ultra-high Q modes, which is 

typically achieved using TIR from the back face of a prism or an optical fiber taper. 

Other coupling methods such as free-space coupling into a slightly deformed sphere 

have also been demonstrated [14]. For the application with ultra-high Q modes, 

there are technological limits imposed by mirror technology in optimizing Fabry­

Perot micro-cavities for cavity quantum electrodynamics (QED) strong coupling 
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[15]. As noted earlier, photonic crystal defect micro-cavities can provide extremely 

small mode volumes and large theoretical Q values for certain design, however, the 

fabricated structures have much lower Q values due to surface roughness introduced 

in the lithography process. Nonetheless, these optical resonators have found their 

applications in areas as diverse as optical telecommunication, nonlinear optics, 

chemical physics, biological and chemical sensing, quantum optics, and cavity QED 

[16, 2, 3, 4]. 

Beyond their already important roles in commercial technologies, such as VCSELs, 

optical micro-cavities are destined to become an essential ingredient in the emerging 

field of quantum information science and technology. The optical resonator has 

a size- and geometry-dependent resonant frequency spectrum, upon which the 

applications strongly depend. For instance, at wavelength-sized cavities, enhanced 

and suppressed spontaneous emission, squeezed states and chaos are readily observed. 

More interestingly, if an atom or any other optical center interacts so strongly with 

a single mode of a micro-cavity that the coherent interaction rate overwhelms all 

other dissipations to enter the cavity-QED strong-coupling regime [16], a quantum 

entangled atom-cavity system is possible. Such a system is crucial for a number of 

applications in quantum information processing (QIP) [17, 18, 19]. Controlling the 

emission of single photons for example, has been a priority for quantum encryption 

systems, which is also one of the major practical motivations for this research. 

Conventional sources of light, such as light-emitting diodes (LEDs) and lasers, 

usually consist of a macroscopic number of photons and have a statistical distribution, 

for instance Poisson statistics in the number of photons. On the other hand, many 

applications in quantum information science (QIS) require efficient optical sources 

with strong correlations between single photons. For example, encoding information 

on single photons provides a means to test the security of optical communications, 

which could soon be applied to the problem of sharing secret key in quantum 

cryptography [20]. Although quantum-key-distribution systems based on faint laser 
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pulses have already been realized for simple point-to-point links, a true single-photon 

source, an optical source emitting a train of pulses that contain one and only one 

photon, would improve its ultimate security [21, 22]. Furthermore, a single-photon 

source that can also produce entangled photon pairs, is important for future quantum 

communication protocols, such as quantum teleportation-the transfer of an unknown 

quantum state from one object to a like object [23]. Here quantum networks sharing 

entanglement could be used to distribute keys over longer distances or through more 

complex topologies [24]. 

It is relatively straightforward to use single photons for quantum cryptography 

and communication. It is not easy, however, to apply single photons for quantum 

computation because single photons do not interact strongly with each other, which 

is a prerequisite for a quantum logic gate. Linear-optics quantum computing 

(LOQC) [25], on the other hand, can get around this problem by using all-linear 

optical elements such as mirrors and beam splitters plus projective measurements 

to introduce an effective interaction between the photons. One of the stringent 

requirements is a high-efficiency SPS, in addition to another crucial requirement that 

photons be produced in pure states. Please note for secure quantum key distribution, 

it is important to have a high-efficiency SPS, but is not required for this application 

that photons be in pure states; but for LOQC, it is required to be able to produce 

pure-state single-photon wave-packets on demand. These photon packets can then be 

made to interfere with high visibility, leading to effective quantum computing. Other 

than the potential applications in QIP, a true single photon source will also become 

increasingly important for other applications such as weak absorption and precision 

optical measurements [26, 27, 28] and random number generation [29]. 

Semiconductor materials offer many potential advantages for efficient single­

and pair-photon generations, including high speed, tailored properties and device 

integration, other than already extensive studies in nonlinear optics and cavity QED 

[30, 31] and their applications in laser industry. Furthermore, they are optically 
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addressable and potentially offer scaling up using nanofabrication. One of the 

quantum systems based on semiconductor materials, semiconductor QDs, or confined 

electron-hole pairs, are often referred to as 'artificial atoms', as their electron motion is 

quantized in all three directions, resulting in a discrete energy-level spectrum like that 

of an atom. In just a few years, remarkable progress has been made in generating 

indistinguishable single photons and entangled-photon pairs using such structures 

[32]. It seems possible to realize compact, robust, LED-like semiconductor quantum 

light sources in the near future. An efficient SPS exploiting semiconductor QDs, 

however, requires the ability to integrate a single QD with an optical micro-cavity 

and locate it at an antinode of the cavity field, as this ensures the largest possible 

coupling and removes background emission, as well as other undesirable effects due 

to other dots in the cavity. 

We believe that before the eventual advent of the all solid-state semiconductor 

devices for single-photon sources and for QIP, it is important to study the physics of 

strongly coupled cavity-QD system for single-photon sources using a flexible system 

such as presented in this dissertation. All these concerns motivated us at the 

beginning to choose this research topic, and now result in the successful design and 

construction of a system to incorporate semiconductor QDs into an external optical 

micro-cavity for efficient SPS, preliminary experimental results showing signatures 

of significant cavity-QD interaction, and a theory formulated to understand the 

dynamics of a strongly coupled cavity-QD system and to optimize the quantum 

efficiency of a single-photon source in the cavity-QED strong-coupling regime. 

1.2 Introduction to the Problem 

Albeit various implementations of SPS based on atom-like optical centers have 

been reported based on different systems in the last three decades, such as calcium 

atoms [33], single ions in traps [34], single molecules [35], a color center in diamond 

[36], and semiconductor nanocrystals [37] or QDs [38, 39], the need for efficient 
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single-photon sources, however, is still a major challenge in the context of QIP 

[40, 41]. In order to efficiently produce single photons on demand, the single optical 

center is coupled to a resonant high-finesse optical cavity. A cavity can channel 

the spontaneously emitted photons into a well-defined spatial mode and in a desired 

direction to improve the collection efficiency, and can alter the spectral width of 

the emission. It can also provide an environment where dissipative mechanisms are 

overcome so that a pure-quantum-state emission takes place [42]. The major questions 

are: how to integrate single optical centers into a cavity and make the interaction 

strong, what is the dynamics of the interacting single optical centers with a single 

cavity mode, what are the emission spectra of the composite system when the coherent 

interaction overwhelms dissipations, and what is the quantum efficiency (QE) of the 

emission from on such a system? 

Achieving cavity-QED strong coupling in semiconductor QD systems is itself 

very interesting [43], following early studies using planar quantum-well cavity 

systems, which themselves cannot reach this regime [30]. Cavity-QED strong 

coupling is also necessarily required for efficient and pure-quantum-state single 

photons emission. Recent experiments showed signatures of strong coupling in 

some monolithic semiconductor structures such as micro-pillar [44], photonic crystal 

nano-cavity [45], micro-sphere [46] and micro-disk [47, 48]. Obvious advantages 

of using QDs in such schemes are that the QDs stay in a solid-state system and 

are stationary and do not move a lot as atoms do. Beside, they can be optically 

or electrically addressed and pumped [39]. The principal disadvantages in these 

monolithic structures, however, are the lack of efficient control of the spatial and 

spectral overlap between QDs resonance and cavity modes. It needs careful design 

followed by a precise fabrication procedure to preset these conditions. It is also 

challenging to address single QDs spatially and tune the cavity-QD resonance or 

change samples once a structure has been fabricated. For instance, temperature 

tuning of the QD has to be used to tune through cavity resonance [44, 45, 47], which 
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is undesirable because the dipole dephasing rate increases at elevated temperatures 

[49,50]. 

Therefore, the problems may be nailed down to: first, how to incorporate 

optical centers into a micro-cavity and make them overlap with cavity modes both 

spatially and spectrally; second, how to design and engineer a composite cavity-optical 

center system such that the coherent interaction overwhelms all other dissipations to 

maximize the useful light-matter interaction; third, what is the emission spectra and 

QE in the useful cavity direction of SPS in the cavity-QED strong coupling regime; 

fourth, how does the pure dephasing affect the emission spectra and QE when it is 

introduced unavoidably? 

1.3 Dissertation Goal and Accomplishment 

This dissertation provides one of the many elegant but unique methods to address 

the above questions. We chose molecular beam epitaxy (MBE)-grown semiconductor 

QDs as our optical centers and a hemispherical design for our micro-cavity, taking 

advantage that, first, high quality semiconductor mirror can be grown by MBE; 

second, relatively large oscillator strength semiconductor QDs can be grown by 

interface fluctuation in a one-wavelength spacer layer on top of the mirror; third, a 

hemispherical optical micro-cavity gives a diffraction-limited beam size at the location 

of QDs and hence a small mode volume. With the experimental design, we expect to 

reach the cavity-QED strong-coupling regime, which is challenging by itself, and to 

make efficient single-photon sources. Theoretically, we want to study the dynamics 

of the strongly coupled cavity-QD system, the emission spectra and the quantum 

efficiency of the composite system based on realistic experimental parameters in the 

cavity-QED strong-coupling regime. 

This dissertation presents experimental and theoretical studies of a hemispherical, 

high-solid-angle, external optical cavity strongly coupled to nanoscale optical centers 

for cavity-QED strong coupling and efficient production of single photons on demand. 
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By taking advantages of standard semiconductor growth and processing techniques, 

our collaborators (H. Gibbs and G. Khitrova) were able to grow QDs formed by 

interface fluctuation in a thin quantum well and integrate them into a high-reflectivity 

mirror as one side of the micro-cavity. Furthermore, by design we locate the QDs 

at an antinode of the cavity field to maximize the interaction. The external cavity 

approach provides maximum flexibility in scanning laterally to position a QD at the 

focus of the cavity, as well as providing the capability of scanning the cavity resonance 

to the spectral position of the isolated QD. 

We engineered a hemispherical, high-solid-angle optical cavity [6] that is comprised 

of a planar semiconductor DBR mirror, and a concave dielectric mirror having a 

radius of curvature 60 j.Lm. Nanoscale optical centers such as semiconductor QDs 

are placed at the cavity mode waist at the planar mirror and are designed to be 

located at an antinode of the cavity field to maximize the coherent interaction. The 

three-dimensional scannable optical cavity allows both spatial and spectral selection 

to ensure addressing single optical centers. This unique hybrid micro-cavity design 

will potentially enable reaching the cavity-QED strong-coupling regime and realize 

the deterministic generation of single photons on demand. 

We formulated a theory using Weisskopf-Wigner method to calculate the emission 

spectra of interacting cavity-QDs system and the quantum efficiency of single-photon 

emission in the cavity-QED strong-coupling regime [51] that includes pure dipole 

dephasing and radiative decay both through the cavity mirrors as well as into the 

side directions [52]. This allows, for the first time, full modeling of the emission 

quantum efficiency, as well as the spectrum of the single photons emitted into the 

useful output mode of the cavity. 

Our cavity can also be operated with a standard planar dielectric mirror replacing 

the semiconductor DBR mirror. Such an all-dielectric cavity may find uses in atomic 

cavity-QED or cold-atom studies [53], or novel forms of microscopy or interferometry. 

Atom chips were recently reported using similar hybrid Fabry-Perot resonators [54]. 
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Other optical centers such as color centers in diamond may also be incorporated in 

such a cavity. The challenge mainly lays in the stringent fabrication conditions for 

growing diamond nanocrystals in thin films. 

1.4 Dissertation Organization 

The dissertation is organized as follows. In Chapter II, we first overview the 

concept of single-photon sources and the method to generate efficient single-photon 

sources using a single optical center inside a high-finesse optical micro-cavity. Two 

light-matter interaction regimes, weak coupling and strong coupling, are discussed. 

Following that, we describe the advantages to use the hemispherical design and the 

hybrid dielectric-semiconductor mirror combination for the cavity. Then we discuss 

the advantages of the interface fluctuation QDs in a thin QW for cavity-QED studies 

and the MBE growth method to integrate them with a DBR mirror. Finally, we 

briefly review the physics of designing a DBR mirror to locate optical centers at an 

antinode of a light field. 

In Chapter III, we first describe the detailed procedure to fabricate micro-sized 

concave mirrors and how to estimate their physical parameters such as the dimple 

depth and the radius of curvature. Then we discuss the optical coating design for 

such a highly curved mirror to give a reflectivity of 99.5% or higher over a high­

solid angle range. After assembling the micro-cavity onto a sophisticated mechanical 

system located inside an ultra-high vacuum chamber, we characterize the cavity by 

investigating mode-matching of a laser beam into a cavity mode and probing the 

cavity mode structure. Finally, we show some preliminary spectroscopic results of 

cavity transmission spectra at both room temperature and cryogenic temperatures. 

In Chapter IV, using the Weisskopf-Wigner theory for an impulse-excited optical 

center, we derive analytical formulas for the forward emission and side emission 

spectra of cavity-modified single-photon sources, as well as the corresponding 

vacuum Rabi oscillations in the cavity-QED strong-coupling regime. We calculate 
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the integrated-pulse quantum efficiency of a single-photon source. An analytical 

expression for the quantum efficiency is obtained. Optimal conditions for a high 

quantum efficiency and a temporally localized photon emission rate are examined. 

In Chapter V, we investigate the effects of pure dephasing, treated in the phase­

diffusion model based on a Wiener-Levy process, on the vacuum Rabi oscillations, 

quantum efficiency and emission spectra, and extend our results in Chapter IV to 

include the pure dephasing process. We find that the depths of the vacuum Rabi 

oscillations are reduced, the quantum efficiency is decreased and the spectra are 

broadened in the presence of pure dephasing. 

In Chapter VI, the last chapter, we summarize and conclude the dissertation and 

give an outlook for the future work. 
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CHAPTER II  

OVERVIEW OF CONCEPTS AND SYSTEM  

In this chapter, we first give an overview of concepts of a single-photon source 

and using a single optical center interacting with an optical micro-cavity for efficient 

production of single photons. The dynamics of the composite system can be different, 

depending upon the coupling strength between an optical center and a cavity mode. 

Two different light-matter coupling regimes, strong- and weak-coupling regimes, are 

considered. The different efficiencies that determine the overall efficiency of a single 

photon source are discussed. Then we give a description of a physical system we 

designed and constructed that is suitable for fulfilling the purpose. Finally we give a 

brief review of how to design a distributed Bragg reflector (DBR) mirror and how to 

integrate optical centers with it. 

2.1 Overview of Concepts 

In 1900, when trying to explain the experimentally observed black-body spectrum, 

the spectral distribution of the electromagnetic energy radiated by a thermal source, 

Max Planck found that he could account for the measurements by assuming that 

the electromagnetic energy E could be emitted only in quantized form [55]. In other 

words, the energy could only be an integer multiple of an elementary unit E = hv, or 

a quantum of electromagnetic radiation, where h is Planck's constant, and v is the 

frequency of the radiation. The concept of photon, however was not introduced until 

1905 by Einstein to interpret the photoelectric effect [56]. The word 'photon' is now 

widely used to describe a quantum of electromagnetic radiation, or a minimum-energy 

packet of electromagnetic radiation. Although there were some arguments in the past 
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[57] for its usage, it is now largely adopted by the quantum-optics community. One of 

the most common classical light sources is a thermal source, a light source in thermal 

equilibrium at a certain temperature, described by Planck's law. The photon number 

distribution in such a source falls off monotonically with increasing photon number, 

and is naturally called the thermal distribution or the geometric distribution. It 

reflects the chaotic nature of a thermal source, as compared with other light sources 

such as a laser. 

In 1916, Einstein laid the foundation for the invention of the laser, which also 

consists of a macroscopic number of photons, and its predecessor the maser, in a 

ground-breaking re-derivation of Max Planck's law of radiation based on the concepts 

of spontaneous and stimulated emissions [58]. The laser, however, was not made 

until much later in 1960s. Theodore H. Maiman at Hughes Research Laboratories 

in Malibu, California invented the first working laser in 1960 [59]. The concept of 

the laser diode was proposed by Nicolay G. Basov in 1959 [60]. A laser diode is a 

laser where the active medium is typically a semiconductor p-n junction. The first 

semiconductor laser diode was demonstrated by Robert N. Hall three years later [61]. 

The early semiconductor lasers, however, could be used only in pulsed operation, and 

indeed only when cooled to liquid nitrogen temperatures. In 1969 and 1970, Zhores 

1. Alferov et al. in the Soviet Union and Morton B. Panish et al. of Bell Telephone 

Laboratories independently developed continuously operating laser diodes at room 

temperature [62, 63]. The photon number distribution of a laser follows a Poisson 

distribution, indicating the randomness of the light source. So what is a single-photon 

source? 

2.1.1 Single-photon Sources 

Right after the invention of lasers, mainly under Roy J. Glauber's impulsion [64], 

researchers began to look for specific quantum properties of light that could not be 

understood in a classical regime. For his contribution to the quantum theory of 
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optical c o h e r ~ n c e  [65], Glauber shared the 2005 Nobel Prize in Physics. In his work 

[64], published in 1963, he created a model for photodetection and explained the 

fundamental characteristics of different types of light, such as a laser light and an 

ideal single-photon source. Photons in a laser beam follow a Poisson distribution, 

which refers to the statistical tendency for photons to arrive at a detector randomly. 

An ideal single-photon source will deliver one and only one quantum of light each 

time it triggered, which is referred to as antibunching effect, in contrast to a laser. 

The photon number distribution of a true single photon source is said to be the 

sub-Poisson distribution, since that of a laser exhibits a Poisson distribution. 

One straightforward and maybe naive method to approximately produce single 

photons is to properly attenuate a pulsed laser such that there is on average only 

one quantum of light equivalent energy per pulse. However, such strongly attenuated 

laser pulses differ from 'true' single photons in at least two respects: first, the vacuum 

probability is much higher than the probability of detecting a photon, so one gets 

predominantly a 'no-photon' regime with occasional detection of a photon; second, 

the probability of getting two photons is never zero, because the attenuated pulses are 

still in coherent states and essentially follow a Poisson distribution. There are other 

approximated single photon sources: heralded single photons from atomic cascade, 

spontaneous parametric down-conversion, and spontaneous four-wave mixing [66]. 

They will be discussed later. 

A single-photon source can be achieved using the spontaneous emission of a single 

optical center, such as an atom in gaseous phase. Early successful generation of single 

photons showing the antibunching effect was performed using heralded photons based 

on cascade transitions of calcium atoms, followed by proper spectral filtering and 

conditional detection [33, 67]. Single photons were also observed in the resonance 

fluorescence from an attenuated sodium atomic beam, where at most one atom was 

present in the excitation focus at any time [68]. Although the cascading calcium atoms 

and the faint sodium beam were the first sources of single photons, their brightness 
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and efficiency were very low, and a further drawback was that the operation of the 

source was limited by the density and transit times of the atoms, and could not be 

controlled. 

In parallel, a different mechanism to generate single photons based on nonlinear 

optical processes had also been developed about at the same time. Optically pumping 

a nonlinear crystal using a He-Cd laser, pairs of photons, signal and idler photons, 

highly correlated both in space and time were generated at high rates by spontaneous 

parametric down-conversion in 1970 [69]. A similar nonlinear process, spontaneous 

four-wave mixing has also been used to generate correlated pair photons. Provided 

that the probability of generating two pairs at the same time remains negligible, 

such correlated pairs can be used as sources of heralded single photons [70]. Please 

note that in the absence of a convenient way to produce controllable single-photon 

sources, the parametric sources played an important role in most early experiments 

in quantum optics [71, 72, 73, 74, 75] and are still the workhorses to date [76, 77]. 

It is preferable to generate single photons in a controllable fashion like a 'photon 

gun', an ideal device that delivers photons one by one and is synchronized with an 

external excitation and trigger source. From the mid-1980s, single ions in magnetic 

traps provided long observation times with one and the same ion [34]. The long 

streams of antibunched photons produced in this way came closer to a photon gun, 

but by no means close enough to a 'photon gun'. 

Due to the sensitive detection of fluorescence in single molecules [78] and in single 

semiconductor heterostructures [79, 80] in the early 1990s, single-photon emissions 

were detected from single molecules [35] and in other single nano-objects in condensed 

matter. Since in condensed matter, single objects are much easier to be manipulated 

as compared to the atoms and ions in gaseous phase, nano-objects were therefor 

proposed as possible sources of single photons [81, 82]. Soon after, single-photon 

emissions from semiconductor nanocrystals [83, 84, 85], color centers in diamond 

[86, 36], single QDs in various geometries [37, 38] and much more were reported. 
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For most of the applications in QIP, single-photon sources that generate pure 

single-photon states on demand in response to an external trigger signal are required. 

Antibunching is an essential test of single photons. But it only means that the 

probability of emitting two or more photons per trigger is zero and is not sufficient for 

creating single photons on demand. In addition, we require that the source emits one 

photon with certainty. That is, the excited state of the optical center must be prepared 

with certainty, and the emission quantum efficiency need to be unity or as close to 

it as possible. Other crucial performance measures for an on-demand source are the 

overall efficiency of such a source, which is the product of the excitation efficiency, 

quantum efficiency, collection efficiency and detection efficiency which is defined as 

the fraction of photons collected and detected in the experiment per trigger, and the 

indistinguishability of single photons emitted from the source at different times. 

Then the question is how to meet these requirements and reach the goal. We 

start with spontaneous emission in free space. Consider a one-electron atom with 

two electronic levels Ie) and Ig) separated by an energy interval Ee - Eg = nwo. 

Spontaneous emission appears as a jump of the electron from level Ie) to Ig) 

accompanied by the emission of a photon, which can be emitted into any directions. 

The spontaneous emission process can be understood as resulting from coupling of 

an atomic electron to the electromagnetic field in its vacuum state. Typical only a 

fraction of spontaneously emitted photons can be collected and detected, depending 

upon how large a solid angle is subtended by the collection and detection optics. An 

essential feature of spontaneous emission in free space is that a photon can be emitted 

into any mode that enables the conservation of energy and momentum. The time of 

emission and the particular mode in which the photon is observed are random. 

As pointed out above, spontaneous emission is not an intrinsic atomic property, 

but rather results from the coupling of an atom to the vacuum modes of the 

electromagnetic field. The most distinctive feature of spontaneous emission is its 

irreversibility, which comes about because an infinity of vacuum states is available to 
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the radiated photons. As such, it can be modified by tailoring the electromagnetic 

states into which the atom can radiate, for instance, by placing an excited atom into 

a cavity. 

The spontaneous emission rate can be enhanced if an atom at rest inside a 

cavity is resonant with one of the cavity modes [87]; it can also be inhibited if 

the mode density to which the spontaneous emission is small compared with that 

in free space [88]. It has also been recognized that spontaneous emission need 

not be an irreversible process. Indeed, the Sch6dinger equation always leads to 

reversible dynamics. Spontaneous decay only appears to be irreversible when the 

electromagnetic field modes are treated as a Markovian reservoir. If the vacuum 

modes can not be approximated in this way, qualitatively different types of dynamics 

can be achieved. Depending upon the ratios of the coherent interaction rate between 

an optical center and an optical cavity, to the intracavity field decay rate, and to 

the optical center population decay rate, one can distinguish two regimes of coupling 

between an optical center and a cavity: strong-coupling and weak-coupling regimes, 

which are to be discussed in more detail in the following. 

In the cavity-QED weak-coupling regime, where the dissipations are still greater 

than the coherent interaction rate, an optical cavity can channel the spontaneously 

emitted photons into a well-defined spatial mode and in a desired direction to improve 

the out-coupling and collection efficiency, and can alter the spontaneous emission rate 

and the spectral width of the emission. Only if it is coupled to a resonant mode of 

a high-Q optical cavity, can an optical center realize its full potential as an efficient 

single-photon emitter. An optical cavity can also provide an environment where 

dissipative mechanisms are overcome to enter the cavity-QED strong-coupling regime 

so that a highly-pure-state single-photon emission takes place. 

One of the most feasible approaches to the efficient creation of single photons in 

a well-defined mode is believed to be placing an optical center at an anti-node of the 

field in a high-finesse optical micro-cavity and optically exciting the optical center at 
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a known time. In the limit of strong coupling, the ensuing process of spontaneous 

emission becomes deterministic. That is, the coupling of the optical center's dipole 

to a privileged cavity mode is far stronger than its coupling to all other modes. Then 

there will be virtually no emission into the other modes. In addition, there needs 

to be almost no dephasing of the dipole during the emission process. In this case, 

the photon is emitted through the cavity mirror in a known, pure wave-packet state 

that has a well-defined time delay following the excitation. These wave-packets are 

also emitted as a Gaussian beam in a well-defined direction and can be efficiently 

coupled out of the cavity and into the subsequent optics. Photon correlation and 

indistinguishability can be tested with Hanbury-Brown and Twiss (HBT) [89] type 

photon correlation measurements or balanced-homodyne detection (BHD) [90]. 

2.1.2 Cavity-QED Weak Coupling versus Strong Coupling 

In order to examine and justify the claims made above, we start with a theoretical 

model of light-matter interaction. The majority of the optical phenomena involving 

light-matter interaction is the coupling of a two-level optical center with a single 

mode of an electromagnetic field. The elementary system in cavity QED is a two­

level optical center, an atom or QD, interacting resonantly with a single cavity mode 

as in Fig. 2.1. We know an atom or QD is not a system with only two energy levels, 

but really multiple levels. A two-level optical system description is valid if the two 

energy levels involved are resonant or near resonant with the driving field or the cavity 

mode, while all other levels are highly detuned. 

Under certain realistic approximations, an optical center behaves as a simple 

harmonic oscillator, which couples to the electromagnetic field through its electric 

moment, typically electric-dipole moment. The electric-dipole interaction energy that 

results when an atom or QD interacts with a cavity mode is Hvac = [1eg·Evac(r'o) - ngo. 

Here [1eg is the electric dipole moment for an atomic or excitonic transition and 

Evac(f'o) is the electric field vector associated with the vacuum or quantum mechanical 
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FIGURE 2,1: Schematic description of a lossy two-level optical center interacting 

with a single mode in a leaky optical cavity, 90 is the coupling constant between the 

optical center and the cavity field. 2"'( and 21\, are the optical center population decay 

rate to the sides of the cavity and the cavity field decay rate, respectively, 

zero-point motion, at the location of the optical center To. And 90 is the vacuum Rabi 

frequency in unit of rad/s. The vacuum-field vector is given by 

~ ~  J!2wc ~ ~  
Evac(ro) = 2co U(ro), (2.1) 

where U(fa) is the normalized spatial distribution of the mode's electric field vector. 

The cavity effective mode volume, Vef!' which depends on the location of the optical 

center fa, is defined as the spatial integral of the field intensity, normalized to unity 

at the maximum, 

J  
~  23 ~ ~ 2

IU(i)1 d r = 1 = IU(ro)1 x Vef!' (2.2) 

where the integral is over all space (i) between the cavity mirrors. 

For example, if the mode amplitude can be described as a (paraxial) Gaussian 

function with l/e amplitude contours that define a spot size w(z) at the position z 

along the cavity axis as, and with the field maximized at the boundaries, then 

~  cos(kz) x 
2 

+1j2

IU(i)1 = Uo e- w 
2
(x), (2.3)

w(z) 

where Uo is a complex number containing the phase information. Plug Eq. (2.3) into 

Eq. (2.2), and let p2 = x2+ y2, then we get 

2 cos (kz) J J [p2] - ~ ~  2
dzlUol w2 (z) d¢ pdpexp - w2(z) = 1 = IU(ro)1 x Veff' (2.4)J 

2 
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Then the cavity effective mode volume is, 

(2.5) 

where Wo is the beam waist, L is the cavity length and it is assumed that the optical 

center is located at an antinode of the standing wave. Clearly we need to make the 

beam waist and the cavity length both as small as possible, and make certain that 

the optical center is located at an antinode near the waist. 

If we assume the electric-dipole transition is in the electric field direction (x) 

with matrix element /-lx, having frequency wo, resonant with the cavity mode with 

frequency We, then the coupling constant 90 is related to the cavity effective mode 

volume ~ f f  by 

90 = /-lx (2.6)
2!ico~ff'  

The atomic or excitonic transition also has a dipole decay (dephasing) rate "/. Here we 

consider only the radiative decay, not including the non-radiative decay. The cavity 

decay rate is 2fi, given by the total mirror transmission-pIus-scattering loss T +Sand 

the cavity length L through 

(2.7) 

Cavity-QED weak coupling results when dissipation overwhelms the coherent 

Rabi dynamics. In this regime, the main role of the micro-cavity is to control 

the spontaneous emission through the Purcell effect, determined by the ratio of the 

spontaneous rate inside the cavity to that in free space, to enhance radiative decay 

into a cavity mode of interest and thereby achieve a stream of single-photon pulses. 

The Purcell spontaneous emission enhancement factor is given by [87] 

3A3 Q
Fp =--- (2.8) 

47[2 ~ f f  

where the Q = (2L/ A)F is the cavity quality factor with a cavity finesse F, and ~ f f  

is the effective volume of the interacting mode. If the cavity has a preferential output 
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direction, the Purcell effect will ensure fast and directional emission from the two­

level system. These features are highly desirable for improving the overall emission 

efficiency of single photons. In this regime, for instance, Santori et al. [91] showed 

the ability to produce largely indistinguishable photons by a semiconductor QD in a 

micro-cavity using a large Purcell factor. 

Cavity-QED strong coupling occurs when the electric-dipole interaction rate 

between an atom or QD and a single, unoccupied mode exceeds the energy decay 

rates of the composite system. It means that the coherent coupling frequency go is 

greater than the cavity and atom or QD decay rates, assuming no atomic or excitonic 

pure dephasing, 

(2.9) 

In the super-strong coupling limit, go » K, '"'I, coherent dynamics (Rabi dynamics) 

takes place on time scales much shorter than the dephasing times. Use of a weak 

optical probe reveals that the presence of the QD splits the cavity's transmission 

spectrum into two distinct peaks, which correspond to eigen-frequencies of the 

quantum entangled cavity-QD states (states that are not factorable into cavity and 

QD components). 

In the cavity-QED strong-coupling regime, a single photon can saturate an atomic 

or excitonic state of an optical center, allowing coherent control over the internal 

state of the optical center; and furthermore the optical center can strongly influence 

the optical field in the cavity, enabling transfer of information from matter to field. 

For example, in the cavity-QED strong-coupling regime, one potential application is 

for quantum communication, where optical centers serve as stationary quantum bits 

(qubits) storing information while photons as flying qubits transfer information from 

one storage location to another. The other priority is to control the emission of single 

photons to deterministically produce single photons on demand. The realizations of 

cavity-QED strong coupling in the atom-cavity [5] and QD-cavity systems [44,45,47, 

48] allow researchers to deterministically generate single photons [92, 93, 42]. It is also 
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possible to observe (even weak) nonlinear optical effects [94] in these strongly coupled 

systems to provide a mechanism for quantum logic and quantum computation. 

The quantum efficiency of a SPS, which is intrinsic to the composite quantum 

system, can be different in these two regimes because the dynamics of the composite 

system are different. The overall efficiency of a SPS will also depend on the excitation 

efficiency [95], collection efficiency and detection efficiency, which are not intrinsic to 

the composite quantum system; however, they can be greatly affected by the energy 

structure of the optical center and the geometry of the cavity. 

In this dissertation, we intend to exploit a novel approach for generating single 

photons on demand using a single semiconductor QD interacting strongly with a mode 

of a hemispherical optical micro-cavity. Why did we choose this approach? As we 

have already said in Chapter I, we believe that before the eventual advent of the fully 

integrated and scaled up devices for on-demand production of single photons, it is 

important to study the physics of strongly coupled optical center/cavity system using 

a flexible composite system, an external optical micro-cavity with semiconductor QDs. 

Besides, other solid-state optical centers such as color centers in diamonds may also 

be integrated in such a cavity for efficient single photon sources. In the next section, 

we will give a detailed description of our system. 

2.2 Overview of System 

We have successfully designed and constructed a small-effective-volume, low-f­

number, high-Q hemispherical micro-cavity as in Fig. 2.2. In such a geometry the 

cavity effective volume is given by Eq. (2.5). The minimum mode radius Wo that is 

allowed by diffraction in such an open cavity is of the order of one-half the optical 

wavelength. 

The composite cavity-QD system that we use is comprised of an integrated 

semiconductor distributed Bragg reflector (DBR) mirror adjacent to the QD layer, at 

the focal plane of a hemispherical dielectric mirror, having a radius of curvature 60 !-tm. 
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FIGURE 2.2: A hemispherical cavity, comprised of an integrated semiconductor DBR 

mirror with QDs and a concave dielectric mirror having a radius of curvature 60 J-Lm. 

The hemispherical, external-mirror design provides maximum flexibility in spatial and 

spectral scanning in order to address single QDs, together with a diffraction-limited 

beam size at the plane of QDs. The method to integrate semiconductor QDs into 

a cavity has an advantage compared with atomic systems: the QDs are fixed in a 

solid-state matrix, and do not need to be trapped and held, as do atoms. Moreover, 

the future practical systems are likely be semiconductor-based, hybrid opto-electronic 

systems. Our device can be a key ingredient in such a system. Eventually, it may 

even be possible to integrate photon emission, logic, memory and detection elements 

into single semiconductor chips to form a photonic integrated circuit for QIP. 

The semiconductor DBR mirror is mounted on a tripod system, supported by 

three Burleigh UHVL Inchworm Motors with a typical mechanical resolution 2 nm, 

to control precisely its longitudinal position and its angle with respect to the curved 

mirror. The tripod also contains an x-y nano-scanner, which can laterally scan the 

mode waist in a 50 x 50 J-Lm
2 region, essential for scanning and addressing single 
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QDs, and a piezoelectric transducer (PZT) driven by a laser-referenced feedback loop 

for stabilizing the length of the cavity. Ultra-high-purity copper wires connect the 

cold finger and the low temperature holder for cooling the DBR mirror to cryogenic 

temperatures. The thermal insulator between the low temperature holder and the 

PZT allows cooling down the semiconductor sample to cryogenic temperatures while 

keeping the PZT at room temperature, preventing from degrading its performance 

and damaging it. The whole system is shown in Fig. 2.3. 

FIGURE 2.3: The cavity assembly: the semiconductor sample is mounted on a five­

axis tripod system, sitting on three inchworm stages; curved micro-mirror is glued on 

top of a high numerical aperture (NA) microscope objective for coupling and focusing 

an input laser beam properly. 

The system operates inside an ultra-high vacuum (URV) chamber (10-8
- 10-9 

mbar) , to allow cooling the DBR mirror to around 10-17 K to reduce QD dephasing 

rates and to avoid coating of the DBR mirror by cryopumping and attendant 

absorption and scattering. The URV chamber, together with the turbo-pump and 

the ion pump is shown in Fig. 2.4. The turbo pump is used for pre-pumping the 
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chamber to 10-6 mbar. After the turbo pump is shut down, the ion pump starts 

working and keeps working all the time during the experiment. 

FIGURE 2.4: The ultra-high vacuum chamber with a turbo pump and an ion pump 

connected. 

2.2.1 External Optical Cavity-The Hemispherical Design 

As pointed out in Chapter I, there are various geometries of optical resonators. 

The simplest and most widely used optical resonator is the Fabry-Perot type, 

consisting of two curved mirrors facing each other. If the curvatures of these two 

mirrors correspond to a stable periodic focusing system, and if their transverse 

dimensions are large enough so that we can neglect edge-diffraction effects, these 

mirrors thus form an optical resonator which can support a set of lowest-order 

and higher-order Gaussian modes or beams that will circulate between the two 
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mirrors. These trapped Hermite-Gauss or Laguerre-Gauss modes form, to a first­

order approximation, a set of resonant modes for the two-mirror Gaussian resonator. 

In practice, instead of being given a Gaussian beam and asked to fit mirrors to it, 

we are likely to be asked to find the right Gaussian beam that will just fit properly 

between two curved mirrors M I and M2 with spacing L, and radii of curvature R I 

and R2 , respectively. See Fig. 2.5. Wo is the radius of the beam spot at the Gaussian 

beam waist. WI and W2 are the beam spot radii at two cavity mirrors MI and M2 at 

positions ZI and Z2 respectively. We will further discuss how to mode-match a beam 

into the fundamental spatial mode of a Gaussian resonator in Chapter III. 

" Z 

FIGURE 2.5: Model and notation for a stable two-mirror cavity. 

Assume that the Gaussian beam has an initially known spot size Wo and a 

wavelength A or Rayleigh range ZR = 7fWo2 / A, and the mirrors locate at distances 

ZI and Z2 from the location of the beam waist at Z = 0'- Then all the important 

parameters of this Gaussian beam can be related to the waist spot size Wo and the 

ratio z/ZR by the formulas: 

w(Z) (2.10) 

R(z) (2.11) 

¢(Z) (2.12) 
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where w(z) is the Gaussian spot size at a transverse plane at z, R(z) is the wavefront 

curvature at plane z and ¢(z) is a phase angle at plane z, or the so-called Gouy 

phase shift [96]. The essential conditions are then that the wavefront curvature R(z) 

of the Gaussian beam, as given above, must match the mirror curvature at each 

mirror, taking into account the specified mirror spacing L. This provides us with 

three equations, namely, 

R(Z1) Z1 + Z~/Z1  = -R1 , (2.13) 

R(Z2) - Z2 + z~/  Z2 = +R 2 , (2.14) 

(2.15) 

The Gaussian wavefront curvature R(z) is usually taken as positive for a diverging 

beam, or negative for a converging beam, traveling to the right; whereas the mirror 

curvatures R 1 and R2 are usually taken as positive numbers for mirror that are concave 

inward. 

The g Factor 

Define a pair of resonator 9 parameters, 91 and 92, given by 

L . L 
91 - 1 - - and 92 - 1 - -. (2.16)

R1 R2 

In terms of these parameters we can rewrite the Rayleigh range the beam spot radius 

as: 

9192(1 -9192) L2 (2.17)
(91 + 92 - 29192)2 ' 

2 LA 9192(1- 9192)
wo = (2.18) 

7r (91 + 92 - 29192)2 . 

The locations of the two mirrors relative to the Gaussian beam waist will be given by 

92(1 - 91)
-Z1 L, (2.19)

91 + 92 - 29192 

91 (1- 92) 
Z2 = L. (2.20)

91 + 92 - 29192 
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And the spot size WI and W2 at the ends of the resonator are 

LA 
(2.21) 

(2.22) 

Resonator Stability Criterion 

It is not difficult to find from the above equations that the real and finite solutions 

for the Gaussian beam parameters and spot size can exist only if the 91 and 92 

parameters are confined to a stability range defined by 

(2.23) 

This is known as the stability criterion because this is also the condition required for 

two mirrors with radii R 1 , R2 and spacing L to form a stable periodic focusing system 

for rays. 

A (near) hemispherical optical cavity is an optical resonator bounded by a concave 

spherical mirror and a planar mirror that is located at the center of curvature of the 

concave mirror, for which the resonator parameters are R1 - RM = L + t1L and 

R2 = 00, and hence 91 = t1L/L ~  0 and 92 = 1. This resonator has a very small 

(diffraction-limited) spot size W2 at the planar mirror end given by 

(2.24) 

(2.25) 

for  t1L > 0 and t1L « L. 

Justification of Hemispherical Limit-the Order of t1L 

When a collimated Gaussian beam is focused by an ideal lens, the actual focal 

spot, meaning the position of minimum spot size and maximum energy density, does 

not in fact occur exactly at the geometric focus of the lens; but rather is located just 

slightly inside the lens focal length, as shown in Fig. 2.6. The actual waist of the 
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focused Gaussian beam is at a distance Zj from the position of the ideal thin lens, 

which is shorter than the focal length f. The radius of curvature of the curved mirror 

is R1 RM . Please note that a hemispherical cavity is indeed a self-focusing imaging 

system with a focal length RM /2, for a point source at the spherical center of the 

curved mirror. By definition, a collimated beam passing through a thin lens of focal 

Geometric 

Focus 

z 

<Jf---­

<Jf---­ f 

FIGURE 2.6: A collimated Gaussian beam is focused by an ideal thin lens with a 

focal length f. 

length f acquires a wavefront curvature equal to f, therefore 

RM(zj) = Zj + -
ZR 

= f. (2.26) 
Zj 

For convenience, here all parameters are used with their absolute value. Subsequently, 

the difference between the focal length f and the actual distance Zj to the waist is 

given by 

(2.27) 

Similarly, for our hemispherical cavity, the derivation of the cavity length from exactly 

hemispherical is 

(2.28) 
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Let us make an estimate of the order of the !:1L for our micro-cavity. Assuming the 

beam waist Wo at the planar mirror is about the size of the incident laser wavelength 

A, then the Rayleigh range ZR - 7rWVA ~  7rA. Therefor!:1L ~  7r2A2 jL. Given a 

nominal wavelength A = 765 nm for a probe laser and a cavity length L = 60 jjm, we 

have !:1L ~  96 nm, which is much larger than the Burleigh UHVL Inchworm Motors' 

mechanical resolution 2 nm, and we are able to control the cavity length finely enough 

to reach and probe the hemispherical limit. 

The great advantage of the hemispherical design is that the mode alignment 

difficulties in this design are largely if not comple.tely eliminated. In addition, the use 

of a hemispherical micro-cavity offers the following advantages: 

1.  The hemispherical cavity is geometrically stable, in terms of laser cavity 

stability; 

2.  The hemispherical mode has a waist size Wo at the planar DBR mirror that is 

diffraction limited and consequently leads to a large coupling constant go; 

3.  Our system uses a cavity with adjustable length and a transversely movable 

focal region, allowing good spatial and spectral overlap of QD resonances with 

high-Q cavity modes. 

4.  It enables direct out-coupling of the spontaneously emitted photons into a 

single-mode traveling wave along the cavity axis; 

5.  The fundamental modes of the cavity (Gaussian modes) can be efficiently 

coupled into lens, fiber and other optical components. 

Please note that the QD-cavity mode coupling strength is proportional to the 

amplitude of the normalized cavity mode at the location of the QDs. In order to 

make the coupling strong, it is necessary to localize highly the transverse extent of 

the mode function in the vicinity of the QDs, and align the mode polarization vector 

with the dipole transition matrix elements of the QDs. Determining the precise degree 
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to which this localization is possible is nontrivial, since the mode structure for such 

a small cavity is non-paraxial, is non-separable into polarization components, and is 

non-separable into longitudinal and transverse functions [97, 98]. 

2.2.2 GaAs Semiconductor Quantum Dots 

The optical center used in this research is semiconductor QDs. In this section, we 

introduce the central physical concepts and results of semiconductor QDs. Rather 

than provide an exhaustive review, we only highlight important concepts in an 

introductory manner with experimental or theoretical results that serve our purposes. 

The QDs used in our experiment are the natural QDs formed by fluctuations in the 

well width in a thin (3-6 nm) GaAs QW, arising in part from monolayer-high interface 

islands. However, most of the concepts and results are common to all semiconductor 

QDs. We will first give a brief introduction of the natural interface fluctuation QDs 

and the technology to fabricate them. Then we will discuss how to model the energy 

structures and spectra of the excitons and biexcitons in this type of QDs. 

QDs are particles of semiconductor crystals (nano-structures), often embedded 

in a barrier material, with dimensions that are small enough (10-100 nm) such 

that quantum confinement of electrons plays a central role in their physics. Their 

discrete energy spectra and relatively wide energy level spacings minimize many of 

the relaxation processes that dominate in bulk or two-dimensional samples, resulting 

in homogeneous linewidths that are generally narrower in QDs. Optical oscillator 

strengths are also relatively large, and in combination with narrowband lasers or a 

single mode of a very high finesse micro-cavity tuned to the discrete optical transitions 

of QDs, strong interaction between light and matter can be achieved in composite 

QD-cavity systems. 

One dominant technology for the production of QDs is epitaxy. The epitaxial 

growth of QDs is dominated by molecular beam epitaxy (MBE). MBE-grown QDs 

are mostly from III-V group materials, such as GaAs, InGaAs, InAs and InP, and 
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occasionally from other groups, such as PbSe and CdSe. The MBE technique allows 

one to control thickness within one or two monolayers in the growth direction (z). 

Nearly perfect heterojunctions produced this way give good passivation and therefore 

most MBE-grown nano-structures are free from surface states. These heterojunctions 

provide quantum confinement along the growth direction. In the plane (x-y) of 

the epilayer, quantum confinement is produced either by naturally formed interface 

fluctuations [99, 100, lOl], self-organization [102, 103, 104] or via patterning and 

lithography [80, 105, 106]. Another dominant technology for the production of QDs 

is chemical synthesis. Chemically synthesized QDs are also known as semiconductor 

nanocrystals [107]. Typically, II-VI materials, such as CdSe, CdS, CoO and ZnS, 

form the QD core and are passivated to form a core-shell structure [108, 109, 110]. 

The GaAs QDs that we use are naturally formed by interface fluctuations. During 

MBE-growth of a QW, large monolayer-high islands can be developed at the well­

barrier interface during interrupts of a minute or more under an arsenic flux. Much of 

this roughness persists at an interface as subsequent layers are grown. During growth 

interrupts, the islands can grow to lateral size about 50-100 nm across, larger than the 

Bohr diameter of the exciton (bound electron-hole pair), and an order of magnitude 

larger than the well width (3-6 nm), leading to elliptical disk-like shapes. These types 

of natural QDs are often referred to as "interface fluctuation quantum dots (IFQDs)" 

[111,101,112]. Figure 2.7 shows the top surface of a GaAs QW imaged with scanning 

tunneling microscopy (STM). As seen in the figure, the structures tend to elongate 

along the [110] crystal axis, 

Semiconductor DBR mirrors with exceptionally good surface smoothness can be 

grown by MBE techniques. The high-reflectivity DBR mirror that we use are also 

grown by MBE. The MBE growth for this study is performed by our collaborators 

H. Gibbs and G. Khitrova at the University of Arizona (UA). They found that the 

surface roughness on transverse length scales relevant for our needs (rv 1 fJm) is 

equal to that of the very best polished super dielectric mirrors of the type used in 
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FIGURE 2.7: STM image of a GaAs QW surface showing the large monolayer-high 

islands. The circled region is referred to as an IFQD, Ref. [110]. 

atomic cavity-QED experiments [5]. The relevant length scale is about one micron 

because our cavity design yields a waist size at the DBR mirror of this size. The UA 

group has succeeded in growing good-quality IFQDs embedded in the middle of a 

one-wavelength spacer layer on the top surface of high-quality DBRs. Due to the 3D 

quantum confinement, QDs have atom-like energy-level spectra. The modeling of QDs 

is relatively simple compared to higher-dimensional systems despite many variables, 

such as the shapes and the sizes of the QDs. However, we need to introduce the 

concepts of exciton and biexciton first in order to further model the energy spectra 

of QDs. 

In bulk semiconductors, due to the Coulomb interaction between optically excited 

electrons and holes, the excitonic effects dominate the optical response below the 

bandedge. Under the effective mass approximation, an exciton can be regarded as 

a well-defined single quasi-particle containing an electron and a hole [113, 114]. Its 

envelope function can be separated into the center-of-mass motion (plane wave in 

bulk semiconductors) and the relative motion between the electron and the hole. 

The equation that determines the electron-hole relative motion is called the Wannier 

equation which has a solution that resembles the electron-ion relative motion in a 



34 

hydrogen atom. The Bohr diameter of the exciton, determined by material parameters 

such as the effective mass of the electron and the hole, must be significantly larger 

than the lattice constant for the effective mass approximation to hold. This is indeed 

the case for most materials. For example, GaAs has a Bohr diameter of about 25 nm, 

compared to the lattice constant of 0.56 nm. This type of exciton is known as Wannier 

exciton. In the other case that the Bohr diameter of the exciton is comparable to or 

smaller than the lattice constant, this type of exciton is called Frenkel exciton [115]. 

In semiconductor QDs, an interacting electron-hole pair is subject to 3D quantum 

confinement, which generally results from a bandedge offset between the dot material 

and the surrounding matrix which is usually a semiconductor of higher bandgap. In 

QDs with weak lateral confinement, such as the natural GaAs IFQDs used in our 

experiment, the exciton binding energy is larger than the confinement energy, and 

it is the center-of-mass wavefunction of the exciton that is localized. Localization 

changes the energy spectrum of the exciton from a continuum into a set of discrete 

levels, which are referred to as QD exciton states, as shown in Fig. 2.8. Tile QD 

energy continuum, for instance can be free electron-hole pairs in the 2D QW. 

Excitons in an IFQD are confined in three dimensions by an imperfect GaAs 

QW. Vertical confinement (in the epitaxial growth direction) is provided by the QW 

barriers (AlxGal-xAs), while lateral confinement in the QW plane results from natural 

variations in the effective thickness of the GaAs QW as shown in Fig. 2.9(a). This 

confinement results from the level mismatch between QW subbands in regions of the 

well with different thickness. The potential barrier formed by the monolayer-high 

steps (a few meV) , as shown in Fig. 2,9(b), is an order of magnitude less than that 

for the AlxGal-xAs potential barrier in the vertical direction (a few hundred meV). 

Therefore the QD, though providing strong confinement in the vertical direction, is 

weak in the lateral directions. 

The above analysis assumes that only the Coulomb attraction within each 

particular electron-hole pair state needs to be considered. These discrete states are the 
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FIGURE 2.8: Schematic diagram of energy levels of a QD. G stands for the ground 

state of the crystal, or exciton vacuum. Eo, E1 and E2 are the ground state, the first 

two (possible) excited states of the QD. Cont. denotes the QD energy continuum. 

(a) 

(b) 

FIGURE 2.9: Schematic diagram of a 3-6 nm QW with large monolayer-high islands 

at the interface that lead to confinement of the exciton (a), and the corresponding 

lateral confinement potentials associated with the interface islands (b). 
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eigenstates of the system where only one electron-hole pair is created. In the case that 

two electron-hole pairs are excited, the Coulomb interaction between the two electron­

hole pairs needs to be considered. Therefore the energy of the two-exciton state does 

not equal to sum of the two exciton states. The difference reflects the interaction 

energy between the two excitons. In the perturbation theory, it appears as a higher­

order correction and is therefore referred to as a higher-order Coulomb correlation 

[116]. Its sign and strength are determined by factors such as the electron/hole 

effective mass ratio, the quantum confinement and the spins of the electrons and 

holes. The stable binding of the exciton-exciton molecule (with negative binding 

energy) is referred to as a biexciton. Despite the weak confinement in the lateral 

directions in IFQDs, evidence for complete localization of excitons and biexcitons has 

been found using different approaches, including the quantification of the confinement 

energy, the direct microscopy image of excitons via emission and resonant coherent 

nonlinear response of excitons. Evidence for localized complex states containing more 

than two excitons are not observed, possibly due to the limited confinement [117]. 

As a useful approximation, the energy spectrum of a QD can be separated into 

energies associated with the vertical and lateral directions. The strong confinement 

along the z-axis governs many of the properties of the exciton, such as the electron g­

factor and exchange Coulomb energies. Here the electron g-factor is a dimensionless 

quantity which characterizes the magnetic moments of an electron. (Please do no 

confuse this electron g-factor with the cavity 9 factor defined in Eq. (2.16) in Sec. 

2.2.1. ) The low-energy excited states are determined primarily by the lateral size 

and shape of the QD and have energy splitting on the order of a few meV. Because 

the light-hole exciton is shifted by tens of meV, the spectra and other properties of 

these low energy QD states are derived primarily from the lowest energy heavy-hole 

subband of the QW, and light-hole mixing is weak. The level diagrams that include 

the crystal ground state (exciton vacuum), the two lowest orthogonal heavy-hole 
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bright exciton states and the bound biexciton state of relevance to optical studies are 

shown in Fig. 2.10 below. 
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FIGURE 2.10: Model for a GaAs QD. G, X and BX denote the ground, the exciton 

and the biexciton states respectively. 6.E is the biexciton binding energy. The optical 

selection rules for transitions in a symmetric and an asymmetric QD are shown in (a) 

and (b), respectively. 

IIy(IIx ) is the linear polarization perpendicular (parallel) to the QD elongation 

(crystal [110] axis or -x direction) in the plane of the GaAs layer. Without the 

magnetic field, the two exciton states are excited using the linearly polarized light 

and are labeled as Ix) and Iy). An externally applied magnetic field can diminish 

the mixing within the heavy hole states [118, 119]. The transitions become circularly 

polarized. The exciton states are represented by 1+) and 1-). The dipole moment 

of various transitions are denoted by /Lij, where i and j are indices representing the 

final states (b and -, + or x, y) and initial states (-, + or x, y and g) of the dipole 

transition, respectively. 

In the ideal situation, the optical transitions for excitons in QDs of zinc-blend 

semiconductors such as GaAs are circularly polarized, as indicated by the solid arrows 
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in Fig. 2.1O(a). The right-hand circularly polarized (0-+) transition leading to the 

1+) exciton state is between spin-up state of the s-like conduction bandedge with 

magnetic quantum number mj +1/2 and the heavy-hole bandedge state with 

magnetic quantum number mj +3/2. The left-hand circularly polarized (0-_) 

transition leading to the 1-) exciton state, however, is between the mj = -1/2 

conduction bandedge state and the mj = -3/2 heavy-hole bandedge state. 

For the GaAs interface fluctuation QDs under study, however, they are elongated 

along the crystal [110] axis due to the dynamics in the growth, leading to band 

mixing and modified optical selection rules due to the long range part of the 

exchange interaction [114, 120, 119]. It is found that the two excitonic states become 

mixed and slightly split (a few tens of p,eV) and the optical transitions become 

linearly polarized [111, 121, 119]. This is shown in Fig. 2.10(b). In an ideal and 

symmetric QD, the cascade exciton emission will produce polarization-entangled 

photon pairs [122]. The splitting, however, provides 'which-path' information, 

preventing polarization entanglement of the intermediate exciton emissions. So if 

the 'which-path' information caused by the frequency splitting can be erased, one 

would again be able to produce polarization-entangled photon pairs. An externally 

applied magnetic field can be used to tune the splitting to zero, and polarization­

entangled photon pairs have been generated in this way [123]. We will discuss how 

to use radiative decay cascade of a biexciton in an IFQD based on our system to 

produce polarization-entangled photon pairs in Chapter VI. 

2.3 Distributed Bragg Reflectors 

The highly reflective semiconductor planar mirror that we use in our cavity is a 

distributed Bragg reflector (DBR) mirror with semiconductor QDs embedded in the 

middle of a one-wavelength spacer layer on top of it. In this section, we give a brief 

background of a DBR mirror and how to integrate optical centers with it. 
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There are two well known geometries that utilize interference effects to produce 

high reflectivity mirrors: one is the quarter wavelength (QW1) stack, typically called 

a distributed Bragg reflector; the other is the Bragg crystal [124, 125, 126, 127]. The 

QW1 stack gives the fastest increase in reflectivity with increasing number of layers, 

but deteriorates fast in the performance if one of the layers is absorbing. The Bragg 

crystal minimizes absorption by positioning the absorbing layers into the nodes of 

the standing wave produced by the superposition of the incident and reflected waves. 

A Bragg mirror designed in both ways present a wavelength interval centered at a 

target wavelength in which the reflection coefficient at normal incidence can be very 

close to one. In addition, the phase of the reflection coefficient within this region of 

high reflectivity, called "stop-band", behaves linearly as a function of the frequency. 

The QW1 stack consists of alternating layers of high (H) and low (1) refractive 

indices, each of the same optical thickness of a quarter of the target wavelength 

for normal incidence, such that all boundaries add with equal phase to the reflected 

wave. For the case that both layer materials are completely absorption free, the QW1 

stack gives the highest reflectivity with the fewest number of layers and approach a 

reflectivity very close to one. In a QW1 stack, each layer extends from a node to 

an antinode; if one or both layers are only slightly absorbing the performance of the 

QW1 stack deteriorates fast due to the large absorption losses at the antinodes of 

the standing wave. 

The Bragg crystal consists of unit cells with half wavelength (HW1) optical 

thickness for normal incidence, which contribute in phase to the reflected wave. 

An unit cell typically has two constituent layer materials (binary design) with one, 

usually absorbing, much thinner than the other less absorbing or absorbing free one to 

suppress the absorption. Each inner layer of an unit cell, however, will not necessarily 

add up in phase with reflected wave, leading to a narrower stop-band. 

For certain demanding applications, unit cell may consist of three materials 

(ternary design) to compensate the phase differences between the incident and 



40 

reflected waves and to locate the most absorbing layers to the nodes of the standing 

wave fields. This is made plausible due to the fact that the field intensity increases 

quadratically with distance from the node. This leads to an absorption that decreases 

as the third power of the thickness for a very thin film [124]. The reflectivity of a 

very thin film decreases only quadratically with thickness. Therefore, the absorption 

losses can be greatly reduced compared to the reflectivity if thinner absorbing layers 

are used. So we can reduce the absorption and optimize the figure of merit using a 

Bragg crystal, either a binary or a ternary design, to locate the absorbing layers at 

the nodes of the standing wave field. For the highest possible reflectivity, materials 

should be selected by the following rules: 

1.  Select a first material with the lowest possible absorption constant as a spacer 

material. 

2.  Find a second material with the largest possible reflection coefficient at the 

boundary with material one. 

3.  If several materials give similar reflection coefficients, choose the one with the 

smaller absorption coefficient. 

4.  Make sure that the material can be deposited with sharp, smooth boundary in 

order to eliminate scattering. 

Optical centers can be grown in the middle of a spacer, either half-wavelength 

thick or one-wavelength thick, to locate the optical centers at an antinode of the 

cavity field. The spacer is on top of a good optical quality DBR mirror, which can be 

tailored to have a high reflectivity while still maintaining a transmission much larger 

than the absorption and scattering, at the same time. Such an integrated structure 

will look like in Fig. 2.11. 
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FIGURE 2.11: Schematic structural design of an integrated DBR mirror with active 

optical centers in the middle of a spacer layer. 

2.4 Summary 

To summarize, in this chapter, we first gave an overview of concepts using an 

optical micro-cavity interacting strongly with a single optical center for efficient 

production of single photons in Sec. 2.1. We developed a method and gave a 

description of a physical system we designed and constructed that is necessary for 

fulfilling our purpose. Two different light-matter coupling regimes (strong- and weak­

coupling regimes) are considered. Sec. 2.2.1 presents the detailed physical system we 

constructed. In the last section Sec. 2.3, we gave a brief introduction of how to design 

a DBR mirror and how to integrate optical centers with it. Armed with concepts 

introduced in this chapter, we will show how we design, construct and characterize 

the micro-cavity. Then in the later chapters we will examine this system to see if we 

can reach our goal. 

Substrate 
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CHAPTER III 

OPTICAL MICRO-CAVITY WITH SEMICONDUCTOR 
QDS 

We have given an overview of the system in Chapter II. In this chapter, we 

describe the details of design and construction of the whole system, specifically on 

the state-of-the-art fabrication of a hemispherical micro-cavity that is comprised of 

a planar semiconductor DBR mirror integrated with QDs, and an external, concave 

dielectric micro-mirror. Then we discuss the characterization of the micro-cavity 

system. We model match an input laser beam to the fundamental mode of the 

micro-cavity in order to excite the mode efficiently so that it interacts with a QD 

strongly, by adjusting the laser beam's waist size and position. The micro-cavity 

system operates inside an ultra-high vacuum chamber, to allow cooling the sample to 

around 10-17 K and to avoid coating of the samples by cryopumping. We tested the 

cavity transmission spectra at both room temperature and cryogenic temperatures 

and obtained preliminary spectroscopic results showing evidence of significant cavity­

QDs interaction at 17 K. Part of this chapter has been published in Ref. [6]. 

3.1 Introduction 

As pointed out in the previous two chapters, optical micro-cavities have played 

a central role in achieving strong coupling between a single atom and a mode of an 

optical cavity, which enables a range of novel phenomena that rely on the control of the 

mode structure ofthe vacuum (so-called cavity-QED effects). These include enhanced 

or suppressed spontaneous emission [87, 128, 129, 130, 131, 132], thresholdless lasing 

[133, 134], normal-mode splitting [5], and optical nonlinearity at the single-photon 
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level [135, 136, 94]. In the last two decades, such strong coupling has been achieved 

in free-space atomic systems, such as a dilute atomic beam passing through a short 

(10-100 /-lm length) optical cavity [137, 138, 139], or through a cold microwave cavity 

[140]. 

There is also interest in achieving strong cavity-QED coupling in semiconductor 

systems. The research on semiconductor or excitonic cavity QED started in the late 

1980s. The early experiments belong to the weak-coupling regime, for which the 

spontaneous emission process is still an irreversible process. However, a modified 

spontaneous emission rate and altered radiation pattern have been demonstrated. It 

is expected that the quantum efficiency, response time and intensity noise of a single 

semiconductor light source can be improved by cavity-QED effects. The research on 

semiconductor cavity QED entered into the strong-coupling regime in the early 1990s 

with the pioneering experimental work of Claude Weisbuch and coworkers [141, 126], 

where many excitons in the QW interact collectively with the optical cavity. The QW 

excitons and the cavity exchange energy coherently, and thus spontaneous emission 

becomes partially reversible. This rapidly growing field has produced numerous 

interesting results in the fundamental sciences in the past decade. However, the 

practical applications of semiconductor cavity QED in the strong-coupling regime 

have yet to be identified. Semiconductor cavity-QED strong coupling in this context 

means that a single photon in the cavity can saturate one exciton, and conversely a 

single exciton can strongly influence the optical field in the cavity, which is different 

from those early researches mentioned above. 

Following early studies using planar QW-cavity systems, which themselves cannot 

reach this regime [30], recent experiments showed signatures of strong coupling in 

some monolithic structures such as micro-pillar [44], photonic crystal nano-cavity 

[45] and micro-disk [47, 48]. Obvious advantages of using QDs in such schemes are 

that the QDs are stationary and they exist in a solid-state system, which can be 

optically or electrically pumped [39]. The principal disadvantages in these monolithic 
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structures, however, are the lack of efficient control ofthe spatial and spectral overlap 

between QDs resonance and cavity modes. For instance, temperature tuning of the 

QD has to be used to tune through cavity resonance, which is undesirable because 

the dipole dephasing rate increases at elevated temperatures [49, 50]. 

So we want to use a more flexible system to study this problem. This 

dissertation, particularly this chapter, focuses on the design, fabrication, modeling 

and performance of an external, hemispherical micro-cavity for semiconductor cavity 

QED. The cavity parameters are in a novel range: cavity length = 40-60 /-Lm, finesse 

= 260 (which should be amenable to increase by an order of magnitude), mode-waist 

size ~  1 /-Lm, mode divergence angle ±40 deg. This cavity design contains two unique 

features-the use of a concave micro-mirror with high-reflectivity over a large-solid 

angle and the use of an integrated DBR mirror containing the QD sample in an 

external-cavity configuration. The 40-60-micron curved mirror substrate has a high 

degree of sphericity and an excellent surface quality, enabling the application of a 

custom-designed multilayer dielectric coating with 99.5% reflectivity over a high-solid 

angle [142]. Such large solid angle is unique compared with, for example, a recently 

reported half-monolithic micro-cavity design for atomic cavity QED [143]. 

One potential application of such a cavity-QD system is for semiconductor cavity­

QED studies; the other is for on-demand generation of single photons or polarization­

entangled pair photons. The cavity can also be operated with a standard planar 

dielectric mirror replacing the semiconductor DBR mirror. Such an all-dielectric 

cavity may find uses in atomic cavity QED or cold-atom studies [53, 54], or in novel 

forms of microscopy or interferometry. The cavity components have been fabricated 

in our collective laboratories-the concave micro-mirror by a novel gas-bubble inside 

glass technique here at the University of Oregon and the DBR/QD structure by MBE 

at the University of Arizona. 
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3.2 Cavity Design Overview 

Figure 3.1 shows a real structure and a schematic diagram of the cavity. A 

transparent, planar substrate with a multilayer DBR coating (made either of 

semiconductors or optical coating dielectrics) forms one end of the cavity. A 

transparent concave glass surface with a dielectric multilayer reflective coating forms 

the other end. In between is air or vacuum. The radius of curvature of the mirror 

is denoted RM , and can be fabricated in the range 40-100 Mm. d is the depth of the 

dimple, which typically is around one half of the radius of curvature of the dimple. 

The on-axis distance L between the surfaces of the two mirrors is referred to as the 

cavity length. In a hemispherical cavity these lengths are equal, L = RM . This 

places the cavity on the boundary for stability, and (in the paraxial approximation, 

which actually fails here) leads to the interesting property that the modes fall into 

groups with a high degree of frequency degeneracy [96]. The radius of the mode waist, 
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FIGURE 3.1: Hemispherical cavity, comprised of a planar substrate and a concave 

glass surface with layer reflective coating (shown as grey region). The dashed lines 

approximate the l/e intensity contours of the fundamental mode in the cavity and 

its continuation outside. The blow-up shows the DBR and the mode contours in the 

waist region. 
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located at the planar mirror, is denoted woo Since the QD is to be placed in this waist, 

this radius should be minimized in order to maximize the coupling between the QD 

and the field. The angular half-width of the cavity mode is Be. Diffraction dictates 

that the smaller Wo is made, the larger Be becomes. When Wo equals one optical 

wavelength, the angle Be is roughly 40 deg. For such large angles, the electromagnetic 

field cannot be completely transverse to the cavity axis, as would be the case in the 

paraxial limit where Be is restricted to very small values. This indicates a need for a 

theory, summarized below, beyond the common paraxial treatment. 

3.2.1 Concave Micro-mirror Substrates 

A unique component of our cavity is the concave micro-mirror. We developed a 

technique for its in-house fabrication. For use in a high-finesse cavity, it is crucial 

that the curved surface of the mirror substrate be smooth on nanometer scales. This 

prevents undue amounts of light scattering that would act as a loss, spoiling the 

finesse. 

Our technique, shown in Fig. 3.2(a), proceeds by melting a stack of small, 

high-quality borosilicate glass tubes under a nitrogen atmosphere, trapping small 

gas bubbles. By surface tension the gas bubbles are naturally created with a high 

degree of sphericity. After the glass cools and hardens, we grind and polish it on a 

simple optical polishing wheel so that about one-third of a selected bubble remains 

embedded in the surface. The top surface, where a few bubbles are open, is finished 

with diamond discs featuring nickel-plated diamonds in a raised dot matrix pattern of 

6 p,m grit size on a polishing wheel. The bottom surface is polished using a 0.05 p,m 

colloidal silica suspension on a polishing cloth, to achieve an optical-quality finish. 

Finally, we obtain a flat sample of about 150 p,m thickness, which forms our concave 

mirror substrate. For details of the optical properties of the glass we use and the 

fabrication procedure, please refer to Appendix A. 
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(b)(a) 

FIGURE 3.2: (a) Melting borosilicate glass tubes to form nitrogen gas-bubbles in the 

glass and polishing the glass bulk into a 150 ,urn-thick slide. (b) 40 x pictures of a 

dimple. Diameter of the dimple = 100,um. 

Figure 3.2(b) shows an image of a typical dimple at 40x magnification. The 

planar surface on the top side, surrounding the dimples, is very rough, as a result of 

the final 6 ,urn-grit used on this side. This was chosen to minimize the amount of 

contaminating sub-micron glass dust produced during polishing. The inside of the 

dimple (out of focus here) is far smoother. The dimples will ideally have an opening 

half-angle of Be ~  40 deg, a radius of curvature of RM ~  60,um and a surface with 

sub-nm roughness. 

We expected a good sphericity of the dimple surfaces since for decreasing 

dimensions the surface tension is an increasingly strong force compared to other forces 

like gravity. The sphericity has been measured at UA with a Wyko interferometer 

[144]. Figure 3.3 shows a typical surface scan of the dimples. At the bottom of a 

dimple, in a circle of 15 ,urn diameter, the deviations from perfect sphericity where 

found to be less than 10 nm. 

The surface roughness was also measured using a Wyko interferometer that carries 

out a Fourier-analysis of the surface to determine the power (spatial) spectral density 

(PSD) of surface roughness as a function of the lateral size of the errors. Figure 

3.4 shows the measured PSD of five dimples and that of a commercially polished 

super dielectric mirror, provided by the Kimble group at Caltech. For errors with a 

transverse spatial frequency greater than 50 mm- 1 and up to 500 mm- 1 
, the surface 



48 

30 

20 

10 

~ 1 2 . 5  -10.0 -S.O 0.0 5.0 10.0 14.7 nm 

o -'r--..-------r----.­

o 10 20 30 um 

FIGURE 3.3: Measured sphericity at the bottom of a dimple with a Wyko 

interferometer at the University of Arizona. 

quality competes with the best polished super dielectric mirror. Assuming the trend 

in the data goes on, for length scales smaller than one micron, our dimples should 

be much smoother than the super dielectric mirror. However the roughness increases 

dramatically for smaller spatial frequencies (larger length scales). We are not sure 

whether this represents intrinsic errors like wrinkles formed in the cooling process or 

debris left from polishing. 

Super Dielectric 

Mirror (Caltech) 

/ 

10
1 

10
2 

Spatial Frequency (l/mm) 

FIGURE 3.4: Measured surface roughness of five dimples fabricated at the University 

of Oregon and the super dielectric mirror used at Caltech with a Wyko interferometer 

at the University of Arizona. 
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3.2.2 Optical Coating for a Curved Micro-mirror 

Optical coating of such a small and highly curved dimple substrate IS a 

nonstandard procedure and is challenging. One problem is that the atomic coating 

beam is incident on the curved surface at a different angle at each different location. 

This alters the deposition rate in a location-dependent manner, which leads to 

systematic variation of the layer thickness and therefore of the edge wavelengths of 

the coating's stop-band. Therefore, we designed a coating scheme (using TFCalc), in 

a way that compensates for the large change of coating-beam angle across the surface 

of the substrate. 

Our goal is a coating with high reflectivity over a large area of the dimple, with 

a center wavelength at 765 nm. First, we choose a high-index-contrast Ti02 /Si02 

coating in order to minimize the required number of coating layers for a given target 

reflectivity; second, we have a stop-band shifted to longer wavelength (775 nm) 

at the center of the dimple in order to further compensate for the layer thickness 

variation towards the edge. Figure 3.5(a) shows a coating design with 6.5 pairs 

of Ti02/Si02 quarter-wavelength stack, giving a peak reflectivity 99.61% at the 

reference wavelength 775 nm. The refractive indices used for the plot are 2.32 and 

1.44 for Ti02 and Si02 respectively, at 775 nm, also assuming no absorption for both 

materials in the plotting wavelength range. For the working wavelength 765 nm, the 

reflectivity at the dimple center is greater than 99.5% between 738 nm and 813 nm 

as shown in Fig. 3.5(b). 

For locations away from the center, the coating layers become thinner, shifting the 

stop-band to shorter wavelengths. At some location on the dimple surface (or angle 

from the optical axis at the mode focus region), the stop-band edge suddenly shifts 

past the working wavelength, causing a sudden drop of mirror reflectivity, as has also 

been observed in [143]. The concave-mirror substrate was coated by Spectrum Thin 

Films [142] using a standard commercial technology, pulsed ion beam technology, 

which allows coating fragile optics at near room temperature and gives less stress. 
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FIGURE 3.5: (a) TFCalc design of a multilayer dielectric coating for the dimples. 

(b) Wavelength region where the reflectivity is greater than 99.5%. 

Our measurements, shown in Fig. 3.6, of the dimple-mirror transmission versus angle 

from the optical axis confirms that our design and fabrication has succeeded in giving 

a high reflectivity (99.5% or higher) over a wide angular range of ±40 deg, which is 

wide enough to support the hemispherical modes of interest. 

The coated curved dimple was then glued, using index-matched, UHV-compatible, 

ultra-violet (UV) cured optical adhesive (Norland Optical Adhesive 88), to the face of 

a lOOx immersion-microscope objective (Zeiss Plan-NEOFLUAR) with a numerical 

aperture NA=1.3, in order for efficient mode-coupling over a high-solid angle and 

proper focusing to get a diffraction-limited beam spot at the focus. To ensure 

proper positioning of the dimple, we glue it while monitoring interferometrically 

by a Twyman-Green interferometer [145], in which a laser beam passes into the 

objective, reflects from the dimple surface and interferes with a reference beam. 

Figure 3.7(a) shows a set-up used in our experiment, which was initially built by 

Ruediger Loeckenhoff [146]. 

A reference laser beam coming from an optical fiber out-coupler, after expanded 

in size, is directed into a 50/50 cube beam splitter. One branch propagates straight 
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FIGURE 3.6: Measured dimple-mirror transmission versus angle from the optical 

axis at the mode focus region. 

forward hitting a flat mirror and is then reflected back as a reference beam; the 

other branch is reflected upwards passing through the Zeiss microscope objective 

(not showing in the Figure) and is reflected by the dimple back to interfere with 

the reference beam. The Twyman-Green interference patterns are monitored using 

a CCD camera (also not showing) at the location where the glass slide is, to make 

sure that the beam wavefronts are aligned to the dimple surface, as shown in 3.7(b), 

indicated by the proper Twyman-Green interference patterns. 

After the optical adhesive is cured, it is desirable to remove the edge of the dimple 

substrate. This helps prevent the DBR mirror at the other side of the cavity from 

touching or crashing the substrate when the DBR mirror is slightly tilted, because 

the gap between the two is only about 20 Mm, as shown in Fig. 3.1. We put the 

microscope objective with the dimple substrate on a lathe and grind the substrate 

carefully using a tiny drum sander so that a small mesa with a diameter about 3 

mm is left. During the grinding, the dimple is covered and protected by Crystalbond 

509 from contamination, which can be easily cleaned afterwards. Figure 3.8 shows 

the finished piece of a glued dimple substrate on top of a Zeiss microscope objective, 
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FIGURE 3.7: (a) A Twyman-Green interferometer. (b) A coated dimple is glued 

using index-matched optical adhesive to the face of a microscope objective in such a 

way that the beam wavefronts match the dimple surface. 
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which now is one end of our micro-cavity. The mesa on top of the objective is the 

micro-concave mirror substrate. The dimple is in the center of the mesa and is too 

small to be seen clearly. 

(a) (b) 

FIGURE 3.8: Top view (a), and side view (b) of a glued micro-concave mirror 

substrate on top of a Zeiss microscope objective (NA = 1.3). 

There are two factors that can change the optical path length inside the optical 

adhesive layer, which consequently causes the beam wavefronts mismatch to the 

dimple. One factor is the change of the refractive index of the optical adhesive during 

UV curing. In order to compensate for this effect, we offset the dimple position a 

little bit empirically before curing so that after curing the dimple position is close 

enough if not perfectly, to the right position. The other is the change of the physical 

thickness of the optical adhesive layer, for instance caused by relatively large change 

of ambient temperature. Therefore, it is not easy to match the beam wavefronts with 

the dimple surface perfectly. Even if it is perfectly aligned in the first place, it can still 

change under other circumstances, for example when cooling down the semiconductor 

sample at the other side of the cavity. So we need to be able to further control an 

input beam wavefronts by mode-matching optics, which will be discussed in the next 

section. 
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3.2.3 Integrated DBR Mirror with QDs 

Semiconductor planar DBR mirrors with exceptionally good surface smoothness 

and high reflectivity can be grown by MBE techniques [147]. Our UA collaborators 

found that the surface roughness on transverse length scales relevant for our needs 

(rv 1 p,m) is equal to that of the best polished super dielectric mirrors of the type 

used in atomic cavity-QED experiments. Figure 3.9 shows a comparison of two 

kinds of mirrors-the MBE-grown and a commercial super dielectric mirror. The 

figure plots the power spectral density (PSD) of surface roughness versus transverse 

spatial frequency, measured with a Wyko interferometer. It is seen that the planar 

semiconductor mirror has far larger roughness for low spatial frequencies, while the 

commercial super dielectric mirror is slightly rougher at spatial frequencies above 

1000 mm-1, or length scales larger than one micron, the region of interest for our 

cavity, since the mode waist is on this scale. 
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FIGURE 3.9: Measured surface roughness of a DBR mirror grown at the University of  

Arizona and the super dielectric mirror used at Caltech with a Wyko interferometer.  
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The GaAs QDs that we use are interface-fluctuation quantum dots (IFQDs). They 

are formed through the influence of monolayer-thick interface fluctuations during the 

MBE-growth of a quantum well (QW) [100, 111]. Our team has succeeded in growing 

good-quality IFQDs on top surface of high-quality DBRs. The sample used in this 

experiment is CAT96 and its design is shown in Fig. 3.10. The bottom mirror 

consists of 22.5 pairs of Alo.24Gao.76As/AlAs quarter-wavelength stack grown on a 

GaAs substrate, which is removed later to reduce optical absorption. The GaAs 

IFQDs are formed in a 3.86-nm-thick QW embedded in the middle of a wavelength­

thick spacer layer on top of the DBR mirror to place the QDs at an antinode of 

the cavity. The exciton transition in these QDs has a relatively large dipole matrix 

element (rv 60 Debye), enabling it to interact strongly with the cavity field. 

Cap Layer: 3.28 nm GaAs 

QW with IFQDs: 3.86 nm GaAs 

0000000 

1A Spacer: 

Alo24Gao76As 

Substrate:
Bottom Mirror: 

GaAs22.5 pairs AlO24GaO 76As/AIAs 

FIGURE 3.10: The design of CAT96. GaAs IFQDs are formed in a 3.86 nm GaAs 

QW in the middle of the one-wavelength spacer layer (Alo.24Gaa.76As). The cap layer 

is for preventing the spacer layer from oxidizing. 

The reflectivity of the DBR mirror versus wavelength at room temperature has 

also been measured. Figure 3.11 shows the measurements on two different spots on 

CAT96. Figure 3.11(a) shows the data taken from a spot 10 mm from growth center 

(GC). The theoretical peak reflectivity of this example is 98.12% at the wavelength 

794.83 nm. The dip at the wavelength 773.8 nm in the reflectivity measurement is due 

to the one-wavelength spacer layer acting as a micro-cavity. This means that a laser 
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at this wavelength is in resonance with the spacer layer and the light field will have 

an anti-node right in the middle of the spacer layer where the QDs are. Therefore, it 

is important to probe the cavity-QD interaction around this wavelength to maximize 

the interaction. 

Since the farther from GC, the thinner the sample is and hence the spacer layer, 

the dip in the reflectivity measurement will shift to shorter wavelengths. Figure 

3.11(b) shows the data taken from a spot 13 mm from GC. The theoretical peak 

reflectivity is still 98.12% at the wavelength 794.83 nm, but the dip shifts to a shorter 

wavelength 765.2 nm, as expected. Thus it is also important to scan the sample 

laterally so that we can probe the cavity-QD interaction at different spectral or 

wavelength regions. When the DBR mirror is cooled down to 10-17 K, the reflectivity 

measurement (spectrum) shifts about 10 nm to shorter wavelength as a whole, mainly 

due to the changes in the refractive indices of the layer materials and their physical 

thicknesses. 

The presence of QDs is verified by photoluminescence (PL) spectra in free space 

at low temperature (7 K), showing broad (quasi-continuous) emissions in the 750-770 

nm wavelength region for CAT96, and 750-790 nm wavelength region for a similar 

DBR CAT97 (22.5 pairs of Alo.25Gao.75AsjAlAs), as shown in Fig. 3.12(a) and (b) 

respectively. This indicates many QDs overlap spectrally on both DBRs. The PL 

spectrum was excited with a diode laser at a wavelength 685 nm with a power 33 

p,W. The difference between x values (0.24 and 0.25) in AlxGal-xAs for two samples 

is within the uncertainty of the growth rates. 

As shown above, there are many QDs overlap spectrally. It is not easy to identify 

both spatially and spectrally isolated single QDs, which requires a nano-scope and 

a high-resolution spectrometer. Figure 3.13 shows a set of nano-scope PL spectra 

[101] for a sequence of different locations with a spatial step of 300 nm in the QW 

plane on the DBR CAT97. The broader PL emission lines in the upper traces are 

inhomogeneously broadened and can be fit approximately by Gaussian distributions, 
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FIGURE 3.11:  Reflectivity versus wavelength of CAT96.  The data  (solid  lines)  were 

taken  on  spots about  10  mm  (a),  and  13  mm  (b)  from  GC  on  the sample at 300  K. 

The dot  lines  are  the  theoretical  fits.  The fitting  parameters  are:  Atarget  =  770  nm, 

n(Alo.24Gao.76As)  = 3.524337 and n(A1As)  = 3.003109  [University of Arizona]. 
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FIGURE 3.12: PL spectra of samples CAT96 (a), and CAT97 (b) at 7 K The 

excitation laser wavelength is 685 nm with an excitation power 33 J-LW [University of 

Arizona]. 



59 

Wavelength (nm) 
760 755 750 745 740 

--,~~,,--

(/) 

Q) 

...­
"00 
c 
Q)
...­
C 

.....J 
0.. 

1.65 1.66 

Energy (eV) 
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sample (CAT97) at 7 K) showing spectrally and spatially well isolated single QD 

emission lines (circled) [University of Arizona]. 
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and are likely caused by emissions from spatially close QDs with different lateral sizes 

and hence different emission frequencies. Some of the narrower PL emission lines in 

the lower traces can be fit by Lorentzian distributions, which are homogeneously 

broadened, signifying isolated single quantum emitters, and can be identified as 

emissions from single QDs, for example, the circled ones. One of them is in our 

750-760 nm target region and is spectrally well isolated. The emission lines at the 

same energy (wavelength) in the adjacent traces are also from this specific QD and 

indicate that it is also spatially well isolated (rv 600 nm) from other QDs. Based on 

this measurement on CAT97, we expect there are also isolated single QDs on CAT96. 

Before being used as a cavity mirror, the GaAs substrate for growing the DBR 

mirror needs to be removed in order to reduce absorptions. Figure 3.14 shows the 

procedure to prepare the sample onto a sapphire disk ready for using in a cavity. We 

GaAs 
01 Etchant Jet 

C 5 0 9 , - t > ~ D B R  l 
It I It 
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• 
[. 

• 
.1 

~  /' 

•• 
Optical 

Adhesive DBR 

(~  

It IJ It 

FIGURE 3.14: The procedure to remove the GaAs substrate of a DBR mirror and 

to glue it onto a sapphire plate. 
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first glue the spacer layer side of the DBR mirror using a heat adhesive Crystalbond 

509 (C509) onto a sapphire plate with GaAs substrate facing upward. Then we glue 

the sapphire disk onto the mounting block of a lapping fixture (South Bay Technology, 

Inc.), still with C509. After that, we mechanically polish away most of the GaAs 

substrate so there is about 25-40-J.lm-thick sample left, including both the DBR mirror 

and the leftover GaAs substrate, because we do not want to polish the sample too 

thin and damage the DBR mirror. The total thickness of the DBR mirror with QDs is 

about 3 J.lm thick. The rest of the GaAs substrate will be selectively etched away using 

a method described in [148]. The sample is placed into position of a Jet Thinning 

Instrument (South Bay Technology, Inc.) under the jet stream of the etching solution. 

The etching solution is a mixture of hydrogen peroxide (H20 2 ) 30% concentrated and 

ammonium hydroxide (NH4 0H) 58% concentrated. After removing all the GaAs so 

that the first layer of AlAs is exposed, we mount a second sapphire plate onto the 

AlAs side using the UV-cured optical adhesive (Norland Optical Adhesive 88). AlAs 

can get easily oxidized in the air, so extra care should be taken during this step and 

should be finished as quickly as possible. Finally, after curing the optical adhesive, we 

remove the first sapphire plate so that the spacer layer of the DBR mirror is exposed 

and will be ready for use as a cavity mirror. 

3.3 Cavity Construction, Testing and Modeling 

Once both of the cavity mirrors are fabricated and ready for use, like described 

in Sec. 3.2, we assemble them together with other components and construct a 

high-quality hemispherical cavity using our 60-micron concave mirror and a planar 

semiconductor DBR (CAT96), as shown in Fig. 2.2. The sapphire plate with the 

semiconductor DBR mirror is first glued to a low-temperature holder using thermally 

conductive epoxy (Epo-Tec T7110); then mounted to a PZT actuator jointed by 

a thermal insulator, as shown in Fig. 2.3, which is a hollow cylinder made from 

a polymer (Vespel from DuPont) having a low coefficient of thermal conductivity.. 
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This allows us to cool down the sample while not affecting the PZT. The PZT is 

driven by a laser-referenced feedback loop for stabilizing the length of the cavity. The 

sample assembly is mounted on a tripod system, supported by three Burleigh UHVL 

Inchworm Motors, to control precisely its longitudinal position and its angle with 

respect to the curved mirror. The tripod also contains an x-y nano-positioner, which 

can laterally scan the mode waist in a 50 x 50 j.tm
2 region, essential for scanning and 

addressing a single QD, as also shown in Fig. 2.3. The system operates inside a high­

vacuum chamber (10-8
- 10-10 mbar) , to allow cooling the DBR mirror to around 

10-17 K to reduce QD dephasing rates and to avoid coating of the DBR mirror by 

cryopumping and attendant absorption and scattering. 

As we have mentioned in the previous section, we need to be able to control the 

input laser beam's wavefronts in order to match it to the dimple, after we have closed 

up the UHV chamber. In this section, we first discuss how to mode match an input 

laser beam efficiently into the fundamental mode of the micro-cavity. Then we will 

discuss tests of the cavity mode structure and compare the mode properties at both 

room temperature and low temperature. Based on numerical modeling of this hybrid 

hemispherical cavity, we highlight some interesting phenomena associated with the 

high solid-angle design and the semiconductor DBR mirror. 

3.3.1 Mode-matching a Laser Beam into a Cavity Mode 

The strongest interaction between an optical center and a cavity mode is its 

interaction with the lowest-order transverse mode of the cavity, since the lowest­

order transverse mode by definition has the highest spatial confinement and smallest 

waist size and the lowest leakage or diffraction losses; or in other words, the field has 

the largest strength (intensity) per photon. For an optical center, the cavity-QED 

strong coupling will likely first happen between the lowest-order transverse mode and 

the optical center. In order to probe the interaction between a QD and a cavity 

mode, we need to be able to mode match a probe laser beam into a desired cavity 



63 

mode properly, for example into the HGOO mode. Moreover, there may be other 

complications associated with higher order spatial modes of a hemispherical cavity, 

for instance, certain frequency splittings in higher order spatial modes predicted in 

Ref. [98]. 

We assume, for a given cavity, that its length has already been stabilized, either 

passively by filtering and damping or/and actively by a feedback control loop such 

as the Pound-Drever-Hall scheme [149, 150]. In other words, we have already mode­

matched the longitudinal degree of freedom of the cavity. There are two major types of 

misalignments of the transverse degrees of freedom [15:1.]. Here we use term alignment 

to mean transverse displacement and angular orientation of an input beam; and mode­

matching to indicate waist size and position control. Sometimes, where there is no 

ambiguity, we use alignment to mean both. 

If an input laser beam is slightly misaligned in angle or transversely displaced with 

respect to the cavity optical axis, first-order HG modes are introduced. Similarly, if 

a beam waist's size and position do not match the cavity waist's size and position, 

second-order HG modes (first-order LG modes) are introduced. In terms of phase, 

a transverse displacement and mismatch of waist size of an input beam with respect 

to the cavity axis and waist size give rise to inphase coupling to, respectively, the 

first- and second-order transverse HG modes of the cavity. On the other hand, 

angular misalignments and waist position mismatch lead to coupling to these modes 

in quadrature phase. 

To excite the fundamental transverse cavity mode efficiently, it is necessary to align 

an input beam correctly with respect to the cavity optical axis and also shape and 

focus the input laser beam use mode-matching optics. Let's consider the alignment 

of a two-mirror Gaussian cavity having two spherical mirrors as discussed in Chapter 

II, again shown here in Fig. 3.15. 

Associated with every stable optical cavity in the paraxial limit is a set of 

spatial eigenmodes, either HG modes or LG modes, both of which form a complete 
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FIGURE 3.15:  Analytical model  and notation for  a  stable  two­mirror  cavity.  Wo is 

the radius  of the beam spot  at  the  Gaussian beam waist  z =  O.  WI and W2 are  the 

beam spot sizes at two cavity mirrors M1  and M2  with radii of curvatures R1 and R2 

at positions  ZI and Z2, respectively.  L is  the cavity  length. 

set.  Physically,  these  eigenmodes  describe  electric  field  distributions  which  can 

propagate  back  and  forth  between  the  mirrors  along  the  cavity  optical  axis  with 

minimum  diffraction  losses  and  without  changing  shapes.  A  general  input  beam 

can be expanded and expressed as  a  linear  combination of these eigenmodes.  There 

are  six  parameters  which  describe  an  input  beam  alignment  and  mode  matching: 

two  rotations,  two  transverse  translations  and  the waist  size  and axial  position,  all 

measured at or from  the cavity waist at z = O. 

For simplicity,  we  discuss  the transverse displacement and angular rotations only 

in  the  x dimension,  since  the  y dimension  will  have  identical  expressions.  The 

normalized  spatial  eigenmodes  in  Cartesian  coordinates  are  HG  modes;  the  three 

lowest orders are: 

Uo(x) (3.1)C~J/\xp  [­ (:J]  
( ~)  1/4  2x exp  [_  ( ~ )  2]  (3.2)  

7fWo Wo Wo 

(3.3)C ~ 5 r  ( ~ ;  ­1) exp  [­ (:Jl 
where  Wo is  the waist  size,  as  defined  and  given  in  Eq.  (2.18)  by  cavity­g  factors. 
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FIGURE 3.16: Misalignments of an input beam axis with respect to the cavity axis: 

(a) transverse displacement ax; (b) tilt through an angle ax. 

Rewrite it explicitly using the cavity mirrors' radii of curvatures and the cavity length 

L, 

2 A L(R1 - L)(R2 - L)(R1 + R2 - L) 
W o =-  (3.4) 

7f  (R1 + R2 - 2L)2 

Uodescribes the fundamental mode, U1 and U2 are the first and second off-axis modes, 

respectively. We assume that the input beam w(x) is Gaussian and aligned, so that 

w(x) =  AUo(x) and if we translate the input beam a small amount ax, as in Fig. 

3.16(a), w(x) becomes 

w(x)  AUo(x ­ ax) (3.5) 

A C~6)  1/4 exp [_ (x :oa. )2] . (3.6) 

The exponential can be expanded and if ax / Wo «  1, we keep only the first order 

term: 

(3.7) 
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or 

(3.8) 

Thus we see that a small transverse displacement of the input beam gives rise to an 

in-phase coupling of the first off-axis mode of the cavity. 

Now we consider the case when an input beam is traveling along the cavity axis 

z and is tilted with respect to the cavity axis. In general, the wave-front curvature 

along the axis of travel is spherical so that the off-axis phase is different from the 

on-axis phase. At the waist, however, the curvature is infinite so that the phase is 

constant along the transverse plane. We will assume here that the input beam waist 

matches the cavity waist and it is rotated about the cavity waist through a small 

angle ax as shown in Fig. 3.16(b). As we project the input beam onto the cavity 

transverse plane, we see in Eq. (3.10) that its magnitude is no different from the 

input to first order in ax 

1\lJ(x) I  1\lJ(x') I(cos ax )-1 (3.9) 

1\lJ(x')I(l + a;/2 + O(a;)). (3.10) 

However, the phase of the wave now varies along x 

(3.11) 

or 

.2'7rax x)
\lJ(x)~AUo(x)exp  ( ~  A .  (3.12) 

The exponential may be expanded, and only the lowest-order terms are kept when 

(27WxWO)/A «1. Physically this limit says that the tilt angle is smaller than the 

far-field divergence angle of the beam. \lJ(x) becomes 

(3.13) 
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or 

(3.14) 

In words, a tilt couples into the first off-axis mode as does a transverse displacement 

but with a 900 phase shift. 

Then we calculate coupling due to small mode-mismatching, it is more convenient 

to work in polar coordinates [96]. The eigenmodes of the cavity are given by the 

generalized Laguerre polynomials Lf weighted by a Gaussian. p and l are the radial 

and angular mode numbers, respectively. We are interested here in the modes with 

no angular dependence and so set l = O. At the waist the two lowest-order radial 

modes are 

VO(r) !3.~  exp (_ r:), (3.15)V;wo W o 

!3.~  (1 _ 2r:) exp (_ r:), (3.16)V;wo W o W o 

where r is the radial coordinate and the cavity waist size is still WO° Note that the 

first order LG mode is similar and equivalent to second order HG mode. 

This time suppose that the input beam is aligned and almost mode-matched 

except that the beam waist size w~  is different from the cavity waist size Wo by a 

small fraction c, w~  = wo(1 +c) as in Fig. 3.17(a). Now the wavefunction is 

[r
2

]w(r) = A --(1 + c) exp - ~ ( 1  + c)2 . (3.17) 
7r Wo WoI! 1 

Expanding the exponential and retaining terms to first order in c 

(3.18) 

Thus a small size mismatching excites a fraction c of the first order LG radial mode, 

or equivalently second order HG mode. 

The last case to be treated is the one in which the beam size is correctly matched, 

but the position of the waist is not as shown in Fig. 3.17(b). The input beam waist 
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FIGURE 3.17: Mode Mismatch of an input beam (dashed curve) with respect to the 

cavity mode (solid curve): (a) waist size mismatch; (b) axial waist position shift. 

is displaced a distance b along the cavity axis z from the cavity waist position at 

z = O. This means that at the cavity waist the input beam has a finite radius of 

curvature. In order to describe the modes evolve along the z axis, we need to express 

the eigenmodes in a more general form. Neglecting a common phase factor, the two 

lowest-order modes are 

f2 1 [2 (1 . 7r )] (3.19)VO(r, z) = V;. w(z) exp -r w2(z) + '/, )"R(z) , 

2

f2 1 ( ) [2 (1 ]r . 7r )VI (r, z) = V;. w(z) 1 - 2w2(z) exp -r w2(z) - '/, )"R(z) . (3.20) 

w(z) and R(z) are the spot size and the radius of curvature of the wave front at 

position z along the cavity axis, respectively, as given in Eqs. (2.10) and (2.11) 

w(z) (3.21) 

R(z) (3.22) 
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where ZR == 7fW5/A is the Rayleigh range. At a short distance b from the cavity waist 

so that /3 b/zR « 1, the curvature becomes R(b) = /3-2. And, to first order in 

/3, the spot size is essentially that of the waist w(b) c:::: woo Therefore, the axially 

translated input beam at the cavity waist looks like 

w(r, b) = A f3..~  exp [- r: (1 - i/3)]. (3.23)
V;wo Wo 

Expanding an exponential gives the expression for the translated beam in terms of 

eigenmodes 

w(r, z) = A [VO(r, z) + i-b_Vi (r, z)] . (3.24)
2zR 

We see that an axial displacement of the input waist with respect to the cavity 

waist causes a coupling to the first order LG radial eigenmode or second order HG 

eigenmode, but in quadrature with the fundamental mode. We conclude that any 

small misalignments causes a coupling into one of the lowest-order modes with a 

phase dependent upon the types of misq.,lignment. 

Looking from a different point of view, a misalignment can occur not only by 

changing the input beam direction and so forth but also by changing the orientation 

or position of the cavity mirrors. The positions are usually fixed, but the orientations 

are often subject to drift. In general, a mirror tilt through an angle () will cause a 

transverse displacement as well as a rotation of the optical axis, thereby giving rise to 

a linear combination of the inphase and inquadrature components of the first off-axis 

mode. Conversely, for each dimension, a proper linear combination of tilts from the 

two mirrors will give rise to a pure transverse displacement and a pure rotation of 

the optical axis. 

Name the mirror tilts ()1 and ()2' The distances IZ11 and IZ21 of the waist from the 

mirrors as shown in Fig. 3.15 are given by Eq. (3.26) 

Zl 
92(1 - 91) L 

91 + 92 - 29192 ' 
(3.25) 

91(1 - 92) L. 

91 + 92 - 29192 
(3.26) 
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Note that if mirror MI is located to the left of the beam waist, so that the waist 

is inside the cavity as in Fig. 3.15, the ZI as measured from the waist will be a 

negative number. Geometrical considerations show that the optical axis executes a 

pure transverse displacement when 

(3.27) 

giving a transverse displacement 

(3.28) 

and a pure rotation about the waist when 

. 0 1- Z 2 / ~  . 0 
SIn 2 = I I/R sIn I, (3.29)

1 - ZI I 

giving a tilt angle 

. sinO 
(3.30)

Slna = 1 - IZI I/R'I 

In the above expressions R I and R2 are both positive if the centers of curvatures 

are as drawn in Fig. 3.15; ZI is negative and Z2 is positive as shown. Positive 0 is 

counterclockwise. 

For a hemispherical cavity, we will see that a tilt of the planar mirror causes 

a pure rotation, a tilt of the concave mirror induces a pure displacement, both of 

which will give rise to first order off-axis HG modes misalignments. In experiment, 

the misalignments, for a hemispherical cavity, can be greatly suppressed and even 

eliminated by careful alignments of the input probe laser, however, it is not easy to 

eliminate the mode mismatch without additional mode-matching optics. We use a 

system consisting three lenses, two convex lenses and a concave lens, which is similar 

to an afocal system, or a zoom-lens system, to control the mode matching of our 

hemispherical cavity, see Fig. 3.18. 

We mount our mode-matching optics on a linear rail. The optics can be easily 

inserted into and removed away from the optical path without ruining the beam 
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FIGURE 3.18: The zoom-lens system used in our experiment: !I = 12 = f, (-h) < 
f /2. dI2 is the distance between the two convex lenses and dI3 is the distance between 

the first convex lens and the concave lens. 

alignment, enabling us to compare the cavity transmission spectra with and without 

mode-matching optics. Figure 3.19 shows six well-defined cavity mode images 

observed for different cavity lengthes or frequencies without mode-matching optics 

in position. We label them using HG and LG notations, since they are qualitatively 

similar to the Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes that are applicable 

in the paraxial limit [96]. 

FIGURE 3.19: Measured mode images ofthe 60 /.Lm hemispherical cavity. The modes 

are HGOO, HG01, and LG01, top left to right; HG02, HGll, and HG13, bottom left 

to right, respectively. 
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By using this zoom-lens mode-matching system, for a given Gaussian beam, we 

are able to mode-match most of the beam into the fundamental mode of the cavity 

HGOO or LHOO, by varying dI3 • Figure 3.20(a) shows a laser-wavelength scan of the 

cavity transmission versus laser wavelength without the mode-matching optics. The 

strongest mode is the fundamental mode of the cavity, HGOO or LGOO mode, by which 

there are two higher-order even modes: HG02 (HGll) and HG13 (HG04 or HG22). 

The structure repeats itself every cavity free spectral range (FSR). The two small 

peaks at half FSR in between are two odd modes HG01 and HG03 (HG12). Figure 

3.20(b), (c) and (d) show three laser-wavelength scans of the cavity transmission 

corresponding to three different dI3 while keeping dI2 = 330 mm, as compared with 

that of no mode-matching optics, as shown in Fig. 3.20(a). We can see that there is an 

optimal lens spacing dI3 = 110 mm where the second order and the fourth order HG 

modes are greatly suppressed. But when the lens spacing is either longer or shorter 

than it, the higher order HG even modes come back. The third order HG mode 

is also suppressed, which is mainly due to better displacement and tilt alignments 

rather than the zoom-lens system. This example is for a given Gaussian beam used 

in our experiment. In general for other input beams, one can still achieve better mode 

matching by adjusting both dI2 and d I3 , or even using different lens combinations. 

3.3.2 Testing and Modeling the Cavity Modes 

Once we gained the ability to control the mode matching, we tested the cavity by 

passing a laser light through it and observing the cavity transmission and measuring 

its finesse. We probed and measured the transmission versus laser wavelength for 

a cavity containing a layer of QDs. Figure 3.21 shows four scans over the range of 

wavelength where the QDs absorb (745-765 nm). 

The transverse-mode frequency-spacings become smaller as we approach the 

hemispherical limit by making the cavity longer. Our results are consistent with 

'predictions for the hemispherical limit, paraxial-mode theory [96], which predicts 
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degenerate sets of modes, separated by c/4L, where L is the cavity length. The 

finesse is about 50 at room temperature and the full linewidth at half maximum 

(FWHM) of the HGOO mode is about 50 GHz. When we do a similar scan near 780 

nm, where there is less absorption, the finesse increases to 200. This is an indication 

at room temperature that we are observing optical absorption of the QD layer in 

745-755 nm range. The predicted finesse is 600 based on reflectivity measurements 

of the mirror alone. The lowered finesse is likely due to residual contamination in the 

mirror dimple. 

When the DBR with QDs is cooled down to cryogenic temperature, there will be 

less absorption compared with that at room temperature, mainly due to fact that 

the absorption shifts about 10 nm to shorter wavelength such that we are probing 

at the red side of QDs distribution (absorption) where there are fewer QDs. Figure 

3.22 shows three scans at 16.6 K. The highest finesse measured is 260, giving a cavity 

linewidth as narrow as 10 GHz. The typical homogenous linewidth of GaAs IFQDs 

that we use is broader than 15 GHz. The inhomogeneous linewidth of these QDs, 

however, can be as broad as hundreds of GHz. So with these parameters, our micro­

cavity is capable of spectrally resolving single QDs. 

If an input laser beam, typically a Gaussian beam, is not properly aligned and 

mode-matched to the transverse pattern of the lowest-order mode or the fundamental 

mode of the cavity HGOO, the laser will also excite other higher-order transverse 

modes in the cavity, such as HG01, HGll and LGOl modes, as shown in Fig. 3.19, 

or even a mixture of these modes. Since these transverse modes usually have slightly 

different resonant frequencies, tuning the probe laser allows us to observe a number 

of separate and frequency-shifted resonances for different transverse modes; but since 

the higher-order modes often have larger diffraction losses and thus lower Q values, 

the cavity response in the higher-order modes is often weaker than in the lower-order 

transverse mode, as shown in both Fig. 3.21 and Fig. 3.22. 
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FIGURE 3.22:  60  p,m hemispherical cavity transmission spectra with QDs at 16.6 K.  
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The cavity mode-QD coupling strength is proportional to the amplitude of the 

normalized cavity mode at the location of the QD. In order to make the coupling very 

strong, it is necessary to localize highly the transverse extent of the mode function 

in the vicinity of the QD, and align the mode polarization vector with the dipole 

transition matrix element of the QD. Determining the precise degree to which this 

localization is possible is nontrivial, since the mode structure for such a small cavity 

is non-paraxial, is non-separable into polarization components, and is non-separable 

into longitudinal and transverse functions [97]. 

Our collaborators have taken two approaches to modeling the modes of the near­

hemispherical micro-cavity. The two approaches are a fully numerical one-finite­

difference-time-domain (FDTD) [152], and a hybrid analytic-numerical method [97]. 

The computations account fully for the distributed nature of the planar DBR mirror, 

an important aspect since plane waves of different incident angles undergo different 

phase shifts upon reflection there. The curved mirror is treated as a perfect reflector, 

an approximation expected to be adequate since the mode wave fronts are well 

matched to the mirror curvature. An example of the FDTD method, showing the 

calculated energy density of the mode versus position, is shown in Fig. 3.23. The QD 

FIGURE 3.23: Numerical model for micro-cavity mode energy density, where the 

planar DBR structure is at the top and the curved mirror is in the lower half of the 

figure [151]. 
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sits in a bright local maximum region in the first layer of the DBR. The calculations 

show that even in the presence of the DBR angle-dependent phase shifts, the mode 

waist in the non-paraxial regime is smaller than one wavelength. 

An interesting result of the hybrid analytic-numerical method is a novel DBR­

induced spin-orbit coupling of modes, which leads to small frequency splitting 

previously not identified [97]. The method also predicts a spatial splitting of the 

fundamental Gaussian mode (and other Gaussian modes) into a non-axis-symmetric 

inverted "V" shape. 

3.4 Preliminary Spectroscopic Results and Potential 

Applications 

In previous sections, we have characterized each component of the micro-cavity 

and tested the cavity as a whole. From the PL spectra in free space, we know certainly 

there are both spatially and spectrally isolated single QDs in the semiconductor DBR 

sample. And it is possible to find single QDs using a nano-scope in combination 

with a narrowband laser. We also learned from the cavity transmission spectra that 

the fundamental mode of the cavity is capable of spectrally resolving single QDs. 

In addition, numerical calculation predicts that the cavity mode waist in the non­

paraxial regime is smaller than one wavelength. Now assume we are able to find 

a single QD. In order to make the coherent interaction between a single QD and a 

single cavity mode strong, which is through dipole coupling, we need to optimize 

three conditions: using a QD with large dipole moment, making the cavity mode 

volume small and locating the QD at an antinode of the cavity field with its dipole 

matrix element aligned with the mode polarizing direction. In this section, we address 

these issues in order to optimize the cavity-QD interaction. Through the preliminary. 

spectroscopic results, we recognized the QDs polarizing direction, identified the 

spectral region of interest, and observed evidence of significant interaction between 

QDs and cavity modes. 
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3.4.1 Preliminary Spectroscopic Results 

The dipole transition moments of the QDs can be obtained through fitting the 

linear absorption data from single QD states. Based on the studies carried out in this 

kind of IFQDs by our collaborators and from others, we know that the dipole matrix 

elements of these IFQDs range from 50-100 Debye [153, 117], which is large enough 

and suitable for studying cavity-QED strong coupling and is one of the reasons that 

we chose them for this purpose. Based on our DBR mirror (CAT96) design, the QDs 

are grown in the middle of a one-wavelength Alo.24Gao.26As spacer layer. For a laser 

resonating with the spacer layer, this automatically puts them at an antinode of the 

cavity field. So the tasks left for us now are to find a single QD, align the polarization 

of a probe laser to be parallel with its dipole matrix element and make the beam 

spot at the QDs location as small as possible and hence minimize the effective cavity 

mode volume. Let's start with PL spectra, which is now filtered by the cavity and is 

compared with that in free space. 

As shown in Sec. 3.2.3, based on nano-scope PL spectra measured in free space at 

7 K, there are both spatially and spectrally isolated single QDs at certain locations 

on the sample. However, it is not easy to isolate a single QD spatially alone, which 

requires a spatial resolution better than 600 nm, as shown in Fig. 3.13. For our micro­

cavity operating near hemispherical limit, the beam waist is typically 1 /-Lm for the 

fundamental mode at the planar mirror. For the worst scenario estimate, there can be 

as many as 400 QDs within the beam spot assuming that QDs have nominal lateral 

sizes 50 nm and are closely packed. So we need to combine the spectral selection 

ability in order to address single QDs. 

In experiment, an excitation laser beam having a wavelength 658 nm is coupled 

co-linearly with the probe laser beam into the micro-cavity from the curved-mirror 

side, and the QDs in the DBR mirror at the other side of the cavity are excited. 

PL signals are collected by an asphericallens (NA=0.65) after the DBR mirror and 

are recorded by a spectrometer. Figure 3.24 shows four PL spectra at one specific 
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location on the sample taken at 17 K. The PL emission (envelope) is in the 750-770 

nm wavelength region and is consistent with the PL measurement taken by VA group, 

as shown in Fig. 3.12(a), but is now filtered by the cavity. The PL data are taken 

with the cavity operating near hemispherical limit, where the beam spot is close to 

minimum. The wavelength spacing between the peaks are about 2.2 nm, which is 

roughly half of a cavity FSR. The three strongest modes separated about 4.4 nm in 

the central part of the spectra are nearly degenerate even-order modes, while nearly 

degenerate odd-order modes are in between them alternatively. This effect is very 

clear in wavelength range 757.5-768.0 nm because this region is where our cavity has 

higher finesse and is where the cavity effect is manifested. 

By scanning the DBR mirror in the x-y plane, we are able to map out the regions 

where there are fewer QDs indicating by weaker PL signals. Furthermore, we want 

to probe the red tail of the PL spectra where presumably there are even fewer 

QDs, giving higher chance to address single QDs spectrally. The other important 

information we can obtain from PL is that we can find out the polarization orientation 

of the QDs after they were incorporated with the cavity, which is now inside the 

vacuum chamber. We know from STM image of the GaAs QW where IFQDs are 

formed as shown in Fig. 2.7, that they tend to elongate along the crystal [110] axis 

and hence are maximally polarized in this direction. But we do not know in which 

physical direction they are maximally polarized, particularly after putting the sample 

inside the vacuum chamber. By putting a polarizer in the optical path before sending 

the PL signal into the spectrometer, we are able to recognize the direction in which 

the PL signal is maximized by changing the angles of the polarizer in the transverse 

plane, as shown in Fig. 3.24. The PL spectrum with maximum intensity is designated 

as the QDs' polarizing direction and the angle of the polarizer is thus defined as 00 
. 

The one with minimum intensity is with the polarizer angle changed ±900 from the 

00 angle position. The other two in between correspond to ±300 and ±600 angle 

changes from the 00 position, respectively. 
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FIGURE 3.24: Four PL spectra showing the polarizing direction (00
) of the GaAs 

IFQDs. The excitation laser has a wavelength 658 nm with a power 318 f-lW before 

entering the UHV chamber, which is coupled co-linearly with the probe laser into the 

micro-cavity. 
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Once we know the polarization of the QDs, we couple a spectroscopic laser at 

this polarization into the cavity to probe the interaction between the QDs and a 

cavity mode. We operate the cavity near hemispherical limit, where the beam spot 

is close to the diffraction limit, yielding a one-micron spot size. We first stabilize the 

cavity length through a feedback control loop and lock it with a reference laser beam 

at a specific wavelength that is monitored and calibrated by a wavelength meter; 

then we scan the probe laser's wavelength and measure the spectrum. By adjusting 

the reference laser wavelength step by step, we are able to tune a cavity resonance 

through a QD (or QDs) at a specific absorbing wavelength. Figure 3.25 shows eight 

transmission scans obtained in this way. The four traces (a)-(d) are with the reference 

laser wavelength at 785.72 nm, 785.75 nm, 785.77 nm and 785.80 nm, respectively. 

At this wavelength, 0.01 nm wavelength step corresponds to 4.86 GHz frequency step. 

The four traces (e)-(h) correspond to the reference laser with wavelength at 785.81 

nm, 785.82 nm, 785.83 nm and 785.85 nm respectively. 

The two strongest modes in the transmission in Fig. 3.25(a) are HGOO or LGOO 

modes and are separated by one cavity free spectral range (FSR), which is 5.0 nm 

in wavelength, corresponding to 2.6 GHz in frequency. The small hump at half FSR 

in between the two HGOO modes is the group of nearly degenerate odd-order modes. 

The weaker hump adjacent to the HGOO mode is either the broadened HG02 (HGll) 

mode or few closely clustered higher order even modes. From these data, we can 

deduce that the cavity length in this case is 57.7 Mm. The maximum cavity finesse 

for the HGOO mode is 79, giving a linewidth about 0.06 nm (33 GHz). The wavelength 

step for taking the data is 0.01-0.03 nm increasing, equivalently with a frequency step 

4.86-14.6 GHz at the reference wavelength 785.8 nm. 

One can see that the HGOO mode initially at 759.40 nm becomes weaker and 

weaker as we tune the cavity resonance through the wavelength 759.43 nm, as 

indicated by the dashed arrow line. We believe that there is a strong absorption at 

the wavelength 759.43 nm. It could be either a single QD or a few inhomogeneously 
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broadened QDs lying within the cavity linewidth. We cannot discriminate these two 

cases at this moment. Please note that the modes one FSR away around 754.2 

nm are not affected by the wavelength tuning. We think there is no noticeable 

absorption happening (no QD resonance) there and therefore use it as a reference. 

The other interesting phenomenon that needs pointing out is that the higher-order 

mode (modes) around 759.50 nm becomes stronger and stronger as the adjacent RGOO 

mode gets absorbed. One possible explanation is that the photons on the blue side 

of the spectra get absorbed and re-emitted into the red side of the spectra at 759.5 

nm which is in resonance with the cavity mode. 

According to the PL spectra inside the cavity shown in Fig. 3.24, there are still 

a lot of QDs around the 759.0 nm wavelength region. It is not easy to address single 

QDs around there. There will be a better chance to address single QDs in the red 

side of the PL spectra while still being within the cavity stop-band in the vicinity 

of 765.0 nm, where presumably there are fewer QDs. Unfortunately, we do not have 

the right laser which can scan in 760.0-770.0 nm region in our lab at this moment. 

We are working to have the right laser to probe this spectral region. The other thing 

that needs mentioning is that we have scanned the x-y plane of the DBR mirror in 

a 50 x 50 flm2 region. We found that there are QDs almost everywhere. Without 

opening the URV chamber and manually changing the sample lateral position by a 

few millimeter, we are not able to scan the x-y more than this to investigate other 

locations where potentially there are fewer QDs. So in the future, we want to move to 

other locations where there are fewer QDs and probe the cavity-QD interaction with 

the right laser. We believe we will have a better chance to address single QDs and 

study the strong interaction between single QDs and a single cavity mode, which in 

turn will enable us to apply this flexible external micro-cavity with integrated QDs 

in cavity QED and for efficient production of single photons. 
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3.4.2 Potential Applications 

The hemispherical micro-cavity we have fabricated has an excellent prospect to 

achieve both strong coupling and efficient generation of single photons on demand. 

The hemispherical design is geometrically stable with the only loss (other than surface 

scatter) being by transmission through the end mirrors, not by diffraction losses as 

occurs in other micro-structures [154]. The use of a concave micro-mirror with high­

reflectivity over a high-solid angle makes the mode waist size at the planar DBR 

diffraction limited and consequently leads to a large coupling strength. It enables a 

direct out-coupling of the spontaneously emitted single photons into a single-mode 

traveling wave, which is highly desirable for the efficient and on-demand single­

photon generation. In addition, our system uses a cavity with adjustable length 

and a transversely movable focal region, allowing good spatial and spectral overlap 

of QD resonances with high-Q cavity modes. The preliminary spectroscopic results 

presented in the previous section are very promising. In the rest of this chapter, we 

give a brief discussion of two potential applications of this micro-cavity: cavity QED 

strong coupling and photons on demand. 

Cavity-QED Strong Coupling 

As stated in the earlier parts of this chapter, cavity-QED strong coupling occurs 

when the electric-dipole interaction frequency between an atom or QD and a single, 

unoccupied mode exceeds the energy decay rates of the composite system. The 

signature of strong coupling is a frequency splitting in the laser transmission spectrum 

approximately equal to twice the coupling constant, the so called normal-mode­

splitting, which arises from the coherent interaction of two degenerate systems-the 

single QD and the single cavity mode. Such splitting can be viewed as a lifting of 

degeneracy. In the next chapter, we will examine this carefully and calculate the 

emission spectra, both into the useful forward direction and the open sides of the 

cavity, based on a single optical center interacting strongly with a single cavity mode 

in the Weisskopf-Wigner approximation. 
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IFQDs can have dipole matrix elements as large as 50-100 Debye [153, 117], 

yielding a vacuum Rabi splitting of 49-81 p,eV, assuming a cavity waist of 1 micron 

and a cavity length of 60 microns. As required for strong coupling, this projected 

splitting would exceed the sum of the oscillator dissipation linewidth, typically 15 

p,eV, and the cavity dissipation linewidth, 8 p,eV for a length of 50 microns and a 

reflectivity of 99.6%. 

The transmission of an empty Fabry-Perot cavity has a series of single peaks with 

high transmission at each resonance, as shown in Fig. 3.22. In the strong-coupling 

regime, one of the peaks, preferably the HGOO mode, splits into two peaks, with a 

minimum located at the position of former peak. This shows a strong enhancement 

of system absorption at resonance. This interaction is suitable for coherent quantum 

engineering concepts, such as those being developed in attempts to achieve quantum­

information processing [155, 156]. 

Photons on Demand 

Another important application of such strongly coupled cavity-QD systems is the 

deterministic generation of single photons [92, 157, 93, 42] or of photon pairs on 

demand [158]. Such sources have wide applications in the emerging field of quantum 

information sciences [159]. This is particularly true for quantum cryptography, in 

which an essential element of secure quantum key distribution (QKD) is an optical 

source emitting a train of pulses that contain one and only one photon [160]. For 

example, a source having zero probability for generating two or more photons in a 

pulse and greater than 20% probability of generating one photon would lead to a 

great advance in QKD in daylight through the atmosphere [161, 162, 163]. A high 

quantum efficiency single-photon source will certainly make the QKD more secure. 

For other applications in quantum information processing such as in linear-optics 

quantum computing, one of the stringent requirements is a single-photon source with 

high efficiency (> 99.9%). But the questions are: what is the quantum efficiency of a 
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single-photon source in the cavity-QED strong-coupling regime and how to optimize 

it? We will study these issues in Chapter V. 

3.5 Summary 

In this chapter, we first showed the state-of-the-art fabrication of a hemispherical 

micro-cavity that is comprised of a planar integrated semiconductor DBR mirror, and 

an external, concave micro-mirror. Then we characterized each component of the 

micro-cavity system: the concave micro-mirror and the semiconductor mirror with 

integrated QDs. We described different cases that can lead to modal mismatch of an 

input laser beam to the fundamental mode of the micro-cavity and used a simple afocal 

system to correct the mode mismatch. We tested the cavity transmission spectra at 

both room temperature and liquid helium temperature. We obtained preliminary 

spectroscopic results of cavity-filtered PL spectra and cavity transmission spectra 

showing evidence of significant cavity-QDs interaction at cryogenic temperature. At 

the end, we gave two examples of potential applications of this novel system operating 

in the cavity-QED strong-coupling regime. In the next two chapters we will show 

detailed calculations of the emission spectra and the quantum efficiency of single­

photon sources in the cavity-QED strong-coupling regime respectively, in a more 

general way. 
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CHAPTER IV 

THEORY OF SINGLE-PHOTON SOURCES IN THE 
CAVITY-QED STRONG-COUPLING REGIME 

In Chapter III, we have discussed the design and the fabrication of a micro-cavity 

with semiconductor QDs as optical centers located at an antinode of a cavity field. It 

is believed that this system will find its applications in both cavity-QED studies and 

efficient production of single photons. In this chapter, we build a theoretical model 

for the interaction of a single optical center and a quantized single-mode field in a 

cavity and examine the claims made in the previous chapters. The state of the field 

that is generated in the process of emission from the cavity in which the photon is 

can be regarded as a single-photon wave-packet state. The composite system can be 

used as a single-photon source. In this chapter, we present the first calculation of 

the quantum efficiency and the spectra of single photons emitted both to the open 

sides and in the forward beam in the cavity-QED strong-coupling regime. All results 

are obtained in the Weisskopf-Wigner approximation for an impulse-excited optical 

center. Part of the work presented here has been published in Refs. [51, 52]. 

4.1 Introduction 

In free space, an optical center interacts with a continuum of modes of a radiation 

field, the vacuum, and spontaneously emits photons to all 47f of solid angle of 

free space, as long as the conservation of energy and momentum is satisfied. The 

interaction is through electric dipole coupling. The coupling is characterized by a 

coupling constant 90, which is often referred to as the Rabi frequency of the vacuum, 

is the frequency at which the optical center and the field exchanges energy, given that 
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there is only a single mode of the field. The photon emission rate, the probability 

of photon emission per unit time, is proportional to the square of the vacuum Rabi 

frequency 90 and to the mode density. Assuming an optical center is excited to its 

excited state at time zero, the probability of finding an optical center is still in its 

excited state at time t obeys an exponential decay law, leading to an irreversible 

process. The source of irreversibility is the continuum of field modes resonantly 

coupled to the optical center. The vacuum field acts as a huge reservoir in which the 

phase information of the electric dipole is lost. 

When an optical center is placed inside a two-mirror cavity, it will interact with 

an altered vacuum, where the density of states is structured due to the boundary 

conditions imposed on the region enclosed by the cavity mirrors. If the cavity mirrors 

are not able to cover all solid angle, the optical center inside the cavity can still 

spontaneously emit photons into the open sides of the cavity which acts as a reservoir, 

leading to dissipation. How an optical center inside the cavity behaves depends upon 

the ratio of the vacuum Rabi frequency 90 to the cavity linewidth /'i" whose inverse 

will be the density of modes "seen" by the optical center, or the lifetime of a photon 

in the cavity. If the ratio 90/ /'i, is smaller the one, the spontaneously emitted photon is 

dissipated rapidly and an optical center behaves much as it does in free space but at 

an enhanced rate if it is resonant with the cavity. The emission may also be inhibited 

if the optical center is not in resonance with any cavity mode. 

However, if the ratio 90/ /'i, is larger than one and the coupling between the optical 

center and a cavity mode is stronger than its coupling to side modes, new behavior 

takes place: a radiated photon can stay in the cavity so long that it has a high 

probability to be re-absorbed by the optical center before it dissipates. Spontaneous 

emission becomes reversible and oscillating, as the optical center and field exchanges 

energy at a rate 90. Such behavior is well known for the interaction of an atom with 

a classical monochromatic field and is called "Rabi oscillation" in optical transient 

experiments [164]. In cavity QED we are discussing here, however, the optical center 
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couples to its own one-photon field without an external applied field. This effect is 

called "vacuum Rabi oscillation" . 

In this chapter, we discuss the coherent interaction of a quantized radiation field 

inside a cavity with a two-level optical center described by a Hamiltonian in the 

dipole and the rotating-wave approximations. This problem was studied as early as 

in 1963 by Edwin T. Jaynes and Frederick W. Cummings [165] for an ideal lossless 

system. For a single-mode field it reduces to a relatively simple form yet still gives a 

lot illuminating results in the cavity QED and quantum optics. In our calculations 

presented here, we include dissipations, such as losses to the open sides of a cavity 

and emission into the forward direction of a cavity, to model realistic experiments. 

Perhaps most importantly, the results can be tested experimentally through the 

recently spectacular advances in the development of various high-Q micro-cavities 

already discussed in Chapter 1. 

Based on the solutions of the probability amplitudes using Weisskopf-Wigner 

theory [166], we first examine the widely cited Purcell effect in the cavity-QED weak­

coupling regime. Then we derive the vacuum Rabi oscillations, or normal mode 

oscillations in the cavity-QED strong-coupling regime in Sec. 4.2. We define and 

calculate the integrated-pulse quantum efficiency of a single-photon source in this 

regime in Sec. 4.3. Then we generalize the definition of the Wiener-Khintchine 

spectrum for a stationary and ergodic process to a non-stationary process appropriate 

in this case, and derive the analytical formulas for the cavity-modified forward 

emission and side emission spectra of single photons emitted from a cavity in Sec. 

4.4. 

4.2 Probability Amplitude Method-Weisskopf-Wigner 
Theory 

Our model system consists of a two-level optical center, an atom or QD, located at 

an antinode of the field in an optical microcavity with a length L. Damping plays an 
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important role in this model. These include the decay of an atom/QD in an excited 

state to the lower (ground) state and the decay of the radiation field inside a cavity 

with partially transparent mirrors. In general, damping of a system is described by 

its interaction with a reservoir with a large number of degrees of freedom, which can 

be represented by an infinite number of harmonic oscillators, as in Fig. 4.1. M1 is 

a perfect 100%-refiecting mirror and M 2 is a partially transparent one, from which a 

sequence of single photons emerges. 

Ie) 

~i"  ~  

a,a 

FIGURE 4.1: Analytical model for a lossy two-level optical center interacting with a 

single mode in a leaky optical cavity. go is the vacuum Rabi frequency. 21 and 2/'i, 

are the optical center population decay rate to the sides and the cavity field decay 

rate to the forward direction, respectively. 

The coupling constant or the vacuum Rabi frequency go has been introduced in 

Chapter II, given by 

(4.1)go = f-tx 

where f-tx is the dipole matrix element of either atomic or excitonic transition in the 

electric field direction xhaving frequency Wo0 We is the frequency of the cavity mode of 

interest. Veff is the effective cavity mode volume, defined in Eq. (2.5). The coupling 

between either the optical center or the cavity field to their respective reservoirs Rs 

and Rf can be the decay of the excited-state population associated with all processes 
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(radiative recombination and nonradiative relaxations) except emission into the single 

cavity mode of interest in the case of optical center or simple cavity damping in the 

case of field. In both cases, the net result is to dampen the mode of interest, in which 

the single photons are. We model these dampings by linear interaction terms in the 

Hamiltonian. The coupling constants between the two-level optical center, a single 

photon and their respective reservoir fields are Ap, Ai and Bk, B~.  

The total Hamiltonian H for this system in the Schrodinger picture in the dipole 

approximation and the rotating wave approximation (RWA) is well-known [167] 

(4.2) 

where 

Ho = lUJo ~  + IUJcf],t0,+ nL WpdIrdp + nL wkb1bk (4.3) 
p ;; 

HI = ngo (a+a + a_at) + nL (Ap.a_d} + H.c.) + nL (B~ab1  + H.c.). (4.4) 
p ;; 

Ho consists of the energies of the two-level optical center (atom or QD), the single­

mode field of the cavity, both the side reservoir modes and the free field reservoir 

modes. HI is the interaction energy and takes form of a sum of the atom-cavity 

interaction, atom-reservoir and field-reservoir interaction terms. The operators a and 

at are the annihilation and creation operators for the single mode of the cavity under 

consideration, while az and a± are the Pauli operators for the atomic (Fermionic QD) 

inversion, raising, and lowering, respectively. Wo and We are the atomic and cavity 

resonance frequencies. Here we assume that both reservoirs consist of many Bosonic 

oscillators (e.g. phonons, other photon modes etc.) with closely spaced frequencies 

wp and Wk, annihilation and creation operators dp, b;;, d}, bb respectively. 

It is convenient to work in the interaction picture, in which the Hamiltonian V(t) 

is obtained by an unitary transformation of the Hamiltonian H in the Schrodinger 

picture 

(4.5) 
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For two operators A and B that do not necessarily commute, the operator expansion 

theorem says eCiA Be-CiA = B +alA, B] + ~  
2 

[A, [A, B]] + ... ,where a is a c-number. It 

can be readily seen that the interaction Hamiltonian V(t) in the interaction picture 

for this system in the dipole approximation and the RWA is [167] 

V(t) =ligo (Q-+iieiAt + H.c.) 

+ Ii L (AfiG-_ d}ei8p 
t + H.c.) 

p (4.6) 

+ Ii L (Bfiib1ei8kt + H.c.) , 

k 

where .6. = Wo - We, 6p = Wp - Wo, and 6k = Wk - We are the detunings of the optical 

center-cavity, optical center-reservoir, and cavity-reservoir. Here we treat the atomic 

or excitonic transition frequency Wo as constant. Later in the next chapter we allow 

it to fluctuate, to model pure dephasing. 

Given that there is only one excitation in the system and the optical center is 

excited to its excited state at time t = 0, then at any time t, the state vector is a 

linear superposition of the states le,O), Ig,O) and side- and forward-reservoir modes. 

The state vector is therefore 

1'IjJ(t)) =E(t) Ie, 0) 10) R810)Rj + C(t) Ig, 1) 10)R810)Rj 

+ LSp(t)lg,0)11p)R81 0)Rj 
p (4.7) 

+ L 0k(t)lg, 0)10)RJ1k)Rj 

k 

Here Ie, 0) is the state in which the optical center is in the excited state and the cavity 

field has zero photon. A similar description exists for Ig, 0). However, due to the side 

and forward reservoirs, a photon can also be lost to the open sides or emitted to the 

forward direction of the cavity. Ijp)R8Ilk)Rj (j, l = 0,1) corresponds to j photons in 

the p mode (other than the privileged cavity mode) of the side reservoir Rs and l 

photons in a single-mode (k) traveling wave of the one-dimensional photon reservoir 
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R f in the forward direction of the cavity. E(t), C(t), Sp(t), and 0f(t) are the slowly 

varying probability amplitudes, as we are using interaction picture. 

The equations of motion for the probability amplitudes are obtained by 

substituting 11,b(t)) and V(t) into the Schr6dinger equation in the interaction picture 

i n ~  11,b(t)) = V(t) 11,b(t)), (4.8) 

and then projecting the resulting equations onto different bra states respectively. We 

then obtain 

E(t) -igoei6.tC(t) - i L Ape-ioptSp(t) , (4.9) 

p 

C(t) -igoe-i6.tE(t) - i L Bfe-iOktOf(t) , (4.10) 

f 

_iAp.eiOptE(t), (4.11) 

-iB'feiOktC(t) , (4.12) 

where dots indicate time derivatives. In this context, we assume the optical center is 

prepared in an excited state E(O) = 1, C(O) = 0 at time to = 0 (more generally, it can 

be prepared in an arbitrary single-quantum state), and there is no photon elsewhere. 

By first integrating Eqs. (4.11) and (4.12), then substituting them into Eqs. (4.9) 

and (4.10) we obtain 

t 
E(t) -igoei6.tC(t) - L IApl 

21dt"e-iOp(t-t") E(t"), (4.13) 
p 0 

C(t) = -igoe-i6.tE(t) - L 
_ 

IBf l
2

io
t dt'e-iOk(t-t')C(t'). (4.14) 

k 

These are non-perturbative equations. We have replaced four linear differential 

equations by two linear differential-integral equations. In order to solve these coupled 

equations, we have to make approximations and we do so using Weisskopf-Wigner 

theory [166, 167]. 
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Since the side reservoir modes are closely spaced in frequency, we first replace the 

summation over the wave vector pin Eq. (4.13) by an integral: 

(4.15) 

where VR8 is the quantization volume of the side reservoir R s , Dc is the solid angle 

covered by the cavity and p is the amplitude of the wave vector 1P1, given by wp / c. 

Eq. (4.13) becomes 

(4.16) 

In the emission spectrum, the intensity of light associated with the emitted radiation 

is going to be centered about the atomic or excitonic transition frequency woo The 

frequency w; and [A(wp)1
2 vary little around wp = Wo for which the time integral 

in Eq. (4.16) is not negligible. We can therefore replace w; by w ~  and IA(wpW by 

IA(wo) 1
2 and the lower limit in the wp integration by -00. Using the definition for 

the delta function 

(4.17) 

we obtain the following equation for E(t), in the WWA 

(4.18) 

3where 2, - [VR .I(41r2c )] 1 dDw~IA(wo)12  is the atomic population decay rate 
47l"-Oc 

into the modes other than the cavity mode, and can be given approximately by 

2, ~  2'0(1 - Dc/41r), with 2'0 being the free-space spontaneous emission rate, if Dc 

is small compared with 41r. 

However, for the photons escaping from the cavity, they are going to be in a 

one-dimensional traveling-mode (continuous-mode) state propagating in the forward 

direction from the cavity. It is advantageous to take the limit of a quantization axis of 
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infinite extent parallel to the cavity axis (z) but to retain a finite cross-sectional area 

perpendicular to the axis. Then the one-dimensional continuous-mode variable can be 

taken equivalently as the wavevectors k = ±(Wk/C)Z or the frequency Wk = clkl. The 

one-dimensional mode spacing is thus 27fc/L, which is just the inverse of the density 

of states for the one-dimensional photon reservoir D(wc ) = L/27fc [168]. Similarly we 

obtain the equation for C(t) in the WWA 

C(t) = -igoe-ib,.tE(t) - K,C(t),  (4.19) 

where K, _ 7f D(wc ) IB(wc ) 1

2 [168], is one-half the decay rate of the intracavity field. 

The solutions to Sp(t) and Gf(t) are straightforward once we can solve E(t) and C(t), 

by integrating Eqs. (4.11) and (4.12). To summarize, we have the following results: 

E(t) -igoeib,.tC(t) - 'YE(t) , (4.20) 

C(t) -igoe-ib,.tE(t) - K,C(t) , (4.21) 
t 

Sp(t) -iA;.l dt"eiopt" E(t") , (4.22) 

Gf(t) -iBj; it dt'eiOkt' C(t'),  (4.23) 

where'Y and K, are one-half the radiative decay rates of the atomic population (other 

than the privileged cavity mode) and the intracavity field, respectively. The general 

solutions to the coupled differential Eqs. (4.20) and (4.21) are 

E(t)  ) ( e
i
b,.t/2

= e-Kt/ 2  

(  C(t) 0  

1 ~  + if  

x e<A' 2 1 -;f'  ~ +if )][ ( 
2 4,\ 

x (  E(O) ), (4.24) 

C(O) 

where K - K, + 'Y, f - K, - 'Y, and ,\ = Jgg - [(f - i~)/2J2.  
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4.2.1 Cavity-QED Weak Coupling 

As we have claimed in Chapter II, in the cavity-QED weak-coupling regime, the 

main role of the cavity is to control the spontaneous emission through the Purcell 

effect to enhance radiative decay into a cavity mode of interest. Now we can examine 

the claim based on the results obtained above. Let's consider the case when the 

optical center is in resonance with a cavity mode, .6.. = Wo - We = O. The cavity-QED 

weak-coupling regime is defined by (r;, - /'? > g5 so that the complex frequency A is 

purely imaginary and equals iV(r/2)2 - 95. For convenience, define A - iAo with AO 

is purely real. The solutions to the probability amplitudes simplify to 

E(t) ) = e-Kt/2 

( C(t) 

~_- g~~O  gO) 
Act 

(1 4Ar go)] E(O) ) ,x [e->..ot  ( ~ -:2Af + e "2 : O ~  ~A't
0  ( C(O)

i2Ao 2 4Ao  i2Ao 2 4Ao 

(4.25) 

and the solutions subject to the initial condition, E(O) = 1 (atom in excited state), 

C(O) = 0 (cavity empty) at time to = 0 are 

Kt 2
E(t)  e- / [ (~  - 4~0)  e->"ot +(~+  4~0)  e>..ot] , (4.26) 

2go -Kt/2 (->..ot >..ot)C(t)  -e e -e . (4.27)
2Ao 

For a low-Q cavity that subtends a large solid angle at the optical center so that 

the spontaneous emission to the sides is negligible, r;, » /" then in the cavity-QED 

weak coupling regime, we can approximate (r/2? » g5 as AO ~  r /2 - g5!r. We 

keep both terms of AO in the exponential functions and only the first term in their 

coefficients. Then the probability amplitudes become, to first order in go/ r;" 

e-,[l+g5/(Ib,)]tE(t) , (4.28) 

C(t) _ i~o  {e-,[l+g5!(Ib,)jt _ e-Ibt} . (4.29) 
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We know that in free space the atomic population decay obeys an exponential law 

with a decay rate 21'0' With the cavity, based on the results given in Eqs. (4.28) 

and (4.28), we find that the atomic population now decays with an enhanced rate 

1" = I' [1 + 95I (11,1')] , or 

1" 95--1=- (4.30)
I' 11,1' 

The Purcell factor, widely referred to in the cavity-QED weak-coupling regime, 

is given in Ref. [87] by Fp = (3),3 /411"2) . (QIV), which can be shown to be equal to 

95;(11,1'0)' Therefore, we can readily see from Eq. (4.28) and the first term of Eq. 

(4.29) that the cavity indeed enhances both the spontaneous emissions to the sides 

and to the cavity mode by a factor that is exactly the Purcell factor Fp 

(4.31) 

This justifies our claim made before. The Purcell factor is usually calculated based 

on Fermi's golden rule by comparing the density of modes in a cavity with that of 

in free space. Here we showed that it can be derived from solving the dynamics of 

the coupled system in the time domain. This has also been shown in Refs. [169, 170] 

by solving the equations of motion in Heisenberg picture. The other point we would 

like to point out is that the photon emission from the cavity now is dominated by 

the atomic spontaneous emission since the second term in Eq. (4.29) is much smaller 

than the first term, which results from the enhanced spontaneous emission. 

Another case that is complementary to the above example is that when I' » 11" 

for a relatively high-Q cavity while the spontaneous emission to the sides is not 

negligible, I' ~  1'0. Similarly one obtains the solutions to the probability amplitudes, 

to first order in 90II' as follows 

e-rtE(t) (4.32) 

C(t) _ i~o  {e-I<[l+96/(l<rl]t _ e-rt} . (4.33) 



99 

In this case one would find that the spontaneous emissions into both the sides and 

the cavity are not affected, as seen from Eq. (4.32) and the second term in Eq. 

(4.33); but the photon emission from the cavity now is dominated by the cavity itself 

with an enhanced factor g5/(K,) that is almost exactly the Purcell factor g5/(K,0)' 

The enhanced cavity decay rate reflects the fact that the cavity Q is spoiled and 

the linewidth is broadened by an absorber inside the cavity, as also discussed in Ref. 

[170]. 

4.2.2 Cavity-QED Strong Coupling 

In the cavity-QED strong-coupling regime, defined by go » K, " the real part of 

A is much larger than its imaginary part. Then A can be approximated as A ~  9 ­

Jg3 + (~/2)2  - (f/2)2, which is the generalized vacuum Rabi frequency. Note that 

for the case when the optical center and cavity are in resonance, ~  = Wo -We = 0, the 

complex frequency A is purely real and equals Jg3 - (f/2)2. This leads to sinusoidal 

oscillation rather than an exponential decay and will be justified below. The general 

solutions to the probability amplitudes in the cavity-QED strong-coupling regime are 

re-written as 

E(t) ) = e-(K/2)t ( ei~t/2  0 )  

( C(t) 0 e-i~t/2   

f - i~  . ( ) .go . () )() 2 -'1,- sm gtcos gt + sm gt 
x 9 g . E(O) ), (4.34) 

go . ( ) () f - 't~  . ( ) (( -i- sm gt cos gt - sm gt C(O)
9 2g 

and the solutions subject to the same initial conditions used above are 

. [ f - i~  ]E(t) e-[(K - t ~ ) / 2 1 t  cos(gt) + 2g sin(gt) (4.35) 

_ 'tgo e-[(K + i ~ ) / 2 ] t  sin(gt).C(t) (4.36) 
9 

From a quick examination of these solutions, we can get a hint that the 

probabilities will undergo a number of oscillations before finally being damped away. 
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This is the so-called vacuum Rabi oscillations or the normal-mode oscillations and 

is a characteristic of the cavity-QED strong coupling. The normal-mode oscillations 

can be viewed either in the dressed-state picture or in the bare-state picture. Here we 

look at them in the bare-state picture where the oscillations are easier to calculate. 

The probability of finding the system in the excited atomic state is 

Pe(t) = IE(t)1 
2 

Kt 2 2 2 (4.37) 
=e- [1 + r +21:::..2 + (1 _r +2t::.. ) cos(2gt) + .£ Sin(2gt)] ,

2 4g 4g 9 

and the probability of finding the photon in the single cavity mode is 

(4.38) 

The strong interaction between an excited two-level optical center and a single 

cavity mode leads to single-quantum Rabi oscillation in the time domain or a 

frequency splitting in the frequency domain, the so-called normal-mode splitting, 

which arises from the coherent interaction of two degenerate systems-the single 

optical center and the single cavity mode. In this section, we discuss the normal­

mode oscillations of such a system in the cavity-QED strong-coupling regime, while 

the emission spectra will be discussed in the next section. We first investigate the 

normal-mode oscillations by calculating the probabilities of finding the composite 

system in different states. 

Consider the case when the optical center and cavity are in resonance, t::.. = 

Wo - We = O. Figure 4.2 shows plots of the two probabilities with both linear 

and logarithmic scales. The probabilities oscillate sinusoidally with an exponential 

decay envelope. However, they have opposite phases, which indicate the coherent 

oscillatory energy exchange between the excited optical center and the cavity field. 

And the envelope decay rate now is the sum of the spontaneous emission rate and the 

cavity decay rate, not just either of them; neither is the enhanced nor the suppressed 

spontaneous emission rate. 
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FIGURE 4.2: The probability of finding the optical center in its excited state 

and the probability of finding a photon in the single cavity mode, square and dot 

curves respectively: (a) linear scale, and (b) logarithmic scale, given (90, /'1" ,)/27f = 

(8.0, 1.6, 0.32) GHz. 
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4.3  Quantum Efficiency of a Single-photon Source in the 
Cavity-QED Strong-coupling Regime 

The realizations of cavity-QED strong coupling in the atom-cavity [5] and QD­

cavity systems [44, 45, 47, 48] allow researchers to deterministically generate single 

photons [93, 92, 42]. Single-atom lasers in the strong-coupling regime have also been 

studied [171]. A major question is what is the quantum efficiency (QE) ofthe emission 

from such systems. While not in the strong-coupling regime, Santori et al. [91] showed 

the ability to produce largely indistinguishable photons by a semiconductor QD in 

a micro-cavity using a large Purcell effect [87]. The QE of a single-photon source 

(SPS), which is intrinsic to the composite quantum system, can be different in these 

two regimes because the dynamics of the composite system is different, like we have 

shown in the previous section. The overall efficiency of SPS will also depend on the 

excitation efficiency [95], collection efficiency and detection efficiency, which are not 

intrinsic to the composite quantum system; however, they can be greatly affected by 

the energy structure of the optical center and the geometry of the cavity. Qualitative 

discussions of different efficiencies based on a particular system in the Purcell regime 

have been reported in the literature elsewhere [38]. In the following section, we define 

the quantum efficiency for a single-photon source in the cavity-QED strong-coupling 

regime, based on the theory developed in the previous sections and compare it with 

another definition defined by Law and Kimble that is often referred to [172]. 

4.3.1 Calculation of Quantum Efficiency 

A single photon will certainly be emitted from the excited optical center, but it 

might not be coupled into a single-mode traveling wavepacket because it can also 

spontaneously decay to the side reservoir. We define the emission probability Po(t) to 

be the probability of finding a single photon in the output mode of the cavity between 
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the initial time to = 0 and a later time t. This equals 

2
Po(t) = 2K, it dt' IC(t') 1 = 7}q { 1 - e-

Kt 
[1 + ~:  sin

2 
(gt) + ~  sin(2gt)] }, (4.39) 

where 

given by the single-photon emission probability Po(t) in the sufficiently long-time 

limit t »K-1
. It may be decomposed as 7}q = 7}c . 7}e, with 

95 2Co 
7}c (4.41) 

95 + K,"( = 2Co + 1' 
K, 

7}e (4.42) 
K,+"( 

where Co - g5/ (2K,"() is the cooperativity parameter per optical center [173]. 

We define 7}q as the quantum efficiency of a SPS in the cavity-QED strong-coupling 

regime, which can be viewed as the product ofthe coupling efficiency (7}c) ofthe optical 

center to the cavity mode and the extraction efficiency (7}e) of the single photon into 

a single-mode traveling wavepacket. Despite extensive past study of this system, this 

general formula for quantum efficiency had not been published prior to our study 

[51]. The coupling efficiency characterizes how strong the optical center is coupled 

to the privileged cavity mode. The extraction efficiency determines how large the 

fraction of light is coupled to a single wave-packet, outward-traveling-wave mode. We 

emphasize that the cavity decay is not considered as a loss, but rather as a coherent 

out-coupling, because our goal is to extract single photons from the cavity. 

The photon emission rate n(t), defined as the time derivative of the emission 

probability, gives the rate of a single photon emerging from the cavity mirror M 2 and 

is 

n(t) _ dPo(t) = 2K,95 e-Kt sin2 (gt) (4.43)
dt g2 

We expect the shape of n(t) to be sufficiently narrow in time as to define a well­

localized photon wavepacket and a well-specified time interval between successively 

emitted single photons. 
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From Eqs. (4.41) and (4.42), we can see that the larger the ratios g5/(K,,) and 

K,/" the higher the coupling efficiency and the extraction efficiency, respectively. 

For a given optical center, with no pure dephasing, the dipole dephasing rate is 

limited by its population decay rate. However, we can design a cavity with a proper 

cavity decay rate K, to optimize the QE of a SPS and the shape of the photon­

emission rate. Figure 4.3 shows plots of the emission probabilities and the emission 

rates for three (optimal, good and bad) cavity regimes where we varied the cavity 

decay rate, with K,/27r = (8.0, 3.2, 16) GHz respectively, given realistic parameters 

(go, ,)/27r = (8.0, 0.16) GHz in each case. We find that the optimal condition for a 

high QE and a temporally narrow emission rate, by optimizing the three parameters 

in Eq. (4.40), is K, = g5/K,»" as shown by the dotted curves in Fig. 4.3. The QE 

is 96%, predicted by Eq. (4.40) in this example. The photon emission rate is well 

localized on the time axis. The width of n(t) is about 32 ps. 

4.3.2 Discussion of Quantum Efficiency 

An earlier result obtained in the bad-cavity limit by Law and Kimble is given by 

[172], 

P(t) ~  2C1 (4.44)
2C1 + 1 

where C1 = g5/(K"d is is the single-atom cooperativity parameter. Note that the ,I in 

definition Eq. (4.44) is the full width of the atomic absorption line. The cooperativity 

parameter defined in this context is Co - g5/ (2K,,) because here, is the half width, 

so these definitions are the same. Comparing our analytical result with that given by 

Eq. (4.44), we see that Eq. (4.44) is valid in the limit that spontaneous atomic decay 

is negligible, as treated in [172], or equivalently the extraction efficiency 'rJe is unity. 

This is not necessary for strong coupling and is also not implied by the strong-coupling 

condition. However, for deterministic production of single photons on demand, we 

not only require that the coupling of the optical center to the single cavity mode is 

far stronger than its coupling to all other modes (g5/ K, » ,), but also that there 
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FIGURE 4.3: (a) The emISSIon probability Po(t) of single photons, and (b) the 

emission rate n(t), in three different cavity regimes: optimal cavity regime for 

K, = g~  / K, » I, good cavity regime for g~  / K, > K, » I, and bad cavity regime for 

K, > g~  / K, » I , (dot, square and triangle, respectively). 
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needs to be almost no dephasing of the optical center during the emission process 

h-1 » K;-l). This keeps the emission process deterministic and hence guarantees 

that the consecutively emitted photons are indistinguishable. 

Using the definition of the Purcell factor, we can relate it to the cooperativity 

parameter Co by Fp = g5/ (K;"YO) - 2Co . f, where f = "Y/ "Yo is the fraction of the 

spontaneous emission to the side modes and is often very close to one. So our result 

for QE can also be written as [51] 

Fp K; K; ( )
'T} = . -- = (3 . -- 4.45 
q Fp+f K;+"Y K;+"Y 

where (3 - Fp/(Fp+ f) is called the spontaneous-emission coupling factor, the fraction 

of the light emitted by an· optical center that is coupled into one particular mode 

[154, 174]. In Ref. [175], the authors discussed the coupling factor and the extraction 

efficiency in terms of the quality factor of the mode. The result Eq. (4.45) quantifies 

this discussion. 

To conclude, our result for the QE of a SPS in the cavity-QED strong-coupling 

regime is more general than earlier results in [172, 175]. It can be used to estimate 

the QE of single photons deterministically generated in the cavity output in the 

cavity-QED strong-coupling regime [48], instead of using the Mandel-Q parameter 

[93]. One can improve the QE and performance of a SPS by optimizing the three 

parameters in the analytical result Eq. (4.40). The QE is crucial for a practical use 

of a SPS, for example, a high efficiency is required for implementing the linear-optics 

quantum computation schemes proposed by Knill et al. in [25]; while a low efficiency 

will severely limit the practical application of a SPS in quantum key distribution, as 

shown in [21]. 

4.4 Emission Spectra of a Single-photon Source in the 

Cavity-QED Strong-coupling Regime 

It may seem strange to talk about the spectrum of a single-mode field since we 

normally associate a single mode with a single frequency. Here we are dealing, 
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however, with what should more correctly be called a quasimode, a mode defined 

in a leaky optical cavity, which therefore has a finite linewidth. For a stationary 

and ergodic process, the Wiener-Khintchine theorem [176] states that the spectrum 

is given by the Fourier transform of the two-time correlation function of the radiated 

field. In the strong-coupling regime and for an impulsive excitation of the system, 

however, this relation between the correlation function and spectrum fails because 

the coherent interaction overwhelms the relaxations here. There is no time t after 

which the correlation function depends only on the time difference. Thus the dipole 

correlation and the emitted field correlation cannot be stationary. We need to 

generalize the definition of the Wiener-Khintchine spectrum appropriate in this case. 

We first introduce the forward emission, the emission of single photons through 

the cavity mirror into a single wave-packet, outward-traveling wave, and the side 

emission, the spontaneous emission of the excited optical center into the free-space 

other than the cavity (side modes or leak modes). We recognize from Eq. (4.23) that 

Gk(t) is proportional to the Fourier transform of the probability amplitude C(t'), 

(4.46) 

We define the spectrum as the absolute value squared of the Fourier transform of 

the probability amplitude in the long-time limit, which is proportional to the Fourier 

transform of the convolution of the probability amplitude, as will be shown later. For 

simplicity, we consider the case that the atom/QD-cavity is in resonance. Therefore, 

the forward emission spectrum is given by 

(4.47) 

where we have changed the probability amplitude from Gk(t) to Gw(t) by using the 

density of states for the one-dimensional photon reservoir D(wc ) = L/27fc. Using the 

solution to the probability amplitude C(t) and the expression of Gk(t) in Eq. (4.46), 
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we can calculate the spectrum 

Sj.e.(W - we) =D(we) IB(we)1 
2 

(4.48) 
X lim t dt'eiCW-Wc)t'C(t') t dt"e-iCW-Wc)t"C*(t"). 

t->oo Jo Jo 

Then using the definition of the decay rate of the intracavity field K, _ 1rD(we)IB(we) 1

2 

[168] and defining a new variable D _ W - We, the emission frequency centered at the 

cavity resonance We, and T - t' - til, we obtain the forward emission spectrum 

(4.49) 

The normalized forward emission spectrum is 

(4.50) 

Similarly the side emission spectrum and the normalized side emission spectrum, in 

the long time limit, are given by 

Ss.e.(D) 2!~Re{lOO  dTe
inT [100 

dt'E(t'+T)E*(t')]} (4.51) 

S,e ~  (2"( /,= dt IE(t)I') -1 S,.e.. (4.52) 

In the long-time limit (t » K- 1 
), substituting the Eqs. (4.35) and (4.36) into 

Eqs. (4.51) and (4.49), we obtain the unnormalized emission spectra 

_ ! K, i(D + ~)  
2 

Ss.e.(D) 
I -

2 
1 (4.53) 

1r (K/2 - i~/2  - iD) + g2 

K, -7,go 
2 

. 1Sj.e.(D) = 2 (4.54) 
1r (K/2 + i~/2  - iD) + g2 

The side emission spectrum here is the same as the spontaneous emission spectrum 

calculated alternatively by solving the master equation by Carmichael and others 

[177]. The forward emission spectrum is what we expect to measure by an ideal 

detection system at the output of the cavity in the forward direction, and has not been 

presented previously, to our knowledge. For zero atom-cavity detuning ~  = 0, where 

I 
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the atom and cavity resonances are degenerate, both the side emission and forward 

emission spectra show the normal-mode splittings, which however, are different. The 

splittings are I::1ws = 2J[g'J + 2g5/'1,(/'I, + /,)]1/2 
- /'1,2 for the side emission, and I::1wf = 

2Jg5 - (/'1,2 +/'2)/2 for the forward emission, as shown by the thicker curves in Figs. 

4.4(a) and 4.4(b) respectively. Both are different from the generalized Rabi splitting 

2g. 

Beyond the energy-splitting difference at zero atom-cavity detuning, it is also 

illuminating to investigate the dependence of the energy eigenvalue structure on 

the atom-cavity detuning. Shown in Fig. 4.4 are plots of the spectra, in the 

strong-coupling regime, for seven different values of atom-cavity detuning 1::1. As 

11::11 increases, the vacuum Rabi splitting also increases for both the side emission 

and forward emission spectra. At the same time, for the side emission spectra, the 

cavity-like peak features stronger emission and the atom-like peak grows smaller. For 

the forward emission spectra, however, both peaks show the same emission intensity. 

4.5 Summary 

In this chapter, we built a theoretical model for the interaction of a single two-level 

optical center and a quantized single-mode field in a cavity. Using Weisskopf-Wigner 

theory, we examined the Purcell effect when an optical center is weakly coupled to a 

cavity and derived the vacuum Rabi oscillations when the optical center is strongly 

coupled to a single mode of a cavity field. The state of the field that is generated in the 

process of emission from the cavity can be regarded as a single-photon wave-packet 

state and the composite system can be used as a single-photon source. We defined 

and calculated the integrated-pulse quantum efficiency for such a single-photon source 

in the cavity-QED strong-coupling regime. In the last section, we generalized the 

definition of the Wiener-Khintchine spectrum for a stationary and ergodic process to 

a non-stationary process appropriate in this case, and derived the analytical formula 
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FIGURE  4.4:  Normalized  side  emission  spectra  (a),  and  forward  emission  spectra 

(b)  for  seven  different  values  of  atom­cavity  detuning,  given  (90,  /'1"  "Y)/27r  = 
(8.0,  1.6,  0.32)  GHz. 
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for the cavity-modified forward emission (useful cavity output) and side emission 

spectra of single photons emitted from a cavity. 

In real experiments, all single-quantum systems inevitably interact with certain 

heat baths, leading to dephasing or loss of coherence, even without change in the 

populations of the system, the so-called pure dephasing. All the results derived 

in this chapter are subject to modification by pure dephasing, particularly when 

temperature tuning of the QD has to be used to tune through cavity resonance. In 

the next chapter, we study the influence of pure dephasing process on the vacuum 

Rabi oscillations, the quantum efficiency and the emission spectra. 
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CHAPTER V  

INFLlJENCE OF PURE DEPHASING  

In this chapter, we investigate the influence of pure dephasing, treated in the 

phase-diffusion model based on a Wiener-Levy process, on the single-photon sources 

in the cavity-QED strong-coupling regime. The pure dephasing process can affect 

several characteristics of a single-photon source: broadening the emission linewidths 

of the single photons emitted from the source, preventing them from lifetime limited; 

smearing the visibility of two-photon interference, spoiling the indistinguishability of 

consecutively emitted photons; and decreasing the quantum efficiency of the single­

photon source. 

5.1 Introduction 

Most if not all single-quantum systems, like an optical center either in gaseous 

phase or in a solid state matrix, inevitably interacts with certain heat baths, leading 

to dephasing or loss of coherence, which results from a randomization of the phases 

of the optical center's wave functions by thermal fluctuations in the environmental 

fields. Population relaxation processes, treated in the previous chapter, contribute to 

dephasing with a dephasing rate given by half the population decay rate. It is often 

necessary to account for other dephasing interactions, such as elastic collisions in an 

atomic vapor, or elastic phonon scattering in a solid, the so-called pure dephasing 

process. 

Generally speaking, pure dephasing means the decay of the dipole coherence 

without change in the populations of the system. Any real transition to other states 

leads to population decay. Thus the pure dephasing is caused by virtual processes 
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which start from a relevant state and, through some excursion in the intermediate 

states, return to the same initial state. These virtual processes give rise to the 

temporal fluctuations of phases of the wave functions, which consequently lead to 

pure dephasing. Pure dephasing causes the coherent overlap of the upper and lower 

state wave functions to decay in time, while not affecting the state populations. For 

example, the pure dephasing rate can be small and ignored for resonant excitation of 

a single QD at cryogenic temperature (6 K) and low power density [101]. While 

at elevated temperatures, however, experiments [49, 50] reveal a pure dephasing 

contribution that dominates excitonic dephasing. Our results are directly applicable 

to experimental data presented in Refs. [44, 45, 47, 48]. 

In this chapter, we investigate the effects of pure dephasing, treated in the phase­

diffusion model based on a Wiener-Levy process on all the results obtained in Chapter 

IV. In Sec. 5.2, we built the phase-diffusion model described by a stochastic model 

of random frequency modulation. Based on this model, we solve the stochastic 

equations of motion and calculate the influence of pure dephasing on the vacuum Rabi 

oscillations and the quantum efficiency in Secs. 5.3 and 5.4, respectively. Finally, in 

Sec. 5.5 we calculate the emission spectra in the presence of the pure dephasing. 

We found that the depths of the vacuum Rabi oscillations are reduced, the quantum 

efficiency is decreased, and the emission spectra are broadened in the presence of pure 

dephasing. Part of the work discussed here has been published in Ref. [52]. 

5.2 Phase-diffusion Model for Pure Dephasing 

The effects of pure dephasing can be calculated numerically, based on the Green 

function formalism by considering the microscopic details of various virtual processes 

[178]. Instead, for simplicity we treat this problem analytically in the phase-diffusion 

model where the incoherence due to elastic collisions or elastic phonon scattering is 

described by a stochastic model of random frequency modulation, as shown in Fig. 

5.1, replacing the previously constant atomic transition frequency as in Eq. (4.6) or 
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the phase of the wave function by an instantaneous one 

Wo ---7 wo(t) = Wo + f(t) or 

(5.1) 

wot ---7 it dt'wo(t') = wot + cp(t) , 

where f(t) is the instantaneous deviation of the transition frequency due to the elastic 

collisions or scattering process and cp(t) == it f(t')dt' is the instantaneous stochastic 

phase of the wave function. We assume the phase of the wave function is a Wiener-

Ie) ---------­

0)0 + l(t)  (I(t)) = 0 

(I(t)/(t')) = 2Y 
p 
o(t -t') 

Ig) ---­

FIGURE 5.1: Schematic diagram and analytical description of pure dephasing 

processes in the phase-diffusion model. 

Levy process [179]. In this phase-diffusion model f(t) == ep(t) is a random, stationary, 

Gaussian variable with the mean value and the mean-square correlation given by 

(j(t)) = 0, (j(t)f(t')) = 2ip 8(t - t').  (5.2) 

The angular brackets indicate a statistical average over the random variables of the 

stochastic process. The Markovian nature of the process is reflected by the presence of 

the delta function 8(t - t'). The Gaussian property is introduced such that all higher 

correlation functions can be obtained from the second-order correlation function by 

permutations and multiplications [176]. 2ip is the pure dephasing rate. 

Taking into account the pure dephasing modeled by the stochastic process, the 

net changes for equations of motion of E(t) and C(t), as given in Chapter IV, are 

that the phase terms ei
6.t in Eqs. (4.20) and (4.21) should be replaced by ei 

[6.t+<P(t)] , 
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such that 

E(t) -igoei [.6.t+<P(t)JC(t) - ,E(t), (5.3) 

C(t) -igoe- i [.6.t+<P(t)]E(t) - KC(t). (5.4) 

We note that the above equations with stochastic random variables are examples 

of a multiplicative stochastic process, studied intensively previously by various 

researchers, as shown in Refs. [180, 181, 182]. We solve these equations exactly, using 

the method developed by Wodkiewicz [182] for a multiplicative stochastic process 

described by the following general vector equation 

~  v(t) = [Mo + if(t)M1]v(t) , (5.5) 

where v(t) is an n-dimensional vector, Mo and M1 are arbitrary n x n matrices, 

in general complex and time independent, and f(t) is the random variable of the 

stochastic process described by Eq. (5.2). The equations of the type (5.5) can 

be solved for the quantum expectation value of v(t) exactly [182]. For a Wiener­

Levy process, the stochastic average of the equation satisfies the following differential 

equation 

:t (v(t)) = [Mo - ,pMn (v(t)) . (5.6) 

The solution to Eq. (5.6) can be written in the Laplace-transform form 

dZ
(v(t)) = r2 . exp (zt)N-1(z) (v(O)), (5.7)

Jc 7f1, 

where the matrix N-1(z) is the inverse to N(z), which itself is given by the formula 

N(z) = zII - (Mo - 'pMf). In Eq. (5.7), the contour of integration C lies parallel 

to the imaginary axis in the complex z plane, to the right of all singularities of 

the integrands. In order to find the time behavior of (v(t)), we have to invert the 

matrix N(z), whose determinant plays an essential role because the roots of its secular 

equation are the poles of the integration in Eq. (5.7). 
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5.3 Vacuum Rabi Oscillations in the Presence of Pure 

Dephasing 

We proceed to solve the stochastic Eqs. (5.3) and (5.4). For simplicity, we 

consider the case when the emitter and the cavity are in resonance, .6. = O. The 

detuning can always be put back without difficulty. First, by making the substitutions 

E(t) = E(t)e-rt and C(t) = C(t)e-r;,t for convenience, we obtain the following simpler 

equations 

E(t) -igoe-rtei<P(t)C(t), (5.8) 

C(t) -igoerte-i<p(t) E(t). (5.9) 

Then by defining variable Y(t) = e-rHi<P(t)C(t) so that the differential equation for 

E(t) does not explicitly depend on the random variable rp(t) , we obtain a matrix 

equation of the type (5.5) for a multiplicative stochastic process, with 

E(t) )iJ(t) = ,Mo = (0 -igo ) ,M = (0 0) (5.10)
( Y(t) -igo -r 

1 

0 1 

and a statistically independent initial condition (iJ(O))T = (E(O), Y(O)). The inverse 

matrix to the matrix N (z) is 

N- 1 ( ) 1 z + ~  + IP -.i90). (5.11)
z = det[N(z)] ( 

-~go  z 

Plugging Eq. (5.11) back into Eq. (5.7), using the Laplace transform technique and 

choosing properly the contour of integration C, we obtain the quantum expectation 

value of the probability amplitude (E(t)), 

/ E(t)) =1~ezt  (z + r + 'P)E(O) - igoY(O)  
\ c 27ri (z - Zl)(Z - Z2)  

=e-(r+rp)t/2 (5.12) 
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where g1 - J95 - (r + '/'p)2/4. Similarly, if we define X(t) = ert-i<p(t) E(t), while 

keeping C(t) unchanged, we obtain 

( C(t)) =e(r-'Yp)t/2 

x {[C08(g,t)  - r ~,'YP  Sin(g,t)] C(0) _ [~:  Sin(g,t)] X (0) }, (5.13) 

where g2 - J95 - (r - '/'p)2/4. Taking into account the definitions of E(t) and C(t), 

as well as the fact that X(O) = E(O) = E(O) and Y(O) = C(O) = C(O), we transform 

back to E(t) and C(t), 

(E(t)) ) = e-(K+'Yp)t/2 
( (C(t)) 

COS(g1t) + r + ,/,p sin(g1t ) _ igo sin(g1t ) ) 
x . 2g1 g1 E(O) ). (5.14) 

2go . ( ) ( ) r - ,/,p . ( ) (( -- sm g2t cos g2t - sm g2t C(O)
g2 2g2 

The generalized Rabi frequencies for (E(t)) and (C(t)) now are different from 

each other, as compared to Eq. (4.24) in Chapter IV, where they were the same 

for both (E(t)) and (C(t)). This implies the destroying of coherence between the 

two eigenstates of the system, due to the pure dephasing process. We will show this 

phase-destroying effect on the vacuum Rabi oscillations explicitly later in this section. 

We are more interested in finding the influence of the pure dephasing on the 

probabilities IC(t)1 2 and IE(t)1 2, or I(t) IC(t)1 2 and J(t) _ IE(t)1 2, because they 

give the normal-mode oscillations and are what one measures in experiment. In order 

to find the equations of motion for them, we have to introduce two other one-time 

functions H(t) - E(t)C*(t) and H*(t) E*(t)C(t). The equations of motion for 

these functions are 

H(t) H(t) 

d H*(t) H*(t) 
= M(t) x  (5.15)

dt I(t)  I(t) 

J(t)  J(t) 



118 

with the matrix M(t) being 

_igoe-rt+i<P(t) igoerHi<P(t)o o 

1,goe-rt-i<p(t). _igoert-i<p(t)o o 
M(t) = . (5.16)

_igoert-i<p(t) igoert+i<P(t) o o 

1,goe-rt-i<p(t). _igoe-rHi<P(t) o o 

We solve these equations assuming the optical center is prepared in an excited state 

E(O) = 1, C(O) = 0 at time to = O. We solve these one-time functions one by one 

as we did above for solving (E(t)) and (C(t)). For example, to find the solution 

to (I(t)), defining U1(t) = ert-i<p(t) H(t), U; = erHi<p(t) H*(t), ZI(t) = e2rt J(t) and 

keeping I(t) unchanged, we obtain a matrix equation as the standard vector form of 

Eq. (5.5), with [ih(t)]T = [U1(t), U;(t), I(t), ZI(t)], and 

r 0 -1,go 1,go -1 0 0 0 

Mo = 
0 r 1,go -1,go 

,M1 = 
0 1 0 0 

(5.17) 
-1,go 1,go 0 0 0 0 0 0 

1,go -1,go 0 2r 0 0 0 0 

and a statistically independent initial condition (ih(O))T = (0, 0, 0, 1), where we have 

used the initial conditions at to = 0, as well as the definitions of E(t), C(t) and ih(t). 

In the cavity-QED strong-coupling regime, (4g5 - r 2) » r 2, ')';, the solution for 

(I(t)) is found to be well approximated by (see Appendix B) 

(I(t)) = 95 e[r-1P(l+c)/2jt [elP (l+3C)t/2 - ')'P sin(2gt) - COS(29t)] , (5.18)
2g2 4g 

where c - (f/2g)2, and 9 - J95 - (r/2)2 is the generalized Rabi frequency, as 

defined before. Treating ')'p/9 as a perturbation parameter, we kept the order to 

Obp/g) in the coefficients and the order to Obpc/ g) in the exponential arguments. 

Similarly, after some tedious algebra, we find the time evolutions of (J(t)) and (H(t)) 
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are (see Appendixes B), 

2 

(J(t)) = go e-[r+')'p(l+f:)/2jt  
2g2  

x { e')'p(l+3f:)t/2 - [J; -g(r ~ 5 ' Y p / 2 ) ]  sin(2gt) - (1 _2~2)  cos(2gt) } , (5.19) 

(H(t)) =  ~go  e-')'p(3+f:)t/2  
2g  

x 3r - r - 'Ype-')'p(1-9f:)t/2 - r + 2'"'(p cos(2gt) + sin(2gt)] . (5.20)_e')'p(1-7f:)t/2[
~  9  ~  

Finally, the quantum expectation value of the complex conjugate of H(t) is just 

the complex conjugate of its quantum expectation value (H*(t)) = (H(t))*. Using the 

definitions of E(t) and C(t), we can easily find the solutions for (IE(t) 1

2) = e-2')'t(J(t)) 

and ([C(t)1 2) = e-2Kt (I(t)). Therefore, the probability of finding the system in the 

excited atomic state, including the pure dephasing, is 

2 

(Pe(t)) =  /IE(t)1 2 ) = ~e-[K+')'p(l+f:)/2]t  
\ 2g2 

x {e')'p(l+3f:)t/2 - [J; -g(r ~ 5 ' Y p / 2 ) ]  sin(2gt) - (1 - 2~2)  cos(2gt) }. (5.21) 

Shown in Fig. 5.2(a) and 5.2(b) are plots of the probability Pe(t) with linear and 

logarithmic scales respectively, in the presence of pure dephasing. And the probability 

of finding the system in the single cavity mode Pe(t), subject to pure dephasing process 

is 

(Pe(t)) = (IC(t)1
2

) 

(5.22) 
=  95 e-[K+')'p(l+f:)/2]t [e')'p(l+3f:)t/2 _ 'Yp sin(2gt) - COS(29t)] . 

2g2 4g 

Shown in Fig. 5.3(a) and 5.3(b) are plots of the probability Pe(t) in the presence of 

pure dephasing. The plotting parameters are the same as those in Fig. 5.2. The 

modulation depths of the dot and triangle curves, with pure dephasing rates 'Yp/27f = 

(1.0, 2.5) GHz, are reduced, as compared with the square curves where there is no 
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pure dephasing. The normal-mode oscillation frequency seems unaffected because 

we solved for the probabilities only up to first order in '"'(p/g. In fact, it will change 

slightly from 2g to 2g(1 - '"'(;/32i) if we approximate to second order in '"'(p/g. The 

normal-mode oscillations are smeared in the presence of the pure dephasing process. 

5.4 Quantum Efficiency in the Presence of Pure Dephasing 

Consequently, the emission probability of a single photon into the forward beam 

and the QE with the pure dephasing process, as defined before, are 

(Po(t)) = 2/'1, it dt' (IC(t') 1 

2
) 

/'1,95 { 1 - e-(K-'Ypc:)t K + '"'(p(l + E/2) } 

= ~  K - '"'(pE - [K + '"'(p(l + E)/2]2 + (2g)2 

/'1,g2 e-[K+'Yp(l+c:)/2]t+ _0 --;:- _ 

g2 [K + '"'(p(l + E)/2]2 + (2g)2 

X {[K + '"'(p(l + E)/2] [J; sin(2gt) + COS(29t)] + 2g [J; cos(2gt) - sin(2gt)]} , 

(5.23) 

and 

'fJ ('y ) _ (Po(t --+ (0)) = 95 /'1, {I _ (K - '"'(pE)[K + '"'(p(l + E/2)]}. (5.24) 
q p g2 K - '"'(pE [K + '"'(p(l + E)/2]2 + (2g)2 

These results reduce to our earlier results, given in Chapter IV, in the limit '"'(p --+ O. 

Figure 5.4(a) are plots ofthe emission probabilities with and without pure dephasing, 

and Fig. 5.4(b) is the QE 'fJq as a function of the pure dephasing rate. Other plotting 

parameters are the same as in Fig. 5.2. The emission probability is also smeared for 

a pure dephasing rate '"'(p/27r = 4 GHz compared with no pure dephasing. The QE 

decreases only about 1% as the dephasing rate increases from a to 4 GHz. 
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5.5 Emission Spectra in the Presence of Pure Dephasing 

In order to calculate the emission spectra, we need to find the two-time correlation 

functions because the emission spectra in the long-time limit are proportional to 

the Fourier transform of their convolutions. The two-time correlation functions are 

defined as follows: 

Q(t, t') E(t)E*(t'), R(t, t') - C(t)E*(t'), (5.25) 

F(t, t') E(t)C*(t'), G(t, t') _ C(t)C*(t'). (5.26) 

Of these Q(t, t') and G(t, t') are required for calculating the emission spectra. The 

quantum regression theorem [183, 168], which provides a framework to calculate two­

time correlation functions, states that the equations of motion for two-time correlation 

functions Q(t, t') and R(t, t') and F(t, t') and G(t, t') with respect to variable t obey 

the same equations of motion as those for E(t) and C(t), respectively, 

8tQ(t, t') -igoe-rteit.p(t) R(t, t'), (5.27) 

8tR(t, t') -igoerte-it.p(t)Q(t, t'), (5.28) 

8tF(t, t') -igoe-rteit.p(t)G(t, t'), (5.29) 

8tG(t, t') -igoerte-it.p(t) F(t, t'), (5.30) 

but now with initial conditions 

Q(t = t', t') IE(t') 1

2 
_ J(t'), (5.31) 

R(t = t', t') C(t')E*(t') = H*(t'), (5.32) 

F(t = t', t') E(t')C*(t') - H(t'), (5.33) 

G(t = t', t') IC(t')1 2 _ I(t'), (5.34) 

which are already solved and given explicitly by Eqs. (5.18) to (5.20). 

We now specialize to the case t ~  t' and define t t' + T. We are particularly 

interested in the expectation values of (Q(t' + T, t')) and (G(t' + T, t')) as pointed 
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out before. The solutions for their expectation values, according to the quantum 

regression theorem, have the same forms as the solutions for the one-time averages of 

(E(t)) and (C(t)) in Eqs. (5.12) and (5.13), with the initial conditions given above: 

(Q( t' + T, t')) = e- cr+'Yp)T/2 

x {[COS(91T) + r~l/'p  Sin(glT)] (J(t')) - [i~o  Sin(glT)] (H*(t'))} , (5.35) 

(G(t' + T, t')) = ecr+'Yp)T/2 

x {[COS(92T) - r ~2/'P  Sin(g2T)] (I(t')) - [i~o  Sin(g2T)] (H(t'))}. (5.36) 

By substituting E(t') = E(t')e'Yt' , C(t') = C(t')eK-t
l 

and the initial conditions into 

Eqs. (5.35) and (5.36), we obtain the explicit solutions for (E(t' + T)E*(t')) and 

(C(t' +T)C*(t')). The side emission and forward emission spectra are then 

Sa.e. (0) = dt' (E(t' + T)E*(t'))] } (5.37)2;Re {1°° dTe
iOT [100 

_ 95 Re { /'/1f } 
- g2 [(K +/,p) /2 - iof + gi 

-3r 2g2 - [K + /'p (3 + c) /2] (r/2 + /'p) r -/'p }
x - + -----'--­

{ 2 (K + /,p + 4/'pc) [K + /,p (3 + c) /2]2 + (2g)2 K + 2/'p - 4/'pc 

+ 95 Re { (/'/ 1f) (r;, + /,p - iO) }  

g2 [(K + /'p) /2 - iO]2 + gi  

I _ K - 4g
2r;,/95 +/'p[l + (1- 2g2 / 95 )c/2]}

x 2 2 ,{ K -/,pc [K + /,p (1 + c) /2] + (2g) 

Sj.e. (0) = 2;Re {1°° dTe
iOT [100 

dt' (C(t' +T)C*(t'))] } (5.38) 

= :~Re  {[(K +'1,) ;~~  in]' + g~}  
3r 2g

2
-[K+/'p(3+c)/2](r/2+/'p) r-/,p}

x + ----.:...:....-­
{ 2 (K + /'p + 4/'pc) [K + /,p (3 + c) /2]2 + (2g)2 K + 2/'p - 4/'pc 

+ 95 Re { (r;,/1f) (')' + /,p - iO) } { 1 _ K + /,p (1 + c/2) } 

g2 [(K + /'p) /2 - iO]2 + g~  K -/,pc [K + /,p (1 + c) /2]2 + (2g)2 . 
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Shown in Figs. 5.5(a) and 5.5(b) are the side emission and forward emission spectra 

in the long-time limit, for different dephasing rates "(p, while other plotting parameters 

are the same as those in Fig. 5.2. The effect of pure dephasing is twofold. The phase 

fluctuations decrease the peak intensities of the spectra, and broaden the linewidths 

of the two peaks and hence smear out the splittings, which correspond to damping 

rates of the vacuum Rabi oscillations in the time domain as shown in Figs. 5.2 and 5.3. 

This effect is further seen to increase with increasing values of pure dephasing rate 

"(p' 

5.6 Summary 

In this chapter, we studied the influence of the pure dephasing process on the 

single-photon sources, in the case that the pure dephasing rate is significantly less than 

the coherent coupling rate, that is, up to first order in "(pig. These results should be 

useful in analyzing photoluminescence spectra from strongly coupled semiconductor­

QD micro-cavities, where pure dephasing cannot always be assumed negligible because 

often temperature tuning of the QD has to be used to tune through cavity resonance 

[44, 45, 47]. One can use this method, for example, to model the time jitter of 

solid-state SPS, where the excited state of the QD or color center in diamond is often 

populated by spontaneous phonon emission, by averaging over nonradiative relaxation 

time. One may also calculate the two-photon interference visibility assuming having 

two independent but identical SPS and investigate how the pure dephasing processes 

affect the indistinguishability of the consecutively emitted single photons. 
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CHAPTER VI 

CONCLUSIONS AND OUTLOOK 

In this closing chapter, we first conclude the dissertation with our experimental 

accomplishment and theoretical contribution, before pointing out the challenges we 

are facing now. As designed and constructed, this external optical micro-cavity has 

the flexibility to adapt to other optical centers such as cold atoms in gaseous phase and 

defect centers in solids for efficient single-photon sources. Then, we give an outlook 

for possible incorporation of cold atoms on chips and color centers in diamond into 

this unique system, and for other applications in quantum information science and 

technology, such as generation of pairs of polarization-entangled photons. 

6.1 Conclusions 

For the research presented in this dissertation, we have been mainly exploiting 

the unique properties of nanoscale semiconductor QDs integrated with an external 

optical micro-cavity for cavity-QED studies, on both experimental and theoretical 

aspects [6, 52], particularly for efficient single-photon sources [51]. We have designed 

and constructed a hemispherical, high-solid-angle, external optical micro-cavity with 

semiconductor QDs at the focus of the cavity and at an antinode of the field to 

maximize the light-matter interaction. 

A unique component of our cavity is the concave micro-mirror. We developed a 

technique, based on gas bubbles formed by surface tension inside molten glass, for 

its in-house fabrication, giving a surface roughness on nanometer scale for the dimple 

surface that is crucial for use in a high-finesse optical cavity. Optical coating of such a 

small and highly curved micro-mirror is nonstandard and is challenging. We designed 
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a dielectric coating that succeeded in giving a high reflectivity (99.5% or higher) over 

a wide angular range of ±40 deg. 

We constructed the micro-cavity system on a sophisticated five-axis mechanical 

assembly to give all the necessary spatial and spectral controls. The whole micro­

cavity system operates inside an ultra-high vacuum chamber, to allow cooling the 

sample to around 10-17 K and to avoid coating of the samples by cryopumping. 

We tested and characterized the optical properties of the micro-cavity to optimize 

the coherent interaction rate between the QDs and the micro-cavity. Preliminary 

spectroscopic results show significant of strong QD-field interaction. We also 

developed a theory of single-photon sources operating in the cavity-QED strong­

coupling regime and investigated the influence of pure dephasing on its behavior in 

both the time domain and the frequency domain. 

Major achievements and contributions are summarized below: 

On the experimental side: we engineered a hemispherical, high-solid-angle, optical 

micro-cavity with a length of 60 Mm. The external micro-cavity is comprised of 

a planar distributed Bragg reflector (DBR) mirror and a concave dielectric mirror. 

Nanoscale semiconductor QDs are embedded in the center of a one-wavelength spacer 

layer on top of the DBR mirror, to be placed at the focus of the hemispherical micro­

cavity and an antinode of the cavity field to maximize the light-matter interaction. 

The hemispherical design gives a diffraction-limited spot at the QDs location, leading 

to higher spatial resolution and smaller cavity mode volume; the external-mirror 

approach provides maximum flexibility in scanning laterally to position QDs in the 

center of the cavity as well as providing the capability of scanning the cavity resonance 

to the spectral position of the isolated QDs, all of which are necessary and crucial for 

cavity-QED strong coupling and for efficient single-photon generation. 

On the theoretical side: We formulated a theory of the interaction between a single 

quantum optical center and a single mode of a cavity field based on Weisskopf-Wigner 

theory dealing with spontaneous emission in free space. By solving the dynamics of 



130 

the composite system, we derived the Purcell effect in the cavity-QED weak-coupling 

regime and the vacuum Rabi oscillations in the cavity-QED strong-coupling regime. 

We advanced the understanding of single-photon emission in the cavity-QED strong­

coupling regime that includes intrinsic dissipations of the coupled system. We also 

calculated the influence of pure dipole dephasing, treated in the phase-diffusion model 

based on a Wiener-Levy process, on the vacuum Rabi oscillations and the quantum 

efficiency in the time domain and the emission spectra in the frequency domain. This 

allows, for the first time, full modeling of the emission quantum efficiency, as well as 

the spectrum of the single photons emitted into the useful output mode of the cavity. 

6.2 Future Work and Outlook 

It is ideal to locate a single semiconductor QD in the QW plane in the middle of 

the one-wavelength spacer layer on the transverse plane of the DBR mirror; however, 

it is hard to single out an individual QD spatially that is also resonant with a single 

cavity mode. Most of the times, we observe signatures of interaction between many 

QDs and a single cavity mode which may also contain multiple photons, as shown by 

those spectroscopic scans in Chapter III. It is relatively easier to make one photon on 

average per cavity lifetime occupying a single mode, but it is still difficult to identify 

single QDs. It could be due to the statistical distribution of the QDs such that there 

are too many QDs in this particular location at which we are looking at, and also 

too many in this wavelength region where we are probing. The next logical step is to 

use a proper laser to probe the right spectral region where the QDs see the strongest 

field intensity due to their resonance with the spacer layer, as designed. We may also 

need to manually move the semiconductor sample to a different location by a large 

amount when opening the UHV chamber next time, if necessary. It is desirable, in 

the future, to theoretically modify multiple optical centers interacting with a single 

cavity mode both in the cavity-QED weak-coupling and strong-coupling regimes in 

order to better understand the physics and simulate the real experiments. 
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There are two general aspects about the semiconductor QDs that we can possibly 

improve for making better single-photon sources: the sizes of the QDs and the 

positions of the QDs on the growth plane. In terms of the uniformity of the sizes of 

the semiconductor QDs, the self-assembled QDs have more evenly distributed sizes 

[184], reducing size-dependent emissions, as compared with the IFQDs that we use 

whose emission wavelengths depend on their sizes. A less desirable feature of these 

self-assembled QDs is that they still form at random positions on the growth plane, 

as IFQDs do. However, great progress has been made to control the self-assembled 

QDs positions within the device structure by patterning nanoscale pits on the growth 

surface [185, 186]. So in the future, we could use patterned self-assembled QDs as 

our optical centers for efficient single-photon sources. 

Semiconductor QDs are very promising on one hand, but they are intrinsically 

non-identical, albeit considerable progress has been made [185, 186] towards this goal. 

Diamond-based optical centers offer a better possibility to have identical emitters, 

since they are essentially ions or molecules embedded in well-defined, reproducible 

lattice sites [187]. Their envisioned role in QIP is promising, due to the tight 

localization of the electron spin and charge at the defect and long dephasing times of 

ground state spins. Researchers have tried to deposit natural diamond nanocrystals 

onto silica micro-spheres for cavity-QED studies. Signature of strong interaction 

between a nitrogen vacancy in diamond and a whispering gallery mode of a micro­

sphere has been reported [188]. 

However, it is not straightforward to integrate diamond with other devices, mainly 

due to extremely demanding growth conditions for diamond thin films [189]. It is 

only recently demonstrated that good optical quality diamond thin films with color 
\ 

centers can be grown on certain substrates [190]. In Ref. [191], the author designed 

a resonator made of a cylindrical or spherical piece of a polymer squeezed between 

two flat dielectric mirrors. Diamond nanocrystals can be embedded in the polymer 

for single-photon generation. Another scheme, as reported in Ref. [192], proposed 
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a diamond based photonic crystal micro-cavity operating in the cavity-QED strong­

coupling regime for quantum computing. But it is still challenging to incorporate 

diamond thin films onto a highly reflective mirror as a substrate, which is required 

to build a high-finesse optical cavity, because coatings for the commercially available 

mirrors all fail under the demanding growth conditions for diamond. We investigated 

this problem and think it is feasible to directly grow diamond in a Si3N4 spacer 

layer on top a specially designed Si3N4 jSi02 DBR mirror [193, 194], or on top of a 

Si3N4 jSiONjSi02 one if minimizing the weak absorption introduced by Si3 N4 layer 

in the near infrared region is desired, as pointed out in Chapter II. Another design 

using AINjSi02 DBR mirror [195, 196, 197] is also promising, since AIN has better 

optical properties (less absorption in the near infrared region) compared with Si3N4 

but with more demanding growth conditions. In the future, we could incorporate 

diamond into our external optical micro-cavity for efficient single-photon sources and 

for quantum information processing (QIP). 

Trapped atoms and ions are intrinsically identical, offering many advantages and 

already leading to important advances in the field of QIP [16, 159], but typically 

need relatively large setups, such as a magneto-optical trap, to trap and hold them. 

The recent developments on atom chips may get around this problem in the future, in 

combination with the state-of-the-art high-finesse optical micro-cavities [54, 198, 199]. 

We believe that a micro-cavityj atom chip device operating in the cavity-QED strong­

coupling regime will expand the scientific application scope of the ultra-cold atoms 

in quantum information science and technology, in addition to efficient single-photon 

sources. 

Other than the cavity-QED strong coupling and beyond the efficient single-photon 

generation. This composite micro-cavity system is also good for producing pairs of 

polarization-entangled photons [158], which are useful as a resource for quantum 

communication (teleportation). Entangled photon pairs based on radiative decay 

cascade of a biexciton in asymmetric semiconductor QDs in free space, like the ones 
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used in our experiment, have been proposed [200] and demonstrated [123, 201]. A 

semiconductor QD biexciton decays radiatively through two intermediate optically 

active exciton states, as shown in Fig. 2.10. In an ideal and symmetric QD, the 

cascade exciton emission will produce polarization-entangled photon pairs [122]. But 

in real semiconductor QDs, the frequency degeneracy of the intermediate exciton state 

is often broken, causing a small frequency splitting between the x-polarized and y­

polarized excitons [122]. This is because of the in-plane anisotropy and asymmetry of 

the structural properties of the QDs, such as elongation of the QD along one crystal 

axis [111] and in-built strain in the crystal [184]. The splitting in turn provides 

'which-path' information, preventing polarization entanglement of the intermediate 

exciton emissions. 

The essential condition that must be met for two photons to be polarization 

entangled is that two possible paths for creating them must be indistinguishable. So 

if the 'which-path' information caused by the frequency splitting can be erased, one 

would again be able to produce polarization-entangled photon pairs. In Ref. [123], 

researchers used carefully selected unsplit InAs/GaAs QDs, or alternatively use split 

QDs but tuned to zero by an externally applied in-plane magnetic field to successfully 

generate polarization-entangled photon pairs. While in Ref. [201], researchers showed 

they can erase the 'which-path' information by careful spectral-filtering, thus also 

produce polarization-entangled photon pairs. 

Based on the proposal for entangled pair-photon generation in Ref. [158], one can 

use adjacent longitudinal modes of a cavity to erase the 'which-path' information, 

ensuring two photons emitted in a cascade from a biexciton state of a QD to be in 

an indistinguishable fashion and therefore producing polarization-entangled photon 

pairs. The proposed technique relies on the principle that a QD inside a strongly 

coupled cavity can emit light only into one of the cavity modes. This determines the 

possible frequencies of any emitted photons, independently of the center frequency of 

the exciton emission line. When two exciton emission lines with frequencies are near 
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a cavity-mode frequency, the cavity can force the two exciton emissions into a cavity 

mode. Any photon found to be in the cavity mode could have originated from either 

emission, ensuring indistinguishability. 

Considering spectroscopic properties of a biexciton in an IFQD, the biexciton shift 

.6..E, as shown in Fig. 2.10, is about a few meV and the fine structure splitting bE 

between the the x-polarized and y-polarized excitons is of the order tens of /leV. Our 

micro-cavity is in a special length regime (50-500 /lm), corresponding to a FSR 1.2-12 

meV, and has a linewidth about tens of /leV. It is thus feasible make the FSR equal 

to the biexciton shift .6..E and the linewidth equal to the fine structure splitting bE for 

certain IFQDs. Therefore, it should be possible to bring both doublets caused by the 

fine splitting close to cavity modes simultaneously by fine tuning the cavity length or 

the FSR to meet the requirements for generating polarization-entangled photon pairs. 

If necessary, an external DC electric field can be applied to introduce a Stark shift 

in the doublet, in addition to tune the cavity length alone. To generate polarization­

entangle photon pairs based on our system is another promising direction to go for 

the future. 

There have remarkable progresses been made during the past decades in generating 

efficient single-photon sources and entangled pair photons [83, 32]. Despite all these 

efforts, there are still many remaining challenges to make integrated and compact, 

reliable and bright quantum light sources for QIP. Our work demonstrates that we 

can devise the state-of-the-art facilities in the lab to exploit the quantum nature of 

light-matter interaction, and develop cutting-edge technology potential for industrial 

applications as well as for other academic applications, such as for QIP in cavity-QED 

with cold atoms on chips and color centers in diamond. We consider this research to 

be an indispensable step towards ultimate integrated devices for QIP in cavity-QED. 
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APPENDIX A 

FABRICATION OF THE MICRO-CONCAVE MIRROR 

In this appendix, we describe the detailed procedure of fabricating micro-concave 

mirror substrates and give a simple method for measuring their radii of curvatures 

and depths. We thank Ruediger Loeckenhoff for carrying out the initial work in our 

lab leading to successful fabrication of the micro-mirrors [146]. 

A.1 Procedure of Fabricating Micro-concave Mirror  

Substrates  

We start with micro-capillaries (Drummond Microcaps) that are usually used 

to measure exactly one micro-liter of chemicals [202]. They are made of N-51A 

borosilicate glass from Kimble Glass with a refractive index n = 1.49 and a softening 

point of 785°C [203]. About 50 capillaries are put into a graphite crucible as shown in 

Fig. A.1(a) and are melted in a tube-furnace (Lindberg/Blue) at 1100°C in a nitrogen 

(or argon) atmosphere. While the capillaries collapse they enclose gas-bubbles of 40­

100 p,m in diameter. The melted glass is cooled down at 3 degree Celsius per minute. 

In the end, one gets an elliptically shaped glass bulk with major lateral sizes about 

10-15 mm and minor sizes about 5-10 mm, as shown in Fig. A.1(b). A faster cooling 

rate might result in wrinkles. 

After it is hardened, we grind and polish the glass bulk on a polishing station 

using first a 50 p,m, and followed by a 15 p,m and later a 6 p,m grit-size diamond disc 

(Allied High Tech Products, Inc. [204]), featuring nickel-plated diamonds in a raised 

dot matrix pattern. By polishing to an arbitrary depth about 50 bubbles are opened. 
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(a) (b) (c) 

FIGURE A.l: (a) Glass tubes in a graphite crucible; (b) A hardened glass bulk with 

trapped gas bubbles; (c) A coated micro-concave mirror substrate. 

We examine them under a microscope and if necessary will polish the glass bulk again 

using the 6 jJm grit-size diamond disc until finding the most suitable dimples. 

Glass particles sticking to the inner surface of the dimple is a major problem. 

Below a certain size about 5 jJm they are bonded so tightly by Van der Waals force, 

that they can no longer be removed in the sonicator. By flowing cool soap water 

during polishing, we found that it forms a monolayer on the surface of the particles 

and the dimples and prevents sticking. This reduces the number of particles stuck to 

the inner surface of the dimple to a b o u ~  1/5 based on our experiments. 

The polished surface is temporarily glued to the center of an aluminum plate with 

Crystalbond 509 heat adhesive [205]. The dimples are thus protected from debris 

from contamination from the following polishing steps. Together with the sample 

three 170 jJm thick microscope cover glass are glued to the aluminum plate periphery. 

In the following polishing steps they stabilize the plate and slow down the polishing 

so that we obtain a flat sample of about 150 jJm thick. 

A 30 jJm grit-size diamond grinding disc is used for roughing followed by 15 jJm 

and 6 jJm grit-size diamond discs. The sample is then polished with diamond slurries 

(Polycrystalline Diamond Suspension, Glycol Based from Allied High Tech Products, 

Inc. [204]) of 6 jJm and 1 jJm grit-size on polishing cloths. An optical finish is achieved 

using a 0.05 jJm colloidal silica suspension on a polishing cloth. The resulting thin 

slide is removed from the sample holder and cleaned in the sonicator with acetone 
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first to remove the remaining Crystalbond 509 heat adhesive. Soap water, purified 

water and methanol are then used in sequence to clean the dimple. The dimple is 

finished cleaning with isopropanol. Later the surface where the dimples are open will 

be coated with a highly reflective dielectric coating for use in a high-finesse optical 

cavity, while the other side of the slide with optical finishing is left uncoated. Figure 

A.1(c) shows the coated surface of a micro-concave mirror substrate. 

A.2  Measuring the Radius of Curvature and Depth of a 

Dimple 

For an uncoated clean dimple, we can estimate the radius of curvature of a dimple 

by measuring the diameter of the rim of the dimple, which is a cross section of 

the spherical gas bubble and is no larger than the diameter of the dimple. The 

diameter of the rim can be easily measured with a measuring eyepiece under a 

microscope. Determining the depth and the radius of curvature of a dimple is much 

harder since there are no structures at the bottom of a clean dimple that could 

be imaged. Fortunately for a coated dimple, we developed a simple but effective 

method to measure the radius of curvature and the depth of a dimple, described in 

the following. 

We use the image of the illumination filament of the microscope that is situated 

in a distance 8 in front of the focal plane of the 25 x objective. Moving a flat mirror 

by the distance 8/2 ~  1000 {lm towards the objective we could see the image of the 

filament through the microscope. Compared to the size of the dimple (RM ~  50 {lm) 

we can set 8 = 00. If we put a dimple under the microscope it will act as a concave 

spherical mirror imaging the filament at its focus with a distance RM /2 from its 

bottom. Consequently if we see an image of the polished surface and the filament at 

the same time through the microscope, the dimple is exactly polished to RM /2 and 

will have a half angle of 60 deg. Otherwise the sample has to be moved by a distance 

h to image the filament instead of the surface, as shown in Fig. A.2. Knowing the 
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d 

1+--- 2a 

FIGURE A.2: Schematic diagram showing the filament image is above the polished 

surface, defined by h > 0; the opposite case is that the image is below the polished 

surface and h < o. 

diameter of the rim of a dimple 2a and the offset h, the radius of curvature RM and 

the depth d of a dimple can then be calculated and they are related by 

R M = ~  (.j4h2 + 3a2 + h) , (A.1) 

d = ~  (.j4h2 + 3a2 
- 2h) . (A.2) 

Use positive values for h when the image of the filament is above the polished surface 

and negative values when the image is below the polished surface. 

We expect a good sphericity of the dimple since the surface tension is an 

increasingly strong force compared to other forces like gravity for decreasing 

dimensions. A Twyman-Green interferometer can be used to check the sphericity 

of the dimple qualitatively. The sphericity was measured quantitatively with a Wyko 

interferometer. One example is shown in Fig. 3.3. The surface roughness was also 

measured using a Wyko interferometer that carries out a Fourier-analysis of the 

surface to determine the power (spatial) spectral density (PSD) of surface roughness 

as a function of the lateral size of the errors. Figure 3.4 gives the PSD data of five 

dimples fabricated in this way presented here, as compared with the best polished 

dielectric mirrors used elsewhere. 
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APPENDIX B 

TORREY SOLUTIONS TO THE SECULAR EQUATIONS 

Here, we give the solutions to the secular equations based on an approximation 

discussed by H. C. Torrey [206]. 

B.l Approximate Solution for (I(t)) 

From the Eq. (5.17) in the context, define matrix M - MO-rpM?, given explicitly 

by 

r-rp 0 -igo igo 

M= 
0 r-rp 1,go -igo 

(B.1) 
-1,go 1,go 0 0 

igo -1,go 0 2r 

Then the matrix N1 (z) - zII - M and its determinant are 

z +rp - r 0 igo -1,go 

0 z+rp - r -igo 1,go
N1(z) = (B.2) 

1,go -1,go z 0 

-1,go 1,go 0 z- 2r 

and 

The secular equation is given by the vanishing of the determinant Eq. (B.3), which 

reduces to a cubic equation, for Zl = r - rp, 

(B.4)  
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which is the standard Torrey equation [206, 207]. This cubic equation can be solved 

exactly [208], although only in an implicit form. As Torrey has pointed out, in the 

special case of interest, this equation has a relatively simple explicit solution. We 

solve it in the strong-coupling regime, (4g5 - r 2
) » r 2 

, ')';, in which case there are 

two kinds of roots. The first of these follows the assumption that (z - r)2 is small 

compared with (4g5 - r 2
), allowing one to rearrange the cubic equation (B.4) and 

solve by iteration 

z-r 

(B.5) 

where c - (r/29?, and note that 9- J95 - (r /2)2. The second kind of root occurs 

when (z - r)2 is as large as (4g5 - r2), but with opposite sign. The cubic equation 

(B.4) can be written as 

[r2 
(z - r)2+ 4go2 - r2 = -')'p(z - r) 1 - (z _ r)2 ] . (B.6) 

To first order in ')'p, the factor (z - r? on the right-hand side, Eq. (B.6) can be 

replaced by -(4g5 _r2
). This gives a quadratic equation for (z-r), (z-r)2+')'p(1+ 

c)(z - r) + 4g2 = 0, whose solutions are the third and fourth roots 

Z3,4 ~  f - ; (1+ £) ± i2gvh - (-Yp/4g)2 + 0 [ (~ )'] 

~  f- ; ( 1 + £ ) ± i 2 g + 0 [ ( ~ ) l  (B.7) 

The inverse matrix to the matrix N1(z) in Eq. (B.2) is 

N- 1 ( ) 1 
I Z = det [N1(z)] 
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with 

n31 -igo(z - 2r) (z + "(p - f)  

n32 - igo(z - 2f)(z + "(p - r)  

n33 (z + "(p - r) [(z - 2f)(z + "(p - r) + 2g5]  

n34 2g5 (z + "(p - r)  

where we only calculate the elements of the third row of Ni 1 (z) because they are 

required to calculate (I(t)), which is then 

(I(t)) = 

(B.8) 

where we have used the initial condition that (ih(O))T = (0,0,0,1). Treating "(pjg 

as a perturbation parameter, we kept the order to O("(pjg) in the coefficients and the 

order to O("(pcjg) in the exponential arguments. 

B.2 Approximate Solution for (J(t)) 

As it is clear from the definition of ih(t), we can only obtain the solution for 

(I(t)) in the above calculation. In order to obtain the solution for (J(t)), we have 

to derive another equation of the type Eq. (5.5) with the definition of the vector 

[vJ(t)f = [UJ(t), U;(t), WJ(t), J(t)], and the following matrices: 

-1 0 0 0 -f 0 -1,go 1,go 

M 1 = 
0 1 0 0 

, M o = 
0 -f 1,go -1,go 

(B.9) 
0 0 0 0 -1,go igo -2f 0 

0 0 0 0 1,go -1,go 0 0 



142 

and with the initial condition (VJ(O))T = (0,0,0,1), where UJ(t) = e-rt-i'P(t)H(t) , 

U;(t) = e-rHi'P(t) H*(t), WJ(t) = e-
2rtI(t). 

The calculation of NJ(z) is almost the same as the calculation in Sec. B.1. The 

matrix M Mo - ,,/pMf is 

-r - ,,/p 0 -'1,90 '1,90 

M= 
0 

-'1,90 

-r - ,,/p 

'1,90 

i90 

-2r 

-'1,90 

0 
(B.10) 

'1,90 -'1,90 0 0 

Then the matrix NAz) zII ­ M and its determinant are, respectively, 

z + ,,/p + r 0 '1,90 -i90 

0 z + ,,/p + r -i90 '1,90

NAz) = 
'1,90 -'1,90 z+2r 0 

-'1,90 '1,90 0 z 

and 

(B.ll) 

which is the same as Eq. (B.3) provided that we change r to - r. So the roots of the 

secular equation of the matrix NJ(z) are 

Z, '" - r - 'Yp, z, '" - r + 'Ype+ 0 [ ( ; )'] , 

(B.12) 

z3,4 '" - r - -; (1+ e) ± i2g + 0 [(;) 1 
The inverse matrix to the matrix NAz) is therefore 

• • • • 

• • • • 

• • • • 
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with 

n41 igo(z + 2r) (z + /,p + r) , 

n42 -igo (z + 2r) (z + /,p + r) , 

n43 2g5 (z + /,p + r) , 

n44 (Z + /,p + r) [(Z + 2f)(z + /,p + r) + 2g5] , 

where we only calculate the elements of the fourth row of NJ1(z) because they are 

required to calculate (J(t)), which is then 

(J(t)) = r dz ezt n44 
Jc 27ri (z - zr) (z - Z2) (z - Z3) (z - Z4) 

= r dz ezt (z+2r)(z+f+/'p)+295 

Jc 27ri (z - Z2) (z - Z3) (z - Z4) 

2 
(B.13) 

~  go e-[r+'Yp(l+e)/2]t 

2g2 

x {e'Yp(l+3e)t/2 _ [~;  _ 9 (f ~ 5 / , p / 2 ) ]  sin(2gt) _ (1 _2~2)  cos(2gt) } , 

where we have used the initial condition that (ih(O))T = (0, 0,0,1) and kept the 

order to 0 (f'p / g) and 0 (f/ g) in the coefficients and the order to 0 (f'pE / g) in the 

exponential arguments. 

B.3 Approximate Solution for (H(t)) 

In order to obtain the solution for (H(t)), we derive another equation ofthe type 

Eq. (5.5) with the definition of the vector [VH(t)]T = [H(t), UH(t), WH(t), ZH(t)], 

and the following matrices: 

0 0 0 0 0 0 -~go  ~go  

M 1 = 
0 

0 

2 

0 

0 

1 

0 

0 
, Mo = 

0 

-~go  

0 

~go  

~go  

-f 

-~go  

0 

0 0 0 1 ~go  -~go  0 f 
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and with the initial condition  (VH(O))T = (0,0,0,1), where UH(t) = ei2rp
(t) H*(t), 

WH(t) = e-rt+irp(t) I(t), ZH(t) = ert+irp(t) J(t). The matrix M for the vector VH(t) is 

0 0 -1,90 1,90 

0 -4"(p 1,90 -1,90

M = Mo - "(pM? = 

-1,90 1,90 -r - "(p 0 

1,90 -1,90 0 r - "(p 

Therefore 

z 0 i90 -1,90 

0 z + 4"(p -1,90 1,90
NH(z) = 

1,90 -1,90 z + (r + "(p) 0 

-1,90 1,90 0 z - (r - "(p) 

and the determinant of the matrix NH(z) is 

(B.14) 

The secular equation is given by setting det[NH(z)] = 0, which gives 

(z + "(p)2 (z + 2"(p)2 + 495 (z + "(p) (z + 2"(p) 

- r 2 (z + 2"(p)2 - 4"(~  (z + "(p)2 = -4"(~T2.  (B.15) 

In the most general case, no simple factorizations occur, and a quartic equation 

must be solved. Again the roots are implicit in the general case [209], but explicit 

in the strong-coupling regime. Similarly, there are two kinds of roots in the strong-

coupling  regime.  The first  of these follows  from  the assumption that both  (z + "(p)2 

and  (z + 2"(p)2 are  small  compared  with  (495  ­ r 2),  in  which  case  it  is  natural  to 

rearrange Eq.  (B.15)  into the form 

(z + "(p) (z + 2"(p) [(z + "(p) (z + 2"(p) +  (495  ­ r
2

­ 4"(~)]  ~  -4"(~r2,  (B.16) 

where we  used the assumptions  (495  ­ r 2) » r 2,  "(~,  z + 2"(p I ~  1 and  I z + "(p I ~  

I z + "(p z + 2"(p 

1.  Then 

­4"(;r
2 

[  (z + "(p) (z + 2"(p)]-1 
(B.17)(z + "(p) (z + 2"(p) ~  495 _  r2 _  4"(~  1 +  495 ­ r 2 ­ 4"(~  , 



• • • • 
• • • • 
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which is solved by iteration. The roots are 

ZI '" -'1p(1+ 4£) + 0 [ (;y] 
(B.18)z, '" - 2'1p (1 - 2£) + 0 [ (;)1 

The second kind of root occurs if (z + '"'(p) (z + 2'"'(p) is as large as (4g3 - r2
), but has 

the opposite sign. Then the alternative rearrangement of Eq. (B.15) is 

2 2 2) 2 [ Z - 2'"'(p ]
( z + '"'(p ) ( z + 2'"'(p ) + ( 4go - r - 4'"'(p ~  '"'(pr ( ) ( 2)' (B.19) 

z + '"'(p z + '"'(p 

To first order in '"'(p the factor (z + '"'(p) (z + 2'"'(p) on the right hand side of Eq. (B.20) 

can be replaced by - (4g5 - r2
). This gives a simple quadratic equation for z, Z2 + 

'"'(p(3 +c)z +4g2 
- 4'"'(; +2'"'(; (1 - c) = 0, whose solutions are the third and fourth roots 

Z3,4 '" -; (3+ £) ± i29)1 - ('1p/g)' + 0 [ (;y] 
(B.20)'" -;(3+£)±i29 +0[(;)'j 

The inverse matrix to NH(z) is 

nn n12 n13 n14 

-1 ( ) 1 • • • • 
NH Z = det[N(z)] 

with 

n13 -igo (z + 4'"'(p) (z + '"'(p - r) , 

n14 igo (z + 4'"'(p) (z + '"'(p + r) . 
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Therefore (H(t)) is given by 

(H(t)) =1 dz ezt n14 

c 27ri (z - zd (z - Z2) (z - Z3) (z - Z4)  

r dz zt igo(z+4rp ) (z+rp+f) 
e 

= Jc 27ri (z - Zl) (z - Z2) (z - Z3) (z - Z4) 
(B.21 ) 

~  '/,go e-/,p(3+e)t/2 

2g 

x [3f e/,p(1-7e)t/2 _ f - rp e-/,p(1-ge)t/2 _ f + 2rp cos(2gt) + Sin(2gt)] , 
~  9 ~  

where we have used the initial condition that (VH(O))T = (0, 0, 0, 1) and kept the 

order to 0 (rp / g) and 0 (f/ g) in the coefficients and the order to 0 (rpc / g) in the 

exponential arguments. 
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