
Old Dominion University

ODU Digital Commons

Physics Theses & Dissertations Physics

Summer 2017

Instrument Design Optimization with
Computational Methods
Michael H. Moore
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/physics_etds

Part of the Engineering Physics Commons, Fluid Dynamics Commons, Nuclear Commons, and
the Plasma and Beam Physics Commons

This Dissertation is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics

Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Moore, Michael H.. "Instrument Design Optimization with Computational Methods" (2017). Doctor of Philosophy (PhD),
dissertation, Physics, Old Dominion University, DOI: 10.25777/9tk0-wq87
https://digitalcommons.odu.edu/physics_etds/14

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_etds?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_etds?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_etds/14?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


INSTRUMENT DESIGN OPTIMIZATION WITH COMPUTATIONAL

METHODS

by

Michael H. Moore
B.S. June 2010, Old Dominion University
M.S. June 2012, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY
August 2017

Approved by:

Silviu Covrig Dusa(Director)

Lawrence Weinstein (Member)

Rocco Schiavilla (Member)

Charles Hyde (Member)

Colin Britcher (Member)



ABSTRACT

INSTRUMENT DESIGN OPTIMIZATION WITH COMPUTATIONAL

METHODS

Michael H. Moore
Old Dominion University, 2017
Director: Dr. Silviu Covrig Dusa

Using Finite Element Analysis to approximate the solution of differential equa-

tions, two different instruments in experimental Hall C at the Thomas Jefferson

National Accelerator Facility are analyzed. The time dependence of density fluctua-

tions from the liquid hydrogen (LH2) target used in theQweak experiment (2011-2012)

are studied with Computational Fluid Dynamics (CFD) and the simulation results

compared to data from the experiment. The 2.5 kW liquid hydrogen target was the

highest power LH2 target in the world and the first to be designed with CFD at

Jefferson Lab. The first complete magnetic field simulation of the Super High Mo-

mentum Spectrometer (SHMS) is presented with a focus on primary electron beam

deflection downstream of the target. The SHMS consists of a superconducting hor-

izontal bending magnet (HB) and three superconducting quadrupole magnets. The

HB allows particles scattered at an angle of 5.5◦ to the beam line to be steered into

the quadrupole magnets which make up the optics of the spectrometer. Without mit-

igation, remnant fields from the SHMS may steer the unscattered beam outside of

the acceptable envelope on the beam dump and limit beam operations at small scat-

tering angles. A solution is proposed using optimal placement of a minimal amount

of shielding iron around the beam line.
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CHAPTER 1

INTRODUCTION

Experimental nuclear physics is a field of study that requires sophisticated ma-

chinery. The theoretical underpinnings go back at least to the ancient Greeks. The

dual ideas of analysis and synthesis led to the atomism philosophy of Leucippus

and his pupil Democritus. According to atomism as defined by the ancients, nature

consisted of only atoms and a void. They believed that if any matter could be di-

vided enough times one would encounter the smallest building block which cannot be

divided further. Nuclear physics in the modern sense began with Rutherford’s scat-

tering experiments in 1910 which led to his paper, “The Scattering of α and β rays

by Matter and the Structure of the Atom” [1]. This experiment not only discovered

the presence of a nucleus in atoms but also formed the template for future nuclear

research. Scattering experiments of this sort are still employed to investigate the

interior of atoms, nucleons and the Standard Model in general. Rutherford’s experi-

ment employed α particle energies of around 6 MeV and were used to make the first

measurement of the sizes of nuclei. Today’s scattering experiments can have much

higher beam energies and are able to probe the quark and gluon distributions inside

hadrons. These beam energies require multi-million dollar machines and extremely

sensitive detectors.

The Thomas Jefferson National Accelerator Facility (JLab) is a U.S. Department

of Energy (DOE) funded laboratory located in Newport News, VA. JLab’s primary

mission is to probe the nucleus of atoms using the Continuous Electron Beam Acceler-

ator Facility (CEBAF). DOE provided funding for research, development and design

of CEBAF in 1984, and construction began in February 1987. The first physics ex-

periment using CEBAF began in 1995 using a 4 GeV electron beam. In 2000 CEBAF

reached a milestone when the first 6 GeV beam was delivered to the three existing
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experimental halls (A, B and C) [2]. Figure 1 shows an aerial view of JLab taken in

2016.

FIG. 1: Thomas Jefferson National Accelerator Facility (JLab) in 2016

The experimental equipment used at JLab can be broken down into three basic

categories. First is CEBAF which accelerates electrons to the necessary energy. The

primary component in the accelerator are superconducting niobium radio frequency

cavities. Next is the fixed target where the electron beam is scattered. The targets

can be liquid, solid or gas and are located in three experimental halls (Halls A, B,

and C). Lastly, various detectors and spectrometers along with their electronics and

data acquisition are used to determine the properties of out-coming particles from

the collisions with the target.

As the experimental apparatus’ become more complex and costly the design pro-

cess becomes more important. The tools used in these experiments and their expected

performance must be as well understood as possible before the expensive process of
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building and commissioning can begin. Analytical methods are tedious or impossi-

ble with most of the machines needed for experimental nuclear physics. Simulations

using numerical techniques are well suited to analyze proposed designs and can be

used to improve them. Finite element analysis (FEA) is the tool of choice to simulate

all three parts of JLab’s nuclear experiment facility and will be discussed further in

the next section. This dissertation is organized in two parts dealing with two of

the three basic components in experimental Hall C. Part one is an analysis of the

noise produced by a cryogenic target in Hall C in an effort to improve future target

designs. Part two looks at the electron beam dynamics downstream of the target

and the unintentional deflection caused by external magnetic fields produced by a

new spectrometer and a mitigation proposal.

1.1 FINITE ELEMENT ANALYSIS

When confronting complicated geometries many analytical methods in physics

become cumbersome or impossible to calculate. Numerical methods can be employed

for these type of problems to achieve an approximation for physical parameters of

interest. FEA is typically used in boundary value problems for partial differential

equations when the number of equations is large and/or unsolvable using analytic

methods. The basic idea is to take a continuous domain and break it up into smaller

sub-domains or finite elements in which the governing equations are easier to solve

individually. The governing equations in these finite elements are then discretized

to create a series of simultaneous algebraic equations which can be represented as

matrices to be solved using the techniques of linear algebra. Computers are excellent

at solving systems of this sort and for this reason the growth of FEA has mirrored

the growth in scientific computing.

Sub-dividing a domain into finite elements in modern FEA is called meshing. The

meshing process is usually a part of the FEA solver application and is fine-tuned for

whatever physical situation the solver was designed for. There are many parameters

for the user to choose including the shape and size of the elements, the growth in size

as a function of distance from boundaries, etc. The work contained in this dissertation
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was done using two different commercially available software applications and further

information on their meshing components will be found in sections 4.1 and 6.3.

The three most popular discretization methods in FEA are 1) Finite Element

Method (FEM) 2) Finite Difference Method (FDM) and 3) Finite Volume Method

(FVM) [3]. FEM and FVM will be discussed in detail in sections 4.1 and 6.3.

The history of FEA can be traced back to Lord Rayleigh and Walter Ritz at

the end of the nineteenth century who pioneered work in numerical analysis and ap-

proximations for boundary value problems [4]. In the early twentieth century, Lewis

Fry Richardson introduced point iterative schemes for numerically solving Laplace’s

equation to find the stress distribution in a masonry dam. Fifteen years later in an

attempt to retroactively forecast the weather of a single day, Richardson approached

meteorology by dividing the Earth’s atmosphere into several layers of grid points

and using initial conditions to solve for horizontal momentum, pressure, humidity

and temperature. It took him two years to calculate the equations for a section of

central Europe and the endeavor was a failure [5].

Numerical analysis began in the modern sense in 1928 with a paper by Courant,

Friedrichs, and Lewy (giving us the acronym CFL) [6]. Uniqueness and existence

questions were addressed in this paper as well as being the source of the CFL stability

requirement for the numerical solution of hyperbolic partial differential equations.

1.2 COMPUTATIONAL FLUID DYNAMICS (CFD)

In 1940, Allen and Southwell’s paper, “Relaxation Methods Applied To Deter-

mine The Motion, In Two Dimensions, Of A Viscous Fluid Past A Fixed Cylinder”

introduced a relaxation scheme for iterative solving of systems of equations that has

been extensively used in fluid dynamics as well as in structural problems [7]. The

relaxation method was tailored to hand calculations and added to the growing list

of solved viscous flow solutions which had begun in the 1930’s.

The birth of modern CFD occurred in 1965 when an article in Scientific American

by F. Harlow and J. Fromm proposed “in-silico” (computer) experiments. They

stated, “The fundamental behavior of fluids has traditionally been studied in tanks
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and wind tunnels. The capacities of the modern computer make it possible to do

subtler experiments on the computer alone” [8].

An important step in the story of CFD occurred in the early seventies, when

Brian Spalding and Suhas Patankar developed the Semi-Implicit Method for Pressure

Linked Equations (SIMPLE) [9]. This algorithm is still being used today and will be

discussed in greater detail in section 4.2.

Brian Spalding went on to found Concentration Heat And Momentum Limited,

(CHAM) in 1974 and developed the first commercially-available general-purpose CFD

code in 1981. The software was called the Parabolic Hyperbolic or Elliptic Numerical

Integration Code Series (PHOENICS) [10]. The company is still operating and is

being led by its founder in London, England. The availability of these codes removed

the need of writing specific programs for each CFD calculation. In the 2000’s two of

the leading software developers for CFD code, CFX and Fluent, were bought out by

Ansys, Inc [11]. The addition of CFX and Fluent made Ansys the biggest player in

the CFD market.

1.2.1 DISCRETIZATION EXAMPLE

For any numerical approximation using finite element analysis, the governing

equations must be solved in many small control volumes. There are three expec-

tations of this discretization for fluid dynamics. The first is conservation. If the

physical problem involves the conservation of a quantity, the discretized form of the

governing equations should reflect this conservation. This is true for the individual

control volumes as well as the entire domain. The second expectation is that the

problem is bounded. For a given physical problem the initial conditions and bound-

ary conditions place bounds on the possible solutions. This should be reflected in the

discretized form of the governing equations. The third expectation for discretization

in CFD is transportation of fluid properties in the direction of fluid flow [12].

The finite volume method is the method of choice over FEA and FDM in CFD

because it includes conservation in the discretization process. The three basic steps

in FVM are [13]
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• Divide domain into a number of finite sized control volumes (sub-domains).

Also called meshing.

• Integrate governing differential equation(s) over each sub-domain.

• Use a profile assumption (interpolation function) for the dependent variable(s)

for evaluating integrals.

As a simple example a one dimensional steady state heat conduction problem will

be discretized using these steps. The governing equation for the temperature(T ) in

a rod of material of length L, thermal conductivity k, and heat source S is

d

dx

(

k
dT

dx

)

+ S = 0 (1)

A diagram of the problem is shown in Figure 2. The domain will be divided up

FIG. 2: One dimensional rod discretized into three equal segments

into three sub-domains. The first step in meshing is defining the control volumes by

picking grid points (W, P and E). P is the grid point of interest in this example.

W and E stand for points that lie west and east of our control point P. In a two

dimensional problem there would also be N (north) and S (south) points neighboring

P as well. By making the grid points equally spaced this mesh is called a structured

mesh. In general this will not be the case and the mesh is then called unstructured.

Defining the control volumes in a one dimensional case is carried out by picking points

between the grid points and calling them faces. Faces are denoted by lowercase w
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and e. In the three dimensional case these would be true faces of volume elements

(see Figure 3). In two dimensions faces are defined as the sides of the cell. The next

FIG. 3: Cell types in two and three dimensions

step is to integrate the governing equations over each control volume. For control

volume P,
∫ e

w

d

dx

(

k
dT

dx

)

dx+

∫ e

w

Sdx = 0 (2)

k
dT

dx

∣

∣

∣

∣

e

− k
dT

dx

∣

∣

∣

∣

w

+ S∆x = 0 (3)

In the third step a profile assumption is used to find the solutions to the governing

DE at the faces. Since the solutions from one control volume will be matched to

its nearest neighbors, the profile assumption must be continuous on the faces. First

and second order functions are the standard choices. If a higher order interpolation

is needed, it means that the control volumes are too large and the mesh needs to
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be redrawn with smaller control volumes. In this example only a first order approx-

imation (Figure 4) is possible. This is because a second order profile assumption

requires the values at two adjacent cells on either side of cell P. Five cells would be

necessary for this [13] (see Figure 5). For a first order interpolation, the solutions

FIG. 4: First order profile assumption. Temperature (T) is represented in red and
varies linearly between control element centroids.

at each control volume centroid are assumed to vary linearly to the nearest neighbor.

For the sake of generality, the thermal conductivity will be allowed to vary between

control volumes. From Figure 2 it can be seen that Equation 3 can be rewritten as

ke
TE − TP

δxe

− kw
TP − TW

δxw

+ S∆x = 0 (4)

(

ke
δxe

+
kw
δxw

)

TP =
ke
δxe

TE +
kw
δxw

TW + S∆x (5)

By taking

aE =
ke
δxe

, aW = +
kw
δxw

, aP =
ke
δxe

+
kw
δxw

, b = S∆x (6)

the discretized form of the governing DE is then

aPTp = aETE + aWTW + b (7)
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FIG. 5: Second order profile assumption. The temperature (in red) has a second
order profile requiring the use of four cells adjacent to the cell of interest.

If the point P is labeled i with i being consecutive numbering of control volumes,

then

aiTi = ai+1T1+1 + ai−1Ti−1 + b (8)

At this point the governing DE is an algebraic equation and the values of T at each

element can be solved iteratively depending on its adjacent cells values.
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CHAPTER 2

THE QWEAK EXPERIMENT AND LH2 DENSITY

FLUCTUATIONS

The Qweak experiment sought, for the first time, to measure the weak charge of

the proton using parity-violating electron scattering from protons at low four momen-

tum transfer squared (Q2 = 0.025GeV2/c2). This was accomplished by scattering

longitudinally polarized electrons of opposite helicity states off an unpolarized liq-

uid hydrogen (LH2) target and measuring the asymmetries of elastically scattered

electrons. The parity-violating asymmetry in cross sections is defined as

APV =
σ+ − σ−

σ+ + σ−

(9)

where the subscripts +(−) correspond to positive and negative helicity states of the

electrons. APV is linear with respect to the weak charge of the proton. In the forward

angle limit, [14]
Apv

A0

= Qp
W +Q2F p(Q2, θ) (10)

where A0 = −GFQ
2/4πα

√
2, GF is the Fermi constant, and α is the fine structure

constant. Q2F p carries the nucleon structure in terms of electromagnetic, neutral-

weak, and axial form factors. By measuring the ~ep asymmetry at small Q2, Qweak

sought to find Qp
W , the weak charge of the proton [15]. The expected asymmetry from

the standard model is only 230 ppb and the proposed goal of a 2.5% measurement

meant that the overall uncertainty for the experiment needed to be on the order of 6

ppb. The precision necessary for this measurement required many improvements to

JLab’s CEBAF and Hall C. These improvements will be discussed in later sections.

In order to suppress systematic effects due to density changes in the LH2, the

electron beam was helicity flipped at a rate of 960 Hz. The beam spent ≈ 1 ms in
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each helicity state. Each of these time periods (minus the ”dead-time”; see section

3.1) was delineated by the Macro Pulse Signal (MPS) which coordinated the timing

of the electronics in the experiment to the helicity flipping rate. The term MPS is

used to define one helicity window and each MPS is assigned a plus or minus sign to

indicate the helicity state of the beam in that window [16].

Quantity Value
Beam energy 1.16 GeV

Beam polarization 89%
Beam current 180 µA
Luminosity 1.7× 1039 cm−2 s−1

θ acceptance 5.8◦ − 11.6◦

φ acceptance 49% of 2π
Q2 0.025 GeV2

Helicity reversal frequency 960 Hz
Detector rate 7 Ghz

TABLE 1: A summary of typical parameters for Run 2 of the Qweak experiment

Commissioning of the Qweak experiment started in 2010. After a commissioning

run, there were two data taking runs. Run 1 was from February to May 2011 and

Run 2 was from November 2011 to May 2012. The six months between them were

a scheduled accelerator down period. Fortunately for the Qweak experiment, some

improvements were then made from the experience with Run 1. Some of these will

be discussed in the following sections.

Density changes in the LH2 produce two systematic effects in the Qweak experi-

ment. One is a change in the average density of the fluid (∆ρ/ρ0) in the interaction

region. This has the effect of reducing the effective target length by decreasing the

number of LH2 molecules that interact with the electron beam. The other effect is a

time dependent fluctuation in the density of the target [17]. These are particularly

important for parity violation experiments such as Qweak where the helicity of the

beam is flipped at 960 Hz (every 1.04 ms) [16]. The scattering rate over each one of

these helicity cycles is sensitive to changes in density on this timescale. The cause of

these fluctuations is thus far unknown. There is speculation about the LH2 boiling at

the windows being the cause. This could be either bubbles forming on the aluminum
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windows or a thin film of gaseous LH2 existing between the aluminum and the LH2.

The motivation for the following analysis was to see if the LH2 density fluctuations

at various timescales can be predicted with CFD simulations. If CFD can predict

the density fluctuations, then the future designing of cryogenic liquid targets can

take this into account and minimize the noise due to density fluctuations through

simulations.

2.1 CONTINUOUS ELECTRON BEAM ACCELERATOR

FACILITY(CEBAF)

CEBAF is a re-circulating linear accelerator which uses 330 superconducting ra-

dio frequency (SRF) niobium cavities to accelerate electrons. These cavities are

submersed in a 2 K liquid helium bath and operate at a frequency of 1497 MHz. The

SRF cavities are located in two parallel LINACs (Linear Accelerators) connected

by two recirculating arcs which allow the beam to make one to five passes through

the LINACS. Polarized electrons are produced by photo production and then travel

through superconducting niobium cavities that accelerate them to the desired energy.

At the time of the Qweak experiment the maximum obtainable energy was 6 GeV.

Qweak had a nominal energy of 1.165 GeV which was acquired by one pass through

the LINACs [18].

The source of polarized electrons in CEBAF is the photo production of elec-

trons on strained-superlattice gallium arsenide (GaAs) by a circularly polarized laser.

GaAS normally has a positive electron affinity. By treating the surface with cesium

and oxygen, the surface has a negative electron affinity. By growing a layer of GaAsP,

which has a different lattice constant, between two layers of GaAs mechanical strain

is put on the GaAs layers because of lattice mismatch. The strained-superlattice

GaAs increased electron polarization by more than 10% from the typical strained

GaAs (from 75% to > 85%) and resulted in a quantum efficiency (the probability of

electron emission per photon) of 0.8%.

A resistive copper cavity then accelerates the beam from 130 keV to 500 keV and

SRF cavities further accelerate the beam to 62 MeV. The beam is then injected into
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FIG. 6: Diagram of the Continuous Electron Beam Accelerator Facility (CEBAF)
in its 12 GeV configuration. Visible are the four experimental halls – A, B, C and
the newly added D – and the 10 new cryomodules (blue) added to the existing 40
modules (red). The gray blocks in the center represent the accelerator’s refrigeration
plant, and the green block indicates the injector.
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the North LINAC where it travels one pass and is then steered into Hall C. This is

only a basic description of CEBAF. For a more details on CEBAF see [18].

FIG. 7: New cryomodules partially installed in one of the LINACS in CEBAF. Ten
cryomodules have been added to CEBAF at Jefferson Lab as part of the 12 GeV
Upgrade project. Combined with the existing linear accelerators, they will double
the energy of CEBAF’s electron beam – from 6 GeV to 12 GeV.

2.1.1 BEAM CURRENT MONITORS

Six cavity type BCMs were installed in the beamline to provide linear, precise,

and low noise measurements of the beam charge incident at the target. The BCM’s

are cylindrical stainless steel cavities used in resonant TM 010 mode at 1497 MHz

such that the signal output of the cavity is proportional to the beam current in the

cavity. They were maintained at 110◦ F. BCM 1 & 2 used analog receivers while the

other 4 BCMs utilized digital receivers which had improved digital signal processing

utilizing 18-bit, 1 MHz DAC’s to generate the output voltage. These were only used

in run 2. The BCMs were calibrated against a Parametric Current Transformer
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FIG. 8: Qweak apparatus before shielding

device [19] called the Unser monitor for the beam currents in the range of 1-180 µA.

For low beam current measurements (10 nA - 1 µA) a Faraday cup was used. The

Unser monitor offset is subject to slow drifts, and can not be used continuously for

normalization whereas the Faraday cup can only be used invasively while stopping

beam to the other Halls. The Unser monitor was calibrated for absolute current

measurements before the experiment and the BCMs were calibrated periodically

with the Unser during the experiment. During a BCM calibration, the beam was

ramped up in steps of 20µA from zero with a beam off period in between. Each

beam on and off period lasted about 1.5 minutes. The beam off periods provided

the linear offset of the Unser monitor and the beam on periods gave the slope of the

BCM response vs. the Unser response.

During the down time between Runs 1 and 2, upgrades were made to the BCM’s.

In Run 1, there were only six BCM’s and the digital receivers for BCM’s 5 and 6
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sustained radiation damage. Between the runs, BCM’s 7 and 8 were installed and

new digital receivers for 5 and 6 were installed outside of the experimental hall [20].

2.2 BEAM RASTER

The final stage of beam transport and conditioning is a set of raster magnets.

The purpose of the beam raster is to reduce the effects of target boiling and lower

the maximum temperature of the aluminum target windows. This was accomplished

by tracing the nominally ≈ 200µm beam profile through a uniform square Lissajous

pattern. Two air-core magnets were used for this, each driven by triangular waves

with frequencies of ν1 = 24.960 and ν2 = 25.920 kHz. The difference between these

two frequencies is the frequency of the entire raster pattern, ν2 − ν1 = 960 Hz to

match the helicity flip rate and assure that nearly one complete Lissajous pattern

was completed per MPS [21].

FIG. 9: The Lissajous pattern modeled with Mathematica. The left shows an in-
complete pattern. The beam starts at the origin and traces the path indicated by
the blue line. On the right is one complete pattern.

2.3 TARGET LOOP
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The closed-loop liquid hydrogen (LH2) target used in Qweak had four main com-

ponents which can be seen in Figure 10. These were a pump used to circulate the

LH2, a heat exchanger to liquefy the H2 and to remove the heat deposited by the

electron beam, a heater to regulate the temperature and to replace the beam power

when the beam was not on-target, and a target cell where the interactions with the

beam took place. The volume of H2 in the loop was ∼ 58 liters, and it was nominally

at 20 K and 35 psia. It took about four seconds for the LH2 to make one circulation

around the loop with a mass flow rate ∼ 1.1 kg/s. See Figure 2 for a list of LH2

properties in the Qweak target. Everything in the target loop except the cell was

wrapped in twenty five layers of super-insulation to minimize radiative heat transfer.

Temperature sensors were located at the inlet manifold, pump outlet, heater inlet,

heater outlet and outlet manifold to monitor the LH2 temperature with an accuracy

of 0.016 K. A remotely controlled two axis motion system was used to position the

target relative to the electron beam. The target had a range of motion of 600 mm

vertically and 86 mm horizontally [22].

Property
Nominal

Conditions

Saturation
liquid

Saturation
Gas

Density,ρ [kg/m3]ρ 71.46 66.62 2.91
Thermal Conductivity,

κ [W/m-K]
0.1043 0.1052 0.02121

Molecular Viscosity,
ν [µPa-s]

13.925 10.63 1.30

Specific Heat,
Cp [J/kg-K]

9527 12060 13810

TABLE 2: LH2 properties in Fluent at 35 psia sampled at the Qweak target inlet.
The temperature of the LH2 at the inlet is 20 K. The saturation temperature of LH2
in these conditions is 23.7 K. If the density of the LH2 drops by ∼ 7% it may boil.

The total heat load in the LH2 was dominated by the beam deposited power.

With a beam current of I = 180µA and a target length of l = 34.5 cm, the power

transferred to the LH2 by the electron beam is

P = Iρ l
dE

dx
(11)
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FIG. 10: Components of Qweak target. A: The target cell (pitched 90◦ to illustrate
the flow pattern), B: the heater, C: the centrifugal re-circulation pump, D: the hybrid
heat exchanger, E: the solid target ladder, which was mounted directly below the cell,
and F: the long thin stainless steel pipe which mechanically supported the loop, as
well as the manual cell adjustment mechanism at its lower end [23]

.
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Length 34.5 cm
Al window thickness-beam in 0.1 mm
Al window thickness-beam out 0.127 mm
Temperature of LH2 at inlet 20 K

Mass flow of LH2 1 kg/s
Pressure 35 psia

Pressure drop through target cell 0.25 psid
Raster size 4×4 mm

TABLE 3: Qweak Target Nominal Parameters

For LH2, ρ = 0.0723 g/cm3 and dE/dx = 4.653 MeV cm2/g, and the power deposited

into the LH2 by the beam is P = 2140 W. There is an additional energy loss from

Bremsstrahlung radiation of 46 MeV but this does not contribute to heating the LH2.

Several other heat loads in the LH2 are listed in Table 4. With a total heat load of

∼ 3 kW, the Qweak target was the highest power cryotarget in the world at the time

of this writing [23].

Heat Source Power deposited (W)
e− Beam in LH2 2140

e− Beam in Cell Windows 25
Viscous Heating 177
Radiative Losses 150
Pump Motor 150

Reserve Heater Power 260
Total 2902

TABLE 4: Contributions to the heat load in the LH2 loop [23]. Only the first two
are important for modeling and simulating the target and the values given here are
for the nominal beam current (180 µA).

The cooling power required for the ∼ 3 kW heat load on the LH2 was supplied by

liquid helium from JLab’s Central Helium Liquefier (CHL) and gaseous helium from

the End Station Refrigerator (ESR). In the following sections, several components of

the target loop will be described. A more detailed description of the target cell can

be found in the next chapter (CFD with Fluent).

2.3.1 HYBRID HEAT EXCHANGER
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The heat exchanger liquefied the gaseous hydrogen and maintained the loop tem-

perature at 20 K at 31 to 35 psia by transferring heat from the LH2 to three separate

liquid helium coolant circuits. The heat exchanger was designed at JLab and CFD

was used to assure that the LH2 does not freeze. The flow rates of the coolants

through the heat exchanger were optimized to take 1.2 kW of the total cooling power

from helium at 15 K and 12 atm (from the ESR) while the rest of the cooling came

from helium at 4 K and 3 atm (from the CHL). This allowed the heat exchanger to

maintain the loop temperature without freezing the LH2 (at 13.8 K). A diagram can

be seen in Figure 11.

FIG. 11: Left: Diagram of the hybrid heat exchanger showing all three coolant lines.
Right: CFD temperature map of the hybrid heat exchanger. The LH2 flow in both
pictures is from right to left.

The heat exchanger consisted of three coolant circuits with three layers. Two of

these circuits were 4 K (CHL) and one was 15 K (ESR). These finned copper tubes

were wound on a cylindrical aluminum mandrel to force the hydrogen to flow through

the coils. The differential pressure drop across the heat exchanger was 0.22 psi with

a mass flow rate for 20 K LH2 of 1.08 kg/s [20].

2.3.2 HIGH POWER HEATER

In order to maintain the loop temperature of 20.00±0.02 K at all times even

when the beam was not interacting with the LH2, a 3 kW capacity CFD designed

resistive heater was added to the loop (see Figure 12). The heater used resistive
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wire (13 AWG Nichrome) to provide up to 2500 W of power (Q) without boiling the

LH2. This was very important for maintaining the loop temperature during beam

trips [23].

FIG. 12: The high power heater before installation

2.4 TARGET CELL

The design of the Qweak target was led by Silviu Covrig Dusa. With nominal

parameters, the required performance of the experiment required the smallest abso-

lute precision ever achieved in a PVES measurement from a cryogenic target that

had the highest beam current and power deposition to date. A unique design was

called for and by using CFD the target achieved all the necessary milestones. The

central LH2 volume was a flared conical section made of AL 2219 with the entrance

window on the small end and the exit window on the large end (see Figure 13). The

windows were made of AL 7075-T6 and machined as thin as structurally possible

to minimize electron interaction with the aluminum. The entrance window was flat

(normal to the beam axis) while the exit window was on the curved large end of the
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FIG. 13: Diagram of the Qweak target. The red line indicates the electron beam
which travels through the center of the cell. The blue lines show roughly the flow of
LH2. The cell block is shown in faint outline.

conical section. The entrance window was 22.2 mm diameter and 0.097 mm thick.

The exit window had a larger diameter to admit all electrons scattered at or below

14◦. This comfortably includes the experiment’s 5.8◦ < θ < 11.6◦ acceptance. The

spherical exit window was 0.64 mm thick and 305 mm in diameter with a 254 mm

radius of curvature (see Figure 14). The center of the exit window had a thin spot

15 mm in diameter and 0.125 mm thick to pass the unscattered beam. After correc-

tion for thermal contraction and pressure expansion the LH2 thickness between the

aluminum entrance and exit windows was 343.6 mm.

The most unique feature of the Qweak target design was the segmented inlet and

outlet manifolds. On the inlet side, the LH2 is diverted into three paths. The two

outside paths are directed to the entrance and exit windows to impede boiling. The

center path is further diverted into two and directed at the beam interaction region

in the center of the target cell. The LH2 enters the cell with a mass flow rate of 1

kg/s. The inlet pipe just before the inlet manifold has a radius of 3.81 cm and an
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FIG. 14: The curvature of the beam exit window. This is not drawn to scale. The
interior of the target is the bottom of the diagram, and the beam exits the target
going upwards. ro is the radius of window curvature and r1 is the radius of the
window.

area of 45.6 cm2. This corresponds to an average flow velocity of 3 m/s at the inlet.

The inlet manifold forces the LH2 across the windows at around 7.5 m/s.

An adiabatic approximation can be used to determine the temperature rise during

the time it takes for the LH2 to traverse the beam and estimate ∆ρ/ρ0. Ignoring the

beam motion, the beam is assumed to be stationary while the LH2 has a velocity

perpendicular to the beam. The specific heat of LH2 is

Cp =
Q

∆TM
= 9.53

[

J

gK

]

(12)

where M is the total mass of LH2 inside the beam trajectory boundary and Q is the

total energy deposited by the electron beam along the trajectory.

M = d2Lρ (13)

Q = ∆P∆t, ∆P = ρ
dE

dx
LI (14)

where d = 0.01 cm is the beam transverse dimension, L = 34.4 cm is the length of
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FIG. 15: Qweak LH2 target cell installed in the vacuum chamber. The solid target
ladder can be seen directly underneath the LH2 target.
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the target, and ρ = 0.07 g
cm3 is the density of LH2. ∆P is the deposited beam power,

dE
dz

= 4.63 MeV
g/cm2 is the beam energy loss in LH2 with a beam energy of 1.16 GeV [24].

∆t = d
vl

is the time it takes for the LH2 to traverse the beam when the LH2 has

a velocity vl. The average velocity is calculated from the mass flow at the inlet of

the Qweak target, ṁ = 1kg/s [25]. The inlet is circular with a radius of 3.81 cm

which corresponds to an inlet area of Ainlet = 45.6 cm2 (See section 2.4). The linear

velocity of the fluid may be approximated as

vl =
ṁ

ρAinlet

≈ 300
cm

s
(15)

∆T =
dE
dz
I

dCpvl
(16)

To express ∆T as a percent change in density we use

ρ =
ρ0

1 + α∆T
(17)

ρ

ρ0
− 1 =

1

1 + α∆T
− 1 (18)

∆ρ

ρ0
=

−α∆T

1 + α∆T
(19)

where α ≈ 1/T is the thermal expansion coefficient of LH2 [26].

∆ρ

ρ0
≈ −

(

1 +
TdCpvl

dE
dz
I

)−1

= 0.6% (20)

This is close to ∆ρ/ρ0 ≈ 0.8%, the value reported from Qweak. This model does not

take into account two contributions to the average density change that surely have an

effect. The first is the heating at the windows. As will be seen later, the temperature

of the aluminum at the beam entrance and exit windows reached between 60 and 70

K [17]. Film boiling cannot be ruled out at these temperatures and the target was

designed with this in mind. The inlet side of the target has a flow diverter that forces

the velocity of the fluid to be higher at the windows. This will be discussed more in
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section 2.4. The second contribution that was not taken into account in this model is

the distribution of heat in the fluid volume. After passing through the beam spot in

this model, no information about where the fluid goes is included. Neither is heating

of the surrounding fluid included.

2.5 SOLID TARGETS

Solid targets were positioned in a three level two dimensional ladder array directly

underneath the LH2 target cell mounted in such a way that good thermal contact

is established between the ladder array and the bottom of the LH2 target. The

targets in the two top layers were 2.5 cm2 while the lower layer contained various

combinations of foils at five positions along the beam axis (see Figure 16). The top

row had an upstream and downstream section located directly underneath the LH2

target windows [20].

FIG. 16: Solid Target ladder during Qweak’s Run I. The picture on the right is
looking upstream.
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2.6 SPECTROMETER AND DETECTORS

After interacting with the target, elastically scattered electrons are focused within

the acceptance profile of the QTOR magnetic spectrometer by a collimator system.

The QTOR magnetic spectrometer was an air-core, iron-free, water-cooled magnet

that spatially separated elastic and inelastic events and along with the collimator

system removed line of sight trajectories (photons and neutrons) from the acceptance.

See Figure 17. The QTOR spectrometer was made of eight identical resistive coils

FIG. 17: Diagram of some of the key components downstream of the target. The
electron beam is moving from left to right.

arranged azimuthally around the beam line. Each coil was a racetrack shaped double

pancake of thirteen turns of copper wire with 2.2 meter long straight sections and

semi-circular curved sections with inner (outer) radius of 0.235 m (0.75 m).

The main detector system for Qweak consisted of a set of eight Cerenkov detectors

made of non-scintillating, low luminescent synthetic quartz bars. They were radiation

hard and insensitive to neutral backgrounds. The quartz used in these detectors

had an index of refraction of n = 1.482 at 280 nm wavelength, corresponding to a

Cerenkov cone angle of 47.6o and a threshold of β = 0.67. The quartz radiators were
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100 cm × 18 cm × 1.25 cm and were attached to two 18 cm × 18 cm × 1.25 cm light

guides. Pairs of these bars and lightguides were glued together end-to-end to form

240 cm long bars.

Photo-multiplier-tubes (PMT’s) were attached at the end of each of these bars.

These had ten stages of high gain dynodes with a linear focus design. The PMTs

were sensitive in the wavelength range of 200 to 900 nm and had a peak quantum

efficiency of ∼ 23% at 260 nm. The PMTs were magnetically shielded with mu-metal

cases. Cerenkov light produced by scattered electrons was collected by the PMTs

at each end of the bars. Approximately 98 photo electrons were generated from

each incident electron. Two PMT bases were used. One was for high gain event

mode calibration and was designed to run at low beam currents on the order of nano

Amperes. The other was for low gain integrating mode production running at 180

µA. Soft neutral backgrounds were suppressed by the installation of 2 cm thick lead

pre-radiators in front of each quartz bar. The light yield thereby was increased by

a factor of seven and the signal-to-background ratio was improved by ∼ 20. Shower

fluctuations in these pre-radiators were the cause of an additional 10% excess noise

in the total asymmetry width.

The eight detectors were mounted symmetrically about the beam axis with a

minimum radius of 3.44 m. They were 5.78 m downstream of the center of the

QTOR magnet and in the spectrometer focal plane [23].

2.7 SOFTWARE AND DATA ACQUISITION

The data acquisition (DAQ) system was built to operate in two distinct modes.

Integrating mode was used in the main data taking part of the experiment and

recorded the average detector and beamline instrumentation signals every MPS.

Event mode was used to record trajectory data for individual particles based on

detector based triggers. This mode was used for calibration of the detectors and

electronics. In integrating mode low-noise pre-amplifiers converted the Cerenkov

main quartz detector anode currents to voltage signals. The output had a range of

±10 V to match the analog to digital converter (ADC). The data was written to
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disks at a rate of 6.5 MB/s in data files that were 1.9 GB maximum. These files

represented around five minutes of beam time and were called ”runlets”. For one

hour of data taking, between ten and twelve runlets were created [16].
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CHAPTER 3

ASYMMETRY AND NOISE IN THE QWEAK

EXPERIMENT

Qweak measured small asymmetries between detector yields when the electron

beam is longitudinally polarized to either right handed(+) or left handed(-) helicity

states. The mean of this asymmetry will be used to find the weak mixing angle

and the weak charge of the proton. The width of the asymmetry distribution gives

us a good indication of the noise and uncertainty in the experiment. Buried in-

side the asymmetry widths (called sigma, the standard deviation of the asymmetry

distribution) is information on target density changes.

To find both the mean offset and the asymmetry widths, the Qweak asymmetries,

APV from Equation 9, are used to fill histograms. These histograms are then fitted

to the normal distribution and the values of interest calculated from the fit. The

normal, or Gaussian, distribution is given by

P (x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

(21)

where µ is the mean and σ2 is the variance of the distribution. The square root of the

variance, σ, is the standard deviation of the Gaussian fit that is used to characterize

the uncertainty in the experiment. It corresponds to the half width of the peak at

about sixty percent of the full height (See Figure 3). The value of the mean (µ ≈ 230

ppb compared to σ ≈ 230 ppm) was small enough to be ignored in this study.

The width of the asymmetry distribution from the Qweak measurements, σm, is due

to the statistical uncertainty, σ0, the uncertainty in current measurements from the

beam current monitors (BCM’s), σbcm, and the target boiling and density changes,

σtgt. These contributions add in quadrature to produce the experimental uncertainty
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FIG. 18: σm, yield asymmetry histogram

Parameter Nominal value Range
Helicity reversal frequency [Hz] 960 30-960

Beam current [µA] 180 160-360
LH2 pump speed [Hz] 30 10-30

TABLE 5: Parameters varied in this study. As will be seen later, the helicity reversal
frequency will be replaced with a mock helicity reversal frequency which corresponds
to half the values given here.

in the asymmetry values.

σ2
m = σ2

0 + σ2
bcm + σ2

tgt (22)

The equation for the asymmetry calculation may be recast in terms of detector yields,

Y

A =
Y+ − Y−

Y+ + Y−

(23)

The beam was helicity flipped at a rate of 960 Hz, or once every 1042 µs (Thel)

and consisted of quartets of helicity states, (+ − −+) or (− + +−). The first state

was randomly determined and the corresponding quartet pattern then completed.

In order to investigate the target noise at this and other timescales, “mock helicity
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patterns” were formed (see Figure 19). These are patterns that tag MPS’s with either

plus or minus for the asymmetry calculations. The RMS width of the histograms

is independent of the mean value and the actual helicity state does not have any

bearing on the RMS from the mock helicity patterns. For this reason, actual beam

helicity information was ignored in the formation of the “mock helicity patterns”.

All the following studies were done using the (+−−+) pattern alone. If we consider

one quartet pattern as one period, the quartet pattern has a pattern frequency of

480 Hz. The possible frequencies that could be formed using the mock helicity

FIG. 19: Mock Helicity frequency for a quartet from the Qweak experiment. Each
MPS is assigned a ”+” or ”−” for the asymmetry calculation. The MPS frequency
was 960 Hz. Half of the time to complete a quartet is spent in each mock helicity
state so the quartet, a pattern of 4 MPS’s, is assigned a frequency of 480 Hz.

FIG. 20: Mock helicity states for 240 Hz. The green vertical line marks the end
of one pattern and the beginning of another. A quartet has 4 MPS’s per pattern
(480 Hz). By making a similar pattern with 8 MPS’s, a mock helicity pattern with
an associated frequency of 240 Hz can be made. Instead of the two ”+” states per
pattern for quartets, these patterns have 4 ”+” states each.

patterns is limited by the need for an equal number of “positive” and “negative”

states. The frequencies chosen and the number of MPS’s needed per pattern, Npat,

for each frequency can be seen in Table 6 and Figure 20. The relationship between
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the Npat and frequency is

f =
2

Npat ∗ Thel

(24)

Frequency (Hz) 480 240 120 96 80 60 48 40 30 15
Npat 4 8 16 20 24 32 40 48 64 128

TABLE 6: Mock helicity patterns were formed by grouping MPS’s into different
sized patterns. The frequencies for each pattern size were found using Equation 24.
Note that these frequencies correspond to a helicity reversal frequency of twice that
mentioned in the table, ie. 480 Hz mock helicity pattern is the same as 960 Hz
helicity reversal rate.

ROOT macro’s were written to calculate the measured and BCM noise from the

ROOT files which contain the Qweak data. ROOT is a software package developed at

CERN (European Organization for Nuclear Research) that was designed to handle

large data sets [27]. After importing the data from the main detectors, the mock

helicity patterns were formed by calling the entries in the asymmetry equation in a

way similar to Figure 20 for all ten pattern frequencies of interest. The results of the

asymmetry calculations were then used to fill histograms and the standard deviation

is extracted.

This resulted in σm for ten different mock helicity frequencies. The macro also

computed σbcm and σ0. The uncertainty from the BCM’s was computed in a similar

way to the experimental uncertainty, see Section 3.2, while the counting statistics

were determined by counting events, see Section 3.1. The uncertainty due to target

boiling is then found by subtracting in quadrature as in Equation 22. For more

information on the coding, please see Appendix 2.
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In this way, three pages of plots were created with each run of the macro. One page

contained ten histograms for the experimental uncertainty, σm, evaluated individually

for the ten mock helicity frequencies (Figure 21). The second page contained the

histograms for the BCM uncertainty for all ten frequencies. The third was a frequency

plot which contained the RMS extracted from the histograms for the measured and

BCM uncertainties as well as the counting statistics for each frequency. The BCM

uncertainty and counting statistics are subtracted in quadrature to leave the target

uncertainty (Figure 22).
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The following analysis in this chapter were performed on thirteen data sets of

the Qweak experiment. When the project started, 45 already replayed ROOT files

were available. Nineteen of these were from the target boiling study done in May

2011 at the end of Run 1. These were meant to study the contribution of the raster

size and shape, the pump speed, and the beam current on target boiling. The term

target boiling is meant to be inclusive of all density fluctuations. For this study, the

term density fluctuations will be used to include time-dependent changes in the LH2

and any boiling of the LH2. The other twenty-six Root files were about equally split

between Run 1 and Run 2. As a representation of the process of target boiling noise

extraction, a data set (run 17250) will be used. The parameters for run 17250 can be

seen in Table 7 [28]. Before the actual asymmetries were found, the first step was

Date Beam
energy(MeV)

Beam
current(µA)

Raster size(cm) Pump
frequency(Hz)

5-31-2012 1162.06 179 4×4 29

TABLE 7: Parameters for run 17250

identifying the runs and it’s parameters that would be used. Since it was decided

not to include the raster size in this study, only runs using the nominal raster size,

4 × 4 cm were used. The Qweak log book [28] was used exclusively for identifying

the parameters of the runs. Once a run was determined to be a good candidate, a

simple code to plot the current for each runlet of that run was used to look for beam

trips and any other anomalies from the electron beam. An example can be seen

in Figure 24. This particular run had five runlets which had good beam and these

would be used for all of the calculations to follow. At first it was thought that the

runlets with beam trips could be used by including code to exclude the parts where

the beam dropped below a certain threshold. This method was to be used if more

data points were needed to fill the histograms. This turned out to be unnecessary

(see section 5.3).

3.1 STATISTICAL UNCERTAINTY

The RMS of the detector yield asymmetry in this experiment was dominated by
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FIG. 23: The experimental uncertainty from the main detectors as a function of
frequency for run 17250 (Run 2). In this case, Ibeam = 179µA.
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FIG. 24: The current, labeled Charge, as a function of MPS number for nine runlets
comprising run 11740. The average current for this run was 160 µA. The beam trips
can be seen in segments 001, 004, 005, and 008. These runlets were not included in
the analysis.
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counting statistics. To find the the contribution to the measured asymmetry, σm is

recast again in terms of the number of events detected as

A =
N+ −N−

N+ +N−
=

∆N

N
(25)

where A is a function of two variables, A(N+, N−). N± is the number of particles

detected when the beam is in either the (+) or (−) helicity state. N = N+ +N− is

the total number of particles detected. The variance is

σ2
CS =

(

∂A

∂N+

)2

σ2
N+ +

(

∂A

∂N−

)2

σ2
N− + 2 cov(N+, N−)

∂A

∂N+

∂A

∂N−
(26)

where σ2
N+ = N+ and σ2

N−
= N− are the variances of the two variables independently

and are given by the Poisson distribution. The covariance in the third term will be

zero since N+, N− are independent measurements. Taking the derivatives,

∂A

∂N+
=

2N−

N2
(27)

∂A

∂N−
= −2N+

N2
(28)

and inserting them into Equation 26 we have

σ2
CS =

4N+N−

N3
(29)

If N+ and N− are approximately equal, then ∆N is very small, N+ ≈ N− ≈ N
2
and

the RMS due to counting statistics is

σ2
CS =

1

N
(30)

To estimate N the “deadtime”, Tdead, must be taken into account. Tdead is associated

with the helicity reversal switching time (70 µs) and the gate delay (42.5 µs). During

this time interval between MPS’s the experiment is effectively shut off. In terms of

individual helicity states, Tdead = 112.5 µs per state [16]. The “live-time” ratio, s, is
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independent of the number of particles per pattern (quartets in this case), Npat, and

is

s = 1− NpatTdead

NpatThel

= 1− Tdead

Thel

= 89.2% (31)

By knowing the beam current and detector rate,

N = Rdet · Ibeam ·Npat · Thel · s (32)

where Rdet is the detector rate in GHz/µA, Ibeam is the beam current, Npat is the

number of helicity states in a pattern, and Thel is the time spent in one helicity state

(1042 µs). To study different timescales, patterns larger than quartets can be formed

and N can be expressed as a function of Ibeam and Npat since for a LH2 target Rdet,

Tdead, and Thel are constant.

N = αIbeamNpat, α = Rdet(Thel − Tdead)[ A
−1] (33)

The detector rate for a LH2 target was determined by simulations to be Rdet ≈
7GHz/180µA [16], so

N = 3.61× 1010[ A−1]IbeamNpat (34)

Note that α will be different for targets other than LH2. In addition to the counting

statistics, the uncertainty also depends on the detector resolution or electron detec-

tion efficiency in the main detectors. The main detectors in Qweak are Cerenkov

detectors and the resolution, R, was determined to be 47% sigma. The resolution

is included in the statistical uncertainty, σ0, by way of a fractional increase in the

counting statistics [16].

σ2
0 = σ2

CS(1 +R2) = 1.22σ2
CS (35)

Combining this result with Equations 30 and 34 we have

σ2
0 =

3.38× 10−11[ A]

IbeamNpat

(36)
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As an example the nominal operating conditions of Qweak are with Ibeam = 180 µA

and Npat = 4 making σ2
0 = 46.9 ppb or σ0 = 217 ppm. The ROOT code used to

extract the counting statistics from the Qweak data used this method and using

Npat instead of frequency was a matter of convenience. It is easier to visualize (see

Figure 25) by combining Equations 24 and 36.

σ0 = 1.33× 10−7

√

f

Ibeam
(37)

3.2 BCM NOISE

The current in the Qweak experiment was found using the average of two BCM’s

(BCM1 and BCM2) during run 1 and from only one BCM (BCM8) in run 2. BCM’s

1 and 2 were analog in nature while BCM’s 7 and 8 used new digital receivers which

had improved digital signal processing utilizing 18-bit, 1 MHz DAC’s to generate the

output voltage. The noise in the experiment due to uncertainty in the BCM’s were

found using the double difference of a pair of BCM’s (BCM’s 1 and 2 for run 1 and

BCM’s 7 and 8 for run 2). The double difference (DD) for run 1 is defined as

DD =
Q+

1 −Q−

1

Q+
1 +Q−

1

− Q+
2 −Q−

2

Q+
2 +Q−

2

(38)

where Qj
i represents the charge measured in BCM i for beam helicity j. By finding

the width of the DD for many different patterns we can find σdd [16].

The resolution of an individual BCM is

σbcm =
σdd√
2

(39)

An example analysis can be seen in Figure 26

3.3 TARGET NOISE
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FIG. 25: The contribution to the experimental uncertainty from counting statistics
as a function of frequency. To match run 17250, Ibeam = 179µA. The frequencies of
interest are shown as points and line is Equation 37.
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FIG. 26: The contribution to the experimental uncertainty due to the digital beam
current monitors in run 17250 as a function of frequency.
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Once the values for the statistical uncertainty (σ0) and the BCM uncertainty

(σbcm) are found they may be subtracted form the experimental uncertainty (σm)

in quadrature. This ignores any other source of noise and this will be discussed in

Section 5.3. From Equation 22,

σ2
tgt = σ2

m − σ2
0 − σ2

bcm (40)

Using Equations 36 and 39 this can be put in terms of known variables:

σ2
tgt = σ2

m − 3.38× 10−11[ A]

IbeamNpat

− σ2
dd

2
(41)

As an example with run 17250 (run 2) only looking at 480 Hz, σm = 226 ppm,

σbcm = 44.33 ppm, with Npat = 4, and Ibeam = 179 µA, σ0 = 213.5. This results in

σtgt = 59.51 ppm.
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FIG. 27: The contribution to the experimental uncertainty due to target density
changes as a function of frequency.



47

CHAPTER 4

THE QWEAK TARGET SIMULATION WITH CFD

Fluent is one of the many software packages offered by Ansys Inc. It uses the finite

volume method to solve for liquid and gas flows for a wide range of incompressible and

compressible, laminar and turbulent fluid flow problems. Ansys includes a computer

aided drafting type module called Design Modeler and a meshing module. Both

of these have CFD specific options and work flow that are easily interfaced with

Fluent [29]. Similar to the finite difference method or finite element method, values

are calculated at discrete places on a meshed geometry. “Finite volume” refers to

the small volume surrounding each node point on a mesh. In the finite volume

method, volume integrals in a partial differential equation that contain a divergence

term are converted to surface integrals, using the divergence theorem. These terms

are then evaluated as fluxes at the surfaces of each finite volume. Because the flux

entering a given volume is identical to that leaving the adjacent volume, FVM is

conservative by nature. Another advantage of the finite volume method is that it

is easily formulated to allow for unstructured meshes, which are described in the

next section. This method is used in many computational fluid dynamics packages

including Fluent.

4.1 DISCRETIZATION AND THE FINITE VOLUME METHOD

Fluid (gas and liquid) flows are governed by partial differential equations for

mass, momentum, and energy. In order to solve for fluid flows in complex geome-

tries the flow space is broken into multiple finite sized control volumes (sub-domains

or cells) and the differential equations are integrated over each sub-domain. This

process begins with grid creation or meshing. The grid defines the control volumes

by setting up a series of points and edges between. There are two main types of

grids, structured and unstructured. A structured grid is one in which all the cells
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are hexahedral. In three dimensions this translates as a grid made of topological

parallelepipeds. In contrast, an unstructured grid is not made of topological par-

allelepipeds and the cells can be tetrahedral, hexahedral, etc. The finite volume

method works with either structured or unstructured grids. The advantages of a

structured grid is that neighbors of a given point may be directly found by increment

of indices. Unstructured grids require specific procedures to identify neighbors but

are better at adapting to complex geometries. The Qweak target was meshed using

a combination of structured and unstructured grids. The majority of the target uses

tetrahedrons to capture the complicated geometry of the flow space. The volume

through the center of the target where the beam interacts with the LH2 (4x4x345

mm3) was meshed with a structured grid since the only external frontier of this vol-

ume is at the beam nipples. The Fluent meshing module handles the tetrahedral

grid formation very easily with only slight modifications to the default settings. The

beam volume required more attention and will be discussed in Sections 4.5 to 4.8.

Once the grid and control volumes have been produced the flow space changes

from a single domain to many sub-domains and the second step in the finite volume

method begins. This step involves integration of the governing differential equations

on each control volume to ensure conservativity at the discrete level.

4.2 ANSYS DESIGN MODELER

After importing a CAD (computer-aided drafting) model of the target into Ansys

Design Modeler (Figure 28), the flow space had to be set up for the simulation. The

walls of the target cell are only important for this study at the windows. These

solid zones can either be imported in the Design Modeler and meshed with the

rest of the flow space or defined later in Fluent using shell conduction. Meshing the

aluminum slowed down the simulation and made the simulation more unstable so shell

conduction was used. Shell conduction replaces the normally zero-thickness walls

with cells extruded from the mesh boundaries on the wall. The windows were named

in Design Modeler for easier access to them later in Fluent. The fluid space was

checked for any errors and a separate cell zone set up to mimic the beam interaction
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FIG. 28: The CAD model only contained zero-thickness walls defining the flow space
and had no definition of interaction region or window thickness. The blue circle is
the inlet and the red circle is the outlet.

volume. This 4×4×34.5 cm3 rectangular zone was capped at the ends with the shell

conduction for the Aluminum windows and the external boundaries inside the cell

represented the edge of the Lissajous raster pattern. The fluid flows freely through

these interior boundaries between the interaction region and the rest of the cell.

After this stage the Qweak model was ready for CFD and imported into the meshing

module.

4.3 ANSYS MESH

The meshing program has many options and only the most important ones will

be discussed. Through studying the literature on CFD, and trial and error, the vital

parameters were determined. Without the beam interaction zone the meshing works

fine with the default settings. This led to large (> 0.5 cm) mesh elements at the

center of the target cell in the beam interaction region. Without defining a zone

for the mesh elements at the interaction region, however, some of the elements have

centroid’s within the interaction region but the cells extend past the boundary of

the interaction region. This results in a volume discrepancy and the power density

must be adjusted to accommodate the volume of the mesh elements in the model.

To avoid this problem the beam interaction region was meshed separately. While

the rest of the target was meshed with an unstructured mesh (tetrahedrons), the

beam volume used a structured (quadrilateral) mesh. The structured mesh forced
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FIG. 29: Definitions of vectors used in calculating orthogonal mesh quality. ~Ai is area
vector of the face between the two tetrahedral cells. ~fi is the vector from the cell
centroid (blue dots) to the same face. ~ci is the vector connecting the centroid of the
cell in question with the centroid of the adjacent cell

the mesh elements to have their edges lay along the beam volume boundaries and

the volume difference between the model and the actual target minimized. The two

most important parameters in the mesh was the number of elements and the quality

of the mesh elements. Too many elements would slow down the calculation and

poor quality would hamper convergence of the solution. The main parameter used

to measure the quality of a mesh is called orthogonal quality. It ranges from zero

to one, with one being the highest quality. A simplified diagram can be seen in

Figure 29. The quantity is defined as the minimum value from two calculations per

face. The first is the normalized dot product of the area vector of a face ( ~Ai) and

the vector from the cell centroid to the same face (~fi).

~Ai · ~fi
| ~Ai||~fi|

(42)

The second is the normalized dot product of the same face area vector with the vector

connecting the centroid of the cell in question with the centroid of the adjacent cell

that shares the face (~ci).
~Ai · ~ci
| ~Ai||~ci|

(43)

These values are computed for every face in the cell and the minimum is reported
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FIG. 30: Closeup of the beam exit window mesh. The square in the center is the 4×4
mm edges of the Lissajous raster pattern. Inside this square the mesh is structured
and cubic while the rest of the cell is unstructured tetrahedrons.

as orthogonal mesh quality for that cell. For the entire model an average is taken.

This proved valuable not only for judging overall quality, but also in finding areas of

poor quality mesh to fix. Many meshing attempts were made and tested to quantify

the effect on convergence and processing time. For the time dependent simulation

using 1 µs timesteps (1000 steps for every MPS) a compromise was reached with 21

million elements and a minimum orthogonal quality of 0.15. The elements inside the

beam volume were evenly spaced cubes of side length 150 µm. This structured mesh

can be seen in Figures 30 and 31.

The size of the structured mesh was chosen to minimize volume error in power

deposition as well as maximize the speed of calculations. The volume of the beam

interaction region was critical. It is easily calculated for the entire raster volume

as 0.4 × 0.4 × 34.5=5.52 cm3 (see Figure 32). This was the case for the steady

state solution. For the beam spot with rbeam = 0.01 cm, πr2beam34.5 = 0.0108 cm3.

The beam interaction volume was found with a User-Defined-Function (UDF) each

time step by integrating the volume of every mesh element that was tagged for
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FIG. 31: The flow space in the Qweak target meshed with a combination of structured
and unstructured grids. The structured part is through the raster volume at the
center of the target. The growth of the cell size from the 250µm elements in this
region to the larger cells can be seen.

energy deposition. A UDF is a function written in C++ that can be dynamically

loaded within Fluent to enhance it’s standard features. These functions can either be

interpreted at each iteration or compiled into a library first and then called at each

time step. Fine tuning of the numerical procedures in the UDF led to a ∆V/V0 < 1%

at each timestep.

4.4 ANSYS FLUENT

A list of the basic Fluent options chosen for the Qweak target simulations can be

seen in Table 8.

4.4.1 SOLVER

There are two types of solvers available in Fluent; density-based and pressure-

based. All of the simulations for the Qweak target were done using the pressure-based

solver. The pressure-based solver was used traditionally for low speed incompressible
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FIG. 32: The volume the beam spot makes through the interaction region of the
target is the volume of the blue cylinder. The spot moves with the raster motion
described in the text and completes one Lissajous pattern every MPS.

and mildly compressible flows and the density-based solver for high speed compress-

ible flows. Both methods have been updated to handle a large range of flow regimes,

but the pressure-based solver will be the focus of this explanation. Two options exist

for the pressure-based algorithm: coupled and segregated. Both algorithms solve the

governing integral equations for the conservation of mass and momentum. In this

case there were also scalar equations such as energy and turbulence that are solved

the same in either method. The difference between them can be seen in Figure 33.

The coupled algorithm was used in this work. In the flow chart for the pressure-

based segregated solver the equations are solved in multiple steps, while the coupled

algorithm solves all the governing equations simultaneously. The equations for addi-

tional scalers like turbulence are solved sequentially afterwards. As will be described,

the continuity equation is used to obtain the density field while the pressure field is

determined from the equation of state. The momentum equation in integral form is

∮

ρ~v~v · d ~A = −
∮

pI · d ~A+

∮

τ̄ · d ~A+

∫

V

~FdV (44)

where I is the identity matrix, p is the static pressure, µ is the molecular viscosity,

and τ̄ = µ
[

(∇~v +∇~vT )− 2/3∇ · ~vI
]

is the stress tensor.

The continuity equation is a statement of conservation of mass.
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FIG. 33: Flow chart of the two algorithms available for the pressure-based solver in
Fluent. The Qweak target simulation used the pressure-based coupled algorithm.
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Solver Type Pressure-Based
Velocity Formulation Absolute
Multiphase Model Mixture w/slip velocity
Drag Coefficient universal-drag
Slip Velocity manninen-et-al

Evaporation and Condensation frequency Lee Model (0.5)
Saturation Temperature 23.705 K

Surface Tension Coefficient constant (0.00193)

Viscous Model Realizable k-epsilon w/en-
hanced wall treatment

Pressure-Velocity Coupling Coupled
Spatial Discretion-Gradient Least Squares Cell Based
Spatial Discretion-Pressure PRESTO!

Spatial Discretion-Momentum Second Order Upwind
Spatial Discretion-Volume Fraction QUICK

Spatial Discretion-Turbulent Kinetic Energy Second Order Upwind
Spatial Discretion-Turbulent Dissipation Rate Second Order Upwind

Spatial Discretion-Energy Second Order Upwind
Inlet boundary condition ṁ = 1 kg/s, T=20 K

TABLE 8: Fluent options chosen for the simulation

∮

ρ~v · d ~A = 0 (45)

The equation for energy is

∂

∂t

n
∑

k=1

(αkρkEk) +∇ ·
n
∑

k=1

(αk~vk(ρkEk + p)) = ∇ · (keff∇T ) + SE (46)

Here, keff =
∑

αk(kk + kt), and kt is the turbulent thermal conductivity. SE is the

inclusion of any other volumetric heat sources. This is where the heat deposition

from the beam heating UDF is inserted into the solution process. For incompressible

flows, Ek = hk and for compressible flows, Ek = hk − p/pk + v2k/2.

Velocity-pressure coupling is necessary to solve these equations since they are

mutually dependent. Several methods are available in Fluent to implement this in-

cluding coupled, SIMPLE (Semi-Implicit Method for Pressure Linked Equations),
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SIMPLEC (SIMPLE Consistent) and PISO (Pressure Implicit with Splitting of Op-

erators). SIMPLE is the standard option and works well with all flow regimes.

SIMPLEC is mainly for uncomplicated flows, and PISO is geared towards transient

flows with large timesteps. The coupled scheme, which was used for the simulations

of the Qweak target, is more memory intensive but this ceased to be a problem when

the fluent program and license were moved to a cluster (see Section 4.4). The other

drawback of the coupled scheme is that it cannot be used with the Eulerian multi-

phase model (see Section 4.4.3). SIMPLE and coupled were both used in this study

but the coupled method was used in all the following results [30].

4.4.2 VISCOUS MODEL

There are nine different models for turbulence in Fluent offered under the option

“viscous model”. Six of them use Reynolds averaging, where the solution variables in

the instantaneous Navier-Stokes equations are put into a time averaged form. These

can be seen in Figure 34. The RANS (Reynolds-averaged Navier-Stokes) models

FIG. 34: The turbulence models available in Fluent. The Qweak target simulations
used the Realizable k− ǫ model. RANS stands for Reynolds-averaged Navier-Stokes
models

use the time-averaged Navier-Stokes equations. The other models solve the spatially

averaged N-S equations. For the Qweak target, the k − ǫ model was used. It is the

most widely used turbulence model. The only option turned on for the k − ǫ model
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was enhanced wall treatment. This is a two layer wall model that divides the region

adjacent to the wall into two layers: a viscosity affected region and a fully turbulent

region.

4.4.3 MULTIPHASE MODELING

There are three main methods used to handle multiphase modeling in Fluent.

The Volume of Fluid model is designed for slug flows and stratified or free surface

flows. It was deemed inappropriate for the Qweak target model and will not be

discussed here. The Eulerian model treats all phases as interacting continua with a

single pressure shared by all the phases. The momentum and continuity equations

are solved separately for each phase. The Eulerian model is mainly used for bubbly,

droplet, slurry and particle-laden flows. It is perfect for sedimentation and fluidized

beds. The Eulerian model is the preferred method for the Qweak simulation, but as

of version 7.2 of Fluent, the model was too complicated and a working solution was

not found [31].

The Mixture Method is the method used in the Qweak target simulations. It

is a simplified version of the Eulerian model. It solves the momentum, continuity

and energy equations for the mixture as a whole. The volume fraction equations

for the secondary phases and expressions for the relative velocities are then solved

separately. The momentum equation in the mixture model is obtained by summing

the individual momentum equation for all phases.

∂

∂t
(ρm~vm)+∇·(ρm~vm~vm) = −∇p+∇·[µm(∇~vm+∇~vTm)+ρm~g+~F+∇·

(

n
∑

k=1

αkρk~vdr,k~vdr,k

)

(47)

where µm =
∑n

k=1 αkµk is the viscosity of the mixture and ~vdr,k = ~vk−~vm is the drift

velocity for the secondary phase, k.

The energy equation expresses the energy as a sum of the energies of the mixture.

∂

∂t
(αkρkEk) +∇ ·

n
∑

k=1

(αk~vk(ρkEk + p)) = ∇ · (k(eff)∇T ) + SE (48)
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Where keff =
∑n

k=1 hk(kk + kt) is the effective conductivity and SE is any other

volumetric heat sources. For incompressible flows, Ek = hk and for incompressible

flows, Ek = hk − p/pk + v2k/2. hk is the sensible enthalpy for phase k.

The continuity equation uses a mass-averaged velocity,

~vm =

∑n
k=1 αkρk~vk

ρm
(49)

∂

∂t
(ρm) +∇ · (ρm~vm) = 0 (50)

where ρm =
∑n

k=1 αkρk is the mixture density.

There are three important options for interphase exchange coefficients. The uni-

versal method for calculating the drag coefficient was used since it handles bubbly,

gas-liquid mixtures very well. Since the mixture model depends on relative velocities

of the phases, the slip velocity and drift velocities are important. The slip velocity

of a phase is the relative velocity between it and the other phases. The drift velocity

is defined as the velocity of a phase relative to the mixture volume centered velocity.

Slip velocity is defined for phase p relative to phase q by

~vpq = ~vp − ~vq (51)

The mass fraction for any phase k is

ck =
αkρk
ρm

(52)

The drift velocity as a function of slip velocity is

~vdr,p = ~vpq −
n
∑

k=1

ck~vqk (53)

The method chosen to find the interphase velocities was the Manninen method [32].

Liquid vapor mass transfer was handled by the Lee model which is governed by the
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vapor transport equation

∂

∂t
(αvρv) + ∆ · (αvρv~vv) = ṁlv − ṁvl (54)

where ṁlv is the mass transfer rate due to evaporation and ṁvl is mass transfer rate

due to condensation [30].

All of the options in Table 8 that were set to second order upwind were solved from

the cell centers to the faces downstream of the flow. This forces the equations to be

solved in the direction of fluid flow. The PREssure STaggering Option (PRESTO!)

for pressure interpolation and the Quadratic Upstream Interpolation for Convective

Kinematics (QUICK) options both work in most situations, but are particularly

effective with structured meshes. They are both second order interpolation schemes.

4.5 QUADRILATERAL RASTER APPROXIMATION

An approximation of the raster motion was made later which greatly reduced

the computation time needed for the solution. A close look at the raster motion

shows that the beam almost closes a quadrilateral twenty eight times per MPS.

The full raster UDF calculates beam heating 1042 times every MPS with 1µs time

steps. By increasing the time steps to one twenty eighth of an MPS, 37.2 µs and

approximating the beam motion through this time period as rectangles in the xy-

plane the computational time can be greatly reduced at the expense of some precision

(see Figure 35).

This UDF was more complicated because the beam would not have a circular

cross section. The approximation was accomplished by setting x intercept points for

one of the lines of the quadrilateral approximation. Because of the symmetry of the

quadrilaterals, the equations for all four lines can be calculated for each of the 28

points on the x axis and the slopes of all fours lines was ±1. These lines approximate

the path that the center of the electron beam travels through one twenty-eighth

of an MPS. Any element found within the electron beam radius (100 µm) of this
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FIG. 35: Quadrilateral approximation of beam raster. The frame represents the 4×4
mm2 raster area. The first one twenty-eighth of an MPS is represented by the dotted
blue line labeled T = 0. The width of the lines is the diameter of the intrinsic beam
spot. The top vertex then moves to the left while the vertex on the right moves
down, effectively opening up the quadrilateral into a square at T = 1/4MPS (red
solid line). The top vertex continues to the left, collapsing the square into the green
dashed line at T = 1/2MPS. the process then goes in reverse.

line is considered ”in-beam” and becomes an energy source in the simulation. Each

quadrilateral cross section has an area of 2.34× 10−6 m2 meaning a total volume of

8.073× 10−7 m3.

4.6 GAUSSIAN POWER DEPOSITION AND BEAM JITTER

For both raster UDF’s two methods were used to deposit the energy around the

beam center. The first was just an approximation of uniform energy deposition up to

the “edge” of the beam. The second was a Gaussian heating code. This calculated

the distance from the center of the beam to each mesh element to be used for energy

deposition and adjusted the energy density so that it created a two dimensional

Gaussian distribution around the center of the beam. This was much closer to the

actual beam, but in the simulation it made very little difference to either the fluid

properties or the noise. Since it increased the number of calculations per time step
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without changing the results the first method was used.

One of the additions to the code to make the simulation more realistic was beam

jitter. The electron beam current during the Qweak experiment was 180 µA. This

value was not steady. Besides beam trips, ramping and other major changes the

“steady” beam had current fluctuations on the order of 1%. To mimic this, a random

number generator was used to set the current between I0(1− 0.01) < Inew < I0(1 +

0.01). To check the current distribution the UDF was set to report the current at

each MPS. These values were plotted in histograms to assure an even distribution

across the current range.

4.7 ASYMMETRY CALCULATION

An example of the file created by the data writing UDF can be seen in Table 9.

The values are averages taken through the beam spot region. For the original model

with 1 µs time steps, this meant a cylinder with a radius equal to the radius of

the beam spot (∼ 100µm) and the length of the target. With the quadrilateral

approximation the values were averaged over the four lines with beam spot width

that make up each rectangle. The simulation results file containing all the values at

every time step was analyzed using a ROOT code similar to that used for the Qweak

data. The first step was to make averages of the results for every MPS. In both codes

there is a variable which represents the fraction of an MPS that timestep represents.

For example, in the rectangular approximation each time step is 1/28th of an MPS.

This corresponds to 37.202 µs, so this fractional variable has the value 0.0357 at the

first time step of each MPS and ∼ 1 on the last time step. The ROOT code looked

for this change in the fractional value to mark the beginning of each MPS. Once

the MPS averages of the values were found, mock helicity patterns were formed and

asymmetries calculated. The asymmetry results were then used to fill histograms and

the RMS extracted. This resulted in plots of asymmetry widths versus frequency. A

detailed description of the code can be found in Appendix 2.

4.8 SIMULATION TIME AND HPC
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Flow Time (µs) 4865141 4865178
ρ (kg/m3) 70.7537 70.7622
k (J/kg) 0.0141528 0.0141546
ǫ (J/kg s) 1.13355 1.13372
vx (m/s) 0.267963 0.26793
vy (m/s) 0.0058458 0.00584273
vz (m/s) 0.00519674 0.00519048
|v| (m/s) 0.268077 0.268044

TABLE 9: Some of the variables recorded with the Fluent UDF. The Table includes
two consecutive 37 µs time steps at ∼4.8 s of flow time into the simulation.

Simulation time was a critical factor in this work. The goal for simulation time

was to solve for one second of flow time in a week. After running several simulations

it became clear that at least 3 seconds of flow time was needed to fill the histograms.

When the first simulation was run there were six CPU’s available. The time it took

to solve one iteration was between five and ten seconds. Each time step consists of

between five and twenty iterations. At this rate with the 1 µs time step it would take

∼ 290 days to complete 1 second of fluid flow. In March 2014 the Computational

Fluid Dynamics group at JLab purchased a license to use 128 cores and housed the

license at the ODU High Performance Computing (HPC) cluster [33]. The 128 CPU’s

were supported by six GB of RAM per CPU. Figure 36 shows the first speed test

done with the HPC cluster. The black points show the expected behavior inferred

from the Ansys literature on parallel computing. It is essentially linear up to 50

CPU’s and after that the gains are not as large for addition CPU’s. The erratic

behavior for greater than 50 CPU’s led to much discussion with the HPC staff, and

the problem was never completely solved. Each time a job is submitted it is assigned

servers and CPU’s and the combination is different every time, leading to different

solver speeds. The seconds per iteration reported by Fluent can vary as much as

50%. Once a job was submitted and running on the cluster the solver speed could

be checked in one of the log files written in the folder where the job resides. The

speed would be checked soon after submission and if the speed was unacceptable, it

could be stopped and resubmitted. This only needed to be done ten or so times out
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of hundreds of simulations run. When jobs are submitted to the cluster, a journal

file is used to issue commands to Fluent when it is running. The HPC cluster has

worked very well, but there have still been crashes and loss of simulation results. To

protect the simulation results, the journal file ran the simulation for ten thousand

time steps and then saved the simulation to a backup file. The simulation would the

continue for another ten thousand time steps and save again. Typically this would

be done ten times corresponding to 3.7 seconds of flow time. This resulted in ten

thousand time steps being the maximum amount of simulation results that could be

lost.

4.9 CFD ERROR ANALYSIS

Uncertainty and error are terms which are often used interchangeably. There

is a difference which is pointed out in the American Institute of Aeronautics and

Astronautics (AIAA) Guide For The Verification And Validation of Computational

Fluid Dynamics Simulations [34]. Uncertainty is defined as a potential deficiency in

a simulation, while the error is defined as a recognizable deficiency. This wording

implies that uncertainty is used for deficiencies introduced by a lack of knowledge.

Turbulence modeling falls in this category. It was suggested that the model be run

with multiple different turbulence models and comparisons made to determine the

sensitivity of the simulation results to a change in model. This was not done, and

all the results are from the Realizable k − ǫ turbulence model. Errors on the other

hand are able to be identified when the results and model are studied. Errors can be

categorized as either acknowledged or unacknowledged. Acknowledged errors have

procedures available to identify and remove them from the final results, while unac-

knowledged errors do not have such procedures. Included in the acknowledged error

category are modeling errors, computer round-off, spatial and temporal convergence

error. Unacknowledged errors include computer programming and user errors. The

most important error types for this simulation are spatial and temporal discretiza-

tion errors. To examine the spatial convergence error it is necessary to perform the

simulation on two or more successively finer grids. Excluding computer round-off
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FIG. 36: The same simulation was run eight separate times with different numbers
of CPU’s for one hour. Fluent reported the speed in seconds per iteration, and a
hand calculation was also performed to compare.
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errors, smaller grid size should reduce the spatial convergence error asymptotically

towards zero. Error of this type is defined as the difference between the exact solution

and the simulated one. The method of choice to find the exact (continuum) value is

called Richardson Extrapolation [13]. When varying grid sizes, it is not necessary to

increase or decrease the number of cells by a factor of two. This is called non-integer

grid refinement. It is important to keep the original mesh generation parameters

while creating a coarser or finer grid. A simulation yields a quantity U which may

be expressed in the series expansion

U1 = Uh=0 + C1h1 + C2h
2
1 + C3h

3
1 + ... (55)

where h1 is the grid spacing and Cn are constants which are independent of grid

spacing. The Richardson Extrapolation is meant to determine the value of the ex-

trapolated exact solution, Uh=0. A second simulation with a different grid spacing,

h1 > h2 yields

U2 = Uh=0 + C1h2 + C2h
2
2 + C3h

3
2 + ... (56)

To first order, the constant C1 can be found by subtracting the two equations.

C1 ≈
U1 − U2

h1 − h2

(57)

Substituting this into the first equation and solving for Uh=0 yields

Uh=0 ≈ U1 +
U1 − U2

r − 1
(58)

where r = h2/h1 is the grid refinement ratio. This can be generalized for any nth

order as

Uh=0 ≈ U1 +
U1 − U2

rn − 1
(59)

In practice, the Richardson Extrapolation when used with CFD is performed with
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grid refinement ratios of r = 2 and with second order, n = 2. In this case

Uh=0 ≈
4

3
U1 −

1

3
U2 (60)

This can be done with more than two grid points as well. The difference between

the value obtained with the mesh of interest and the extrapolated value is a good

approximation of the spatial convergence error. This analysis was done using the

standard model described above with mesh sizes in the beam volume changed from

100 µm to 200µm and the parameter used was the asymmetry RMS width. The

temporal discretization could not be used with the raster pattern UDF because it

would also include other changes to the model such as beam spot size and the time-

domain resolution in the asymmetry calculation. For this reason, the temporal error

was determined using the average density in the entire raster volume of LH2 through

the target. The procedure involved first getting a steady state solution and then

running the models for one second of flow time with timesteps varying between 1

ms and 100 ms. The Richardson Extrapolation was done to these values under

the assumption that the smaller the time step, the more precise the solution. The

difference between this and the value for the time-step size used to simulate the raster

pattern is the temporal error.

ρ error source value [kg/m3]
Spatial Convergence 0.010

Temporal Convergence 0.009
Coding 0.002
Total 0.021

TABLE 10: CFD errors for density in the Fluent simulation results

Several unit test models were run when the investigation began and whenever

new UDF’s were tested to verify Fluent’s consistency. The first tests were simple

models that had experimental and simulated results to compare with the output

from Fluent. The first of these can be found online at Ansys in the tutorial section.

The later models generally took the form of a parallelepiped the same size as the total

raster pattern in the Qweak target. In these the inlet was one long side (upstream
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Pattern Frequency [Hz] RMS Error [ppm]
480 0.02
240 0.06
120 0.3
96 0.5
80 0.7
60 1.3
48 1.5
40 1.5
30 2.2
15 4.3

TABLE 11: Histogram RMS errors reported by ROOT for the nominal case

from the interaction region) and the outlet was the opposite side (see Figure 37).

These were used to verify that Fluent is able to reproduce the raster pattern and

FIG. 37: Diagram of the unit test model used to test raster motion and beam inter-
action volume. The LH2 moves from left to right.

heat deposition successfully. These models were also important for checking the beam

spot size and total volume of the interaction region. The volumes were very close to

the calculated value, but there was some discrepancy in the final model and is listed

in Table 10 along with round-off error in the code as ”coding error”. These errors

are added to the histogram fitting error reported by ROOT. An example can be seen

in Table 11.
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4.10 ONE-TENTH SCALE MODEL

The full size model proved too slow to search effectively for a comparison to the

Qweak data and the simulation results. One full size model ran for two months and

returned only enough density values to fill histograms for the highest two frequencies.

One method of speeding up the simulation time was to down-scale the spatial size of

the model to one tenth it’s original size (“One Ten” model). The spatial dimensions of

the model were scaled to one tenth the original size. This decreased the time Fluent

required for each time step from minutes to seconds and allowed many models to

be run in the time it would have taken to run one full-size model. All the other

parameters were left as they were in the full size model. All of the following results

in Section 5.2 are from the One Ten model.

Parameter Full-size One Ten
Target Length 34.5 cm 3.45 cm
Beam radius 0.01 cm 0.001 cm
Raster area 4× 4 mm 0.4× 0.4 mm

Al window thickness-beam in 0.1 mm 0.01 mm
Al window thickness-beam out 0.127 mm 0.0127 mm

ṁ 1 kg/s .001 kg/s
Power deposited in LH2 2140 W 214 W
Power deposited in Al 25 W 2.5 W

TABLE 12: Parameters scaled by a factor of 1/10 for the One Ten model. The values
for power deposition are calculated from Equation 11 with l′ = l/10.
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CHAPTER 5

RESULTS AND INTERPRETATION

5.1 QWEAK RESULTS

The σtgt values from the production runs (at close to nominal parameters) of the

Qweak experiment that were analyzed can be seen in Figures 38 to 42 and a table

of the important values in Table 13. σtgt was found using the method in Chapter 3

and includes counting statistics calculated with the GEANT simulated detector rate.

The values for σtgt at the pattern frequency of 480 Hz are relatively consistent, but

the fit parameters, a, b, and c, are not. The fit parameters are for the equation

σtgt =

√

a2

f b
p

+ c (61)

where σtgt is in ppm, and fp is the pattern frequency in Hz. This is based on the

pink noise spectrum (1/fa) found widely in nature [35] and used to characterize the

boiling spectrum of the Qweak target from different orderings of helicity states in

2014 [23]. The parameter c was included to define any constant offset between the

values of σtgt from the Qweak experiment and σρ from simulations.

Run number Ibeam [µA] fpump [Hz] σtgt[ppm](480Hz) a b c
11740 166 28 56.84 891 0.166 -476
12160 177 29 44.95 961 0.188 -491
12080 179 30 52.77 1378 0.103 -949
18440 176 30 34.01 1440 0.109 -996
17245 176 30 33.30 913 0.300 -329

TABLE 13: Data from Qweak σtgt analysis for runs at close to nominal values. The
parameters a, b, and c are for the fit to Equation 61.

The ROOT files for the target boiling study at the end of Run 1 were also ana-

lyzed. These files contained runs with three parameters varied: Beam current, LH2
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FIG. 38: σtgt for run 11740. Beam current= 166 µA, LH2 pump frequency =28 Hz.
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FIG. 39: σtgt for run 12160. Beam current= 177 µA, LH2 pump frequency =29 Hz.
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FIG. 40: σtgt for run 12080. Beam current= 179 µA, LH2 pump frequency =30 Hz.
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FIG. 41: σtgt for run 18440. Beam current= 176 µA, LH2 pump frequency =30 Hz.
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FIG. 42: σtgt for run 17245. Beam current= 176 µA, LH2 pump frequency =30 Hz.
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pump frequency, and raster size. Only the runs with varying beam current and pump

speed were to be simulated with CFD so the runs with varying raster size were ig-

nored. The only runs that were easily available with varying current with pump

speed and raster size constant were at fpump=30 Hz and raster size of 3 × 5 mm.

These results with varying currents can be seen in Figure 43. The lines connecting

the data points are there to guide the eye to the anomaly at 240 Hz pattern frequency.

The values at 480 Hz, the nominal quartet frequency, are higher than expected but

they increase with increasing current as expected. Many attempts were made to fit

the individual data sets, including cutting all the data points from 80-240 Hz. The

fits were poor (reduced χ2 > 50) and the fit parameters were not consistent. The

Qweak log books [28] for one of these runs mention that there were some issues with

the BCM’s during these runs.

The data from varying the LH2 pump frequency is shown in Figure 44. The

anomaly at 240 Hz is not there for these runs but the fits to Equation 61 were

very poor. The values at the lowest pattern frequency, 15 Hz, at 12 Hz LH2 pump

frequency are more than twice the value for the nominal case.

5.2 CFD RESULTS

All of the following results were simulated on the One Ten scale model (See

Section 4.10). The conditions of the simulated target are given in the values of the

corresponding full size model, ie 30 Hz pump in the simulation means ṁ = 0.001

kg/s.

The temperature profile of the solution in the xz-plane can be seen in Figure 45.

This is at nominal conditions; 30 Hz fan, 180 µA beam current. The simulation had

run for 2 seconds of flow time (≈ 2000 MPS or 56,000 timesteps). The temperature

scale on the left has been reduced to 20 < T < 22 K. This scale captures everything

but a small area directly adjacent to the windows. A beam axis view of the wall

temperature of the target can be seen in Figure 46. The temperature scale in this

plot is also 20 < T < 22 K. The area of the beam spot which is > 22 K is removed.

A closeup of the LH2 at the beam out window can be seen in Figure 47. The hot
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FIG. 43: σtgt results for the target boiling runs that varied beam current with LH2
pump frequency= 30 Hz and raster dimensions of 3 × 5 mm at the end of Run 1.
The lines are just to aid in viewing. Note the anomaly at 240 Hz pattern frequency.
Error bars have been suppressed.
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FIG. 44: σtgt results for the target boiling runs that varied LH2 pump frequency with
beam current= 170 µA and raster dimensions of 3×5 mm at the end of Run 1. Note
the high value of σtgt at fpump = 12 Hz. Error bars have been suppressed.
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square in the center of the figure is the aluminum beam out window and it is bisected

by the fluid in the xz-plane.

The beam nipple temperature in Figure 47 shows a tilted hourglass pattern in the

aluminum window from the raster motion. This was seen many times in investigating

the raster motion. Four times every MPS, the beam spot motion would result in two

successive turns close to the corner of the 4 × 4 mm2 square. This meant that the

beam lingered in the corner for a slightly longer time and the resulting heat increase

in adjacent corners produced this hourglass shape. The hourglass was mirrored in

the x-plane halfway through one MPS. This can be seen in Figure 48.

FIG. 45: Temperature in the xz-plane through the center of the cylindrical cell as
simulated by Fluent. The fluid flow is from left to right.

The asymmetry width versus frequency plot made from the Fluent simulation

results can be seen in Figure 49. This situation is the default stated above, 180 µA

and 30 Hz pump. These are the same parameters in the case shown in Chapter 2

and the behavior of the asymmetry widths as a function of pattern frequency should

show the same dependence on frequency.

Similarly in Figures 50 to 52 the asymmetry widths can be seen for four different

beam current values. Four separate currents were investigated. In addition to the

nominal 180 µA, 160 µA, 200 µA and 360 µA were simulated with the pump speed

set at 30 Hz. Figure 49 is the simulation with nominal parameters.
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FIG. 46: Wall temperature on the beam exit side of the Qweak cell from the simu-
lation results. Fluid flow is from left to right. The dark blue represents ≈ 20 K and
beam spot has been removed by setting the scale to exclude anything over 22 K.

FIG. 47: The temperature in the xz plane up to the beam out wall of the cylindrical
cell. The square is one half of the 0.4× 0.4 mm beam out window. The scale is from
20 to 62.8 K.
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FIG. 48: Close up of the beam out window showing the temperature half way through
a Lissajous pattern. The temperature scale is 22.1 to 62.8 K.

In Figures 53 to 54 the asymmetry widths for two different LH2 pump speeds can

be seen. The beam current is 180 µA for all these results. The case with a pump

speed of 30 Hz is the same as Figure 49 since it is the nominal case.

Two heating sources were separated to examine their contribution to the overall

target noise. The first source was called bulk heating. This is defined as the power

deposition in the LH2 through the beam interaction volume with no power deposition

in the aluminum windows. The power deposition in the windows accounts for the

other and is called wall heating. In the Figures 56 to 57, three heating situations are

shown at each current setting. In addition to only the heating at the windows (”No

Bulk”) and only the heating in the bulk (”No Wall”), the full case with both is also

shown. The vertical axis is logarithmic because the ”Full” and ”No Wall” results

were almost identical. From these plots it appears that the majority of the density

fluctuations are coming from the ”Bulk” and the boiling at the windows accounts for

a small fraction of the total asymmetry widths.
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Figures 58 through 62 show the temperature, density and LH2 velocity in the

entire raster volume as a function of z[m], the distance through the target from

entrance to exit window. The temperature and density are shown for both the

diffuse beam (no raster motion) and the rastered beam. The velocity is the same

for both situations. It is clear that the only place a phase transition occurred was

at the windows since the temperature of the fluid between them never reached the

saturation point of 23.7 K (Figures 58 and 61). The velocity of the fluid (Figure 60)

is the same in both the rastered and nonrastered cases. It is largest at the windows

and lowest between the two central manifold inlets to the cylindrical cell. Where the

velocity is lowest, the density is also low.

Over twenty simulations with different input parameters were run and the values

of the fit parameters and the values of the asymmetry RMS can be seen in Table

14. All the simulations returned asymmetry widths which were roughly a factor of a

hundred less than the Qweak results. Over fifty simulations were run with short flow

times (1 second) looking for a factor of ten (at least) raising of the σ values at 480 Hz

pattern frequency. Only a couple of times was this possible and the parameters led

to a target that did not have the same behavior as Qweak; the temperature difference

was far too high or low, the flow patterns were not physical, ect.

There was some consistency with the value of the σ’s for varying current. The

values increased with increasing current, but the fit parameters (an indication of

the behavior at different time scales) were not. From Figures 53 and 54 it is clear

that varying the LH2 pump speed below the nominal value of 30 Hz also led to

inconsistent results. As a comparison, the values for σ from the CFD simulations

was multiplied by a constant so that the value at 480 Hz matched the value for sigma

from the Qweak data. The multiplier was 98 and the comparison plot can be seen in

Figure 63. It is clear that the noise in the CFD model grows much faster than the

Qweak data as the pattern frequency decreases.

5.3 SUMMARY

This study was meant to provide a path to better target design in future parity
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FIG. 49: Beam current=180 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 50: Beam current=160 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 51: Beam current=200 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 52: Beam current=360 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 53: Pump frequency=10 Hz, Beam current=180 µA. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 54: Pump frequency=15 Hz, Beam current=180 µA. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results. Each data point is the statistical width of a histogram filled with the value
of the asymmetry for patterns corresponding to the frequency.
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FIG. 55: Beam current= 180 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results separated into only window heating (No Bulk) and only bulk heating (No
Wall). Each data point is the statistical width of a histogram filled with the value of
the asymmetry for patterns corresponding to the frequency.
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FIG. 56: Beam current= 160 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results separated into only window heating (No Bulk) and only bulk heating (No
Wall). Each data point is the statistical width of a histogram filled with the value of
the asymmetry for patterns corresponding to the frequency. Error bars are suppressed
for clarity.
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FIG. 57: Beam current= 200 µA, Pump frequency=30 Hz. Density asymmetry width
versus frequency for the mock helicity patterns in the Fluent density simulation
results separated into only window heating (No Bulk) and only bulk heating (No
Wall). Each data point is the statistical width of a histogram filled with the value of
the asymmetry for patterns corresponding to the frequency.Error bars are suppressed
for clarity.
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FIG. 58: Beam current=180 µA diffused, Pump frequency=30 Hz. ρ versus z, the
distance along the beamline through the target. All the ρ values at each z are from
all the grid points in the raster volume in the xy-plane at that z. This is with no
raster and the total deposited power diffused through the raster volume. The average
is shown in red. The simulation results are collected over the entire raster volume
not the beam volume.
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FIG. 59: Beam current=180 µA diffused, Pump frequency=30 Hz. Temperature
versus z, the distance along the beamline through the target. All the Temperature
values at each z are from all the grid points in the raster volume in the xy-plane at
that z. This is with no raster and the total deposited power diffused through the
raster volume. The simulation results are collected over the entire raster volume not
the beam volume.
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FIG. 60: Beam current=180 µA, Pump frequency=30 Hz. Magnitude of fluid velocity
versus z, the distance along the beamline through the target. All the velocity values
at each z are from all the grid points in the raster volume in the xy-plane at that z.
The simulation results are collected over the entire raster volume not just the beam
volume.
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FIG. 61: Beam current=180 µA rastered, Pump frequency=30 Hz. ρ versus z, the
distance along the beamline through the target. All the ρ values at each z are from
all the grid points in the raster volume in the xy-plane at that z. This is with the
beam following the raster motion and the the ρ values collected halfway through one
Lissajous pattern. The simulation results are collected over the entire raster volume
not just the beam volume.
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FIG. 62: Beam current=180 µA rastered, Pump frequency=30 Hz. Temperature
versus z, the distance along the beamline through the target. All the temperature
values at each z are from all the grid points in the raster volume in the xy-plane at
that z. This is with the beam following the raster motion and the ρ values collected
halfway through one Lissajous pattern. The simulation results are collected over the
entire raster volume not just the beam volume. The saturation temperature for LH2
under the conditions of the Qweak target is shown in red.
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FIG. 63: By multiplying the CFD results by 98, they may be plotted with the
extracted Qweak target results. The error bars have been suppressed for clarity
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Ibeam [µA] fpump [Hz] σ at 480 Hz [ppm] a b c
160 30 0.596 2917.7 3.3337 0.5225
*180 30 0.603 3663.3 3.4630 0.7717
200 30 0.810 5834.9 3.608 0.8752
360 30 1.27 83937.3 4.571 0.9728
180 10 0.884 1.802 0.4389 0.3606
180 15 0.710 2964.8 3.254 0.0216

Qweak Run 17250 Results
179 30 59.5 757.0 0.4454 -135.34

TABLE 14: Results for the asymmetry widths from the One Ten model for 480 Hz
and the fit parameters (a,b and c) from y =

√

a2/xb + c. For varying beam current
the RMS increased with increasing current as expected, but the values were a factor
of 50 to 100 too low. The LH2 pump speed results were inconsistent as well as the fit
parameters for most of the results. * indicates the nominal case and the RMS value
at 480 Hz reported from Qweak was≈ 53 ppm.

violation type experiments where the beam helicity is flipped at a certain frequency.

The first objective was to gain some insight into target density fluctuations by simu-

lating the target and comparing the results to Qweak data. The main insight acquired

may be the limitations of this kind of analysis. The σ values at the quartet mock

helicity frequency (480 Hz) from the CFD simulations were 50-100 times lower than

the values extracted from the Qweak data. The comparison plot Figure 63 shows

that the CFD model reported much higher σ values at low frequencies. The CFD

values in this figure have been scaled by a multiplier of 98 to make the 480 Hz data

point match that of the Qweak data.

For 4.1 seconds of fluid flow time in the CFD simulation 500 values for the

asymmetry calculation fill the 480 Hz histogram (500 pattern∗4 MPS/pattern ∗28
Timesteps/MPS∗37µs flow time/timestep. This takes between 5 days and a week

to simulate with all 512 processors. For this amount of flow time, only 15 counts

go into the 15 Hz pattern frequency histograms. In order to investigate the density

fluctuations at 15 Hz pattern frequency, 500 values would take 66 seconds of flow

time or 80 to 113 days of simulation time. This speed of simulation is with the

quadrilateral approximation of the beam raster motion and the One Ten model.
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Without the quadrilateral approximation, 66 seconds of flow time would take years

since it takes 28 timesteps at 1 µs per timestep for every one timestep with the

approximation (∼ 37µs per timestep). For comparison, one runlet in the Qweak

data was 5 minutes. That corresponds to 300 s of flow time and 2,249 counts in the

15 Hz histogram. The lack of counts in the lower frequencies in the Fluent data may

explain some of the discrepancy in Figure 63.

There were a limited number of Qweak runs that were dedicated to taking data

pertaining to target boiling. The runs with varying current had an anomaly at 240

Hz pattern frequency and higher than average values at 480 Hz. From the Qweak

logs it appears that something was wrong with BCM’s during these runs. Fitting the

data and comparing to the CFD values was not possible. Fitting to Equation 61 also

did not work for the varying LH2 pump frequency runs. Despite this, the behavior of

the asymmetry calculations may prove useful for future work in density fluctuations.

There didn’t seem to be any problems with these runs, so this could mean that a

different fitting function is needed at lower pump frequencies. The ability of Fluent

to reproduce the time dependence of density fluctuations is still unclear. The time

it takes to simulate the models combined with the number of knobs left to turn

in Fluent mean much more work is possible to benchmark the program’s ability to

reproduce the fluctuations. Some of the important parameters left to investigate are

turbulence models and multiphase method. There are plenty of options in both that

may have relevance to this simulation, including UDF’s for mass transfer, slip and

drift velocity, etc.

In conclusion, using CFD to simulate density fluctuations in a model of a cryogenic

target at the precision required to estimate noise in parity violation type scattering

experiments is not verified. A mathematically effective way of predicting the effect

of a design on density fluctuations at different timescales is dependent upon bench

marking the CFD program with a well controlled experiment without the complexity

of Qweak. The σtgt for timescales other than the quartet frequency was not of interest

in Qweak, and since the value was calculated by subtracting all other known sources

of noise, it is possible that some noise at timescales other than the quartet frequency
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is being included with it.

5.3.1 DISCUSSION

There are several possibilities to explain the inconsistency in the analysis. Three

of those possibility’s will be discussed: user error, an unaccounted noise source, and

an inability of the simulation to reproduce the density fluctuations.

The first explanation is that the simulation input parameters and/or the model

itself were flawed in someway. It would be preferable to rule out human error and

every possible attempt was made to check all the steps along the way, but it must

remain. In this thesis an effort has been made to catalog all these checks so in the

future if someone finds an error in execution or assumption they will not have to

start from scratch. There are definitely more possibilities that may be explored in

the modeling and simulation of the Qweak target with Fluent. The One Ten scale

model can be considered a trial model meant more for speed than accuracy. Any

future work should use the full size model.

The second is that the simulations are providing the actual asymmetry width con-

tribution from the boiling in the target and some other source of noise is responsible

for the noise term in the Qweak experiment that is attributed to target boiling. This

is more likely than it sounds. What the boiling term represents is really everything

left over after the known terms are removed. This is a convoluted way to gather

information about what’s happening inside the target. The Qweak experiment was

only interested in noise at a pattern frequency of 480 Hz. If there was noise at other

frequencies it could change the values and fit parameters in this work, and gone

unnoticed during the experiment.

The third possibility is that CFD is not a precise enough tool to carry out this

type of analysis. This is coupled with the first conclusion in that any code is only

as accurate and precise as the inputs it receives. This third conclusion is meant to

say that even with the best input parameters, there is some mechanism that is not

taken into account in the solution process. The most obvious problem in this regard

would be bubble formation at the windows during the time-dependent part of the
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simulation.

When reading up on the previous work on the density fluctuations it was troubling

to find that is known about bubble sizes, frequency and location were from the

extraneous data (noise terms) from complicated experiments which were designed to

search for other physics. The behavior of cryogenic liquid targets interacting with

electron beams deserves it’s own experiment that has the capturing of density and

boiling data as the main design goal. This does not necessarily have to be preformed

using a large accelerator facility like CEBAF. It could be done almost at tabletop

size. Coupling this type of an experiment with bench marking procedures in CFD

would unravel the confusion as to what is actually happening to a cryogenic liquid

when exposed to beam and lead to the best way of either ruling out or confirming

the other two conclusions. Early on in this study an attempt was made to find

video and/or acoustic transducer data on LH2 boiling. None could be found and it

was heard several times that the extra data taking hardware for this purpose were

requested and denied for this and other experiments at JLab. The radiation in the

experimental halls, especially in the target itself, make such data very difficult to

record. A smaller experiment using heating elements to avoid radiation would allow

a detailed comparison to the density fluctuations reported in other experiments and

provide benchmarking for the simulations.

CFD has proven itself robust in many different applications with the right setup,

so the likelihood that it is unable to solve the problem is small. That being said,

the ppm scale of the simulated results that this type of analysis is looking for would

be taxing for any simulation code. Fluid dynamics is more complicated than other

types of simulations (electromagnetic, mechanical, etc.) and thre is a chance that,

regardless of input parameters, this is just asking too much of an iterative process.

Within the time scale of this analysis ANSYS released two major updates to Fluent

along with several smaller ones. The latest release, Fluent 18.1 was released this

year and has not been tried yet. It is always possible that one of these updates will

provide the necessary adjustments to change the results of these simulations. To

determine if CFD can do a simulation like this with millions of time-steps and still
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remain accurate to a ppm level would require the elimination of all input parameters

as problems. When all of the basic solution types and options have been exhausted

there is still the addition of UDF codes to simulate things like turbulence, mass-

transfer, and energy sources. This work focused mainly on the energy source UDF

and did not attempt UDF’s for turbulence and mass-transfer.

The turbulence models in FLUENT are many and well-documented. In a steady

state situation the simulated flow inside the target agrees with what is known about

the target from the experimental data, but in the time-stepping realm without bench-

marks there is no way to know how well the flow patterns are reproducing reality. The

turbulence in the target is essential for noise analysis as it has direct bearing on the

mixture of the heated fluid inside the full raster interaction volume with the colder

fluid upstream and warmer fluid downstream. A small variation is this mixing over

time can lead to much different results in the mock helicity asymmetry equations.

In conclusion, using CFD to simulate density fluctuations in a model of a cryogenic

target at the precision required to estimate noise in parity violation type scattering

experiments must wait until a bench marking experiment for bubble formation is

done. As in most of the history of cryogenic fluid target design, a design can end

up being very effective just from a study of older designs that have and have not

worked. A mathematically effective way of predicting the effect of a design on density

fluctuations at different timescales is dependent upon knowledge of how the bubbles

at the windows form and burst. Once the parameters for the situation at the windows

is understood better, CDF should be able to carry out this kind of simulation well

enough to make conclusions about the noise from density fluctuations.
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CHAPTER 6

SUPER HIGH MOMENTUM SPECTROMETER(SHMS)

PRIMARY BEAM DISPLACEMENT ANALYSIS

During the 6 GeV era there were two standard spectrometers for Hall C, the

High Momentum Spectrometer (HMS) and the Short Orbit Spectrometer (SOS). In

September 2008 JLab received approval from the Department of Energy (DOE) to

upgrade the maximum electron beam energy from 6 GeV to 12 GeV. This doubling

of electron beam energy allows for a substantial increase in measurement capabilities

for Hadron structure experiments. Of particular importance in the DOE’s decision to

fund the $310 million upgrade is the study of quark confinement. Understanding why

quarks are only found together and never alone is one the great unsolved mysteries

of particle physics. As part of the upgrade Hall C requisitioned the Super High

Momentum Spectrometer (SHMS) to complement the existing HMS, and the SOS

was retired.

Both the HMS and SHMS have focusing elements consisting of quadrupole triplets

(Q1, Q2, Q3) [36] followed by vertically bending dipole magnets. Both the HMS

and the new SHMS are connected to a central pivot located underneath the tar-

get chamber (see Figure 64). Large wheels rolling on rails around the target allow

these spectrometers to accommodate a wide range of scattering angles. The HMS

has an angular range of 12.5◦ to 90◦ and the SHMS has a range of 5.5◦ to 40◦.

The quadrupole coils are fully enclosed by the yokes and the minimum detectable

scattering angle is limited by the proximity of the magnets to the exit beam pipe

containing the remaining unscattered electron beam. One of the primary differences

between the HMS and the newly designed SHMS is a 3◦ horizontal bending magnet

(HB) placed between the target and the first quadrupole magnet. When positioned

at the smallest scattering angle, the SHMS makes an angle of 8.5◦ with respect to
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the beam line. The HB allows particles scattered at an angle of 5.5◦ to be steered

into the optics of the SHMS by bending the trajectory of the scattered particles 3◦

horizontally away the primary beam line. Figure 65 shows the elements of the SHMS

used in this analysis. Standard equipment in Hall C includes a fixed liquid hydrogen

(LH2) target and two magnetic spectrometers. After collision with the target, the

remaining unscattered electron beam then travels past the spectrometer to a high

power beam dump (51.8 m from the target) where it can be safely absorbed [37].

Recent simulations have shown that the magnetic field leakage from the SHMS mag-

nets would steer the unscattered primary beam away from the center of the beam

dump [38]. The acceptable region of the beam dump for high current operation is a

relatively small area in the center of the larger water tank which comprises the beam

dump. If unmitigated, SHMS operations would be restricted to low electron-beam

currents for small spectrometer angles. Presented here are the first 3D magnetic field

simulations of the four leading magnets of the SHMS with emphasis placed on the

fields along the beam line and the position of the beam at the beam dump due to

these fields. A passive solution using optimal placement of extra iron along the beam

line is presented.

6.1 GEOMETRY OF THE SHMS

In order to simulate the magnetic fields from the SHMS, the yokes and coils of

the magnets were modeled with the Opera-3D software [39] as shown in Figure 66.

Opera serves as the modeler and post processor for a suite of finite element simulation

tools. TOSCA is the static electromagnetic field simulator used with Opera to find

the magnetic fields in this study. The coordinate system of the simulation was chosen

with the z-axis pointing downstream along the optics line of the SHMS (through the

center of the quads) and the origin placed at the vertex of the 3◦ bend in the HB (see

the left diagram in Figure 67). The spectrometers can be set to accept either positive

or negative particles by reversing the polarity of the magnets. TOSCA simulations

of fields for positive and negative spectrometer settings result in equal and opposite
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FIG. 64: Hall C at JLab showing the two spectrometers and the primary beam line.
The primary beam line is indicated by white arrows.

FIG. 65: Main elements of the SHMS. See text for explanation.
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magnetic fields along the beam line. To avoid complication only negative spectrom-

eter settings are reported. Once the fields are found using TOSCA, to determine

FIG. 66: SHMS magnets as built in Opera. The current densities are for the maxi-
mum central momentum setting of the spectrometer.

the beam displacement at the dump, a single electron trajectory was calculated us-

ing Opera’s post-processor. Given the electron’s initial position (the target), beam

energy (11GeV), and direction (along the beam line), Opera calculates the Lorentz

force in 1 cm steps along the trajectory and returns the electron’s position, velocity

and time at every step. Using this information and the geometry from Figure 67, the

beam displacement at the beam dump can be estimated as follows. In the simulation

coordinate system the target and the center of the beam dump window are located
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FIG. 67: Left :The geometry of the beam line on the coordinate system with the origin
at the HB and the z-axis along the optics line. The primary beam trajectory follows
the beam line to the beam dump window with no field leakage (solid line). With
field leakage (dashed line) it misses the center. Right : Close up of the intersection
between the beam line and the beam dump window showing the beam displacement,
r. See text for explanation.
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in the (x, z) plane. With the center of the target fixed at (x = 9.21, z = −175.76) cm,

the center of the beam dump window is found as a function of the scattering angle,

θ,

Dx(θ) = −(D sin (θ + 3)− 9.21), (62)

Dz(θ) = D cos (θ + 3)− 175.76, (63)

where D = 5180 cm is the distance from the target to the center of the beam dump

window. Since the beam dump window is always perpendicular to the beam line, the

angle of the window also changes with θ in this model. The diagram on the right

side of Figure 67 shows the geometry used for this correction. The law of sines for

the triangle in the diagram states

A−Dx

sinφ
=

r

sin β
. (64)

Then using the relations β = 90−α and φ = 90− (γ−α), the displacement r at the

dump is

r(A,α) = (A−Dx)
cos (α)

cos (γ − α)
, (65)

where Dx and γ are determined from the spectrometer angle. By assuming that the

magnetic fields at the beam dump window are negligible, it is possible to calculate A

and α from the Opera trajectory file. Note that a negative displacement means beam

right and positive is beam left. For the maximum displacement (rmax) of a single

electron at the beam dump window, allowances must be made for the growth in the

size of the beam due to square rastering before the target and scattering at the beam

diffuser and several vacuum windows. For safe operations of the beam dump, the

radiation control group at Jefferson Lab suggests the beam size at the dump window

should be set to a 4× 4 cm2 square around the center of the beam [40]. This limits

|rmax| to 2.25 cm so that the 4× 4 cm2 rastered beam profile fits within the 5.08 cm

radius high current acceptance region of the beam dump window.
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6.2 TOSCA FOR MAGNETIC FIELD ANALYSIS

TOSCA is an analysis module of the Opera-3d (an OPerating environment for

Electromagnetic Research and Analysis) suite of finite element software made by the

English company Vector Fields Limited. TOSCA has been used for over twenty years

and is well known for its speed and accuracy. TOSCA solves non-linear magnetostatic

or elctrostatic field and current flow problems. It formulates problems based on total

and reduced scalar potentials. In a region of space Ω

H = Hm +Hs (66)

where Hs is the field from any currents within Ω and Hm is the field produced by

any currents outside. Hm is described as the gradient of the reduced scalar potential

φ

Hm = −∇φ (67)

Hs is found directly using

Hs =
1

4π

∫

Ω

J ×∇
(

1

R

)

dΩ (68)

where J is the current density and R = |r′ − r| is the distance between the source

and field points. By combining Equations 66 and 67

−∇µ∇φ+∇µ∇Hs = 0 (69)

where µ is the magnetic permeability in Ω. FEM is then used to solve these equations

for φ in each cell. The cells are produced by discretization [41].

6.3 DISCRETIZATION AND THE FINITE ELEMENT METHOD

The discretization method is the same for FEM as it is for FVM. Opera-3d

integrates the geometric modeller and the meshing application into the pre-processor

part of the program. Setting up the mesh is a little more complicated for magnetic
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fields than it is for fluid flow. The flow space in Fluent is bounded, while the magnetic

fields from electromagnets are solved in free space where the only boundary conditions

are the magnetic field measured at an infinite distance from the source (Bd=∞ = 0).

More mesh elements mean more processing time for the solver. This leads to three

levels of mesh cell size. The iron yokes of the magnets and a tube around both the

primary beam line and the spectrometer aperture were meshed with cell sizes on the

order of one centimeter. A cylinder surrounding all the magnets and the primary

beam line were meshed with cell sizes of approximately five centimeters. Surrounding

all of this with a radius equal to ten times the length of the SHMS were cells that

could grow as large as one meter.

6.4 RESULTS FOR SHMS AS DESIGNED

From the fields simulated by TOSCA, it was immediately evident that the only

field component of interest was the vertical component along the beam line. Figure 69

shows the variation of the vertical component of the field along the beam line for

several spectrometer angles at 11GeV. For a spectrometer angle of 5.5◦ at 11 GeV

the magnetic field integral,
∫

Bydl, of the HB field leakage along the beam line

(z = {−100, 100} cm) is responsible for 78% of the total field leakage.

The displacement of the beam calculated from Equation 65 for the angles and

energies of interest are plotted in Figures 70 and 71 . With the as-designed SHMS,

the primary beam has a displacement at the beam dump window of −18.2 cm when

operated at 5.5◦ and 11GeV, and misses the window at all angles below 13◦. The

displacement vs beam energy in Figure 71 has the central momentum of the spec-

trometer set to match the incident beam energy. The displacements were more than

rmax for all the energies studied, E = {2, 4, 6, 8, 10, 11} GeV. These displacements

would inhibit beam operations in Hall C, therefore a solution needed to be found that

would bring the displacements below |rmax| = 2.25 cm for all angles and energies.

6.5 PASSIVE SOLUTION
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FIG. 68: Mesh zones in Opera to simulate the magnetic fields of the SHMS in the xz
plane. The coils of the magnets are seen in red and the the yokes in green. The HB
yoke can as a dark grey square below the first coil (from left to right). The smallest
size mesh is in the yokes and the dark grey area through the center of the coils and
the upwards to the left representing the beam line.
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FIG. 69: Variation of the vertical component, By, of the simulated field along the
beam line with the “as-designed” SHMS. Three spectrometer angles are shown with
the spectrometer central momentum set to a beam energy of 11 Gev. The horizontal
axis gives the z-component of the distance from the target along the beam pipe. The
edges of the four magnet yokes are marked along the horizontal axis.

FIG. 70: Beam displacement, r, from the center of the beam dump window vs
spectrometer angle. All displacements are taken with a beam energy of E = 11 GeV
and the spectrometer central momentum set to the beam momentum. The dashed
line indicates the maximum allowed displacement, rmax = 2.25 cm. Everything above
this line will miss the acceptable region of the beam dump window. Negative r values
correspond to beam right displacements.
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FIG. 71: Beam displacement, r, from the center of the beam dump window vs beam
energy with the spectrometer central momentum set to the beam momentum. The
displacements are taken with θ = 5.5◦. The dashed line indicates the maximum
allowed displacement, rmax = 2.25 cm. Everything above this line will miss the
acceptable region of the beam dump window. Negative r values correspond to beam
right displacements.

Redesigning and rebuilding of the SHMS magnets to overcome the beam steering

issue was not practical due to schedule and cost constraints. At the beginning of this

analysis the magnets were already being manufactured. The first beam in Hall C

was scheduled for 2016. Two possible solutions remained: (1) Use steering magnets,

accompanied by beam position monitors (BPMs), to actively steer the beam back to

the center of the beam dump window or (2) add extra iron to the existing magnet

yokes and primary beam pipe to reduce the field leakage along the beam line as

a passive solution. Steering magnets and BPMs located downstream of the target

would have to be radiation hardened and operate continuously making this the more

expensive solution. A steering magnet could be placed before the target but this

would affect the optics. Any active solution would have to be re-tuned with every

change of scattering angle or energy. The passive solution has several advantages

over steering magnets, most importantly it is intrinsically fail-safe. The fields in the
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beam pipe region will be attenuated regardless of spectrometer setting. However,

extra material downstream of the target presents an activation hazard and steps

must be taken to minimize activation. These steps include minimizing the amount

of material and modeling the activation using GEANT4 [42]. As a first step in

simulating the fields for the passive solution, extra iron of various shapes and sizes

were added to the HB yoke. The most advantageous was clearly an iron pipe around

the beam pipe but such a large amount of material so close to the beam line was

undesirable due to activation. The iron additions that were most successful are

shown in Figure 72 and the corresponding reduction in field integrals are given in

Table 15. The field integrals are along the beam line from z = {−176, 900} with a 5.5◦

scattering angle and the maximum central momentum setting of the spectrometer.

The wedges are the most successful at attenuating the fields and are far enough away

from the beam line to not become an activation problem. For comparison, the

FIG. 72: Extra iron pieces added to the HB yoke to reduce field leakage. The slabs
and wedges are attached directly to the yoke. The ’C’ cutout is permanently attached
to the cryostat which houses the coils.

displacements of 30 different combinations of extra iron pieces and pipes are plotted

versus their magnetic field integrals in Figure 73. All these simulations are for a 5.5◦

scattering angle, 11GeV electron beam and maximum central momentum setting of
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Additions Field Integral (kG cm) % Reduction
None -110.49 0
Slabs -108.76 1.57
Wedges -58.82 46.77
’c’ cutout -89.20 19.27

All -35.80 67.6

TABLE 15: Field integral reductions from adding extra iron to the HB yoke.

the spectrometer. The linear fit determines the maximum absolute value of the field

integral that constrains the displacement at the the beam dump to rmax = ±2.25

cm. Under these conditions, the absolute value of the field integral must be less than

19.25 kG · cm. Unfortunately, all the extra iron pieces on the HB yoke are unable to

constrain the absolute value of the field integral to below 19.25 kG·cm. To further

reduce the field integral, an iron pipe around the beam line at the HB was then

studied as the next step of the simulation. Several thicknesses, lengths and positions

of pipes were studied in Opera. It was found that when used in conjunction with the

wedges on the HB, the thinnest pipe wall that provides effective shielding of the field

was 0.476 cm (3/16”). Initially, short pipes around the HB were studied to balance

the total field integral. Although the displacement for 5.5◦ could be minimized to

below rmax, the behavior at larger angles and smaller energies was erratic mainly due

to saturation effects and changing locations of field maximums at different angles. To

make the pipe solution robust at all angles and energies, a 2m long pipe at HB and a

1.5m pipe at Q2 were designed (see Figure 74). The HB pipe has an inner radius (IR)

of 2.37 cm through the entire length. To minimize activation, the Q2 pipe is tapered

from IR=5.53 cm on the upstream end to IR=7.46 cm on the downstream end. The

simulated magnetic field along the beam line with the iron wedges and pipes is shown

in Figure 75. These simulations are for a 5.5◦ scattering angle and maximum central

momentum setting of the spectrometer. The as-designed SHMS field is shown for

comparison. The magnetic field integral along the beam line with the iron pipes

and wedges is −6.8 kG·cm, meeting the criteria of an absolute value less than 19.25

kG·cm found above. The high attenuation of the entire HB external field makes this
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FIG. 73: Beam displacement, r, vs field integral for 30 different combinations of extra
iron pieces on the HB yoke and pipes along the beam line. The linear fit determines
the maximum field integral for a displacement, r < rmax. All the simulation results
are taken for a 5.5◦ scattering angle, 11GeV electron beam and maximum central
momentum setting of the spectrometer.

solution robust and fail-safe. If there is any problem with the magnets (power supply

trip-off, quench, etc.), the primary beam will still have a displacement at the beam

dump window which is less than rmax. The beam displacements at the beam dump

window from this solution are less than |rmax| = 2.25 cm at all energies and angles

(see Figures 76 and 77).

6.6 SUMMARY

The Opera models and TOSCA solutions presented here have shown themselves

to be valuable for simulating the fields of the optics system in the SHMS. The SHMS,

as it is being built, has an operational minimum scattering angle of 13◦ at 11 GeV

due to field leakage from the first four magnets. This is 7.5◦ more than the designed

minimum scattering angle of 5.5◦. The stray fields steer the unscattered primary

beam by as much as 18.2 cm from the center of the beam dump window. This is

15.95 cm farther than the suggested maximum for safe beam operations in Hall C.
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FIG. 74: Top (top) and side view (bottom) of the first four SHMS magnets showing
the iron wedges on the HB yoke and iron pipes around the beam line at HB and Q2.

FIG. 75: Vertical component By of the simulated field along the beam line from the
as-designed SHMS and the SHMS with pipes and wedges at θ = 5.5◦ and 11GeV.
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FIG. 76: Beam displacement, r, from the center of the beam dump window vs spec-
trometer angle when using iron wedges and pipes. All displacements are taken with
a beam energy of E = 11 GeV and the spectrometer central momentum set to the
beam momentum. The dashed lines indicates the maximum allowed displacements,
rmax = ±2.25 cm. Everything outside these lines will miss the acceptable region of
the beam dump window. Positive r values correspond to beam left displacements.
This solution works at all angles studied.
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FIG. 77: Beam displacement, r, from the center of the beam dump window vs beam
energy with the spectrometer central momentum set to the beam momentum. The
displacements are taken with θ = 5.5◦. The dashed lines indicate the maximum
allowed displacements, rmax = ±2.25 cm. Everything outside these lines will miss
the acceptable region of the beam dump window. Positive r values correspond to
beam left displacements. This solution works at all energies studied.

The passive solution consisting of pipes and wedges suggested here is a robust and

fail-safe solution that works at all angles and energies. For scattering angles of 5.5◦

to 10◦ and a beam energy of 11GeV, the beam always hits the beam dump window

within 1 cm of the center. The same can be said for beam energies with matching

spectrometer central momentum from 2 to 11 GeV when the spectrometer is operated

at a 5.5◦ scattering angle. At larger spectrometer angles (greater than 13◦) the iron

pipes can be removed. Using clam-shell style sheaths instead of pipes would allow

for easy removal and replacement.
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APPENDIX A

FLUENT UDF CODES

It was important that both the result reporting UDF and the energy deposition

UDF shared the exact same raster motion. As discussed in Section 2.2 the raster mo-

tion of the beam was due to two air-core magnets that were driven by two triangular

waves with frequencies fx = 24.96 kHz and fy = 25.92 kHz. The difference between

them is the entire raster pattern frequency and the helicity flip rate, fy − fx = 960

Hz. To facilitate this, the position of the beam spot was determined through the use

of a two parameters, Txfrac and Tyfrac. At any flow time (tabs) in the simulation

these parameters represent what fraction of a cycle each of the triangular waves have

completed.

Txfrac = fx ∗ tabs−f l o o r ( fx ∗ tabs ) ;
Tyfrac = fy ∗ tabs−f l o o r ( fy ∗ tabs ) ;

In addition, f was used to store 960 Hz, the frequency of MPS’s in the experiment.

For the model with 1 µs timesteps, the loop to accomplish the raster motion was

i f ( Tfrac <=0.5) {
xc = 2 .∗ ( a−2.∗fwhm)∗ fx ∗( tabs−f l o o r ( fx ∗ tabs )/ fx ) ;

}
e l s e xc = 2 .∗ ( a−2.∗fwhm)∗ fx ∗ ( ( f l o o r ( fx ∗ tabs )+1.)/ fx−tabs ) ;

i f ( Tyfrac<=0.5) {
yc = 2 .∗ ( a−2.∗fwhm)∗ fy ∗( tabs−f l o o r ( fy ∗ tabs )/ fy ) ;

}
e l s e yc = 2 .∗ ( a−2.∗fwhm)∗ fy ∗ ( ( f l o o r ( fy ∗ tabs )+1.)/ fy−tabs ) ;

Where fwhm is the beam radius of 100 µm. In Fluent UDF’s, spatial variables are

called with xx[i], where i is 0,1, or 2 representing x, y, z respectively. The above
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loop specifies xc and yc, the x and y positions of the center of the beam spot at

each timestep. This code worked throughout the length of the model including the

aluminum windows. To deposit the energy into the right cells, the following loop was

used.

i f ( xc−xx[0]<=fwhm && xx [0]−xc<=fwhm &&

yc−xx[1]<=fwhm && xx [1]−yc<=fwhm)

{
i f (C R( c , t )<75.) {

source = C R( c , t )∗qvpLH2 ;

dS [ eqn ] = 0 ;

}
e l s e {

source = C R( c , t )∗ qvpAl ;

dS [ eqn ] = 0 ;

}

Where qvpLH2 and qvpAL were the power divided by density in Equation 11,

and CR(c, t) is the density in each cell as reported by Fluent. In this way the power

was dependent on density as it would be in the actual target. The “if” statement is

meant to separate the aluminum cells from the LH2 cells. In Section 5.2 the power

deposition in the target was separated into bulk and window heating. This was

accomplished by setting the source term to zero in the above loop for either the LH2

(the ”if” statement) or the aluminum ( the “else” statement). The data writing UDF

worked in exactly the same way except the last loop (power deposition) is replaced

by

i f ( xc−x[0]<=fwhm && x[0]−xc<=fwhm &&

yc−x[1]<=fwhm && x[1]−yc<=fwhm && C R( c , t )<75.)

{
den += C R( c , t ) ) ;

cvo l += CVOLUME( c , t ) ;
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cnt++;

}

This is from the first code written for this analysis and only includes the most impor-

tant two values, density and volume. This was later expanded to include velocities

of the fluid, pressure, turbulent kinetic energy, turbulent kinetic dissipation, ect.

At certain points in the project the Tfrac variables were also written to test the

repeatability of the code over many timesteps.

A.0.1 QUADRILATERAL RASTER APPROXIMATION

As in section 4.8, each MPS was approximated by a quadrilateral every 1/28th of

an MPS. While the code in the previous section was choosing cells that laid within

the radius of the beam from the center of the beam spot, this code worked with a

structured mesh, and the number of cells was the same every timestep. The size of

each cell was also larger. The first attempt at this used a similar technique to the

one above, but the volume reported by Fluent of the area that was of interest in

each timestep varied a great deal. In order to tame the erratic behavior, the loop

was removed and each timestep was calculated separately. This was done after the

model was scaled down by a factor of 10, so the lengths are also scaled down.

r e a l j =.0357142857 , l =0.25e−4, a=4e−4;

i f ( Tfrac > 0 && Tfrac <= j )

{ b1=l ;

b2=a−l ;

r=4e−6;

}
i f ( ( Tfrac > j && Tfrac <= 2∗ j ) | | ( Tfrac>1− j ) )

{ b1=2∗ l ;
b2=a−2∗ l ;
r=2e−6;

}



122

i f ( ( Tfrac >

2∗ j && Tfrac <= 3∗ j ) | | ( Tfrac <= 1− j && Tfrac > 1−2∗ j ) )
{ b1=3∗ l ;

b2=a−3∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

3∗ j && Tfrac <= 4∗ j ) | | ( Tfrac <= 1−2∗ j && Tfrac >= 1−3∗ j ) )
{ b1=4∗ l ;

b2=a−4∗ l ;
r=5e−6;

}
i f ( ( Tfrac >

4∗ j && Tfrac <= 5∗ j ) | | ( Tfrac <= 1−3∗ j && Tfrac >= 1−4∗ j ) )
{ b1=5∗ l ;

b2=a−5∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

5∗ j && Tfrac <= 6∗ j ) | | ( Tfrac <= 1−4∗ j && Tfrac >= 1−5∗ j ) )
{ b1=6∗ l ;

b2=a−6∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

6∗ j && Tfrac <= 7∗ j ) | | ( Tfrac <= 1−5∗ j && Tfrac >= 1−6∗ j ) )
{ b1=7∗ l ;

b2=a−7∗ l ;
r=2e−6;
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}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i f ( ( Tfrac >

7∗ j && Tfrac <= 8∗ j ) | | ( Tfrac <= 1−6∗ j && Tfrac >= 1−7∗ j ) )
{ b1=8∗ l ;

b2=a−8∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

8∗ j && Tfrac <= 9∗ j ) | | ( Tfrac <= 1−7∗ j && Tfrac >= 1−8∗ j ) )
{ b1=9∗ l ;

b2=a−9∗ l ;
r=1e−6;

}
i f ( ( Tfrac >

9∗ j && Tfrac <= 10∗ j ) | | ( Tfrac <= 1−8∗ j && Tfrac >= 1−9∗ j ) )
{ b1=10∗ l ;

b2=a−10∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

10∗ j && Tfrac <= 11∗ j ) | | ( Tfrac <= 1−9∗ j && Tfrac >= 1−10∗ j ) )
{ b1=11∗ l ;

b2=a−11∗ l ;
r=2e−6;

}
i f ( ( Tfrac >

11∗ j && Tfrac <= 12∗ j ) | | ( Tfrac <= 1−10∗ j && Tfrac >= 1−11∗ j ) )
{ b1=12∗ l ;
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b2=a−12∗ l ;
r=9e−6;

}
i f ( ( Tfrac >

12∗ j && Tfrac <= 13∗ j ) | | ( Tfrac <= 1−11∗ j && Tfrac >= 1−12∗ j ) )
{ b1=13∗ l ;

b2=a−13∗ l ;
r=5e−6;

}
i f ( ( Tfrac >

13∗ j && Tfrac <= 14∗ j ) | | ( Tfrac <= 1−12∗ j && Tfrac >= 1−13∗ j ) )
{ b1=14∗ l ;

b2=a−14∗ l ;
r=1e−6;

}
i f ( Tfrac > 14∗ j && Tfrac <= 15∗ j )

{ b1=15∗ l ;
b2=a−15∗ l ;
r=2e−6;

}

First, j = 1/28 defines the Tfrac interval in each timestep, and l is the distance

between each cell node in the x direction. a is the full raster pattern width (in x).

As can be seen in the diagram, this was chosen to facilitate the code to define an

x intercept of the lines with negative slope. Since the quadrilaterals run backward

halfway through the MPS, each loop is defined for two cases: the first and second

halves of the MPS. A better approximation would have been to move the quadrilateral

over one beam spot radius during the second half of the MPS in order to more closely

mimic the Lissajous pattern. Because of the relatively large structured mesh, this

was very difficult to accomplish and after running a few attempts, the asymmetry
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changed by much less than one percent, so the motion of the quadrilaterals was made

to just reverse halfway through the MPS. At the beginning and end of the MPS the

loops were not shared with the reversed motion making it 28/2 + 1 = 15 loops. Had

the beginning and end loops been combined, the beam would have stayed in the

same place for two consecutive timesteps, which would have been unacceptable. The

FIG. 78: Definition of lines in the quadrilateral approximation. Please refer to
the code. The red lines are the center of the quadrilateral for the first timestep,
0 < Tfrac <= j. Two of the lines have been extended to show the x-intercepts as a
function of a and l.

quadrilaterals are composed of four lines, all with slopes of either ±1. The lines are

defined by this slope and the x-intercept. Luckily, the UDF was hooked to the raster

volume cell zone, so any overflowing from the 4× 4 mm square was impossible. The

r variable represents the beam spot radius, but was fine tuned for each timestep to

assure that it was only catching the cells of interest. This was done by having Fluent

report both the number of cells and the volume for each timestep.
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APPENDIX B

ASYMMETRY WIDTH CODE

The same basic structure was used to find the asymmetry widths for the simula-

tion results and the Qweak data. For the Qweak data, some of the runs needed to

be replayed from tape. This was accomplished by a script written with the help of

Paul King. After the ROOT files were created, the following ROOT code was run.

This will be a condensed and annotated version of the full code only showing the

key elements. The branch of the ROOT file that contains the detector data was read

with

t t r e e−>Add( path . s t r ( ) . c s t r ( ) ) ;

TBranch ∗branch=((TChain∗) t t r e e )−>GetBranch (” qwk mdallbars ” ) ;

In this example, the branch is called mdallbars, which stands for “all of the main

detectors.” After this the number of entries, N , was found and the data stored in a

vector called Dvector

N=( I n t t ) t t r e e−>GetEntr ies ( ) ;

f o r ( I n t t a=0;a<=N; a++)

{
t t r e e−>GetEntry ( a ) ;

D = branch−>GetLeaf (”hw sum”)−>GetValue ( ) ;

Dvector . push back (D) ;

}

Now that the data is stored in a vector the asymmetry calculations can be made.

Since the asymmetries will be calculated for ten different pattern sizes, a loop was

preferable to ten different functionals. To make this “pattern loop”, first a vector

was initialized with ten entries representing the number of MPS’s in a pattern.
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Fvector [ 0 ]=4 ;

Fvector [ 1 ]=8 ;

Fvector [ 2 ]=16 ;

Fvector [ 3 ]=20 ;

Fvector [ 4 ]=24 ;

Fvector [ 5 ]=32 ;

Fvector [ 6 ]=40 ;

Fvector [ 7 ]=48 ;

Fvector [ 8 ]=64 ;

Fvector [ 9 ]=128 ;

The quartet pattern used in the Qweak experiment has 4 MPS’s for each asymmetry

calculation. Using the same nomenclature from above, this means that 960 Hz has

4 MPS’s and 15 Hz has 64 MPS’s per pattern. The complete set of frequencies can

be seen in Table 6 in Chapter 3. The value of the calculated asymmetries are stored

in a ten entry vector call ASYM The asymmetry equation is

A =
σ+ − σ−

σ+ + σ−

(70)

In terms of detector data which is recorded once every MPS and is now stored in the

vector Dv, this translates to

A =
(Dv[0] +Dv[4])− (Dv[2] +Dv[3])

∑3
i=0 Dv[i]

(71)

for the 960 Hz quartet pattern (Fvector[0]). For the next lower frequency, 480 Hz

(Fvector[1]),

A =
(Dv[0] +Dv[1] +Dv[6] +Dv[7])− (Dv[2] +Dv[3] +Dv[4] +Dv[5])

∑7
i=0 Dv[i]

(72)
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By noticing that A for every frequency breaks down the pattern into two groups, the

”+” entries and the ”-” entries, the equation for the loop becomes

A =
dp− dm

dp+ dm
(73)

where dp and dm are the sum of all the plus entries and sum of all the minus entries,

respectively, in the detector data for one pattern. At 960 Hz, (Fvector[0]=4), both

of the sums dm and dp will have two terms each. At 480 Hz, (Fvector[1]=8), each

one will have 4 terms, ect. dm and dp are then broken down into sums of pairs. For

quartets, dp = D[0]+D[4], for 480 Hz, dp = (D[0]+D[7])+(D[1]+D[6]). By adding

up entries this way a loop could be constructed by index in the following manner.

f o r (m=Fvector [ i ] ; m<=N m=m+Fvector [ i ] )

{

Double t Dp1 = 0 ;

Double t Dm1 = 0 ;

f o r ( k=0; k<Fvector [ i ] /4 ; k++)

{
Dp1 += MPS[m−Fvector [ i ]/4+k ] + MPS[m−Fvector [ i ]+k ] ;

Dm1 += MPS[m−Fvector [ i ]/2−1−k ] + MPS[m−Fvector [ i ]/2+k ] ;

}
A1=((Dp1−Dm1)/(Dp1+Dm1))∗1 e6 ;
ASYM1. push back (A1 ) ;

}

This loop fills the vector ASYM with the value the asymmetry calculation for each

pattern. The first loop moves the index, j, to the end of the first pattern, and once

the inside loop is completed, it adds one value to the ASYM vector and moves j to

the end of the next pattern. This continues until j reaches N, the size of the D vector.

Notice that dm and dp are initialized before the inside loop starts and that the “+=”

equality statement in the inside loop continues to sum the pairs of D entries until the
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entire pattern has been used (k < Fvector[i]/2), at which point the loop is exited

and dm and dp are initialized for the next pattern. This results in a ASYM vector

that has N/Fvector[i] entries. These values are then used to fill a histogram and the

RMS extracted

RMS=h1−>GetRMS( ) ;

The version of the two asymmetry loops above is the one used before the additional

nesting inside a loop over the number of MPS’s per pattern, Fvector[i]. Once that

loop was written the code would return back ten histograms and a plot of the RMS

of the histograms (in ppm) as a function of frequency. This vector was formed at the

end of the i loop as

RMSvector . push back (RMS) ;

These ten value were plotted against 960∗2/Fvector[i]. The only difference between

the code used on the Qweak data and the code used on the simulation results is

MPS averaging. The simulation produced density twenty eight times every MPS. It

would seem straight forward to average every twenty eight entries and call that an

average MPS value. Since replicating the raster motion was so important, great care

was taken to make sure that the Lissajous pattern was completed every MPS and

that there was no drift in what point in time the averaging was taking place. The

beginning and end of each MPS were therefore marked by reading the variable from

Appendix A. Because the result reporting UDF and the heat deposition UDF both

operated together, this was assurance that each MPS contained one full Lissajous

pattern and allowed the code to report an error if there were more or less than twenty

eight time steps for each one. By filling the vector D with the MPS averaged density

simulation results the loops above are the same for both Qweak and Fluent. The

double difference asymmetries for the BCM’s were found in much the same way. The

calculation had to be run separately to two different BCM’s and then subtracted.

The loop follows.

f o r (m=Fvector [ i ] ; m<=N; m=m+Fvector [ i ] )

{
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F l oa t t DpS = 0 ; F l oa t t DmS = 0 ;

F l oa t t DpE = 0 ; F l oa t t DmE = 0 ;

f o r (n=0; n<Fvector [ i ] /4 ; n++)

{
DpS += DSvector [m−Fvector [ i ]/4+n ] +

DSvector [m−Fvector [ i ]+n ] ;

DmS += DSvector [m−Fvector [ i ]/2−1−n ] +

DSvector [m−Fvector [ i ]/2+n ] ;

DpE += DEvector [m−Fvector [ i ]/4+n ] +

DEvector [m−Fvector [ i ]+n ] ;

DmE += DEvector [m−Fvector [ i ]/2−1−n ] +

DEvector [m−Fvector [ i ]/2+n ] ;

}
A=(DpS−DmS)/(DpS+DmS) ;
A1=(DpE−DmE)/(DpE+DmE) ;
A2=A−A1 ;
ASYMs. push back (A) ;

ASYMe. push back (A1 ) ;

ASYMdd. push back (A2 ) ;

}

The first BCM asymmetry uses DpS for the “+” entries, and DmS for the “-”

entries. The second BCM entries are likewise called, DpE and DmE. A and A1 are

the asymmetry calculations for each BCM and A2 is the double difference value. For

completeness, the asymmetries from both BCM’s was plotted separately and as the

double difference. See Figure B. The contribution due to counting statistics was

found by using Equation 7 in Chapter 3.

f o r ( i =0; i <10; i++)

{
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FIG. 79: Double difference frequency plots for BCM’s one and two for run 11740.
The top plot is both asymmetries separately and the bottom plot is the difference
between the two(double difference)
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CS=Current∗Fvector [ i ] /3 .3842929355197 e−5;

CSvector . push back (1/ sq r t (CS ) ) ;

}

Here, CS is σ−2
0 . While filling the vector CSvector the square root was taken and

the reciprocal value, σ0 (ppm) was pushed into the vector, CSvector. These three

values, σ0, σbcm and σm were first found through separate codes, and later combined

into one combination file. This code uses

f o r ( c=0;c<10; c++)

{
x [ c ] = 960∗2/ Fvector [ c ] ;
y [ c ]= sq r t (RMSvector1 [ c ]∗RMSvector1 [ c ]−

CSvector [ c ]∗ CSvector [ c ]−ASYMdd[ c ]∗ASYMdd[ c ] /2 )∗1 e6 ;
}

to find the frequency values from the pattern size, x[c] and σtgt which is defined as

σtgt =
√

σ2
m − σ2

0 − σ2
bcm (74)

σtgt here is the vector y[c]. The resulting plot of boiling noise is in parts per million.
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APPENDIX C

QWEAK RUNS USED
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