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ABSTRACT

TREND ANALYSES OF THE ABUNDANCES OF
ATMOSPHERIC MOLECULES

Anton M. Fernando
B.S. November 2011, University of Colombo, Sri Lanka

M.S. May 2014, Old Dominion University
Old Dominion University, 2020
Director: Dr. Peter Bernath

A new linelist for the A3Π−X3Σ− electronic transition of NH has been prepared

using line positions from the literature and calculated line intensities. High level ab

initio calculations were performed with the MOLPRO program to obtain the A − X

transition dipole moment function. Potential energy curves and line strengths were

calculated with Le Roy’s RKR1 and LEVEL programs. Line intensities and Einstein A

values were calculated with Western’s PGOPHER program after converting the Hund’s

case (b) output of LEVEL to Hund’s case (a) input needed for PGOPHER. The Herman-

Wallis effect is included in the Einstein A calculations of the bands for the levels with

v′ = 0− 2 and v′′ = 0− 6.

Spectra of pure isobutane were recorded at high temperature in the CH stretching

region (2700-3100 cm-1) by high resolution Fourier transform spectroscopy. Isobutane

absorption cross sections were determined for six temperatures from 273 K to 723

K. Integrated cross sections were compared with cross section data from the Pacific

Northwest National Laboratory (PNNL) database.

Near global ozone isotopologue distributions have been determined from infrared

solar occultation measurements of the Atmospheric Chemistry Experiment (ACE)

satellite mission. ACE measurements are made with a high resolution Fourier trans-

form spectrometer (ACE-FTS). Annual and seasonal latitudinal fractionation (δ

value) distributions of the ozone isotopologues 16O16O18O, 16O18O16O and 16O17O16O

were obtained. Asymmetric ozone (16O16O18O) shows higher fractionation compared

to symmetric ozone (16O18O16O). The maximum ozone fractionation occurs in the

tropical stratosphere as expected from the contribution of photolysis to the enrich-

ment of heavy isotopologues. An enhancement of the heavy ozone isotopologues is

also seen in the upper stratosphere of the Antarctic polar vortex.

A new version of ACE-FTS routine data product (4.0) provides near global VMR



altitude profiles of low altitude CO2 on a 1 km grid from 5-18 km. An initial evalu-

ation of these data has been carried out for the years 2004-2017 and for the month

May in the 55◦-70◦S latitude range. The ACE-FTS data has been compared with

ground-based measurements at Macquarie Island, the South Pole, the CarbonTracker

2017 model and G. Toon’s empirical model. Trends agree, but ACE-FTS data has a

low bias at 5.5 and 6.5 km in altitude.

The Montreal Protocol banned the production of major ozone depleting sub-

stances such as chlorofluorocarbons (CFCs) to protect the Earth’s ozone layer. These

halogenated compounds are inert in the troposphere and ultimately converted to HCl

in the upper atmosphere. Therefore, by measuring stratospheric HCl concentrations,

the effectiveness of the Montreal Protocol can be evaluated. After banning the pro-

duction of CFCs, the increased production and emissions of CFC-replacement hy-

drofluorocarbons (HFCs) has caused a dramatic increase in their atmospheric abun-

dances. Although these HFCs do not contribute directly to the depletion of the ozone

layer because they contain no chlorine, they are powerful greenhouse gases with large

global warming potentials. In January 2019, the Kigali Amendment to the Montreal

Protocol came into force to phase out long-lived HFCs. The two most abundant

HFCs in the atmosphere, HFC-134a (CF3CH2F) and HFC-23 (CHF3), are measured

from orbit by ACE-FTS. These measurements will be useful for monitoring the Kigali

Amendment to the Montreal Protocol. A trend analysis of the ACE-FTS near-global

measurements confirms the rapid increase in HFC-134a (4.9±0.1 ppt per year) and

HFC-23 (0.75±0.02 ppt per year) volume mixing ratios (VMRs). A trend analysis

has been carried out for HCl volume mixing ratio profiles provided by ACE-FTS as

well; and the upper stratospheric HCl VMR time series of ACE-FTS shows a linear

trend of -4.8±0.2%/decade for 2004-2017, highlighting the continuing success of the

Montreal Protocol.
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CHAPTER 1

INTRODUCTION

The search for existence of life beyond the Earth and understanding the origin of

our solar system have been of great interest for humans even before the birth of

science. The improvement of sophisticated remote sensing techniques that are used

to detect extraterrestrial objects (planets, exoplanets and stars) has provided an

opportunity to achieve these goals effectively, as physically reaching them is nearly

impossible. The chemical composition of the atmospheres of planets and exoplanets,

interstellar clouds and stars can reveal important information about the early days

of our solar system and can be used to verify whether solar system-like planetary

formation and evolution models that were developed since 1950s are correct. Also,

these data can be used to understand the origin of the Earth’s atmosphere and its

evolution as well. The emission and absorption of radiation by atoms, molecules

and ions give rise to spectra; and by recording and analyzing them, the chemical

composition of atoms, molecules and ions can be calculated. Spectra are recorded

regularly of stars, exoplanets, comets and interstellar clouds; and among them NH is

one of the molecules that is often detected. Chapter 4 provides a spectral signature

(a linelist) of the NH radical, which can be used to identify NH in spectra that are

recorded of extraterrestrial objects.

Titan, the largest moon of Saturn, shows similar physical properties as the pre-

biotic Earth. Isobutane is one of the isomers of butane that could possibly exist in

Titan [124]. Also, butane can be found in Earth’s atmosphere due to anthropogenic

emissions (oil and gas production) [117]. Cross sections of isobutane were determined

at high temperatures to aid its detection in atmospheres of exoplanets, hot Jupiters

and brown dwarfs; and are presented in Chapter 5.

Human activities such as combustion of fossil fuel, deforestation for agriculture

and release of industrially utilized gases to the atmosphere have surged since the

beginning of the industrial revolution in the 1750s. Due to these activities, the surface

temperature of the Earth is increasing, the lower atmosphere is getting polluted and

atmospheric dynamics is changing. These are the major aspects of the climate change

which have become a main concern in the 21st century. In order to understand
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how human activities affect the climate change, calculation of long term trends of

industrial gases, atmospheric trace gases and temperature is necessary. It also helps

understanding the emergence of extreme weather and the change of atmospheric

circulation patterns in the lower atmosphere.

Global atmospheric circulation patterns have changed significantly because of cli-

mate change. Although accurately measuring and predicting those patterns have

been a challenge, such as change of heat and moisture transport, because obtain-

ing direct data of these processes is difficult. The dynamic vertical properties of

the atmosphere, such as tropical upwelling are generally understood using general

circulation models. The analysis of concentrations of isotopes in the atmosphere,

relative to the main atom or molecule provides important knowledge about verti-

cal transport, which is crucial for the accuracy of circulation models [171]. In the

Earth’s atmosphere, some trace gases (CO2, O3 and N2O) and their isotopes show

different concentrations and fractionations (concentration relative to the main atom

or molecule) in different parts of the atmosphere. This is also known as the “isotopic

signature” of the particular atom or the molecule. As an example, ozone shows high

fractionations in the stratosphere compared to elsewhere in the atmosphere. By ana-

lyzing and tracking this isotopic signature, information on atmospheric transport and

chemical reactions in the stratosphere is obtained. An analysis on the stratospheric

ozone isotopic signature is provided in Chapter 6.

The temperature of the Earth’s surface is increasing because greenhouse gas emis-

sions have been increasing since the start of the industrial revolution. The most

important greenhouse gas in the atmosphere is carbon dioxide (CO2) since it is re-

sponsible for the total terrestrial greenhouse effect (20%) and controls water vapor

(responsible for 50% of the total greenhouse effect) from oceans and other surface

water reservoirs [77]. Also, CO2 is the most abundant greenhouse gas in the at-

mosphere. The rapid rise of atmospheric carbon dioxide levels has become a major

concern for climate scientists and policy makers. Therefore, the scientific commu-

nity is showing a great interest in accurately measuring global atmospheric carbon

dioxide concentrations and trends. Satellite based measurements provide extensive

coverage of global atmospheric CO2. ACE (Atmospheric Chemistry Experiment) is a

Canadian satellite that produces volume mixing ratio (VMR) profiles of several atmo-

spheric molecules such as CO2. Chapter 7 presents a trend analysis of tropospheric

and lower stratospheric CO2 concentrations calculated from ACE observations that
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provide useful information for global CO2 forecasting and surface models.

The ozone layer in the Earth’s atmosphere filters out deleterious ultraviolet (UV)

radiation emitted by the Sun, which is associated with skin cancer, cataracts, reduced

agricultural productivity and disruption of marine ecosystems. In 1974, Molina and

Rowland discovered that chlorofluorocarbon (CFC) gases that were mainly used for

refrigerators as a cooling agent are inert in the troposphere but photolyzed in the

stratsophere and release chlorine atoms. These chlorine atoms are involved in de-

stroying stratospheric ozone through a catalytic cycle with ozone and ultimately end

up in the stratospheric HCl reservoir. Therefore, the emissions of ozone depleting

substances can be monitored by measuring the stratospheric and lower tropospheric

HCl concentrations. Atmospheric HCl trends derived from ACE satellite observations

are presented in Chapter 8.

The Montreal Protocol is an international treaty that was signed in 1987 to con-

trol ozone depleting substances such as CFCs and halons. In accordance with the

Protocol, initially, CFC and halon production was phased out. As replacements for

CFCs, hydrochlorofluorocarbons (HCFCs) were used as they have smaller ozone de-

pleting ability compared to CFCs. However, HCFCs also contain chlorine atoms and

can still destroy stratospheric ozone. Therefore, under Montreal Protocol, HCFCs

are now essentially phased out in developed countries but are still produced in devel-

oping countries. After phasing out HCFC production, hydrofluorocarbons (HFCs)

were introduced as their replacements. Although HFCs do not deplete ozone, some

of them are potent greenhouse gases. Therefore, the parties of the Montreal Protocol

came to an agreement in 2016 (Kigali Amendment) to phase down HFC production

as well. HFC-134a is a replacement that was used for CFC-12 and has been the

most abundant HFC in the atmosphere. HFC-23 is mainly a byproduct of HCFC-22

production and is the second most abundant HFC in the atmosphere. Therefore,

monitoring trends and distributions of these two atmospheric gases is important for

the Kigali Amendment to the Montreal Protocol. The global trends and distributions

of HFC-134a and HFC-23 based on ACE-FTS satellite measurements are provided

in Chapter 8.



4

CHAPTER 2

ATMOSPHERIC BACKGROUND

2.1 INTRODUCTION

This chapter covers the basic principles of atmospheric science that were used for

the calculations of ozone isotopologue measurements (Chapter 6), trends of low alti-

tude CO2 abundances (Chapter 7) and trends in atmospheric HCl, HFC-23 (CHF3)

and HFC-134a abundances (Chapter 8).

2.2 THE EARTH’S ATMOSPHERE

The Earth’s atmosphere is mainly composed of nitrogen (78.08%), oxygen

(20.98%) and argon (0.93%). Other important constituents in the atmosphere are

greenhouse gases [35]. The most abundant and important greenhouse gases in the

Earth’s atmosphere are carbon dioxide (CO2), methane (CH4) and water vapor.

Greenhouse gases absorb infrared radiation and warm the Earth enough to support

life. If it was not for greenhouse gases the average temperature of the Earth’s surface

would be around 255 K, instead of 288 K (global mean surface temperature) which

is suitable for the existence of human life.

Since the beginning of the industrial revolution in the 1750s, human activities

related to energy production have caused the increase of greenhouse gases in the at-

mosphere and as a result, the surface temperature of the Earth has been increasing

rapidly (known as global warming). Global warming has a number of negative effects

on the environment including the rise of sea levels, heavy rainfall, snow cover deteri-

oration and the change of atmospheric and oceanic circulation patterns. Therefore,

monitoring and controlling these anthropogenic greenhouse gases has become a ma-

jor concern. Ozone (O3) is another important gas in the atmosphere. Ozone blocks

deleterious ultraviolet radiation reaching the Earth’s surface from the Sun.

2.3 VERTICAL STRUCTURE OF THE ATMOSPHERE

The Earth’s atmosphere is layered based on temperature. Starting from the sur-

face, these layers are named the troposphere, stratosphere, mesosphere, thermosphere
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FIG. 1: Atmospheric layers based on temperature (Figure is from

https://www.weather.gov/jetstream/layers).

and exosphere. The exosphere extends to the interplanetary space and gradually

fades away.

2.3.1 THE TROPOSPHERE

The troposphere is the closest layer to the Earth’s surface and it extends from

the surface up to approximately 8-18 km depending on latitude and season. Most

of the weather related activities occur with clouds, rain and snow in this part of

the atmosphere. The troposphere includes 75% of the atmosphere and almost all

the water vapor in the atmosphere that forms clouds and rain. The density and the

https://www.weather.gov/jetstream/layers
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temperature of the troposphere decrease as the altitude increases. In general, the

motion of air in the troposphere is governed by turbulence which is generated by

thermal activity that originates from the heated Earth’s surface. Turbulence helps

keep tropospheric air well mixed and redistributes heat and moisture in the lower part

of the Earth’s atmosphere. The boundary or the sub-layer between the troposphere

and the statosphere is called the tropopause. The temperature remains constant

throughout this sub-layer and it acts as a barrier to air entering the stratosphere.

2.3.2 THE STRATOSPHERE

The stratosphere extends upward from the tropopause to about 50 km in altitude.

The temperature of this layer increases with height because of ozone chemistry. A

large amount of ozone exists in the stratosphere that absorbs ultraviolet (UV) ra-

diation emitted by the Sun and causes a strong temperature inversion. This layer

is generally stable and air mixing in it is weak compared to the troposphere. The

sub-layer that lies above the stratophere is called the stratopause. In this sub-layer,

the temperature remains constant with increasing height similar to the tropopause.

2.3.3 THE MESOSPHERE AND THERMOSPHERE

The mesosphere extends from the stratopause (around 50 km) to around 85 km

(mesopause). The temperature in this layer again decreases with height and the min-

imum temperature can reach a value around -90◦C. The layer above the mesopause

is called the thermosphere where temperature increases again with height due to the

absorption of strong UV radiation by N2 and O2. The mesosphere is the coldest layer

of the Earth’s atmosphere and the thermosphere is the hottest.

2.3.4 ATMOSPHERIC MEASUREMENTS

There are two measurement types that can be used to study atmospheric compo-

sition: in situ and remote sensing measurements. In order to take in situ measure-

ments, it requires measuring instruments to be located at the point where measure-

ments are taken and be in contact with the subject of interest. In in situ measure-

ments, samples are collected on the ground or from balloons, aircraft and rockets.

These collected samples can be analyzed at the point of collection or sending them

to the ground.



7

The basic idea of remote sensing is collecting data of an object without mak-

ing physical contact with it. Generally, remote sensing manipulates electromagnetic

radiation to collect information. Depending on how physical objects interact with

electromagnetic radiation, remote sensing systems can be classified into two cate-

gories: passive systems and active systems. In passive systems, natually occuring

electromagenetic (EM) radiation is used, while in active systems manipulated and

artificially generated radiation is utilized. Active systems can use EM radiation at

any wavelength. Passive remote sensing systems can be further divided into two sub-

categories: systems that detect thermal radiation and systems that detect radiation

emitted by the Sun. Objects with typical terrestrial temperatures emit radiation

in the thermal infrared region at wavelengths on the order of 10 µm and also some

measurements can be obtained at longer wavelengths (microwave region). There are

two main ‘windows’ that the atmosphere is transparent. The first window includes

visible and infrared parts of the spectrum between wavelengths around 0.3 µm and

10 µm. The second window region corresponds to the microwave region (between

wavelengths of a few millimeters and a few meters).

2.4 SATELLITE REMOTE SENSING

Satellite remote sensing is one of the technologies that is used to gather global

atmospheric information with sensors mounted on satellites. Monitoring global mea-

surements from the orbit provides excellent spatial coverage that is difficult to obtain

from ground-based, aircraft and balloon platforms. There are two main geometrical

methods that are used in passive satellite remote sensing: vertical (nadir) and hori-

zontal (limb). Nadir-viewing is looking straight down and limb-view is looking at the

edge of the atmosphere to detect radiation (Figure 2). Similarly, solar occultation

measurements are taken in the limb-view through the atmosphere using the Sun as a

light source. This process is carried out for different tangent heights with increasing

altitude during a sunrise and decreasing altitude during a sunset. In this method, a

slant column is used for each measurement that includes multiple atmospheric layers

which contain information on the atmosphere. Figure 3 shows the solar occultation

measurements taken by the ACE satellite.

2.5 ACE SATELLITE
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FIG. 2: Satellite remote sensing geometries [82].

ACE (Atmospheric Chemistry Experiment), also known as SCISAT is a Cana-

dian satellite which was launched in August 2003 and is still in operation. The main

goal of the ACE mission is to understand the chemical and dynamical processes that

affect the ozone distribution in the upper troposphere and the stratosphere. The

satellite has a high inclination (74◦) relative to the equator and a low circular orbit

(650 km) that gives coverage of tropical, mid-latitude and polar regions (about 85◦S

to 85◦N). The ACE satellite is in a precessing orbit and the latitudes of occultations

for one year are shown in Figure 4. As shown in Figure 4, there are no occultations

of certain periods in December and June because the orbit plane of the satellite

is nearly perpendicular to the Earth-Sun vector. There are up to 30 occultations

per day, 15 sunrises and 15 sunsets, distributed along two longitude circles about

the Earth [11]. ACE satellite contains two instruments, the ACE-FTS and MAE-

STRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere

Retrieved by Occultation). MAESTRO is a dual optical UV-visible spectrometer,
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FIG. 3: Solar occultation measurements by the ACE satellite. (Figure is from https://spaceq.ca/as-

scisat-approaches-its-15th-anniversary-theres-no-other-satellite-like-it-and-no-funding-to-replace-

it/.)

but will not be discussed in detail, since the data from MAESTRO was not used for

our calculations. The ACE-FTS is a high-resolution (0.02 cm−1) Fourier transform

spectrometer (FTS), operating in the spectral region 2 to 13 microns (750 - 4100

cm−1). The ACE-FTS takes measurements of thin clouds, aerosols, temperature and

vertical volume mixing ratios (VMRs) of trace gases. The ACE-FTS records infrared

absorption spectra every 2 s, that contain information on atmospheric layers, with

solar occultation method during sunset and sunrise (Figure 3). The vertical resolu-

tion of measurements is about 3 - 4 km from the cloud tops (> 5 km) to about 150

km [9].

ACE measurements can be used to monitor long-term global trends of atmo-

spheric composition because of high precision and accuracy. The recorded ACE-FTS

interferograms are sent to the ground and Fourier transformed into transmission

spectra at the University of Waterloo. The sequence of spectra recorded is analyzed

using software written by C. Boone (University of Waterloo) that converts data into

VMR profiles.

Depending on prior meteorogical information to obtain pressure and temperature

profiles for quantitative analysis is not reliable. Therefore, retrieval of pressure and

temperature is done as the first step of the ACE-FTS data processing for each occul-

tation. In order to obtain temperature from recorded spectra, fixed CO2 VMRs are

assumed in the altitude range of about 10 to 65 km. Relative CO2 line intensities

https://spaceq.ca/as-scisat-approaches-its-15th-anniversary-theres-no-other-satellite-like-it-and-no-funding-to-replace-it/
https://spaceq.ca/as-scisat-approaches-its-15th-anniversary-theres-no-other-satellite-like-it-and-no-funding-to-replace-it/
https://spaceq.ca/as-scisat-approaches-its-15th-anniversary-theres-no-other-satellite-like-it-and-no-funding-to-replace-it/
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FIG. 4: Latitudes of the occultations of the ACE satellite for 1 year (2015) and the beta angle

(angle between the orbital plane and a line drawn from the Sun to the Earth) of the orbit [11].

are used to calculate temperature and absolute line intensities to calculate atmo-

spheric pressure. These pressure values were then converted into altitudes using

data from the operational weather analyses of the Canadian Meteorological Center.

The temperature and VMR profiles of molecules are finally calculated by comparing

the observed and calculated spectra, adjusting the parameters of interest until a cer-

tain threshold criteria is achieved. The calculated transmission spectra are analyzed

using the Beer-Lambert law to obtain VMR profiles of the molecules [15].

2.6 DYNAMICS AND CHEMISTRY OF THE EARTH’S

ATMOSPHERE

2.6.1 THE METEOROLOGICAL SEASONS

It is useful to divide the year into seasons (Summer, Fall, Winter and Spring)

when analyzing atmospheric data because of temperature variations. The effect of

the seasons becomes clearly visible when moving further to the polar regions from

the equator. The Earth has seasons because the rotational axis of the Earth is

tilted at an angle of 23.5◦ relative to the orbital plane. In order to be consistent with

accurate climatological statistics, as a convention, it is considered that Summer starts

on June 1st and ends on August 31st, Fall runs from September 1st to November

30th, Winter from December 1st to February 28/29 and Spring from March 1st to

May 31st. These seasons are called meteorological seasons, even though they are not
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directly related to any physical phenomena. On the other hand, the astronomical

seasons are defined based on the position of the Earth relative to the Sun. But in

this study, for convenience the meteorological seasons are used for data analysis.

2.6.2 TIME SCALES FOR VERTICAL AND HORIZONTAL ATMO-

SPHERIC TRANSPORT

Atmospheric circulation in the troposphere is governed by turbulence. Turbulence

is defined as small-scale irregular motion of air with varying speeds and directions.

Tropospheric molecules with longer lifetimes are generally well-mixed due to the tur-

bulent nature of the troposphere. Vertical time scale of the lower part of the Earth’s

atmosphere (mean time it takes by an air molecule to travel a vertical distance) is

given in Figure 5. It takes about one month for air to travel vertically from the

surface to the tropopause, 5 - 10 years from the troposphere to the stratosphere and

1 - 2 years from the stratosphere to the troposphere [63].

.

FIG. 5: Characteristic time scale for vertical transport of the Earth’s lower atmosphere [63].

Typical time scale for horizontal transport in the troposphere is shown in Figure

6. Due to geostrophic flow by the latitudinal heating gradient, it takes about two

weeks for air to circumnavigate the Earth in a given latitudinal band. It takes 1 -2

months for air to travel from mid-latitudes to polar and tropical regions and about

a year for hemispheres to exchange air [63].

2.6.3 BREWER-DOBSON CIRCULATION

Brewer-Dobson ciculation is an atmospheric circulation (Figure 7) that explains
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.

FIG. 6: Characteristic time scale for horizontal transport of the troposphere [63].

why there is high ozone concentrations in the Arctic during spring and low concentra-

tions in the tropics, although, most of ozone is produced in the tropical stratosphere

[21]. The basic idea of the Brewer-Dobson model is that tropical air circulates into

the stratosphere through the tropical tropopause, moves towards polar regions and

sinks into middle and polar latitudes of the stratosphere [128].

FIG. 7: The Brewer-Dobson circulation in the present day Earth [121].

2.7 CHAPMAN MECHANISM

The existence of the ozone layer in the stratosphere was first explained by a
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British scientist, Chapman in 1930, by a set of reactions, known as the Chapman

mechanism (Figure 8). Chapman suggested that the ozone layer exists because of

the photolysis of atmospheric O2. The bond energy of the O2 molecule is around 498

kJ mol−1 and only photons with wavelengths less than 240 nm can photolyze the

molecule. Such high energy photons are present only in high altitudes (ultraviolet

radiation). Photolysis of O2 produces two O atoms (R1) and combine rapidly with

O2 molecules (R2) to produce ozone (where M is a third body). The bonds in the O3

molecule are weaker than those in the O2 molecule. Therefore, photolysis of O3 (R3)

occurs with lower energy photons (< 320 nm). Finally, ozone and atomic oxygen

recombine to produce oxygen to terminate the reaction cycle (R4).

.

FIG. 8: The Chapman mechanism (Figure is from https://www.slideserve.com/radwan/chapman-

mechanism-for-stratospheric-ozone-1930).

https://www.slideserve.com/radwan/chapman-mechanism-for-stratospheric-ozone-1930
https://www.slideserve.com/radwan/chapman-mechanism-for-stratospheric-ozone-1930
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CHAPTER 3

SPECTROSCOPIC BACKGROUND

3.1 INTRODUCTION

This chapter covers the basic principles of spectroscopy and Fourier transform

measurements utilized for the calculations of the linelist of the A3Π - X3Σ- transi-

tion of the NH free radical (Chapter 4) and cross section calculations for isobutane

(Chapter 5). The majority of the text presented in this chapter is adopted from the

books Bernath [10], Cramer [24], Hollas [60], Herzberg [56] and Levine [84].

Spectroscopy is a branch of science that studies interaction between EM radiation

and matter with electromagnetic spectra. Generally, spectroscopy is used to recog-

nize atoms and molecules, calculate molecular abundances and determine molecular

structure. Atomic and molecular spectra result from absorption or emission of pho-

tons between quantized energy levels. When molecules absorb radiation, it can cause

transitions between electronic, vibrational and rotational energy levels and also can

dissociate the molecule. In general, rotational transitions occur when microwave ra-

diation is absorbed, vibrational transitions when infrared radiation is absorbed and

electronic transitions when visible/ultraviolet radiation is absorbed.

3.2 ROTATIONAL SPECTROSCOPY

In this section, theories related only to diatomic molecules are discussed to fo-

cus on the results presented in this dissertation. Pure rotational transitions of any

molecule can be understood through a classical rigid rotor. The moment of inertia

of a diatomic rigid rotor is given by

I =
2∑

i=1

miri
2, (1)

where I
i
represents the moment of inertia about any axis through the center of mass,

mi represents the mass of atom i and ri is the distance of atom i from the considered

axis. The classical energy of a diatomic rigid rotor is given by
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ER = I(ωx
2 + ωy

2) =
J2

2I
(2)

where ER is the rotational energy, I is the moment of inertia (moment of inertia

in the x and y direction are the same and 0 in the z direction) and ωx and ωy are

the angular velocities in the x and y directions. In quantum mechanics, the angular

momentum operator is Ĵ. Therefore, the rotational Hamiltonian operator for a rigid

rotor (linear molecule) is

Ĥ =
Ĵ2

2I
for J = 0, 1, 2... (3)

The Schrödinger equation for a diatomic rigid rotor is

Ĵ2

2I
ψ = Eψ, (4)

so that

Ĵ2

2I
ψ =

J(J + 1)h̄2

2I
ψ = BJ(J + 1)ψ = F (J)ψ, (5)

in which

B =
h̄2

2I
, (6)

where B is known as the rotational constant and F (J) is the energy eigenvalue

function, given in SI units. Energy transitions between the rotational energy states

can occur when ∆J=±1 and with frequencies,

νJ+1←J = F (J ′)− F (J ′′)
= B(J + 1)(J + 2)− BJ(J + 1)

= 2B(J + 1).

(7)

In general, upper states are indicated by primes (J ′) and first and lower states

are indicated by double primes (J ′′). The population of a rotational state can be

calculated by statistical mechanics as

NJ = N(2J + 1)
e-BJ(J + 1)/kT

qr
= NP J , (8)
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where

qr =
∑

J

(2J + 1)e-BJ(J + 1)/kT , (9)

T is the temperature, k is the Boltzmann constant, N is the total concentration of

the molecules and P J is the population probability of rotational level J (NJ is the

concentration of the molecules with the rotational quantum number J and qr is the

partition function).

In general, molecules are not strictly rigid rotors. As a molecule rotates, the nuclei

tend to be thrown outward by centrifugal forces. Therefore, as the angular velocity

or rotational quantum number (J) of a molecule increases, intermolecular distance

(r) between the atoms of that molecule also increases. Therefore, the rotational

constant B is J-dependent. In order to account for this centrifugal distortion, the

energy eigenvalue function should be modified as

F (J) = BJ(J + 1)−D(J(J + 1))2 +H(J(J + 1))3 + L(J(J + 1))4..., (10)

where D is defined as the centrifugal distortion constant and H and L are higher

order distortion constants.

3.3 VIBRATIONAL SPECTROSCOPY

Vibrational energy of a diatomic molecule is obtained with the simple harmonic

oscillator approximation. A non-rotating diatomic molecule can be considered as a

spring that follows Hooke’s law. If the spring constant is K, the Hamiltonian can be

written as

Ĥ =
−h̄2
2µ

d2

dr2
+
K(r − re)2

2
, (11)

where r is the internuclear distance and re is the equilibrium internuclear distance

and µ[=m1m2/(m1 +m2)] is the reduced mass. The vibrational energy eigenvalues

are obtained by solving the Schrödinger equation as

Ev = hν(v +
1

2
) for v = 0, 1, 2..., (12)
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where the pure vibrational energy is Ev , the vibrational frequency is ν[= 1
2π
(K
µ
)1/2]

and the vibrational quantum number is v = 0, 1, 2... The vibrational term value

G(v) of a diatomic molecule is given by

Ev

hc
= G(v) = ω(v +

1

2
) for v = 0, 1, 2..., (13)

where ω is the vibrational wave number.

The potential energy curve of a diatomic molecule (anharmonic oscillator) is

commonly represented by the Morse potential to account for anharmonic behavior.

The Morse potential is written as

V (r) = D(1− e-β(r − re))2. (14)

Therefore, anharmonic vibrational terms of the energy expression is modified to

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2, (15)

where ωe is the vibrational constant and ωeye is the anharmonic constant. Similarly,

the rotational energy function is modified to

F (J) = BeJ(J + 1)−De(J(J + 1))2 − αe(v +
1

2
)J(J + 1), (16)

where Be, De and αe are equilibrium constants.

An anharmonic oscillator can be represented by Dunham potential which is an even

more general representation than the Morse potential.

In the Dunham potential, the vibrational energy level expression is written as

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ωeze(v +

1

2
)4..., (17)

and the parameterized rotational energy expression is written as

F v(J) = BvJ(J + 1)−Dv(J(J + 1))2 +Hv(J(J + 1))3 + ... (18)

in which

Bv = Be − αe(v +
1

2
) + γe(v +

1

2
)2 + ..., (19)



18

and

Dv = De − βe(v +
1

2
) + .... (20)

where Bv, Dv, H, ωe, ωexe, ωeye, ωeze, Be, αe, γe, De and βe are spectroscopic

constants.

3.4 ELECTRONIC SPECTROSCOPY

Electronic spectroscopy is the study of transitions between electronic states. In

electronic spectroscopy of molecules, vibrational and rotational transitions (Figure

9) must be taken into account.

FIG. 9: Two dimensional representation of anharmonic potential energy curve for two electronic

states with vibrational-rotational states. (Figure is from https://chem.libretexts.org.)

3.5 BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer approximation is the assumption that is used to separate

the motion of the nuclei and the electrons of molecules. This allows the discussion

of rotational and vibrational motion of the nuclei of a molecule, ignoring the motion

of electrons. In Born-Oppenheimer approximation, it is assumed that the nuclei in

a molecule are much heavier than the electrons and the electrons move much faster

https://chem.libretexts.org
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than the nuclei. Therefore, the nuclei are considered to be fixed while the electrons

are moving relative to them and the nuclear kinetic energy is considered a constant.

The equations of the Born-Oppenheimer approximation are

(Ĥel + V NN)ψel = Uψel (21)

and

U = Eel + V NN , (22)

where ψel is the electronic wavefunction, V NN is the nuclear-nuclear energy at a fixed

geometry, Ĥel is the electronic Hamiltonian; and Eel is the electronic energy that

includes the kinetic energy of the electrons, the potential energy of the attraction

between the electrons and the nuclei and the potential energy of the repulsion between

the electrons.

3.6 HETERONUCLEAR MOLECULES

Electrons of diatomic heteronuclear molecules like NH (contains 8 electrons; 7

from N and 1 from H) can be filled into MOs (molecular orbitals). N (nitrogen) has

5 valence electrons and H has 1. H has 1s (l=0; ml=0) valence orbital and N has 2s

(l=0; ml=0), 2p1 (l=1; ml=1), 2p-1 (l=1; ml=-1) and 2p0 (l=1; ml=0). Here, l is

the angular momentum quantum number and ml is the magnetic quantum number

of the electrons.

3.7 MOLECULAR-ORBITAL THEORY

In molecular orbital theory, the occupied electrons in a heteronuclear diatomic

molecule are considered to be associated with both the nuclei. It is assumed that

molecular orbitals are linear combinations of atomic orbitals. These molecular or-

bitals can be formed by adding and subtracting appropriate atomic orbitals. This

method is usually called LCAO-MO (linear combination of atomic orbitals-molecular

orbitals).

The approximate wavefunctions of molecular orbitals σ and σ✯ are,

ψ(σ) = C 11sa + C 21sb, (23)
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FIG. 10: Energy Level Diagram for the first lines of a A3Π - X3Σ- Band: The Λ type doubling in

the upper state and the spin tripling in the lower state is much exaggerated. The triplet splitting

splitting of the upper state is usually much larger. If the upper state is strictly a case (a) state all

27 branches indicated have comparable intensities. In going over to case (b) the branches indicated

by dotted lines (∆N=∆J±2) and those indicated by broken lines (∆N=∆J±1) become weaker or

disappear altogether. Some of them go over into the satellite branches of case (b) [56].
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ψ(σ✯) = C 31sa − C 41sb, (24)

ψ(σz) = C 52pza + C 62pzb , (25)

ψ(σ✯z) = C 72pza − C 82pzb , (26)

where C 1...16 are positive constants; and 1s and 2px,y,z are atomic orbitals (labels a

and b represent different nuclei).

Similarly, the approximate wavefunctions of π type orbitals can be written as

ψ(πx) = C 92pxa + C 102pxb , (27)

ψ(πx
✯) = C 112pxa − C 122pxb , (28)

ψ(πy) = C 132pya + C 142pyb , (29)

ψ(πy
✯) = C 152pya − C 162pyb . (30)

The ground (X3Σ-) and the first excited (A3Π) electronic states are shown in the

molecular orbital diagram (Figure 11). The label X is used to indicate the ground

electronic state, while A, B and C are used for excited states of the same multiplicity.

σ and σ∗ molecular orbitals are composed of the 1s valence atomic orbital of the H

atom and the 2pz valence atomic orbital of the N atom of the NH molecule. The

2s valence atomic orbital of the N atom does not bond with the 1s valence atomic

orbital of the H atom. Therefore, the energy of the non-bonding molecular orbital

σnb is as same as the energy of the 2s valence atomic orbital of the N atom. Similarly,
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FIG. 11: Orbital diagram of the electronic states 3Σ- and 3Π for NH

FIG. 12: Angular momenta in a diatomic molecule (Hund’s case (a)) [10]

since the H atom has no valence atomic orbitals capable of π-type interaction the

energy of the non-bonding molecular orbitals πx
nb and πy

nb are as same as the energy

of the valence atomic orbitals 2px and 2py.

3.8 CLASSIFICATION OF ELECTRONIC STATES
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TABLE 1: Useful quantum numbers in electronic spectroscopy

Angular momenta notation projection on molecular axis (unit h̄)

total J Ω = (Λ + Σ)

electronic orbital L Λ

spin S Σ

nuclear rotational R -

angular momentum N = R + L Λ

nuclear spin I -

The relevant quantum numbers attributed to rotational and electronic motion

of a non-vibrating diatomic molecules are given in the Table 1. The total angular

momentum (J = L + S + R) is the vector sum of orbital L, spin S and nuclear

rotation R momenta.

In general, electrons in an atom move in a spherically symmetric force field.

Therefore, electronic orbital angular momentum L is a constant of motion as long

as spin-orbit coupling is small. In a diatomic molecule, electrons move in a force

field that contains axial symmetry about the internuclear axis. Therefore, as a con-

sequence instead of the electronic orbital angular momentum, the projection on the

molecular axis (Λ) becomes a constant of motion. Therefore, it is useful to classify

electronic states of diatomic molecules with the quantum number Λ that is designated

by Σ, Π, ∆, Φ... corresponding to Λ = 0, 1, 2, 3, 4...

For diatomic molecules, the orbital angular momenta of all electrons are coupled

to give a resultant L and all the spin momenta give a resultant S . In Hund’s case (a)

(Figure 12), it is assumed that the electronic motion is coupled very strongly to the

electrostatic field produced by the two nuclear charges. Therefore, in Hund’s case

(a) electronic angular momentum Λ is well defined and L is not considered to be a

good quantum number. Λ can take values,

Λ = 0, 1, 2, 3... (31)

and all electronic states with Λ > 0 are doubly degenerate (In Hund’s case (b), the

spin vector is not coupled to the internuclear axis at all or weakly coupled and hence

Ω is not well defined). In Hund’s case (a), the spin angular momentum (Σ) is also
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coupled to the internuclear axis as the magnetic field originating from electronic

orbital momenta is along the axis. The spin component of S along the internuclear

axis is Σh̄. The quantum number Σ can take values;

Σ = S, S-1,...,-S.... (32)

The total angular momentum along the internuclear axis Ω is sometimes appended

as a subscript to label spin components. In spin component representation, although

Ω > 0 states are doubly degenerate, |Ω| is used to represent both values. For states

with Σ > 0, there are spin components and 2S+1 is designated by a pre-superscript

in the electronic state. As an example, 3Π has 3 spin components, which are 3Π0,
3Π1 and 3Π2.

Spin-orbit interaction energy in Hund’s case (a) is

∆E = AΛΣ , (33)

where A is the spin-orbit coupling constant.

When Σ = 0, there is no resulting magnetic field to couple S to the internuclear

axis. As a result, there is only one component for Σ states and it should be treated

as Hund’s case (b), whatever the multiplicity is.

The energy level diagram of the ground state and the first excited electronic state

with the same multiplicity of the diatomic molecule NH is illustrated in the Figure

10.

3.9 SYMMETRY PROPERTIES OF THE WAVEFUNCTION

In a heteronuclear diatomic molecule, the reflection in the plane through the in-

ternuclear axis (which is a plane of symmetry) of the electronic eigenfunction of a

non-degenerate (e.g. Σ) state may or may not change sign. Depending on its sign

the states will be called + or − (e.g. Σ+ or Σ-).

Total (+/-)parity: Total parity operator (Ê*) is an important property as it

determines the selection rules of transitions between states. Once the symmetry

operator is applied to the total wavefunction exclusive of nuclear spin, it inverts all

the coordinates of the particles in the molecule as
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Ê*ψ(X i, Y i, Z i) = ψ(−X i,−Y i,−Z i)

= ±ψ(X i, Y i, Z i).
(34)

Rotationless (e/f) parity: Total parity changes with rotational quantum num-

ber J . Therefore, it is useful to define a parity excluding the rotational dependence

and it is defined as

Ê*ψ = +(−1)Jψ for e

= −(−1)Jψ for f
(35)

for integer J . Similarly, for half-integer J ,

Ê*ψ = +(−1)J-1/2ψ for e

= −(−1)J-1/2ψ for f .
(36)

3.10 ELECTRONIC DIPOLE SELECTION RULES FOR

HETERONUCLEAR DIATOMIC MOLECULES

Rotational:

1) The molecule must have a permanent dipole moment.

2) ∆J = 0, ±1
Vibrational:

1) First derivative of the dipole moment of the molecule must be non-zero.

2) ∆v = ±1 (±2, ±3,... are weak)

Electronic: 1) ∆Λ = 0, ±1
For example, Σ - Σ, Π - Σ, ∆ - Π transitions are allowed and ∆ - Σ or Φ - Π are not.

2) ∆S = 0

This selection rule breaks down when the nuclear charge in the molecule increases.

3) ∆Σ = 0; ∆Ω = 0, ±1 for transitions between multiplet components.

4) + 6↔ -; + ↔ +; - ↔ - For Σ - Σ transitions only Σ+ - Σ+ and Σ- - Σ- transitions

are allowed.

5) Between rotational-vibrational-electronic (rovibronic) energy levels, ∆J = 0, ±1
transitions are allowed. In rovibronic interactions, ∆J = 0 transitions are called the

Q branch, ∆J = -1 the P branch and ∆J = +1 the R branch.
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6) The general selection rules of rovibronic transitons can be defined with total parity

and e/f parity as

+ ↔ -; + 6↔ +; - 6↔ - (for total parity)

e ↔ f ; e 6↔ e; f 6↔ f for ∆J = 0

e 6↔ f ; e ↔ e; f ↔ f for ∆J = ±1.

3.11 COMPUTATIONAL SPECTROSCOPY

3.11.1 BASIS FUNCTIONS

Choosing a basis set is an important part of molecular energy calculations. Gen-

erally, the chosen basis functions are atomic orbitals (AOs) centered on the two atoms

of a diatomic molecule. Traditionally, each of the AOs are represented as a linear

combination of Slater Type Orbitals (STOs). An STO centered on an atom has the

form

Nrn−1a e-ζraY m
l (θa, φa), (37)

where n, l and m are quantum numbers, Y are spherical harmonics, N is the nor-

malization constant, ra is the distance to the nucleus a and ζ is the orbital exponent

which contains all possible values that form a complete set. A molecular orbital φi

(MO) is expressed as a sum of STO (χr) basis functions (φi =
∑
r

criχr).

A minimal basis set consists of one STO for each inner-shell and valence-shell.

As an example, for NH, a minimal basis set contains 1s, 2s, 2px, 2py, 2pz AOs for N

atom and 1s AO for H atom (total 6 basis functions). Therefore, this set consists of

two s-type STOs and one p-type STO for N and one s-type STO for H; such a set

is denoted by (2s1p/1s). For a double-zeta (DZ) basis set, a minimal set is replaced

by two STOs with different ζs and for a triple-zeta (TZ) basis set three STOs were

used. For valence double-zeta (VDZ) basis set one STO is used for each core-shell AO

and two STOs for each valence AO. For valence triple-zeta (TDZ) basis set one STO

is used for each core-shell AO and three STOs for each valence AO. Since AOs are

polarized around their centers of charges, by adding additional basis-functions can

improve the representation of AOs. As an example, double-zeta plus polarization set

(DZ + P or DZP) typically includes a double-zeta set that contains five 3d functions
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for each “second row” atom and a set of three 2p functions (2px, 2py, 2pz) for each

hydrogen atom.

In order to make calculations faster, Gaussian type functions (GTF) are used

instead of STOs for the atomic orbitals in an LCAO wave fucntion. A Cartesian

Gaussian centered on an atom is written as

gijk = Nxiby
j
bz

k
b e

-αr2
b , (38)

where i, j and k are nonnegative integers, α is a positive orbital exponent, xiby
j
bz

k
b

are Cartesian coordinates with the origin at the nucleus b of the two nuclei (a and

b) in the diatomic molecule, N is the normalization constant and rb is the distance

to nucleus b. When i + j + k = 0 or i = 0, j = 0, k = 0, the GTF is called s-type

orbital, when i + j + k = 1, the GTF is a p-type Gaussian, when i + j + k = 2, the

GTF is a d-type Gaussian and when i + j + k = 3, the GTF is a f -type Gaussian

etc.

Instead of using individual Gaussian basis functions, using more than one Gaus-

sian function to represent basis functions gives more accurate representation (χr =
∑
u

durgu). Here, gu’s are normalized Cartesian Gaussians centered on the same atom

and have same i, j, k values, but different α’s. χr’s are called contracted Gaussian-

type functions (CGTF) and gu’s are called primitive Gaussians. du’s are the con-

tracted coefficients that are held constant during calculations.

TABLE 2: The cc basis sets

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z

[3s2p1d] [4s3p2d1f ] [5s4p3d2f1g] [6s5p4d3f2g1h] [7s6p5d4f3g2h1i]

14 30 55 91 140

Most often, CGFT cc-pVnZ basis sets (n = 2, 3, 4, 5, 6) are used for calculation

methods (such as Configuration Interaction) that include electron correlation. Here,

cc stands for correlation − consistent and pV for polarized valence. The CGFTs

present in the cc basis sets are given in the Table 2 for second row atoms. In cc basis

sets the number of d functions vary from set to set. Generally, cc basis sets use five d

functions, seven f functions etc. The last row of the Table 2 represents the number

of basis functions for a second row atom. Similarly for the H atom, cc-pVDZ set is
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[2s1p] or (6s3p), cc-pVTZ set is [3s2p1d] and cc-pVTZ set is [4s3p2d1f ] etc. Here []

means a STO is replaced with a CGFT containing three primitive Gaussians.

The diffuse (functions with very small orbital exponent) primitive nonpolarization

and polarization functions (2 extra functions each) can be added to the cc basis sets

as well and they are called aug-cc basis sets. As an example, second row aug-cc-pVTZ

basis function is [6s5p4d3f ].

3.11.2 THE HARTREE-FOCK SELF-CONSISTENT-FIELD METHOD

Although the exact wavefunction of the hydrogen atom is known, calculating

the exact wavefuntion of multi-electron atoms and molecules is difficult because of

the inter-electronic repulsion energy terms in the Hamiltonians. The Hartree-Fock

procedure is a method that is used as the initial step to find a wavefuntion for non-

hydrogen atoms and for molecules.

3.11.2.1 The Hartree-product wavefunction

Usually, as the initial step of molecular Hartree-Fock calculations, a Hamiltonian

is introduced ignoring inter-electronic repulsion energy terms. This is called the

Hartree-product Hamiltonian and it is designated by

Ĥ =
N∑

i=1

ĥi, (39)

where N is the total number of electrons and hi is the one-electron Hamiltonian.

The one-electron Hamiltonian is

ĥi = −
h̄2

2me

∇2
i −

M∑

k=1

Zke
2

4πǫ0rik
, (40)

where the first term represents the kinetic energy of the electron and the second term

represents the Coulomb attraction energy (between nuclei and the electron). Here,

me is the mass of the electron, e is the charge of the electron, M is the total number

of nuclei, Zk(e) is the nuclear charge of the nucleus k and rik is the distance between

the electron i and the nucleus k.

Since the inter-electron repulsion energy terms are not included in the Hartree-

Hamiltonian, its many-electron wavefunction can be constructed as a product of

one-electron eigenfunctions.
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This many-electron wavefunction is called the “Hartree-product wavefunction”

and it is written as

ΨHP = ψ1ψ1ψ2......ψN . (41)

Since the Hamiltonian operator in Equation 40 is separable, the total energy of

the many-electron wavefuntion is the sum of all one-electron energy eigenvalues.

3.11.2.2 Hartree Self-Consistent-Field (SCF) Method

Hartree individual electron operator hi
′ can be written as

hi
′ = − h̄2

2me

∇2
i −

M∑

k=1

Zke
2

4πǫ0rik
+ Vi {j} (42)

and the energy eigenvalues (ǫi) for each hi
′ can be written as

hi
′ψi
′ = ǫi

′ψi
′, (43)

where V i{j} is

Vi {j} =
∑

j 6=1

e2

4πǫ0

∫
ρj
rik
dr (44)

and ρj is the charge (probability) density associated with the electron j. The nuclei

in the Equation 42 are treated as point charges and the electrons are treated as

wavefunctions with spread out charges, where

ρj = −e | ψi |2 . (45)

However, in order to calculate this average potential V i{j}, the individual ψis should

be determined. In 1928, as a solution to this problem, Hartree proposed an iterative

“self-consistent field” (SCF) method. As the first step of the SCF process, ψi is

guessed for each electron to calculate the potential energy V i{j}. Afterwards, a

new set of eigenfunctions are calculated using the new potential energy V i{j} for

each electron, presumably different from the initially guessed eigenfunctions. These
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newly obtained eigenfunctions are used again to calculate energy eigenvalues for each

electron until the difference between the previous and the current energy eigenvalues

falls below some threshold criterion. This is called the Hartree self-consistent-field

method.

3.11.2.3 Hartree-Fock (HF) calculations

Hartree-product Hamiltonian does not include internuclear repulsion and it has to be

corrected. In HF calculations, instead of spatial-orbitals, spin-orbitals (a product of

spatial orbital (ψi) and a spin function (either α or β)) are used for individual elec-

trons and the molecular Hartree-Fock wavefunction is written as an anti-symmetrized

product of spin-orbitals to account for the Pauli principle. The Hartree-Fock energy

is given by

EHF = 〈D|Ĥel + VNN |D〉. (46)

where D is the Slater determinant Hartree-Fock wavefunction. Ĥel is the electronic

Hamiltonian and VNN is the internuclear repulsion defined in the Equation 22.

3.12 ELECTRON CORRELATION

Hatree-Fock calculations only take the interaction between electrons in an average

way. In order to obtain more accurate wavefunctions the instantaneous interactions

between electrons must be taken into account. The motion of electrons in the vicinity

of nuclei is correlated and the energy calculated by using electron correlated wave-

functions is called the correlation energy. The relationship between the exact energy

(E), Hartree-Fock energy and the correlation energy (Ecorr) in a system is

Ecorr = E − EHF . (47)

Actually, since Hartree-Fock wavefunction satisfies the antisymmetry principle

under exchange of electrons, it does include some instantaneous electron correlation.

However, there are better ways to include instantaneous electron correlation in

energy calculations. One of the most prominent methods of including electron cor-

relation is configuration interaction (CI). Hartree-Fock wavefunction is a Slater de-

terminant that is constructed from one-electron MOs. In CI, multiple determinants
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from excited electron configurations were included with the Hartree-Fock Slater de-

terminant as a linear combination and optimized the coefficients of those Slater de-

terminants to find the best representation of the wavefunctions and energies. This

electron correlation is called “dynamical correlation” as it refers to the electron-

electron dynamical interaction. There are several different methods that are used to

include excited electron configurations as a Slater determinant in order to improve

electron correlation. MCSCF (Multi-configuration Self Consistent Field), MRCI

(Multi-reference Configuration Interaction), CASSCF (Complete Active Space Self

Consistent Field) and MRSD-CI (Multi-reference Single and Double Configuration

Interaction) are some popular configuration interaction methods that are being used

to include electron correlation in molecular and atomic energy calculations.

3.13 FOURIER TRANSFORM SPECTROSCOPY

Isobutane spectra were recorded (Chapter 5) using a Bruker IFS 125HR Fourier

transform spectrometer (FTS). The essential part of the Fourier transform spectrom-

eter is the interferometer. Even though the interferometer in the Bruker IFS 125HR

has a complex setup, the basis of it is an idealized Michelson interferometer which is

shown in the Figure 13.

As shown in the Figure 13 a beam of light emitted from a light source (laser, glow

bar) is directed at the beam splitter (the device that splits the light beam ideally

into two); it allows one half passes through the splitter (transmitted beam) and the

other half reflects (reflected beam). The reflected part of the beam travels a distance

L1 to the mirror M1 and reflects back to the beam splitter. Then the total distance

(optical path length) traveled by the reflected beam becomes 2L1. The transmitted

beam also travels a distance 2L2, but the path length of the transmitted beam is

not fixed and can vary (back and forth) by a maximum distance of X. Therefore,

the total path length of the transmitted beam is accordingly 2(L2+x) and when the

two beams recombine on the beam splitter, the path length difference between the

two beams become 2x (0≤ x ≤ X). Since these two beams are spatially coherent

they will interfere when they recombine at the beam splitter. The interfered beam

will be captured by the detector once the recombined interfered beam leaves the

interferometer. The intensity (I(x)) of the recombined beam is the signal that re-

ceives by the detector as a function of moving mirror displacement which is called the

interferogram. The interferometer produces constructive or destructive interference
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FIG. 13: Schematic of a Michelson interferometer
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depending on the path length difference between the two light beams.

FIG. 14: Optical path of the Bruker IFS 125HR Fourier transform spectrometer (Bruker 2016)

The complete dependence of the intensity (I(x)) captured by the detector of a

monochromatic light beam is given by
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FIG. 15: Schematic of the tube furnace

I(x) = s(ν̃)× cos(2πν̃X) (48)

where ν̃ is (1/λ) is the wavenumber and s(ν̃) is the intensity of a coherent (monochro-

matic) line located at the wavenumber ν̃.

Usually, the light beam entering the spectrometer is incoherent. Therefore, the

Equation 48 must be modified accordingly. The intensity of an incoherent light beam

is given by

I ′(x) =

∫ ∞

−∞

S ′(ν̃ ′)× cos(2πν̃ ′x) dν̃ ′ (49)

where

S ′(ν̃) =

∫ ∞

−∞

I ′(x′)× cos(2πν̃x′) dx′ (50)

is the spectral power density,

The interferometer is consisted of N discrete sample points. A mathematical

technique called discrete Fourier transformation is used to convert this interferometer

to a spectrum. Since the movable mirror M2 can move only a finite distance (X) the

spectrum can be obtained only with a limited resolution.
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The optical path of the Bruker IFS 125HR Fourier transform spectrometer is

shown in the Figure 14. Instead of a simple Michelson interferometer with two

mirrors, one fixed (C) and one movable (A), Bruker IFS 125HR has several mirrors

that direct the infrared light coming from the tube furnace (Figure 15) that enters

though the aperture (E) to the detector (M). The maximum optical path length

(MOPD) of the Bruker IFS 125HR Fourier transform spectrometer is 5 m and the

corresponding maximum instrumental resolution (1/MOPD) is 0.002 cm−1.

3.14 BEER-LAMBERT LAW

The Beer-Lambert law gives the relationship of the attenuation of light and the

properties of a material of which the light is traveling. As shown in the Figure

16 a flux of photons (F 0 = I0/hν) travels through a two level (the upper state

with population N1 and the lower/ground state with population N0) system with

dimensions 1 m × 1 m × l m that can be absorbed and induced stimulated emission.

The intensity of the radiation after traveling distance l through the system is I.

FIG. 16: A two level-system with dimensions 1 m × 1 m × l m with molecules

The Beer-Lambert law can be written as

I = I0e
−σ(N0−N1)l, (51)

where σ is the absorption cross section. The physical interpretation of the absorption

cross section is the “effective area” of the molecule that the flux of photons goes

through. Also the absorption cross section can be defined as
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σ =
λ2

8π
A1→0g(ν − ν10), (52)

where A1→0 is the Einstein A coefficient and g(ν- ν10) is the lineshape function.

3.15 LINE SHAPE FUNCTIONS

In a real spectrum of a molecule, absorption features consist of characteristic line

shapes. These line shape functions can be categorized into two groups: homogeneous

and inhomogeneous. When molecules are in a high pressure system, it is considered

that the system has an identical pressure-broadened lineshape for a particular tran-

sition. Pressure broadening in a transition belongs to homogeneous broadening. On

the other hand, gas phase Doppler broadening of molecular velocities due to Maxwell-

Boltzmann distribution is an example for inhomogeneous broadening, where different

molecular velocities give the incident radiation a frequency shift ν = (1±ν/c)ν0 in

the molecular frame of reference. In general, homogeneous line shape functions rep-

resent by Lorentzian functions and inhomogeneous line shape functions by Gaussian

functions. The convolution of a Lorentzian and Gaussian function is called a Voigt

line shape function.
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CHAPTER 4

A NEW LINELIST FOR THE A3Π - X3Σ- TRANSITION

OF THE NH FREE RADICAL

The results and the majority of the material presented in this chapter are published

in the Journal of Quantitative Spectroscopy & Radiative Transfer (Fernando et al.

[36]). The co-authors of this publication are: P. Bernath (Old Dominion University),

J. Hodges (Old Dominion University) and T. Masseron (Universidad de La Laguna).

T. Masseron calculated the synthetic spectra of the solar photosphere and the metal

poor star HD196944 using the linelist prepared by us to validate our results. Figures

20 and 21 were also prepared by him. A computer program was written by J. Hodges

to convert Hund’s case (b) transition dipole moment matrix elements to Hund’s

case (a) elements. P. Bernath is the advisor of this project. As the first author

of this publication, carrying out computational calculations to prepare the linelist,

preparation of figures (except the figures prepared by T. Masseron) and writing the

text were done by me. This work is original and has not published anywhere prior to

the publication in the Journal of Quantitative Spectroscopy & Radiative Transfer.

4.1 INTRODUCTION

The NH radical plays an important role in astrophysics. The bands of the A3Π−
X3Σ− transition were first detected in a laboratory spectrum in 1893 [32]. The first

astronomical observation of the NH A−X system was made in the spectrum of the

Sun [40]. In 1940, the A−X system of NH was detected in the Comet Cunningham

[147]. The A3Π−X3Σ− transition of NH was first recorded in the interstellar medium

in 1991, towards the stars HD 27778 and HD 24398 and again in 1997 towards the

star HD 149757 [100, 25]. In 2009, interstellar NH abundances were calculated using

the lines of the A − X system recorded towards the stars HD 149757, HD 170740,

HD 154368 and HD 169454 [162].

NH is also frequently detected in the infrared spectra of cool stars. The infrared

vibration-rotation lines of NH in oxygen-rich M giant stars, including α Orionis, were
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analyzed in order to obtain nitrogen abundances [78, 5]. In 1986, nitrogen abundances

for six additional stars were calculated using the observed infrared spectra [138].

In stellar atmospheres, although the formation of N-bearing molecules is strongly

dominated by N2 [151], molecular transitions are an excellent indicator of N abun-

dances. Despite its dependence on carbon abundance, the CN molecule in the red

and near infrared spectral regions is preferentially used by stellar spectroscopists

because a higher stellar signal is obtained.

With the advent of a new generation of spectrographs such as UVES mounted

on the VLT [28], the observation of the short wavelength region of the spectrum has

become accessible. Indeed, the A − X transition of NH has been observed in stars

and notably in metal-poor stars [141, 143]. Spite et al. [143] noticed a systematic

discrepancy in the N abundance derived from NH compared to the value derived from

CN. They suspected that the NH A −X linelist needed revision, which we provide

in this chapter.

The assignment of the 0−0 and 1−1 bands of the A−X system was carried out

in the 1930s from emission spectra by Funke [42]. In 1959, the 0− 0 and 1− 0 bands

were recorded in absorption [29] and in 1966 and 1970 several additional bands were

analyzed [105, 93]. In 1986, the A−X system of NH was measured with a precision

of ±0.0002 cm-1 for the 0− 0, 1− 1, 2− 2, 0− 1, 1− 2, 1− 0 and 2− 1 bands [16].

These measurements improved on the previously available line positions by more

than two orders of magnitude. The vibration-rotation lines in the infrared region

were re-analyzed using solar spectra as well as IR laboratory spectra [123, 122].

The A3Π − X3Σ− system recorded by Brazier et al. [16] used a copper hollow

cathode discharge of helium with added nitrogen and hydrogen. The A−X spectrum

was recorded with the Fourier transform spectrometer associated with the McMath-

Pierce Solar Telescope of the National Solar Observatory at Kitt Peak [16].

4.2 METHOD

4.2.1 EXPERIMENTAL DATA

The spectroscopic constants for A3Π and X3Σ− states were obtained from Ram

and Bernath [122] based on Brazier et al. [16] for the A − X transition and Ram

et al. [123] for the infrared vibration-rotation and pure rotation lines. The X state

constants from Ram and Bernath [122] were also used by Brooke et al. [19] for the
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vibration-rotation line intensity analysis. The Brazier et al. A−X spectrum [16] will

be used for comparison with our new linelist. Linelist is a compilation of positions

(transition frequencies), line intensities or Einstein A coefficients, relevant quantum

numbers of the upper and the lower states and the lower state energies of energy

transitions. Linelists are used to recognize molecules and atoms in observed spectra

and predict molecular concentrations in atmospheric models. 15NH was not included

in this analysis because it was not detected in the spectrum of Brazier et al. [16].

4.2.2 TRANSITION DIPOLE MOMENT FUNCTION CALCULATIONS

MOLPRO 2012 [161] was used to perform ab initio calculations (solve non-

relativistic Schrödinger equation) of the transition dipole moment function of the

A3Π − X3Σ− transition. To calculate the transition moment, the multireference

configuration interaction (MRCI) method was used with the aug-cc-pwCV5Z basis

set. The wavefunctions utilized for the MRCI calculations were obtained from state-

averaged (same set of molecular orbitals is used for both the states in a given spatial

and spin symmetry) CASSCF calculations with the A3Π and X3Σ− states having

equal weights. All the electrons were included in the correlation treatment. The

active space included the 2-5a1, 1-2b1, 1-2b2 and 1a2 orbitals in the C2v point sym-

metry group used by MOLPRO. The TDMF (transition dipole moment function) points

were calculated for internuclear distances between 0.7 Å to 2 Å in steps of 0.02 Å as

expectation values.

4.2.3 POTENTIAL FUNCTIONS

The potential energy curves of the A3Π and X3Σ− states were calculated employ-

ing Le Roy’s RKR1 program [80]. The RKR1 program produces classical turning points

of the potential energy curves using the first order semi-classical Rydberg-Klein-Rees

procedure. The RKR1 program requires vibrational and rotational constants as the

input in order to perform the calculations. The molecular constants required for the

X3Σ− state were obtained from [123] and for the A3Π state from [16] (Table 3). The

dissociation energy for the ground state (D0=27, 409 ±13 cm-1) was obtained using

the enthalpy of formation of N, H and NH at 0 K from the Active Thermochemical

Tables [131] and for the excited state using a thermochemical cycle (D0=16, 874 ±13
cm-1). The error in the dissociation energy was calculated by propagation of the

errors in the enthalpies given in the tables.
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TABLE 3: Equilibrium constants for A3Π and X3Σ− States of NH (cm-1)

Constant X3Σ− A3Π

De 29,030 18,465.5

Te - 29,790.5

ωe 3282.220(15) 3231.70

ωexe 78.513(15) 98.48

ωeye 0.1341(61) -

ωeze -0.0066(11) -

Be 16.667704(29) 16.681963(8)

αe 0.649670(91) 0.712880(35)

γe -0.001674(71) -0.016160

δe -0.000067(25) -

ǫe -0.0000633(24) -

4.2.4 TRANSITION DIPOLE MOMENT MATRIX ELEMENTS AND

THE “HERMAN-WALLIS EFFECT”

The calculated potential energy curves (Figure 17) were used as input for Le

Roy’s LEVEL program [81]. The LEVEL program generates vibrational wavefunctions

by solving the 1-D Schrödinger equation and then uses them with a specified transi-

tion dipole moment function (TDMF) to calculate transition dipole moment matrix

elements (TDMMEs). LEVEL does not include electron spin in its calculations which

corresponds to Hund’s case (b). In LEVEL the total angular momentum quantum

number J (
−→
J =

−→
N +

−→
S ) is actually the quantum number N (total angular momen-

tum except electron spin) [81]. The matrix elements provided by LEVEL include the

rotational dependence that originates from the J-dependent centrifugal term in the

1-D vibrational Schrödinger equation (i.e. the vibrational wavefunctions depend on

J). These TDMMEs are transformed into Hund’s case (a) using the method of [19]

and then input into Western’s PGOPHER [163] to calculate the linelist.

When a diatomic molecule is rotating, it increases its bond length as a result of the

centrifugal force [55]. Therefore the vibrational wavefunctions of the molecule change

due to rotation and this affects the molecular properties. In particular, infrared line
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FIG. 17: Calculated RKR potential curves of the A3Π and X3Σ− states for NH.

intensities can no longer be separated into a vibrational part times a Hönl-London

factor (nuclear angular momentum dependence)[10]. This mechanical effect of the

vibration-rotation interaction on line intensities is called the “Herman-Wallis effect”

[55]. Einstein A calculations were done using PGOPHER including the J-dependent

TDMMEs. PGOPHER calculates line intensities using the equations [10]:

Aη′J ′−→ηJ =
16π3ν3Sη′J ′ηJ

3ǫ0hc3(2J ′ + 1)
(SI Units)

(53)

Aη′J ′−→ηJ = 3.13618932× 10−7
ν̃3Sη′J ′ηJ

(2J ′ + 1)
. (54)

Line strength Sη′J ′ηJ in the equation (54) is in debye squared, Aη′J ′−→ηJ is in s−1 and

ν̃ is in cm-1.

All of the bands for v′ = 0 − 2 and v′′ = 0 − 6 are included for ∆v ≤ 4; 0 − 5,

0 − 6, 1 − 6 bands were not included as the Einstein A values are probably not

reliable because of numerical problems in the LEVEL calculations. For each band,

J was limited to about 5 J values beyond the highest observed value. Full linelist

calculation method is shown in the Figure 18.
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FIG. 18: Full calculation method.

4.3 RESULTS AND DISCUSSION

4.3.1 TRANSITION DIPOLE MOMENT FUNCTION

The transition dipole moment function (TDMF) calculated in this study was com-

pared with the TDMF available in the literature calculated by Owono et al. [113].

Owono et al. [113] carried out the calculations by using the aVTZ basis set and the

orbitals needed for the configuration interaction (CI) were obtained by the CASSCF

method. The CASSCF wavefunctions were then used for the MRSD-CI (multirefer-

ence single and double excitation configuration interaction) routine to include elec-

tron correlation [113]. Our calculations used a larger basis set (aug-cc-pwCV5Z) and

more extensive electron correlation than Owono et al. [113]. Our transition dipole

moment function deviates from that of Owono et al. [113] for values greater than 1.5

Å, but in general, our TDMF agrees with the Owono et al. [113] TDMF (Figure 19).

(The polarity of the Owono et al. [113] TDMF was changed in order to compare with

our TDMF.)

Our TDMF was also compared with the TDMF calculated by Song et al. [142]

and they are in good agreement. (Since Song et al. [142] does not provide numerical

points for the TDMF, the comparison was done with the published figure.)
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FIG. 19: Calculated transition dipole moment function for NH A3Π − X3Σ− compared with the

TDMF calculated by Owono et al. [113].

TABLE 4: Comparison of the radiative lifetimes of the vibrational levels of the A state.

v′ τ (ns) Ref.

0 388 This study

449 [142] (Calc)

453±10 [47] (Exp)

440±15 [33] (Exp)

390±40 [54] (Exp)

1 436 This study

484 [142] (Calc)

488±10 [47] (Exp)

414±6 [140] (Exp)

390±40 [54] (Exp)

420±35 [33] (Exp)

2 511 This study

520 [142] (Calc)
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TABLE 5: Einstein A coefficient comparison.

Band

(A−X)

Av′v′′

(×107s−1)
Ref.

0-0 0.254 This study

0.260 [113] (Calc)

0.2522 [170] (Calc)

0.226 [33] (Calc)

1-0 0.005870 This study

0.005781 [113] (Calc)

0.006425 [170] (Calc)

0.007484 [136] (Calc)

1-1 0.218 This study

0.226 [113] (Calc)

0.2169 [170] (Calc)

0.291 [83] (Calc)

2-0 0.00003 This study

0.0001 [113] (Calc)

2-1 0.0139 This study

0.0116 [113] (Calc)

2-2 0.181 This study

0.193 [113] (Calc)

0.220 [139] (Calc)
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TABLE 6: A portion of the linelist.

v′ J ′ N ′ Sym′ v′′ J ′′ N ′′ Sym′′ Position (cm−1) f-value Av′v′′ (s
−1) Line

0 0 1 e 0 1 0 e 29826.9444 0.0009454 1683060 rP31(1)

2 11 11 f 2 10 10 f 29826.6657 0.0016010 867477 rR2(10)

1 5 5 f 1 5 4 e 29826.1839 0.0003161 187576 rQ21(5)

1 5 5 f 1 4 4 f 29825.0871 0.0020780 1008750 rR2(4)

2 12 11 e 2 11 10 e 29822.8867 0.0016190 883903 rR1(11)

2 3 4 e 2 2 1 e 29816.1540 0.0000003 137 tR31(2)

1 6 5 e 1 5 4 e 29814.7189 0.0023200 1163823 rR1(5)

2 4 5 f 2 4 3 e 29811.6183 0.0000045 2662 sQ31(4)

2 4 5 f 2 3 3 f 29810.6036 0.0000435 20045 sR32(3)

2 9 10 e 2 10 9 e 29809.9762 0.0000005 295 rP31(10)

0 3 2 e 0 2 1 e 29809.8176 0.0034430 1457625 rR1(2)

2 9 10 e 2 8 9 e 29809.1619 0.0016770 889531 rR3(8)

2 9 10 e 2 9 9 f 29808.6222 0.0000695 41212 rQ32(9)

0 1 1 f 0 1 0 e 29807.2843 0.0027230 1613856 rQ21(1)

2 10 10 f 2 10 9 e 29806.4612 0.0000719 42585 rQ21(10)

1 3 4 e 1 4 3 e 29805.1718 0.0000176 13388 rP31(4)

2 10 10 f 2 9 9 f 29805.1072 0.0016290 873561 rR2(9)

1 3 4 e 1 2 3 e 29805.0871 0.0022630 958018 rR3(2)

1 3 4 e 1 3 3 f 29804.1443 0.0004592 272098 rQ32(3)
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FIG. 20: Comparison between the observed spectrum of the Sun (black dotted line) and their

respective syntheses with (red) and without (blue) the linelist presented in this work as well as the

former linelist from Kurucz (http://kurucz.harvard.edu/molecules/) (green).

4.3.2 EINSTEIN A COEFFICIENTS AND LIFETIMES

The calculated lifetimes and Einstein A coefficients in this study were compared

with experimental and theoretical values available in the literature as listed in Tables

4 and 5. A large Herman-Wallis effect was observed in the ground state as calculated

by Brooke et al. [19]. In order to estimate the Herman-Wallis effect in the A − X
transition, two sets of line strengths were calculated with and without including

the Herman-Wallis effect. The line strengths without the Herman-Wallis effect were

calculated with PGOPHER by using a single band strength (P(2) from the output of

LEVEL) and the line strengths with the Herman-Wallis effect were calculated by using

the J-dependent TDMMEs.

http://kurucz.harvard.edu/molecules/
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FIG. 21: Comparison between the observed stellar spectrum of the metal-poor star HD196944 (black

dotted line) and their respective syntheses with (red) and without (blue) the linelist presented in

this work as well as the former linelist from Kurucz (http://kurucz.harvard.edu/molecules/)

(green).

Since the experimental emission spectrum [16] does not have a well defined tem-

perature, our line strengths cannot be compared directly with the observations. For

comparison purposes, the ratio of rR3(J
′′) and pP3(J

′′ + 2) lines of the same upper

state J ′ values were calculated, in order to cancel the effect of the excited state pop-

ulation in line intensities. These two sets of ratios were then compared with each

other and then also with the ratios calculated from the experimental spectrum of

Brazier et al. [16].

The rR3(J
′′)/pP3(J

′′ + 2) ratios of the 0-0 vibrational band were calculated

up to J ′=25. For the lower J ′ values, the percentage difference between the
rR3(J

′′)/pP3(J
′′+2) ratios calculated with and without including the Herman-Wallis

effect is about 0.5% and for the higher J ′ values, the ratios are between 1% and 2.5%.

http://kurucz.harvard.edu/molecules/
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In general, the percentage ratios measured from the observed [16] and the calculated

spectra are also in good agreement (about 15% discrepancy) and the Herman-Wallis

effect in the electronic transition is small.

4.3.3 SPECTRAL VALIDATION

In order to validate the results, two observed astronomical spectra were used.

Figure 20, the observed spectrum of the solar photosphere is compared to a synthetic

spectrum calculated with the new linelist. The spectra are from high resolution and

high signal-to noise observations by Neckel [109]. There is a very good agreement

with the solar spectrum testifying to the high quality of our linelist.

While a solar N abundance of 7.78, as employed in this 1D-LTE synthesis, ap-

pears consistent with other N indicators [6], a comprehensive 3D model of the solar

photosphere is required to confirm this value using our linelist.

In Figure 21, a spectrum of the nitrogen-rich metal-poor star HD196944 obtained

with the blue arm of the UVES spectrograph is presented. Concerning the overlaid

synthesis, the parameters for this metal-poor star have been adopted from Masseron

et al. [96]. In particular, the N abundance has been obtained by Masseron et al.

[96] by using CN transitions. Figure 21 demonstrates that there is now very good

agreement with the N abundance obtained from the CN lines in contrast to the value

obtained with the previous NH linelist. Therefore, we conclude that the problem of

the N abundance discrepancy between CN and NH indicators as raised by Spite et al.

[143] is now solved with our new NH linelist.

4.3.4 LIFETIMES AND EINSTEIN A COMPARISON

The lifetime of an excited rovibronic level depends on the radiative emission to all

lower states and the non-radiative decay due to predissociation [142]. In this study,

the lifetimes in the A3Π excited state were calculated without taking predissociation

into account. But, in general, our lifetimes are in good agreement with the values

available in the literature (Table 4). Einstein A values were calculated for several

vibrational bands and compared with values available in the literature, and they are

in agreement (Table 5).

It is difficult to estimate the error in the NH Einstein A values obtained by ab

initio calculations except by analogy with similar calculations for a system such as

OH+ with more information. An error analysis was carried out by Hodges et al. [59]
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for the A3Π−X3Σ− system of isoelectronic OH+ and, based in part on astronomical

observations, and the error was estimated to be about 10%. We can expect a similar

error for the NH A−X system as well.

The experimental lifetimes in the literature for v′ = 0 and 1 differ by significant

amounts (Table 5). It is not clear which values should be used to calibrate the line

intensities so we recommend that our values, based on theory alone, be used.

4.4 CONCLUSION

A new linelist for the NH A−X transition has been generated. The line intensities

were obtained with a dipole moment function calculated ab initio with a large basis

set and with extensive electron correlation. The calculated line intensities included

the Herman-Wallis effect. In contrast to the infrared bands, the Herman-Wallis

effect is small for the A−X transition. Two astronomical spectra were used for the

validation of the results and the calculated spectra are in good agreement with the

observed spectra. The Einstein A values and lifetimes were compared with values

available in the literature and they are generally in good agreement.

(A portion of the linelist is given in the Table 6. The linelist includes e/f parity,

the quantum numbers J , N and v for each state, line positions, oscillator strengths

and Einstein A values.)
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CHAPTER 5

INFRARED ABSORPTION CROSS SECTIONS OF HOT

ISOBUTANE

Preparation of the experimental setup to record isobutane and CO2 spectra was done

by M. Dulick (Old Dominion University). Recording of isobutane and CO2 spectra

was also done by M. Dulick collaborating with me. All the cross section calculations

in this chapter were done by me. P. Bernath (Old Dominion University) is the

supervisor of this project.

5.1 INTRODUCTION

Hydrocarbons are found in planetary and exoplanetary atmospheres [124, 89].

Butane is a hydrocarbon that exists in the Earth’s atmosphere mainly from anthro-

pogenic emissions [117, 45]. Titan is a moon of Saturn with a dense atmosphere of

N2 and CH4 capable of forming hydrocarbons including potentially butane through

photochemical formation [30]. Propane has already been detected on Titan [110]

and also on Saturn [46]. Dobrijevic et al. [30] predicted with a photochemical model

that butane should also exist on Titan with a similar abundance as propane. A one-

dimensional coupled ion-neutral photochemical kinetics and diffusion model of Titan

predicts the production of isobutane [157]. However, most of these photochemical

model studies of Titan do not distinguish between the abundances of n-butane and

isobutane [172, 30]. The detection of methane, propane and ethane in the atmo-

spheres of Jupiter and Saturn and the detection of methane in brown dwarfs and

exoplanets suggests that hydrocarbons such as butane might also be found in hot

Jupiter exoplanets. Hot hydrocarbons have also been detected in aural regions of

Jupiter [7, 48, 87, 146].

Butane (C4H10) has two isomers, n-butane with C2h symmetry and isobutane with

C3v symmetry at equillibrium [31, 154]. Isobutane has 24 fundamental vibrational

frequencies, 8 with a1 symmetry, 4 optically forbidden a2 modes (ν9 - ν12) and 12

doubly degenerate e modes (ν13 - ν24). We have recorded high resolution spectra

of pure isobutane at four temperatures in the spectral region 2500 - 3500 cm-1 to
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provide absorption cross sections to aid the detection of isobutane in hot Jupiters,

brown dwarfs and exoplanets.

Isobutane was initially studied in Raman and infrared spectroscopy in liquid and

gaseous form in 1950s. In 1960, Lide [86] showed that isobutane molecule belongs

to C3v point group by measuring and analyzing microwave spectra. In 1969, Weiss

and Leroi [160] derived torsional frequencies from a number of combination bands

of isobutane in the spectral region 200 - 800 cm1 from recorded infrared spectra

under high pressure conditions. In 1994, Manzanares et al. [94] measured spectra

of the fundamental and overtones of C-H stretches of (CH3)3CH (isobutane) at 90

K and at 135 K with liquid samples. Manzanares et al. [94] also performed ab

initio calculations to obtain geometry parameters for bond lengths, bond angles

and vibrational frequencies. Theoretical calculations for infrared intensities of all

vibrations and frequencies were carried out by Schrader et al. [133] in 1984. In

1999, Mirkin and Krimm [101] performed ab initio calculations for normal mode

frequencies. A local mode analysis and partial rotational assignments were carried

out in 2019 by Bernath et al. [13] with the help of ab initio calculations and high-

resolution infrared spectra of the symmetric top isobutane. In 1972, Hilderbrandt

and Wieser [58] determined the molecular structure of isobutane in the gas phase

with electron diffraction data and rotational constants from microwave spectroscopy.

In 1997, ground state rotational spectrum of isobutane was measured in microwave,

millimeter-wave and submillimeter wave regions by Priem et al. [118]. The infrared

absorptions cross sections in the region 2500 - 3500 cm-1 were determined by Hewett

et al. [57] from recorded infrared spectra of isobutane in 2019.

5.2 CALCULATIONS

In order to obtain a transmission spectrum, three steps were followed. The first

step is to record an interferogram without the sample (in this case, isobutane) in

the cell and calculate the Fourier transformed emission spectrum Aref (Figure 22a).

The second step is to obtain the Fourier transformed absorption spectrum Aabs with

the sample in the cell (Figure 22b). As the final step the transmission spectrum

τ is obtained taking the ratio of Aabs and Aref (Figure 22c). Background emission

corrections are needed if the tube furnace is heated above 373 K. The calculations of

transmission spectra are done using the software OPUS provided by Bruker. OPUS

allows you to control and manipulate spectral parameters and convert transmission
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spectra into absorption cross sections.

5.3 EXPERIMENT

Transmission spectra of isobutane were recorded for six different temperatures,

295 K, 373 K, 473 K, 573 K, 673 K and 723 K using a sealed quartz cell, a furnace

(accurate within ±10◦C) and a Bruker IFS 125HR Fourier transform spectrometer.

For each temperature (except for 295 K) two transmission spectra were recorded with

the glower. The spectrum was recorded with isobutane in the cell (Atr) at pressure

1 Torr and the other without isobutane in the cell (Aref). In order to correct these

transmission spectra for background emission, another two spectra were recorded

with the lamp turned off; one without isobutane in the cell (Bref) and the other

with isobutane in the cell (Bem). All transmission spectra were recorded in the

spectral region 2400 - 5500 cm-1. A pressure gauge was not used to measure pressure

inside the cell. Instead, isobutane was pumped into the cell after the pressure was

measured inside the cell at room temperature with a Baratron pressure gauge that

was calculated for the relevant experimental temperatures inside the cell using the

ideal gas law. The other parameters used for the experiment are listed in the Table

7. For room temperature (295 K), background emission spectra were not recorded

and the emission spectrum was calculated by taking the ratio between Aabs and

Aref (uncorrected emission spectrum). For the temperatures 373 K, 473 K, 573 K,

673 K and 723 K spectra were corrected using the Equation 57 (corrected emission

spectrum). Cross sections were calculated for all the temperatures using corrected

(except 295 K) and uncorrected emission spectra; and the values are given in the

Table 8.

τ =
Aabs − Bem

Aref − Bref (55)

The six transmission spectra were converted to cross sections using Equation 56

provided by Harrison and Bernath [51],

σ(ν, T ) = − 104kBT

P l
ln τ(ν, T ).

(56)
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FIG. 22: a) Absorption, b) emission and c) transmission spectra of isobutane recorded at room

temperature (295 K).
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TABLE 7: Experimental conditions

Parameter Value

Detector InSb

Beamsplitter CaF2

Spectrometer Windows CaF2

Lens CaF2

Filters Ge

Scans 128 coadds

Resolution (cm-1) 0.01

Zero filling factor × 16

Path length 50.8 cm

FIG. 23: Integrated absorption cross sections of isobutane for temperatures 295 K, 373 K and 473

K
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FIG. 24: Integrated absorption cross sections of isobutane for temperatures 573 K, 673 K and 723

K

TABLE 8: Temperature calibrated absorption cross sections of isobutane

Experimental

Temperature (K)

Calibrated

Temperature (K)

Emission

uncorrected

×10−17

(cm/molecule)

Emission

corrected

×10−17

(cm/molecule)

295 295 3.4365 -

373 354.8 3.3045 3.3665

473 463.4 3.4796 3.5502

573 573 3.0810 3.1465

673 685 2.7312 2.9303

723 738.5 2.5063 2.7819
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Here, the transmittance at wavenumber ν cm-1 represents by τ(ν, T ) , temperature

by T in K, pressure of the absorbing gas by P in Pa, path length of the cell by l in

m and Boltzmann constant by kB in J/K.

5.4 CALIBRATION

Although the integrated cross sections for an isolated band should not depend on

temperature, our calculated cross sections of isobutane show a temperature depen-

dence.

The Pacific Northwest National Laboratory (PNNL) database provides infrared

spectra of isobutane for 3 temperatures (278 K, 298K and 323 K) with 1 atm of N2

broadening gas [134]. We integrated the cross sections of isobutane of PNNL and our

spectra for all the available temperatures (from 2770.3610 cm-1 to 3070.1000 cm-1).

Our integrated cross sections (temperature calibrated) are presented in the Table

8. PNNL integrated cross sections are 4.7953 × 10−17 cm/molecule, 4.7916 × 10−17

cm/molecule and 4.8214 × 10−17 cm/molecule for the temperatures 278 K, 288 K and

323 K (PNNL cross section values and our values have a discrepency), respectively.

Since the y-axis of the PNNL spectrum was in ppm m, to convert it to standard

units in which our spectrum was calculated, the PNNL spectrum was multiplied by

9.28697 × 10−16. Integrated cross sections of spectra recorded at six temperatures

and are shown in the Figure 23 and 24. Temperature was not constant through

out the cell. Therefore, the average temperature along the cell was given for each

temperature as the calibrated temperature in the Table 8. A separate experiment

was carried out using a thermocouple to measure the temperature along the cell.

The measured value in the center of the cell is used as the calibrated value.

5.5 CONCLUSION

High resolution pure isobutane spectra were recorded at Old Dominion University.

The spectra were recorded in the 3 µm region for temperatures 295 K, 373 K, 473

K, 573 K, 673 K and 723 K. Recorded spectra were converted to integrated cross

sections by correcting for background emissions using Bruker’s OPUS software. These

cross section values can be used to simulate atmospheric spectra of exoplanets, hot

Jupiters and brown dwarfs which might contain isobutane. Integrated cross sections

show a temperature dependence (decreasing with increasing temperature). Also, our

integrated cross sections were compared with the data from the Pacific Northwest
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National Laboratory (PNNL) and they show a discrepancy.
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CHAPTER 6

OZONE ISOTOPOLOGUE MEASUREMENTS FROM

THE ATMOSPHERIC CHEMISTRY EXPERIMENT

(ACE)

The results and the majority of the material presented in this chapter are published

in the Journal of Quantitative Spectroscopy & Radiative Transfer (Fernando et al.

[37]). The co-authors of this publication are: P. Bernath (Old Dominion University)

and C. Boone (Univeristy of Waterloo). C. Boone is the ACE project scientist who

carried out retrievals from ACE-FTS, using resources at the University of Waterloo.

Calculation of the atmospheric “forward model” to prepare volume mixing ratio

profiles for normal ozone and ozone isotopolgues were also done by him. P. Bernath

is the mission scientist for ACE and the advisor of this project. As the first author of

this publication, analysis of ozone data, preparation of figures and writing the text

were carried out by me. This work is original and has not published anywhere prior

to the publication in the Journal of Quantitative Spectroscopy & Radiative Transfer.

6.1 INTRODUCTION

In general, elements exist as a mixture of isotopes or isotopologues. The ex-

istence of isotopes/isotopologues in a system with different compositions is called

isotopic/isotopologue fractionation. There are two different fractionation types that

are recognized: mass dependent and mass independent [95, 91]. Mass dependent

fractionation occurs due to mass differences of isotopes/isotopologues that affect

physical properties of isotopes/isotopologues. Hence, vibrational and rotational fre-

quencies, thermodynamic energies and photochemical cross sections cause different

isotopes/isotopologues to react at different rates and partition unequally between

reactants and products. As a result, several mass dependent processes in isotopic

systems give predictable fractionations. As an example, mass dependent fractiona-

tion of oxygen reflects the mass difference between 18O and 16O. The mass difference
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between 18O and 16O is 2 atomic mass units and there is 1 atomic mass unit differ-

ence between 16O and 17O, so the fractionation of 18O is twice that of 17O [70, 95].

Mass independent fractionation occurs when isotopes/isotopologues are associated

with biogeochemical, photochemical, exchange, association and dissociation reac-

tions; and does not relate to the mass differences of relevant isotopes/isotopologues

[8, 114, 132]. As an example, the ratio between the mass independent fractionation

of the isotopolgues 16O16O18O and 16O17O16O in the Earth’s stratosphere is around

1 i.e., their fractionation is about the same.

Ozone isotopologues show high fractionations in the Earth’s stratosphere com-

pared to normal mass dependent ozone fractionations observed elsewhere. This iso-

topic signature can be transferred to other trace gases in the atmosphere (CO2, CO

and N2O). Therefore, information on atmospheric transport and chemical reactions

can be obtained by monitoring this atmospheric feature.

Mass spectrometers cannot determine the symmetry of isotopomers. An isotopo-

logue is any isotopically substituted molecule and an isotopomer is an isotopic isomer

such as 16O16O18O and 16O18O16O where both species are isotopologues [37]. The

notation 50O3 represents both isotopomers 16O16O18O and 16O18O16O where it dis-

tinguishes only the mass number (in this case mass number is 50). Generally, in an

ozone sample, 1/3 of 50O3 consists of the symmetric molecule 16O18O16O and 2/3 of

the asymmetric molecule 16O16O18O (similar for 49O3).

In 1980, Cicerone and McCrumb [23] showed that high ozone fractionations should

be expected 40 km above the Earth’s surface in the stratosphere. In 1981, bal-

loon based mass spectroscopic measurements by Mauersberger [97] found that the

stratosphere was highly fractionated with 16O18O16O and 16O16O18O enhanced in

abundance relative to 16O16O16O. In 2001, mass spectrometric observations made

by Mauersberger et al. [99] in the mid-stratosphere of 50O3 showed fractionations ()

between 7-9% and of 49O3 (represents the isotopomers 16O16O17O and 16O17O16O)

showed values between 7-11%. Mass spectrometer data measured by Krankowsky

et al. [73] showed that 50O3 fractionations at 22-33 km is 7-11% and 49O3 frac-

tionations slightly lower compared to 50O3. In 2007, Krankowsky et al. [74] again

determined the altitude dependence of ozone fractionations with balloon measure-

ments. Far-infrared spectrometer data obtained with balloon measurements by John-

son et al. [66] showed that 50O3 fractionated by 12.3% and 49O3 by 10.7%. Similarly,

Irion et al. [62] confirmed previously observed high isotopic fractionations in the
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stratosphere with in-orbit ATMOS (Atmospheric Trace Molecule Spectroscopy) mea-

surements. Atmospheric data obtained from MIPAS (Michelson Interferometer for

Passive Atmospheric Sounding) instrument by Jonkheid et al. [67], shows fraction-

ations ∼8% with an increasing vertical profile up to 33 km, with decreasing values

at higher altitudes, and 16O18O16O shows values around 3%. Similar fractionations

for heavy isotopes were observed in laboratory measurements as well, supporting the

atmospheric observations [98, 64, 149].

6.1.1 OZONE FRACTIONATION

Ozone fractionation process in the stratosphere is mass independent since it does

not reflect the mass difference between ozone isotopologues. The main process re-

sponsible for stratospheric ozone fractionation is the reaction of ozone formation by

recombination (XY + Z + M → XYZ + M; X, Y, Z represent different oxygen iso-

topes). During this recombination process, a vibrationally excited ozone complex

is formed and is stabilized to form normal ozone (XY + Z ⇀↽ XYZ∗ → XYZ), to

complete the process.

This intermediate ozone complex can also dissociate into different oxygen atoms

and molecules as well (X + YZ ← XYZ∗ → XY + Z). This process is called the

exchange reaction (X + YZ ⇀↽ XY + Z). This process also plays a major role in

ozone fractionation [132, 17]. Ozone fractionation occurs due to different reaction

rates of the recombination reaction and of the ozone exchange reaction with different

atomic isotopes, molecular isotopologues and isotopomers [43, 132, 44].

O3 can photolyze and produce oxygen atoms and molecules. Photolysis of O3

provides a minor contribution to ozone fractionation. In this process, O atoms are

generated by O3 photolysis and react with stratospheric O2 to re-form ozone. Ozone

photolysis produces singlet and triplet oxygen atoms (O3 + hν → O(1D) + O2(
1∆g)

and O3 + hν → O(3P) + O2(
3Σ-

g)). O(1D) atoms produced in this process can be

quenched by N2 and O2. These excited O(1D) atoms produce more O(3P) atoms

which recombine with O2 to produce ozone. In order to keep the ozone budget

balanced in the stratosphere, odd oxygen reacts with ozone to re-form molecular

oxygen (O + O3 → 2O2). This odd oxygen cycling reaction is faster than source

and sink reactions and limits the ozone fractionation significantly [18]. It should be

noted that ozone photolysis only provides a minor contribution to ozone fractionation

compared to ozone formation and it was not recognized as important until recently
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[53].

Observations and retrievals: Ozone and its isotopologue VMR profiles

(16O16O16O, 16O16O18O, 16O18O16O, 16O17O16O) are provided on a vertical grid of 1

km from about 5 km (or the cloud tops) up to ∼50 km (for the minor isotopologues)

covering latitudes 85◦N to 85◦S [11]. For this work version 3.5/3.6 of ACE-FTS pro-

cessing is used for 2014-2018. Version 3.5/3.6 uses spectroscopic line parameters for

ozone from the HITRAN 2004 database [129].

6.1.2 FRACTIONATION PROCESS

Isotopic fractionation is defined as:

δ(%) = 100

(
R

R0

− 1

)

(57)

in which R = [O3]isotopologue/[O3] is the observed ratio of ozone isotopologue and

normal ozone VMRs (volume mixing ratios). The convention is that the VMR of the

most abundant isotopologue (in this case 16O16O16O) should be in the denominator

and the VMR of the less abundant isotopologue in the numerator. R0 is a reference

ratio used to obtain a meaningful number for fractionation. For this study, in order to

calculate the reference ratio, VSMOW (Vienna Standard Mean Ocean Water) is used

with R0(
18O) = 0.00200520 and R0(

17O) = 0.000373 [137]. These reference ratios are

only available for atomic oxygen. The likelihood of randomly finding non-symmetric

ozone (QOO) in a sample is twice as large as the symmetric ozone (OQO) (with

heavy oxygen atom is denoted by Q). Therefore the reference VMRs were multiplied

by 2 to obtain δ values for non-symmetric isotopologue [37].

6.2 DATA SET

We used ozone fractionations derived from isotopologue measurements available in

the literature to compare with ACE-FTS values. We used fractionation data from the

space-based solar absorption spectra recorded by the ATMOS (Atmospheric Trace

Molecule Spectroscopy Experiment) Fourier transform spectrometer [62]; data from

the balloon-borne solar absorption spectra by the MkIV FTIR (Fourier Transform In-

frared Interferometer) spectrometer [53]; data from mass spectrometer measurements
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(a) δ 16O16O18O % DJF (b) δ 16O16O18O % MAM

(c) δ 16O16O18O % JJA (d) δ 16O16O18O % SON

(e) δ 16O16O18O % mission average

FIG. 25: δ 16O16O18O % (latitude distribution).
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(a) δ 16O18O16O % DJF (b) δ 16O18O16O % MAM

(c) δ 16O18O16O % JJA (d) δ 16O18O16O % SON

(e) δ 16O18O16O % mission average

FIG. 26: δ 16O18O16O % (latitude distribution).
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(a) δ 16O17O16O % DJF (b) δ 16O17O16O % MAM

(c) δ 16O17O16O % JJA (d) δ 16O17O16O % SON

(e) δ 16O17O16O % mission average

FIG. 27: δ 16O17O16O % (latitude distribution).
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FIG. 28: Standard deviation of δ 16O17O16O % altitude-latitude bins.

of samples collected with high altitude balloons [74]; data from the Michelson Inter-

ferometer for Passive Atmospheric Sounding (MIPAS) [67]; data from the balloon-

borne thermal emission spectra by the FIRS-2 Fourier transform spectrometer [66]

and MIPAS-Balloon measurements [116] to validate ACE-FTS data [37].

Jonkheid et al. [67] derived altitude profiles of δ values of 50O3 from the above

mentioned datasets for five latitude bins (polar, mid-latitude and tropics). Also,

altitude profiles of δ values of 16O16O18O and δ 16O18O16O were derived from MIPAS-

Balloon data by Piccolo et al. [116] and from MkIV FTIR data by Haverd et al. [53].

These altitude profiles were extracted from the figures provided in the respective

journal papers and were used for comparison with ACE-FTS data [37].

The ATMOS data were derived from the missions Spacelab-3 (April-May 1985),

Atlas-1 (March 1992), Atlas-2 (April 1993) and Atlas-3 (November 1994) [62, 67].

The FIRS-2 data were obtained from seven balloon flights launched from Fort Sumner

(35◦N), Daggett (45◦N) and Fort Wainwright (65◦N) between 1989 and 1997. The

mass spectrometer data were taken from 11 balloon flights launched from Kiruna

(68◦N), Aire sur l‘Adour, and Teresina (5◦S) between 1998 and 2005 [66, 67]. The

MkIV FTIR data were obtained from seven balloon flights launched from Fort Sum-

ner (35◦N), Esrange (68◦N) and Fort Wainwright (65◦N) between 1997 and 2003
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(a) 16O16O16O (ppm) DJF (b) 16O16O16O (ppm) MAM

(c) 16O16O16O (ppm) JJA (d) 16O16O16O (ppm) SON

(e) 16O16O16O mission average (ppm)

FIG. 29: 16O16O16O VMRs in ppm.
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FIG. 30: Altitude profiles of δ% values of 16O16O18O for different latitude bins.

[53, 67]. MIPAS-Balloon measurements [116] (balloon-borne version of the MI-

PAS satellite instrument) were recorded in Aire sur l‘Adour, France (43.7◦N) on

24 September 2002 and in Kiruna, Sweden (67.5◦N) on 20/21 March 2003 [37].

6.3 RESULTS AND DISCUSSION

The ACE-FTS isotopologue VMR data of normal ozone (16O16O16O) and three

isotopologues (16O16O18O, 16O18O16O and 16O17O16O) are available for 6.5 km to

49.5 km in 1 km grid and each altitude level contains around 70,000 occultations.

This analysis is restricted to the altitude 20.5 km - 40.5 due to high statistical errors

outside the range. δ values of the isotopologues were calculated using the equation

57 after discarding large negative and positive values of isotopologue VMRs (VMR

values greater than about 100 ppm and less than 0.1 ppm). The calculated δ values

were put into 10◦ latitude bins for each altitude level and values that were more than

two standard deviations from the bin average were discarded. Then the quarterly

mission averages for Dec−Feb (DJF), Mar−May (MAM), Jun−Aug (JJA), Sep−Nov
(SON) and the mission average latitudinal distributions of δ values were obtained

(Figures 25, 26, 27) for each isotopologue. One standard deviation error bars are

also displayed in the calculated altitude figures of δ values [37].

The mission average (2004 - 2018) latitudinal distribution of 16O16O18O shows
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FIG. 31: Altitude profiles of δ% values of 16O18O16O for different latitude bins.

fractionations ∼20% between the altitudes 21.5 km - 26.5 km, ∼15% between the

altitudes 27.5 km - 35.5 km and ∼12% between the altitudes 36.5 km - 40.5 km

in the latitude region 45◦S - 45◦N. The polar region in the Southern Hemisphere

(70◦S - 90◦S) shows less fractionation (∼12%) compared to the Northern Hemisphere

(∼15%) (70◦N - 90◦N). The seasonal latitudinal distributions of 16O16O18O show that

there is higher fractionation in the polar regions during summer, JJA in the Northern

Hemisphere and DJF in the Southern Hemisphere. These enhancements in the tropics

and in the summer at high latitudes are consistent with the contribution of photolysis

to fractionation. The δ value standard deviations of the altitude-latitude bins of the

mission average latitudinal distribution of the isotopologue 16O16O18O are around

∼0.15 [37].

The δ values mission average latitudinal distribution of the isotopologue
16O18O16O shows high fractionations 10 - 12% between the altitudes 21.5 km - 26.5

km and in the latitude region 45◦S - 45◦N and smaller fractionations (8 - 9%) in

the regions 50◦ - 90◦S,N and between the altitudes 21.5 km - 26.5 km. Above 30.5

km, fractionations start to increase to 10 - 11% in the regions 50◦ - 90◦S,N. Simi-

lar to 16O16O18O the 16O16O18O mission average latitudinal distribution also shows

higher fractionations in the Northern Hemisphere during JJA compared to Southern

Hemisphere and in Southern Hemisphere compared to Northern Hemisphere during
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FIG. 32: Altitude profiles of δ% values of 16O17O16O for different latitude bins.

DJF when more sunlight is available. The effect of photolysis is also evident in the

enhanced fractionation for 16O18O16O at high altitudes (above 35 km) in the tropics.

Ndengué et al. [108] predict that 16O18O16O is preferentially fractionated by ozone

photolysis in the Hartley bands at this altitude. The absolute standard deviations

of the altitude-latitude bins of the mission average latitudinal distribution of the

isotopologue 16O18O16O are ∼0.2 [37].

The mission average latitudinal distributions of the isotopologues 16O18O16O and
16O16O18O of MIPAS data were provided by Jonkheid et al. [67] for 1st of July, 2003.

The MIPAS latitudinal distribution of 16O16O18O shows a peak around 30 - 35 km

for latitudes 90◦N - 50◦S, but the ACE-FTS latitudinal distribution of 16O16O18O

does not show such a peak. The MIPAS latitudinal distribution [67] of 16O18O16O

does not show any features that appear in the ACE-FTS latitudinal distribution [37].

The mission average latitudinal distribution of the isotopologue 16O17O16O shows

a high fractionation (∼15%) band in the latitudes 27.5 km - 30.5 km. It should be

noted that the δ value standard deviations for the 16O17O16O latitudinal distribution

(Figure 27e) were relatively high. Nevertheless, similar to the latitude distributions

of 16O18O16O (Figure 26e) and 16O16O18O (Figure 25e), the latitude distribution of
16O17O16O also shows higher fractionation where more sunlight is available (high

values in the Northern Hemisphere during JJA and in Southern Hemisphere during
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FIG. 33: Comparison of altitude profiles of δ% values of ozone isotopologues. a: This study, b:

MIPAS-Balloon measurements at 43.7◦N on September 2002 (Piccolo et al. [116]), c: Uncertainty

of MIPAS-Balloon measurements at 43.7◦N for September 2002 (Piccolo et al. [116]), d: MkIV

FTIR data from Fort Sumner (35◦N) flights (Haverd et al. [53]), e: Balloon-borne MIPAS-Balloon

measurements at 67.5◦N in March 2003 (Piccolo et al. [116]), f: Uncertainty of MIPAS-Balloon

measurements at 67.5◦N for March 2003 (Piccolo et al. [116]), g: MkIV FTIR data from Fairbanks

(65◦N) flights (Haverd et al. [53]).

DJF) [37].

Standard deviations of all the isotopologues are more than 1 below 20.5 km (down

to 6.5 km). Therefore the fractionations below 20.5 km in altitude were not consid-

ered in this study. There is a band of high fractionation values above 41.5 km for

all the latitudinal distributions (>0.2 for 16O16O18O, >0.15 for 16O18O16O, >0.25 for
16O17O16O). The standard deviation of the observations are also increasing and this

band may be an artifact; we have not considered these data. It is also possible that

these high fractionation values are due to photolysis in the Hartley bands of ozone

(e.g., Ndengué et al. [108]) [37].

For comparison with the heavy ozone isotopologues, the parent ozone molecule

was analyzed in the same way and the VMR distributions are presented in Figure 29

[37].

The ACE-FTS mission average altitude profiles of δ values 16O16O18O, 16O18O16O

and 16O17O16O for 6 latitude bins were presented in the Figures 30, 31 and 32.
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FIG. 34: Comparison of altitude profiles of δ% values of 50O3. a: This study, b: MIPAS data of

Jonkheid et al. [67], c: Uncertainty in MIPAS data [67], d: ATMOS IR measurements (Irion et al.

[62]), e: Uncertainty in ATMOS data [62], f: Mass spectrometer data of Krankowsky et al. [74], g:

FIRS-2 measurements (Johnson et al. [66]), h: MkIV FTIR data (Haverd et al. [53]).

Northern polar (90◦N - 60◦N), northern mid-latitudes (60◦N - 30◦N), southern tropics

(30◦S - 0◦S), northern tropics (0◦N - 30◦N), southern mid-latitudes (30◦S - 60◦S) and

southern polar (60◦S - 90◦S) are the 6 latitude regions that were considered in the

analysis [37].

The ACE-FTS average altitude profiles of δ values of 16O16O18O (Figure 30) show

a local minimum around 35 - 40 km in every latitude region. Typical fractionation

values are 13-15% in the mid-stratosphere [37].

The ACE-FTS average altitude profiles of 16O18O16O (Figure 31) have typical δ

values of about 10% in the mid stratosphere and increase above 35 km. The δ values

are relatively constant in the tropics but increase with altitude at high latitudes [37].

δ values of the average altitude profiles of 16O17O16O (Figure 32) generally show

a local minimum (8%) around 25 km and a local maximum (13%) around 29 km.

These observations do not agree, for example, with the predicitions of Liang et al.

[85], which have an increasing VMR with altitude [37].

The δ value profiles of 16O16O18O and 16O18O16O compared with MIPAS-Balloon

measurements of Piccolo et al. [116] and FTIR profiles of Haverd et al. [53].

MIPAS-Balloon measurements were taken in Aire-sur-l‘Adour, France (43.7◦N) and
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in Kiruna, Sweden (67.5◦N); and MkIV FTIR data in Fort Sumner (35◦N) and in

Fairbanks (65◦N). There are several altitude profiles of δ values of 16O16O18O and
16O18O16O provided in Haverd et al. [53] that were obtained at Fort Sumner and Fair-

banks. In order to compare these profiles with ACE-FTS data, two altitude profiles

were selected that represent maximum and minimum δ values of Fort Sumner and

Fairbanks profiles (Since δ value of 16O18O16O profiles obtained at Fairbanks do not

show much deviation from each other only one profile was selected). The ACE-FTS

δ value profiles were obtained in the latitude regions 30◦N - 50◦N and 60◦N - 70◦N

for comparison purposes (Figure 33) [37].

The ACE-FTS profile of 16O16O18O in the region 30◦N - 50◦N lies between the

two altitude profiles obtained at Fort Sumner that were selected and within the

error bars of the MIPAS-Balloon flight profile obtained at Aire-sur-l‘Adour, France

(43.7◦N). The ACE-FTS profile of 16O18O16O in the region 30◦N - 50◦N generally

agrees with the altitude profile of Haverd et al. [53] and lies slightly outside the

error bars of the MIPAS-Balloon flight profile obtained at Aire-sur-l‘Adour, France

(43.7◦N) (Figure 33). The MIPAS-Balloon flight profile obtained at Kiruna, Sweden

(67.5◦N) of 16O16O18O and 16O18O16O are available only up to ∼25 km. Both ACE-

FTS 16O16O18O and 16O18O16O δ value profiles between 20.5 km to 25.5 km lie within

the error bars of MIPAS-Balloon flight profile obtained at Kiruna, Sweden [37].

δ 50O3 values reported in the Figure 34 were obtained by using δ values calcu-

lated from 16O18O16O and δ 16O16O18O VMRs with the equation δ 50O3 = (2 × δ
16O16O18O + δ 16O18O16O)/3 in order to compare with mass spectrometric measure-

ments. The ACE-FTS altitude profiles of δ 50O3 values were calculated for 5 latitude

regions. The ACE-FTS mission δ average altitude profiles of 50O3 of 5 latitude re-

gions were presented in the Figures 34. Southern polar (90◦S - 60◦S), Southern

mid-latitudes (60◦S - 30◦S), tropics (30◦S - 30◦N), northern mid-latitudes (30◦N -

60◦N) and northern polar (60◦N - 90◦N) are the 5 latitude regions considered in this

analysis. The FIRS measurements are in the far infrared and the line parameters

for these rotational transitions may be more reliable than the vibration-rotation line

parameters used by the other remote sensing instruments. This type of systematic

error has not been included in the quoted error bars. Overall, however, there is good

agreement between ACE-FTS values and those of other instruments (Figure 34) [37].

Liang et al. [85] provide predictions of altitude dependent fractionation from their

1-dimentional semi-empirical model. As observed by ACE-FTS and predicted by
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Liang et al. [85] the fractionation of the symmetric isotopomers is substantially less

than the asymmetric isotopomers. However, Liang et al. [85] predict that fractiona-

tion increases with altitude from 20 km to a peak near 35 km for all isotopologues.

ACE-FTS altitude profiles vary with latitude but tend to be relatively flat (except

for 16O17O16O) with an increase in fractionation near the top of the observed range

above 35 km [37].

6.4 CONCLUSION

The ACE mission has a large ozone isotopologue data set for comparison with

atmospheric chemical transport models that include isotopic fractionation. The frac-

tionation with altitude is in general agreement with previous observations, although

these observations are quite variable and often do not include error bars. Global

distributions of isotopic ozone fractionations are observed for the first time. As ex-

pected the largest enrichments are observed in the tropical stratosphere in agreement

with ballon-borne measurements. The contribution of photolysis to this fractionation

can be seen in the tropics and at high latitudes in the summer. The upper strato-

sphere of the Antarctic polar vortex also shows enhanced fractionation possibly due

to dynamics from descent of air enriched in heavy isotopologues.
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CHAPTER 7

TRENDS IN LOW ALTITUDE CO2 ABUNDANCES

The results and the majority of the material presented in this chapter are published in

the Journal of Quantitative Spectroscopy & Radiative Transfer (Bernath et al. [14]).

As the first author, P. Bernath wrote the text in the publication, carried out the data

analysis collaborating with me and supervised the project. The co-authors of this

publication are: me (Old Dominion University), C. Boone (University of Waterloo)

and S. Jones (University of Waterloo). C. Boone is the ACE project scientist who

carried out retrievals from ACE-FTS, using resources at the University of Waterloo.

Calculation of the atmospheric “forward model” to prepare volume mixing ratio

profiles for CO2 was also done by Boone with the help of S. Jones. As a co-author

of this publication, preparation of the figures and the data analysis was done by me.

This work is original and has not published anywhere prior to the publication in the

Journal of Quantitative Spectroscopy & Radiative Transfer.

7.1 INTRODUCTION

CO2 is a well mixed gas in the Earth’s atmosphere that does not precitipate and

condense at current atmospheric temperatures. Therefore, CO2 is the single most

important climate-relevant greenhouse gas in the Earth’s atmosphere, although the

strongest greenhouse gas in the terrestrial atmosphere is water vapor. CO2 is respon-

sible for 20% of the total terrestrial greenhouse effect with water vapor contributing

50%, clouds 25% and other noncondensible greenhouse gases (CH4, O3, N2O and

chlorofluorocarbons) 5% [77]. Water vapor and stratiform clouds provide a strong

positive feedback to global warming, initiated by the perturbation of other green-

house gases. Consider a situation where the Earth’s surface temperature increases

due to a small increase of CO2. This rise of temperature will exacerbate water va-

por evaporation from oceans and other surface water sources. This added water

vapor to the atmosphere will again increase the surface temperature and cause more

evaporation from surface water reservoirs. This process can continue until oceans

completely evaporate and the surface temperature reaches extremely high values.
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Such a runaway greenhouse effect could have happened in ancient Venus, although

it is not possible on Earth because evaporated vapor will eventually form clouds and

precitipate, making water return to the surface [69]. Since a small increase of CO2

can result in higher surface temperatures, monitoring anthropogenic CO2 emissions

is important.

Various measurements of atmospheric CO2 have been made in order to under-

stand Earth’s carbon cycle and to improve our knowledge on the global carbon bud-

get. NOAA (National Oceanic and Atmospheric Administration) provides regular

CO2 observations from flask samples, aircraft and tall tower measurements and from

in situ observations (from observatories like Mauna Loa, Hawaii) [79]. Seasonal

upper of tropospheric CO2 data in the Asia-Pacific region were obtained with high-

frequency CONTRAIL (Comprehensive Observation Network for TRace gases by

AIrLiner) commercial in-flight measurements [152], general monthly altitude CO2

measurements were obtained with aircraft projects like CARIBIC (Global Atmo-

spheric Composition and Climate Change Research) [18] and CO2 vertical profiles

were measured with HIAPER (HIAPER Pole-to-Pole observations) aircraft program

covering the Pacific region (altitudes 85◦N to 67◦S) [167]. High-altitude aircraft such

as NASA ER-2 observe up to about 21 km and high altitude balloons up to 30 km,

using atmospheric sample systems such as AirCore [68].

One of the methods that can be used to monitor global CO2 is remote sensing

from the ground and from orbit. Total Carbon Column Observing Network (TC-

CON), a global network of ground-based Fourier transform spectrometers was set

up to obtain column measurements of important greenhouse gases including CO2

in the near-infrared region [168]. Global CO2 column measurements were obtained

with an on-orbit grating spectrometer from reflected sunlight known as Orbiting Car-

bon Observatory-2 (OCO-2) and with a Fourier transform spectrometer known as

Greenhouse Gases Observing Satellite (GOSAT) [76].

CO2 observations were obtained from the instruments, TES (Tropospheric Emis-

sion Spectrometer) on the Aura satellite [75], AIRS on the Aqua satellite [22] and

IASI on the MetOP three polar-orbiting meteorological satellite system [26]. Sim-

ilarly, limb sounding instruments such as ACE-FTS (Atmospheric Chemistry Ex-

periment Fourier Transform Spectrometer) [148], MIPAS (Michelson Interferometer

for Passive Atmospheric Sounding) and SABER (Sounding of the Atmosphere us-

ing Broadband Emission Radiometry) [88] also provide global and vertically resolved
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FIG. 35: Latitude distribution of May occulations in the Southern Hemisphere for 2004-2017 (Figure

was taken from Bernath et al. [14])

CO2 data.

CO2 measurements are widely used to validate transport models and to determine

the stratospheric age-of-air [126, 79, 65]. CO2 is an excellent tracer of atmospheric

dynamics since it is a well-mixed gas in the atmosphere and has a long atmospheric

lifetime.

7.2 RESULTS AND ANALYSIS

ACE-FTS V.4.0 processing product provided CO2 VMR altitude profiles (from

5.5 km to 17.5 km) for the month of May and for the period 2004 - 2017 that

covers a compact region in the Southern Hemisphere. The latitudes that cover the

occultations of this data product were shown in the Figure 35 using 2◦ latitude bins.

Since 14 years worth of data are available for the month of May, a study is permitted

to explore CO2 trends in the latitude region 55◦S - 70◦S, in a period where the polar

vortex has not formed. The polar vortex forms during the winter and during that

time period tropospheric and lower stratsopheric air can be subjected to extremely

cold temperatures. Cold temperatures can sink high altitude air to lower altitudes

and hence it would be difficult to spatially resolve the atmosphere [14].
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FIG. 36: Average altitude profiles for CO2 VMRs for each May from 2004-2017 for 55◦S - 70◦S

(Figure was taken from Bernath et al. [14])

ACE-FTS V.4.0 data were used to calculate individual annual altitude profiles for

the month of May and time series of the altitudes 7.5 km, 9.5 km, 10.5 km and 12.5

km representing the troposphere and the lower stratosphere. Large altitude gaps are

the result of data loss when downloading data from the satellite to produce the ACE-

FTS V.4.0 data product. Therefore, ACE-FTS V.4.0 contains unphysical values for

several occultations. In order to filter out these unphysical data from the analysis,

large positive and negative values were removed from the data set. To further remove

outliers from data, before calculating time series for each altitude level, values that

were more than 2 standard deviations away from the altitude mission averages were

discarded. Similarly, to calculate annual altitude profiles, data that were more than

2 standard deviations away from the annual altitude mission averages were also

discarded (4% of data were lost during the filtering process) [14].

Average annual altitude profiles of CO2 are presented in the Figure 36 for each

May and for 2004 - 2017 at 55◦S - 70◦S. The average annual altitude profile of CO2

VMRs (with one standard deviation) of May 2017 is presented in the Figure 37 along

with an average temperature profile (with one standard deviation). The standard

deviation at each altitude of these profiles is about 1.5% (∼6ppm) and the typical
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FIG. 37: CO2 altitude profile (left panel) and temperature (right panel) for May 2017 with one

standard deviation error bars for the 55◦S - 70◦S region. The average atmospheric pressure is given

on the far right in mbar (hPa) (Figure was taken from Bernath et al. [14])

statistical error estimated from least squares analysis for a calculated individual aver-

age is about 2.5% (∼10 ppm). ACE-FTS annual altitude CO2 profiles were compared

with corresponding altitude profiles from an a priori empirical model provided by

G. Toon. The a priori empirical model covers the troposphere and stratosphere; and

has currently been used to generate a priori CO2 profiles for the TCCON (Total

Carbon Column Observing Network) of ground-based Fourier transform spectrome-

ters. Average annual altitude CO2 profiles calculated from the model were presented

in Figure 38. These a priori values were calculated for each ACE-FTS occultation

and for this study, the data of the month of May were averaged to obtain Figure 38

[14].

CarbonTracker [115] (CT2017; http://carbontracker.noaa.gov) is a global

CO2 model that uses observations from hundreds of sites around the world and per-

forms calculations by forecasting CO2 mole fractions from CO2 surface exchange

http://carbontracker.noaa.gov
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FIG. 38: CO2 altitude profiles for each May 2004 - 2017 for 55◦S - 70◦S from Toon’s empirical

model, assuming a 9 km tropopause altitude. (Figure was taken from Bernath et al. [14])

models driven by meteorological fields from the European Centre for Medium-Range

Weather Forecasts (ECMWF). The calculated 3-D CO2 distribution is compared

with the available observations and the difference is minimized to get optimal val-

ues. CarbonTracker utilizes CO2 measurements provided by NOAA, tall towers,

aircraft campaigns, shipboard measurements, CONTRAIL [152] and AirCore [68] as

the GLOBALVIEW + data product. In order to validate ACE-FTS CO2 observa-

tions, CT2017 predictions at the altitudes 5.3 km, 6.5 km, 7.7 km, 9.1 km, 10.6 km,

12.2 km, 13.9 km and 15.8 km within the 5-18 km range have been used for the month

of May (2004–2016) from the CT2017 website (http://carbontracker.noaa.gov).

CO2 VMR averages were calculated for all the longitudes and the latitudes between

55◦S - 70◦S for 9 altitude levels (5.3 km to 18 km range); and the calculated average

altitude profiles are presented in the Figure 39 [14].

7.3 DISCUSSION

CO2 average altitude profiles of ACE-FTS (Figure 36), Toon’s model (Figure 38)

and CarbonTracker (Figure 39) are in general agreement within the error bars of the

CO2 annual altitude profile of year 2017, presented in the Figure 37. Tropopause is

http://carbontracker.noaa.gov
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FIG. 39: CO2 altitude profiles from CarbonTracker 2017. (Figure was taken from Bernath et al.

[14])

the boundary that separates the stratosphere and troposphere; and the tropopause

height between the latitudes 55◦S - 70◦S is about 9.5 km. The ACE-FTS CO2

VMR average values at 5.5 km and 6.5 km has a clear low bias compared to the

CarbonTracker and Toon’s model values. The technical errors occurred when tangent

heights were determined using N2 continuum and when retrieving CO2 VMRs with

chosen microwindows might have caused this low bias. The ACE-FTS CO2 VMRs

in the stratosphere decrease rapidly compared to CarbonTracker and Toon’s model

values. There is a peak near 15.5 km in the ACE-FTS VMR profiles and to verify

whether it is an artifact or real, the behavior of other molecules around the altitude

15.5 km should be investigated [14].

Macquarie Island is an uninhabited and small island located between New Zealand

and Antarctica (54◦37′ S, 158◦52′ E) and the location of the island falls within the

altitude range considered in this study. Continuous CO2 measurements obtained

from 2005 to 2016 and 13 m above sea level by Australia’s Commonwealth Scientific

and Industrial Research Organisation (CSIRO) with a well calibrated non-dispersive

infrared spectrometer were used to compare with ACE-FTS data. Since numerical

data of the CO2 time series obtained at Macquarie Island were not provided, data
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TABLE 9: Linear trends of ACE-FTS CO2 for altitude levels (Table was taken from Bernath et al.

[14])

Altitude (km) Linear trend (ppm/yr) σ (ppm/yr)

5.5 1.9 0.2

6.5 1.8 0.1

7.5 1.93 0.07

8.5 1.96 0.08

9.5 1.98 0.06

10.5 1.91 0.06

11.5 1.89 0.08

12.5 1.95 0.05

13.5 1.97 0.05

14.5 2.09 0.06

15.5 2.27 0.07

16.5 2.23 0.09

17.5 2.13 0.08

were extracted from the Figure 10a in Stavert et al. [144]. NOAA also provided

ground based CO2 VMR measurements at South Pole and at the altitude 2.84 km

for each May from 2005 to 2016 (data received through private communication). The

ACE-FTS time series for 13 altitude levels (5 km to 18 km) on a 1 km grid were fitted

using weighted linear regression and calculated trend values with standard errors for

2004 - 2017 were given in Table 9. The CO2 trend values seem to slowly increase

with the altitude and standard errors generally show constant values after 6.5 km

(systematic errors were not estimated) [14].

ACE-FTS time series (with one standard deviation error bars) were compared

with CarbonTracker data at the altitudes 7.5 km, 9.5 km, 10.5 km and 12.5 km and

CT2017 time series were calculated with one standard deviation error bars at 7.7

km, 9.1 km, 10.6 km, 13.9 km (Figures 40, 41, 42, 43 ). Toon’s model data and

data obtained at Macquarie Island by Stavert et al. [144] were also plotted with error

bars at relevant altitudes. Trend values of each particular time series is given in the
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TABLE 10: Linear trends of ACE-FTS CO2 for altitude levels (values are from Bernath et al. [14])

Data Linear trend (ppm/yr) σ (ppm/yr)

Macquarie Island 2.06 0.05

Carbon Tracker 1.8 0.1

Toon’s model 2.04 0.05

South Pole (NOAA) 2.2 0.1

Table 10. In general, ACE-FTS trend values agree with trends calculated by NOAA

(South Pole), from Toon’s model, with CT2017 and at Macquarie Island within two

standard deviations. Note that although Toon’s model and CT2017 provide time

series for the altitudes 7.5 km, 9.5 km, 10.5 km and 12.5 km their trend values are

the same (Table 10) [14].

FIG. 40: Trend comparisons at 7.5 km. (Figure was taken from Bernath et al. [14])

7.4 CONCLUSION

Since ACE-FTS measurements cover many parts of the Earth’s atmosphere
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FIG. 41: Trend comparisons at 9.5 km. (Figure was taken from Bernath et al. [14])

(Southern Ocean, upper troposphere and lower stratosphere), they can be useful

for carbon cycle science. Although ACE-FTS CO2 trend values are in good agree-

ment with CarbonTracker, Toon’s empirical model and South Pole data from NOAA,

at the altitudes 5.5 km and 6.5 km ACE-FTS CO2 VMRs are lower and decrease

rapidly compared to the CarbonTracker and Toon’s empirical model values. This

study was done with a preliminary ACE-FTS product and data were only available

in the latitude region 55◦S - 70◦S. Since the data product looks promising in its initial

evaluation, a global evaluation is needed to see if it can be assimilated into models

such as CarbonTracker.
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FIG. 42: Trend comparisons at 10.5 km. (Figure was taken from Bernath et al. [14])

FIG. 43: Trend comparisons at 12.5 km. (Figure was taken from Bernath et al. [14])
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CHAPTER 8

TRENDS IN ATMOSPHERIC HCl, HFC-23 (CHF3) AND

HFC-134A ABUNDANCES

The results and the majority of the material presented in this chapter are published

in the Journal of Quantitative Spectroscopy & Radiative Transfer (Bernath and Fer-

nando [12] and Fernando et al. [38]). The trend results of the atmospheric molecules

HFC-23 and HFC-134a are included in the publication Fernando et al. [38]. As the

first author of Fernando et al. [38] analysis of HFC-23 (CHF3) and HFC-134a data,

preparation of figures and writing the text were carried out by me. The co-authors

of Fernando et al. [38] are: P. Bernath (Old Dominion University) and C. Boone

(University of Waterloo). C. Boone is the ACE project scientist who carried out

retrievals from ACE-FTS, using resources at the University of Waterloo. Calcula-

tion of the atmospheric “forward model” to prepare volume mixing ratio profiles for

HFC-23 (CHF3) and HFC-134a was also done by Boone. P. Bernath is the mission

scientist for ACE and the advisor of this project.

The trend results of atmospheric HCl are included in the publication Bernath

and Fernando [12]. As the first author of Bernath and Fernando [12], P. Bernath

wrote the text, carried out the data analysis collaborating with me and supervised

the project. As the only co-author of the publication, preparation of the figures was

done by me.

This work is original and was not published anywhere prior to the publication in

the Journal of Quantitative Spectroscopy & Radiative Transfer.

8.1 INTRODUCTION

In 1974, Rowland and Molina [130] discovered that long-lived chlorofluorocarbons

(CFCs) released by humans destroy stratospheric ozone. Anthropogenic chlorofluo-

rocarbons and halons known as ozone depleting substances (ODSs), are non-reactive

in the troposphere and photolyzed in the stratosphere to release chlorine and bromine

atoms [130]. These chlorine (and bromine) atoms trigger a catalytic loss mechanism

(Reaction 58) with the ClO free radical to deplete stratospheric ozone that prevents
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harmful ultra-violet radiation (200 - 300 nm) reaching the surface of the Earth.

Antarctic ozone depletion depends on the inorganic chlorine (Cly) produced by these

ODSs and cold temperatures in the Antarctic vortex. Short-lived species such as

Cl, ClO, and HOCl and long-lived species like HCl and ClONO2 are called inorganic

chlorine. Ultimately, CFCs are oxidized to CO2, HF and HCl [12]. Therefore, emis-

sions of Cl containing ozone depleting substances can be monitored by measuring

stratospheric HCl concentrations [63].

Cl + O3 −→ ClO + O2 (58a)

ClO + O3 −→ Cl + O2 (58b)

net: O3 + O −→ 2O2 (58c)

This catalytic cycle (Reaction 58) is terminated with the conversion of ClO and

Cl (ClOx) to non-reactive HCl and ClNO3 reservoirs (Reaction 59). The sum of

ClOx, HCl and ClNO3 reservoirs are defined as Cly)

Cl + CH4 −→ HCl + CH3 (59a)

ClO + NO2 + M −→ ClNO3 + M (59b)

The lifetime of HCl is a few weeks and the lifetime of ClNO3 is typically a day;

and utimately these reservoirs return to ClOx,

HCl + OH −→ Cl + H2O (60a)

ClNO3 + hν −→ Cl + NO3 (60b)

In situ balloonborne measurements provide altitude information on HCl con-

centrations with SPIRALE (a French acronym for infrared absorption spectroscopy

by tunable diode lasers) spectrometer [104]. HCl vertical profiles were measured

remotely with the solar occultation method by the Jet Propulsion lab MkIV in-

terferometer [150]. Near-global HCl time series were calculated from the observa-

tions made with the HALOE (Halogen Occultation Experiment) instrument on the

NASA’s Upper Atmosphere Research Satellite (UARS) from 1991 to 2005 [4]. Most



87

recent HCl extensive observations were made by the Canadian Atmospheric Chem-

istry Experiment Fourier Transform Spectrometer (ACE-FTS) [11] on SCISAT and

the Microwave Limb Sounder (MLS) on the NASA’s Aura satellite [158].

Froidevaux et al. [41] provide a data product called GOZCARDS (Global OZone

Chemistry And Related trace gas Data records for the Stratosphere), merging strato-

spheric data from the instruments HALOE, MLS (Microwave Limb Sounder) and

ACE-FTS for 1997 - 2010. Brown et al. [20] used tropical ACE-FTS measurements

to provide time series (2004 - 2010) and vertical profiles of HCl VMRs. HCl trends

values were also reported in WMO ozone assessments every 4 years as well [2].

ACE-FTS HCl trend values are affected by dynamical variability. As an example

ground-based and satellite data showed a significant increase of the HCl reservoir

in the lower stratosphere of the Northern Hemisphere since 2007 [92]; this is in

contrast with the monotonic decrease of HCl source gases mainly due to the success

of Montreal Protocol. Model simulations attributed this increase to the slowdown

in the Northern Hemisphere atmospheric circulation that transports aged-air to the

lower atmosphere [92]. This dynamical variability on HCl trends can be removed by

using the correlation with N2O which is a long-lived tracer [145, 12].

8.1.1 ANTARCTIC OZONE HOLE

In 1985, the British Antarctic Survey discovered that ozone columns over Halley

Bay, Antarctica had decreased precipitously by more than 40% between 1977 and

1984, during Spring months (September-November) [127] and no depletion was ob-

served in other seasons. Later, global satellite data confirmed this discovery and also

showed that the ozone depletion extended roughly 12 to 24 km in altitude, covering

much of the lower stratosphere. This was later identified as the ozone “hole” in

the Southern polar atmosphere [127]. The ozone columns had declined since 1985

(Figure 44a) and the measured ozone partial pressure altitude profile obtained by

British Antarctic Survey station at Halley Bay, Antarctica 76◦ in October, between

1957-1992 is shown in Figure 44b.

8.1.2 MECHANISM OF OZONE LOSS

The discovery of the ozone hole shocked the world because the atmospheric ozone

absorbs ultraviolet radiation that is harmful for humans and the Earth’s biosphere.

In 1980s, measurements taken from several aircraft missions discovered that ozone
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FIG. 44: (a) Historical trend in the total ozone column measured spectroscopically over Halley Bay,

Antarctica in October, 1957-1992. One Dobson unit (DU) represents a 0.01 mm thick layer of ozone

under standard conditions of temperature and pressure; 1 DU = 2.69×1016 molecules cm-2 [164].

(b) Vertical profiles of ozone over Antarctica measured by chemical sondes. In August the ozone

hole has not developed yet, while in October it is fully developed [165].

depletion is associated with high ClO concentrations. In the meantime, laboratory

experiments also confirmed that O3 depletion occurs due to a catalytic reaction cycle

involving ClO (Reaction 61) [63].

ClO + ClO +M −→ ClOOCl +M (61a)

ClOOCl + hν −→ ClOO + Cl (61b)

ClOO +M −→ Cl + O2 (61c)

2×(Cl + O3 −→ ClO + O2) (61d)

net: 2O3 −→ 3O2 (61e)

The reaction of Br radicals with ozone also contributes to the ozone depletion (Re-

action 62) [63]. According to model calculations, the ClO reaction cycle accounts for
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70% of the Antarctic ozone depletion and the BrO + ClO radical cycle is responsible

for the remaining 30% [63].

Cl + O3 −→ ClO + O2 (62a)

Br + O3 −→ BrO + O2 (62b)

BrO + ClO −→ Br + Cl + O2 (62c)

8.1.3 HFCS AND HCFCS

The Montreal Protocol is an international treaty signed to regulate the production

and use of substances such as chlorofluorocarbons (CFCs) and halons that were

mainly used for refrigeration, air-conditioning applications and aerosol propellants.

These gases cause the depletion stratospheric ozone, and that are potent greenhouse

gases [34, 130]. Initially, this agreement was signed by 46 countries and currently

around 200 nations have been joined the agreement to protect the ozone layer. At

first, the production of several CFCs and halons were phased out [3] that effectively

destroy large numbers of stratospheric ozone molecules [38].

As a temporary substitute for CFCs, hydrochlorofluorocarbons such as CHClF2

(HCFC-22) were introduced because they have shorter atmospheric lifetimes and

hence smaller ozone depleting potentials (ODPs) than CFCs [125]. Later, hydrochlo-

rofluorocarbons (HCFCs) were also phased out, since HCFCs also contain chlorine

and can still destroy stratospheric ozone. HCFCs for dispersive use are now essen-

tially phased out in developed countries but are still produced in developing countries

[38].

Hydrofluorocarbons (HFCs) such as CF3CFH2 (HFC-134a) have been introduced

to replace CFCs and HCFCs because they contain no chlorine and have very small

ODPs [2, 107]. Although the HFCs do not directly contribute to the depletion of

stratospheric ozone they are potent greenhouse gases. These HFCs have relatively

long atmospheric lifetimes and are rapidly accumulating in the atmosphere [155].

HFCs are projected to make a significant contribution to global warming [156, 38].

The Montreal Protocol was amended in Kigali, Rwanda in 2016 to phase out

long-lived HFCs. The goal of the Kigali amendment is to gradually decrease global

HFC use by 80 - 85% by the late 2040s. First HFC reductions will come into effect in
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developed countries in 2019, and by 2024 most of the developing countries will also

start to freeze HFC consumption [3, 61, 153, 38].

HFC-134a is a CFC-12 replacement in domestic, commercial and automotive

air conditioning applications [169, 112]. HFC-134a contributes more than half of

all HFC emissions associated with CFC replacements and has a Global Warming

Potential (GWP) of 1430 (100-yr) [106]. The main atmospheric sink for HFC-134a

is the reaction with tropospheric OH and as a result the lifetime of HFC-134a is 13.4

years [107, 106]. Photolysis in the stratosphere is typically not an important sink for

HFCs as their absorption cross sections are negligible in the range of stratospheric

UV radiation [71]. Since 2000, HFC-134a has been the most abundant HFC in the

atmosphere [52, 38].

The HFC-23 (CHF3) is not directly produced as a CFC replacement, but as a

byproduct of HCFC-22 production, by over-fluorinating CHCl3 (chloroform). Small

amounts of HFC-23 are also used as a raw material for Halon-1301 (CBrF3), as a

low temperature refrigerant, in fire extinguishers and in the semiconductor industry

[111]. The atmospheric lifetime of HFC-23 is 222 years and the GWP is 12,400

(100-yr) [106, 38].

Measuring HFC-23 and HFC-134a abundances and trends is useful for monitoring

the Kigali amendment. The global distributions and trends of HFC-134a and HFC-23

based on ACE-FTS satellite measurements were determined in this study [38].

8.2 METHOD AND DISCUSSION OF HCl CALCULATIONS

The ACE-FTS HCl data is available for altitudes 6.5 km to 67.5 km on a 1

km grid with a vertical resolution about 3 km. In order to stay consistent with a

trend analysis done by Stolarski et al. [145] on HCl with GOZCARDS [41], ACE-

FTS VMRs for 60◦S - 60◦N were interpolated onto a pressure grid spaced at pi =

1000×10−i/6 (hPa). Initially large positive and negative values and VMRs that were

2.5 standard deviations away from the median at each pressure level were removed

from the data set. In order to make a time series for Mar-May 2004 to Sep-Nov 2017

quarterly averages were computed for Dec–Feb (DJF), Mar–May (MAM), Jun–Aug

(JJA) and Sep–Nov (SON) at each pressure level. These time series calculated for

each pressure level were affected by seasonal fluctuations (quarterly) and it is useful

to remove them (de-seasonalize) before performing a statistical analysis. The time

series at each pressure level were de-seasonalized by calculating quarterly averages
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FIG. 45: Quarterly averages were then computed for Dec–Feb (DJF), Mar–May (MAM), Jun–Aug

(JJA), Sep–Nov (SON) at each pressure level to make a time series for MAM 2004 to SON 2017.De-

seasonalized HCl VMR time series from ACE-FTS data for 60◦S - 60◦N and the total effective

tropospheric chlorine lagged by 4 years. The blue lines are linear fits. Figure was taken from

Bernath and Fernando [12].

for all annual data and subtracting them from the corresponding quarter to obtain

a time series of “anomalies”. In order to obtain a VMR time series for HCl, these

anomalies were converted back to a de-seasonalized VMR time series (Equation 63)

by adding the 2004-2017 averages for each pressure level [12].

VMRHCl(t) = a+ bt + cVMRN2O(t) (63)

(a,b and c are constants to be determined)

ACE-FTS HCl times series calculated for pressure levels 0.68, 2.2, 10, 46 hPa are

shown in Figure 45 to represent the mid and upper stratosphere. The approximate
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altitudes for these pressure levels are 51, 42, 31 and 21 km, respectively, and these

altitudes were estimated using the US standard atmosphere [1]. Linear trend lines

are also plotted for each pressure level presented in the Figure 45. Total effective

tropospheric chlorine was also plotted lagged by 4 years since it takes almost 4 years

for tropospheric air to get to the stratosphere [102].

FIG. 46: Linear HCl trends as a function of pressure (approximate altitudes are on the right) for

2004 to 2017 for 60◦S - 60◦N with one standard deviation error bars. Figure was taken from Bernath

and Fernando [12].

ACE-FTS HCl linear trends were calculated for 13 pressure levels from 68 hPa
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to 0.68 Pa (about 19 - 51 km) for 60◦N - 60◦N, using linear regression for the de-

seasonalized time series. The calculated linear trends are shown in the Figure 46

with one standard deviation error bars. The linear regression model (Equation 63)

used to calculate the trends is consists of a constant, a linear term and a term for

the N2O VMRs (as in ref. [145]). N2O term in the regression model is supposed

to account for HCl variability due to dynamics and hence reduce the error of the

trend value, b. The de-seasonalized N2O time series were prepared similarly to the

HCl anomaly time series was corrected for +0.28%/year trend before inclusion in the

regression model [145]. Trend error of b was estimated using the procedure specified

by Weatherhead et al. [159] that includes the first order autocorrelation effect. The

standard error of the trend b is given by the formula σNn
-3/2[(1+φ)/(1-φ)]1/2, in which

σN is the standard deviation of the residuals (difference between the observed and

the modeled HCl VMRs values), φ is the autocorrelation of the residuals and n is

the number of years in the data [159].

The average trend, -4.8±0.2% per decade was calculated by averaging 3 values

(from 1.5 hPa to 0.68 hPa) representing the upper stratosphere and the error was

calculated using error propogation (square root of the sum of the square of the

original errors). Similarly, a trend value was calculated for mid-upper stratosphere

by averaging trends of all the 13 pressure levels and it was -5.0±0.8% per decade.

Percentage trend values were obtained by dividing the linear trends by the mission

average of the original time series [12].

The stratospheric trend values reported by 2014 WMO ozone report for 1997-

2013 is -5.9±1.5% per decade [2] based on combined HALOE and ACE-FTS. Brown

et al. [20] reported a HCl trend value of -7±1% per decade from ACE-FTS and -

6±1% per decade from the SLIMCAT model. At 15 hPa, MLS gives a trend value of

HCl of -5.0±0.4% per decade which agrees with ACE-FTS trend values. Although

GOZCARDS [41] shows similar values compared to ACE-FTS trends, recent trend

VMR values show a decrease [12].

ACE-FTS HCl VMR time series show a change in slope since 2010. As example,

at 0.68 hPa, the linear trend from 2004 to 2010 is -5.9±0.5% per decade and from

2011 to 2017 is -4.1±0.4% per decade, with an overall linear trend of -4.8±0.2% per

decade for 2004-2017. Tropospheric chlorine time series calculated, lagged by 4 years

to match the age of air of the upper stratosphere [102] gives a trend value of -4.0±0.1%
per decade for 2004-2010 (shown in the Figure 45). There is an excellent correlation of
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0.86 and an excellent agreement with the trend values between tropospheric chlorine

and ACE-FTS VMR time series. The change in the slopes of HCl time series at 2010

can be attributed to the rapid decline of species with shorter atmospheric lifetimes

such as methyl chloroform (https://www.esrl.noaa.gov/gmd/odgi/) [12]. The

column density trend values were also looked at by 16 NDACC sites and for 2000-

2009, the average trend over all sites was -8% [72]. Recently a total Cly (mainly HCl)

column trend was calculated by NDACC as -5.0±1.5% per decade that agrees with

ACE-FTS trend [27].

8.3 METHOD AND DISCUSSION OF HFC CALCULATIONS

The ACE-FTS altitude profiles of HFC-134a and HFC-23 VMRs were filtered to

remove outliers. All negative and large positive values were removed from the data

for each altitude and values that were more than 2 standard deviations away from

the mission averages were also discarded. This filtering removed 4% of the HFC-134a

data and 1% of the CHF3 data.

Figures 49 and 50 represent the annual mission average altitude profiles covering

all the latitudes of CHF3 and HFC-134a VMRs from 2004 to 2018 (only January and

February data are available for 2018). Figure 49 shows that CHF3 VMR altitude

profiles increase steadily at 1 - 2 ppt per year, except between 2005 - 2006 and 2016

- 2017. Figure 50 shows that HFC-134a annual altitude profiles increase by 3 - 4

ppt per year, approximately at a steady rate. The HFC-134a annual altitude profiles

(Figure 50) display an unexplained glitch at 9.5 km. It is unphysical for the VMR

to be consistently low at a constant altitude of 9.5 km so there is problem in the

retrieval. Figure 51 represents the ACE-FTS average altitude profiles of HFC-134a

and CHF3 VMRs for 2017. The percentage standard error of the annual altitude

profiles of CHF3 averages are around 30 - 40% and for HFC-134a are around 50 -

60% (similar to Figure 51). There are two years (2007 and 2011) for which anomalous

increases are noted in the HFC-134a annual altitude profiles. This anomalous change

lies within the uncertainties of the annual VMR averages and may not be real.

The Advanced Global Atmospheric Gases Experiment with Gas Chromatogra-

phy with Mass Spectrometry (AGAGE GC-MS) system is used to measure concen-

trations of atmospheric species such as HCFCs and HFCs that are important for

the Montreal Protocol. These gases are analyzed at AGAGE remote sites with a

gas chromotograph-mass spectrometer (GC-MS) to obtain VMRs and are used to

https://www.esrl.noaa.gov/gmd/odgi/
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estimate global monthly VMR averages [135, 119, 120].

FIG. 47: ACE-FTS CHF3 annual time series (60◦S - 60◦N) comparison with AGAGE 12 box model

data from Simmonds et al. [135] and AGAGE global mean baseline GCMS-Medusa data from the

AGAGE website

Figure 47 represents the overall mission annual average time series of CHF3 for

60◦S - 60◦N along with AGAGE 12-box model values obtained from Simmonds et al.

[135] (Simmonds et al. [135] provide data only up to 2016.) The 12-box model

determines annual VMR values for CHF3 assuming that the atmosphere consists of

four zonal regions (90◦S - 30◦S, 30◦S - 0◦S, 0◦N - 30◦N and 30◦N - 90◦N) and at vertical

heights of 500 and 200 hPa. These modelled VMRs were adjusted by comparison with

the atmospheric observations of Simmonds et al. [135]. The Scientific Assessment of

Ozone Depletion: 2018 provides annual mole fractions for 2012, 2015 and 2016 with a

change of the mole fractions per year of CHF3. For CHF3 global mole fraction values

(calculated from AGAGE in situ global measurements) were 24.9 ppt for 2012, 28.1

ppt for 2015 and 28.9 ppt for 2016 and, the annual mole fraction change is reported

as 0.8 ppt yr−1 (2.9% yr−1) for the period 2015 - 2016 [166]. These reported values

are reasonably consistent with the calculated ACE-FTS values of 23.2±0.3 ppt for

2012, 25.4±0.3 ppt for 2015, 26.3±0.5 ppt for 2016 and the ACE trend of 0.9 ppt

(3.2 %) yr−1 for the period 2015 - 2016.

Figure 48 represents overall mission average annual time series of HFC-134a for

agage.mit.edu
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FIG. 48: ACE-FTS HFC-134a annual time series (60◦S - 60◦N) comparison with AGAGE global

mean baseline GCMS-Medusa data from the AGAGE website and NOAA global flask data from

Montzka et al. [103]

60◦S - 60◦N along with the HFC-134a annual time series obtained from the monthly

global mean of baseline HFC-134a AGAGE GCMS-Medusa data available at the

AGAGE website from 2004 - 2016 [90]. Montzka et al. [103] have also published global

mean VMRs for HFC-134a based on NOAA sampling data and they are plotted in

Figure 48.

Since HFC-134a VMRs start to decrease significantly above 15.5 km, HFC-134a

VMRs were considered only up to 15.5 km and the lower limit of the altitude range

was chosen to be 6.5 km. The trend values were based on the unweighted annual

average of all VMR bins between 6.5 and 15.5 km. The linear trend of the ACE-

FTS HFC-134a time series is 4.9±0.1 ppt per year. For AGAGE GCMS HFC-134a

monthly data, annual means were calculated for both VMRs and their errors and then

a weighted linear trend was calculated. The calculated linear trend for the AGAGE

HFC-134a time series is 4.87±0.05 ppt per year. The calculated linear trend for

HFC-134a NOAA global flask data from Montzka et al. [103] is 4.74±0.05 ppt per

year. The Scientific Assessment of Ozone Depletion: 2018 also provides annual mole

fractions of HFC-134a. AGAGE in situ measurements show 6.0 ppt yr−1 (7.2% per

agage.mit.edu
agage.mit.edu
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yr−1), NOAA flask measurements show 6.1 ppt yr−1 (7.4% per yr−1) and UCI, flask

measurements show ppt 7.2 yr−1 (8.5% per yr−1) for 2015 - 2016. The annual mole

fractions of AGAGE in situ measurements report 67.7 ppt in 2012, 83.3 ppt in 2015

and 89.3 ppt in 2016 [166]. Similarly, NOAA flask measurements report 67.5 ppt in

2012, 83.4 ppt in 2015 and 89.6 ppt in 2016 and UCI, flask measurements report 68.9

ppt in 2012, 84.9 ppt in 2015 and 92.1 ppt in 2016 [166]. These reported values are

consistent with the ACE-FTS values in this study and the AGAGE values used to

compare with ACE-FTS data.

ACE-FTS CHF3 data were considered only between the altitudes 6.5 km and

12.5 km for the trend analysis. The linear trend of the ACE-FTS CHF3 time series

is 0.75±0.02 ppt per year. ACE-FTS CHF3 data (Figure 52) show an average 5%

difference compared to AGAGE 12-box model values. (ACE-FTS CHF3 time series

were also calculated for the latitude bins 50◦S - 50◦N and 40◦S - 40◦N and they

show no significant difference from the original 60◦S - 60◦N ACE-FTS times series.)

The reason for this discrepancy is not understood. The linear trend of the AGAGE

12-box model time series is 0.88±0.01 ppt per year. ACE-FTS HFC-134a and CHF3

trend values show excellent agreement with the AGAGE trends. The trends and the

VMRs of HFC-134a NOAA global flask data also show excellent agreement with the

ACE-FTS HFC-134a VMR and trend values (Figure 48). The increasing atmospheric

VMRs of HFC-134a have been used to derive global emissions by Fortems-Cheiney

et al. [39]. These HFC-134a global data show that HFC-134a global emissions are

increasing [39, 103] rapidly.

The ACE altitude ranges (6.5 - 12.5 km for CHF3 and 6.5 - 15.5 km for HFC-134a)

we have selected for comparisons with surface data are in the upper troposphere and

lower extratropical stratosphere. Given the long lifetimes of CHF3 (222 years) and

HFC-134a (13.4 years), the gases should be well-mixed in the troposphere and lower

stratosphere. Therefore, ACE-FTS VMRs and trends in Figure 47 and Figure 48

should be similar to the surface values.

The standard errors on the trends used in this paper are one standard deviation

from a linear least squares analysis. The precision of individual VMR data points

on the 1 km altitude grid for a particular occultation for CHF3 is roughly 20 - 30%

and around 100% for HFC-134a based on statistical error estimates in the retrievals.

Since more than 2000 data points (n) are used for the annual averages in the ACE-

FTS trend analysis, the precision of these average values is smaller (for uncorrelated
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data the precision would be
√
n = 45 times smaller). The errors are therefore due to

geophysical variability and systematic errors in the annual averages are not included

in our analysis. For example, Harrison [49, 50] estimates the errors in the cross

sections to be 3%. The systematic errors in the ACE-FTS retrievals can best be

estimated by comparing with independent measurements as shown in Figures 47 and

48.

Figures 52 and 53 show the mission average latitudinal distributions of HFC-

134a and CHF3. The entire data set was averaged in 10 degree latitude bins for

each altitude. Values more than 2 standard deviations away from each bin average

were excluded. Data in the 80◦N - 90◦N bin of HFC-134a are not available as they

were removed during the initial 2 standard deviation data filtering process. Both

ACE-FTS HFC-134a and CHF3 data are presented for the altitudes from 6.5 to 24.5

km. The standard deviation of the VMRs in each latitude-altitude bin of HFC-134a

are 40 - 60% and of CHF3 are about 20 - 30% for (Figure 54). These error estimates

are therefore a combination of geophysical variability and fitting errors in the least-

squares analysis in the retrievals. Notice the expanded color scale in Figure 52 for

CHF3 and the relatively large errors for HFC-134a. Most of the unusual patterns

(e.g., 70◦N for HFC-134a) lie within the error bars and are likely retrieval artifacts.

FIG. 49: ACE-FTS CHF3 annual altitude profiles

The CHF3 latitudinal distribution shows high VMRs (23 - 25 ppt) in the tropics
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FIG. 50: ACE-FTS HFC-134a annual altitude profiles

in the upper troposphere relative to the poles. In the upper stratosphere (13.5 to 19.5

km) of the polar regions the volume mixing ratios of CHF3 show low values between

18 - 22 ppt, and above 19.5 km the VMR values start to increase back to 23 - 25

ppt. There is also a band of high values from 22.5 km to 24.5 km at the top of the

retrieval range. This unusual pattern may be a retrieval artifact because such VMR

increases would imply a source. While such a source is conceivable from photolysis of

other fluorine-containing molecules, a more likely explanation is a retrieval artifact.

In the troposphere the VMRs of the ACE-FTS HFC-134a range between 65 and

85 ppt. Compared to the CHF3, the HFC-134a global distribution shows the expected

decline with altitude. The peak HFC-134a cross section at 1104.5 cm-1 is about 5

times weaker than the peak HFC-23 cross section at 1156.1 cm-1 resulting in better

precision for CHF3 (Figure 54). Both molecules suffer from severe interference from

ozone. Notice however that accuracy of CHF3 (Figure 47) is worse than HFC-134a

(Figure 48) probably because CHF3 has a broader feature and suffers from more

interference.

8.4 CONCLUSION

The global linear trend of the ACE-FTS HFC-134a time series is 4.9±0.1 ppt per
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FIG. 51: ACE-FTS HFC-134a and CHF3 average altitude profiles for 2017
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FIG. 52: CHF3 latitudinal distribution

FIG. 53: HFC-134a latitudinal distribution
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FIG. 54: Percentage error in HFC-134a and CHF3 altitude-latitude distributions

year and is 4.87±0.05 ppt per year for the AGAGE time series. The global linear

trend of the ACE-FTS CHF3 time series is 0.75±0.02 ppt per year and the AGAGE

12-box model trend is 0.88±0.01 ppt per year. ACE-FTS trend values for HFC-134a

and CHF3 are in excellent agreement with the AGAGE linear trend values. The

atmospheric abundances of HFC-134a and CHF3 are increasing rapidly.

Almost all the trend values from different studies agree with ACE-FTS trends of

HCl and also it shows that the success of Montreal Protocol has been and continues

to be successful in reducing the surface emissions of Cl containing source gases [12].
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