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In this thesis we theoretically and experimentally investigate the subwavelength

manipulation of light with nano-scale patterned metallodielectric resonators. By

coupling light to surface plasmon excitations, we calculate the modified dispersion

relation of the resulting surface plasmon polartion (SPP) modes in two types of

subwavelength resonators: (i) closed, spherical micro-resonators with nano-scale metal­

dielectic-metal shells; (ii) periodic, metal-dielectric-metal-layered silica surfaces.

We show theoretically that with the proper geometric parameters, one can use sub­

wavelength structure on spherical surfaces to manipulate the SPP dispersion relation

in a highly tunable fashion. A tunable avoided-crossing of plasmonic dispersion

bands is found to be the result of the coherent near-field coupling of silver nano-shell

SPP modes. By developing our own stable computational algorithms, we calculated
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the far-field scattering of these metal-dielectric-metal layered micro-resonators. We

demonstrate that the near-field interaction of the SPPs leads to a tunable, SPP

induced transparency in the composite particle's scattering and extinction cross­

sections.

Utilizing finite element calculations, periodically-modulated metal-dielectric-metal

layers are shown to alter the transmission properties of plasmon enhanced transmission

through their support of interior surface plasmon (ISP) modes. Our simulations

indicate that, subwavelength silver-silica-silver trilayers coating arrays of silica cylinders

support ISP modes analogous to those found in spherical metal-dielectric-metal shells.

We examine the coupling between ISP and radiating SPPs, and find the possibility

of efficient free-space coupling to ISP modes in planar geometries. Further, the

excitation of these ISP modes is found to predicate plasmon enhanced transmission,

adding directionality and refined frequency selection.

Experimentally, we show that self-assembled monolayers of silica spheres form

a novel substrate for tunable plasmonic surfaces. We have developed a deposition

method to conformally coat these hexagonal-close-packed substrates with nano-scale

silver-polystyrene-silver coatings. We use angle-resolved spectroscopy to study their

transmission properties. We have discovered that the presence of the silver-polystyrene­

silver layer supports the excitation of ISP modes, and that these excitations significantly

alter the plasmon enhanced transmission. Finally, we have discovered that the use of

the ordered monolayers as a plasmonic substrate can create a new effect in conjunction
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with plasmon enhanced transmission: directionally asymmetric transmission. This is

demonstrated with optically thick silver coatings evaporated upon onto the ordered

sphere monolayers.
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CHAPTER I

INTRODUCTION

Historical Context and Introduction

In this thesis, we examine the interaction of light 1 with structured metal surfaces

which vary on scales much smaller than that of the external free space wavelength

(AO)' In this, we are part of a new optics frontier, bringing manipulation of light

down to length scales on the order of tens of nanometers. This is made possible by

the existence of bound surface waves, called surface plasmon polaritons (SPP) at the

interfaces between metal and insulating materials. This revolution in the way we think

about controlling light waves has been brought about by the substantial advances in

the fabrication of nano-scale metallic surface features, modern optical characteriza-

tion techniques, the availability of powerful computational tools, and an increasing

pressure to create nanoscale integrated devices [1]. In this thesis, we will utilize all of

these enabling aspects to study the effects of coherent coupling of SPP surface waves

on and between spherical and hemispherical metal-dielectric (MD) interfaces.

For approximately one-hundred years, studying the interaction of electromagnetic

1Note that "light" in this work refers to electromagnetic radiation in the visible and near-infrared
regions of the electromagnetic spectrum (400nm-lOOOnm). Other electromagnetic spectral regions
will be denoted with their conventional labels: microwaves, terahertz, etc.
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Figure 1.1. Papers with the topic of "plasmons," as retrieved from, and analyzed
with, the lSI vVeb of Knowledge database. [7] (blue curve) analysis is limited to
lSI's physics and optics subcategories. The difference from the total can mainly be
attributed to the use of plasmonic sensors in the life sciences. (inset) Log of physics
and optics publications illustrating the scale break correlated with the start of the
study of pl(),smons in coherent nano-optics. I31u<~ lines are line(),r i1ts to the dat(), from
1986-1996 and from 2000-2007.

(EM) radiation at the interface of metals and insulators has piqued the interest of

many physical-scientists. Over the past two decades there has been an explosion in the

amount of research contributed to this i1eld, i1gure 1.1. From their beginnings, these

investigations have been driven by a wealth of possible applications, and have been

made possible by technological advances in our ability to manipulate the structure

of metal-insulator interfaces on an ever decreasing size scale. From its theoretical

foundations (Sommerfeld [2], Zennek [3], and Mie [4]) and its experimental beginnings

(Wood [5] and Farady [6]) has sprung the modern i1eld of surface plasmon polaritons:

the coupling of the EM field and th(~ nano-structured metallic surfaces of today's most

advanced materials science technologies.
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Delocalized Surface Plasmon Polaritons

Central to the optical study of nano-structured metal surfaces is the coherent

excitation of the conduction electrons at the metal-insulator interface. The earli-

est theoretical work on this concept is generally considered to be Sommerfeld's and

Zennek's studies of radio frequency surface waves along finite conductivity wires and

planes. Experimentally, in 1902 Wood found "most remarkable" [5] the rapid intensity

variation in some spectral emission lines, upon reflection from the surface of a metal-

lic grating. Nearly forty year later, Wood's "almost incomprehensible" [5] anomalous

diffraction was brought together with Sommerfeld's bound surface wave by Fano [8].

This work combined the coupling of the freely propagating EM wave continuum with

radiating surface currents at optical frequencies. Finally, Ritchie [9] linked this pre-

vious work and that of thin film electron electron loss spectroscopy [10, Il] bringing

together and solidifying the field of bound surface waves at metal-insulator interfaces

under the single rubric of surface plasmon polaritons (SPP). 2

As will be discussed more formally in chapter II, the high mobility of a metal's (es-

sentially free) conduction electrons allows excitation of ensemble plasma oscillations

against the restoring force of the ionic lattice background. Provided that both energy

and momentum are conserved, these coherent oscillations can be excited with both

charged particle bombardment and external EM waves. In this thesis, we are only

concerned with the subset of oscillations that exist exclusively at the metal surface

2Although it is only in the context of surface plasmons coupled to EM-fields that the addendum
polariton is added, this is the exclusive condition under which we will be operating in this work.
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that are referred to as surface plasmons (in opposition to the bulk plasmon excita­

tion). These SP excitations are bound to the metal-insulator interface, and as such

they possess a maximum electromagnetic field intensity at the interface and evanes­

cently decay into the adjacent media. The decay lengths of these exponential tails

are on the order of tens of nanometers on the the metal side of the interface and on

the order of hundreds of nanometers on the insulator side. Because they are confined

to dimensions smaller than the free space wavelength in the single dimension per­

pendicular to the interface, the lack of confinement in the remaining two dimensions

allows the SPPs to freely propagate along the surface. As such, this class of SPP

excitations are referred to as delocalized. This distinguishes them from localized SPP

excitations, where variations in the interface nanoscale geometry further restrict the

SPP decay length in all three dimensions.

Localized Surface Plasmons

Since the seminal work of Mie in 1908 [4], it has been recognized that metal

particles with small radii (with respect to an incident wavelength, r « Ao) support

resonant modes that result in very large absorption. This phenomenon can be at­

tributed to localized surface plasmons, and it can be observed in every-day contexts

such as the color of artisan stained glass and some ceramic glazes. Since Roman times,

it has been known that mixing metals such as silver and gold with glasses, ceramics,

and dyes can add spectacular color to the work [12]. In 1857, Faraday [6] was the first

to purposely create pure colloidal suspensions of monodisperse gold nanoparticles for
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optical investigation. When viewed in transmission, these colloidal solutions exhibit

the rich red color indicative of the localized gold plasmon dipole resonance. 3 It is

due to the very small size of the gold particulates (r rv IOnm) that the solution color

is no longer "gold." The lowest order spherical absorption resonance for IOnm gold

nanoparticles is centered in the green part (500nm, c.f. chapter III) of the optical

spectrum. The green absorption thus results in the weighted transmission of red light.

As will be examined in detail in chapter III when the metal particles become

larger, and/or are coated with additional shells of insulating and metallic materials,

this simple picture of dipole plasmon excitation becomes much more complicated. By

implementing an extend form of Mie's curvilinear scattering theory we will explore

the effects on SPP coupling by multi-shell plasmonic particles whose radii are on the

same scale as that of the incident EM wavelength. This will lead us to several fas-

cinating effects, including nano-engineered coatings that can induce both enhanced

electromagnetic absorption, narrow frequency scattering transparencies. We will also

go beyond ]'v1ie's scattering theory, and its multi-shell extensions, to examine theo-

retically and experimentally the effects of thin, fractal, silver shells on the spherical

surface plasmon resonance.

Because the SPP is the result of the coupling of freely propagating EM radia-

tion and these various surface modes, it can be regarded as the propagation of a

bound (or guided) photon with a modified dispersion relation. It is this one-to-one

3It is interesting to note that these suspensions are highly stable, and that in fact, you can still
view the original gold colloids created by M. Faraday at the Royal Institution of Great Britain [13].
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correspondence between SPPs and photons, and the extreme sensitivity of SPPs to

nano-scale surface structure, that has rekindled the interest of the physics community.

In the next section, we will look at this renewed study of SPP properties in novel

nano-scale geometries. We will show that it has led to many recent discoveries in the

sub-wavelength control of EM radiation, and holds the promise to create sensors that

may be able to "see" single molecules.

Modern Use and Research of SPPs

In many modern industries there exists the technological pressure to generate

smaller, more efficient, and cheaper material structures in a wide variety of applica-

tions. This is especially true in the information technology and biomedical industries.

The race to keep pace with Moore's "law,,4 and the investigation of biological systems

at the sub-cellular level is manifesting as a huge drive towards creating nano-scale

solutions. In both biology and the semiconductor industry, light has historically been

used as the primary tool for non-invasive investigation and process control. The fun-

damental barrier of the diffraction limit (limiting resolution to rv >../2) hinders the

future use of freely propagating and guided optical light in such nano-scale applica-

tions. However, as has been recently discovered [15], we can utilize SPPs as a tool

to manipulate EM fields at optical and near-infrared frequencies in volumes much

smaller than the free space diffraction limit would otherwise allow. In addition to

4In 1965 IBlVI cofounder Gordon Moore noted the annual doubling trend of Ie component den­
sity [14]. With nearly 50 years of industry adherence this trend has taken on the force of law.
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increased resolution, the sensitivity of the SPP resonance to the complimentary di­

electric environment creates the possibility of using delocalized and localized SPPs

as extremely sensitive surface detectors [16] and nanoscale labels for subwavelength

biomedical imaging [17, 18].

The above enumerates the two main branches of plasmon application. These

can be broadly separated into the two categories of subwavelength optics ("light-on­

a-chip") and SPP based sensors ("lab-on-a-chip"). As the colloquial names suggest,

both objectives aim towards creating compact and complete solutions to technological

problems such as integrated optical circuits and immunoassay of biologically inter­

esting molecules. The large, exponentially decaying EM fields at the metal-insulator

interface produced by SPPs allows them to be both highly confined, and highly sensi­

tive to/influential on their immediate environment. The quest to structurally control

and measure the SPP near-field energy distribution comprises a major part of the

research of SPPs for real world applications. Below we briefly outline some current

active areas of research in the field of SPP manipulation which are the most relevant

to our work.
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Coherent Nanophotonics and Plasmonics

Sub-Wavelength Confinement of Light

In 1998, Ebbesen, et al. published their work on the extraordinary transmission of

visible light through arrays of subwavelength cylindrical holes in metallic films [19]. As

illustrated in figure 1.1, this publication created a renewed interest in surface plasmon

research within the physics and optics community for their use in the sub-wavelength

manipulation of EM fields.

The potential of SPPs to create active and passive optical elements on scales far

below the diffraction limit may bring integrated optical components down to the same

length scale as their electronic counterparts « 100nm). There are a wide variety of

paths currently being pursued to achieve this goal. The most promising geometric

configurations proposed are: thin (rv 10nm) metal strips (dielectric-metal-dielectric,

DMD, films) [20], nanoparticle chains and arrays [21, 22], and metal-dielectric-metal

(MDM) structures5 [23-25]. On top of these "basic" substrates, further control can

be gained from adding patterning and/or periodic structure to create SPP analogs of

waveguides [26, 27], lenses [28, 29], Bragg reflectors, beam splitters, and other passive

optical elements [30].

Multilayer plasmonic (specifically MDM) structures, such as we are studying,

are a very promising avenue to creating highly confined optical components with

5MDM structures are also called gap and channel configurations, because the SPP is confined to
the small dielectric space interior to two metal interfaces.
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Figure 1.2. Schematic comparison of (a) a DMD strip SPP waveguide to a (b) MDM
SPP waveguide. The strip guide has a propagation length on the order of centimeters,
and weak confinement perpendicular to the metal interface (;::: 5 p,m). MDM SPP
waveguides have propagation lengths rv 100 p,m and perpendicular confinement rv
Ao/10.

reasonable propagation lengths. In SPP systems there is an inherent correlation

between increased confinement and increased loss. This has historically limited their

usefulness as a ultra-high density component of nano-scale optical circuitry. Strip

wave guides (DMD structures) have recently been proposed as a low loss (long range

propagation) alternative to single interface SPP waveguides.

However, strip waveguides posses low loss because the thin (rv 10nm) metal strips

guiding the SPP force much of the electric field of the plasmon into the adjacent

dielectric. This causes the extended decay length of metal strip SPPs into the adjacent

dielectric. This can cause the SPP excitation to extend into the dielectric as far as

5p,m from the metal strip (figure 1.2). This places severe restrictions on the scalability

of SPP based strip waveguides in high component density applications.

In contrast, Zia, et al. have demonstrated that MDM waveguides can achieve
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high component densities (rv 104 jm) while maintaining propagation lengths of rv

50/.Lm [25]. Further, Veronis and Fan [24] have theoretically shown that MDM waveg­

uides can be fashioned with no propagation loss around very sharp bends approaching

90 0
• It has also been shown that MDM waveguides can simultaneously support both

plasmonic and conventional waveguide modes for gap sizes on the order of 100nm [23].

\lYe distinguish conventional waveguide modes from SPP guided modes, as those that

posses significant wave-vector components perpendicular to the metal interface. This

dual support is important from the point-of-view of coupling conventional guided

waves to SPP MDM waveguide modes [1]. In chapters V and VII we will explore

the free-space coupling and dispersion characteristics of such MDM SPP modes on

periodically modulated surfaces.

Metamaterials

Two other applications of subwavelength MDM layers are found in the construc­

tion of optical metamaterials [31, 32]. An optical metamaterial is a material whose

geometric structure defines, in whole or in part, its optical properties. Given the

effects of nano-scale structure on the propagation and coupling of SPPs, it should not

be surprising that plasmonic multilayers can play an important role in the creation

of such materials [33]. Two concepts which have sparked a great amount of research

are the "perfect lens" [34] and EM cloaking [35-37]. As illustrated in figure 1.3, the

perfect lens proposed by Pendry utilizes the special metamaterial property of neg-
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Point
Source

- Negative Refraction
- Conventional Refraction

Figure 1.3. A slab of negative index material reconstructs point sources in the near­
field with resolution greater than the diffraction limit. The refracted wave-vector
into a negative index material remains on the same side of the surface normal as the
incident wave-vector. A conventional material refracts on the opposite side of the
surface normal.

ative refraction to create images with resolution greater than the diffraction limit

with flat surfaces. Through similar mechanisms, Pendry, et al. and AlU and Engheta

have independently proposed methods to hide objects from impinging EM radiation.

We have also made contributions to this last area of EM particle cloaking, and we

examine the effects of plasmon induced transparency in chapter III.

These ideas are made possible through the exploitation of nanoscale metallic res-

onator configurations to create artificial optical magnetic resonances (optical "magnetic-

atoms") [38]. With MDM geometries, materials that possesses simultaneous negative

permitivity and negative permeability can be created. Such materials are referred to

as negative index materials (NIM), left-handed materials, or doubly negative materi-

a,ls. They derive their name and effects from the fact that phase and group velocities

in such materials are anti-parallel [39]. NIMs have been proposed theoretically [34],
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and shown experimentally in the microwave region [40] to construct lenses that can

reproduce near-field images that surpass the diffraction limit. While NIM materials

have been produced in the gigahertz [41] and terahertz [42] frequencies, there is cur­

rently a major research thrust to produce NIM materials at optical frequencies [31].

A wide variety of approaches are currently being pursued including periodic nanopar­

ticle arrays [43], disordered nanoparticle arrays [44], and planar MDM structures [45].

Optical cloaking has been suggested as another application of plasmonic meta­

materials. Through the use of effective negative index materials and/or plasmonic

coatings AlU and Engheta have proposed the shielding of small (r « Ao) dielectric and

metallic particles from external EM fields [35]. We have extended this work, theoreti­

cally demonstrating that it is possible to greatly reduce the scattering of micron-scale

metal and dielectric particles through SPP-SPP coupling inherent in MDM geome­

tries [46]. Our work and that of AlU and Engheta constitute only a restricted subset

of the possibilities for EM cloaking with metamaterials. In 2006 Leonhardt has for­

mally shown the needed dielectric functional dependence to conformally map the path

of a propagating ray incident upon a spherical shell onto the optical path of a ray

traveling through empty space [36]. The affected rays are excluded from the region

inside the shell material, and instead are bent around it, reemerging from the shell

as though no interstitial interaction has taken place. Pendry, et al. have used a

metamaterial shell to apply this mapping, and thus shown that it is, in principle,

possible to generate shells with the needed radial and azimuthal dielectric functional
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dependence. They have also extended the concept past the originally proposed ray ap­

proximation, and theoretically demonstrated that lossy materials can act as imperfect

cloaks [37]. These functional dependencies have been simplified to dielectric functions

that need only radial variation in the 2D case of cylinder cloaks. This has allowed

the experimental demonstration of imperfect optical cloaking at microwave frequen­

cies utilizing split ring resonator metamaterials [47] and at visible frequencies in 2D

geometries with propagating plasmon modes and multishell MDM structures [48]. In

imperfections in the cloaking come from both material loss and the approximations

producing the simplified dielectric variation with respect to the complete conformal

mapping solution.

These two applications only are a small piece of the large amount of research

on metamaterials formed through metallodielectric subwavelength structure. With

the vast number of continuing publications it seems that only imagination and the

speed with which the newest MD x pattern can be laid down with ion milling, electron

lithography or self-assembly limits the potential for new applications.

Plasmon Based Sensors

The large field enhancement and strong localization of SPPs near the metal­

insulator interface presents the opportunity to utilize SPPs as extremely sensitive

sensors of the local interface environment. SPPs based sensors can be utilized to

detect changes in the index of refraction at the MD interface through shifts in the

delocalized surface plasmon resonance (SPR) [16] of smooth interfaces, and alter-
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ations in the localized surface plasmon resonance (LSPR) of nanoparticles [49-51].

Or, selective molecular detection is made possible by exploiting the localized SPP EM

field to enhance nonlinear Stokes and anti-Stokes emission from molecules adsorbed

onto a rough metal surface, an effect known as surface enhanced Raman spectroscopy

(SERS) [52]. In addition, with the absorption inherent in the LSPR, noble metal

nanoparticles have found use as nanoscale labels in a variety of biological investiga­

tions such as fluorescence spectroscopy and nanoparticle immunoassay [18].

Surface plasmons began to be used as sensors for biologically interesting molecules

around 1990 [53-56]. From figure 1.1 one can surmise the large impact that this has

had on SPP application as a detection tool. Their strength comes from the extreme

sensitivity that the SPP excitation provides. Through functionalization of the metal

surface or nanoparticles, selective binding of specific molecules to the functional group

can can be monitored at very low concentrations [57]. Typically gold interfaces are

used due to their lack of toxicity, and their well developed surface chemistry. The

latter allows the attachment of gold nanoparticles to many types of molecules through

surface functionalization with sulphur terminated ligands [12]. In cases where toxicity

is not an issue, silver is also used, because of its stronger SPR dielectric sensitivity [58].

The shift in the SPR of delocalized SPPs is currently used extensively in a num­

ber of sensor schemes [16, 59, 60]. However, much of the current research work is

concentrated on the use of LSPRs of tailored nanoparticles to achieve the highest

sensitivities. McFarland et al. have measured concentrations of 1-hexadecanthiol at
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the 100 zeptomolar level [61]. The high sensitivity of this experiment is the result

of the large particle LSPR (rv40nm) shift incurred upon the adsorption of a self­

assembled molecular monolayer. This concentration is equivalent to rv 105 molecules

adsorbed onto the surface of a silver nano-particle with a surface area of rv 104 nm2
.

The monolayer coating thus changes the local dielectric response nanoparticle, yield­

ing a far-field macroscopic change in the frequency of the absorbed light. Haes et al.

have furthered this work and reported detection of :s 103 streptavidin molecules by

monitoring the LSPR of individual silver particles in silver nanoparticle arrays with

dark-field microscopy [51].

This work is bringing the sensitivity levels of LSPR detection down to those found

in SERS based sensors. In SERS both SPP field enhancement and SPP localization

(due to nanoscale roughness) conspire to create huge enhancements of the scattered

Stokes emission. It has been claimed that the presence of single rhodamine 6G dye

molecules on a rough silver surface have been detected [62, 63]. This represents

localized EM field intensity enhancements on the order of 1014
. While this is a

controversial result, it is generally accepted that very large enhancements are possible

due to the presence of LSPRs on rough metal surfaces. Utilizing arrays of silver

"bow-tie" nano-antenna resonators, Haynes et al. demonstrated the beneficial results

of using tailored SPPs surfaces to create SERS enhancement factors on the order of

1010 [64].

The tailoring of surfaces for use in surface enhanced Raman spectroscopy (SERS)
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and sensor technologies are the most relevant sensor applications to the work done

in this thesis. We have shown in previous work that LSPRs on the surface of silver

coated silica microresonators can be coherently coupled through the resonator Mie

resonances [65]. Because Mie resonances are tunable with the particle radius, this

may provide an additional tuning parameter for creating tailored LSPR surfaces.

As one may imagine there is a very large amount of work in other areas that

has investigators examining the properties of SPPs. It is worth briefly mentioning

the breadth of applications for which SPPs are currently being investigated. These

other directions of research include: low volume temperature sensing [66], cancer

therapy [17], photo-induced drug delivery [67], enhanced absorption in silicon solar

cells [68], nanoscale circuitry elements [69], subwavelength microscopy[70], plasmon

photolithography [71, 72], entanglement of photons [73], single photon transistors [74]

and active plasmonic devices such as surface plasmon lasing [75]. While this list is

in no way complete, it gives the reader the sense of the amazing utility of a metal­

insulator interface that can be controlled on the nano-scale. With this in mind we go

forward with our own specific investigations of SPPs that exist on the boundaries of

spheres and hemispheres. We hope to show that new and interesting effects continue

to come out of Maxwell's equations and classical physics even 100 years after Zennek

and Sommerfeld first contemplated bound waves at the surface of a finite conductor.
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The Motivation for Investigating SPPs on Curved Surfaces

A defining characteristic of the SPP excitation is its bound nature. vVe have seen

above the usefulness resulting froUl confining the ENI field to the MD interface. How-

ever, this can also be a major hindrance. The momentum missing from a propagating

photon that is associated with its binding to the metal surface doesn't allow direct

coupling to SPPs on flat MD interfaces. One way to overcome this is through the

high degree of curvature present at the surface of a metal sphere with a diameter

smaller than, or comparable to, an impinging planewave (r ;S AD). A second useful

characteristic of spherical MD-interfaces is the SPR tunability parameterized by the

radii of nobel metal nanoshells. Prodan et al. have shown that it is possible to tune

the SPR of metallodielectric core-shell particles across the visible-:'HR spectrum [76] .
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Figure 1.4. Dispersion relations for SPPs on air-silver and air-silica interfaces. Also
plotted are the light lines in air k = w / c and silica k = nsilicaW / c. klight < k spp
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This is made possible due to plasmon hybridization resulting from SPP-SPP coupling

through the thin metal shell resting on the dielectric core. As will be discussed in

more detail in chapter IV the coupling of SPPs on the shell's interior and exterior

results in the splitting of the SPP resonance frequency with one resonance branch

continuously pushed through the visible/NIR frequency spectrum as the core and

shell radii are varied.

'Ale are interested in studying SPPs on spherical surfaces to exploit this tunability

and to investigate new mechanisms for additional SPP-SPP coupling. In chapter IV

we exploit the coupling of SPPs between multiple silver-titania shells to theoretically

demonstrate plasmon induced transparency (PIT) in micron-scale MDM multishell

particles at visible wavelengths [46]. Once again, PIT is a consequence of coherent

plasmon coupling induced hybridization. This time the coupling exists between the

delocalized shell plasmons formed in the interior dielectric gaps and exterior SPPs on

the outer surfaces of a multi-shell MDM particle. Because of their strong coupling to

plane-waves, this near-field coupling of the plasmon resonances results in a reduction

in the far-field scattering cross section of the MDM particle.

In addition to simply curving a surface, periodic modulation of a fiat surface

can also result in coupling between free-propagating EM waves and surface plasmons.

'A1hen a planar interface is periodically modulated the missing free photon momentum

can be gained from scattering at the modulated surface. When combined into a peri­

odic hexagonal-close-packed lattice through evaporative self-assembly, silica spheres
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create a 3-dimensionally modulated substrate. We coat this surface with an MDl\iI

trilayer to create a novel plasmonic surface that allows the far field investigation of

delocalized MDM SPP-SPP coupling with angle-resolved extinction spectroscopy.

Thus, the presence of spherical curvature allows the coupling of radiating EM

waves to surface plasmons in both localized and delocalized regimes with a set of

tunability parameters via the various geometric radii. The tunability of the SPRs

found in spherical shells brings forth exciting possibilities for future applications,

and it is the radiative spherical SPP modes that allow us to use far-field scattering

techniques to investigate the near-field coherent coupling of SPPs between surfaces

and nanoparticles.

Thesis Outline

Chapter II is a brief tutorial of the basic dispersion properties of delocalized SPPs

on fiat interfaces. In this chapter we review the effects of planar SPP-SPP coupling

and the resulting hybrid fiat surface SPP modes. The important coupling property

of sub-wavelength confinement in MDM structures is also outlined as this will be

re-examined in the curved geometries of chapter IV and chapter V.

In addition to reviewing the localized SPP modes excited on spherical nanoparti­

cles, Chapter III introduces the formalism of Mie scattering from an arbitrarily sized

spherical scatterer. The effects of plasmon hybridization in spherical metal shells

are introduced, and we review the extension of Mie scattering to multiple concentric
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spherical shells with absorbing dielectric functions. We also examine the discrete

algorithm we have developed to compute scattering from an arbitrary number of

absorbing shells and validate its results against other published work.

In Chapter IV we utilize our developed computational resources and analytical

methods to examine the effects of coupling of shell SPPs between multiple silver

and titania shells. We identify two coupling regimes that delineate weak and strong

coupling of external EM fields to SPP excitations on the interior of the particle's

multilayer shell. We show that in the weak coupling regime the MDM particle can

exhibit greatly enhanced absorption from an engineered flat SPP band. In the strong

coupling regime we show SPP-SPP coupling can lead to an induced transparency

window for particles with radii on the same scale as the external EM field free-space

wavelength (r rv Ao).

In the second part of this work we apply the theoretical ideas developed in the

previous chapters to an examination of SPPs in two separate, periodically-modulated,

MDM planar systems. First, coupling between SPPs at the surface of silver-silica­

silver-coated silica cylinder arrays are computationally examined. With finite element

analysis (FEM), the SPP coupling in such periodic MDM coatings are shown, as in the

closed resonator case of chapter IV, to support the strong excitation of interior surface

plasmon polaritons. Second, coupling between SPP modes in silver-polystyrene-silver

coatings formed on top of ordered monolayers of silica spheres are experimentally

investigated. The manufacture of periodic MDM surfaces are detailed in chapter VI,
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and experimentally studied with angle-resolved spectroscopy in chapter VII. This

is experimentally shown to result in the modification of the angular and spectral

emission patterns of plasmon enhanced transparency [19].
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CHAPTER II

BASIC THEORY OF SURFACE PLASMON POLARITONS

This chapter presents a brief review of delocalized surface plasmons as they pertain

to our work. Although all of this information can be found elsewhere [1, 77, 78] we've

brought it together here for completeness and to introduce formula and nomenclature

for future use. The concept of delocalized SPPs has been briefly introduced in chapter

I and will be expanded upon here. Of particular importance is the method used to

couple freely propagating light into surface plasmon modes through surface roughness

will be discussed. This chapter ends with the important topic of coherently coupling

delocalized plasmons through thin, flat metal and dielectric films. This last topic is

the precursor to the main focus of this thesis: coupling delocalized plasmons on curved

interfaces, and coherently coupling localized plasmons with silica micro-resonators.

Dielectric Function of Metals

The properties of plasmons can be completely described classically, provided that

a suitable description of the metal's dielectric function (Em(W)) is supplied a priori.

Thus, before we begin with our discussion of the properties of plasmons, surface plas­

mons, and surface plasmon polaritons, it will be instructive to examine the frequency

response of bulk metals.
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To a good approximation the conduction electrons of metal at room temperature

can be modeled as a non-interacting free electron gas interacting with the background

lattice ions solely through elastic collision events at a frequency "( [79]. From this

model (proposed by Drude), we combine quantum corrections from Sommerfeld,1

add additional empirical corrections accounting for interband transitions, and the

band theory of metals2 to arrive at an adequate expression for cm(w):

(11.1)

Where Coo accounts for the interband contributions to c(w) from transitions of d-

orbital electrons into the s-p conduction band, and wp , called the bulk plasmon fre-

quency, is given by [79]:

with n being the free electron density, e the electric charge, co the permittivity of free

space, and m* the electron effective mass.

The Drude-Sommerfeld model does a reasonable job of describing most of the

optical properties of silver, the metal used in our work, in the visible/NIR spectrum.

Equation 11.1 is used when we require an analytical expression for cm(w), but when

possible, we use the tabulated empirical results for CAg(W) complied by Palik [58].

Using the appropriate parameters for silver (nwp =9.1 eV, n"( = 0.021 eV, Coo = 5.1)

a comparison of the tabulated data and the Drude-Sommerfeld model is given in figure

luse of the Fermi-Dirac velocity distribution for electrons

2substitution of an effective electron mass (m* for me)
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Figure 2.1. Comparison between Drude-Sommerfeld model for Em(W) and empiri­
cally collected data for silver from Palik [58].

2.1. The agreement is quite good in the visiblejNIR region between the real parts

of Em(W) and EAg(W) while the Im[Em(w)] < Im[EAg(w)]. The imaginary part of Em

is proportional to the absorption of energy in the material. The underestimation

of Im[EAg(w)] with Im[Em(w)] in some of our theoretical work thus result in reduced

absorption and narrower resonance peaks compared to simulations using tabulated

and experimental results.

Bulk Plasmons

Bulk plasmons are the longitudinal volume eigenmodes of the collective oscillation

of the quasi-free conduction electrons in metal materials. They occur at frequencies

where E(w) = 0 (at wp for Drude metals). As noted above, wp occurs at frequencies

in the ultra-violet spectral region for nobel metals such as gold (w:-u = 138nm),
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silver (w:g = 136nm) and copper (w~U = 141nm). EM waves cannot couple to

bulk plasmons due to their longitudinal nature, but they set the energy scale for

our subsequent discussion of SPPs. The bulk plasmon resonances of silver and gold

are close to the visible spectrum. As we will see, the SPP mode frequencies that do

couple to E1/1 waves are proportional to wp and thus can fall into the visible spectrum.

Combined with their low loss this makes silver and gold the metals of choice for the

study and use of visible/NIR SPP excitation.

Surface Plasmons at Flat Interfaces

The simplest interface supporting bound surface modes is the flat interface be-

tween a metal and a dielectric. The surface plasmons dispersion (energy-momentum)

relation for this geometry is given by [1]:

ksp = ko
w
c

(II. 2)

where ko is the free space wavevector, Cd is the dielectric constant of the adjacent

insulator and c is the speed of light in vacuum. For metals in the visible/NIR spectral

region c(w) < O. This implies that:

ksp = k(1 + 5)

Cd

where 5 '" 21 cml ' and k =-.JEdko

(II.3)

Because we assume Cd > 0, equation (II.3) implies that ksp > ko by the amount 5. This

reflects the bound nature of the surface plasmon wave, and prevents direct coupling of
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freely propagating EM waves to such modes. We can see that the resonance condition

for the surface plasmon occurs when the real part of the denominator of equation (II.2)

is zero. That is when

(II.4)

If we apply the lossless equivalent of equation (11.1), (-y = 0), to the surface plasrnon

resonance condition, equation (II.4), we arrive at an often quoted estimate of the

surface plasmon resonance frequency for single flat interfaces:

(II.5a)

(II.5b)

Vve plot w(ksp ) in figure 2.2 for air-silver and silica-silver interfaces. The larger

loss in the true dielectric function leads to a significant difference in the ksp wavevector

near wsp , but away from the resonance point the Drude-Sommerfeld model does not

deviate greatly from the true dispersion relation.

Coupling to Surface Plasmons

As stated above, freely propagating EM waves do not couple to surface plasmon

modes due to the larger surface plasmon momentum (ksp > k). There are three

mechanisms to overcome this discrepancy: Attenuated total internal reflection, grat-

ing, and curvature coupling. These methods utilize diffraction and surface alteration

to account for the missing momentum in the free-space wavevector or to alter the
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Figure 2.2. The dispersion relation w(ksp ) for two interfaces: air-silver and silica­
silver, using the Drude-Sommerfeld model and tabulated values of Em(W).

dispersion relation for SPPs to contain radiating modes. Next, we will discuss grat-

ing coupling, while curvature coupling will be covered in chapter III. ATR coupling

is not used in this work, and the interested reader is encouraged to look at reference

[1] for a description of this method.

Grating Coupling

When light scatters from a periodic surface it can gain extra momentum in units

of the reciprocal lattice vector(s) G= 27r/afJ. This alters the momentum matching

condition, and equation (II.2) should now be written as:

ksp = kll +mGi m = (1,2,3, ... ) (II.G)

As illustrated in figure 2.3( a): kl I = JElkosin () is the in-plane component of the

incident planewavc. Figure 2.3 (b) is the electric-fidd (E-ficld) intensi ty distribution
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Figure 2.3. Grating coupling to normally incident plane waves. (a) Simple grat­
ing and planewave geometry (b) H-field intensity (color map) and E-field intensity
(contours) of the air-silica plasmon resonance (c) reflection spectrum exhibiting silica­
silver (1.4 eV, 886nm) and air-silver (1.97 eV, 629nm) SPP resonances.

calculated with the finite element method (FEM, cf. chapter V). As shown, a normally

incident (kif = 0) free-space planewave couples to a thin, sinusoidally modulated

silver layer laying atop a silica substrate in air. The frequency of the simulation is

chosen to be at the frequency of the air-silver SPP resonance (nw = 1.97eV). Also

shown in figure 2.3 (c) is the calculated transmission spectrum for the structure shown

in figure 2.3(a). This illustrates the fulfillment of the phase matching condition of

equation (11.7) at two frequencies: nw = 1.97eV (air-silver interface) and nw = 1.40eV

(silica-silver interface).

In the case of a 2D grating, additional reciprocal lattice vectors are allowed in

equation (II.6). For example, in a hexagonal lattice there are two principle lattice
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vectors: Orf{ = 41r /3a and OrM = 21r lV3a resulting in the periodic SPP coupling

equation:

(II. 7)

This coupling equation will be revisited ill chapter VII when we investigate hexago-

nally modulated plasmonic surfaces with angle resolved spectroscopy.

Figure 2.4. Principle reciprocal lattice vectors of a hexagonal lattice: Orf{ = 41r /3a
and OrM = 21r / V3a, superimposed on the hcp structure with lattice constant a.

SPP-SPP Coupling in Flat IvID Trilayers

We have so far only reviewed the properties SPPs on isolated single YID inter-

faces. If we have a system with two or more interfaces spaced closely enough:.! strong

coupling of the SPPs associated with each surface will occur. Just as in the case

of any linearly coupled system this results in the splitting of degenerate resonance

:3 "closely enough" depends on the medium through which we are coupling. Distances on the order
of lOOnm is sufficient for dielectrics, but d rv lOnm is needed for metals.



30

IE)

w_
(even/anti-symmetric)

Figure 2.5. Coupling of two surfaces supporting surface plasmon excitations =}

C2 ex -cl,3' The mode splitting will exist for both dielectric slabs (MDM) or metal
films (DMD) structures.

modes, an effect sometimes referred to in the literature as plasmon hybridization.

As illustrated in figure 2.5, when two SPP modes are brought together the modes

couple into even (anti-symmetric) and odd (symmetric) modes. As it is central to the

results of chapters IV and V it is important that we examine some of the results of

this coupling.

The dispersion relation for the fundamental coupled SPP modes through a thin

layer of width d is given by [1, 78]:

e-2k2d = k2/C2 + kdcl kdc2 + k3/C3
kdcz - kdcl k2 /c2 - k3/C3

(II.8)

If we make the assumption of symmetric cladding layers (k1 = k3 ) then II.8 reduces

to the following two possible solutions:

tanh(kzd/2)
k1cz

k2c l

kZCl

k1Cz

(odd)

(even)

(II.9a)

(II.9b)



31

There are several interesting results of equations (II.8) and (11.9) that apply to

rvrDM structures. First, due to the evanescent nature of the SPP modes, the coupling

of equation (II.8) is exponential in the separation distance d for either MDM or DMD

configurations. We will encounter a similar condition in chapter IV when we derive

the SPP coupling for core-shell MDM spheres. Second, in fiat MDM systems it has

been shown by Prade et al. that the lowest order odd solutions (equation (II.9a)) do

not exhibit a cutoff with decreasing dielectric film thickness (d ---70) [80]. This has the

effect of allowing both high confinement (rv AI (y'c210)) and reasonable propagation

lengths of rv 100p,m, as stated in chapter 1. These types of interior SPP modes (ISP)

will be used in chapter V to excite spectrally narrow plasmon ISP bands. We will

show that we can use such ISP bands to control the angular and spectral emission of

the plasmon enhanced transmission of periodic metallic surfaces.

The final result of MDM coupling in fiat systems that we wish to review is the

effect of SPP-SPP coupling on the dispersion relation of higher order mode solutions.

Using the transfer matrix method, Shin et al. have theoretically shown that in the

case of a lossless Drude metal, there is a new band of modes that have fiat dispersion.

For this second order band W2 (k ---7 00) = wsp , and additionally the value of the

solution in the DC limit w2(k ---7 0) is a function of the separation distance d [81].

And thus the following condition holds:

271'C
d=--­

wspJEd
(II.10)

Calculation of w2(k) shows that this second band of solutions to equation (II.9a)
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is essentially fiat and fixed to the line w2(k) = wsp ' We will use this in chapter IV

when analyzing the scattering properties of MDM spheres. The same condition for

the thickness of a dielectric shell has been shown by my co-authors to result in a fiat

band in the angular dispersion of the MDM sphere [82]. In chapter IV we use this

fiat band to both enhance the absorption of MDM spheres, and reduce the scattering

of an MDM layered sphere (through additional SPP couplings).
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CHAPTER III

THEORY OF METALLODIELECTRIC MIE SCATTERING

Introduction

When a flat interface supporting a bound SPP mode is bent, that mode will lose

some fraction of its energy to radiative decay. As a consequence, the SPP modes

excited on spherical particles (or any shape comparable in size to Ao) are naturally

coupled to radiating far-field excitations. Hence, contrary to the fiat MD interface

we can excite SPP modes on small particles simply by illuminating them. In this

chapter we will build up the theoretical and computational tools needed to discuss

the question: When a radiating SPP on the surface of a metal sphere coherently

couples to an ISP mode bound to the interior of the sphere, how is the far-field

scattering effected? We will answer this question in the chapters that follow.

Localized SPPs on Small Spheres

We begin with the "simple" example of a plane-wave with wavevector k = JEMko =

JEM27f / Aoz scattering from very small (r « Ao) spherical object such as in figure

3.1. In this case the phase variation of the external plane-wave across the particle
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(c)

£(00)

Figure 3.1. Plasmonic particle types and our abbreviated nomenclature: (a) Metal
sphere, embedded in a dielectric medium (Md) (b) dielectric void (Dm) (c) one or
more metal-dielectric shells (DMd, MDm, MDMd, (MD)xd, etc.

is very small. Using the approximation of a spherical particle in a spatially uniform

external field (the quasi-static approximation, Eo = IEoli) the particle polarizability

is given by the relation [83]:

3 E - E:M
0' = 41fEMT ---

E + 2E!I'1
(III.I)

It follows that polarization of the sphere and the electric field in and around it are

given by:

ij' 41fEOEfl;JO'Eo (III.2)

Eintel'iol'
3EM

Eo (III.3)-
E + 2EM

Eextel'iol'
- 3n(n·pj-pl

(lIlA)Eo+ -
47fEOEM T 3

For either spheres or voids we have exterior dipole near-field, and interior field reso-
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nances when the dispersive dielectric function fulfills the conditions:

sphere:

void:

e(W) = -2eM

1
e(W) = --eM

2

(III.5)

These equations lead to the commonly quoted estimates for localized surface plasmon

resonances when we assume a loss-less Drude e(W) such as we did for equation (II.5):

LSPRsphere

LSPRvoid

(III.6a)

(III.6b)

Scattering, Absorption, and Extinction Cross-Sections

From a practical optics point of view, the quantities of interest when investigating

the scattering of small particles are the efficiencies with which they scatter far-field

radiation. This efficiency is measured with the particle's cross-section, a quantity re-

lated to the EM field through Beer's Law. Beer's Law describes the exponential decay

of a plane-wave's intensity (10) as it passes through an absorbing and/or scattering

medium of thickness d:

1_ = e-ndCext

10
(III. 7)

where n is the number density of the scattering particles, and 1 is the intensity after

propagating through the media. The single particle extinction cross-section, Cext , has

units of area and is given by:

1
Cext = -In­

10
(III.8)
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Figure 3.2. (a) Calculated extinction cross-section efficiencies of r = lOnm silver
and gold spherical nanoparticles using tabulated dielectric functions. (b) Compari­
son of gold nanoparticle extinction, scattering, and absorption scattering efficiencies
showing the dominate absorption of nano-scale particles. (c) Comparison of silver
particle in water vs. air.

The cross-section represents the effective EM size of the particle, and extinction refers

to the sum of the scattering and absorption C ext = C SCQ + Cabs' For a dispersive

spherical dipole scatterer with E(W) = E' + iE" the cross-sectional areas are given

by [83]:

(III.9a)

(III.9b)

(III.9c)

vVe can see that in addition to the polarization and near-field electric fields, these

cross-sections all have corresponding resonances associated with excitation of SPP
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modes. \iVith these small radius particles, the r- 3 absorption cross-section dominates

the r- 6 scattering cross-section as k - O. In figure 3.2 we have plotted the extinction

cross-section spectra of a 10 nm radius gold nanoparticle and a r- = 10 nm silver

nanoparticle in water and air. These plots illustrate three points: the absorption

dominated character of Cext for small particles, the correlation between silver's lower

losses and the increased strength of the localized SPP resonance, and the sensitivity

of the resonance condition on the external dielectric media.

Equation (III. 9) also demonstrates that it is possible to find far-field signatures of

the near-field energy distributions created by the excitation of SPP resonances. We

will utilize this fact extensively in the rest of this thesis to investigate SPP modes

and their coupling through far-field scattering experiments.

Mie Theory: Beyond the Quasistatic Approximation

NIie theory is the rigorous solution to the problem of scattering a plane-wave by an

azimuthally isotropic spherical object. The central results are the spherical harmonic

expansion coefficients for the EM fields internal and external (scattered) to the sphere.

The scattered field coefficients are given by:

be

m2je(mx)'lj;~(x) - 'lj;~(mx)]'e(x)

m2je(mxk~(x) - 'lj;~(mx)he(x)

j e(mx)'lj;~ (x) - 'lj;~ (mx)]'e(x)
je(mx)~~(x) - 'lj;~(mx)he(x)

(III. lOa)

(III. lOb)

where, for a dispersive sphere in a non-dispersive media m = Vc(w)/JEM, x = kr- =
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~(27r/AO)r is the so called size parameter, 'l/Je(x) =xje(x), ~e(x) == xhe(x) are the

spherical Riccati-Bessel and Hankel functions of the first kind, and the prime denotes

derivation with respect to the argument. A full derivation of equation (IlL10) can be

found in appendix A. The cross-sections for a spherical particle can be calculated in

terms of the scattering coefficients [83]:

Cext

Cabs

2 00k: I)2£ + 1)(lael 2 + Ibel2 )

M e=l

2 00 •

k: I)2£ + 1)Re[ae + be]
M e=l

- Cext - Csca

(IIl.11a)

(IlL 11b)

(IIl.11c)

Equations (IlL10) and (IlL11) show that there are scattering and absorption res-

onances in the fields and in the cross-sections at the zeros of the real part of the

denominators of equation (IlL10). The ae fields (transverse magnetic, TM) are asso-

ciated with SPP resonances, while the be fields (transverse electric, TE) are associated

with eddy currents arising from magnetic resonances. The resonance mode equations

for ae and be can be expressed as the determinants:

det[DMd ] =
m2~~(mx) 'l/Je(mx)

TM Modes:

he(x) je(x)

~e(x) 'l/J~(mx)
TE Modes:

he(x) je(mx)

o (IlL12a)

o (IlL12b)

We will only concern ourselves with the TM modes for which, in the small metal

sphere limit, equation (IlL12a) reduces to the Frolich resonance condition stated
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Figure 3.3. (a) Spherical scatterer with N shells each with index of refraction JEi
and radius Ti, embedded in a medium with index of refraction -jcN+J. (b) Specific
types of single and double shell particles which we will address later in this chapter.

above: c(w) = -2cM' The TE modes will not influence our results. In addition

to being relatively weak, they occur at frequencies above W sp for our geometries of

interest such as in figure 3.3(b). Also shown in figure 3.3(b) is the nomenclature used

throughout this text to specify the constituent components of a multi-shelled spherical

particle. As stated above, the capitol letters denote the type of shell/core material

(Metal or Dielectric) and the final, lowercase letter denotes the type of embedding

medium.
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SPP-Spp Coupling in MD Shells

If we wish to examine the SPP-SPP coupling between multiple spherical surfaces,

we need to extend the original Mie theory results to multiple interfaces placed at

the radii TI, T2, T3, etc. This was done for two interfaces by Aden and Kerkker [84]

and expanded to an arbitrary number of shells by Bhandari [85]. For an arbitrary

number of shells, the scattered TM field coefficient, af+l, can be calculated recursively

through the formula (cf. appendix B):

-N+l 'l/Jg(mN+IxN) ~g(mN+lxN+l)
ag = .

. 'l/Jg(mN+lxN+l) ~g(mN+lxN)
af[~Fg(mNxN) - Dg(mN+lxN)] - [~Dg(mNxN) - Dg(mN+lxN)]

af[~:] Fg(mNxN) - Fg(mN+lxN)] - [m:: 1 Dg(mNxN) - Fg(mN+lxN)]
(III.13)

for an N shelled particle such as in figure 3.3(a). As above, Xi = kiTi and

mi = VEil JEi+l is the relative index of refraction ratio. The logarithmic derivatives

Fg(x) = ~~(x)/~g(x) and Dg(x) = 'l/J~(x)I'l/Jg(x) are used for computational stability.

The two specific instantiations of equation (III. 13) that we will concern ourselves

with in this work are that of the single-layer (core-shell: MDm and DMd) and double-

layer (MDMd) particles. We have placed no restrictions on the dielectric functions of

equations (III.12a) and (III.13), and therefore they are valid for any combination of

metal and dielectric shells. But, as we are interested in studying the coupling of SPPs,

we require at least two metal interfaces. From the denominator of equation (III.13),

the mode equations for the the core-shell and double-layer systems can, respectively,
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be written as:

~~(m3X2) 1/J~(X2) ~~(X2) 0

he(m3 X2) je(X2)'Tl2 he(X2)'Tl2 0
det[UDMd,MDm] == =0 (III. 14)

0 1/J~(m2xl) ~~(m2xl) 1/J~(xI)

0 je(XI)'Tl2 he(x I) 'Tl2 je(xI)'Tll

det[UMDMd] ==

~~(m4x3) 1/J~(X3) ~~(X2) 0 0 0

he(m4 x3) je(X3)'Tl3 he(X2)'Tl3 0 0 0

0 1/J~(m3x2) ~~(m3x2) 1/J~(X2) ~~(m3x2) 0
=0 (III. 15)

0 je(m3x2) he(m3 x2) je(X2)'Tl2 he(m3 x2)'Tl2 0

0 0 0 1/J~(m2xl) ~~(m2xl) 1/J~(Xl)

0 0 0 je(m2x I) he(m2 x2) je(xI)'Tll

The physical implications of equations (III.14) and (III.15) are not immediately

obvious. However we have shown (d. appendix A) that they can be re-expressed

as [46]:

det[UDMd] =
IUDml IVDml

IWMdl IUMdl

det[UMDm] =
IUMdl IVMdl

IWDml IUDml

(III. 16)

(III. 17)
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(IILI8)

(IlLIg)

The equations for the coupling matrices, VDm , and WMDm , are given in appendix

A. VMd will be discussed below. The equations (IILI7) and (III.18) demonstrate that

the coupling between spherical shells in an arbitrary MD system can be broken down

into the couplings between their more "basic" elements. This has proven to be a

useful tool for the theoretical study of the couplings between spherical MD modes.

This technique has been proposed in the case of small (r « '\0) MD particles and is

referred to as plasmon hybridization [76]. But, to our knowledge, this is the first time

the technique has been extended to arbitrarily large particles, or multishell particles.

For the specific example of the MDMd particle, an important result of equation

(IILI8) is the expansion of the coupling matrix VMd :

~~(mN+IXN) ~~(XN)

he(mN+lxN) he(XN)

In this case Xl = klrl = ~kOrl, X2 = k2r2 = JEdkor2, X3 = k3r3 = ~kOr3,

k4 = J"EMko, and ko = 27[/.\0' representing dielectric (Cd) and metal (Cm) and medium

(M) components. By keeping rl and r2 constant (and hence the keeping the second off

diagonal element of equation (IILI8), IWMDml, constant) we can examine the effect

of scaling the thickness of the outer shell, h - r21, by looking at the effect of scaling

r3 on IVM dI. In the limit of X3 » £2 the mode coupling may be expressed using the
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asymptotic expansion of the Hankel function, he(x) rv (_i)£+leix Ix. This shows that

the plasmon coupling between the inner sphere and outer shell decays exponentially

with metal shell thickness h - r21:

IVMdl rv [(_l)e (~r~ 1) ei(k4+k~h+71"/2] e-k~r3 (IIL20)

where k3 = k~ +ik~. We see, that similarly to the result of the coupling in fiat MDM

systems reviewed in chapter II, the coupling in spherical systems scales exponentially

with thickness of the metal layer. This same analysis applies to equation (III.17) for

IUMDml. Because the form of IVMdl has the same functional form as IVMDml we can

conclude that coupling between spherical metal surfaces through dielectric shells has

the same exponential coupling dependence on shell thickness.

In addition to studying their properties analytically, we can use equations (IIL17)

and (IIL18) to compute the angular mode bands (angular momentum dispersion

relation) for multilayered spherical MD systems on a element by element basis. Thus,

we can use these equations to study the mode coupling between SPP bands as the

model parameters (radii and dielectric functions) are systematically varied. Combined

with equation (IIL13) we can correlate SPP-SPP coupling with the induced far-field

scattering effects on absorption, scattering, and extinction. This will be done in the

next chapter for the special case of an MDMd silver and titania sphere.
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Discrete Computation of Field Coefficients

The effects of the resonant SPP modes defined by equations (III.17) and (III.18) on

the particles far-field scattering can be calculated through the extinction, scattering

and absorption cross-section formula (III.H). By calculating the outward propagating

and inward propagating field coefficients (0,7, b7, q, and (17, defined fully in appendices

A and B) we have completely solved the EM scattering problem. However, the discrete

computation can be unstable if not approached carefully. It is therefore worthwhile

to briefly mention the steps we have taken to advance the available computational

tools for calculating the field coefficients and spherical Riccati-Bessel functions.

Many authors have published work on the computation of scattering from spheroidal

particles that are arbitrarily large, absorbing, multi-shelled, or have absorbing shells.

However, we found that there were no publicly available computational libraries for

calculating the field coefficients and the full EM fields for a large (r » '\0), mul-

tishell, absorbing particle. We have therefore brought together the work of several

authors [86-90] to create our own C++ library for these computations.

The main stability issue in this computation is the divergence of Riccati-Hankel

functions for large, complex arguments and large mode number e. Algorithms for

the discrete computation of the family of Bessel functions are based upon recursion

schemes of the form [91]:

(III.21 )
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for any of jn(x), Yn(x), h~l)(X), h~2)(X). These recursions have the computational flaw

that when the Bessel function is in an exponential domain and the argument is com-

plex, the error that propagates with successive iteration grows exponentially. Because

metal dielectric functions in the visible/NIR range are intrinsically both large and

complex, and the particle sizes we wish to examine have r '" Ao, we immediately

encounter convergence issues. To ensure the proper convergence we follow the below

steps in our algorithm. 1

1. Utilize the logarithmic derivative formulation of the spherical harmonic expan-

sion coefficients (0,7, etc.) set out by Toon and Akerman [86] and Kaiser and

Schweiger [90].

2. Use the method of Cachorro and Salcedo [88] to accurately estimate the needed

number of expansion terms (I: = Lmax ) in the expansion of the field coefficients.

3. Restrict the calculation to only non-absorbing embedding media (Im[cN+l] = 0).

This eliminates the inherent instability in calculating the ratio 'ljJe(x)/~e(x) for

complex arguments [87].

To test the convergence and accuracy of our algorithm we have compared it to

several published results. These comparisons validate the work against the available

parameter ranges: absorbing small particles, large dielectric particles, and large ab-

sorbing single shells. In figure 3.4 we can see the comparison with Yang [87] for the

1For full details of the computation the interested reader is referred to the source code documen­
tation available from http://mo.uoregon.edu/.
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Figure 3.4. The scattering cross-section efficiency as a function of size parameter
for an absorbing soot covered water droplet. (Left) Results of W. Yang [87]. (Right)
Computation of Qsca using our algorithm.

scattering efficiency (Csca /(1fr 2
)) of an absorbing soot shell on a water droplet as a

function of size parameter. This confirms that large particles with complex c be safely

computed for size parameters .2: 100.

To check the accuracy of our calculation of the complete EM field, figures 3.5(a-b)

and 3.5(c-d) show the near-field intensity plots of a large dielectric sphere in com-

parison with Lecler [89], and of a small silver sphere in comparison with Wang et

al. [92]. We see that in both size regimes, the scattered (external) and internal

fields are accurately reproduced. With the validity of our computational approach

confirmed we now move on, in the next chapter, to investigate the coupling of SPPs

between multiple MD shells in micron-scale particles.
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Figure 3.5. Comparison of EM field algorithm. (a) E-field intensity from Leder
et al. [89] compared with (b) our computation for a large silica sphere. (c) E and
H field intensities from Wang et al. [92] compared with (d) for a small metal sphere
with [ = -2 + O.2i.
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CHAPTER IV

PLASMON COUPLING IN MDM SPHERES

Introduction

Nanostructured metallodielectric materials have been extensively studied in recent

years due to their promise for new photonic device applications. As discussed in

the pervious chapter, and in chapter I, metallodielectrics patterned periodically in

three dimensions (3D) exhibit novel dispersion characteristics which rely on coherent

coupling of SPPs [15, 93, 94], potentially allowing sub-wavelength manipulation of

light signals. An important geometry extensively addressed in the literature, is that

of the nanoscale 3D spherical plasmonic resonator. Previously noted as the dipole

approximated DMd geometry, it consists of a metal nanoshell surrounding a nanoscale

dielectric core, and may be designed to allow tuning of the SPP field distribution as

well as its absorption resonance [95]. The large plasmon fields in these systems have

proven useful for surface-enhanced Raman spectroscopy [96], and the tunability in

the resonance has been successfully used in a variety of applications including cancer

therapy and photo-induced drug delivery [17, 76].

In this chapter we apply the formalism of chapter III to extend these investigations

to large (r :::: AD), multilayer particles. Specifically, we analyze the greatly reduced
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Figure 4.1. Examples of the geometry and composition of the metal and dielectric
(Md, MDm and MDMd) resonators studied in this chapter.

scattering cross sections of micron-scale MDMd particles with nano-scale coatings,

such as shown in figure 4.1 and show that we can tune both the absorption and

scattering properties of the plasmonic particle. The use of plasmonic coatings to

reduce dipole scattering from small spheres has been investigated previously by Ali1

and Engehta [97]. Here we use the two-band coupling formalism of equation (III.18)

to show that similar EM transparencies may be achieved in spheres of any size.

]'vIDMd Particle Band Structure

Our system consists of a micron-size metal sphere of permittivity Em and radius

1'1 surrounded by concentric sequences of dielectric (permittivity Ed) and metal (Em)

shells. The shells have thicknesses L (11'2 - 1'11) and T (11'3 - 1'21), respectively. The

composite particle is either embedded in an isotropic and homogeneous dielectric host

with permittivity EM or it is a cavity embedded in an infinite metallic medium with
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permittivity Em. We show that with proper design of the metal-dielectric shells it

is possible to engineer the dispersion characteristics of a MDMd resonator such that

the forward scattering cross section is strongly suppressed. This results in a tun­

able transparency of the particles scattering cross-section. By solving the eigenvalue

problem set forth in equation (III.I8) we show that the observed transparency is as­

sociated with an avoided-crossing of the dominant plasmonic bands of the Md and

MDm sub-elements.

Weakly Coupled Flat Dispersion

In work closely related to that which is detailed here, my co-researcher K. Hasegawa

has shown that concentric metal-dielectric shells surrounding a meso-scale metal

sphere (lVIDMd resonator) allow as much as an order of magnitude enhancement

of the particle's absorption cross section, while maintaining the broad tunability of

the composite particle SPR [82]. This results from the formation of a flat band in the

angular mode dispersion of MDm cavities. In figure 4.2(a) we plot the mode diagram

of an MDm cavity computed with equation (III.I7). The black bands represent the

zeros of equation (III. 17) and show the flat band near w = 0.3wsp . As will be shown

below, this flat band is confined to the dielectric gap of the MDm cavity. We therefore

refer to it as an interior surface plasmon (ISP) mode. In figure 4.2(b,c) we plot the

absorption cross-section of an MDMd particle constructed through the truncation of

the infinite metal medium of the MDm cavity. The cross-section calculation shows

that this flat band can result in the simultaneous excitation of multiple absorption
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Figure 4.2. (a) TM mode, angular dispersion for a Drude-silver/titania MDm
with rl = 500 nm and L = L*(b) Total absorption cross-section of a geometrically
optimized MDMd particle created from titania and silver shells. (c) Individual angular
mode (£) absorption cross-sections showing the simultaneous excitation of rv 12 modes
(red hashes). Reproduced with permission from [82].

multipoles at a single incident frequency. This concurrent excitation is predicated

upon the minimal distortion of the flat ISP band induced by the ISP coupling to

the radiating exterior surface plasmons (ESP) on the outer metal shell. We therefore

say that optimized absorption enhancement occurs in the "weak" ISP-ESP coupling

regime. When t.he outer shell thickness is sufficiently large, significant. coupling (and

significant ISP distortion) is avoided. The threshold for the delineation between the

weak and strong coupling regimes can be characterized by the skin depth (0) of the

outer metal shell (0 rv 25nm for silver in the visible region).

The calculation of t.he needed geometry to produce a flat ISP band can he obtained

by the expansion of equation (III. 17) . In the high multipole limit (£ » kmX2) the
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Riccati- Bessel/Hankel functions can be asymptotically expanded [91] and one finds

the resonance condition of a planar SPP defined by equation (II.5):

\\Thile for the dipole mode (R

condition [82]:

1) the expansion of equation (III.17) yields the

(IV.l )

where we label the multiple roots of equation (III.17) with a band index n 2: O. This

places a geometric condition (the width of the dielectric shell L) on the frequency

of the SPP dipole resonance for n 2: 1. By enforcing that both equations (II.5) and

(IV.l) be fulfilled for the n = 1 band we obtain the needed dielectric shell width for

a fiat dispersion band:

(IV.2)

Strongly Coupled ISP-ESP Dispersion

We will now use the existence of this fiat band to create a transparency in similarly

designed particles by strongly coupling the additional ESP modes to the fiat MDm

dispersion band. As will be shown in detail below, this can be accomplished through

reducing the outer shell thickness below the skin depth (T < 5).

Using the eigenmode equations described in chapter III we obtain the eigenfre­

quencies of the three systems shown in figure 4.1: an Md geometry with metal sphere
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of radius r3 = 582 nm embedded in a nonabsorbing dielectric host, an infinite MDm

with metal core radius rl = 500 nm and dielectric shell with width L = 54 nm, and

an MDMd with the same rl, r2 as the infinite MDm and total radius (r3) of the Md

sphere (an outer metal shell of thickness T = 28 nm). The embedding dielectric of

both the metal sphere and MDMd is vacuum (cM = 1). The thickness of the dielectric

shell follows from the near-resonance condition for fiat dispersion, equation (IV.2).

In particular, we chose a silver-like Drude metal such as described in chapter II, with

cm(w) = Coo - w;(w2 + i/"W(l and Coo = 5.1, !?MJp = 9.1 eV, and n/" = 0.021 eV. The

dielectric shell is weakly-dispersive amorphous titania (cd ~ 5.76) [98]. The choice of

high-index dielectric shell ensures large separation between wp and wsp , an important

result for resolving the effects discussed below.

In figure 4.3(b) we plot the eigenfrequencies for the TM modes of the three ge­

ometries described above as well as two other MDMd particles with different outer

shell thickness (7nm and 70nm). The dashed line labeled ESP denotes the first band

(n = 0) of eigenfrequencies of the solid metal sphere obtained from equation (IlL12).

The horizontal dashed line labeled ISP denotes the second band modes (n = 1) of

the infinite MDm (equation (IlL17)). This fiat band is obtained at the expected

frequency [82] wsp/wp = (coo + cd)-1/2 ~ 0.3. The first three bands of solutions to

equation (IlL18) describing the MDMd microsphere are also plotted, and denoted

by the filled red circles. These bands correspond to the n = 0, n = 1, and n = 2

solutions. The n = 0 band of the MDMd (the lowest frequency band shown) is at
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Figure 4.3. Angular mode dispersions of (lVI D)x microspheres. The MDMd spheres
differ in their outer shell thicknesses (a) T = 7 nm, (b) T = 28 nm, and (c) T = 70 nm.
Also plotted are bands of Md (n = 0) and MDm (n = 1) particles respectively labeled
as ISP and ESP. The mode distributions at the locations denoted by the open, blue
circles will be discussed further below. Their mode energy distributions will be used
to define interior and exterior plasmon modes.

significantly lower frequencies with respect to the other bands, and hence does not

couple to the higher order solutions. Because these are radiating SPPs the eigenfre-

quencies are complex numbers. The width of each resonance is given by a vertical

bar, equal in magnitude to twice the imaginary part of the eigenvalue, and the central

frequency, marked by the red data points, denotes its real part. The TE modes are

all of frequencies greater than w / wp = 0.4 and are therefore not plotted here. A well-

resolved avoided-crossing is observed at w/wp = 0.284, a result of coherent coupling

between the solid metal sphere and the infinite MDm.

Figures 4.4(a)- (c) show grayscale plots of the time averaged near-field energy den-
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sities corresponding to the three different frequencies in figure 4.3(b) denoted with

open blue circles. The time averaged near-field energy density for a time-harmonic

field in the presence of an absorbing medium with permitivity c = c' + ic", is given

by [99]:

_ co (' 2wc
ll

) IE~12Ueff - - c +--
4 "(

In figures 4.4(a) and 4.4(c) we observe that the near-field energies of the low and high

frequency modes are concentrated at the outer metal shells, forming the external

surface plasmon (ESP) modes noted above. For an intermediate frequency value,

close to w/ wp = 0.284 figure 4.4(b) shows the field energy is concentrated at the

interior shells' interfaces, thus belonging to an inner surface plasmon (ISP) branch.

The ISP modes are the spherical analogs to the planar gap plasmons discussed in

chapters I and II. These ESP and ISP branches coincide with the uncoupled solutions
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to the solid metal sphere and infinite MDm, respectively, accurately depicting the

Elvi energy distributions in these systems. As we show below, suppression of the

ESP in favor of excitation of the ISP results in a dramatic reduction of the :VIDMd

forward-scattering cross section.

Plasmon Induced Transparency

In figure 4.5(a) we plot the scattering cross-section of the large metal sphere of

figure 4.1(a). (As calculated with equations (III.ll) and (III.13).) As can be seen,

the extinction cross-sections of the large metal sphere is dominated by its scattering.

R.ecall that absorption dominated the EM interactions of small particles, and that
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Figure 4.6. Total near-field energy densities for Ao = (c) 407nm (w/wp = 0.336), (b)
463nm (w/wp = 0.294), (c) 586nm (w/wp = 0.233). All incident fields are described
by plane-waves with k-vector k = 21f / Ao impinging from the left.

plasmon hybridization primarily resulted in the alteration of these absorption char-

acteristics. In figure 4.5(b) we plot the scattering cross section, Gsea , for the MDMd

described above. For comparison we also plot Gsea of the solid metal sphere in fig-

ure 4.5(a) and the scattering cross-section of a DNld particle. The latter consists of a

titania sphere surrounded by a Drude-silver shell, and embedded in a vacuum [82, 95].

(It is not possible to compute Gsea for the infinite MDm since it does not support

outward propagating solutions.) A large dip in Csea is observed at a wavelength of

A = 463 nm, corresponding to strong suppression of the forward-scattered fields.

Energy densities of the scattered fields are shown in in figures 4.6(a)-(c), cor-

responding to the circled wavelength values in figure 4.5(b). As expected, in fig-

ure 4.6(b) we observe strong suppression of the scattered field at A = 463 nm (w /wp =

0.294) and the ISP nature of the fields is apparent. This suppression is reminiscent
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Figure 4.7. (a) Comparison of the scattering cross-sections of a MDMd particle and
a Md sphere with equivalent scattering area at 463 nm. (b) Comparison of the angle
resolved scattering (inset) between a MDMd particle and a solid \1d sphere with the
same total radius.

of coupled-resonator electromagnetically induced transparency (EIT) [100]. Here too

we see a transparency associated with large group delay, though in the MDMd it is

azimuthal. Excitation of the ISP also suggests that EIT-like dynamical damping is

responsible for the transparency. At higher and lower energies, where ESP excita-

tions prevail, the forward-scattered fields are significant, as seen in figures 4.6(a) and

4.6(c).

The effective scattering cross section at A = 463 nm is equivalent to that of a silver

sphere with r3 = 360 nm. Thus, adding one dielectric-metal nanoshell sequence onto a

1 f-Lm diameter silver sphere reduces its EM footprint to that of a significantly smaller

particle. This is illustrated in figure 4.7(a), where we have plotted the scattering

cross-section of a Drude-silver sphere with a radius of 360 mn. In figure 4. 7(b) we
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(c) Tuning of absorption resonance accompanying the change of L.

show the angle resolved scattering of the MDMd sphere in comparison with the solid

T3 = 584 nm sphere. This shows that the scattering of the MDMd sphere is reduced

in all directions.

We further find that the scattering transparency may be tuned by adjusting the

thickness of the dielectric shell. This is illustrated in figure 4.8(a), where we plot the

scattering efficiency (Qsca == CSCQJ7fT~) for several values of L. Vve use experimentally

tabulated values for silver [82] and amorphous titania [98] to model a r1 = 500 nm

silver core with a metal shell of fixed thickness T = 20 nm. By varying the dielectric

shell thickness, L the transparency is tuned across the entire visible spectrum. Fig-

ure 4.8(a) also shows the second-order transparency window of these spheres, arising

from mode coupling in higher bands.

We note that the significant quantity typically measured in the far-field is the

extinction cross-section, describing the total energy removed from an incident plane
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wave due to scattering and absorption [83]. For the MDMd discussed here we have

verified that the absorption peak is always offset in frequency from the transparency

window. This is ShOWll in figure 4.8(c), where we plot the absorption cross-section

for the same geometric parameters as plotted in figure 4.8(a) and (b). Thus, as

shown in figure 4.8(b) our calculated scattering minima also result in true extinction

transparencies in the composite particle's far-field scattering.

Multiple Shells: M(DM)T

Both our analytical formalism and our computational approach are extendable to
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the addition of more than just a single DM shell. In this section we examine the

effect of additional shells on the M(Dlv1)x mode structure and far-field scattering

cross-section spectra. The addition of more shells to the original MDM allows for

the coupling of new mode bands associated with the new DM interfaces. This is

shown in figure 4.9 where we have plotted the angular mode dispersion diagrams of

several MDMDm structures. They are formed from the same material components as

above (titania and silver) and have the same fl, f2 and f3. The additional dielectric

layer has a varied thickness of 50 nm, 100 nm, and 500 nm. The use of a metal

embedding medium means that eigenfrequencies real numbers and directly plottable

with Mathematica via the extended determinates based on equation (IlL18). The

use of a metal embedding medium also focuses attention on the coupling between the

allowed modes of the dielectric gaps without introducing additional complications

from coupling to radiating ESP modes present in a MDMDMd particle. It is obvious

from figure 4.9(a) that a new mode has been generated with the addition of the new

DM layer. As the outermost dielectric shell increases in width we see that additional

modes are allowed, and begin to couple to the exiting MDM modes. Thus they serve

to further alter the original MDM anti-crossing central frequency and width. This

further strengthens our analogy between our spherical flat band mode and the flat

band mode found in planar systems. Dionne et al. have shown that below a critical

dielectric gap width all modes (except a single symmetric SPP mode) are cut off and
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Figure 4.10. Scattering cross-sections of multilayered MDMDMd particles. (a)
Overlap of two forwi1fd scattering transparencies from a doublc DlVI shell. (b) Overlap
of the first order and second order scattering transparencies from an asymmetric
double DlVI layered particle. Black arrows indicate the created split transparency
windows, and red arrows indicate the destructive interference of the original particles'
level coupled resonator induced transparency.

excluded from propagation along the planar SPP waveguide [23]. Here too, we see

the same behavior for the flat band found in j\1(DM)x systems.

In figure 4.10 we plot the scattering cross-sections of two lVIDMDMd particles.

These indicate a possible result of the additional shell plasmon mode coupling on a

plasmonic multishell particles far-field scattering. In figure 4.10(a) we have plotted

the scattering cross-section of a double shell M(DMhd particle. It has the same

titania/silver composition as above with the same core radius, rl = 500 nm.. The

shell thicknesses are given as L1 = 39 nm,T1 = 20 nm,L2 = 39 nm,T2 = 20 nm. The

overlap of the two resonant splitting transparencies has lead to an additional level
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splitting of the original avoided-crossing in the band structure of the MDMd particle.

This results in a destructive interference effect of the ISP-ESP coupling at the original

anti-crossing wavelength (414nm). The result is the emergence of a scattering peak

with two transparency regions to either side. In figure 4.10(b) we show the the

same resonance level splitting by overlapping a first order transparency formed in a

Tl = 500 nm, L 1 = 39 nm, T1 = 20 nm MDMd with the second order transparency

formed in a Tl = 500 nm, L 1 = 135 nm, T1 = 20 nm MD Md particle through the

construction of a Tl = 500 nm, L1 = 39 nm, T1 = 20 nm, L2 = 135 nm, T2 = 20 nm

MDMDMd particle.

Conclusions

In summary, we have shown that coupling of interior and exterior surface plasmon

modes in MDM microspheres leads to resonant level splitting. This can result in the

strong suppression of the forward-scattering cross section, to values as small as the

geometric cross section of the particle. It can also result in an enhanced particle

absorption cross-section. We have shown that the important quantity delineating be­

tween the optimization of the two phenomena is the strength of the ISP-EPS coupling.

This coupling strength is governed by the width of the outer metal shell and charac­

terized by the skin depth of the constituent metal. Additionally, these transparency

and absorption properties are spectrally tunable via the dielectric shell parameters.

Finally, we have also shown results of extending the formalism developed in chapter III
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to additional DM shells, can create new scattering properties through the coherent

coupling of additional angular SPP bands. In short, subwavelength metal-dielectric

coatings may be utilized to significantly alter the EM footprint of large, non-planar

metallic objects and to tune their absorption and scattering properties.
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CHAPTER V

FINITE ELEMENT ANALYSIS OF PERIODIC MDM SURFACES

Introduction

In this chapter we demonstrate the tailoring of SPP dispersion bands through

the manipulation of the geometric parameters of a large amplitude grating formed

from the hemi-cylindrical modulation of an MDM film. The geometry of our periodic

plasmonic structure is shown in figure 5.1. It consists of an array of silica rods of

diameter a, coated with a silver-silica-silver conformal coating. The layers are charac­

terized by their material composition and thicknesses (8, Land T). Using the finite

element method (FEM) we calculate the dispersion of, and model the transmission

and reflection from, the periodic MDM illuminated with a transverse magnetic (TM)

or p-polarized plane-wave with free space plane-wave ko = w/ c.

As discussed in chapter 2, the presence of the periodic modulation allows for the

diffraction of propagating light into SPP modes via the addition of extra momentum

in integer multiples of the grating wave-vector. With the incident plane-wave perpen­

dicular to the cylindrical modulation, SPP grating coupling occurs (in the simplest

approximation) when the SPP wave-vector matches the sum of the free propagating
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Figure 5.1. Sketch of the cylindrically modulated YIDM geometry: (top) coordi­
nate system of a TM (p-polarized) plane-wave scattering from the infinite MDM
grating with the plane of incidence oriented perpendicular to the grating plane­
wave I\. = 21f/a.(bottom) Geometric parameters of the MDM coating, S = 30nm,
L = lOOnm, T = 15nm. The colors blue (silica) and gray (silver) indicate the mate­
rial composition.

plane-wave in-plane component and the grating wave-vector, G = 21f/a:

kspp = (~kosine+m21f)x m= (1:2,3, ... )
a

(V.l)

where a is the first order period of the modulation, m is an integer,~ == nM = 1

is the index of refraction of the medium from which the plane-wave is incident, and

K spp is defined in equation (II.2)

The periodicity results in the folding of the SPP dispersion relation back upon

itself across the first Brillouin zone of the grating reciprocal lattice. Manipulation of

the shape and periodicity of the the modulation leads to a rich tapestry of possible

interactions between the now crossing SPP dispersion branches. We are drawn to
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study the plasmonic bands of the folded dispersion diagram (and the interactions

between bands) to further our fundamental understanding of the alteration of SPP

excitations in the subwavelength dielectric gap of metal-dielectric-metal structures.

By specifying that the layers are silver, silica and silver we form a uniquely modu­

lated MDM geometry simultaneously supporting the three distinctive electromagnetic

eigenmodes shown in figures 5.2(a)-(c). These modes can be placed into three famil­

iar classes: exterior surface plasmons (EPS) associated with excitations along the

top silver-air interface and the substrate silica-air interface, interior surface plasmons

(ISP) confined to the dielectric layer between the adjacent metal films and associated

with the coupled plasmons of the two interior silver-silica interfaces, and localized

surface plasmon (LSP) modes associated with the excitation of plasmons at the cusps

formed by the intersections of rods or layers.

Through our FEM simulations, we have found that these conformal MDM coatings

can support radiatively coupled interior surface plasmon (ISP) modes similar to those

found in the previous chapter. The details of the FEM simulation can be found

in appendix C. There are four ISP induced effects which will be discussed in this

chapter: self-interaction of even and odd parity ISPs at the boundary of the Brillouin

zone, ISP-ESP hybridization similar to that found in the lvf(DM)x spherical shells

of chapter IV, interaction of ISP modes with the plasmon enhanced transparency

of Ebbesen et al. [19], and ISP coupling to localized surface plasmon resonances

(LSPR).
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Figure 5.2. (left) Geometry and free mesh of the computational domain used in
this study. (right) Total energy density plots of (a) an interior surface plasmon
mode (kx = 0, W = 1.54PHz). (b) an external surface plasmon mode (kx = 0.5,
W = 1.57PHz). (c) a localized substrate plasmon mode(kx = 0, W = 1.97PHz).
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ISP Mode Parity

We begin examining the results of our FEM simulations by examining the plas­

mon band-edge splitting induced by the MDM coating periodicity. In figure 5.3(left)

we have plotted the dispersion relation and plane-wave absorbance for the MDM ge­

ometry of figure 5.2. The absorbance, A == log(l - (7 + R)), is for a TM polarized

plane-wave incident from the air side of the MDM coating. The plane-wave is defined

as Eoe-inmk-r+iwt and originates at port 1, k = nmko(sin ex + cos ey) - kxx + kyy, and

the input field strength is given by Eo = IV/m. R is the reflectance calculated from

the normalized power flux through to port 1 (as defined in figure 5.2) in the direction

kR = -kxx + kyY. Correspondingly, 7 is the transmittance calculated via the power

flux flowing through port 2 in the direction kT = k = kxx + kyY'

The presence of periodicity allows the definition of even and odd parity ISP modes.

The parity of the modes is indicated in figure 5.3 with the line colors gray (odd) and

black (even). Having lifted the degeneracy at the Brillouin zone boundaries a large

self interacting ISP band gap is formed. We have found that this splitting is very large

for the cylindrically modulated MDM. The band edge gap formed at We = 1.5PHz

is characterized by the normalized gap size (/:::;"w/we = 0.06). It is clearly shown in

5.3(left) and (c) that excitation of the upper band is not possible at kx = O. Under

this normal illumination, only even parity modes may be excited due to the constant

phase of the transverse electric field Ex [101]. Examination of the mode symmetry



70

8

-8

I
N

o~
3
'-'

HZI E Field Plots
. . . . . . . . . .. . . . . ~

(a)

.... : :nOOnm :--t~

o

0.5
1.67 PHz

Absorbance
-4

1

.--.
N
J:
a..
'-'2
3
:>,
o
c
<D
::J
0­
<D
~

U.

1.42 PHz

!

!1.95 PHz
kx =0

_ kx =O.22

_ kx =O.36

Frequency, w [PHz] 3

Figure 5.3. (left) Band diagram overlaid upon normal absorption (log(l- (7+R)))
of the periodic MDM coating of figure 5.2. The line style indicates the dominant mode
character at kx = 0: ISP (solid), ESP (dashed), SSP (dotted) and its color indicates
parity: black (even) and gray (odd). (c) Absorbance vs. frequency cross-section plots
at three values of kx indicating the strong excitation of ISP (kx = 0.22) and ESP-ISP
hybridized (kx = 0.36) modes.
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reveals that the upper mode possesses odd parity and the corresponding lower even

mode couples to the free propagating plane-wave under normal illumination. This

is also true of the even parity ESP mode found at (kx = O,w = 2.2 PHz)). As we

move away from normal incidence the phase variation along the x-direction allows

the excitation of the odd parity ISP branch.

ISP-ESP Coupling in Modulated MDM Layers

Next we discuss the results of strong coupling between this odd parity ISP band

and an overlapping ESP mode. Similar to the results of previous chapters, the SPP­

SPP coupling of an ISP and an ESP mode at the point (kx = 0.36, w = 1.9 PHz)

results in an avoided crossing and hybridization of the energy levels. As we have

previously shown in chapter IV, the strength of this coupling, and thus the width

~w = 0.12PHz, is controlled through the thickness, L, of the top silver layer.

The hybridization of the ISP mode allows for the strong excitation of the gap

plasmon with a freely propagating plane-wave. The absorbance cross-section plot

(figure 5.3(c)) along kx = 0.36 shows the strong absorbance of the incident plane­

wave energy at w = 1.9 PHz. The spatial field distribution (figure 5.3(b)) shows

that the energy is concentrated in the silica gap and on the top surface of the MDM

coating.

Next, in the cross-section plot of figure 5.3(c) we note the exceptionally high plane­

wave ISP coupling efficiency ("'96%) at (kx = 0.22,w = 1.76 PHz). Examination of
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Figure 5.4. Cross-sectional plot of the electric field energy density through an MDM
coating at the position of 96% efficiency ISP generation (kx = 0.22, w = 1.76PHz)

the TM eigenmode field distribution (figure 5.3(a)) confirms this is a highly confined

ISP with minimal surface plasmon excitation above or below the MDM coating. In

figure 5.4 we plot a cross-section of the time averaged energy density distribution of

this ISP mode. The cross-section plot shows the weak excitation of SPPs associated

with the external silver interfaces. In figure 5.4 we further break the time averaged

total energy density into the electric and magnetic components. It is clear that while

the electric fidd energy is highly concentrated in the surrounding silver films, the

magnetic field energy lies mainly in the silica gap. This magnetic resonance character

is typical of ISP excitations explored in planar MDM systems [102].

The characteristic, high confinement and narrow spectral width of these ISP modes
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makes them a useful candidate for future applications in nanoscale device fabrication.

The maximum field energy density generated in the silica gap by the excited ISP mode

(Ugap r-v 0.5 J/m 3 ) is enhanced by three orders of magnitude over the average energy

density of the incident W = 1.76 PHz plane-wave (upw = 0.0056 J/m 3 ). This could

prove very useful for applications in which large field enhancements in nano-scale

volumes playa critical role such as SERS [52]. Additionally the narrow resonance of

the ISP mode creates the opportunity for high sensitivity sensors. As an example,

in figure 5.5, we plot the change in the ISP central resonance frequency, We as a

function of interior dielectric constant nd. We see that a change of refractive index

of r-v 1% is sufficient to shift We by its full width half maximum. This corresponds to
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Figure 5.5. Change in central resonance frequency of kx- = 0.22 ISP resonance as a
function of D.n = nino, where no = 1.42. Error bars indicate the resonance full width
half maximum (F\iVHM). A one percent change in the index of refraction is sufficient
to shift the central frequency by the resonance FWHM.
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6.w/6.n = 2PHz per refractive index unit or 1.2t.tm/RIu. This is two times the value

of the state of the art grating based SPR sensors. For comparison, the best value for

grating based surface plasmon biosensors is given by Homola et al. as 0.63t.tm/RIU [16].

ISP Control of SPP Enhanced Transmission

It has been shown that periodic modulation of a metal film leads to enhanced

transmission through the metal due to the excitation of SPPs on both sides of the film

(d. [19,103] and references therein). To compare the transmission through an MDM

to this SPP enhanced transmission, we have simulated the transmission through a

modified MDM coating with the top silver layer removed (a DM coating). This creates

a symmetric (silica-silver-silica) system capable of SPP enhanced transmission. In

figure 5.6 we show the transmission through the modulated DM and MDM coatings.

As can be seen in figure 5.6(b) the enhanced transmission through the the DM coating

is very broad, and exists in the regions between the branching modes of the air

and substrate SPPs. In contrast, the transmission through the MDM structure,

figure 5.6(a), is tightly bound to the excitation of the ISP modes. The maximum

transmittance through the MDM structure is comparable in magnitude to the DM

structure, but now its angular emission characteristics have been shaped by the ISP

mode dispersion.

To gain insight into this ISP transmission masking we examine the energy density
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the geometry shown in figure 5.2.
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distributions created from an incident plane-wave around the MDM enhanced trans-

mission point (k:c = 0.23,w = 2.67PHz). In figure 5.7 energy density cross-sections

at varied incident angles around the maximum transmission angle of kx = 0.23 = 11 0

are plotted. This shows that maximum transmission does not happen at the loca-

tion of most efficient ISP generation (kx = 0.19), but rather when the ISP is most

efficiently coupled to the symmetric SPP mode of the silver-silica interface. 'When

this condition is met, the electromagnetic field is strongest exiting the IVIDM film

and maximum transmission is found. When the ISP does not generate the strong

symmetric bottom film SPP, enhanced transmission is prohibited.
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Figure 5.7. Cross-sectional plots of the electric field energy density through an
MDM coating for varied incident angles around ISP enhanced transmission maxima
(kx = 0.23, w = 2.67PHz).
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Coupling of ISPs to Localized Cusp Modes

We end this discussion of ISP mode coupling with the an examination of the

ISP coupling to the last dominant mode type mentioned in the introduction: the

cusp localized surface plasmon mode. The intersection of two cylinders or shells

creates nano-scale points (or cusps). In this simulation the cusps are formed by

rounding off the geometric points formed at the intersections of the layers and rods

with the artificial computation boundaries. This is done with radius=2.5nm spheres.

Cusp modes are characterized by very large ("" 102
) field enhancements and flat

dispersion [104, 105]. By changing the periodicity (that is, the cylinder radius) of

our MDM structure to 300nm we show the development of such a nearly flat band at

w = 3.2PHz, (figure 5.8). We have additionally shrunk the dielectric spacer thickness

to 60 nm to maintain the high confinement condition Ao/10, as above.

In figure 5.8 we plot the dispersion relation and normal absorption of a 300nm

silica cylinder with a 30nm-60nm-15nm silver-silica-silver MDM coating. Again, the

dispersion relation is overlaid upon the film absorbance. As above, the absorbance

was calculated by simulating a plane-wave incident from the air side of the MDM

with wave-vector k = ko(sin ex + cos ey). At w = 3.2 PHz a flat band extends from

kx = 0 to kx = 0.34. At kx = 0.34 interaction with other modes reduces the excitation

of the LSP. The mode structures of the localized mode at kx = 0 and the hybridized

LSP/ISP/ESP mode formed at k = 0.40 are shown in figure 5.8(b). In figure 5.8(a)
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we plot the Hz and E fields of the cusp mode. In addition to the significantly small

field volume, it shows the large (rv 103
) enhancements of the cusp mode Hz amplitude

with respect to the hybridized mode of figure 5.8(b).

Conclusions

Using FEM calculations we have demonstrated that it is possible to directly couple

freely propagating modes to ISP (gap plasmon polaritons) using the grating coupling

method. Narrow resonance (6:.w/w = 0.02) and high coupling efficiency (96%) is

possible under tunable excitation conditions. This can be done even with very thin

(15 and 30nm) silver films, providing very low absorption loss while maintaining high

spatial confinement (,\/10). We have additionally shown the effect of the existence

of the interior plasmon mode on the surface plasmon enhanced transmission. The

interior plasmon mode can be use to tailor the enhanced transmission characteristics of

the modulated metal film with minimal impact on the overall transmission efficiency.

Lastly the plane-wave excitation of localized cusp modes has been demonstrated and

we have shown the large field enhancements associated with the excitation.
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CRAPTER VI

FABRICATION OF PERIODIC MDM COATINGS

Introduction

In this chapter we manufacture and analyze a novel 2D plasmonic surface which

is to be used in studying coupled ISP excitations in open Bragg resonators. Using

evaporative self-assembly we deposit monolayers of hexagonal close packed (RCP)

silica spheres to act as a hemispherically modulated substrate for conformally coated

silver-polystyrene-silver MDM trilayers. We use surface analytical tools such as scan­

ning electron microscopy and atomic force microscopy to characterize the quality of

the prepared samples.

Monodisperse Silica Spheres

A crucial ingredient in creating RCP silica sphere monolayers (also referred to

as monolayer opals) is the synthesis of monodisperse silica spheres with radii in the

200-500nm range. We accomplish this using the well published Stober method [106].

In our work, the Stober reaction is the hydrolysis of tetraethylorthosilicate (TEOS) in

ethanol. In a base-catalyzed environment, nucleation of silica nanoparticles grow to
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form monodisperse ensembles of micron-scale spheres. The standard deviation of the

sphere size is the most important parameter in growing high quality ordered crystals.

Thus, following the work of Gieche [107, 108], we have grown batches of silica spheres

based on the recipes shown in table 6.1.

Chemical Reaction Method

All glassware was pre-cleaned with hydrofluoric acid and subsequently dried at

800 for at least 6 hours before use. This prevented contamination by parasitic water

and dust particles; the former is a reactant and the latter facilitates uncontrolled

nucleation of silica particles. Random nucleation destroys the monodispersity of the

silica sphere ensemble, and thus must be avoided. Typical 200ml reactions were

prepared by combing all reactants except the TEOS in 500ml round bottom flasks

under vigorous stirring. TEOS was distilled at 1650 just prior to use and mixed 1: 1

with ethanol (EtOH) before rapid injection into the round bottom flask. The most

monodisperse reactions were obtained when the TEOSjEtOH mixture was quickly

Table 6.1. Stober reaction constituent molarities for synthesizing monodisperse
silica spheres in ethanol. The resulting sphere average diameters and standard devi­
ations are also given. (y indicates active cooling.

S-Rxn TEOS H2O NH40H EtOH (mL) Temp (DC) R (JR

3 0.2 13 4.2 70 30T 235 15.6
5 0.18 13 4.2 140 20 285 12.4
6 0.1 13 4.2 144 lOt 250 13.5
8 0.18 13 4.2 140 20t 200 9.5
9 0.18 13 4.2 133 20 250 9.6
10 0.2 13 4.2 128 20 258 10.2
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Figure 6.1. (a) Measured size distribution and (b) SEM image of Stober reaction 5.

and smoothly added below the solution surface with two extra-long wide-bore needles

on 5ml syringes. The reactions were allowed to proceed for at least 6 hours before

centrifugation cleaning in EtOH. The resulting monodisperse spheres were stored in

EtOH until needed for deposition.

Sphere Distribution Characterization

Small amounts of the Stober spheres were dispersed on copper-Formvar transmis-

sion electron microscope (TEM) grids for sizing with our Hugh transform analysis

algorithm [109]. Sizing results for the spheres used in this work can be found in

figures 6.1 and 6.2. A summary of batch polydispersities (= O"R/ < R » can be

found in table 6.1. Despite contrary reports [110], it was found that post growth
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sedimentation filtering had minimal impact on the overall sphere size polydispersity.

This is most likely due to the fact that a seeded growth process was not used to

initialize the Stober reaction. This results in a monodisperse distribution of sphere

diameters rather than a bimodal distribution, making sedimentation filtering much

less effective. Using the above procedure, typical polydispersities of 4% were obtained

with deviations between 3% and 5%.

This was deemed acceptable for Hep crystallization, as polydispersities below 6%

have been shown to produce high quality ordered crystal structures [111]. Despite

this, it should be noted that smaller polydispersities result in opal monolayers with

fewer point and line defects. Wong, et a1. have shown that very large (> 104,um2
)

single domains are possible if the sphere polydispersity < 2% [110].
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Figure 6.3. Diagrams of (a) evaporative self-assembly process and (b) the
isothermal-heating evaporative self-assembly (IHESA) chamber built to grow ver­
tically deposited opal monolayers. (c) A picture of the IHESA chamber, before the
addition of the evaporation filtration pump.

Isothermal Monolayer Self-Assembly

The crystal growth process is conducted with vertical deposition evaporative self-

assembly. Illustrated in figure 6.3, evaporative self-assembly works through the

surface-tension aided deposition of colloidal particles at the meniscus of an evapo-

rating solvent. This process is notoriously susceptible to environmental conditions

and can result in enormous variability in the quality of the crystals produced.

To overcome these difficulties, we follow the work of Wong, et al. in engineering

a crystal-growth chamber (figure 6.3) to uniformly deposit ordered monolayers over

large areas with high reliability and repeatability. The control of the crystal growth
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process is based on isothermal heating, evaporative self-assembly (IHESA). The IH­

ESA method relies on the immersion of the solvent-particle (EtOH-silica sphere)

slurry into a strictly controlled temperature bath. By maintaining the heat bath at a

temperature slightly above the boiling point of the evaporating solvent, uniform con­

vection of the evaporating solvent stirs the slurry without disturbing the deposition

meniscus. The convective flow ensures a constant uniform concentration of spheres

at the meniscus during the deposition process. In addition to the approach outlined

in [110], we have added the continuous, constant removal of the evaporating solvent

vapor (KNF Lab N811KV Filter Pump) and total isolation from external air currents.

This has improved the repeatability of the deposition process by eliminating solvent

re-condensation within the evaporation chamber. The isothermal bath chamber is

machined from a solid block of polyethylene and filled with rv 1 liter of ethylene gly­

col. The temperature of the bath is maintained by a NESLAB RTE 111 circulating

temperature controller, and monitored with a platinum resistance thermometer. The

heat of the circulating fluid is transfered to the ethylene glycol through copper tub­

bing inside the iso-bath chamber. Vye have found that this setup reliably produces

large area synthetic opals with a tunable number of layers for of sphere sizes in the

range r = 200 nm - r = 380 nm.

The concentrations of silica spheres used to create a sphere monolayer were estab­

lished by starting with a high concentration of sphere (> 2% by weight) and succes­

sively halving the concentration until a monolayer was obtained. Typical deposition
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concentrations can found in table 6.2. It should be noted that the temperature of the

evaporating solvent must be controlled to a very high tolerance during the deposition

(±0.05° typical). Additionally, the temperature of the IHSEA isothermal bath must

be slightly above the boiling point of the solvent (cf. table 6.2). It was found that the

most critical parameter for successful deposition is the temperature of the evaporating

solvent. The solution temperature must be at (or slightly above) the solvent boiling

point. In our depositions, we found that a solvent temperature of 78.9 ± 0.5° was

adequate for successful ordered growth. The temperature of the evaporating solvent

will change as a function of the surface area exposed to atmosphere. As a result,

careful control experiments were conducted to establish the correct isothermal bath

temperature for situations where the deposition vial geometry was changed.

When used as evaporation vessels, large (25ml) scintillation vials with an aspect

ratio of 3: 1 (length:width) were eventually found to produce the best results. The large

volume of these containers ensured a large reservoir of sphere solution and provided

a nearly constant concentration of spheres during deposition. The deposition vials (

Table 6.2. Typical deposition parameters for crystallization of opal monolayers.
Vacuum levels were held at 6.25" Hg for all reactions, and "S Rxn" cross-references
the table 6.1 reaction numbers. The deposition time is given in hr:mins.

Sample Chiller (OC) Iso-Bath (OC) Radius (nm) S Rxn % weight Time
57 86.45 84.03 285 5 2.6 3:20
60 86.35 84.05 285 5 2.6 2:55
84 86.35 83.90 250 9 0.3 -

86 86.35 83.92 250 9 0.3 3:00
87 86.35 83.73 300 8 0.67 3:00
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(a) (b) (c) (d) (e)

Figure 6.4. Examples of silver coated opal monolayers with a variety of sphere radii:
(a) 200nm (b) 250nm (c) 285nm (d) 250nm (e) 285nm. The glass substrates are
cut to 5/8" x 3/4". Second layer striping manifests as darker regions and speckle.

and the cut 3/4" x 3" microscope slides on which the deposition takes place) were

pre-cleaned with fresh piranha (3:1 fhS04 : H 20 2 ) solution for at least one-half

hour before deposition. After cleaning, the slides and vial were rinsed with ultra-

pure water and then rinsed with copious amounts of EtOH. In addition to removing

the residue and dust disruptive to the crystallization, it is important that no micro-

porous contaminants be in the vial during deposition. Because the temperature of

the solvent is so close to boiling, any air pockets or microscale sharp points can lead

to micro-heating. This causes the solution to boil and destroys the crystallization

process.

Cut microscope slides (Corning 2947) were cleaned and suspended in the evapo-

rating solvent with heated copper clamps (thermally attached to the isothermal bath)

to prevent solvent recondensation and dripping. Typical depositions took 3-3.5 hours,

indicating a linear evaporation rate of '" 1.5cm/hr. This most commonly resulted in
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Figure 6.5. (a) An SEM images of silver coated opals taken at 5 kV. (a) showing
a typical line defect across its length. Note that the dark spots are imaging artifacts
due to surface charging, and not crystal defects. (b) a high magnification image of a
typical point defect from a small sphere. Both opals are coated with 50 nm of silver.

an evenly coated I" - 1.5" X 3/4" area of uniform ordered-monolayer deposition with

second layer striping on both sides of the microscope slide. Several examples of silver-

evaporated monolayer opals are shown in figure 6.4. The monolayer opals were then

carefully removed from one side of the slide by wiping with acetone and lens tissues.

The resulting single sided samples were then allowed to dry overnight before further

processmg.

lVIDM Layer Deposition

High Vacuum Silver Deposition

After drying, monolayer opals were coated with an optically thick silver layer using

high vacuum (HV) evaporation. A Key high vacuum metal evaporator was used to

deposit a 50nrn thick layer of silver at a slow deposition rate of 0.3 - 0.5,4/5. The
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results of such a deposition can be seen in figure 6.5. A polystyrene polymer layer

is then applied and an additional top 20nm thick layer of silver is evaporated on top

of the monolayer opal, forming an MDM structure. In addition, one opal monolayer

was coated with 70nm of silver and no polystyrene interstitial layer, to be used as a

control sample.

Spin Coating of Polystyrene Conformal Layers

Following the results of Hall, et al. we have used high molecular weight polystyrene

(Alfa Aesar, #41936, MW:200,000) dissolved in toluene to conformally coat the

monolayer opals [112]. Huang, et al. have shown that spin coating can produce

thin (rv 100nm) conformal PMMA layers on a sinusoidally-modulated surface with

high (1:1) aspect ratios [113]. We have applied this same method to generate uniform

polystyrene layers of controlled thickness (from 120-160nm) over the surface of coated

opal substrates.

To calibrate the thickness of the polystyrene films, glass cover-slips were prepared

with piranha solution cleaning. One-half of the cover-slips were then coated with

50 nm of silver, using the same HV evaporation deposition as above. Following Hall,

et al. 4% by weight, polystyrene and toluene solutions were prepared and stirred

in a VWR vortex stirring machine for at least one-half hour before spin coating.

Calibration graphs for spin settings vs. layer thickness were then produced for speeds

between 2000 rpm and 6000 rpm. The samples were completely covered with the
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Figure 6.6. Calibration of spin coat rotation speed vs. polystyrene layer thickness.
The layer thickness and standard deviation are shown for two substrates (silver and
silica) using 4% by weight polystyrene in toluene. Least squared fits to exponential
functions are also shown.

coating solution and then spun for 60 seconds and allowed to dry overnight. After

scoring the sample with a razor blade, a Dektak 6 surface profileI' was used to asses

the height and uniformity of the polystyrene film. Up to ten independent 5 /-I,m

long scans were taken for each sample, and used to plot the average thickness and

standard deviation of the film (see figure 6.6). Conformal polystyrene coatings were

then applied to silver-covered opal monolayers with spin conditions selected to create

polystyrene layers with thickness from 125nm to 160nm.
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MDM Layer Characterization

The quality of the opal crystal domains and the uniformity of the polystyrene

and silver layers were assessed using scanning electron microscopy (SEM) and atomic

force microscopy (AFM). AFM images of silver coated and silver-polystyrene coated

mono-layered opals can be found in figure 6.7. These images demonstrate the re­

tention of uniformly modulated hemispheric surfaces throughout the deposition pro­

cess and spin-coating. The rv 5D nm reduction in the absolute magnitude of the

silver-polystyrene coated AFM image (as shown in figure 6.7(a)) indicates that the

polystyrene layer is preventing the AFM probe tip from penetrating as far into the

gaps between the spheres as its geometry allows. We surmise that polystyrene layer is

uniformly capping the silver coated opal. This is further confirmed below with SEM

images of MDM coatings

To assess the long range uniformity of the MDM layers and mono-layered opals,

SEM (Zeiss Ultra FEG) images were taken when conductive surfaces were available

(after silver evaporation). Figures 6.9(a) and (b) show the uniformity of opal mono­

layers over long distances. In figure 6.8 we show detailed results of spin coating

an ordered monolayer with a layer of polystyrene. We note that, after polystyrene

coating, the defect locations of the monolayer opal are highly enhanced in the SEM

images. This is due to charging of the sample surface at the location of the holes in

the applied polystyrene layer. We have discovered that the polystyrene spin coating
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Figure 6.7. AFM images of (a) silver-polystyrene, and (b) silver coated monolayer
opals. Inset are line profiles of the highlighted paths in the above images.

process fails at the location of point defects (missing spheres) and line defects (crys-

tals domain boundaries) but is otherwise uniformly applied over large areas of the

monolayer opal.

The sensitivity of SPPs to surface features makes the high defect density a point of

concern. However, we will show in the next chapter that these defects do not eliminate

the signature of MDM ISP excitation. Further refinement of the sample growth

process should lead to improvements in crystal quality and domain size. Specifically,

the reduction in the polydispersity of the monodisperse silica spheres, either through

seeded growth [107] and/or more refined sedimentation filtration: would seem to be

the most important factor [110].
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Figure 6.8. SEM images of silver-polystyrene-silver coated opal monolayers. (a) An
MDM layer near an open area in the HCP monolayer, with the red arrow indicating
the crystal growth direction. (b) High magnification image of a break in the MDM
layer caused by an underlying line defect terminating in a missing sphere point defect.
(b) also shows the suspended nature of the polystyrene layer over the silver coated
opal. The polystyrene does not fill t.he interstitial voids of the crystal monolayer.
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Figure 6.9. SEM images of the long range order of the HCP monolayers. Silver­
polystyrene-silver coatings are shown capping the opal monolayer. The polystyrene
layer is seen to fail at defect sites in the underlying crystal.
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The use of more advanced methods for deposition of the dielectric spacer (chemical

vapor deposition or pulsed laser ablation deposition) may produce better results for

thinner layers. However, we find that, away from the crystal defect areas, spin coating

of '" lOOnm thick polystyrene layers proves to produce adequate conformal layers

suitable for creating plasmonic MDM layers.
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CHAPTER VII

ANGLE RESOLVED SPECTROSCOPY OF MDM COATINGS

Introduction

A defining quantity of SPPs are their unique dispersion relations. In chapters

II and III we have shown that MDM layers and shells can be used to tailor the

dispersion relation of plasmonic surfaces. In this chapter we design an experiment to

measure the dispersion characteristics of the periodic silver-polystyrene-silver trilayers

engineered in the previous chapter. By measuring the far-field transmission spectra

of our periodic MDM surfaces at a variety of incident angles we are able to trace out

their dispersion relations. Using this angle resolved (AR) scattering spectroscopy, we

will find evidence that the manufactured MDM substrates support ISP modes, and

that these modes alter the SPP enhanced transmission found in sub-wavelength hole

arrays. We will end this chapter with the observation of a new phenomenon, angularly

asymmetric SPP enhanced transmission through silver coated opal monolayers.
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Design and Alignment of an Angle Resolved Spectrometer

AR Spectrometer Overview

To investigate AR transmission and reflection we have built a spectroscopy system

capable of independently altering the collection angle while automatically controlling

the incident angle and wavelength. The setup is shown schematically in figure 7.1.

The AR spectrometer has a 0.8° angular resolution, 111m spectral resolution and a

pointing accuracy of 40 J..lrad. By using high sensitivity detectors we can utilize a

collimated incandescent light source while maintaining reasonable acquisition times.

Acquisition speeds vary with sample extinction, but typical scan times for the samples

studied here are between two three hours with 2° and 2 nm resolution.

To produce a small sample area at the sample, light from an incandescent source

Fiber Coupled
Detector

l'.NA e
output out

Computer
Control

l'.NA
input

~

t
Focusing
Lens L2

Lock-in Amplifier

Collimating 80/20 BS
Lens L1

Fiber coupled
Incandescent

source

Monochrometel

Figure 7.1.. Schematic layout of angle resolved spectroscopy system.



97

is coupled to a 200l1m core diameter multimode optical fiber (Thorlabs M254L02)

with an aspheric fiber collimator (Thorlabs F220FC-B) optimized for the 600-1050 nm

range. This provides a pseudo-point source which can be directly coupled into a short

focal length spectrometer (Acton Research SpectraPro 2300i). This provides us with

a tunable spectral source with 1 nm resolution. The use of a pseudo point source

at the entrance of the spectrometer allows us to create a highly collimated output

beam. We use an achromatic 100mm lens (L1) to collimate the output beam before

splitting it with a 20/80 non-polarizing beamsplitter. The 20% exit beam is directed

into a fiber-coupled, femtowatt photoreceiver (New Focus 2151). This measurement

is used for realtime normalization of the input signal. The beam is chopped at a

frequency of 650 Hz and the resulting output signal is recorded with a Stanford

Research lock-in amplifier (SR830). The remainder of the input beam is directed

to the sample (rv 1.5 m down-beam) passing through a Glan-Thompson polarizer

(Newport 10GT04AR.16) set to select p-polarized light with respect to the vertical

rotation plane of the sample (d. figure 7.3).

The collimated beam is focused onto the sample with a 250 mm achromatic lens.

The input beam NA is adjustable from 0.04 to 0.008. After the sample, the transmitted­

reflected light is collected at a variable collection angle (manually adjusted) with a

combination achromatic lens (j = 75.6 mm) and fiber collimator (Thorlabs F220FC­

B) system. The collection NA is adjustable with a calibrated iris between the collec-
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Figure 7.2. Detailed illustration of the angle resolved sample holder, the fiber­
coupled collection optics, and the sample inspection microscope.

tion lens and the fiber collimator. The NA is adjustable from 0.11 to 0.013 providing

a collection resolution range of 6° - 0.80
.

The collected light is coupled into a 65 fJ,m multimode optical fiber (Thorlabs

M14L02). We have measured collection efficiencies equal to 65% at633 nm. The use

of a fiber coupled detector allows the detection angle to be varied from -300 to 1500

without beam realignment. The details of the sample and detector optomechanics can

be found in figure 7.2, and a detailed illustration of the sample coordinate systems can

be found in figure 7.3. The fiber collected light is then detected with a thermoelectri-

cally cooled photomultiplier tube (Hamamatsu 633) set at maximum gain (1500V).

The output of the PMT is digitized with a 20bit analog to digital converter (Acton

SpectraHub) and collected with our custom Labview acquisition software. The fem-
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towatt photoreceiver normalization signal is simultaneously collected and recorded

using the SR830 internal data buffer. With the high sensitivity and large dynamic

range of the PMT detector and the 20bit converter we have established that our cur­

rent spectroscopy setup has a noise equivalent power of 10-5 at 650 nm (in normalized

units) .

The sample stage consists of an automated rotation stage (Thorlabs CR-Z6)

mounted on linear x-y translation stage. The translation stage aligns the automated

rotation stage center of rotation with the manual rotation stage supporting the fiber

coupled detector. The sample automated stage and the spectrometer are also auto­

mated and controlled with custom Labview software. This allows for the automatic

acquisition of spectrally resolved data from a sample, as the sample is rotated about a

fixed point in space. As the input beam is held fixed, the sample rotation is equivalent

to changing the incident angle. In this study, the detector fixed at ()out = 00
• Thus,

as we rotate the sample we record the zero-order extinction of our MDM coated opal

monolayers.

Center of Rotation Alignment

The AR spectroscopy system has two alignment tools incorporated into its design:

a common path ReNe laser and a home built, retractible, 60x inspection microscope.

\iVe use the ReNe laser to mark the sample stage center of rotation and to select

highly ordered sample locations. When centered on a highly ordered location the

crystal structure of the substrate results in well defined diffraction with characteristic
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6 fold symmetry. The alignment microscope is used to inspect the sample surface, set

its z-axis position to the focal plane of the lens L2, and to initially align the sample

stage center of rotation (see figure 7.2) .

The primary alignment task needed in the AR system is locating the sample stage

center of rotation in the x- i plane. This is accomplished by first placing a thin film

40 p,m pinhole in the sample holder. Next, the pinhole is translated to the stage center

of rotation by iteratively imaging it with the alignment microscope at the 0° and 180°

stage positions until the two locations overlap at the center of the microscope field

of view. This can be accomplished with a replacement accuracy of approximately

±5 p,m. The small depth of field of the 60x objective « 1p,m) further aligns the

pinhole location along the i-axis with the sample stage center of rotation.

The fiber coupled detector is aligned by reversed coupling of the ReNe laser back­

wards through the collection optics. Independent x- i linear translation stages are

used to align the pine-hole marked center of rotation of the sample stage with the

focused laser beam emanating from the collection optics. This procedure aligns the

center of rotation of the detector with the center of rotation of the independent dove

tail swing arm supporting the collection optics.

With the location of the sample stage center of rotation established, the ReNe

alignment laser is focused on the the location of the pine hole with the manipulation

of L2 along i and with an independent linear translation stage along x. Additionally,

the laser beam passes through a fixed beam pick-off optic after the focusing lens. The
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sampled beam is used to align a fixed pinhole, now matched to mark the center of

rotation of the sample stage in 3-dimensions. Subsequent alignment of the samples can

now be accomplished by illumination with the HeN'e alignment laser (x, y, e= 0, ¢ =

0) and bringing the sample surface into the focal plane of the alignment microscope

(2).

AR Spectrometer Calibration

Chromatic Correction

To overcome the inherent variabili ty of our incandescent light source on the time

scale of an AR scan (rv 2 hours) we have incorporated the real time signal normal-

ization mentioned above. Because the two detectors used ar<~ not identical, we must

Incident l ! !
cp t t tT L S

x
(a) Crystal Sample (b)

Figure 7.3. (a) Coordinate system of an oriented sample in the AR spectrometer. (b)
Geometry of a periodic .\IIDM based on a self-assembled monolayer of silica spheres.
Blue is silica, gray is silver, and yellow is polystyrene. The system is embedded in
air.
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Figure 7.4. Normalization of input signal, and chromatic correction for non-identical
detectors. The resulting signal has a noise level of less than 0.005 at 650 nm.

account for their individual spectral responsivities. We do this by collecting spectra

without a sample in place. Division of the signal with this bright-field correction cal-

ibrates the chromatic differences between the P:VIT and the femtowatt photoreceiver.

Such a chromatic correction spectrum can be seen in figure 7.4, along with a raw

input spectrum and the resulting normalized signal.

AR Spectrometer Validation

Before beginning our discussion of zero-order AR transmission through periodic

MDM coatings) we discuss several test cases. These are used to check the performance

and alignment of the spectroscopy system. In figure 7.5(left) we plot the transmission

through a 50 nm thick high-vacuum-deposited silver film. The plotted result demon-
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Figure 7.5. (left) Zero-order AR transmission through a flat 50nm thick silver film.
(right) Zero-order AR transmission through uncoated opal 83 « R > = 285 nm).

strates the symmetry of the AR collection about the rotation origin of zero degrees

(normal incidence). As shown in figure 7.3, negative and positive rotations respec-

tively correspond to clockwise and counter-clockwise rotation of the sample stage.

We can also see the low (T "" 1.9%) transmission through this 50 nm think film.

Below we will see, that the periodic lVIDlVI and DlVI structures we have manufactured

in the previous chapter exhibit transmission enhancements on the order of 10 - 20

at 750 nm. The ripple structure in figure 7.5(left) is a result of noise from the low

input intensities at the ends of our collection spectrum ("" 480 nm and 900 nm) and

the high extinction of the flat film. The large variation in the noise level is due to the

large variation of the input spectrum (d. figure 7.4).

The left hand side of figure 7.5 shows the AR, zero-order transmission through an

uncoated opal monolayer self-assembled from r = 285 nm silica spheres. The figure
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Figure 7.6. (left) Zero-order AR transmission through a polystyrene and silver
coated monolayer opal 83 (L = 100 nm, T = 20 nm), (right) overlaid with the anoma­
lous diffraction from the air-silver interface (green line).

shows the same rotational symmetry of the transmitted light as seen in the flat film

case. A weak diffraction dip can also be seen centered at "'-J 2.8 PHz. This is the result

of a highly ordered monolayer, and proves that we can use our system to investigate

the angle resolved scattering from structures built from our self-assembled crystals.

In figure 7.6 we plot the collected zero-order transmission from an opal with a

polystyrene and silver coating. The polystyrene coating is "'-J 100 nm thick, and ap-

plied with the spin coating method discussed in chapter VI. The coating was spun

from a 3% by weight, polystyrene-toluene solution at 5.2 krpm for 60s arriving at the

estimated 100nm thick coating [112]. A 20nm thick silver film was then evaporated

on top of the polystyrene layer, under high vacuum. The results, plotted in figure 7.6,

have one dominant feature. The symmetric "X" centered at 3.3 PHz (570 nm). This

extinction feature is due to anomalous diffraction from the periodic, 2D, silver grat-



105

ing we have created. This so called, anomalous diffraction, occurs when a diffraction

order (the first order in this case) reaches the grazing output angle of 900 [114]. This

condition can be approximated from the grating equation, as the solution of:

. e nout Ao
SIn in = -- - m--

nin nina
m=(1,2,3, ... ) (VII.l)

where ein is the input angle, nin (nout) is the refractive index on the input (output)

side of the grating, Ao is the free space wave length, and a = 570 nm is the first order

periodicity of the grating (equal to the sphere diameter in this case). In the right-

hand side of figure 7.6 we have potted the overlapping solution to equation (VII.l) on

top of the transmitted spectra's extinction dip. Despite the crude approximation of

the simple grating equation, it is obvious that the solution of (VII. 1) coincides with

the extinction dip, identifying it as anomalous diffraction.

Scattering from Silver Coated Opal Monolayers

VVe begin our discussion of MDM coated opal monolayers by first looking at the

normal (ein = 00
) transmission through a silver coated opal monolayer (5 = 70 nm).

The zero-order (eout = 00
) transmission for such a sample is shown in figure 7.7. As

compared to the data taken from a 50 nm thick high vacuum evaporated silver film,

there is a large transmission enhancement at 750 nm. From the spectral shape of the

transmission, its spectral location of 750 nm, and the lack of a similar feature in the

normal transmission through an uncoated opal monolayer (also plotted in figure 7.7)
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Figure 7.7. SPP enhanced zero-order transmission at 750 nm (2.51 PEz) from a
silver coated (5 = 70 nm) opal monolayer as described in the text. This is compared
to an uncoated opal monolayer, and the transmission through a fiat,50 nm thick, silver
film. All spectra were taken with our AR spectrometer at normal incidence.

we conclude that this enhancement is the SPP enhanced transmission also found in

subwavelength nano-hole arrays [19].

The existence of SPP enhanced transmission is a very reassuring sign that our

manufacturing process supports the delocalized SPP modes. Enhanced transmission

depends on the long range structure of a periodic array to coherently couple SPPs to

radiating modes on both sides of the metal film. Our observation of enhanced trans-

mission implies that our self-assembled monolayers are of sufficient ordered quality to

support the coupling of the delocalized SPPs needed to generate SPP enhanced trans-

mission through the subwavelength holes formed from the gaps between the spheres

of the close-packed monolayer.

In figure 7.8, we present the AR, zero-order transmission from this silver coated
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Figure 7.8. (left) AR zero-order transmission of opal 57B. A S = 70 nm silver coated
opal. (right) The zero-order transmission with anomalous diffraction (green) and [0
1] silver-silica grating SPP dispersion (red) overlays.

opal monolayer. This figure shows the broad SPP enhanced transmission centered at

2.5 PHz (750 nm). In the right hand panel of figure 7.8 have plotted the same anoma-

lous diffraction resonance as above. This accounts for the dark bands in the center

of the transmission spectrum. In addition, we have plotted the first order disper-

sion band for a grating coupled SPP. As discussed in chapter II, the grating coupling

method yields the following coupling condition for exciting SPPs on a hexagonal

lattice (equation (II.7)):

with kll = ndkO sin ein, nd = JEd is the index of refraction for the particular (air

nd = 1, silica nd = 1.45, or polystyrene, nd = 1.59) dielectric medium adjacent to the

metal surface, Gf'K = 41r /3a and Gf'M = 21r / V3a. The band plotted in figure 7.8(b)
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is the first order (m2 = 1) dispersion for the [0 1] ( GrM ) silver-silica SPP mode. As

shown in figure 2.4, vertically-deposited, self-assembled crystals grow along the [1 1]

real-space direction. Thus, as we rotate the crystal about the growth direction axis,

i) by an angle ein , we span the r~M high symmetry reciprocal lattice vector, GrM . In

figure 7.8(b) we see that the SPP enhanced transmission is broadly correlated with

the r-M SPP band associated with the silver-silica interface plotted with the filled

red circles. One may also observe that there is a strong asymmetry in the collected

data with respect to the normal incidence (ein=O) mirror symmetry axis. This will

be addressed in a later section.
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NIDM Coated Opal Monolayers

Having established that our crystal monolayers are of sufficient quality to support

the grating coupling to SPPs, we now examine the effect of adding YIDM layers to

the surface of the ordered monolayer. Using the method discussed in chapter VI, we

have created several MDM coatings with a variety of dielectric layer thicknesses. The

details of the sample preparation can be found in table 7.1. The MDM layers have

thickness of 125 nm, 140 nm, and 160 nm.

On the left hand side of figures 7.9, 7.10, and 7.11 we have plotted the zero-order

AR transmission through the three MDM films. In tlw right hand panels we have
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Figure 7.9. (left) AR zero-order transmission of opal 57A. An ":VIDrvI coated opal with
L = 140 nm. Red arrows indicate ISP extinction. (right) The zero-order transmission
with [0 1] and [0 2] grating SPP dispersion bands for a silver-silica (red) and a silver­
polystyrene interface (blue). The silver-air anomalous diffraction is plotted with green
dots.
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Figure 7.10. (left) AR zero-order transmission of opal 60. An MOM coated opal with
L = 160 nm. Red arrows indicate ISP extinction. (right) The zero-order transmission
with [0 1] and [0 2] grating SPP dispersion bands for a silver-silica (red) and a silver­
polystyrene interface (blue).

overlaid the first [0 1] and second order [0 2] dispersion bands for the silver-silica

and silver-polystyrene interfaces. The ISP modes so heavily discussed in previous

chapters roughly correspond to the excitation of SPPs on the polystyrene side of

a periodically modulated silver-polystyrene film. From our work on MOM coated

cylinders in chapter V, we know that a major efFect found in our FEM simulations

was the alteration of the SPP enhanced transmission due to the prerequisite excitation

of ISP modes. Keeping this in mind, we note three features that suggest the excitation

of ISP modes in figures 7.9, 7.10, and 7.11 .

The most obvious change from the single silver coating of figure 7.8 is the shift

in the distribution of SPP enhanced transmission to include a broad branch centered

at (w = 3.7 PHz (510 nm), kx = 0). The over-plots of the [0 2] dispersion bands
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Figure 7.11. (left) AR zero-order transmission of opal 64. An rvlDM coated opal with
L = 125 nm. Red arrows indicate ISP extinction. (right) The zero-order transmission
with [0 1] and [02] grating SPP dispersion bands for a silver-silica (red) and a silver­
polystyrene interface (blue).

imply that this is due to the excitation of a second order ISP mode (the dotted blue

line). This silver-polystyrene interface mode exists neither in figure 7.8, when there

is no polystyrene layer, nor in figure 7.6, when there is only a single silver interface.

We therefore conclude that the broad SPP enhanced transmission found centered at

(w = 3.7 PHz, kx = 0) in all three MDM layers is due to the excitation of ISP modes

in the polystyrene gap between the two silver films.

A second characteristic change, induced by the application of the second metal

interface of the fvIDM coating, is the slight (but consistent) red-shift of the original

SPP enhanced transmission centered at (w = 2.5 PHz, kx = 0). In figure 7.8 it is clear

that this enhanced transmission overlaps with the first order [0 1] dispersion band

of the silver-silica interface. In all of the YIDM coated samples we see that the new
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maximum of the SPP enhanced transmission has been red-shifted towards the first

order silver-polystyrene [0 1] dispersion band. This is consistent with our simulations

of chapter V. In those results, we found that the overlap of ISP bands with the SPP

enhanced transmission redirected the transmission along (but blue shifted from) the

ISP dispersion bands.

Finally, in figures 7.9, 7.10 (and weakly in figure 7.11) we note that, in addition

to the apparent shifting of the SPP enhanced transmission, we see the increased

extinction of the transmitted light corresponding to the [0 1] and [0 2] dispersion

bands. (These are marked with red arrows.) Because of the strong correlation between

the dispersion bands and the increased extinction, we conclude that they correspond

to the excitation of ISP modes which are absorbing/scattering additional light out

of beam. This is the most obvious in figure 7.9 with L = 140nm and figure 7.10

with L = 160 nm becomes less pronounced in the thin dielectric spacer layer with

L = 125 nm (figure 7.11). This suggests a change in the dispersion relation of the

Table 7.1. Geometry of opals presented in this study. The thicknesses L are esti-
mates based on the calibration curve in figure 6.6.

Opal # < R > (nm) S (nm) L (nm) T (nm) % w.t. PS Spin (krpm)
57A 285 50 140 20 4 0
57B 285 70
60 285 50 160 20 4 3.05
64 285 50 125 20 4 4.55
84 250 30 100 20 3 5.23
86 250 30



113

ISP with the dielectric layer thickness, and strong coherent coupling between the two

metal interfaces.

Asymmetric Transmission

We now move onto a newly observed phenomenon. We have found, that for some

silver-coated, self-assembled monolayers, the SPP enhanced transmission is asymmet­

ric with respect to the mirror plane defined by the plane of normal incidence (ein = 0).

This was noted earlier in reference to figure 7.8. To test that this observation is an

inherent property of our sampIes (and not an artifact of our AR spectroscopy system)

we have measured the zero-order transmission with the sample in its original orien­

tation (c/J = 0) and with the sample rotated 1800 about the surface normal axis (d.

figure 7.3). This was done for two independent points on the sample, and with two

different samples noted to have asymmetric SPP enhanced transmission. The results

can be seen in figures 7.12 and 7.13.

In figures 7.12(a) and (b) we have plotted the asymmetric transmission of the pre­

viously examined silver coated opal from figure 7.8. The mirror symmetry between

the ¢ = 0 and ¢ = 1800 in figures 7.12(a) and (b) is obvious when plotted they are

plotted side-by-side. The mirrored SPP enhanced transmission happens, while the

anomalous diffraction band remains symmetric. We conclude that the sample has

inherent asymmetric transmission and that it is not a artifact of the measurement



114

Figure 7.12. Asymmetric zero-order transmission from silver coated opal 57B. (left)
¢ = 0°, (right) ¢ = 180°. Both graphs are plotted on the same scale as figure 7.8.

process. The points measured were selected based on the visibility of their diffraction

patterns with the alignment BeNe laser, but were otherwise independent. The selec-

tion of two independent points for these measurements proves the robustness of the

observed asymmetric transmission. It implies that our samples are highly uniform

and that the cause of the asymmetry likely originates from some systematic, global

variation in the structure of the coated opal monolayer.

In figures 7.13(b) and (c) we show asymmetric SPP enhanced transmission through

a second sample. This is an MDM coated opal monolayer with a new sphere size di-

ameter (a = 500nm, S = 30nm, L = 100nm, T = 20nm: silver/polystyrene/silver).

In figure 7.13(a) we the plot zero-order, AR transmission of a separately coated, silver

opal monolayer (a = 500 nm, S = 30 nm). This new periodicity has moved the loca-

tion of the SPP enhanced transmission to3.4 PBz. In comparison with figure 7.13(a),



115

Figure 7.13. (a) Symmetric zero-order transmission through silver coated opal 86.
Also plotted is the asymmetric zero-order transmission from MDM opal 84 for (b)
cjJ = 0°, and (c) cjJ = 180°. The color scales of (b) and (c) are magnified by a factor of
5 with respect to (a).

the MD"YI coating has concentrated the SPP enhanced transmission along a broad

dispersion band, and is highly asymmetric with respect to Bin = O.

This asymmetric transmission is a highly intriguing observation. As far as we

know, this directionally sensitive transmission effect has not been previously reported

in relation to subwavelength hole arrays or other systems exhibiting SPP enhanced

transmission. We do not know the exact origin of this effect, but given the spectra we

have shown in this chapter we can intelligently speculate on its origins. Firstly, the

spectra taken of uncoated and silver-polystyrene opals are symmetric with respect

to the normal incidence plane, figures 7.5 and 7.6. This and the symmetric trans-

mission through the flat silver film shows that neither the AR spectrometer, nor the

uncoated opal monolayers induce an artificial asymmetry. Secondly, we have shown

with figures 7.12 and 7.13(a) that the application of a high-vacuum-deposited silver

film is a necessary, but insufficient condition for observing asymmetric transmission.
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Lastly, we have shown that MDM layers can also exhibit this type of asymmetric

transmission.

This evidence points a global, systematic structural asymmetry developing in some

samples with the evaporation of silver onto the bare opal monolayer. We hypothesize

that shadowing of the interstitial gaps of the close-packed monolayer is responsible

for the observed asymmetric transmission

It is well known that SPP excitations are highly sensitive to the shape and orien­

tation of nano-particles. Haes et al. have exploited this in their extremely sensitive

biosensors [57, 115] by using nano-sphere lithography to create nano-particle arrays.

Nanosphere lithography is the use of ordered spherical monolayers to mask the depo­

sition of evaporated metal, creating periodic nano-particle arrays. Thus, it is the first

two steps of our process, followed by the subsequent removal of the masking spheres.

The shadowing properties of nano-sphere lithography have been extensively studied

for the manipulation of the nano-particle geometry [116]. It has been shown that the

shape and size of the resulting nano-particle arrays are sensitive to the orientation of

the ordered sphere mask during the metal deposition step [117, 118].

The asymmetry that we observe occurs in some, but not all of our high-vacuum­

deposited silver coatings. Due to the limitations of the Key high vacuum evaporator,

the orientation of the monolayer substrates was not strictly controlled during the

deposition process. The angle of the substrate with respect to the crystal growth

direction was aligned by eye, and could have estimated errors on the order of 10°.
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Since we have correlated the existence of the asymmetric transmission with the first

silver film deposition process, and it is known that shadowing of the interstitial mono­

layer regions can cause changes to the size and shape of the nano-particles formed

in the gaps, we conclude that it is this shadowing and the continued presence of the

silver coated sphere monolayer that combine to result in the observed asymmetric

transmission.

Conclusions

In this chapter we have brought together many of the ideas and results of the pre­

vious chapters. Using our understanding of ISP excitations developed in chapters III,

IV and V we have interpreted the angle dependent transmission properties of the

unique plasmonic surfaces engineered in chapter VI. With our home built, angle re­

solved spectroscopy system we have demonstrated the excitation of delocalized SPPs

on opal monolayers, and found strong evidence of the free-space excitation of ISP

modes in our MDM samples. Finally, we have reported the discovery of directionally

asymmetric surface plasmon enhanced transmission. While the origin of the asym­

metry is currently unknown, we have hypothesized that it is the result of angle based

shadowing during the silver deposition onto a bare opal monolayer. This hypothesis

can be verified through future quantitative study of angle controlled silver deposition.
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CHAPTER VIII

CONCLUSIONS

In this thesis we have demonstrated how one can use far-field light scattering

techniques combined with theoretical and computational analysis to investigate the

near-field coherent coupling between surface plasmon polariton (SPP) excitations on

spherical metal-dielectric-metal (MDM) interfaces separated by sub-wavelength dis­

tances. Vve were motivated to begin these investigations by asking how radiating

SPPs coherently couple to other SPP modes on concentric metal shells. By devel­

oping the theoretical tools of chapter III we have answered this question and shown

how SPPs on spherical metal shells separated by interior dielectric shell gaps couple

to the external, radiating SPP modes. We have found how this near-field coupling

leads to resonant level splitting, and how this band splitting impacts the far-field

scattering of these multi-shelled metallodielectric particles. Through the process of

answering the above question, we found several new questions to ask: Why does the

level splitting found sometimes result in enhanced particle absorption and sometimes

result in reduced particle scattering? Can the concepts of SPP-SPP resonant level

splitting be applied to layered Bragg resonators, if those resonators are built from

curvilinear components? Can we manufacture physical realizations of either multi-
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layer spheres or multilayer plasmonic Bragg resonators? If so, how do we probe the

far-field scattering of such systems in a logical and consistent manner?

In this work, we have endeavored to also answer these new questions. To accom­

plish this, we have developed new computational tools to calculate the electromagnetic

field interaction with particles of arbitrary size and composition. This was a signif­

icant accomplishment, not because we developed any fundamentally new algorithms

for the computation of scattering from a spherical particle, but because, at the time

of its inception, no complete algorithm existed that was valid in our parameter range

of large, absorbing, multi-shelled particles. Through careful selection from the work

of several authors we developed our own framework for computing scattering from

exactly these types of large, absorbing, multi-shelled particles. The speed and robust­

ness of our algorithm has been essential in our investigations. It has allowed us to go

beyond our original goal of simply computing the extinction-cross sections of multi­

layer plasmonic particles. It has prompted our investigation of the hybridized nature

of coupled SPP field distributions, and facilitated answering some of the additional

questions mentioned above.

Using these scattering computations, we have shown that coupling between SPP

modes in MDM microspheres leads to resonant level splitting in their angular disper­

sion band diagrams. Additionally, by developing an analytical formulation for mode

coupling between basic plasmonic elements (spheres and cavities) we have demon­

strated how to mathematically isolate the important geometric parameters that con-



120

trol the interior-exterior surface plasmon coupling strength. Further, we have shown

that, based on the strength of this coupling, we can tailor the extinction cross-sections

of plasmonic particles with diameters comparable to the scattered wavelength. We

found that, strong coupling to radiating modes leads to plasmonic-particle, forward

scattering transparencies, and thus, demonstrated the reduction in the electromag­

netic cross-sectional area of plasmonic particles by rv 50%. We also found that, weak

coupling can be used to greatly enhance the particle's electromagnetic absorption.

Because we are coupling SPP resonances, these transparency and absorption prop­

erties are spectrally tunable via the shells' geometric and material parameters. This

allows the further spectral manipulation of the transparency window, and we have

demonstrated tuning its central wavelength across the visible/NIR spectral region.

We've attempted to generalize some of the observations of MDM interior sur­

face plasmon modes by looking at conformally-coated, periodically-modulated MDIvI

nano-layers with finite element modeling (FEM) and experimental scattering spec­

troscopy. From our work with FEM simulations we found that interior surface plas­

mon analogs exist in periodically-modulated MDM surfaces, and that it is possible to

couple directly to them with freely propagating waves. This was shown to potentially

yield a new type of refractive index based sensor platform with a sensitivity twice

as large as that found in modulated single interface sensors. Using these models we

have also looked for analogies to the enhanced transmission properties of the above

MDM spherical resonators. We have computationally explored the SPP enhanced
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transmission effect found in modulated single metal films, and compared this to our

MDM conformal nano-Iayers. Our simulations have shown that the excitation of the

narrow-band interior surface plasmon mode becomes prerequisite for enhanced trans­

mission, and thus, the interior surface plasmon modes supported by the coupled SPP

modes of MDM surfaces serve to shape the response of SPP enhanced transmission.

To explore these findings experimentally we have developed a manufacturing pro­

cess to create periodically-modulated MDM nano-Iayers from silica, silver and poly­

mer components. Using the tools of evaporative self-assembly, high vacuum metal

evaporation, and polymer film spin-coating, we've successfully developed plasmonic

substrates similar to those studied computationally. Our method is simple, cheap

(compared to comparable resolution methods such as e-beam lithography) and com­

patible with other planar manufacturing methods. SEM and AFM analysis shows

that this produces high quality metal-dielectric-metal conformal coatings on top of

a hexagonal-dose-packed sphere substrate. The conformal, polystyrene layer, spin­

coating method suffers from high sensitivity to point and line defects in the underly­

ing crystal, but otherwise produces uniform layers with thicknesses in the rv 100 nm

range. As investigated with angle-resolved spectroscopy, our silver-polystyrene-silver

substrates appear to be of sufficient quality, to allow coupling to delocalized SPPs

with the grating coupling method.

To test the plasmonic properties of these novel MDM substrates we have designed

and built an angle-resolved spectroscopy system. The results of this work have demon-
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strate strong evidence that interior surface plasmon modes in our engineered MDM

substrates are excited by direct, free-space illumination. It has been also shown

that the excitation of these interior surface plasmon modes significantly alters the

SPP enhanced transmission. The demonstration of SPP enhanced transmission using

monolayer opals as a substrate is new in-and-of itself, but we have further shown

that, following the construction method in this work can result in samples with angu­

larly asymmetric SPP enhanced transmission. This is a completely novel effect, not

previously reported in the SPP enhanced transmission literature.

Future Work

As is the case for any well conducted line of research, in addition to answering

questions, our investigations have inevitably resulted in generating new questions

about SPPs and nano-structured metal surfaces. Among these, we put forth that,

the most interesting future investigations should entail some or all of the following

research directions.

In our work we briefly looked at the effect of adding more DM layers on the MDM

particle scaffolding. Since our algorithm supports an arbitrary number of shells, fur­

ther detailed investigations of many-shelled particles would be intriguing, and should

generate interesting results. As an example we refer to the work of Smolyaninov et

al. [48]. In this work they have used gold-PMMA concentric cylindrical shells to form
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2D plasmonic cloaks for non-radiating SPP modes. It would be highly interesting to

extend these ideas to 3D particles interacting with freely-propagating waves.

One of the questions that was asked above was, "is it possible to experimentally

observe the plasmon enhanced transmission and absorption effects theoretically pre­

dicted in concentric spherical shells?" The technology has been developed to coat

both silica and silver spheres with metal or dielectric coatings. However, it has not

yet been used to generate the types of multiple concentric shells in the size ranges

investigated in our work (rv 1 {-Lm). Thus, from a materials science/surface chemistry

point of view, synthesizing real world MDMd particles would be a very attractive line

of research.

Additional experimental investigations should obviously include further study of

MDl\tl interior surface plasmon mediated transmission and the asymmetric SPP en­

hanced transmission. First, we have already demonstrated the strong effect that

sphere periodicity has on the location of the SPP enhanced transmission. A sys­

tematic study of the ordered monolayer sphere size would be interesting in order to

establish the relation between substrate periodicity and the central wavelength of

the SPP enhanced transmission. Second, a quantitative study of asymmetric SPP

enhanced transmission is needed. As mentioned in chapter VII, a systematic study of

asymmetric transmission as a function the opal monolayer orientation during silver

deposition is the most logical experiment to conduct.

There are also several improvements for our current MDM manufacturing process
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that should be pursued in order to optimize the resulting substrates. The reduction of

the ordered monolayer defect density is the single most important step. As outline in

chapter VI, the creation of silica spheres with polydispersities less than two percent

is most likely the needed ingredient for producing higher quality crystals with the

IHSEA method we have developed.

Concluding Remarks

In summary, we have used many tools (theoretical, computational, experimen­

tal) from many different disciplines (physics, computer science, chemistry, material

science) to study the interaction of light with sub-wavelength metallic features. Vie

produced new computational tools that, in addition to being used here, will be of

great utility to future investigations of multilayer plasmonic particles. Expanding on

previous ideas of plasmon hybridization, we've developed an analytical formulation

of SPP-SPP coupling that is applicable to spherical metal-dielectric interfaces of any

size. We've developed a method for growing silica photonic crystals and engineering

them into novel plasmonic substrates with the deposition of metal and polymer nano­

scale layers. Finally, we've designed and built an angle-resolved spectroscopy system

for optically studying the SPP-SPP coupling inherent in our periodic MDM layers, as

proven with analogous 2D finite element simulations. We've used this spectrometer

to study our manufactured hexagonally-patterned MDM nano-Iayers. This has lead
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to the confirmation of some observations made with our finite element modeling and

the discovery of angularly asymmetric SPP enhanced transmission.

To the author, this seems like quite a lot to accomplish in a few short years.

However, it is dwarfed by the potential investigations that may be carried out in the

future using the systems developed in this work. I have mentioned a few of them

in the above section. But, this is by no means a complete list of potential research

directions, and the possible applications of the plasmonic systems studied here were

barely mentioned. Having reached the end of this work I cannot help but feel that, I

am stopping just as many years of work are beginning to produce significant results.

However, I believe that, this simply illustrates the large breadth of possibilities in­

volved in exploring an essentially new field. I have every confidence that the tools we

have developed here will continue to generate interesting and significant contributions

to the fundamental understanding of subwavelength optics and plasmonics.
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APPENDIX A

CALCULATION OF MULTILAYERED SPHERICAL PARTICLES

In this appendix we show how the modes equations of multi-shell spherical particles

can be broken down into the coupled mode equations of the basic (sphere and cavity)

elements that constitute its single interfaces. We start by solving Maxwell's Equations in

curvilinear coordinates for a single, spherical scatterer. This is then expanded to multiple

shells. The mode equations are then broken down into the mode equations derived during

the expansion.

Single Spherical Scatter

We start with the solution to Maxwell's equations expanded in spherical harmonics.

The interested reader can consult Bohren and Huffman for the initial separation of variable

steps, and expansion of a plane wave in spherical coordinates [83].

Incident Field

The incident electric (Ei ) and magnetic Hi fields of a plane wave can be expanded in

terms of spherical harmonics with the following result:

-'" ~.n 2n + 1 (-'" (1) . -'" (1))
= Eo~ 1, n(n + 1) MaIn - 1,Ne1n

-'" ~.n 2n + 1 (-'" (1) . -'" (1))
= H o~ 1, n(n + 1) M e1n + 1,No1n

(A.l)
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This constitutes our input field that will be scattered from the single interface scatterer. Eo

is the incident field amplitude and Ho = - kM Eo is the strength 0 the incident magnetic
Wf-tM

field. The vector spherical harmonics, N~{)x, and M~f)x in the above equations are defined

by:

with x == cos[B], p == kj . 7'i, is the so called size parameter in the medium with permitivity

Ej bounded by the radius 7'j the radial dependence is given by:

i = 1 Bessel function of the first kind

i = 3 Hankel function of the first kind

Scattered Field

The resulting field after interacting with the particle can be separated into two pieces.

The scattered field outside the particle, in the medium with permitivity EM, given by:

(A.3)
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The field inside the particle where the is permitivity EM, and its fields are given by:

_ ~ ---'" 2n + 1 ( ---'" (1) ,---'" (1))
- LJEnn(n+ 1) cnM o1n - dnzNe1n

n=l

~ ---'" 2n + 1 ( ---'" (1) , ---'" (1))
= ,~Hnn(n + 1) anM e1n + zbnN o1n

E - E 'n 2n+ 1
n - OZ n(n + 1)

k'H n = --J-En
Wf-Lj

with f-Lj equal to the permeability in the jth medium

Boundary Conditions for Single Sphere

(A.4)

(A.5)

Continuity of the tangential fields produces the following boundary conditions evaluated

(A.6)

These boundary conditions are calculated through the explicit expansion of the angular

field components:

E i8 + EM8 = E 18 =?

e.~ En (Moln (1) - iNe1n (1) - bnMoln (3) + aniNe1n (3) - Cn M oln (1) + dniNe1n (1)) = 0

(A.7)
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00

Using the identity LAn + Bn = 0 ~ An + Bn = 0 V n, and the orthogonality of the
71=1

vector spherical harmonics, we equate their coefficients we have the the following set of four

linear equations for the field expansion coefficients an, bn, Cn, and dn:

0=

0=

0=

0=

[kMrdn (kMr1)r [kMr 1hn(1) (kMrdJ' d [k1r dn (k1 r1)r- + an + 71 -'---------=-'-'---'------'--'---
kMr1 kMa k1r1

- kM jn (kMr 1) + kM anhn(l) (kMr 1) + ~dnjn (k1rd
Wf-L WJ-L Wf-L1

jn (kMr 1) - bnhn(l) (kMrl) - cnjn (k1rl)

-~~ [kMrdn (kMrl)r kM bn [kMr1hn(1) (kMrdJ' k1 en [k1rdn (k1rdr---'--------- + - + - --'-----------'--~

kMrl WJ-L kMrl WJ-Ll k1rl
(A.9)

\¥ith redundant results for the 0 equations. The above are two independent sets of

equations. One equation for the transverse magnetic (TM) and one for the transverse

electric (TE) solutions. The TM solution is given by:

an [kMr1hn (1) (kMrd] 1_
1
_ + dn [k 1r dn (k1rdr k

1
= [kMrIJn (kMrl)r _1_

k M 1 kM

kM (1) k1 . _ k M .
an-hn (kMrd + dn-Jn (k1rd - -In (kMrd

J-L J-Ll J-L

which has the corresponding adjunct matrix:

(A.10)

J-L k1 .
-k-Jn (k1rl)
J-Ll M

[k1rdn (k1rdr

(A.ll)

Which can be rewritten with the definitions of the Riccati-Bessel 'l/Jn(x)

Riccati-Hankel ~n(x) == xh~l)(x) functions:

xjn(x) and

J-L k1 .
-k-Jn (k1rl)
J-Ll M

'l/J~ (k1rl)

(A.12)
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The equivalent TE equations are given by:

bn~ [kr1hn (1) (kMrd] I + Cn~ [k1rdn (k1r1)]' = ~ [kMrdn (kM r1)]'
I-" 1-"1 I-"

bnhn (1) (kMr1) + cnjn (k1rd = jn (kMr1)

(A.13)

I-" k1 .
-k-Jn (k1rd
1-"1 M

1-"1 [kMrdn (k1r1)]'

(A.14)

(

hn (1) (kMrd I-" kk1 jn (k1r1)
1-"1 M

I-"~~ (kM r1) 1-"1'ljJ~ (k1r1)

(A.15)

Using Cramer's Rule for solving systems of linear equations we can write down the

solutions for the expansion coefficients for the scattered an, bn and, internal Cn, dn fields in

terms of determinants:

I-" k1 .
--In (k1r 1)
1-"1 kM

[k1rdn (k1 r1)]

I-" k1 .
-k-Jn (k1r 1)
1-"1 M

[k1r dn (k1rd]'

(A.16)

hn (1) (kM r1)

[kMr1hn(1) (kMr1)]' :~

I-" k1 . (k )-k-Jn 1r 1
1-"1 M

[k1rdn (k1r 1)]'

(A.17)
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(A.18)

(A.19)

The particle posses a resonance when the denominators of equations (A.16~A.19) go to

zero. For the TM case (an> dn ) we define the mode equation for resonant excitation as given

by the determinant:

det[UMd] ==

which can be rewritten as:

hn(1) (kMTd

[kMT1hn(1) (kMT1)f :~

k 1 .
k

M
Jn (k1Td

[k1TIJn (k1TdJ'

(A.20)

det[UMd] = (A.2I)
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MDm Cavities and DMd Core-Shell Particles

'Vhen we introduce an extra interface to form an MDm cavity or a DMd core-shell

particle and additional set of boundary conditions is introduced into the problem. This is

the only change. This change is accounted for by introducing an additional set of fields

with in ward and outward propagating waves, given by:

00 ( )
~ ~ 2n + 1 ~ (3) . ~ (3)
H 2 = ~Hnn(n+ 1) fnMeln +tgnNo1n

(A.22)

(A.23)

Continuity of the tangential fields produces the previous boundary conditions evaluated at

(A.24)

and continuity of the tangential fields produces the new boundary conditions evaluated at

(A.25)
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Thought the same separation of variables as above, we once again arrive at two or­

thogonal, TM and TE solutions. In the context of SPPs we are only interested in the TM

resonant modes. The adjunct matrix for the TM solutions is given by:

hn(1) (kMr 2) kM jn (k2r 2) k2 hn (k2r2) kM 0 jn (kMr 2) kM

~~ (kMr 2) /kM 'IjJ~ (k2 r 2) /k2 ~~ (k2r 2) /k2 0 'IjJ~ (kMr 2) /kM

0 hn(1) (k2r 1) k2 jn (k2r I) k2 jn (k1rI) k1 0

0 ~~ (k2r1) /k2 'IjJ~ (k2rI) /k2 'IjJ~ (k1r 1) /k1 0

(A.26)

From which we can once again extract the mode equation for TM mode excitation using

Cramer's Rule:

hn(1) (kMr 2) kM jn (k2r 2) k2 hn (k2r 2) kM 0

~~ (kMr 2) /kM 'IjJ~ (k2 r 2) /k2 ~~ (k2r2) /k2 0
det[UMDm] == (A.27)

0 hn(1) (k2 r 1) k2 jn (k2r 1) k2 jn (k1 r 1) k1

0 ~~ (k2r1) /k2 'IjJ~ (k2r1) /k2 'IjJ~ (k1r1) /k1

MDMd TM Mode Equation

If you are astute you can extract the changes from equation (A.21) to equation (A.27)



134

and simply write down the mode equation for the addition of another interface. The mode

equation for the MDMd case is given by:

det[UMDMd] ::=

hn (1) (kMT3) kM jn (k3T3) k3 hn (1) (k3T3) k3 0 0 0

~~ (kMT3) /kM 'lj;~ (k3T3) /k3 ~~ (k3T3) /k3 0 0 0

0 jn (k3T2) k3 hn (1) (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

0 'lj;~ (k3T2) /k3 ~~ (k3T2) /k3 'lj;~ (k2 T2) / k2 ~~ (k2T2) /k2 0

0 0 0 hn (1) (k2T1) k2 jn (k2 T1) k2 jn (k1T1) k1

0 0 0 ~~ (k2T1) /k2 'lj;~ (k2T1) /k2 'lj;~(k1T1)/k1

(A.28)

Equation (A.28) can be expanded to reveal the component coupling in the following

manner. We start by evaluating (A.28) by minors:

(A.29)

where

jn (k3T3) k3 hn (1) (k3 T3) k3 0 0 0

jn (k3T2) k3 hn (1) (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

A::= 'lj;~ (k3T2) /k3 ~~ (k3T2) /k3 'lj;~ (k2T2) /k2 ~~ (k2T2) /k2 0

0 0 hn (1) (k2T1) k2 jn (k2T1) k2 jn (k1 Td k1

0 0 ~~ (k2Td /k2 'lj;~ (k2Td /k2 'lj;~(k1Td/k1

(A.3O)
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and

7/J~ (k3T 3) / k3 ~~ (k3T 3) /k3 0 0 0

jn (k3T 2) k3 hn (1) (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

Iffi::.:: 7/J~ (k3T2) / k3 ~~ (k3T2) /k3 7/J~ (k2T2) / k2 ~~ (k2T2) /k2 0

0 0 hn (1) (k2TI) k2 jn (k2TI) k2 jn (kITd kI

0 0 ~~ (k2Td / k2 7/J~ (k2 Td / k2 7/J~ (k lTd / kl

(A.31)

A second evaluation by minors gives us the equations:

(A.32)

Iffi = 7/J~ (k3T3) / k3C - ~~ (k3T3) / k3]}) (A.33)

where

hn (1) (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

~~ (k3T2) / k3 7/J~ (k2T2) / k2 ~~ (k2T2) / k2 0
C= (A.34)

0 hn (1) (k2Td k2 jn (k2TI) k2 jn (kITI) kI

0 ~~ (k2Td / k2 7/J~ (k2TI) /k2 7/J~ (klTd /kI

and

jn (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

7/J~ (k3T2) /k3 7/J~ (k2T2) /k2 ~~ (k2T2) / k2 0
]})= (A.35)

0 hn (1) (k2TI) k2 jn(k2TI)k2 jn (kI Td kl

0 ~~ (k2TI) /k2 ?j)~ (k2TI) /k2 7/J~ (kITI) /k l



Thus, equation (A.28) can be written out as:

det[UMDMd] =

~~ (kMr3) [In (k3r3) k3C - hn(1) (k3r3) k31I})]

-hn(1) (kM r3) [W~ (k3r3) /k3C - ~~ (k3r3) /k31I})]

= [~~ (kMr3)jn (k3r3) k3 - hn(1) (kMr3) W~ (k3r3) /k3] C­

[ ~~ (kMr3) hn(1) (k3r3) k3 - hn(1) (kM r3) ~~ (k3r3) /k3] II})

This equation can be written as the following determinate:
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(A.36)

~~ (kM r3) hn(1) (kMr3)

det[UMDMd] = W~ (k3r3) /k3 In (k3r3) k3

~~ (kM r3) hn(1) (kMr3)

hn(1) (k3r3) k3 ~~ (k3r3) /k3

(A.37)

And at this point we recognize that, from equation (A.21):

det[UMd] = (A.38)

and that from equation equation (A.27):

hn(1) (k3r2) k3 In (k2r2) k2 hn (k2r2) kM 0

~~ (k3r2) /k3 W~ (k2r2) /k2 ~~ (k2r2) / k2 0
det[UMDm] = C = (A.39)

0 hn(1) (k2r1) k2 In (k2 r1) k2 In (k1rd k1

0 ~~ (k2rd /k2 W~ (k2rd /k2 W~ (k1 rd /k1

with the definitions:

~~ (kM r3) hn(1) (kMr3)
(A.40)det[VMd] ==

hn(1) (k3r3) k3 ~~ (k3r3) /k3
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and

jn (k3T2) k3 jn (k2T2) k2 hn (k2T2) kM 0

VJ~ (k3T2) /k3 VJ~ (k2T2) / k2 ~~ (k2T2) /k2 0
det [WMDm] == ill) = (A.41)

0 hn (1) (k2Td k2 jn (k2Td k2 jn (k1Td k1

0 ~~ (k2Td / k2 VJ~ (k2Td / k2 VJ~ (k1Td /k1

We can finally rewrite equation (A.28) as:

!VMdl

IWr"mm I IUMDm I
(A.42)

This shows that the on-diagonal elements are the uncoupled modes of the single sphere

(UMd) and the MDm cavity (UMDm ) coupled through the off-diagonal elements VMDm and

VivId·

Asymptotic Expansion of VMd

7]m( (kdT3) ((km T3)

hn (1) (kdT3) hn (1) (km T3)

(A.43)

(A.44)

(A.45)
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1

i- 2n+1 ~m
___eikor3 einmkor3

kOT3

1

1

(A.46)

T3 = S + L + T

nm

= i( _1)n eikor3(1+n:n) (n
m

_ 1) e-nm"kor3

kOT3

(A.47)
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APPENDIX B

RECURSIVE CALCULATION OF SPHERICAL SCATTERING

In this appendix we briefly outline the recursive approach to calculating the scattering

from an arbitrary, L shelled scattercr. We can write the fields in the tth medium as

E~ - ~ ~E 2n + 1 (( b e) 1I~1 (3) e 'N~ (3) ,eM~ (1) d t 'N~ (1))
L - ~ nn(n + 1) - n 0111 + an ~ eln + en 0111 - n ~ c111

H~ 2:00 H~ 2n + 1 ( eM~ (3) 'b eN~ (:1) eM~ (1) 'b eN~ (1))
L = n ( ) an e1n + ~ n oln + an e1n + ~ n olnnn+1

n-1
(D.1)

Figure B.l.. Geometry and labels of an L shell system.
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Using the same approach as in appendix A, the orthogonality of the vector spherical

harmonics yield a set of 2£ linear equations:

Cn (H1)'l/Jn (mH1Xe) - bn(H1)~n (mH1Xe) - Cn(e)'l/Jn (meXe) + bn(e)~n (mH1Xe) = 0

(B.2)

With the additional boundary conditions for in innermost shell (.e = 1) and finite field

at infinity (.e = £ + 1):

Cn(L+1) = dn (L+1) = 1
(B.3)

an (1) = bn (1) = 0

with the following substitutions into equation (B.2 )

(B.4)

it can be rewritten as:

cn (H1)me+1'I/Jn (mH1 Xe) - bn (H1)mH1En (mH1Xe) - cn(e)me'I/Jn (mexe) + bn(e)me~n (mH1Xe) = 0

(B.5)
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an (Hi) ~~ (mHiXe) - dn(Hi)'ljJ~ (mHiXe) = an (e) mHi ~~ (mexe) - dn(e) mHi 'ljJ~ (mexe)
me me

an (Hi) ~n (mHiXe) - dn(Hi)'ljJn (mHiXe) = an (e) mHi ~n (mexe) - dn(e) mHi 'ljJn (mexe)
me me

bn(Hi)~n (mHiXe) - cn(Hi)'ljJn (mHiXe) = bn(e)mHi ~n (mexe) - cn(e)mHi'ljJn (mexe)
me me

bn(Hi)~~ (mHixp) - cn(Hi)'ljJ~ (mHixp) = bn(e) mHi ~~ (mexp) - cn(P) mHi 'ljJ~ (mexe)
me me

(B.6)

which can be reorganized into a coupled set of recursion relations for the TM inward

propagating d~ and outward propagating a~ modes.

an (Hi) ['ljJn (mHixp) ~~ (mHixp) - 'ljJ~ (mHiXe) ~n (mHiXe)] =

an (P) [m~:i 'ljJn (mHiXe) ~~ (mpxp) - 'ljJ~ (mHixp) ~n (mexe)] (B.?)

-dn(e) [m~:i 'ljJn (mHiXe) 'ljJ~ (mexe) - 'ljJ~ (mHiXe) 'ljJn (mpxp)]

-dn(Hi) ['ljJ~ (mHixp) ~n (mHiXe) - 'ljJn (mHixp) ~~ (mHiXe)] =

an (e) [m~:i ~n (mHixp) ~~ (mexe) - ~~ (mHixp) ~n (mexp)] (B.8)

-dn(e) [m~:i ~n (mHiXe) ?j)~ (mpxp) - ~~ (mHixp) 'ljJn (mexe)]

And the corresponding TE field components:

bn(Hi) [~n (mHiXe) 'ljJ~ (mHixp) - ~~ (mHiXe) 'ljJn (mHixp)] =

bn(e) [m~:i 'ljJ~ (mHiXe) ~n (mpxp) - 'ljJn (mHiXe) ~~ (mpxe)] (B.9)

-en(P) [n~:l'ljJ~ (mHixp) 'ljJn (mexp) - 'ljJn (mHixp) 'ljJ~ (mpxe)]
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-Cn (HI) [~~ (mHlxe) 1./Jn (mHIXe) - ~n (mHIXe) 1./J~ (mHIXe)] =

bn(e) [m~:l ~~ (me+lXe) ~n (mexe) - ~n (me+lXe) ~~ (mexe)]

-cn (e) [m~:l ~~ (mHIXe) 1./Jn (mexe) - ~n (mHIXe) 1./J~ (mexe)]

Division of (B.7) by (B.8) and (B.g) by (B.IO) yields the needed recursion relations for

TM:

An(HI) =

(An (e) [m~:l 1./Jn (mHIXe) ~~ (mexe) - 1./J~ (mHIXe) ~n (mexe)]

- [m~:l 1./Jn (mHIXe) 1./J~ (mexe) - 1./J~ (mHIXe) 1./Jn (mexe)])/

(An (e) [m~:l ~n (mHIXe) ~~ (mexe) - ~~ (mHIXe) ~n (mexe)]

- [~:l ~n (m€+lXe) 1./J~ (mexe) - ~~ (mHIXe) 1./Jn (mexe)])

and TE modes:

Bn(Hl) =

(Bn(e) [m~:l 1./J~ (m€+lXe) ~n (mexe) - 1./Jn (m€+lXe) ~~ (mexe)]

- [m~:l 1./J~ (mHIXe) 1./Jn (mexe) - 1./Jn (mHIXe) 1./J~ (mexe)])

(Bn(e)mHl~~ (mHIXe)~n (mexe) - ~n (m€+lXe)~~ (mexe)]
me

- [~:l ~~ (mHIXe) 1./Jn (mexe) - ~n (mHIXe) 1./J~ (mexe)]

The below logarithmic derivatives are used for their computational stability:

D ( ) = 1./J~(z)
n z 1./J~ (z)

F ( ) = ~~(z)
n Z ~~(z)

(B.ll)

(B.12)

(B.13)
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Finally, we rewrite (B.ll) and (B.12) with the following substitution:

An (HI) == An(g) ~n (mgxg)
?/In (mgxg)

13(Hl) = B (g) ~n (mgxg)
n - n ?/In (mgxg)

(B.14)

To arrive at the recursion relation that can be implemented in our computer algorithm.

An (l) == a
(B.15)

Bn (l) == a

For £ < L + 1:

An (HI) = ?/In (mHI Xe) ~n (mHl xHl)

?/In (mHl xHr) ~~ (mHI Xe)
Jr;";(e) [~Fn (mgxg) - Dn (meHxg)] - [~Dn (mexe) - Dn (mHIXg)]

An (g) [m~:l Fn (mexg) - Fn (mHl xe)] - [m~:l Dn (mgxe) - Fn (mHI Xg)]

B
n
(HI) = ?/In (mHl xg) ~n (mHl xHl)

?/In (mHl xHl) ~~ (mHl xg)
B;;(e) [~Dn (mHIXe) - Fn (mexe)] - [~Dn (mg+lxg) - Dn (mgxg)]

Bn(e) [m~:l Fn (mHI Xg) - Fn (mexg)] - [m~:l Fn (mg+lxg) - Dn (mgxe)]

And to calculate the scattered fields, £ = L + 1:

(B.16)

(B.J 7)

B
n

(L+l) = 1/Jn (xL) B;;(L) [dz Dn (XL) - Fn (mLxL)] - [~Dn (XL) - Dn (mLxL)]

~n (xL) Bn(L) [~L Fn (XL) - Fn (mLxL)] - [~L Fn (XL) - Dn (mLxL)]
(B.19)
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APPENDIX C

FEM ANALYSIS OF PERIODIC PLASMONIC STRUCTURES

Setup of FEM Model

Within the framework of the finite element method (FEM) we simulate the electro-

magnetic properties of the discretized computational domain shown in figure C.1 (left).

FEM is a frequency domain method approximating of the solution of a PDE over a

closed domain D, with simplified basis functions (second order polynomials) on a
N

discrete set of N subdomains dD i , where D = UdD i [119]. This discretized set of
i=l

domains can be seen in figure C.1 (left) as light gray lines forming the system free

mesh. Through its efficient use of free meshing to divide D into dD i , FEM analysis is

well suited to the discretization of problems with complex geometries.

In the context of electromagnetic waves coupled to SPPs, we are concerned with

solving the Helmholtz equation for TM polarized waves:

\7(c(~) \7Hz) - (~r Hz = 0

V· Hzz = 0

(C.la)

(C.lb)

in the periodic domain of figure C.1; In this periodic system, solving Maxwell's

equations reduces to finding the allowed eigenfrequencies, WkJ for a set of Block plane-
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Ag 5i0
2
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Figure C.l. (left) Geometry and free mesh of the computational domain used in
this study. (right) Total energy density plots of (a) an interior surface plasmon
mode (kx = 0, w = 1.54PHz). (b) an external surface plasmon mode (kx = 0.5,
w = 1.57PHz). (c) a localized substrate plasmon mode(kx = 0, w = 1.97PHz).
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waves spanning the irreducible Brillouin zone [120]. Because of our use of strongly

dispersive metals, we cannot ignore the dependence of E: on w. This reduces the

solution of (C.1) to a nonlinear eigenvalue problem with the form [120,121]:

(C.2)

The nonlinear nature of the eigenvalue problem can make the FEM conversion

elusive. We solve this problem by first linearizing the eigenvalue problem at an initial

frequency Wo [122]. Because there exists an infinite number of eigenvalue solutions

for a given wo, the solution closest to Wo must be carefully chosen and iterated upon

to retrieve the true eigenvalue Wk. Using the commercially available software COl'vl­

SOL [122] this approach is implemented with a two step process: First an eigenmode

is found by solving the linearized eigenvalue problem at an in initial Woo Next, the

eigenmode is used to initialize an iterative Newton's method nonlinear solver to find

the true eigenfrequency Wk. This approach is easily extended to tracing the band

structure over the first Brillouin zone by repeated application of the iteration step

while the x-component of the parameterizing Bloch vector, k = JEdko(sin Bx+cos By),

is slowly varied from 0 to 7f / a. The boundary conditions are set by the Bloch phase

constraint, HA2) = Hz(l)e-ikR
, where the Hz(X) enumerates the field at the peri­

odic boundaries 1 and 2 from figure C.l. Using COMSOL's MATLAB [123] interface,

a control script is used to slowly alter the boundary conditions between each iteration

by changing kx ' We achieve rapid convergence to the new eigenfrequency, Wk', by us-
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ing the previous solution for the (Wk, Hz (x, y)) as the initial guess for each iteration

step[122]. An example of this script can be found below.

Computational Geometry

Shown on the left hand side of figure C.1 are the geometry and discretized mesh

of the FENI computational domain. Through our use of periodic boundary conditions

we are representing an infinite array of close-packed silica cylinders with radius rl'

The index of refraction used for all silica regions was nd = 1.42. The rods form a

I-dimensional crystal of periodicity a = 2rl which rests upon a semi-infinite silica

substrate. The cylinders are layered in the positive half-plane with concentric cylin­

drical shells defined by their radii (r2, r3 and r4) or corresponding shell thickness

S = Ir2 - rll, L = Ir3 - r21, T = Ir4 - r31 and their constituent material optical prop­

erties. When truncated at the intersection of the adjacent cylinder's shell, the "shells"

in fact form a conformal layer along the surface of the cylinder array. By specifying

that the layers are silver, silica and silver we form a uniquely modulated MDM ge­

ometry simultaneously supporting the three distinctive electromagnetic eigenmodes

shown in figures C.1(a)-(c). These modes can be placed into the three classes that

we have seen in the case of the MDM sphere: exterior surface plasmons (EPS) along

the silver-air interface and the substrate silica-air interface, interior surface plasmons

(ISP) confined to the dielectric layer between the adjacent metal films and associated

with the coupled plasmons of the two interior silver-silica interfaces, and localized
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surface plasmon (LSP) modes associated with the excitation of plasmons at the cusps

formed by the intersections of rods or layers.

Silver was chosen in these simulations because it has the lowest losses in the

visible/NIR spectral region. As described in chapter II, we use the standard Drude

model to characterize the dispersion of the silver film. However, due to the conventions

of the COMSOL application we re-express cm(w) in terms of conductivity:

.CJ(W)
c(w) = Cr - 'l-­

COW

()
CJde

CJW =---
1 + iTW

(C.3a)

(C.3b)

The astute reader may note the negative imaginary part of Cm (w). This may look

odd to physicists, but it is not incorrect. It is merely the engineering convention

used by COMSOL [122]. The best fit parameters used were: C = 4.1, CJde = 62S/m

and T = 4 . 1O-14
S. In this study we choose to focus on a specific geometry with

1'1 = 300nm, S = 30nm, L = 100nm, and T = 15nm. As found in chapter IV the

strength of the SPP coupling between layers is governed by an exponential decay

characterized by silvers skin depth (0 rv 25 nm). The width of the silver layers was

chosen to allow significant coupling between the three mode types, while remaining

thick enough to support well defined eigenmodes such as shown in figure C.1 (a)- (c).

The intersections of the spheres and layers with computational boundaries have

been rounded (2.5nm radius) to reduce instabilities in the computation associated

with infinitely sharp cusps. This results in 'necked' intersections with the boundaries

and the substrate. A situation that is in fact, closer to real physical systems.
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The size of the silica spacer, L = 100nm, was chosen to be small enough to

constrain SPP excitations in the dielectric gap to be of the symmetric TM, or long­

range SPP type [23]. As shown in chapter II, interaction of the two metal surfaces

splits the single interface SPP into a symmetric and anti-symmetric pair. However, the

anti-symmetric TM mode is forbidden when L ;S A/(2nd), where nd = JEd is the gap

dielectric refractive index [124]. Thus, for the L = 100 nm rv A/10 geometry simulated

here, we are well within the regime of exclusive symmetric TM SPP propagation.

Boundary Conditions

Periodic Flouqet-Bloch boundary conditions were employed at the left and right

boundaries to simulate an infinite array of MDM coated cylinders. In FEM this

boundary condition is implemented by employing a Bloch phase constraint H(l)e-iKR =

H(2) on the tangential field components (Hz and Ey ) at the periodic boundaries 1

and 2, where the reciprocal lattice vector K = 27r/a· x and R = a· x.

Typical in FEM, the open boundary conditions of scattering problems are difficult

to correctly simulate. To overcome this difficulty we utilized perfectly matched layers

1.2/'-Lm long, at the top and bottom of the computational domain [119]. This allowed

the simulation of far-field plane-wave scattering, while inducing a minimum amount

of error due to artificial reflections from computational boundaries.

Mesh parameters

Care must be taken when modeling metallic nanosystems due the rapid decay of

the evanescent field near the metal surface. We were careful to select a mesh size that
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Figure C.2. (a) Comparison of FEM with analytic calculation for normal transmis­
sion and reflection through (a) a 27nm thick silver film in air and, (b) cLsyrnrnctrically
(top) and conformally (bottom) modulated sinusoidal silver films from [125]. (c) E­
field intensity comparison with Schroter [125] at nw = 1.97 eV. The reflectivity dip
at 1.97 eV shows the excitation of a SPP on the air-silver interface.

minimized the computational error while keeping the computation time tractable.

Typical mesh sizes of four elements per decay length (skin depth) of 20nm, or a

element linear dimension of 5nm, where used near the metal-dielectric interface and

inside metal domains. Outside of the metal subdomains, a conservative'" AI (20nd)

mesh size (30nm typical) was used. Mesh convergence tests showed that this was

sufficient to maintain an estimated computational precision of approximately one

percent.

To estimate the solution accuracy as a function of mesh size, an FEM simulation

of a 27nm metal film was discretized using the same constraints and transmission

calculations were compared to the the analytic solution [114]. This is shown in fig-
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ure C.2(a). Additionally we have examined the accuracy of the FEM mesh condi-

tions with comparison to Schroter and Heitmann [125]. They have used an analytical

method based on coordinate transforms and the transfer-matrix method, to calculate

the transmission of light through modulated thin silver films on silica substrates. The

accurate reproduction of their results can be found in figures C. 2(b) and (c).

MATLAB Band Diagram Script

The following MATLAB scripts can be used to generate the reflection, transmis-

sion and mode diagrams of dispersive periodic structures. Having setup your fern

structure (geometry, sub-domain parameters and mesh) using COMSOL, input it

into the MATLAB command interface (CTRL-F) and run the following scripts in the

order in which they are shown below.

Initial Frequency Sweep

I function [omegaSolnSort, rtfems, rtfullfem] = evFreqSweep(fem, OmegaRange, kstart, TOL)
2

3 %Set the search parameters in frequency space
4 delOmega = OmegaRange(3);
5 OmegaStart = OmegaRange (1) ;

6 OmegaStop = OmegaRange(2);
7 omegaVector = OmegaStart:delOmega:OmegaStop;
8 omegaSoln = [];
9

10

II %Update magnitude of k
12 fem.const{2*strmatch('k' ,fem.const(1:2:end), 'exact')} = kstart;
13

14 % Initial solution to eigenvalue problem
15 counter = 1;
16 omegaSoln = [];
17

18 for ind=l :length(omegaVector)
19 fprintf(l, 'Initalvalue: %g' ,omegaVector(ind));
20

21 fem,appl{1}.prop.analysis = 'eigen';
22 fern = multiphysics(fem);



23 fem.xmesh = meshextend(fem);
24

25 init = asseminit(fem, 'init' J '0');
26 try
27 fem.sol=femeig(fem, ...
28 'init' ,init, ...
29 'complexfun' ,'on' J •••

30 ) conjugate J , 'on) ,
31 'solcomp' ,{'Hz'}, ...
32 'neigs',l, ...
33 'shift' ,-i*omegaVector(ind),
34 'linsolver', 'pardiso' J •••

35 'maxeigi t) J 100 J •••

36 'eigref' ,sprintf('-i*%g' ,0megaVector(ind»);
37
38 % Store solution guess for all bands
39 catch
40 fprintf(l,'---NO EVs near %g\n',omegaVector(ind));
41 continue;
42 end
43

44 fprintf(l, '--EV-->%g' ,-imag(fem.sol.larnbda);
45

46 fem.appl{l}.prop.analysis = 'harmonic';
47 fern = multiphysics(fem);
48 fem.xmesh = meshextend(fem);
49

50 %Final refinment of inital EVs using the nonlinear
51 %interative solver
52 init = asseminit(fem, 'u' ,fem.sol);
53 try
54 [fern. sol stp]=femnlin(fem,
55 ) ini t ' , ini t J •••

56 'linsolver' J 'pardiso' J

57 'complexfun' J 'on' J •••

58 'conjugate' J 'on' J'"

59 ' sol comp' , { 'Hz' , 'freq'} ,
60 'outcomp' ,{'Hz' ,'freq'},
61 ' out', {' sol', , st op'}, ...
62 'Ntol', le-l);
63 catch
64 fprintf(l, '--->No eigenfrequency found, skipping\n');
65 continue;
66 end
67 tempom = postint(fem, 'nu_rfwh', 'edim' ,O,'dl' ,1,'solnum','all')*2*pi;
68 tempwt = abs(real(tempom) - omegaVector(ind));
69 if(stp-=O)
70 fprintf(l,'Did not converge, skipping %g\n' ,ternporn);
71 continue;
72 else
73 fprintf(l,'--NL-->%g' ,ternporn);
74 end
75

76 if (counter>l)
77 if ( abs«omegaSoln(counter-l)-ternpom)/omegaSoln(counter-l)) > TOL)
78
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79

80

81

82

8:J

84

85

omegaSoln (counter) =temporn;
wt(counter) = tempwt;
initset{counter} = init;
femset{counter} = fem.sol;
counter = counter + 1;
fprintf(l,'-->New, Keeping\n');



86 elseif(wt(counter-1»tempwt)
87

88 omegaSoln(counter-1)=tempom;
89 initset{counter-1} = init;
90 femset{counter-1} = fern. sol;
91 wt(counter-1) = tempwt;
92 fprintf(l,'-->Closer, Keeping\n');
93

94 else
95 fprintf(l, '-->Repeat, Skipping\n');
96 end
97 else
98 omegaSoln(counter) = tempom;
99 wt(counter) = tempwt;

100 initset{counter} = init;
101 femset{counter} = fern. sol;
102 counter = counter + 1;
103 fprintf(l, '-->First, Keeping\n');
104 end
105 end
106

107 omegaSolnSort = omegaSoln;
108 rtfems = femset;
109 rtinits = initset;
lID rtfullfem = fern;
III end

Iteration of Initial Eigenvalues

function [evList, femOutJ = evIterate(femStruct, femSolIn, evIn)
2

3 TOL = 1e-6; % Tolerance for floating point comparison
4

5 %Final refinment of inital EVs using the nonlinear
6 %interative solver
7

8 % Ensure harmonic analysis, and an extended mesh
9 femStruct.appl{l}.prop.analysis = 'harmonic';

10 femStruct = multiphysics(femStruct);
II femStruct.xmesh = meshextend(femStruct);
12

13 %Container varibles for solution results
14 omegaO =[J ;
15 sol = {};
16 counter = 1;
17 numoms = length(femSolIn);
18

19 for ind=l:numoms % Iterate on the reduced set of k=O EVs
20

21 fprintf(l, 'Refining %i!%i, Inital eigenfrequency[HzJ: %g+i*%g', ...
22 ind,numoms, real(evIn(ind»,imag(evIn(ind»);
23

24 %Construct the inital mesh solution to seed the nonlinear sovIer
25 evsol = femsol(femSolIn{ind}.u, 'lambda', evIn(ind»;
26 init = asseminit(femStruct, 'init', evsol);
27

28 try
29 femStruct.sol=femnlin(femStruct,
30 ) ini t ) J ini t J •••
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3] Jlinsolver', 'pardiso' J

32 'cornplexfun' J 'on' J •••

33 'conjugate', 'on', ...
34 'solcomp' ,{'Hz', 'freq'},
35 'outcomp' ,{'Hz' ,'freq'});
36

37 catch
38 fprintf(1,'--->Refinement Failed, skipping\n');
39 continue;
40 end
41

42 sol{counter} ~ femStruct.sol;
43 omegaO(counter)~ postint(femStruct,'nu_rfwh' ,'edim' ,0, 'dl' ,1,'solnum','all')*2*pi;
44 fprintf(1,'--->%g+i*%g\n' ,real(omegaO(counter)),imag(omegaO(counter)));
45 counter = counter + 1;
46 end
47

48 [evList, ommaskJ ~ remDups(omegaO,TOL);
49 Possiblelndex ~ 1:length(ommask);
50 maskvector ~ Possiblelndex(logical(ommask));
51 evList evln(maskvector);
52 femOut ~ sol (maskvector) ;
53

54 end

Band Trace
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function [bandenergy, bandkvaluesJ

newtmin ~ 1e-8;

BandTrace(fem, omegaln, femSolln, KL)

4

5 kstart ~ KL(1);
6 kend~KL(2);

7 kdel ~ KL(3);
8 kminf actor ~ 10;
9 klist ~ kstart:kdel:kend;

10

11 fprintf(1, 'Calculating Band Structure:\n');
12

13 bandenergy ~ cell(1,length(omegaln));
14 bandkvalues ~ cell(1, length(omegaln));
15 counter ~ 1;
16

17 mkdir (' femsolsTM') ;
18 save(sprintf('femsolsTM/femfull_kstart%2.1f.mat' ,kstart), 'fern');
19

20 for ind~1:length(omegaln)

21 fprintf(1,'Starting at ev:%g--->' ,omegaln(ind));
22

23

24

25

26

27

28

29

30

31

32

evsol ~ femsol(femSolln{ind}.u, 'lambda', omegaln(ind));
init ~ asseminit(fem, 'init', evsol);

fem.sol~femnlin(fem,

, ini t ) J ini t J •••

'cornplexfun' J 'on' J •••

'conjugate' J 'on', '"
'solcomp' ,{'Hz' ,'freq'},
'outcomp',{'Hz' ,'freq'},
'pname' J 'k', ...



33

34

35

36

37

38

39

40

41

42

43

44

45

'plist' ,klist, ...
'pinitstep' ,abs(kdel) ,
'pminstep',abs(kdel)/kminfactor,
'pmaxstep',abs(kdel),
'oldcomp' , {}, .
'porder' ,OJ .
'Maxiter' ,50, .
Jminstep' ,newtmin,
'linsolver', 'pardiso');

bandenergy{counter} = postint(fem,'nu_rfwh', 'edim' ,0, 'dl' ,1, 'solnum', 'all')*2*pi;
bandkvalues{counter} = fem.sol.plist;
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46 %save the data
47 fprintf(l,'Saving Data-->');
48 femsolu = fern. sol;
49 eigenfreq = bandenergy{counter};
50 kvector = bandkvalues{counter};
51 save(sprintf('femsolsTM/band%d_femsol_kstart%2.1f.mat' ,counter,kstart), 'femsolu');
52 save(sprintf('femsolsTM/band%d_energy_kstart%2.1f.mat' ,counter,kstart), 'eigenfreq');
53 save(sprintf('femsolsTM/band%d_kvector_kstart%2.1f.mat' ,counter,kstart), 'kvector');
54 counter = counter +1;
55 fprintf(l, 'Done\n');
56

57 end
58

59 save(sprintf('bands_kstart%2.1f.mat' ,kstart), 'bandenergy', 'bandkvalues');
60

6J end
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