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Quantum dots are systems in which all three spatial sizes are comparable to the

Fermi wavelength. The strong confinement leads to a discrete energy spectrum. A

goal of thermoelectric research is to find a system with a high thermoelectric figure

of merit, which is related to the efficiency of solid-state heat engines. The delta-like

density of states of quantum dots has been predicted to boost this figure of merit.

This dissertation addresses some thermoelectric properties relevant to the thermal-

to-electric energy conversion using InAs/InP quantum dots embedded in nanowires.

In thermoelectric experiments, a temperature difference must be established and

its value needs to be determined. A novel technique for measuring electron temperature

across the dot is presented.
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A strong nonlinearity of the thermocurrent as a function of temperature difference

is observed at a small ratio of temperature gradient and cryostat temperature. At

large heating currents, a sign reversal is observed. Numerical calculations explore the

contribution of the energy dependence of the transmission function to this effect.

Depending on the relative contributions from sequential tunneling and co-tunneling,

thermovoltages of quantum dots generally have one of two different lineshapes: a

sawtooth shape or a shape similar to the derivative of the conductance peak. Here

a simple picture is presented that shows that thermovoltage lineshape is accurately

predicted from the energy level spacing inside the dot and the width of the transmission

function.

An important figure of merit of all heat engines is the efficiency at maximum

power. Here the thermoelectric efficiency at maximum power of quantum dots is

numerically compared to that of two other low-dimensional systems: an ideal one-

dimensional conductor (1D) and a thermionic power generator (TI). The numerical

calculations show that either 1D or TI systems can produce the highest maximum

power depending on the operating temperature, the effective mass of the electron,

and the effective area of the TI system. In spite of this, 1D systems yield the highest

efficiency at maximum power.
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CHAPTER I

INTRODUCTION

Nanostructured Thermoelectric Devices

Advanced semiconductor fabrication techniques have brought us a new venue to

explore some unusual effects of quantum physics in mesoscopic devices. One of

the new branches of research is exploring how to create devices that can convert

a temperature gradient into electrical energy. This is the subject of this chapter on

nanostructured thermoelectric devices.

Thermoelectricity

In 1821, Thomas Johann Seebeck observed that when there is a temperature

difference across a material, a corresponding voltage is created. The parameter which

indicates the magnitude of this voltage is the Seebeck coefficient, S, also known as

thermopower. The definition of thermopower is the ratio of the open-circuit voltage

to the applied temperature difference,

S =

(

∆V

∆T

) ∣

∣

∣

∣

I=0

, (I.1)

where ∆V and ∆T are the voltage and temperature difference across the material,

respectively.
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In metals, the Seebeck coefficient is small (on the order of µV/K). The most

well known application of this effect is the thermocouple where the temperature is

determined by measuring voltage difference between two dissimilar species of metal

or metal alloy with known Seebeck coefficients. From Fig. 1.1, the Seebeck coefficient

of the top and bottom materials are

S1,2 =
V0 − V1,2

∆T
,

where V0 is the voltage at the joint of dissimilar metal. The voltage difference V1−V2

then becomes,

∆V = (S2 − S1)∆T

and hence ∆T = ∆V/(S2−S1). The unknown temperature can be deduced from the

measured ∆V, the knowns S1 and S2, and the known ambient temperature T .

T
T+ΔT
V0

V1

V2

V

S1

S2

Figure 1.1. A thermocouple consists of two materials with known Seebeck
coefficients, S1 and S2. The unknown temperature, T + ∆T , can be determined
from the voltage across the two ends, V , and the known temperature, T (see text for
detail).
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Other thermoelectric (TE) phenomena include the Thompson effect, in which heat

is carried through a conductor by a charge current, owing to an applied temperature

gradient; and the Peltier effect, in which an applied current passing through a junction

of dissimilar material causes the junction to be warmer or cooler depending upon the

direction of current flow. In other words, the Peltier effect is the reverse of the Seebeck

effect. The ability of a material to convert a current to a temperature difference is

quantified by the Peltier coefficient, Π. It is defined as the ratio of heat current to

charge current under isothermal conditions,

Π =

(

Q̇

I

)

∣

∣

∣

∣

∆T=0

, (I.2)

where I and Q̇ are the charge and heat current through the material, respectively.

Thermoelectric phenomena involve the transport of charge and energy (in the

form of heat). As electrons or holes flow through a conductor, they carry both charge

and energy. In the linear response regime, the charge and heat current can be written

as,
(

I

Q̇

)

=

(

GV GT

M L

)(

∆V

∆T

)

, (I.3)

where GV , GT ,M, and L are thermoelectric transport coefficients. GV is the electrical

conductance. GT and M are related through an Onsager relation, M = −GTT . More

familiar electrical and thermal coefficients can be deduced from Eq. I.3. For example,

the definition of the electronic contribution to the total thermal conductance is given
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by,

K =

(

Q̇

∆T

)

∣

∣

∣

∣

I=0

= L+M

(

∆V

∆T

) ∣

∣

∣

∣

I=0

.

(I.4)

The zero current condition leads to

S ≡ ∆V/∆T = −GT/GV

and using the Onsager relation for M gives

K = L+M

(

−GT

GV

)

= L−GV TS
2.

(I.5)

Equation I.3 is more suitable for theorists. The experimentalist’s version of Eq. I.3

can be written as
(

V

Q̇

)

=

(

R S

Π −K

)(

I

∆T

)

, (I.6)

whereR is the electrical resistance (R = 1/G) andK is electronic thermal conductance.

S is the Seebeck coefficient and Π is the Peltier coefficient as defined previously.

Thermoelectric Heat Engine

With the depleting fossil fuel resources and global warming, the world needs

alternative energy resources. One strategy is to recycle some of the waste heat, such

as heat from automobile exhaust, from industrial processes, or from photovoltaic

energy conversion. Thermoelectric materials are candidates as direct thermal-to-

electric energy converters. TE materials are a solid state thermoelectric heat engine.
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This engine is different from the conventional fluid/gas based heat engine. In the

conventional engine, such as the Joule/Brayton cycle and the Otto cycle, a working

gas (or fluid) moves through cyclic thermodynamic steps as shown in Fig. 1.2. In

thermoelectric engines, also called particle-exchange engines [1], the thermoelectric

material electrically and thermally bridges particle reservoirs at different temperatures.

As particles move from reservoir to reservoir, they absorb heat from a reservoir and

then release heat to the other reservoir. The thermodynamic process is continuous and

non-equilibrium. While the working gas of an ideal conventional heat engine is always

in thermal equilibrium and has well-defined state variables such as temperature, the

particles in a thermoelectric engine are lacking this property.

Figure 1.3 illustrates the TE modules for power generation and refrigeration.

The module consists of n-type and p-type thermoelectric materials. In the power

generating case, a temperature difference drives electrons (n-type) and holes (p-type)

from the hot side to the cold side. As these particles move through thermoelectric

materials, they perform work against an electric field, E, that builds up because of

charge imbalance.

The performance of thermoelectrics is typically quantified by the thermoelectric

figure of merit, Z, which is defined as

Z =
S2σ

κe + κl

, (I.7)

where σ is the electric conductivity and κe,l are the electrical and lattice thermal

conductivities. Researchers also use the dimensionless figure of merit, ZT . The
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Figure 1.2. (a) Cyclic heat engine operates by cycling a working gas (WG) through
thermodynamic steps, i.e. A-B-C-D-A. The cyclic heat engine produces work by
absorbing heat from the hot bath, converting part of the heat into mechanical work,
and releasing the rest to the cold bath. (b) A particle-exchange engine operates by
a continuous flow of particles between hot and cold reservoirs. The particles carry
charge and energy as they flow through the thermoelectric material. As they move
along the material, they do work against the electrostatic potential created by charge
imbalance.
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Figure 1.3. Schematic of a thermocouple. It consists of two conducting materials
joined at the top by a metal (gray) to form a junction. (a) In the refrigeration
mode, the applied voltage causes electrons (holes) to flow through an n-type (p-type)
material. As a result, both carriers transfer heat away from the junction cooling the
top portion. (b) In the power generating mode, carriers flow from the hot side to the
cold side as a result of the applied temperature difference and as they move, they do
work against electric field, E.
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figure of merit is related to the efficiency (η) of the systems via

η =
∆T

TH

(

B − 1

B + TC/TH

)

= ηC

(

B − 1

B + TC/TH

)

(I.8)

where TH,C is the electron temperature of the hot and the cold reservoirs, ηC = ∆T/TH

is the Carnot efficiency, and

B = 1 +
√

ZTav

where Tav = (TH + TC)/2 is the average temperature.

Solid state heat engines have some advantages over conventional heat engines.

These advantages include reliability, scalability, portability, and the absence of moving

parts. Examples of such devices are portable coolers, car seat coolers/heaters, and

power sources in deep space programs. However, the performance of thermoelectric

nanostructured devices is inferior to conventional systems. The best ZT value available

for commercial uses is about 1 which corresponds to roughly 10% of Carnot efficiency

[2]. Though a ZT value of about 3.5 at 575 K has been reported [3], this technology

is still in the research and development (R&D) phase, and some questions about the

validity of these results exist. The lack of high-performance thermoelectrics is the

reason these devices only exist in niche markets. In order to compete in mass market,

thermoelectric devices need to have system ZT of at least 2 [2, 4–6].
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Low-Dimensional Electron Systems

In bulk TE materials, thermoelectric parameters are not entirely independent

from each other. For example, trying to increase the electrical conductance will

unavoidably increase the thermal conductance, since particles carry both charge and

energy (heat). Hence improvements using bulk TE material are limited. Low-

dimensional systems, on the other hand, introduce a new variable of length scale

which allows these parameters to be tuned quasi-independently. This can lead to ZT

enhancement.

In the early 90s, the Dresselhaus group at MIT predicted that low-dimension

electron systems such as Bi quantum wires or quantum wells can improve ZT compared

to bulk Bi [7, 8]. This idea brought new attention from research communities.

Since then, a variety of low-dimensional systems have been studied for their ability

to compete with conventional engines. Examples of these systems include carbon

nanotubes [9, 10], quantum dot superlattices [3, 11, 12], thin film semiconductors

[13], and nanowires [14–16]. There are two strategies to boost ZT : one is the size

quantization effect and the other is the use of interfaces to scatter phonons.

Size Quantization

Size quantization is a quantum effect in which energy states of the system change

from continuous to discrete when a length of the system becomes comparable to the
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Fermi wavelength. In the semiclassical picture, the energy of an electron is

E =
~
2(k2

x + k2
y + k2

z)

2m∗
(I.9)

where m∗ is the effective mass, assumed to be isotropic in all 3 directions. When the

length along one of these directions becomes comparable to Fermi wavelength, the

corresponding momentum is quantized. For example, if the length along the z-axis

becomes comparable to the Fermi wavelength, then the total energy can be written

as

E =
~
2(k2

x + k2
y)

2m∗
+ Enz

(z), (I.10)

where Enz
is the discrete energy level for the z direction. This is the energy of two-

dimensional (2D) electron systems.

The density of states (DOS) is modulated as a result of this quantization (see

Fig. 1.4). A sharp increase of the DOS near the Fermi energy could lead to substantial

enhancement in the Seebeck coefficient, as explained as following. In the linear

response regime, the thermoelectric coefficients in Eq. I.3 can be written as (using

the Landauer formula, see chapter II)

GV = −2e2

h

∫

∂f

∂E
τ(E)dE

GT = −2e2

h

k

e

∫ (

E − µ

kT

)

∂f

∂E
τ(E)dE

K

T
=

2e2

h

(

k

e

)2 ∫ (
E − µ

kT

)2
∂f

∂E
τ(E)dE,

(I.11)

where the Fermi-Dirac distribution is defined as

f(E) =
1

1 + exp (ξ)
,
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where

ξ =
E − µ

kT
,

and µ and k are an electrochemical potential and Boltzmann constant, respectively.

All integrands depend on the Fermi window defined by (−∂f/∂E). The density

of states is closely related to τ . This means that if DOS increases rapidly within

this window, these coefficients will also increase. The Seebeck coefficient, S =

−GT/GV , and GV of the low-dimensional systems get a boost from the modulated

DOS compared to the gradually increasing DOS of the bulk system.

Phonon Heat Leak

From Eq. I.7, it is obvious that ZT can also be increased via the reduction of

thermal conductivity. Heat leaks which reduce the efficiency of the engine consist of

two parts: one is the charge carrier itself, quantified by the electronic heat conductivity

κe and the other is the phonon (lattice), quantified by the phononic heat conductivity

κl.

In metals, the electronic contribution κe is larger than the phonon contribution

κl. In semiconductors, the opposite is true which means generally κl is larger than κe.

Thus it is important to incorporate a way to reduce the phonon heat leak. This can be

accomplished by utilizing many interfaces of low-dimensional systems. Because these

interfaces in these systems can scatter phonons more efficiently than bulk systems,

they reduce heat loss from the system [12, 13].
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Carnot Efficiency

In 1996, Mahan and Sofo suggested that a system with a delta-like density of states

could have the highest ZT [17]. It has been predicted that an energy filter with a

very narrow energy range could be tuned to achieve reversible electron transport and

electrons at this energy will flow without creating entropy [18, 19].

Carnot efficiency is achieved when there is no entropy creation results from the

transport process. When an electron flows from the hot to the cold reservoir, the

entropy associated with this process can be written as

∆S =
QH

TH

+
QC

TC

. (I.12)

where ∆S is the entropy of the system, and TC/H are the temperatures of the hot and

cold reservoirs. The heat carried out of the hot reservoir is QH = −(E − µH) while

the heat added to the cold reservoir is QC = (E − µC). Reversibility is reached when

electrons flow only at a specific energy:

E0 =
µCTH − µHTC

TH − TC

. (I.13)

This equation is obtained by inserting QH,C into Eq. I.12 and equating this equation

with zero. At this energy, E0, the Fermi-Dirac distributions on both reservoirs are

equal, fH(E0) = fC(E0). The system reaches reversibility when there is no preferred

direction of flow. A device with delta-like DOS, such as a quantum dot, can be used

as an energy filter and can be tuned such that an energy level of the dot coincides

with E0. The resulting system then will behave as if at thermal equilibrium, and
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energy conversion at Carnot efficiency (and at zero power) can take place. This is

why a system with delta-like density of states could provide the highest efficiency.

Efficiency at Maximum Power

Quantum dots have been predicted to achieve an electronic efficiency near the

Carnot limit [18]. However, as the system approaches this limit, the power generation

decreases toward zero. This is because in the reversible limit there is no preferred

direction of flow, so the net current (and thus the net power) is zero. In reality, the

DOS of the quantum dot will have a finite width, which leads to electrons within some

energy ranges near a resonant peak at E0 (Eq. I.13) to flow and hence increase the

power. Unfortunately, the efficiency of the quantum dot will then decrease. This is

because some electrons are allowed to carry extra energy while contributing equally to

the current and power. Also the transport of electrons at energies other than E0 (see

Eq. I.13) is an irreversible process and leads to entropy creation. Hence the efficiency

becomes lower than the Carnot limit.

To utilize a quantum dot as a power generator, an equally important property

would be the efficiency at maximum power, denoted by ηmaxP . Curzon and Ahlborn

[20] have shown that the efficiency at maximum power, obtained by optimizing the



15

Carnot cycle with respect to power instead of efficiency, is

ηCA = 1−
√

(

TC

TH

)

= 1−
√

(1− ηC)

=
ηC
2

+
η2C
8

+ . . . (I.14)

Recently it was shown that this limit is universal up to the second-order term [21–

23]. This sets the upper limit of efficiency for any heat engine operating at maximum

power.

Outlook

Electron transport in quantum dots has been extensively studied. Far less attention

has been given to the thermoelectric properties. This dissertation aims to address

some of the properties that affect the thermoelectric performance of a quantum dot.

Quantum dots in this study are defined by InP double barriers embedded in InAs

nanowires.

A quantum dot with its discrete energy spectrum operates as an energy filter in

which only electrons with a particular energy matching the lowest unoccupied energy

state of the dot can move into and out of the dot. QDs have a potential to operate

as a high ZT heat engine with efficiency approaching the Carnot limit and be able to

compete with conventional power generators or refrigerators. Thus, QDs are useful
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to scientists and engineers for understanding the device properties that can affect

thermoelectric performance of heat engines.

As mentioned in the previous section, it is not only efficiency and ZT that

are relevant in determining thermoelectric performance but also the efficiency at

maximum power. Here ηmaxP of three low-dimensional systems will be numerically

compared using the Landauer formalism. These systems are a quantum dot, a one-

dimensional conductor such as a nanowire, and a thermionic power generator formed

by a two-dimensional energy barrier.
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CHAPTER II

THEORY OF A QUANTUM DOT

This chapter provides a review of the theoretic modeling used in this dissertation.

First, the physics of the quantum dot is presented using the constant interaction

model. Then theory of electron transport in a quantum dot using the Landauer

formalism is presented. Finally, using this theory, theoretical derivations of thermo-

electric quantities are presented.

The Physics of Quantum Dots

A quantum dot is a system in which all three spatial dimensions are defined

such that these lengths are comparable to the Fermi wavelength of electrons. The

confinement reveals the quantum nature of electrons in the dot and leads to discrete

energy levels similar to those found in atoms, as shown in Fig. 2.1. Sometimes

quantum dots are referred to as artificial atoms.

Another feature of quantum dots is charge quantization. When the dot is weakly

coupled to the contacts, the number of electrons in the dot is an integer number.

As current flows from source to drain, this number is fluctuating by one. Because

of Coulomb repulsion, adding another electron requires extra energy and this energy

can be large compare to kT . The discreteness of charge on the dot leads to Coulomb
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blockade phenomenon where electron transport is forbidden if electrons from reservoirs

do not have enough energy to compensate for Coulomb repulsion. The blockade will

be lifted if one of the dot energy levels aligns with the electrochemical potential of

either source or drain contacts. The result is the periodic fluctuation in conductance

as a function of gate voltage.

Coulomb blockade has been successfully described by the constant interaction

model. This section will briefly review the relevant physics of Coulomb blockade

of quantum dots. For comprehensive reviews see [24, 25]. This model is based

on two assumptions. First, Coulomb interaction between electrons in the dot and

its environment (the source, drain, and gate contacts) can be parameterized by a

single capacitance, C = CS +CD +CG (see Fig. 2.1(b)), which is independent of the

number of electrons in the dot. The second assumption is that the single energy-level

spectrum, {En}, is independent of these interactions and N . Now consider the total

energy for N and N − 1 electrons in the dot:

U(N) =
[−e(N −N0) +

∑

i CiVi]
2

2C
+

N
∑

n=1

En

U(N − 1) =
[−e(N − 1−N0) +

∑

i CiVi]
2

2C
+

N−1
∑

n=1

En.

where Vi is the voltage between the dot and the contact i, and
∑

i

means summation of

all three electrodes. En is a single-electron quantum energy level for the n-th electron

and N0 is the number of electrons on the dot at zero gate voltage. In each equation,

the first two terms are discrete and continuous electrostatic energy, respectively, while
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Figure 2.1. (a) A schematic represents the circuit of quantum dot. (b) The constant
interaction model describes the total interaction of the dot with its environment by
the capacitance, C = CS+CD+CG. (c) Energy diagram of the circuit of the quantum
dot and its leads. The solid lines are occupied resonant levels while the dashed lines
are emptied levels. The highest occupied level is indicated by µ(N). The applied bias
creates the chemical potential difference of the contacts, VSD = (µS − µD)/e.
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the last term is the energy level from size quantization. The electrochemical potential

associated with N electrons on the quantum dot is defined as

µ(N) = U(N)− U(N − 1)

=

(

N −N0 −
1

2

)

EC − EC

|e| (
∑

i

CiVi) + EN , (II.1)

where EC = e2/C is the charging energy. The energy required for adding or removing

an electron from the dot is

Eadd = µ(N + 1)− µ(N)

=

[(

N −N0 +
1

2

)

EC + EN+1

]

−
[(

N −N0 −
1

2

)

EC − EN

]

= EC + (EN+1 − EN)

= EC +∆E. (II.2)

This equation indicates that the energy spectrum of the dot has two parts: the size-

quantized energy and the charging energy. In the small dot where ∆E ≫ EC , the

energy level of the dot is dominated by the size quantization effect.

From Eq. II.1, µ is a function of gate voltage. When µ(VG) is equal to Eadd,

then the Coulomb blockade is lifted. Sweeping of µ using VG produces periodic

oscillations of the conductance as a function of VG. This provides a spectroscopic tool

for energy characterization of the dot. Furthermore, one can measure the conductance

as a function of VSD and VG (see figure 2.2). Using this data, one can quantify the

linear relationship between VG and µ. This relationship is useful for comparison

between experimental data and theory because the experiment is controlled via VG
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but the energy diagram of the dot is described by µ. From Eq. II.1 and the condition

µ(N, VG) = µ(N + 1, VG +∆VG), this relationship is

∆VG =
C

eCG

(

∆E +
e2

C

)

=
C

eCG

∆µ. (II.3)

This equation requires that the proportional constant, CG/C, is known.

Modeling: The Landauer Formalism

In this dissertation, the main theoretical tool is the Landauer formalism. This

approach is based on the idea that electron transport through a conductor is determined

from the likelihood that a charge carrier can successfully transmit from one reservoir

to the other [26].

Consider two electron reservoirs (contacts) bridged by a conductor whose length

is smaller than the electron elastic scattering length. Electrons in each reservoir have

a well-defined temperature and chemical potential. Let the left contact represent the

hot side and denote temperature and chemical potential by TH and µH , respectively.

Correspondingly, let the right contact represent the cold side and denote temperature

and chemical potential by TC and µC , respectively. The applied bias is defined as

VSD = (µC − µH)/e. Electrons in the hot and cold reservoirs can then be described

by the Fermi-Dirac distributions:

fH/C(E, µH/C , TH/C) =

[

1 + exp

(

E − µH/C

kTH/C

)]−1

. (II.4)

In the ballistic regime, the scattering occurs at the interface between the conductor
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Figure 2.3. Coulomb blockade diamond of differential conductance as a function of
bias and gate voltages measured at T = 550 mK.

and reservoirs. From quantum mechanics, this scattering can be expressed in terms

of an energy-dependent transmission function, τ(E).

The total momentum of a single electron in a one-dimensional conductor is composed

of the quantized momentum in the transverse directions and the (non quantized)

momentum of a single electron in the longitudinal direction (parallel to the z-axis).

Assuming a parabolic dispersion relation, E = p2/2m = (~k)2/2m, the total energy

can be written as:

E = ǫN(x, y) +
(~kz)

2

2m
, (II.5)

where ǫN(x, y) is the quantized energy in the x-y plane and kz is the wave vector
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in the z-axis. For a single transverse mode with cut-off energy ǫN , current from the

hot(left) to the cold(right) reservoirs is

i+ =
e

L

∑

+k

vf(E(+k)) =
e

L

∑

+k

1

h

∂E

∂k
f(E(+k)). (II.6)

Replacing the summation by an integral,

∑

+k

→ L

2π

∫

dk, (II.7)

and changing variables from momentum to energy, gives

i+ =
2e

h

∫

∞

ǫN

f+(E)dE. (II.8)

The factor of 2 accounts for the spin degeneracy. In the same way, the current from

cold(right) to hot(left) sides is

i− =
2e

h

∫

∞

ǫN

f−(E)dE. (II.9)

The net current is

i =
2e

h

∫

∞

ǫN

[f+(E)− f−(E)]dE. (II.10)

In general, the current also depends on the chance that electrons can flow from one

reservoir to the other. Thus the net current can be written as,

i =
2e

h

∫

∞

ǫN

[f+(E)− f−(E)]τ1D(E)dE, (II.11)

where τ1D(E) is the energy-dependent transmission probability that electrons can

transmit through the 1D channel. Equation II.11 is the Landauer formula for a two-

terminal conductor. This equation is also valid for a quantum dot and one only



25

has to replace τ1D(E) with τQD(E). For the Lorentzian approximation [27, 28], the

transmission of a quantum dot with only one transmission resonance within many kT

of the chemical potential can be written as

τQD(E) =
(Γ/2)2

(E − E0)2 + (Γ/2)2
, (II.12)

where E0 is the energy of the resonant level and Γ is the full width at half maximum

of the resonance.

Derivation of Thermoelectric Quantities

Numerical calculations of thermoelectric quantities in this dissertation are done

using Matlab based on the equations derived in this section. These include current,

thermovoltage, power, efficiency, electrical and thermal conductance, and the ZT

figure of merit.

Current

Consider a quantum dot connected to the hot and cold reservoirs. In general, both

electrochemical potentials (µH , µC) and temperatures (TH , TC) of each reservoir can

have different values. From the two-terminal Landauer formula (Eq. II.11), one can

calculate the current as a function of µH/C and TH/C as

I(V, µ) = −2e

h

∫

[fH(E, µH , TH)− fC(E, µC , TC)]τ(E)dE. (II.13)
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Thermovoltage and Thermopower

By definition, the thermovoltage, denoted Vth, is the voltage created by a tempera-

ture difference, ∆T = TH − TC , under the condition of zero net current. This is

the open-circuit condition. Numerically, Vth = (µH − µC)/e can be calculated via

Eq. II.13 by searching for the µH and µC which result in I = 0. Such values of

µH−µC are not uniquely constrained. However, unique values of µH/C can be found by

assuming that the voltage drops equally across each quantum dot barrier. Therefore,

µH/C = µ ± eVth/2, where µ is the average chemical potential and is controlled

externally by the gate voltage, VG. The accuracy of Vth will depend on the number

of V data points used in the search. Normally the numerical calculation does not

always yield the exact zero. In the search for I = 0, one has to pick V that gives the

current value closest to zero. It can take quite some time to obtain Vth if one chooses

too small of a step size.

One can also calculate Vth from an approximated closed-form equation. Under

the linear response approximation, ∆E, k∆T ≪ kT , where ∆E denotes the energy

spacing of conducting material, the Fermi function of the hot and the cold contacts

can be expanded around the equilibrium value (average T and µ). This gives fH/C as

fC,H ≈ f0 ±
∂f0
∂E

[(

µ± Vth

2

)

−
(

E − µ

T

)

(T − TC,H)

]

where f0 is the Fermi function at equilibrium conditions (µH = µC and TH = TC).
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Put these into Eq. II.13

I(V, µ) = −2e

h

∫

∂f0
∂E

[

−eVth −
(

E − µ

T

)

∆T

]

τ(E)dE = 0. (II.14)

Solving for Vth gives

Vth = −∆T

eT

∫

dE(E − µ)
(

∂f0
∂E

)

τ(E)
∫

dE
(

∂f0
∂E

)

τ(E)
. (II.15)

Calculations performed using Eq. II.15 can be done in a shorter time than the

numerical search method described above. But Eq. II.15 is only valid when k∆T and

eVth are small compared to kT . Regardless of the method used to find Vth, one can

easily obtain thermopower, S, directly from its definition, S = −Vth/∆T .

Heat Flux, Power, and Efficiency

When an electron moves through a channel, it carries both charge and energy.

The heat removed from the hot reservoir by an electron that leaves the reservoir at

energy E is QH = (E − µH). The rate at which heat leaves the reservoir per unit

time is the heat flux out of the hot reservoir. By replacing electric charge with QH

in Eq. II.6 and running through the derivation again, the heat flux, Q̇H is obtained.

The result of this is

Q̇H = (E − µH)nν

=
2

h

∫

dE(E − µH)τ(E)(fH − fC). (II.16)

Power is easily calculated from the definition of electric power: P = IV . Since I

is a function of µ and V , then power is also a function of µ and V . In this calculation,
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the power generated (thermally) by the device has a negative value, while power

generated by an applied external voltage has a positive value. Therefore, when we

present our modeling results, we will graph only negative power values and ignore all

positive values (not included in the figures) so that they do not obscure features of

the power generated by the dot.

The efficiency of a heat engine is the ratio of power output to heat flux, that is,

η =
Power (Energy output/time)

Heat Flux (Energy input/time)
=

P

Q̇H

(II.17)

The thermoelectric efficiency describe in this dissertation will refer to efficiency as a

heat engine.

Electrical and Thermal Conductances and ZT

Differential conductance (G) determines how easily electric charges can move in

a conductor when a small bias is applied with a uniform temperature. The equation

for G is

G =
dI

dV

∣

∣

∣

∣

∣

∆T=0

= −2e

h

∫

dE
∂f

∂V
τ(E). (II.18)

For thermal conductance, only the electron contribution will be considered here.

The electronic thermal conductance indicates how readily electrons carry heat through

a conductor in the presence of a thermal gradient and in absence of an electrical

current. It is defined as

Ke =
Q̇H

∆T

∣

∣

∣

∣

∣

I=0

. (II.19)
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To calculate the electronic ZT , one must calculate all three parameters in Eqs. II.15,

II.18, and II.19 (thermopower, electric and thermal conductance) and then insert

them into Eq. I.7.
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CHAPTER III

EXPERIMENTAL METHODS

Device Fabrication

Nanostructure devices can be made by top-down or bottom-up approaches. In the

top-down approach, portions of materials are removed by semiconductor techniques

such as etching. In the bottom-up approach, the device is built up from smaller

constituents using techniques such as molecular beam epitaxy (MBE) where molecules

of growth species diffuse around and form desired structures.

InAs/InP heterostructure nanowires can be used as quantum dots [29]. InAs

nanowires provide the lateral confinement while the dots are defined by InP barriers.

Nanowire growth can be explained by the vapor-liquid-solid (VLS) mechanism which

was first proposed by Wagner and Ellis [30]. In essence, a small metal particle, which

provides a preferred site for the wire growth, is deposited on the substrate. Then

the substrate is heated. When the system reaches an eutectic point, the particle

and substrate form a liquid droplet. Then vaporized growth material is introduced

into the liquid alloy. Once the eutectic alloy becomes supersaturated, the growth

commences. The wire grows by precipitation of the growth species at the liquid-solid
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interface. The wire continues to rise underneath the liquid droplet as long as the

vapor growth species are steadily supplied.

InAs/InP Heterostructure Nanowires

The quantum dots used in our experiments were made by our colleagues at Lund

University. III-V heterostructure nanowires were grown using chemical beam epitaxy

(CBE) [31–34]. This approach differs from the VLS mechanism in that there is no

liquid phase. In addition, the seed particle is in a solid phase instead of liquid during

the growth [35, 36].

The procedure used at Lund to grow InAs/InP heterostructure nanowires is as

follows [33, 34, 37, 38]: First size-selected Au seed particles are deposited onto InAs

<111>B crystalline substrate, and then the substrate is transferred to the CBE

vacuum chamber and heated. Then group III and V species are injected through

separated lines. Because of its long diffusion length, the group III source (In) can

reach seed particles by diffusion along the substrate and up the wire side walls or

by direct impingement. For group V sources (As and P), the diffusion length is

small, and only those source particles which directly impinge on the seed particle

will contribute to the nanowire growth. Heterostructure nanowires are achieved by

alternating between source species during the growth process. Figure 3.1 shows the

summary of this procedure.
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Si<111> Si<111>

Si<111>

In(CH3)3
Asx

Px

Au

(a) (b)

(c)

InP

InAs

Figure 3.1. (a) Au seed particles are deposited onto a Si<111> substrate. (b) The
growth species are introduced into the chamber. (c) The heterostructure nanowire is
achieved by alternating the growth species from As to P during the growth process.
Figure based on Figs. 2.1 and 2.5 in Ref. [34].

Quantum Dot Circuitry

After InAs/InP nanowires are made, the next step is to make metal contacts to

the wire for electrical measurements. Figure 3.2 is a schematic of the resulting device.

The procedure for contacting the nanowires is as follows [37, 39]. First the nanowires

are deposited onto a conducting n-doped silicon wafer. This portion of wafer serves

as a global back-gate. This wafer is capped with a 100 nm layers of SiOx to insulate
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the nanowires from the back-gate. Then Ni and Au are evaporated through a shadow

mask to make bond pads for wire bonding.

Si<111>

InAs

InP

SiOx

QD

Si Substrate

Figure 3.2. The nanowires on the growth substrate are transferred to the growth
substrate consisting of an insulating SiOx layer on top of a conductive n-doped Si
layer, which serves as a global back-gate. Au/Ni metallic leads are defined using EBL
and subsequent metallization to create Ohmic contacts to the nanowires. The wires
are made from InAs (blue) and the barriers are from InP (red). The quantum dot
(QD) is then defined by the double barriers.

Once these large bond pads are ready, the InAs/InP nanowires are removed

from their growth substrate by gently sweeping with a clean room tissue and then

transferred to the measurement wafer. This wire deposition is random. But the

nanowires can be located using an optical microscope. Next PMMA resist is spin

coated to cover the entire substrate. At this point, the ohmic contacts for each wire
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are designed manually. These small-scale contacts (100s of nm) are defined using

electron beam lithography (EBL). After EBL exposure, the sample is developed in

MIBK/IPA solutions. An ozone etch is performed to remove residual resist and

other organic contamination. Because the nanowire surfaces oxidize when exposed to

atmosphere, prior to metallization, the wires are passivated in NH4Sx to remove the

native oxide. Then 25 nm of nickel and 90 nm of gold are subsequently evaporated

followed by a lift off in heated acetone to remove the remaining PMMA and metals.

The resulting device is shown schematically in Fig. 3.2.

Experimental Setup

Basic Characterization

After the wire is connected with the metal contacts, basic device characterizations

such as IV measurements can be performed. By definition, the differential conductance,

G, is the change in current, dI, in response to an infinitesimal change in voltage, dV ,

this is G = dI/dV . In the experiments, G is measured by applying a finite but small

voltage, δV , usually smaller than thermal energy kT , and then measuring the change

in the current , δI. The measurement is best done using a lock-in technique and an ac

bias voltage. This lock-in technique improves the signal-to-noise ratio because noise

at frequencies other than that of the applied ac voltage will be attenuated.

The most complete differential conductance measurement is the so-called Coulomb-

blockade spectroscopy measurement, which maps out the differential conductance as
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a function of gate and dc bias voltage. Experimentally, the ac and dc biases are

applied simultaneously using a mixing circuit (see Fig. 3.3).

The ratio Vout/Vin can be approximated by RG/(RG+Rin) for RG ≪ RNW where

RG, Rin and RNW are the resistance to ground, the input resistance and the nanowire

resistance, respectively. The ac and dc inputs are supplied by the lock-in amplifier,

Stanford Research System (SRS) model 830, and a power supply Yokogawa 7651,

respectively. The gate voltage connecting to the back of the Si substrate is generated

by a separate power supply (Yokogawa model 7651). The preamplifier (SRS570) is

connected to the drain side of the nanowire and produces a voltage proportional to

the input current (see Fig. 3.4). This preamplifier also provides the electrical ground

for the entire setup. The output ac and dc voltages from the preamplifier are then

feed into the lock-in amplifier (SRS 830) and into a digital multimeter to measure the

ac and dc components, respectively.

Heat Source

In order to perform a thermoelectric experiment, there must be a heat source to

establish a temperature gradient across the device. In order to achieve this goal, the

source and drain contacts are designed in a ‘T’-shape, see Fig. 3.5(a). The top bar of

the ‘T’ provides the path for heating current. It is made thin at the middle portion to

increase the resistance, hence raising the electron temperature. The heating circuit

has independent inputs for heating and biasing voltage. It splits the input ac heating

voltage into two voltages, v±, which have equal magnitudes and opposite signs. The
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G
=13.7 Ω
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R
in

R
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=1.325 kΩ

Figure 3.3. A mixing circuit combines ac and dc voltages together. RG is the
resistance to ground, Rin is the input resistance, and RNW is the nanowire resistance.
RG/(RG +Rin) is 0.01 for both ac and dc components.

400 nm

V
out

preamp

S
D

QD

Figure 3.4. A scanning electron microscope image of a nanowire device contacted
at both ends. The quantum dot (QD) is not seen at this magnification. S and D
indicate the source and drain contacts. The ‘T’ shape contacts are for heating (see
text). The bias voltage, Vout, is supplied by a mixer circuit (see Fig. 3.3). The current
preamplifier, which provides the path to ground, creates a voltage proportional to
the input current. This voltage then feeds into the lock-in amplifier (ac) and digital
multimeter (dc).



37

third leg (p) provides the electrical balance (probe). A trimming circuit provides the

ability to tune v± such that at the nanowire the two voltages cancel, v++v− = 0 (see

Fig. 3.5(b)). As a result, the current created by v± heats the electrons in the source

contact without electrically biasing the quantum dot.

S

D

ν+

ν+

ν-

ν

ν-
V

V

IH

IH

(a) (b)

p

Figure 3.5. (a) An SEM image of a nanowire with ‘T’-shape source and drain
contacts. The heating current, IH , flows through the source contact without biasing
the nanowire. This is achieved by using two op-amps to generate ν+ and ν−. (b) A
side-view of the heating channel. A voltage probe (p) provides fine tuning to ensure
that the two signals cancel each other at the nanowire.

All thermoelectric experiments are performed using a low-frequency ac heating

current (17 Hz). Apart from increasing the signal-to-noise ratio as mentioned previously,

the benefit of using an ac heating current and lock-in techniques is that the resulting ac

thermal gradient is frequency doubled. This means that measurements are performed

at a separate frequency from the applied heating current. This separation helps

isolate measurements from any noise created by the heating current. To see why
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this is true, consider the temperature difference, ∆T , created by the heating current,

IH = cos(wt),

∆T ∝ PJoule = I2HR ∝ cos2(ωt) ∝ cos(2ωt) (III.1)

Hence electron transport induced by ∆T will appear at the second harmonic, 2ω (34

Hz in our case).

Thermoelectric Property Measurements

Thermocurrent

The thermocurrent, Ith, is the electrical current that flows in response to the

temperature difference, ∆T . The thermocurrent is given by Ith = Gth∆T , where Gth

is the thermoelectric coefficient indicating how much current can flow as a result of

the temperature difference. In order to measure Ith, the heating current is applied at

the source contact and, using a lock-in technique, the frequency-doubled current is

measured via the preamplifier. The net current flow through the dot is

I(t) = GV +Gv cos(ωt) +Gth∆T (t), (III.2)

where V is bias voltage and v cos(ωt) accounts for any voltage noise at frequency w.

Because thermal effects are expected at the second harmonic (2ω), thermocurrent can

be written as Ith = I0 cos(2ωt), where I0 is the amplitude of the ac thermocurrent.

Thus the net current becomes

I(t) = GV +Gv cos(ωt) + I0 cos(2ωt). (III.3)
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The internal circuitry of the lock-in amplifier extracts I0 from the total current I(t)

by integration. The orthogonal property of the cosine function causes other terms

except cos(2ωt) to vanish. The lock-in performs the following calculation

ω

π

∫ τ

0

I(t) cos(2ωt)dt =
ω

π

∫ τ

0

[GV +Gv cos(ωt) + I0 cos(2ωt)] cos(2ωt)dt

=
ω

π
I0

∫ τ

0

cos2(2ωt)dt

= I0.

To measure I0, the lock-in amplifier generates the signal with 2ω frequency and

averages the signal over a period. The orthogonal property of the cosine function

ensures that the first two terms of the integration are zero. Thus the measurement

is insensitive to v cos(ωt). Further details of the thermocurrent experiment can be

found in Ref. [40].

Thermovoltage, Vth

Ideally, to measure thermovoltage, the input impedance of the measurement instru-

ment should be infinitely large. In our lab, the low-noise voltage preamplifier (Femto

DLVPA-100-F-D series) with FET input stage has an input impedance of 1 TΩ.

In a current measurement, the drain contact is connected to the ground (via the

current preamplifier) while the source contact is attached to the output voltage of the

mixer circuit, Vout. A change in gate voltage has insignificant influence on the voltage

of the source and drain since both ends of the wire are pinned to fixed voltages.

However, in the true open circuit measurement, the drain contact is disconnected. As
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a result VD is floating and may be affected by the gate voltage. The source side is

pinned by the bias while the drain voltage VD changes as gate voltage changes. As

a result, VD biases the wire and a current will flow as the system tries to reach the

equilibrium. In essence, the gate voltage obscures the true open circuit voltage by

creating an additional voltage.

This problem can be lessened by attaching a load resistance between the drain

contact and ground. This reduces the gate-induced voltage by providing a path to

ground. This gate-induced voltage is measured under isothermal conditions then

subtracted from the thermovoltage measurements. Now what is being measured is

not thermovoltage but the voltage across the load resistor (see Fig. 3.6). The true

thermovoltage is

Vth = I(RL +R) = VL

(

1 +
R

RL

)

, (III.4)

where R = 1/G is the resistance of the dot. This becomes complicated because

this resistance is also a function of gate voltage. However, when RL ≫ R, the

thermovoltage can be approximated by VL. More details on the thermovoltage measure-

ments can be found in Ref. [40].
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S

D

ν+ ν-

p

RL

A

B

VL

Figure 3.6. A schematic of the setup used for thermovoltage measurements. VL is
measured which can be made close to thermovoltage if RL ≫ R, see Eq. III.4.
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CHAPTER IV

MEASURING A TEMPERATURE DIFFERENCE ACROSS A QUANTUM DOT

In order to measure the thermoelectric properties of a quantum dot, not only the

absolute ambient temperature is required, but also the electron temperature difference

across the dot. In this chapter, a method to measure a temperature difference across

a quantum dot is presented. The measurements reported in this chapter were done

by Eric A. Hoffmann. The author has contributed to the modeling and the derivation

in the narrow width regime, Γ ≪ kT (see text).

Introduction

In thermoelectric experiments, one needs to establish and measure a temperature

difference across the device. One way to achieve this is to heat a heating module

consisting of a resistor. The same resistor can then be used to measure the temperature

of the lattice [41]. But at low temperature, the lattice temperature can be quite

different from the electron temperature. Another method includes employing a quantum

point contact to measure voltage across a heating channel defined in a two-dimensional

electron gas using a known Seebeck coefficient [42].

A new method for measuring a temperature gradient was developed during this

thesis and uses a quantum dot as a thermometer [43–46]. The quantum dot with
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its unique energy-dependent transmission function can be used as a tool to sense

the Fermi-Dirac distribution of the electron gas where temperature strongly affects

the profile of the distribution. However, the transmission is not known a priori. By

measuring the thermocurrent Ith and the differential conductanceG, the temperatures

can be extracted by comparing the two measurements (one with heating and one

without). This technique requires that the energy spacing in the dot is greater than

the thermal energy, ∆E ≫ kT . This can be achieved easily in a nanowire-based

double-barrier quantum dot working in the Coulomb blockade regime where EC ≫

kT .

Once a heating current is applied to the source contact, the temperature profile

along the wire looks like the one shown in Fig. 4.1. The ambient temperature, T0, is

the temperature of the cryostat and ∆TH,C are the temperature rises on the hot and

cold sides of the dot, respectively. This thermometry method can be used to measure

∆TH,C separately by applying appropriate bias and gate voltages so that only one of

the electrochemical potentials is near the dot resonant level (see Fig. 4.2).

Theoretical Consideration

The thermocurrent is the net current flow as a result of a temperature gradient

across the dot. Starting from the two-terminal Landauer equation for current [27],

I = −2e

h

∫

[fH(E)− fC(E)]τ(E)dE, (IV.1)
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Figure 4.1. The temperature profile along a nanowire heated at one end, at low
temperatures. T is the ambient temperature. When the heating current is applied
at the source contact (SC) the electron temperature rises above T by an amount of
∆TSC . The associated temperature rise at the drain contact is ∆TDC . At the barriers,
the rises in electron temperatures are denoted ∆TH and ∆TC .
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Figure 4.2. The energy diagram shows the bias and gate voltages which set µH,C

closer to the resonance while the other electrochemical potential is many kT away.
This requires the energy spacing to be larger than the thermal energy, ∆E ≫ kT
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the thermocurrent can be written as

Ith = ∆T
∂I

∂T
= −∆T

2e

h

∫

∂(fH − fC)

∂T
τ(E)dE. (IV.2)

When only one of the electrochemical potentials is near the resonance (see Fig. 4.2),

this current can be written as

Ith|H,C = ∓∆TH,C
2e

h

∫

∂fH,C

∂TH,C

τ(E)dE

= ∆TH,C
2e

h

∫

FH,C(E)τ(E)dE, (IV.3)

where

FH,C(E) = ∓∂fH,C

∂ξH,C

∂ξH,C

∂TH,C

= ±∂fH,C

∂ξH,C

ξH,C

TH,C

. (IV.4)

Even though the thermocurrent (Eq. IV.3) provides information about the temperature

of incoming electrons, this is not enough to determine ∆TH,C because the Fermi-Dirac

function is convoluted with the transmission function. However, in combination with

the second differential conductance, ∆TH,C can be measured.

Consider the second differential conductance, denoted by G2 = d2I/dV 2, at the

same bias and gate voltages configuration,

G2 =
∂2I

∂V 2
= ∓2e

h

∫

∂2fH,C

∂V 2
τ(E)dE. (IV.5)
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The first and second derivatives of fH,C with respect to V can be written as [40],

∂fH,C

∂V
=

∂fH,C

∂ξH,C

∂ξH,C

∂V

=

( ±e

2kTH,C

)

∂fH,C

∂ξH,C

∂2fH,C

∂V 2
=

( ±e

2kTH,C

)

∂2fH,C

∂ξ2H,C

∂ξH,C

∂V

=

( ±e

2kTH,C

)2
∂2fH,C

∂ξ2H,C

.

And the first and second derivatives of fH,C with respect to ξH,C are given by,

∂fH,C

∂ξH,C

= −f 2
H,C exp(ξH,C)

∂2fH,C

∂ξ2H,C

= −2fH,C
∂fH,C

∂ξH,C

exp(ξH,C)− f 2
H,C exp(ξH,C)

=
∂fH,C

∂ξH,C

(1− 2fH,C exp(ξH,C))

=
∂fH,C

∂ξH,C

(

1− 2 exp(ξH,C)

1 + exp(ξH,C)

)

=
∂fH,C

∂ξH,C

(

1− exp(ξH,C)

1 + exp(ξH,C)

)

=
∂fH,C

∂ξH,C

(2fH,C − 1).

Inserting this into Eq. IV.5 gives

∂G

∂V
= −2e

h

(

e2

4k2TH,C

)∫

MH,C(E)τ(E)dE, (IV.6)

where

MH,C(E) = ±∂fH,C

∂ξH,C

(

2fH,C − 1

TH,C

)

(IV.7)

The integrand of thermocurrent and second differential conductance bear some

similarity. This can be seen in the plot of those two equations (for example see figure
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4.3). This is the reason why the second differential conductance is used instead of

the conventional differential conductance. Using these two quantities, it is possible

to extract temperature at the source(drain) side of the quantum dot from the ratio,

defined as

RH,C ≡
(

Ith
G2

)

∣

∣

∣

H,C
, (IV.8)

when only the electrochemical potential of the source (drain) side alone is near the

resonant level of the dot.
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Figure 4.3. Plot of functions FH,C(E), MH,C(E), for fixed µ and V , as a function
of E/kT . The transmission function τ(E/kT ) (green color) with Γ = 10kT, kT, and
0.1kT is also plotted. The width of the transmission function determines which range
of FH,C ,MH,C will contribute to the ratio RH,C .

The transmission function plays an importance role in thermometry of a quantum

dot, because it controls which electrons can tunnel through the dot. In the Lorentzian

approximation, it can be characterized by the full width at half maximum, denoted

by Γ. However, the finite width can be considered narrow or broad only relative to
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the thermal energy, kT . In the following subsections, the thermometry in the limit

of narrow and broad transmission width will be discussed.

Measurements of Ith and G2 reflect the convolution of FH,C and MH,C with τ(E).

As shown in Fig. 4.3, this convolution means that the transmission width influences

how the two functions FH,C and MH,C will contribute to the ratio RH,C . In the

case of narrow width, only a small region near the peak resonance (at E = E0)

can contribute significantly. In the limit of a delta function, the values of these two

functions at E = E0 determine the ratio and lead to the analytical limit of RH,C .

For the broad-width regime, Γ ≫ kT , a larger range contributes nearly equally to

the ratio. After the contribution has been numerically calibrated, ∆TH,C can be

determined directly from the ratio RH,C .

Narrow Transmission Width Regime, Γ ≪ kT

For the narrow-width limit, the transmission function can be approximated as a

Dirac delta function with an unknown amplitude, τ(E) = Aδ(E − E0), where E0 is

the resonant level of the dot and A is the unknown amplitude of the transmission

function. Equations IV.3 and IV.5 can now be written as

Ith

∣

∣

∣

H,C
= A∆TH,C

2e

h

∂fH,C

∂ξH,C

ξH,C

TH,C

∣

∣

∣

∣

E=E0

(IV.9)

G2 = A
2e

h

(

e2

4k2TH,C

)

∂fH,C

∂ξH,C

(

2fH,C − 1

TH,C

) ∣

∣

∣

∣

E=E0

(IV.10)
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Using Eq. IV.9, the ratio is approximated as

R<
H,C =

∆TH,C
ξH,C

TH,C

e2

4k2T 2

H,C

(2fH,C − 1)

∣

∣

∣

∣

∣

E=E0

= ∆TH,C
4k2

e2
TH,C

ξH,C

2fH,C − 1

∣

∣

∣

∣

E=E0

= ∆TH,C

(

4k2

e2

)

TH,C





ξH,C)
2

1+exp(ξH,C)
− 1+exp(ξH,C)

1+exp(ξH,C)





∣

∣

∣

∣

∣

E=E0

= ∆TH,C

(

4k2

e2

)

TH,C

(

ξH,C
1 + exp(ξH,C)

1− exp(ξH,C)

)

∣

∣

∣

E=E0

= ∆TH,C

(

4k2

e2

)

TH,C

(

ξH,C coth

(

ξH,C

2

))

∣

∣

∣

E=E0

(IV.11)

The electrochemical potentials can be expressed in voltage as V 0
H,C = ∓2(E0−µ)/e.

Then ξH,C becomes

ξH,C

∣

∣

E=E0

=
e

2

(

±
V − V 0

H,C

kTH,C

)

The ratio can be written as,

R<
H,C = ∆TH,C

(

2k

e

)

(V − V 0
H,C) coth

(

e

4k

V − V 0
H,C

T +∆TH,C

)

(IV.12)

where V 0
H,C are measured experimentally by locating the bias of the zero-point crossings.

With this equation, R<
H,C can be used to fit the ratio, R, of measured thermocurrent

and second conductance with the temperature rise, ∆TH,C , used as fitting parameters

[40, 45, 46].

Broad Transmission Width Regime, Γ ≫ kT

In this regime, the key for extracting temperature rise is that there is the similarity

between FH,C and MH,C [40, 43, 44]. To illustrate the point, consider MH,C(E) at the
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Figure 4.4. Simulated thermocurrent (red) and the second differential conductance
(blue) with Γ ≪ kT . The ratio, R, (green, Eq. IV.8) of the two and R<

H,C (dashed
line, Eq. IV.12) are shown at the top. Note the range of bias voltage where R<

H,C

overlaps with R and coincides with the range where Ith and G2 have peak signals
(grey area). This is where the data will be collected. In the measurements, this range
provides a good signal-to-noise ratio.

limit of ξH,C → 0,

MH,C = ±∂fH,C

∂ξH,C

2fH,C − 1

TH,C

≈ −∂fH,C

∂ξH,C

ξH,C

2TH,C

= FH,C/2.

This is also true at other values of ξH,C as
∂fH,C

∂ξH,C

becomes vanishingly small. So when

ξH,C is small, Ith is proportional to G2. Hence, the thermocurrent can now be written

as,

Ith
∣

∣

H,C
= ∆TH,C

(

2e

h

)∫

FH,C(E)τ(E)dE

≈ −∆TH,C

(

2e

h

)∫

2MH,C(E)τ(E)dE. (IV.13)

Using Eq. IV.13 for Ith and Eq. IV.6 for G2, then the ratio becomes

R ≈ TH,C
∆TH,C

ΛH,C

(

4k2

e2

)

(IV.14)
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where ΛH,C is a unitless parameter introduced to correct an error associated with the

approximating of FH,C as MH,C , and it also absorbs a factor of 2 in the integrand of

Eq. IV.13. Solving this equation for ∆TH,C gives

∆TH,C = ±1

2

√

T 2 + ΛH,C
e2

2k2
R− T

2
. (IV.15)

In the broad width regime, the ratio R, usually forms a plateau around V 0
H,C (see

Fig. 4.5). This plateau is suitable to determine ∆TH,C . To determine the temperature

rise, data points in this range are fed into Eq. IV.15 along with ΛH,C , which is

calculated separately, and the ambient temperature and then averaging over the data

set to obtain the temperature rise.
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Figure 4.5. A plot of a numerical calculation of the ratio R (green, Eq. IV.8) for
Γ = 10kT . The blue and red lines are numerical calculations of Ith and G2 with
arbitrary units, respectively. The dashed line is R< for Γ ≪ kT (Eq. IV.12). For
Γ ≫ kT , the ratio forms a plateau and Eq. IV.12 can not be used to predict ∆T .

Figure 4.6 displays the simulated data of ∆TH,C as a function of ∆TSC . This

figure shows that results obtained from Eq. IV.15 for the broad-width regime agree
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with true values (solid line) up to ∆TH/T = 10. This is beyond the intended limit

as most experiments are below ∆TH/T = 2 limit. In this figure, it is clear that Λ is

quite insensitive to the exact value of Γ.
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Figure 4.6. A plot of simulated data of ∆TH,C as a function of ∆TSC at T = 230 mK
and Λ = ΛH,C . Simulated data agree with the true value (solid line) up to ∆TH/T =
10. Inset: The percent error as a function of Γ as a particular temperature rises. The
error is within 1 % over an order of magnitude in Γ.

Measurements and Results

This data is then used for comparison with the numerical simulation (done by

the author as part of this dissertation). The first step in the experiment is to find

a suitable gate voltage where a quantum dot is not influenced by the excited states

or other second-order effects. This is accomplished by using Coulomb blockade (CB)

measurement, (for example see Fig. 2.3). The CB diamond provides information

about which diamond (resonant level) is a good candidate for a well-separated resonance

energy. Then high-resolution bias voltage sweeps of thermocurrent and differential
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conductance locate gate voltages. Fig. 4.7(a) illustrates numerically the ideal behaviors

as a function of bias voltage where both signals have similar curves and the ratio

R forms a trough. Once this gate voltage has been found, the measurement of

thermocurrent and differential conductance can proceed [40].

The thermocurrent and differential conductance are measured simultaneously.

This means that the inputs for both measurements must be combined. The ac + dc

biases are joined together using the voltage adder (see Sec. 3.2). This input is then

added to the ac heating voltage from the heating box. The ac bias and ac heating

frequencies are set at 42 Hz and 17 Hz, respectively. These frequencies were chosen

to avoid the slow time constant due to the high impedance of the device. These

frequencies are fast enough to take the advantage of the lock-in amplifier and are

kept away from multiples of 60 Hz (power line frequency). The conductance and

thermocurrent are measured at the 42 Hz and 34 Hz (the second harmonic of the

heating current as discussed in chapter II) using separate lock-in amplifiers. The

second differential conductance is obtained from the numerical derivative of the

measured conductance, dG/dV .

After the data has been collected, the analysis starts by determining which regime

Γ is in. The devices used in the lab have relatively thick barriers which makes Γ

narrow. This makes them fall into the narrow-width regime. This is confirmed by

fitting the measure differential conductance peak. Another indication is that the

ratio R (Eq. IV.8) forms a trough where signals locate, as expected from Fig. 4.4 (see



54

Fig. 4.7(a) for data). Hence the data is analyzed using Eq. IV.12. Around the voltage

where Ith and G2 cross through the zero, the ratio of Ith and G2 becomes unreliable

as a result of a numerical division-by-zero error as shown in Fig. 4.7(b). Instead of

excluding these data points, a histogram of resulting ∆TH,C is employed to determine

the mean value of ∆TH,C (see Fig. 4.8(b)). In this way, the anomaly becomes outlier

points and has insignificant influence on the mean value.

To get the resulting ∆TH,C , R data points are fed into Eq. IV.12, and then the

transcendental function is solved numerically. Each data point gives one value of

corresponding ∆TH,C and these are then binned to form a histogram. The mean

value is determined statistically from the histogram, and an error bar is determined

by finding the range of ∆TH,C which covers 67% of all the data points. Normally

the error bars are asymmetric about the mean. To verify that the obtained mean

value is reasonable, R<
H,C is plotted using the mean value over the measured value as

shown in Fig. 4.8. After the data sets for various heating currents have been collected

and analyzed, the temperature rises on hot and cold sides as well as the temperature

difference can be plotted as a function of heating current as shown in Fig. 4.9

This method of measuring temperature rises on both hot and cold sides of a

quantum dot provides an essential tool for the thermoelectric study of quantum dots.

It could be used in thermal transport of quantum dots as well. It has been used in

our lab for other experiments such as measuring nonlinear thermoelectric effects.
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Figure 4.7. (a) A numerical simulation of Ith and G2 and its ratio as a function of
bias voltage for Γ = 10 µeV and T = 2.2 K (kT = 190 µeV). R (green) is the ratio
and R< is the result from Eq. IV.12. (b) Example of experimental data of Ith (red)
and G2 (blue) and their ratio R (green). The experiment was done at T = 2.2 K
and IH = 150 µA. The fitting function, R<

H,C (Eq. IV.12), gives ∆TH = 230 mK and

∆TC = 160 mK.
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CHAPTER V

NONLINEAR THERMOELECTRICS

Introduction

The experimental data used in Fig. 5.1 was measured by the author while data used

in Figs. 5.2 and 5.4 was measured by Eric Hoffmann. The numerical and theoretical

analysis was done by the author.

Low-dimensional devices such as quantum dots have been proposed for thermo-

electric power generators and refrigerators [15, 47–49]. Nonlinear effects could affect

the performance of these devices. Thus a better understanding of these effects would

be helpful in order to achieve the highest performance. It is the goal of this chapter

to observe and understand strong nonlinear thermoelectrics using the quantum dot in

a nanowire, particularly Vth and Ith as a function of ∆T (see Eq. V.2 and Eq. IV.2).

This might help illuminate what parameters can affect the nonlinear behavior.

In this chapter, nonlinear thermoelectric behavior is studied. The thermovoltage

and thermocurrent as a function of ∆T are measured at low temperatures. To observe

nonlinear thermovoltage, the heating current (IH) is applied at the source contact. At

zero bias, the thermovoltage as a function of ∆T is measured at various gate voltages

(see Section III.3.2). The experimental results exhibit the nonlinear behavior as a
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function of ∆T which includes, as an extreme example, even a complete sign reversal

of thermovoltage. To help in understanding the experimental results, the Landauer

equation is used to calculate thermocurrent in the presence of energy-dependent

transmission functions.

Thermoelectrics has two driving forces, namely voltage and temperature differences.

In the following, first the linear-to-nonlinear IV relation is reviewed. Then the non-

linear thermoelectrics analog of the IV relation is discussed, namely a thermovoltage

driven by temperature gradient.

The linear relation of current and voltage is described by the conductance, G = V/I.

This relation can be derived from the Landauer equation for electric current, Eq. II.13.

At low temperatures, T → 0, the Fermi function at the source and drain contacts

can be approximated as fS,D ≈ Θ(E − µS,D). When τ is independent of voltage

and approximately constant over the range where the transport occurs, this equation

becomes

I =
2e

h

∫ µS

µD

τ(E)dE

=
2e

h
τ0(µS − µD)

=
2e2

h
τ0V, (V.1)

where τ0 is the value of τ in this limit of integration. Hence the current is proportional

to voltage, with the proportionality constant being the conductance, which in this case

is (2e2/h)τ0. For small bias, τ can be considered as voltage independent. However, a



60

sufficiently large bias will create an electric field inside the device which can change

the device potential and thus its transmission function. In general, however, one

cannot assume that τ is independent of voltage nor that it is independent of energy,

and therefore it should be written as τ(E, V ). Technically, thus, at zero temperature

there is no linear response regime, because any energy or voltage dependence of τ will

lead to some nonlinear behavior. At finite temperatures, however, these conditions

can be relaxed somewhat, because normally thermal smearing will mask any nonlinear

effects as long as eV ≪ kT . The nonlinear effects in voltage can be easily observed in

mesoscopic devices since a small voltage drop over a short length can create a sizable

electric field which can effect τ . For example, at T = 1K, the thermal energy is 0.086

meV, therefore the bias voltage of 86 µV or greater implies the possibility to observe

nonlinear effects.

In the linear response regime, the thermovoltage can be related to the temperature

gradient via the Seebeck coefficient, Vth = S∆T . In the nonlinear regime, thermovoltage

can be written as an expansion in the temperature gradient:

Vth = S1∆T + S2(∆T )2 + S3(∆T )3 + · · · , (V.2)

where Si is the Seebeck coefficient of the ith-order term. For small ∆T/T , the first-

order term dominates. But as ∆T becomes larger the higher-order terms will start

to compete with the linear term as shown in the following sections.

The investigation of thermoelectrics in low-dimensional systems has so far largely

focused on the linear regime where ∆T ≪ T . The lack of attention in nonlinear
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behavior from the mesoscopic research community is in part due to a lack of suitable

platform and in part to a challenge of thermometry. The first, and maybe only,

experiment that reported observing strongly nonlinear thermoelectrics was done by

Staring et. al. [50] where they observed a sign reversal in thermovoltage of a quantum

dot in 2DEG as a function of a heating current. However, no theoretical explanation

was offered.

To observe a strong nonlinear effect, the device must have sharp, non-monotonic

energy features. This is another limitation which many mesoscopic systems do not

possess. For example, a quantum point contact has been predicted to show only a

weakly nonlinear effect due to the monotonic transmission function [51] and has been

confirmed experimentally [52, 53].

With the thermometry technique developed in our lab which allows carrying

out thermoelectric experiments and temperature measurements simultaneously, the

quantum dots in nanowires provide the well-suited platform for nonlinear thermoelectric

experiments. In addition, the transmission function of quantum dots is equipped

with the delta-like function which is a requirement for observing strongly nonlinear

behavior [54].

Experimental Results

Using the heating technique described in Section III.2, a temperature gradient is

established. At a particular gate voltage, the thermovoltage and thermocurrent are
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measured as the heating current is varied. The thermometry technique described in

Chapter IV is then used to convert from heating current to temperature gradient.

Figure 5.1(b) shows an example of thermovoltage as a function of ∆T at different

gate voltages. These gate voltages were selected because they show various degrees

of nonlinear behavior. These examples exhibit a linear behavior for a small ∆T/T

(dashed lines in Fig. 5.1(b)).
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Figure 5.1. (a) The temperature calibration curve used in conversion from IH to
∆T . The full dots are the data obtained using the technique discussed in Chapter IV
and the solid line is the fourth-order fitting curve. (b) Thermovoltage is measured as
a function of the heating current. Then using the calibration curve in (a), Vth as a
function of ∆T is obtained. The dashed lines indicate where Vth behaves linearly.

The goal is to make a model for a strong nonlinear behavior. In the following, the

thermocurrent is used instead of thermovoltage. This is because in thermocurrent

measurements, the voltage is constant which makes the use of Landauer modeling

much easier. In the experiment, the bias voltage is set such that only µH (µC) is

in the vicinity of the dot’s transmission resonance while µC (µH) is kept further



63

away from the resonance (see Fig. 5.2(a)). This will allow the omission of cold (hot)

side contribution to thermocurrent in the modeling. Here the operating point is a

combination of gate and bias voltages such as the green circle in Fig 5.2(a). For each

operating point, the thermocurrent is measured as the ac heating current is varied.

See Section III.3.1 for details of the thermocurrent measurement.

Figure 5.2(c) shows the nonlinear thermocurrent data measured at VG = 3.105 V

and various bias voltages. The thermocurrents shown here were selected because

they display extreme nonlinear behavior. In all three data sets, there is apparently

no linear regime. Each curve starts out with a parabolic behavior. Similarly, in the

modeling section, the linear regime is also limited to very small ∆T . For -2.9 mV bias

data, the thermocurrent displays strongly nonlinear behavior. At ∆T about 100 mK

(∆T/T ≈ 0.18), a sign reversal of Ith is observed.

Modeling Thermocurrent

The goal of this section is to illuminate the cause of nonlinearity using the Landauer

approach. First the transmission function for the particular quantum dot is found

based on an IV measurement. Then using this transmission function, Ith is calculated

from the Landauer formalism. Though this model works quite well for weak nonlinear

thermocurrent, it cannot produce the sign reversal observed in experiments. A ‘fake’

transmission function is used in order to see whether one can predict conditions

where one would observe a sign reversal. This model takes into account an energy
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Figure 5.2. (a) The energy diagram of the quantum dot as function of bias and gate
voltages. In this configuration, the cold reservoir contribution to the thermocurrent
can be ignored. The circle on the right figure indicates a point that corresponds to
the configuration shown in the diagram on the left where the diagram on the left is
located. The diagram on the left corresponds to the green arrow in (b) where µH line
up with µ. (b) The IV measurement at gate voltage of 3.5 V. The arrows indicate
the operating point for each measurement. (c) The thermocurrent as a function of
temperature difference for each bias voltage in (b). Each color corresponds to the
applied bias in (b) indicated by the arrow. At -2.9 mV bias, the thermocurrent
exhibits sign reversal at ∆T ≈ 100 mK. The cryostat temperature is 550 mK.
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dependence τ(E) but assumes no voltage dependence τ(V ). Indeed the simulation

is able to produce a sign reversal but at a much higher ∆T/T than observed in the

experiments. We will therefore discuss other factors that might play a role in the

observed nonlinear thermoelectric behavior.

The Landauer equation in full form for the current is

I = −2e

h

∫

[fH(µH , TH)− fC(µC , TC)]τ(E)dE, (V.3)

where the voltage is assumed to drop symmetrically on both ends, µH,C = µ± eV/2.

As mentioned in the experiment section, the bias voltage is applied such that only

µH (µC) is relevant (see Fig. 5.2(a)). As a result, the Fermi function of the cold

(hot) side can be dropped from the equation. The lock-in amplifier measures the rms

amplitude of the ac thermocurrent as it oscillates between the maxinum (at full ∆T )

and minimum (at ∆T = 0) value. Therefore, for negative bias where only µH is close

to the resonant level, the thermocurrent can be written as

Ith = I(∆TH)− I(∆TH = 0)

= −2e

h

∫

[fH(µH , T +∆TH)− fH(µH , T )]τ(E)dE

= −2e

h

∫

F(E)τ(E)dE, (V.4)

where F(E) = fH(µH , T +∆TH)− fH(µH , T ).

In comparison to the measured data, the model needs the actual transmission

function for this particular quantum dot, which is not a priori known. The transmission

function is obtained by converting an IV measurement and using Eq. V.1. The
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differential conductance is defined as G = dI/dV and τ can be written as

τ ≈ G

2e2/h
. (V.5)

This approximation assumes the near absolute zero temperature. The IV data are

measured at sub-Kelvin range (T = 550 mK) which should give an acceptable result.

The IV data in Fig. 5.3(a) is measured at 550 mK cryostat temperature with

3.105 mV gate voltage which is the same condition used in the thermocurrent measure-

ment. Then the IV data is interpolated to create a better resolution in modeling.

The numerical differentiation of current over voltage, ∆I/∆V , gives the differential

conduct-ance. The transmission function is obtained by dividing the differential

conductance with the unit of quantization, 2e2/h, as explained above and displayed in

Fig. 5.3(b). To verify its validity, the obtained τ is inserted into Eq. II.13 to calculate

the current as a function of bias voltage and then is compared to the resulting current

in the IV data. Figure 5.3(a) shows that the numerical result (red dashed line) using

the transmission function described above (green line in Fig. 5.3(b)) agrees with the

measured data (blue dots). This means that τ obtained in this method is a good

approximation of the real transmission function.

Using this transmission function, the expected thermocurrent as a function of

∆TH (Eq. V.4) is calculated for comparison with the measured data. For a strong

nonlinear thermocurrent, such as the data recorded at -4.25 mV bias voltage (dashed

blue curve in Fig. 5.4(b)), the model manages to give a similar trend only for small

∆T . For weakly nonlinear regime such as the data from -5 mV bias voltage, as
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Figure 5.3. (a) IV measurement at the same Vgate where thermocurrents are
measured (3.105 V) and the model using τ from eq. V.5. (b) A plot of F(E) at
different ∆T : 12 (blue), 35 (cyan), 58 (gold), 81 mK (red). The zero crossing of
F indicates the operating point on τ . This plot shows that as ∆T increases, more
electrons (positive portion of F(E)) can transmit to the cold side while the holes
(negative portion of F(E)) are blocked by the vanishing transmission function.

shown in Fig. 5.4(b), the modeling produces qualitatively an agreement with the

experimental data for a larger ∆T range compared to the data from -4.25 mV.

To understand the modeling results, the function F at various ∆T s is plotted on

top of τ(E) as shown in Fig. 5.3(b). The positive portion of F represents electron

transport while the negative portion represents hole transport. This explains why

the thermocurrent gets larger (more negative because the thermocurrent flows in the

opposite direction of the temperature gradient) as the temperature increases. For

small ∆T , electrons and holes can explore a narrow region around the operating

point (-4 mV bias, in this case) where τ is comparable for electrons (the left side of

the operating point) and holes (the right side). The resulting thermocurrent is small

because electrons and holes can transmit with nearly equal transmission probability.
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Figure 5.4. (a) The transmission function obtained from the experimental data
in Fig. 5.3(a) and two operating points where the data were collected. (b)
The experimental (dashed lines) and numrical (solid lines) thermocurrents at two
operating points. At -5 mV bias, the model can duplicate the experiment to a certain
degree. However, at -4.25 mV bias where the strong nonlinear effect is observed, the
model failed to predict the experiment.

As the temperature increases, this window expands allowing more electrons and

holes to contribute. However only electrons will benefit from this expanding window

because the transmission function is large where F is positive and almost zero where

F is negative. Hence thermocurrent becomes larger as ∆T increases. This explains

the linear behavior of the experimental data. However, it cannot explain the larger

nonlinear increase observed in data at -4 mV.

In an attempt to simulate the sign reversal as observed in measured thermocurrent,

the thermocurrent was calculated from the Landauer equation using an artificial

Lorentz transmission function (see Eq. II.12 and Fig. 5.5). Here the cryostat tempera-

ture is taken to be 2 K and ∆T range from 0 to 6 K. Hence ∆T/T ranges from 0
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to 3. When the operating point is off the resonance (the green dot in Fig. 5.5(b)),

the nonlinear thermocurrent is observed. This again can be explained by the role

of τ and F . The thermocurrent is a result of the competition between the electrons

(positive F) and holes (negative F). For small ∆T , electrons and holes contributions

to thermocurrent are comparable. As ∆T becomes larger, more holes can transmit

via the adjacent peak while the electron contribution is saturated as there is no

more channel for transmission. As ∆T increases, the thermocurrent gets smaller and

eventually changes its sign. For the operating point in the middle of the trough, only

a weakly nonlinear behavior is observed. Now holes flow via the right peak (τ) while

electrons flow via the left peak which has a higher magnitude. This leads to increased

thermocurrent as ∆T increases. To observe the sign reversal, this model requires

a larger ratio of ∆T/T (∼ 2.2) than observed in the experiment. From comparing

these two operating points, it is clear that asymmetry in transmission function plays

a significant role in the nonlinearity of the thermocurrent.

Nonlinear thermoelectrics is investigated by using the Landauer approach and

comparing these results with the experiment. Many factors contribute to the nonlinear

behavior such as the competition between the electrons and holes transports. Also

the placement of the position of the operating point (bias and gate voltages) does

play some role in this nonlinear behavior.

The modeling with τ referred from IV measurement has mixed success. The

model is in agreement with weak nonlinear data (Fig. 5.4(b)) but is unable to predict
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Figure 5.5. (a) Thermocurrent calculated from the artificial Lorentzian transmission
function in (b), see Eq. II.12. This extreme example shows that the model does
predict nonlinearity in ∆T . (b) The artificial transmission function generated from
Lorentzian function. The two peaks are 1 meV apart and T is 2 K. The asymmetry
of transmission function plays a role in nonlinear thermocurrent.

the result for strongly nonlinear data. The artificial Lorentzian transmission function

is able to reproduce a sign reversal but at higher ∆T/T than observed in experiments.

One of the possible reasons that the model only predicts the nonlinear effect at

the comparable ratio of ∆T/T is that the model assumes the energy dependence

transmission function τ(E). However, τ obtained from the IV measurement may

contain voltage dependence. A better way to determine the energy dependence

transmission function is needed in order to improve the agreement between the

experiment and modeling.
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CHAPTER VI

THERMOVOLTAGE LINESHAPE OF QUANTUM DOTS

Introduction

One of strategies to enhance the figure of merit ZT is to increase the thermopower,

S. The ability to predict the operating conditions where the system reaches the

maximum value of S is therefore important to the thermoelectric performance. Thermo-

voltage is induced by a temperature difference across a thermoelectric material and

is related to thermopower via Vth = S∆T at zero current condition. As a function of

gate voltage, Vth and S have the same lineshape. Quantum dots have been shown to

exhibit different thermovoltage lineshapes. Staring et al. had observed a sawtooth-

shaped lineshape in an experiment where kT ≈ 0.065∆E [50]. This behavior was also

predicted by Beenakker and Staring [55]. Their theory assumed first-order tunneling,

so called sequential tunneling, with Γ ≪ kT,∆E. In doing so, they neglected any

virtual tunneling processes and a finite width of the transmission function. Later on,

Dzurak et al. observed a lineshape more similar to the derivative of conductance peaks,

as one would expected from the Mott relation [56]. However, in this case the quantum

dot had a ten times larger energy spacing, ∆E ≈ 167kT , compared to Staring et al.

Also the magnitude of the thermovoltage from these reports was quite different. On
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the theoretical side, Turek and Matveev [57] showed that the difference between the

two lineshapes could be explained by the contribution of sequential tunneling and

cotunneling which depend on temperature.

Here it is shown that the difference in lineshape of the thermovoltage can be

predicted simply from the knowledge of the energy spacing, ∆E, and the transmission

width with respect to thermal energy, Γ/kT , regardless of the tunneling processes

involved. The experimental data was measured by Ann I. Persson. The numerical

calculation was done by the author.

Experiments and Modeling Results

To observe different thermovoltage lineshapes experimentally, one needs the ability

to vary the transmission width, Γ, and energy spacing, ∆E in quantum dots. This

can be achieved by varying the thickness and the distance between the two barriers

on the nanowire (see Fig. 3.1). Instead of producing various quantum dot samples,

two QD samples with a large difference in Γ and ∆E were fabricated. Then Γ/kT

and ∆E/kT were varied by changing the cryostat temperature. Sample number 1

(QD1) is made from InAs/InP heterostructure nanowire with InAs0.8P0.2 as the dot

material. For sample number 2 (QD2) InAs is used as the dot material. The inset of

Fig. 6.1(d) shows a SEM image of the heterostructure nanowire which contains QD2

sample (which cannot be seen at this magnification). The fabrication process for a

quantum dot defined by the double barrier structure is discussed in Chapter III.
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Figure 6.1. (a)-(b) Coulomb diamond of the differential conductance for QD1 and
QD2, respectively. (c) The conductance measurements of QD1 showing the equally
spaced resonance peaks (5.3 meV) due to the fact that charging energy (EC) is larger
than quantized energy (δE). (d) The differential conductance of QD2 showing the
characteristic conductance peaks where quantized energy and charging energy are
comparable. Figures courtesy of Dr. Ann Persson, Ref. [58].

Figures 6.1 (a)-(b) show Coulomb blockade diamonds for the differential conductance

of QD1 and QD2, respectively. The conversion factors, obtained from the CB diamond,

for QD1 and QD2 are α = 0.3133 eV/V and 0.06 eV/V, respectively. These factors

are used to convert the gate voltage in experiments into the energy scale. The

thermovoltage measurement is already discussed in Section III.3.2. and the heating

method is covered in Section III.2.2.
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The transmission function is again extracted from an IV measurement as previously

discussed in Section V.3. For QD1, Γ ≈ 160 µeV which is equivalent to a temperature

of 1.8 K. As for QD2, Γ > 30 µeV. Here the quantization energy is larger than the

charging energy EC = 8.7 meV. This is why the first few conductance peaks exist in

pairs (see Fig. 6.1(d)).

At each cryostat temperature T , increasing the heating current, IH , increases the

peak of thermopower, as shown in Fig. 6.2. As T increases, making Γ/kT smaller,

the lineshapes evolve from the derivative-like to the sawtooth, in agreement with

modeling results Fig. 6.5.

Figures 6.3 and 6.4 show the measured thermopower and simulations for QD1 and

QD2, respectively. The simulations are based on the τ deduced from IV measurement

under the isothermal conditions, and represent a prediction of the thermovoltage

based on knowledge of the conductance peaks alone. For QD1, qualitatively the

modeling produces results about the same magnitude. The data for QD2 shows an

asymmetry in lineshape for the left resonance which is not captured by this model.

The modeling of the thermovoltage has been discussed in Section II.3. In the

simulations, a sawtooth-shaped lineshape is observed when Γ/kT < 10−6 as shown in

Fig. 6.5(a). For a delta transmission function τ(E) = δ(E−E0), if µ does not coincide

with E0, the system will adjust itself by changing Vth until the system reaches the

equilibrium condition where ∆f = 0 at the resonance energy, as shown in Fig. 6.6. If

µ is located away from the resonance energy, the thermovoltage needs to increase for
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Figure 6.2. Thermovoltage of QD1 for different cryostat temperature T and
various heating currents. The first three cryostat temperatures show the measured
thermovoltages. For 6 K cryostat temperature, the offset has been added to center
the curves at Vth = 0. The magnitude of the offset for each heating current is shown
in the inset. At T = 3.1 K and 6 K, the thermovoltage signals are multiplied by
a factor (shown at the gray bar) for easy comparison. Figure courtesy of Dr. Ann
Persson, Ref. [58].
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Figure 6.3. (a) Thermopower, S, as a function of energy for QD1, using the
measured thermovoltage and an estimated ∆T at T = 0.232 K (blue), 1.5 K (green),
3.1 K (red), and 6 K (cyan). (b) The simulations of thermopower at the same T with
∆T = 50 mK and using τ(E) extracted from conductance measurements.

∆f = 0 to occur. The thermovoltage will keep increasing until µ is half way between

the first and second resonance. At that point, the thermovoltage switches its sign. In

contrast, when the transmission function has a finite width, the thermovoltage will

reach its maximum value, depending on the value of Γ/kT , and then goes down to zero

(see Fig. 6.5(a)). The reason is the transmission function is not zero everywhere like

in the delta transmission but has a very insignificant value. The difference between

the two lineshapes occurs when µ is many kT away from the resonance energy. Thus
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Figure 6.4. (a) Experimental thermopower data for QD2 as a function of energy
for T = 2.4 K, 4.4 K, 8.26 K, and 10.2 K. ∆T obtains from the technique describe in
Chapter IV. (b) The simulations of thermopower at the same T and ∆T as in (a).

the convolution between ∆f and τ at this location could produces the zero current

condition without increasing Vth.

The effect of ∆E on Vth is shown in Fig. 6.5(b). It shows that when the energy

spacing is less than 25kT , the thermovoltage peak is lower than the maximum value

because the adjacent resonance energy begins to contribute to the thermovoltage with

opposite sign.
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Figure 6.5. (a) A modeling result showing the effect of the finite width transmission
function for T = 10 K, ∆T = 1 K, and ∆E = 50 meV ∼ 58kT . Narrow transmission
widths (Γ/kT → 0) yield a sawtooth lineshape while the broader width has a
derivative-like lineshape. (b) Thermovoltage as a function of energy with varying
∆E for T = 10 K, ∆T = 1 K, and Γ = kT/100.
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Conclusions

Thermovoltage is an important parameter for achieving high figure of merit.

Maximizing its value will significantly boost ZT , as Vth is related to S and has

the same lineshape. The results here indicate that to achieve this goal requires:

i) narrow transmission width compared to thermal energy (Γ/kT → 0) and ii) the

resonance peaks have to be surprisingly well separated (∆E ≈ 25kT ). In this work,

it is also shown that the lineshape can be inferred from the transmission width and

the energy spacing, and no detailed knowledge of the mechanism contributing to

lineshape broadening needs to be known.
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CHAPTER VII

EFFICIENCY AND POWER PRODUCTION COMPARISON OF

LOW-DIMENSIONAL SYSTEMS

Introduction

It is a well known fact that any heat engine operating at Carnot efficiency is

unable to deliver useful power. Thus it has no real use in practical applications.

A more practical performance indicator of a heat engine would be a measure of

the trade-off between efficiency and power production. Low-dimensional systems

are good candidates for improving efficiency via increasing the figure of merit ZT .

Thus it is reasonable to investigate among low-dimensional systems which system is

suitable for high efficiency at high power output. Low-dimensional systems that are

currently under investigation for energy conversion applications, including quantum

dot superlattices [12], molecular junction [49], thin film superlattices [13, 59], carbon

nanotubes [60], and heterostructure thermionic devices [61]. The goal here is to

consider the idealized case for each fundamental low-dimensional electron system.

In this chapter, the thermoelectric performances of three low-dimensional systems

is modeled and compared. These performances are efficiency, power, and efficiency at

maximum power (ηmaxP ). These low-dimensional systems are a quantum dot (QD), a
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one-dimensional (1D) ballistic conductor, such as a quantum point contact or an ideal

nanowire, and a thermionic (TI) power generator, which is a thin film semiconductor

embedded into a bulk semiconductor with a lower band gap. Figure 7.1 illustrates

a 1D channel and a TI device and their corresponding energy diagrams (for QD see

Fig. 2.1).
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Figure 7.1. Cartoons illustrate device schematics and energy diagrams of a 1D
conductor (a)-(b) and a thermionic power generator (c)-(d).

For quantum dots and nanowires, the Landauer approach is employed to calculate

the relevant thermoelectric properties. For the thermionic systems, the Tsu-Esaki

equation is used [28, 62].

Heat is carried by two types of carriers, namely electrons/holes and phonons. Here
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the phonon contribution will be excluded from the analysis, because understanding

the electronic properties is the main focus of this study. As a result, the overall

efficiency will be less than what will be presented here. The phonon contribution

can be added by evaluating the parasitic heat flow. Also these systems are assumed

to obey ballistic transport (the devices size is smaller than the elastic and inelastic

scattering length of the charge carriers) and we assume ∆T ≪ T, eV ≪ kT .

To compare the performances of these systems, the power production and heat

flux out of the hot side are calculated as a function of bias voltage V and chemical

potential µ (see Section II.3). Then the maximum power, maximum efficiency and

efficiency at maximum power for each system are identified for comparison.

Models and Simulation Data

Quantum dots have already been discussed in the previous chapter, so only 1D

and TI will be briefly reviewed.

A One-Dimensional Conductor

A ballistic one-dimensional conductor is a system that has spatial confinement

along the transverse direction and the length is shorter or comparable to the electron

mean free path. This short length ensures the ballistic transport. An example of 1D

conductors is a quantum point contact [63, 64]. Also nanowires [15, 16, 33, 37] can

be ballistic if the length is kept quite short.

In an ideal 1D system, the confinement potential is described by a hard wall
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potential while inside the channel the confinement potential is zero. The electron

energy in the channel can then be written as

E(x, y, z) = En(y, z) + (
~
2k2

2m∗
), (VII.1)

where n is an integer number that indicates the subband and m∗ is the electron

effective mass (see Fig. 7.2(a)).

The transmission function for the ideal 1D system can be written as

τ(E) =
∞
∑

n=1

Θ(E − En).

where Θ is the Heaviside step function (see Fig. 7.2(b)). Using this transmission

function in the Landauer equation, thermoelectric quantities can be derived in the

same way as described in Chapter II for QD systems.

A Thermionic System

Figure 7.1(c) shows a thermionic system which is a single thin-film energy barrier

embedded into bulk semiconductors with a lower band gap. The barrier edge energy

Eb in Fig. 7.1(d) is defined as Eb = (~k′

x)
2/2m∗ where k′

x is the barrier-edge wave

vector and m∗ is the effective mass. The thin-film barrier filters electrons’ cross-plane

momentum, denoted by kx, such that electrons with kx < k′

x will be blocked. This

holds true even if the total electron energy is larger than the barrier edge energy

E > Eb. During the transport, the lateral momentum is assumed to be conserved.

A thermionic system was first proposed to be used as a refrigerator via evaporative

mechanisms where hot electrons are selectively emitted over single/multiple barrier(s)
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Figure 7.2. (a) The dispersion relation of electrons in a 1D channel. The parabolic
relation between wave vector k in x-direction and energy E of the conduction
electrons. The quantized energy of the y- and z- directions (En(y, z)) is the bottom
of the parabolic curve. (b) The corresponding transmission function τ(E). Each step
of τ corresponds to the bottom of each subband in (a).

[65, 66]. In this study, electron tunneling is neglected. This can be achieved by

using a relatively thick barrier (larger than tunneling length but smaller than elastic

relaxation length).

Tsu-Esaki Formula

This approach was first derived to calculate the tunneling current through a

superlattice such as the resonant tunneling diode (RTD) device [28, 62]. It is also

applicable to a TI device. Since the tunneling is excluded in TI, the only way electrons

can transmit is over the barrier edge, Eb. Hence the transmission function for TI is a

single step function, τTI(Ex) = Θ(Ex − Eb) where Ex = (~kx)
2/(2m∗), see Fig. 7.1d.
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The current density [28] can be written as

Je =
2e

(2π)3~

∫

∞

0

dEx

∫

∞

0

ktdkt

∫ 2π

0

dφ[fl(Ex, kt)− fr(Ex, kt)]τ(Ex) (VII.2)

where kt is the wave vector in the transverse direction. The Fermi function on the

left and right sides are

fl/r =

[

1 + exp

(

Ex + Et − µl/r

kTl/r

)]−1

.

Let the left and right sides correspond to the hot and cold reservoirs, respectively.

The angular integration gives 2π. Using a change of variable from momentum space

to energy space, Et = (~kt)/2m
∗, the current density becomes

Je =
m∗e

2π2~3

∫

[ζH − ζC ]τ(Ex)dEx, (VII.3)

where

ζH/C = kTH/C log

[

1 + exp

(

−Ex − µH/C

kTH/C

)]

.

And the power density is written as P = V Je.

The heat flux per unit area out of the hot side, q̇H , can be calculated in a similar

way using heat instead of electric charge. It is given by

q̇H =
m∗

2π2~3

∫

[ǫHζH − ǫCζC ]τ(Ex)dEx, (VII.4)

where ǫH/C = Ez + kTH/C − µH . Note that the energy of the lateral direction is

averaging to the thermal energy, kTH/C , of the originating reservoir. This is due to

the fact that the in-plane momentum can take on any value.
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Simulation Data

Figures 7.3 - 7.5 show power (power density in the case of the TI system) and

efficiency normalized to the Carnot value as a function of µ and V . The red curve

represents the open-circuit voltage. A pocket, defined by the zero-voltage line and

the open-circuit voltage, is the region where the devices operate as a heat engine

that produces electric power. The green line passes through the location of maximum

power. In each case the maximum efficiency occurs close to the open-circuit voltage

line while the maximum power is located near the band edge (resonant peak in QD

case) and at intermediate V . Note that in the 1D and TI cases, the power (power

density) falls off quickly below the first subband.

In comparing thermoelectric performances of these systems, care must be taken

with units of thermoelectric quantities such as power and heat flux. For example, QD

and 1D systems create a certain amount of power per mode (or per device) while a

TI system produces power per area (power density). One possible approach, which

is utilized here, is to convert the current density and heat flux per unit area of TI

into current and heat flux, which are the quantities produced by QD and 1D systems.

Thus the power production of TI systems is obtained from

PTI = A0PTI ,

where A0 is the effective area of the TI device. Essentially the current (power) and

heat flux for the same cross-sectional area of nanowire are being compared to these

systems and the value of A0 used here is 100 nm2.
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Figure 7.3. Simulation data for quantum dots. (a) Power (in pW) and (b)
normalized efficiency of a quantum dot with Γ = 0.01kT and TC = 300 K and
TH = 330 K. The green line indicates the µ that yields maximum power.
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Figure 7.4. Simulation data for 1D conductors. (a) Power (in nW) and (b)
normalized efficiency of the nanowire with TC = 300 K and TH = 330 K. The green
line indicates the µ that yields maximum power.
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Figure 7.5. Simulation data for TI systems. (a) Power density (in W/mm2) and
(b) normalized efficiency of thermionic generator with TC = 300 K and TH = 330 K.
The green line indicates the µ that yields maximum power.

Results and Discussions

The thermoelectric performance in terms of maximum power Pmax and efficiency

at maximum power ηmaxP will be compared to determine which of the three systems

considered here provides the best trade-off performance. One way to display thermo-

electric performance is to pair power and normalized efficiency for each operating

point (µ, V ) and to then plot these pairs along a line of constant µ. This gives

a ‘loop’. All loops for all µ fill up a region in (η/ηC , P ) space as shown for QD

systems in Fig. 7.6. The performance of quantum dots depends on the width of the

transmission function (Γ). In this figure, the narrow width yields a high efficiency

but an infinitesimal power. To get more power from quantum dots, the transmission

width must be broadened, which unavoidably diminishes the efficiency as explained

below. At around Γ ≈ 2.25kT , the power reaches its maximum value while the
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efficiency drops to 17% of the Carnot efficiency (see Fig 7.7). Further increasing the

width yields low efficiency and low power.
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Figure 7.6. Plot of normalized efficiency vs. power for quantum dots with various
transmission width. TC = 300 K and TH = 330 K. For each Γ, the whole plane in
Fig. 7.3 is scanned.

Carnot efficiency occurs when a single, sharp energy level coincides with E0

(Eq. I.13). This occurs when the Fermi function of the hot contact at this particular

energy equals that of the cold contact. For a transmission function with finite width

(Eq. II.12), electrons can probe a small range of energy around the resonant peak.

In general, this allows the current to flow in either directions. If more electrons flow

from the hot side to the cold side than the opposite direction, the net thermal-driven

current will be larger and so is the power output. However, as electrons with energy

higher than the chemical potential can transmit, the heat flow also increases. When

the power gain cannot compensate for the heat loss, efficiency suffers. And when Γ
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power (green, full dots) of a quantum dot as a function of Γ/kT for TC = 300 K and
TH = 330 K. Maximum power peaks around Γ/kT = 2.25. Efficiency at maximum
power ηmaxP approaches ηCA = 51% for small Γ.

is about 2.25kT or larger, the current becomes saturated as there are no particles

available to participate because the energy range where ∆f 6= 0 is covered by τ (see

Fig. 7.8). Further increasing the width will only attenuate the current because the

contribution from the parasitic back-flow current starts to dominate.

For 1D systems, the thermoelectric performance is better for the first subband

compared to the second subband as shown in Fig. 7.4. The reason is that at an

appropriate (µ, V ), the current can be tuned to flow only from hot to cold if only

the first subband is occupied. In contrast, at subbands other than the first, there

will always be the current flowing from the cold side to the hot side, reducing the net

current, see Fig. 7.9. Thus the performance of 1D systems in the following comparison

will be referred to that of the first subband.
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Figure 7.9. The 1D transmission function (blue) and the two different ∆f (green).
The positive portion of ∆f means electrons flow from hot to cold. In the solid green
line, µH/C locates just below the bottom of the first subband while in the dashed
green line, it locates below the second subband. In the former case, electrons flow
only from hot to cold because below the first subband τ = 0. In the latter case,
electrons flow in both directions and the net current suffers from electrons flow from
cold to hot.
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Maximum Power

The modeling results show that the maximum power is proportional to T 2 for QD

(at fixed Γ) and 1D, and to T 3 for TI. The power as a function of temperature is shown

in Fig. 7.10. For temperature below cross-over temperature (T×), the temperature

where power production of 1D equals that of TI, 1D has the highest maximum power

while above this temperature TI is more productive, with moderate ηmaxP , than the

others. Quantum dot is the least productive in terms of power, even with the highest

maximum power (Γ ≈ 2.25kT ).
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Figure 7.10. Maximum power as a function of temperature for m∗ = 0.07me with
∆T/T = 0.1. T× is the temperature where 1D and TI systems yield the same power.
T× depends on the cross-sectional area and on the electron effective mass.

Whether 1D or TI system produces the highest power, depends on the operating

temperature compared to the cross-over temperature T×. This performance is valid

as long as all the assumptions are met. One might be able to change which system

outperforms the other by adjusting the cross-over temperature. This temperature
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depends on the effective mass of TI material and the cross-sectional area of 1D device

used in conversion of TI’s power density as shown in Fig. 7.11. Increasing m∗ results

in higher power in TI which lower T×. Larger A0 means smaller power density in 1D

system which also lower T×.
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Figure 7.11. T× as defined in Fig. 7.10 as a function of effective area A0 of a
1D system for different effective mass: InAs (0.023me), GaAs (0.07me), and PbTe
(0.17me).

Efficiency at Maximum Power

In the seminal work [20], Curzon and Ahlborn had investigated the efficiency at

maximum power of Carnot engine and found that the upper limit of this quantity

is approximately one-half of Carnot efficiency. Recent works extend this theory

by showing that the approximation is universally applied to many systems and an

agreement is up to the quadratic term [21, 22, 67, 68]. The Curzon-Ahlborn efficiency

is given by

ηCA =
ηC
2

+
η2C
8

+ . . . (VII.5)
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Figure 7.12 shows (η/ηC , P ) loops for QD (with Γ = 0.01kT and kT ), 1D, and

TI at T =100, 200, and 300 K. The efficiency at maximum power in each case is

independent of temperature. ηmaxP/ηC of QD with narrow Γ (0.01kT ) is approaching

the Curzon-Ahlborn limit (∼ 51% of the Carnot efficiency). And ηmaxP for the other

is below the CA limit. These values are 17%, 36%, and 24% for QD with Γ = 2.25kT ,

1D and TI, respectively.
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Figure 7.12. (a)-(d) Loops along constant µ chosen at Pmax of each system (i.e. along
the green line of Figs. 7.3(b), 7.4(b), and 7.5(b)) show that efficiency at maximum
power is independent of temperature. Note that the power values of the TI system
depend on A0 (see main text), whereas the efficiency values are independent of this
choice. The QD’s values depend on Γ
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Relation to the Thermoelectric Figure of Merit

Here these results are put into the context of traditional thermoelectric figure of

merit, Z (see Eq. I.7). And only the electronic contribution is considered, denoted

by (ZT )el. The actual ZT will be smaller than what is presented here.

ZT =
S2σT

κe + κl

=
S2σT

κe(1 + κl/κe)

= (ZT )el

(

1

1 + κl/κe

)

(VII.6)

Ioffe [69] derived the thermoelectric efficiency as a function of ZT . The efficiency

can be written as

η =
M − 1

M + TC/TH

ηC , (VII.7)

whereM =
√
1 + ZT and T needs to be taken as the average temperature (TH + TC)/2.

Here (ZT )el is calculated in order to compare with the maximum efficiency of

these systems. First the thermopower is obtained from

S =

(

Voc

∆T

)

∣

∣

∣

∣

∣

I=0

and the ratio of κe/σ is calculated from

σ

κe

=
G

K
, (VII.8)

where the conductance G and thermal conductance K are defined as

G =

(

dI

dV

)

∣

∣

∣

∆T=0

K =

(

Q̇H

∆T

)

∣

∣

∣

I=0
.
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Figure 7.13. Plot of (a) Power factor (blue) and thermal conductance (green), (b)
(ZT )el (brown) and Pmax (cyan) as a function of µ − E0 for a quantum dot with
Γ = 0.01kT and TC = 300 K and TH = 330 K.

Figure 7.13 shows the result of these calculations for quantum dots. (ZT )el is

much larger than that observed in the measurements of real systems which is in the

order of unity. This is due to the fact that κl has been omitted from the consideration.

And in semiconductors, usually κl is larger than κe. Including κl would reduce

ZT significantly. To compare the modeling results with Eq. VII.7, for each Γ the

maximum efficiency and maximum (ZT )el are paired together. Figure 7.14 shows a

plot of this pairing and the result agrees with Eq. VII.7.
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Discussion and Outlook

QDs provide the highest efficiency with the narrow transmission width but offer

the very little power production. At the highest maximum power output for QDs

(Γ = 2.25kT ), the efficiency has been reduced to 17% of the Carnot efficiency. Below

a cross-over temperature, 1Ds have the highest power of the three, at a moderate

efficiency at 36% of the Carnot limit (in the same range as those of conventional

fluid/gas heat engine, which generally also operate near maximum power).

This comparison can be improved to be meaningful in real devices. Including the

lattice (phonon) heat transfer into consideration would provides a better picture of

efficiency and the figure of merit. Adding the phonon contribution, the total heat flux

out of the hot reservoir is now written as Q̇total = Q̇H+Q̇l where Q̇l mean the total heat

flux due to phonon contributions. Thus the total efficiency become η = ηe(Q̇H/Q̇total)
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where ηe = P/Q̇H is the electronic efficiency. Note that the inclusion of the phonon

contribution would favor the lower dimensional system like 1Ds as surface scattering

in nanowires strongly suppresses phonon heat conductivity to a value significantly

below the bulk value [15, 16, 70–73]. However, power production would not change

since it is a result of charge transport only.
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CHAPTER VIII

CONCLUSIONS

The (near) Carnot efficiency of particle-exchange heat engine can be attained

when only electrons at a particular energy are allowed to flow [18]. This is because

the Fermi distributions of the hot and cold reservoirs at this energy are equal and

particles flow with no preferred directions. A double-barrier quantum dot provides the

energy-selective filtering required for realizing this reversible thermodynamic process.

InAs/InP heterostructure nanowires are studied as quantum dot heat engines. This

research is part of the goal to measure quantitatively the thermoelectric efficiency of

a quantum dot and prove that the quantum dot indeed can operate with near Carnot

efficiency.

A quantum dot in a nanowire offers a vast array of thermoelectric applications.

Utilizing thermoelectric devices in real situations requires that the subband energy

separation has to be larger than room-temperature thermal energy, ∆E ≫ kT . This

is readily achieved in quantum dots. Furthermore, the quantum dot can be selected

to operate as an n-type or a p-type by tuning gate voltage. Thereby quantum dots

can be used either as a heat pump or a heat engine.

To measure the electronic efficiency, the temperature difference across the dot

has to be established and quantified. This is achieved by using a novel heating and
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thermometry techniques where the source/drain contacts for electrical measurement

can also be used as a heat source. The thermometry technique measures electron

temperature rises on hot and cold sides of the dot. This technique allows an all-in-one

experimental device. The quantum-dot thermometry technique presented here offers a

useful tool for fundamental physics relating to thermoelectric and thermal transport

of a quantum dot. Other properties related to the thermoelectric performance of

the quantum dot have also been studied throughout the course of this research.

Thermovoltage and thermocurrent have been observed to exhibit a strong nonlinear

behavior even at ∆T/T as small as 0.06. This nonlinear effect can lessen thermoelectric

performance of the quantum dot. Though the transmission function plays an important

role in the nonlinear behavior as shown in Chapter V, it is not clearly understood.

Future research should look into the role of energy and voltage dependence of the

transmission function. A novel method to extract information about transmission is

clearly needed.

The thermoelectric figure of merit is enhanced by either increasing power factor

S2σ or decreasing heat leak or both. Power factor will benefit from a raise in

thermopower more than in electron conductivity. The thermovoltage, which related

to thermopower via S = Vth/∆T , have been observed in two different lineshapes.

The different lineshapes can be explained by the tunneling processes [57]. Here the

lineshape can be predicted from the width of transmission function Γ and the energy

spacing ∆E.
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Another important property in determining thermoelectric performance of a quantum

dot is the phonon transport. Many phonon behaviors in 1D wires are not well

understood, such as phonon drag and electron-phonon interaction. Phonon experiments

are challenging as they are more sensitive to a measurement than electronic experiments.

A suspended nanowire [74] offers a possible platform to study the phonon role.

The low-dimensional comparison in Chapter VII offers another way to assess

thermoelectric performance. Instead of optimized efficiency, the desire performance

is the efficiency at maximum power. The modeling in Chapter VII shows that ZT

of quantum dots is extremely large compared to the observed values in real systems.

However, the inclusion of lattice (phononic) thermal conductivity would drastically

reduce this number. The inclusion of phonon heat leaks could improve the comparison

as it yield a more realistic efficiency and efficiency at maximum power. Note that

the phonon scattering may work in favor of the lower dimensional system such as QD

and 1D.
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