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ABSTRACT

PHOTOPRODUCTION AND RADIATIVE DECAY OF η′ MESON IN
CLAS AT JLAB

Georgie Mbianda Njencheu
Old Dominion University, 2017
Director: Dr. Moskov Amaryan

In this work the η′ meson photoproduction cross sections as well as the distribution of

the di-pion invariant mass, m(π+π−), in the radiative decay mode η′ → π+π−γ have been

measured using the CLAS detector at the Thomas Jefferson National Accelerator Facility

using tagged incident photons in the center-of-mass energy range 1.96 GeV - 2.72 GeV. The

measurements are performed on a liquid hydrogen target in the reaction γp → pη′(η′ →
π+π−γ). The analysis is based on the highest statistics collected in this decay channel in

comparison to other experiments reported so far.

The η′ photoproduction cross sections measured with radiative decay are in a good agreement

with results of previous publication from the same data set in CLAS obtained through η′ →
π+π−η decay mode. Two free parameters, α and β, are extracted from a model-independent

fit to them(π+π−) distribution and their values are found to agree well with recent theoretical

expectations. The results of both parameters confirm the existence of the box anomaly, ρ-ω

mixing and effects of the a2(1320) tensor meson in the radiative decay of η′.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The η′(958) is a pseudoscalar meson consisting of a mixture of three flavors of quarks: up (u)

and anti-up (ū), down (d) and anti-down (d̄), then strange (s) and anti-strange (s̄) quarks. It

should be noted that although η′ does have a strange quark content, it has no net strangeness.

The η′ meson can be produced through various reactions, one of which is photoproduction.

This particle has different decay channels, one of which is radiative decay. Radiative decays

are known to be very sensitive tools to explore decay mechanisms. Especially, when studied

together with two hadrons as decay products, they enable us to adjust the invariant mass of

the two-hadron system via a variation of the photon energy without interference of strong

three-body final state interactions. In this work we will discuss the photoproduction of the

η′ meson on a proton target (γp → pη′) and then its radiative decay (η′ → π+π−γ). This

radiative decay is governed by the chiral anomaly. Chiral anomaly is the non conservation

of the axial vector current under quantization when gauge fields are present. The anomalous

decay of the π0, also a pseudoscalar meson, was first measured in the 1960s [1] and have

been updated in the recent years [2]. Radiative decays are of special interest as they provide

deep insight into different aspects of particle physics.

The electromagnetic processes influenced by axial anomaly [3] are of considerable the-

oretical interest. Among them are the transitions of types P 0(p) → γ∗(k1)γ
∗(k2) and

γ∗(q) → P+(p1)P
0(p2)P

−(p3), where γ∗ denotes a, generally, virtual (q2 6= 0) photon γ,

P± stands for a charged and P 0 for a neutral meson from the pseudoscalar nonet, up to the

strangeness conservation (so that P± = π±, K± and P 0 = π0, η, η′). Processes of the first

type are governed by the better understood triangle anomaly, FIG. 1. While processes of

the second kind are influenced by the box anomaly, since on the microscopic level, the three

pseudoscalar (P ) mesons would couple to the photon through a four-vertex quark loop, as

shown in FIG. 2.
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P

γ(⋆)

γ(⋆)

FIG. 1. A triangle diagram for a pseudoscalar
meson decaying to 2γ’s

π
+(p1)

π
0(p2)

π
−(p3)

γ
∗(q)

FIG. 2. A box diagram for the process γ∗ →
π+π0π−.

In the chiral limit (where mπ = 0) and the soft-point limit (of vanishing 4-momenta of

external particles, pj = 0 = q), which is a reasonably realistic approximation at low energies

at least for the lightest pseudoscalars - the pions, the anomaly analysis predicts [4] that the

theoretical amplitude is exactly

A3π
γ ≡ lim

mπ→0
F 3π
γ (p1 = 0, p2 = 0, p3 = 0) =

eNc

12π2 f 3
π

, (1)

where e is the proton charge, Nc = 3 the number of quark colors, and the pion decay constant

fπ = (90± 5) MeV, whereby A3π
γ = (10.5± 1.5)GeV−3.

On the other hand, the experimental knowledge of the processes that should be influenced

by the “box anomaly” is not at all satisfactory, being quite scant. For the γ∗ → π+π0π−

processes, which should be best approximated by the anomaly prediction (Eqn. 1) since it

involves only the lightest pseudoscalars, there is only one published experimental value for

the amplitude at finite momenta pj, i.e., the form factor F 3π
γ (p1, p2, p3). It was extracted

from the cross-section measured at Serpukhov in the transition π−γ∗ → π0π− through the

Primakoff effect, so that its value F 3π
γ (expt) = 12.9± 0.9± 0.5GeV−3 really corresponds to

the average value of the form factor over the momentum range covered by the experiment.

The π− scattering on electrons at CERN SPS yielded the total cross section [3] consistent

with the Serpukhov value.
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A new high-statistic data on the reaction π−γ∗ → π−π0 transition are expected soon

from the COMPASS experiments at CERN [5].

Thus the analysis of the radiative decay of η′ from the g11 experiment in CLAS at JLAB

may finally confirm the relation (Eqn. 2) between the “box anomaly” processes and the

much better understood and measured “triangle anomaly” processes (FIG. 1), notably the

π0(p) → γ(k1)γ(k2) decay into two real photons, k2
1 = 0 = k2

2. Namely, the pertinent

chiral-limit and soft-point amplitudes A2γ
π and A3π

γ are related [6] as

A2γ
π = ef 2

π A
3π
γ . (2)

In this work, many thousands of η′ events were detected that could be used to expand

the world database on the differential cross sections for the photoproduction process as well

as improve on the findings of chiral anomaly.

η′ has a mean lifetime of (3.2 ± 0.2) × 10−21 s, a full decay width of 0.198 ± 0.009 MeV

and commonly decays into π+π−η (BF= (42.9 ± 0.7)%), ρ0γ/π+π−γ (BF= (29.1 ± 0.5)%)

or π0π0η (BF= (22.2 ± 0.8)%). There are also other decay modes of η′, with considerably

lower branching fractions (BF< 5%) as shown in Table 1.
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Mode Branching ratio

η′ → π+π−η (42.9± 0.7) · 10−2

η′ → ρ0γ (including non-resonant π+π−γ) (29.1± 0.5) · 10−2

η′ → π0π0η (22.3± 0.8) · 10−2

η′ → ωγ (2.62± 0.13) · 10−2

η′ → γγ (2.10± 0.12) · 10−2

η′ → 3π0 (1.61± 0.23) · 10−3

η′ → µ+µ−γ (1.03± 0.26) · 10−4

η′ → π+π−µ+µ− < 2.3 · 10−4

η′ → π+π−π0 (3.7− 1.0 + 1.1) · 10−3

η′ → π0ρ0 < 4 · 10−2

η′ → 2(π+π−) < 2.5 · 10−4

η′ → π+π−2π0 < 2.6 · 10−3

η′ → 2(π+π−) neutrals < 1 · 10−2

η′ → 2(π+π−)π0 < 1.9 · 10−3

η′ → 2(π+π−)2π0 < 1 · 10−2

η′ → 3(π+π−) < 5 · 10−4

η′ → π+π−e+e− (2.5− 1.0 + 1.3) · 10−3

η′ → e+e−γ < 9 · 10−4

η′ → π0γγ < 8 · 10−4

η′ → 4π0 < 5 · 10−4

η′ → e+e− < 2.1 · 10−7

η′ → invisible < 9 · 10−4

TABLE 1. branching ratios of the η′ decays [7]
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1.1 UNIQUE CAPABILITIES OF JLAB

High quality continuous electron beams at energies much greater than the production

threshold required to produce η′ meson are provided by the Continues Electron Beam Accel-

erator Facility (CEBAF). In addition to this high quality electron beam, experimental HALL B

at JLAB has a photon tagging system that converts the kinetic energy of electrons, through

the bremsstrahlung process, into electromagnetic energy. Finally, the particle detector used,

the CEBAF Large Acceptance Spectrometer (CLAS) has nearly a 4π coverage to allow mea-

surement of the reaction γp → pη′.

These unique capabilities provided by JLAB permitted measurements of the η′ differential

cross sections in the radiative decay channel and also provided measurements of box anomaly

of a much higher statistical quality than previously obtained.

1.2 STRUCTURE OF THE THESIS

This work is organized as follows. Chapter 2 reviews the theoretical background. We

shall present an overview of pseudoscalar mesons, the bremsstrahlung process, the photo-

production and radiative decay of the η′ meson.

Chapter 3 explains the electron accelerator, bremsstrahlung photon tagger, cryogenic

liquid hydrogen target, detectors and other instruments used in the acquisition of data.

Chapter 4 elaborates steps taken during the data analysis. We describe techniques used

to identify particles and to select events of interest and also explain how the data was

corrected. Furthermore, we discuss the Monte Carlo Simulation and show how it compares

to the data. Here we outline how the photon flux, a parameter needed for differential cross

section calculation, is obtained.

Chapter 5 states the steps used for extracting the differential cross section as well as the

steps used in fitting the di-pion invariant mass distribution to extract two free parameters

relating to the anomalous decay. We compare results to other experiments and theory and

give our estimates of systematic uncertainties. In this chapter, we give a summary of our

work and the importance of the results obained.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 PSEUDOSCALAR MESONS

Different hadrons in the quark model are classified according to their quark content.

Hadrons must be constructed from a quark and an antiquark or three valence quarks (or

antiquarks) to make these particles be in color-neutral states. Mesons are hadrons con-

structed from two valence quarks, a quark and an anti-quark with color and ‘anti-color’,

respectively. While baryons are hadrons constructed from three quarks with suitable colors.

These valence quarks give rise to the quantum numbers of the hadrons via their flavor and

via their symmetry JPC . Here J = L+ S is the total angular momentum containing orbital

angular momentum L and spin S, while P = (−1)L+1 and C = (−1)L+S stand for parity and

charge conjugation, respectively. Baryons which are constructed from three quarks, or three

antiquarks are fermions (particles with an odd half interger spin). Mesons contain a quark-

antiquark pair and thus are bosons (particles with an interger spin). In this section we shall

only discuss light mesons built by up (u), down (d) or strange (s) quarks, which are subject

to an approximate U(3) flavor symmetry. The resulting nine states can be decomposed into

a singlet and an octet state. In group notation, this can be written as:

3× 3̄ = 8 + 1 (3)

Table 2 illustrates how the different mesons can be classified into types according to their

spin configurations.

The nonet of the pseudoscalar mesons (JP = 0−) and the nonet of the vector mesons

(JP = 1−) are shown in FIG. 3 and FIG. 4. Here strangeness increases towards the upward

direction and the charge increases towards the right. Note, that η and η′ are not the exact

octet and singlet states, respectively. These are denoted by η0 and η8. The physical, measured

particles are mixings between the η0 and η8 states with an η-η′-mixing angle θmix ≈ −20◦

[8]. These states can be constructed from the flavor states according to

(

η

η′

)

=

(

− sin θmix cos θmix

cos θmix sin θmix

)

·
(

η0

η8

)

. (4)
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Type S L P J JP

Pseudoscalar meson 0 0 - 0 0−

Axial vector meson 0 1 + 1 1+

Vector meson 1 0 - 1 1−

Scalar meson 1 1 + 0 0+

Tensor meson 1 1 + 2 2+

. . .

TABLE 2. Types of mesons

FIG. 3. nonet of pseudoscalar mesons FIG. 4. nonet of vector mesons
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The η and η′ have a strange quark content:

η0 :

√

2

3

(

uū+ dd̄+ ss̄
)

, (5)

η8 :
1√
6

(

uū+ dd̄− 2ss̄
)

. (6)

The masses of the mesons are mη = 547.853 ± 0.024MeV and mη′ = (957.78 ± 0.06)MeV.

The decay modes and branching ratios of η′ are given in Table 1.

2.2 THE BREMSSTRAHLUNG PROCESS

The η′ meson photoproduction requires photons with energies high enough to create

η′. Bremsstrahlung is the process by which these high energy photons were created, and

then used for the η′ meson photoproduction. The incident photon energy threshold for η′

photoproduction is 1447 MeV. These photons created through bremsstrahlung then react

with the liquid hydrogen (lH2) or proton target. The reaction studied here is that in which

the photon-proton interaction has as final products a proton and an η′ meson.

In CLAS the bremsstrahlung process is the electromagnetic radiation that arises due to

the deceleration of an electron deflected by the Coulomb field of an atomic nucleus, that

is, eZ → Zeγ. Quantum electrodynamics (QED) predicts that there is a probability of a

photon to be emitted when a charged particle interacts with a Coulomb field [9]. There are

two orders, hardly distinct, in which the bremsstrahlung process may occur: (1) the charged

particle (the electron in this case) interacts with the Coulomb field followed by the emission

of a photon, or (2) the electron emits a photon and subsequently interacts with the Coulomb

field.

The overall energy dependence of the probability that a photon of a given energy will be

emitted from a bremsstrahlung process is inversely proportional to the energy of the emitted

photon:

dNγ

dEγ

∝ 1

Eγ

(7)

Hence, the emission of higher energy photons is statistically unfavored over that of lower

energy photons.
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2.3 THE η′ PHOTOPRODUCTION

A diagramatic representation of the photoproduction of the η′ meson in the reaction

γp → pη′ is shown in FIG. 5. Where k and pi are the incident photon beam and proton

target center-of-mass 4-momenta respectively, and q and pf are the photoproduced η′ meson

and the scattered proton center-of-mass 4-momenta respectively.

FIG. 5. Feymann diagram for photoproduction of the η′ meson. k and pi are the incident
photon and target 4-momenta respectively, q and pf are the produced η′ and the scattered
proton 4-momenta respectively.
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A general form of the photoproduction amplitude can be written in terms of electric and

magnetic multipoles. Chew, Goldberger, Low and Nambu have given a useful formalism for

expressing the complete photoproduction amplitude [10]. We begin by writing the general

expression for the differential cross-section for single meson production

dσ

dΩ
=

q

k
| 〈f | F |i〉 |2, (8)

The matrix elements are Pauli spinors, and the operator F can be written as:

F =i~σ · ~ǫF1 +
1

qk
(~σ · ~q)~σ · (~k× ~ǫ)F2

+
i

qk
(~σ · ~k)(~q · ~ǫ)F3 +

i

q2
(~σ · ~q)(~q · ~ǫ)F4 , (9)

where ~k and ~q are the center-of-mass 3-momenta, ~ǫ is the polarization of the photon and

~σ is the Pauli spin matrix. This form of F is the most general form that can be obtained

requiring:

• Lorentz invariance

• linearity and homogeneity in ~ǫ

• gauge invariance

• parity conservation

• unitarity

• crossing symmetry

The Fi amplitudes are referred to as the Chew, Goldberger, Low and Nambu (CGLN)

amplitudes. They can be expanded in terms of electric and magnetic multipoles (Ml± and

El± respectively), and derivatives of Legendre polynomials (P
′(′)
l (x) and P

′(′)
l±1(x)) with l being

the orbital angular momentum: (x = cos θ), where θ is the center-of-mass angle.
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F1 =
∞
∑

l=0

[lMl+ + El+ ]P
′
l+1(x) + [(l + 1)Ml−1 + El−]P

′
l−1(x) (10)

F2 =
∞
∑

l=1

[(l + 1)Ml+ + lMl−]P
′
l (x) (11)

F3 =
∞
∑

l=1

[El+ −Ml+]P
′′
l+1(x) + [El− +Ml−]P

′′
l−1(x) (12)

F4 =
∞
∑

l=1

[Ml+ − El+ −Ml− − El−]P
′′
l (x) (13)

These CLGN amplitudes may be used to connect underlying electromagnetic multipoles to

differential cross sections. Decomposing electromagnetic radiation into multipoles requires

that a coordinate system be defined. The most convenient coordinate system for scattering

experiments is to have the origin set on the target particle.

2.4 RADIATIVE DECAY OF η′

The radiative decay of pseudoscalar mesons (P ) is governed by box anomaly and proceed

as shown in FIG. 6. In this work, P will be the η′ meson.

P

π+

π−

γ(∗)

FIG. 6. A box diagram for the radiative decay of a pseudoscalar meson.
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2.4.1 SYMMETRIES AND ANOMALIES

Symmetry transformations are those that do not change the physics of a system when

implemented. In classical physics this means that the action and therefore the equation

of motion are unchanged. In a quantum mechanical formulation, a symmetry is given if

the Lagrangian is invariant under the respective transformation. The relationship between

symmetries and conversation laws is expressed via the Noether theorem which says that for

every continuous transformation that leaves the action invariant there exists a time indepen-

dent classical charge Q and a corresponding conserved current ∂µJ
µ = 0. There exist many

different kinds of symmetries, which are all realized by nature. Listed here are two examples:

• exact symmetry: examples for exact symmetries are the electromagnetic gauge U(1)

or the SU(3) color symmetry of quantum chromodynamics (QCD);

• anomalous symmetry: If a classical symmetry is broken in quantum physics it is called

anomalous. It is not a true symmetry. An example is the axial U(1) symmetry, which

is the symmetry of interest here.

The concept of anomalies was introduced by Adler, Bell and Jackiw [6, 11]. Here we give

a short overview of the calculations given in [12]. In the massless Dirac Lagrangian the left-

and right- handed fermions are decoupled and the Lagrangian is therefore invariant under

the transformation of the fields1:

Ψ → Ψ′ = e−iθγ5Ψ (14)

The corresponding axial current

j5µ = Ψ̄γµγ5Ψ (15)

is classically conserved,

∂µj5µ = 0. (16)

If Ψ satisfies the Dirac equation (iγµ∂
µ −m)Ψ = 0, then

∂µj5µ = (∂µΨ̄)γµγ5Ψ− Ψ̄γ5γµ∂
µΨ

= (imΨ̄)γ5Ψ− Ψ̄γ5(−imΨ)

1The (standard) notation of the γ-matrices is according to [13]. The parameter θ is real valued and εµναβ

is the total antisymmetric tensor in 3+1 dimensions
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y x y x y x

FIG. 7. higher order radiative corrections of Ψ(y)Ψ̄(x)

= 2imΨ̄γ5Ψ = 0

when m = 0. In Quantum Field Theory (QFT), where guage fields are present, this does not

hold. The axial vector current is built from two fermion fields. Because the product of two

local operators can induce singularities, their locations x and y are seperated, and the limit

(y − x) → 0 is taken in the end. This is visualized in FIG. 7. The lowest order contribution

(without background gauge fields) results in zero, because the trace has to be taken over

three γ-matrices. The next order contribution instead gives a nonvanishing result. Therefore

the divergence of the current has the following form,

∂µj5µ = − e2

16π2
εµναβFµνFαβ, (17)

which is known as Adler-Bell-Jackiw anomaly [6, 11]. Fµν is the electromagnetic field strength

tensor, Fµν = ∂µAν − ∂νAµ.

2.4.2 WESS-ZUMINO-WITTEN LAGRANGIAN (WZW)

The effective Wess-Zumino-Witten Lagrangian summarizes and determines the effects of

anomalies in current algebra. Following the presentation of [14] and [15], the QCD Lagrangian

is given by:

LQCD = −1

2
Tr[GµνG

µν ] + q̄(iγµD
µ −m)q (18)
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with

Gµν = ∂µGν − ∂νGµ − ig[Gµ, Gν ]

Dµq = (∂µ − igGµ)q (19)

where Gµ = Ga
µλ

a/2 is the vector field of the gluons, Gµν is the field strength tensor. In

order to derive predictions about hadrons, low-energy chiral perturbative theory (χPT) is

applied. the lowest order effective chiral action is given by:

Seff =
f 2
π

4

∫

d4x Tr[(DµU)(DµU †)] (20)

with the chiral unitary matrix

U = exp

(

i
√
2

fπ
P

)

(21)

and fπ = 92.4 MeV is the physical pion decay constant and P are the pseudoscalar fields

[16]. In the absence of external fields, the equation of motion derived from the action in

Eqn. 20 is given by:

∂µ(f 2
πU

†∂µU) = 0 (22)

As shown in [15], the equation of motion which violates extra symmetries not presnt in the

QCD Lagrangian can be constructed by adding a symmetry violating extra term with the

smallest possible number of derivatives. This is given by

∂µ(f
2
πU

†∂µU) + λǫµναβU †(∂µU)U †(∂νU)U †(∂αU)U †(∂βU) = 0 (23)

where λ is a constant and ǫµναβ is a four-dimensional antisymmetric tensor due to violation

of the extra symmetries. The Wess-Zumino five-dimensional action is constructed [15], that

will lead to the equation of motion stated in Eqn. 23, as:

ΓWZ = − iNC

240π2

∫

d5x ǫijklmTr[((∂iU)U †)((∂jU)U †)((∂kU)U †)((∂lU)U †)((∂mU)U †)] (24)

This action is invariant under global charge rotations U → U+iǫ[Q,U ], where ǫ is a constant

and Q the electric charge matrix of quarks. Converting this into a local symmetry U →



15

U + iǫ(x)[Q,U ] also changes the Wess-Zumino action to:

Γ̃(U,Aµ) =Γ(U) − e

48π2
ǫµναβ

∫

d4x AµTr[Q(∂νUU †)(∂αUU †)(∂βUU †)]

+Q(U †∂νU)(U †∂αU)(U †∂βU)]

+
ie2

24π2

∫

d4x ǫµναβ(∂µAν)Aα

× [Q2(∂βU)U † +Q2U †(∂βU) +QUQU †(∂βU
†)] (25)

and the effective Lagrangian becomes [8]:

L =
f 2
π

4

∫

d4x Tr[(DµU)(DµU †)] +NCΓ̃ (26)

After expanding U and intergrating by parts, one obtains

A =
Nce

2

96π2f 2
π

π0εµναβFµνFαβ, (27)

which is the part that describes the the triangle anomaly in the decay π0 → γγ, and a term

B = − 1

12

Nc

π2f 3
π

ǫµναβAµ∂νπ
+∂απ

−∂βπ
0, (28)

that describes the coupling of a photon to three pseudoscalar mesons (γπ+ππ− - vertex) and

hence the decay η′ → π+π−γ.

In summary the Wess-Zumino-Witten Lagrangian already determines the triangle anomaly

sector via A and the box anomaly sector via B.

2.4.3 MATRIX ELEMENT AND RADIATIVE DECAY RATE

Following the presentation of [17], the matrix element describing the decay η′(p) →
π+(p+)π

−(p−)γ(k) can be defined in terms of the pion vector form factor FV (sππ), with

sππ = m2(π+π−) = q2 (qµ = pµ+ + pµ−), the invariant mass squared of π+π−.

FV (sππ), which describes the reaction e+e− → π+π−, is defined by the current matrix element

〈

π+(p+)π
−(p−)

∣

∣Vµ |0〉 = e(p+ − p−)
µFV (sππ), (29)

where e > 0 is the unit electric charge and the current Vµ = −δLint/δAµ, with Aµ being the

photon field.
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Now one can write the matrix element, in the P -wave approximation [18], for the radiative

decay η′ → π+π−γ as

〈

π+(p+)π
−(p−)

∣

∣Vµ |η′(p)〉 = εµναβ pνpα+p
β
−f1(sππ), (30)

where εµναβ is defined such that ε0123 = +1. The corresponding differential decay rate is

given by

dΓ(η′ → π+π−γ)

d
√
sππ

= |f1(sππ)|2Γ1(sππ), (31)

where the function

Γ1(sππ) =
4

3

(

m2
η′ − sππ

16πmη′

√

sππ − 4m2
π

)3

, (32)

has the phase-space terms multiplied by kinematic factors of the squared magnitude of the

simplest guage-invariant matrix element, with mπ and mη′ denoting the mass of the pion

and the η′, respectively.

Final-State Interactions

All elastic pion-pion (ππ) interactions are determined by the Omnès function Ω(sππ) which

for pion pairs with relative angular momentum L = 1 is given by [17]

Ω(sππ) = exp

{

sππ
π

∫ ∞

4m2
π

dx
δ1(sππ)

x(x− sππ − iε)

}

, (33)

where δ1(sππ) denotes the pion-pion P -wave phase shift. The physics of the ρ-meson is

encoded in the phase shift in a model-independent way.

The Omnès function can be used to express FV (sππ) as follows

FV (sππ) = R(sππ)Ω(sππ). (34)

The function R(s) is a real linear polynomial demonstrated to be sufficient for the vector

form factor in the radiative decay of η [19, 20], similar to that of η′.

Relating f1(sππ) to FV (sππ), we can write Eqn. 31 as

dΓ(η′ → π+π−γ)

d
√
sππ

= |AP (sππ)FV (sππ)|2Γ1(sππ), (35)
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where the normalization parameter A has the dimension of mass−3 and the function P (sππ)

is a process-specific part that can be treated perturbatively in the frame of χPT.

A Taylor expansion around sππ = 0 gives

P (sππ) = 1 + α · sππ + β · s2ππ +O(sππ) (36)

The parameters α and β allow insights into the physics underlying the radiative decay

process. α is related to the box anomaly while β of the quadratic term can approximate to

a very good extend the left-hand cut induced by a2(1320) tensor-meson (see FIG. 8) in the

physical decay region [21].

FIG. 8. Tree-level contributions of the a2(1320) resonance to η′ → π+π−γ in the s- (left)
and u-channel (right).

However, the expressions given so far ignore the contribution from the ω-meson, which
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can also decay into the π+π− final state via isospin-violating interactions. The ω-resonance

is very narrow and close in mass to the ρ, the dominant resonant enhancement of the ππ

P -wave amplitude. The inclusion of this mechanism, often named ρ− ω mixing, is essential

for an accurate description of the vector form factor FV (sππ). For this work, experimental

values for FV (sππ) (with this mechanism included) given in [22] was used. The contribution

of ω is shown diagramatically in FIG. 9.
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FIG. 9. Diagrams contributing to the decay η′ → π+π−γ. The pions from both diagrams
undergo final-state interactions that are not shown explicitly. Source [17].
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CHAPTER 3

CEBAF AND THE CLAS DETECTOR AT THOMAS

JEFFERSON NATIONAL ACCELERATOR FACILITY

The g11 experiment that provided data for this analysis was conducted at Thomas Jefferson

National Accelerator Facility (TJNAF, FIG. 10), located in Newport News, Virgina. It con-

sists of four experimental halls, A, B, C, D, and the Continuous Electron Beam Accelerator

Facility,[23] (CEBAF, FIG. 11).

The g11 data was collected with the CEBAF Large Acceptance Spectrometer (CLAS) in

hall B, using CEBAF. The experiment ran between May 17th and July 29th 2004 as part of

the E04-021 experiment Spectroscopy of Excited Baryons with CLAS: Search for Ground and

First Excited States, with the primary purpose of a high-statistic search for the exotic Θ+

pentaquark state [24].

The run conditions for g11 included a tagged photon beam (up to 4.016 GeV) incident on

a 40 cm long (and 4 cm diameter) liquid Hydrogen target. The average current during the

g11 run was I =65 nA, leading to total intergrated luminosity was on the order of 80 pb−1.

The CLAS detector was used to record multi-particle final states over a wide angular range

of approximately 60% of the full 4π solid angle. For the g11 run an important addition to

CLAS was a new Start Counter. It measures the production time of each track individually,

allowing a tagged photon flux of at least 5× 107 photons/second [25]. The experimental run

resulted in roughly 20 billion triggers stored as 21 TB of raw data.

This chapter will describe the CEBAF accelerator, the experimental apparatus and setup

for the g11 experiment, the Hall B photon tagger, the CLAS detector, and its data acquisition

system.
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FIG. 10. Aerial view of Jefferson Laboratory (JLab) facing east. Image Source: [26]

FIG. 11. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Labora-
tory (JLab) showing cross-sections of the linear accelerator (LINAC) halls and the recircula-
tion arcs. Also depicted are the Free Electron Laser (FEL) and the helium refrigerator and
distribution facility. Image Source:[23]
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3.1 CONTINUOUS ELECTRON BEAM ACCELERATOR FACILITY

The main research unit of JLAB is the Continuous Electron Beam Accelerator Facility

(CEBAF). It utilizes superconducting radio-frequency (srf) cavities to accelerate electrons

and provide a continuous wave beam with up to 75% polarization to all experimental halls

simultaneously. During the g11 experiment the maximum energy of the beam was almost 6

GeV. Presently, CEBAF is upgraded to 12 GeV and now has a fourth experimental hall, Hall

D.

In order to attain the running conditions described in Table 3, during the g11 run, CEBAF

used a circularly polarized laser incident on GaAs photocathode to produce a highly polarized

electron beam. Each diode laser, of which there are 3 in total, produce pulses which are timed

such that each of the 3 experimental halls receives electron bunches (about 90 µm in length)

every 2 ns. The electrons are accelerated to 100 keV by an electrostatic accelerator and

then an optical chopper improves the separation of the bunches before they are accelerated

further by two 1/4 srf cavities to 62 MeV [28]. Standing waves established inside the Nb srf

cavity provide an acceleration gradient to the electron bunches passing through. Keeping

the waves in phase with the electron bunches result in a continuous positive electric force on

each bunch as it passed through a cavity, see FIG. 12.
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TABLE 3. Operating specifications of 6-GeV CEBAF at JLab. Table source:[27]

Emin 0.6 GeV
Emax 6.0 GeV
Imax 200 µA

Polarization > 75%
Geometric emittance < 109 m rad
Momentum Spread 10−5

Average currents (Halls A and C) 1-150µA
Average currents (Hall B) 1-100nA

Bunch charge < pC
Repetition rate 499 MHz/hall

Beam size (rms transverse) ∼ 80 µm
Bunch length (rms) 300 fs, 90 µm

Energy spread 2.5 x 105

Beam power < MW
Beam loss <µA

Number of passes 5
Number of accelerating cavities 338
Fundamental mode frequency 1947 MHz

Accelerating cavity effective length 0.5m
Cells/cavity 5
Average Q0 4.0 x 109

Implemented Qext 5.6 x 106

Cavity impedance (r/Q) 980 Ω
Average cavity accelerating gradient 7.5 MV/m

RF power < 3.5 kW/cavity
Amplitude control 1.00 x 10−4 rms

Phase control 0.1◦ rms
Cavity operating temperature 2.08 K

Heat load @ 2 K < 9 W/cavity
Liquefier 2 k cooling power 5kW
Liquefier operating power 5MW
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FIG. 12. Accelerating Cavity Diagram. Electron clusters experience a continuous acceler-
ation due to a standing electromagnetic wave indicated by the positive and negative signs
along the inner wall.

The beam of electrons is finally sent through a recirculating beamline, consisting of two

linear accelerator (LINACs) located along the straightaways of a 7/8 mile racetrack course

and connected by two 180◦ magnetic-dipole bending arcs (see FIG. 11) with a radius of

80 meters. Each LINAC contains 168 srf Nb cavities (see FIG. 13). Each cavity is submerged

in liquid Helium and cooled to -271◦C, temperature at which Nb becomes superconducting.

There are twenty cryogenic modules in total, each containing eight superconducting niobium

cavities.

The beam can pass through the pair of LINACs up to five times to reach the maximum

beam energy of 5.6 GeV, with a maximum current of 180 µA before being delivered to an

experimental hall. Each LINAC has the capacity of accelerating the beam by up to 600 MeV

giving approximately 1.2 GeV per pass. Each hall can control the beam energy to extract

after a given number of passes (no greater than five), however the fifth pass can be sent to

all three halls simultaneously, but it cannot provide a single low energy beam to two halls

at the same time. Because of the importance of a stable and constant beam energy for

nuclear physics experiments, about 2200 quadrupole and dipole magnets are placed in the

accelerator tunnels to steer and focus the beam.
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FIG. 13. A pair of CEBAF’s superconducting niobium cavities. Its elliptical components are
perpendicular to the beamline pipe and are covered by some supporting tools. Image Source:
[23]

3.2 THE BREMSSTRAHLUNG PHOTON TAGGER

The hall B tagging system converts the CEBAF electrom beam into a real photon beam by

means of bremsstrahlung radiation, when the electron beam passes through a radiator. The

tagging system also obtains energy, and timing information about these real photons. The

important parts of the photon tagging system are the radiator and magnetic spectrometer.

3.2.1 THE BREMSSTRAHLUNG RADIATOR

As a bremsstrahlung radiator, the g11 experiment used a gold (Au) foil of 10−4 radiation

length. Gold is typically used as radiator since it has a high atomic number to help reduce

contamination of photons produced by electron-electron scattering. The choice of gold serves

two purposes, first to maximize the probability of the electron-nucleus interaction given that

the bremsstrahlung cross section is proportional to Z2, and second to minimize the number

of interaction centers such that each electron interacts once, producing only one photon.

Electrons of the incident beam interact with the electromagnetic field of nuclei in the thin

radiator and emits real photons. After passing through the radiator, the beam becomes a

mixture of photons and electrons that did not interact with the radiator as well as recoil

electrons.
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3.2.2 TAGGING SPECTROMETER

After the interaction in the radiator, the mixed beam then travels into a magnetic spec-

trometer (the“tagger”) that introduces a dipole magnetic field which sweeps the electrons

out of the electron-photon beam to obtain a clean photon beam. Electrons that did not

interact with the radiator are bent by the field towards the beam dump. Meanwhile those

electrons that interacted and lost a part of their energy are directed toward two hodoscope

planes, each made of an overlapping array of scintillators to detect these energy-degraded

electrons. The photon beam is not affected by the tagger magnet and continues straight to

the liquid hydrogen target.

The first scintillator plane, or E-plane (Figs. 15, and 16), is used to determine the energy

of the recoiling electrons. It consists of 384 narrow paddles (the“E-counters”) that are 20 cm

long, 4 mm thick and from 6 to 18 mm wide with a photomultiplier tube (PMT) on one end.

The overlapping configuration of the paddles, increases the number of logical photon energy

bins to 767. Struck paddles can provide photon energy resolution on the order of 0.1% of

the incident electron beam energy. The trajectory of a charged particle in the magnetic field

is governed by the equation

p = qrB (if ~p ⊥ ~B) (37)

where p is the particle’s momentum, q is the particle’s charge, r is the particle’s radius

of curvature and B is the magnetic field the particle traverses. If one knows the paddle

an electron hits and the radius of curvature, then one can calculate the momentum of the

electron. Hence the energy of the photon can be calculated by

Eγ = E0 − Ee (38)

where E0 is the energy of the incident electron, Ee is the energy of the recoil electron and

Eγ is the energy of the emitted photon.

The second scintillator plane, or T-plane, located 20 cm behind the E-plane is used

for accurate timing measurements of the recoiling electrons. It comprises of two groups

of scintillator paddles (“T-counters”) that are each 2 cm thick with a PMT on each end.

The thickness of these paddles allow for a timing resolution of 110 ps, providing the timing

presicion needed to find the coincidence with detector particles triggerred by a given photon.

The T-counters have different lengths and width to compensate for the 1
Eγ

profile of the

bremsstrahlung cross section thereby keeping the counting rate the same in both groups.
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The first group has 19 counters that covers a photon energy range from 75-95% of the

incident electron beam energy while the second has 42 counters that covers a photon energy

range of 20-75% of the incident electron beam energy. The tagger can therefore tag photons

of energies from 20 to 95% of the incident electron beam energy.
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FIG. 14. A schematic of the hall B photon tagging system. Important components include
the radiator, the hodoscope, and the collimator. Image source: [29].

FIG. 15. Scale drawing of the photon tagger system. The rectangular area around the E-
and T -counter planes outlines the expanded view shown in FIG. 16.
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FIG. 16. Scale drawing of the E-counters (blue) and the T -counters (green) showing examples
of recoiled electrons (red lines) entering from the upper left.
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The signals from the scintillator paddles were read out by the PMTs located at their ends.

The signals from each E-counter PMT are passed through a discriminator and then forwarded

to a multi-hit time-to-digital converter (TDC) to record the E-counter timing information.

The PMT signal from each T-counter are sent to a constant fraction discriminator (CFD). The

output signals form the CFD are then sent to the Master OR (MOR) and an array of FASTBUS

TDCs. Output from the TDC is stored in raw data bank to preserve precise and accurate

information for each T-plane hit as well as the total number of hits recorded in the targer.

The MOR provides the signal that the photon has been tagged for the CLAS Level 1 trigger.

The timing information are used during data analysis to get the hit patterns and to find

the timing coincidence between the E- and T-counters. The timing resolution of the Hall B

taggging system is good enough to identify which RF beam bucket each photon is associated

with. The most accurate timing information available in the entire g11 experiment was

the RF signal obtained from the accelerator. The time at which all the final state particles

produced in the interaction were at the same piont in space (referred to as the event vertex

time), was calculated by temporally propagating the RF time from the radiator to piont in

space where interaction occured. A schematic of the Hall B photon tagger logic setup is

shown in FIG. 17.

3.2.3 COLLIMATORS

The photon beam is further defined by passing through two collimators and sweeping

magnets before it reaches the CLAS target. The collimators trim the beam halos while the

sweeping magnets placed between them remove the electrons created during the secondary

interactions of photons with the first collimator.

More detailed information on the hall B tagging system and DAQ of the tagger system

can be found in [30].
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FIG. 17. Schematic diagram of the Hall B photon tagger logic system. Image source: [29].
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3.3 HALL-B BEAMLINE DEVICES

There were several beamline devices used in Hall B before and after the CLAS detector

(FIG. 18) during the g11 run to scan important details of the electron beam before being

converted into a photon beam and the details of the photon beam prior and after hitting

the liquid Hydrogen target. These included three nA beam position monitors (BPMs), with a

resulotion better than 100µm, to monitor the position and current of the beam. The harp,

located upstream from the center of CLAS was installed to measure the beam profile. The

transverse width of the beam profile was typically less than 200µm during the entire run

period.

As noticed in the previous paragraph, two types of devices measured the electron beam

position. Two beam position monitors (BPMs) placed before the tagger represent the first type

of device. The position monitors use three radiofrequency cavities to measure the intensity

of the electron beam and its transverse location. This is a non-invasive process and the

information obtained is used as feedback for the steering mechanism. The Harp Beam Profile

Monitor is the second type of device which also measures the electron beam dispersion. The

harp devices consist of fine tungsten and iron wires that can be passed through the beam

at specific orientations and collect scattered electrons with a photomultiplier tube. This

procedure measures the horizontal (x) and vertical (y) profile of the electron beam and is

performed after any downtime or change in the beam. The beam position is adjusted such

that more than 99% of the electron beam goes through the radiator. This procedure was

conducted only when the drift-chambers and DAQ were turned off, because of its invasive

nature.

Downstream devices, such as the Total Absorption Shower Counter (TASC) located at

the end of the beamline, the Pair Spectrometer (PS) and the Pair Counter (PC), which were

both located between the tagger and the target, measured the photon flux (see FIG. 19).

The TASC consisted of four lead glass blocks of ∼ 17 radiation lengths, each coupled to a

photo-multiplier tube (PMT). The TASC had close to 100% photon detection efficiency only

if the beam current was less than 100 pA [30, 31]. The Tagging Ratio used to calibrate

the tagger and measure the g11 flux was obtained from the ratio of electrons detected in

the photon tagger (see Sec. 3.2) to that of photons detected in the TASC. The tagging ratio

indicates which fraction of the tagged photons actually hit the CLAS target.
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FIG. 18. Beamline and components of CLAS. Image Source [26]
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FIG. 19. Beamline components in g11 after CLAS
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3.4 CEBAF LARGE ACCEPTANCE SPECTROMETER (CLAS)

The CEBAF Large Acceptance Spectrometer, CLAS, shown in FIG. 20, is a large acceptance

(almost 4π coverage) detector installed in hall B, at JLAB. The CLAS detector is comprised

of various detector subsystems. In the g11 experiment, this detector was used to measure

momenta and angles of outgoing charged particles after the photon beam interaction with

the liquid hydrogen target. The detector subsystems are layed out in an onion-like pattern

(surrounding the target) and are combined around a toriodal magnet consisting of six su-

perconducting coils that split CLAS into six sectors. The direction of the field of the toroidal

magnet is azimuthal making charged particles conserve their azimuthal angle along their

trajectory, except near the coils. The geometry of the toroidal magnetic field guided the

particles that allowed for a simplified reconstruction algorithm to determine the particles’

momenta, see Eqn. 37. Each sector consists of a scintillator start counter (SC) Sec. 3.4.2,

three layers of drift chambers (DC) Sec. 3.4.4, a layer of scintillator “time-of-flight” counters

(TOF) Sec. 3.4.5, a gas Cherenkov counter (CC) Sec. 3.4.6 and an electromagnetic calorimeter

(EC) Sec. 3.4.7. The following subsections describe individual subsystems in more detail.
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FIG. 20. 3D view of the CLAS detector [32] with subsystems identified. The detector is
approximately 8 meters in diameter.

FIG. 21. The coils of the CLAS toroidal magnet prior to installation of the rest of the detector.
Image Source [27]
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3.4.1 CRYOGENIC HYDROGEN TARGET

The geometry of the cryotarget cell used by g11 was a cylindrical 0.127 µm thick Kapton

chamber with dimensions of 40 cm in length and 2 cm in radius shown in FIG. 23. The

target cell design shown in FIGs 22 and 23 had been used in several experiments and can

carry different materials, such as helium, deuterium and hydrogen. The material used for

the g11 experiment was liquid hydrogen (ℓH2). The temperature and pressure inside the

cell are continuously monitored on an hourly basis and used to determine the density and

thickness of the liquid hydrogen. The target density averaged over all g11 runs is 0.07177

g/cm3, the target density is an important parameter needed for cross section measurements.

The target was positioned at the center of CLAS.

FIG. 22. Blueprint schematic of the conical Kapton target cell used for g11.

FIG. 23. A diagram of g11 cryotarget with L=40cm and R=2cm.
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Item Value

Length 40.0 cm

Radius 2.00 cm

Temperature 19.3 K

Pressure 1122 mBar

Density 0.07177 g/cm3

TABLE 4. Specifications of the cryogenic hydrogen target

3.4.2 START COUNTER

The start counter, Figs. 24 and 25, was specifically designed to achieve full acceptance

coverage for the 40 cm long cryogenic liquid hydrogen target. By detecting outgoing particles,

the start counter measured the interaction time of incident photons in the target. The

counter is a PMT-instrumented scintillator detector with a hexagonal shape that surrounded

the target. It is segmented into six sectors corresponding to those of CLAS. Each side consists

of four 2.2 mm thick independently-instrumented scintillator strips for a total of 24 channels.

Each strip is connected to a light guide which is subsequently linked to a PMT. The timing

resolution achieved by the start counter is ∼400 ps and had a good efficiency. Information

obtained from the start counter was used in the g11 Level 1 trigger. More information on

the CLAS start counter can be found in [33].

FIG. 24. Schematic view of CLAS start counter (ST) with the 40 cm long target cell (purple)
at the center.
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FIG. 25. Components of the ST and its angular coverage.

3.4.3 SUPERCONDUCTING TOROIDAL MAGNET

The most essential part of CLAS is the superconducting toroidal magnet. It consists of

six kidney-shaped superconducting coils located between Region-1 and Region-3 of the DC

and separated in the azimuthal direction by 60◦ around the beam line thereby seperating

the whole detector into six independent sectors, see FIG. 26. FIG. 27 shows a map of the

magnetic field strength. For the g11 experiment, the current in the magnet was limited

to 1920 A, which was about half the maximum the magnet can support, to enhance the

acceptance of negatively charged particles. Running at higher currents provides better mo-

mentum resolution but decreases the detector’s acceptance for negatively charged particles.

In its default configuaration, the field was such that positively charged particles are bent

away from the beam pipe, while negatively charged particles bent toward the beam pipe.

Knowing the strength and direction of the magnetic field and the trajectory of a particle

using the DC, the particle momentum can be determined by use of Eqn. 37.
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FIG. 26. Placement of the CLAS Superconducting Toroidal Magnet in relation to Region-1
and Region-3 (left). The contours of constant absolute magnetic field of the CLAS toroid in
the midplane betweeen two of the coils(right).

FIG. 27. Schematic cross-sectional view of the CLAS detector, perpendicular to the beam
line (left). The azimuthal field vectors corresponding to the view in the left figure. The field
is stronger between the coils(right). Image source: [27].
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3.4.4 DRIFT CHAMBERS

The momentum of charged particles were measured by using the CLAS drift chambers

DC (FIGs 20, 27) to track the particles as they traveled through the field generated by the

superconducting toroidal magnet. They could track charged particles of energy higher than

200 MeV/c with polar angle resolution of 2-4 mrad and momentum resolution of 0.5 - 1%.

In the g11 experiment, the coverage of the DC was 8◦ < θ < 142◦, since the target was at the

center of CLAS.

The drift chambers are arranged in three regions within each of the six sectors of the

CLAS detector. The innermost region, Region 1 is closest to the target and is occupying a

space where the magnetic field is weak since it is located between the torus coils and the

beam line, see FIG. 26. The strongest magnetic field is experienced in Region 2 as it was

mounted directly to the magnet’s cryostats. Region 3, the outermost region is positioned

outside of the magnet and is in an almost field-free zone, and measures the final trajectory

of charged particles before the time-of-flight counters, Cerenkov counters and the electro-

magnetic calorimeters.

Each region of the DC spans the same polar angular range and consists of two superlayers,

the axial and stereo layers of wires. Each superlayer contains six layers of hexagonal gold-

plated aluminum alloy field wire cells (vertices of hexagon) of 140 µm diameter surrounding

20 µm gold-plated tungsten sense wires (center of hexagon). The first superlayer, the axial

layer, measures the scattering angles and momenta of particles and its wires are strung

parallel to the direction of the magnetic field. The second superlayer, the stereo layer, has

wires tilted at a 6◦ angle with respect to the axial wires. Each DC system is filled with a 90%

argon and 10% carbon-dioxide gas mixture. This mixture supports a high drift velocity of

0.04 m/µsec and rapid collection time which enhances momentum resolution. Intrinsically,

the resolution provided is about 100µm. The sense wires are maintained at positive potential,

while the field wires are maintained at a negative potential 50% lower than the positive value.

As a charged particle passes through a cell and ionizes the gas electrons along its path, these

electrons start to accelerate towards the sense wire due to the difference in potential.

Electrical signals from the sense wires go through preamplifiers, then to amplifier dis-

criminator boards (ADBs), and finally to TDCs before being recorded in the data stream.

More information on the CLAS DC system can be obtained from [34] and [35].
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FIG. 28. Schematic of a section of drift chambers showing two superlayers. The wires are
arranged in hexagonal pattern, the sense wires at the center and field wires at each corner.
The arrow shows a charged particle’s track with shadowed hexagons representing the hit
cells.
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3.4.5 TIME-OF-FLIGHT COUNTERS

The CLAS time-of-flight TOF subsystem is used to provide precise timing information of

charged particles that traverse the CLAS detector to help determine the particle masses.

The mass of a particle can be determined explicitly if we know its trajectory and timing

measurement:

m = p
√

(1− β2)/β (39)

where

β = lsc/(tc · c) (40)

• lsc is length of trajectory of particle to TOF

• tc is the difference between the event radio-frequency (RF) corrected start and the time

measured by the TOF

• c is the speed of light

In addition to particle identification, the TOF subsystem was also used in the level 1

trigger (see 3.5). Covering the outside shadow area of the torus coils, from 8◦ to 142◦,

in each sector of CLAS are segmented walls located approximately 4 m from CLAS center.

The TOF subsystem is made of Bicron BC-408 organic plastic scintillation material. Each

scintillator wall has four panels and a total of 57 scintillator paddles of different lengths and

widths, see FIG. 29. The length of the paddles varies from 30 to 450 cm, the width is 15 or

22 cm, and the thickness is 5.08 cm. Photo-multiplier tubes (PMTs) are located at both ends

of each scintillator paddle to read the signal. The timing resolution depends on the length

of the bar and is within the range 150–200 ps. This level of resolution allows to distinguish

between pions and protons up to a momentum of 2.5 GeV/c. The PMT signals are read out

by ADCs and TDCs which are unevenly distributed at different angular regions the TOF system.

Detailed information on the TOF system can be obtained from [36].
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FIG. 29. Time-of-flight (TOF) paddles of one sector of CLAS. The four panels of scintillator
paddles consist of 57 units of different length and width. PMT’s are outlined in red while a
scintillator paddle is outlined in yellow. Image Source: [37]
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3.4.6 CHERENKOV COUNTERS

In CLAS, the gas Cherenkov counter (CC) is used to differentiate between electrons and

negative pions for momenta below 2.5 GeV after having passsed through the drift chambers.

The CC subsystem occupies the space between Region 3 of the DC and the TOF subsystem in

the forward region. They are divided into 18 segments of θ (shown in FIG. 31a) covering

polar angles 8◦ to 45◦ in each of the six CLAS sectors for g11, where tracks originated from

the center.

When a charged particle traverses a medium with a velocity greater than the speed of

light for that medium (v > c/n, where n is the refractive index), the dipoles of the molecules

arrange themselves such that they are asymmetric along the particles path thereby creating

a dipole field, see FIG. 30. The generated dipole field radiates the energy contained in this

disturbance producing a coherent shockwave called Cherenkov radiation.

FIG. 30. Illustration of Cherenkov Radiation. Negative charged particle traveling through
a medium with v < c/n showing dipoles symmetrically arranged around particles path
(left). Negative charged particle traveling through a medium with v > c/n showing dipoles
asymmetrically arranged around particles path given rise to dipole field (right).

The gas used in the CC for g11 is perfluorobutane (C4F10), chosen for its high index of

refraction of 1.00153 producing a high yield of photons. The threshold energy for charged

pion to produce Cherenkov radiation in C4F10 is 2.7 GeV, while the threshold for electrons

is 9.2 MeV. The optical element of CC subsystem constitutes an assembly of an elliptical and

a hyperbolic mirror providing primary light focusing into a cone, a cylindrical mirror used

to compensate for defects in the focusing, and a PMT used to count the number of photons

in the light cone. To prevent the degradation of energy resolution, light-collecting cones and
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the PMT’s are placed in the areas obscured by the torus coils. More information on the CLAS

Cherenkov detector can be found in [38]

(a)

(b)

FIG. 31. Schematic of one CC showing the 18 symmetrical, mirrored segments of the CLAS
CC (a). Diagram of one segment of the Cherenkov counters with a typical path of an electron
entering from the bottom (b).

3.4.7 ELECTROMAGNETIC CALORIMETERS

The CLAS Electromagnetic Calorimeter (EC) was used to distinguish between electrons

and pions as well as to detect neutral particles. Due to EC detection efficiencies, separation

between photons and neutrons for momenta less than 2.5 GeV is done using time-of-flight

measurements. Meanwhile discrimination between electrons and pions is optimal in the EC

at momenta above 2.5 GeV where the pion rejection reaches its threshold in CC. The CLAS

electromagnetic calorimeter (EC) [39], shown in FIG. 20 was designed with the following

criteria;
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• e/γ energy resolution σ/E ≤ 0.13/
√

E(GeV )

• Position resolution δr ≈ 2cm at 1GeV

• π/e rejection greater than 99% at E ≥1 GeV

• Fast (< 100 ns) total energy sum for the event trigger

• Mass resolution for 2-photon decays δm/m ≤ 0.15

• Neutron detection efficiency > 50% for E> 0.5 GeV

• Time-of-flight resolution ≈ 1 ns

The EC is located in the forward region and spans the same angles 8◦ < θ < 45◦ as was

the CC. The detector consists of alternating layers of scintillators sandwiched between lead

(Pb) sheets. A configuration of lead to scintillator ratio of 0.24 was chosen so that roughly

1/3 of the showering particle’s total energy is deposited in the scintillator. There are six

equilateral triangular EC modules, one per sector, each a sandwich of 39 layers of 10 mm

thick BC-412 scintillator followed by 2.2 mm thick lead sheet. Each scintillator is made of

36 strips parallel to one of the sides of triangle so that the orientation of the strips is rotated

by 120◦ in each successive layer. This leads to three views, labeled u, v and w with each

contaning 13 layers which are further subdivided into inner and outer stacks. The CLAS EC

is subdivided into two stacks, inner and outer. The inner stack comprises of 8 logical layers

while the outer stack comprises 5 logical layers. Such a configuration gives information on

a hit location; the time and the energy are then calculated by taking account of the path

length from the hit to the readout.

A final-state photon is identified in the EC if no charged tracks was associated with an

energy deposition and also the velocity, β, of the particle is higher than 0.9c. Particles with

β < 0.9c are neutron candidates. The difference in energy deposit between the inner and

outer layers provides separation of electrons from pions in the reconstructed data for energies

less than 2.8 GeV. For energies greater than 2.8 GeV, identification of pions and electrons

are obtained by comparing the energy deposited in the EC with the momentum determined

from the DC.
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(a)

(b)

FIG. 32. Schematic view of one sector of the forward electromagnetic calorimeter (EC)
showing the three planes (u, v, w) of scintillator-lead pairs (a). Side view of one plane of
the forward EC showing 13 logical layers, PMT’s and light guides (b). Image Source: [27].
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3.5 TRIGGERING AND DATA ACQUISITION

Each subsystem of CLAS is setup with its own electronics package to actively run and

monitor signals created in the component. Signals from the various subsystems are managed

by the Trigger and Data Acquisition (DAQ) system. Naturally, the presence of a signal did

not necessarily mean that a physics event had been recorded for analysis. Signals could

be produced from unwanted sources such as cosmic radiation passing through a detector

component or it could just be electronic noise. It was the task of the trigger to determine

which sets of signals pertain to the physics of interest and to turn on and off data recording.

Once there was a trigger, the DAQ collected the signals and wrote them to a magnetic tape

to be analyzed.

In g11 events were selected based on information from the tagger, the start counter and

the time-of-flight scintillators. Data events were recorded when both the tagger Master OR

(MOR) and the CLAS Level 1 hardware trigger fell within a timing window of 15 ns. The entire

tagger focal plane was kept on and recorded data; however, only the first 40 (highest energy)

of the total 61 T-counters were enabled in the trigger. To satisfy the Level 1 trigger, a signal

was required from any of the 4 start counter paddles and any of the 48 TOF paddles from two

seperate sectors of CLAS within a coincidence window of 150 ns [40]. The requirement lead

to data collection of events that all had at least two charged particles detected in different

sectors. The tagger, the start counter, and the TOF paddles all have multiple detection

elements. Hence, the logic required a pre-trigger OR of the discriminated signal in each

system to have generated one signal from each control system that could be used in the

trigger module coincidence. Before the pre-trigger, signals in each detector system were split

to go to the analog-to-digital (ADC) and the time-to-digital-converter (TDC) boards. Following

a trigger the ADC and TDC from all detector systems were digitized and then read into the

data stream and the data banks were assembled into an event and recorded. The g11 total

trigger rate was about 4.1 kHz and the DAQ was capable of running at 5KHz.
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CHAPTER 4

DATA ANALYSIS

The data used in this analysis were collected during the g11 run period from May 17 to July

29, 2004, using the CEBAF Large Acceptance Spectrometer (CLAS). The event trigger required

at least two charged tracks detected in different sectors of the CLAS detector. A total of 21 TB

of data corresponding to 20 billion triggers were written on a tape. This is one of the largest

photoproduction datasets recorded in CLAS. Recorded information from all the detector

subsystems were then converted from digital format into a format suitable for physics analysis

by the use of reconstruction scripts. This step is known as data cooking. During the data

cooking step, the different detector subsystems (photon tagger, start counter, drift chambers,

time-of-flight counters, etc) were calibrated. Calibration consisted of aligning the detector

subsystems timing with the beam radio frequency (RF). Calibration also improved the tracks

of detected particles, energy and timing reconstructions. Several iterations were necessary in

calibrating the detectors. The enhancement of one subsystem’s calibration helped to enhance

the calibration of other components. The cooking and calibration of the g11 data set was

executed by the CLAS Collaboration [41].

The principal objective of this analysis is to study the radiative decay of η′ meson: η′ →
π+π−γ. The η′ is initially photoproduced, but because it is unstable, it will quickly decay into

the lighter π-mesons and/or γ(s). Since the trigger required at least two charged tracks, this

discards situations in which η′ decays into entirely neutral particles. The photoproduction

reaction of interest in this analysis is:

γp → pη′ (41)

followed by

η′ → π+π−γ (42)
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This decay channel has a branching fraction of approximately 29% of the total η′ decay

width. The η′ photoproduction events are reconstructed by exclusively detecting all final

state particles, including the p, π+, π−, and γ. This chapter describes in detail all steps

involved to select events for this analysis as well as the cuts and corrections applied to study

the photoproduction and radiative decay of the η′ meson.

4.1 GOOD RUNS

Data for the g11 run period were collected using the data acquisition (DAQ) system and

was grouped into runs, each of which consisted of ≈ 10M events. CLAS runs 43490 to 44133

were included in the g11 run period. Runs 43490 to 44107 were taken with an electron

beam energy of 4.019 GeV, while for a small amount of runs from 44108 to 44133 the energy

was 5.021 GeV. This analysis is based on the 4.019 GeV data. The statistical impact of

the exclusion of 5.021 GeV data is negligible. The set of runs from 43490 to 43525 were

commissioning runs. These runs were taken for diagnostic reasons and were not meant to

be used for physics analysis. Hence, they were also excluded from the analysis.

Several other runs have also been excluded from our analysis. Runs 43675, 43676, 43777,

43778 and 44013 were taken with different trigger configurations than the standard produc-

tion trigger. There were documented drift chambers problems that occurred during runs

43981 and 43982. Also, a data acquisition problem occurred during runs 43989 to 43991.

Some other runs had problems with the DC power supply to the TOF counters in sector 2

(44000-44002, 44007, 44008, 44010-44012) and sector 3 (runs 43586-43596). Run 43558 was

found to have an unusually low normalized ω yield. Finally, an unknown computer error

occurred while skimming run 43871. These twelve runs have all been excluded from this

analysis. Table 5 summarizes the cooked runs which were excluded.
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Run Description

43490-43525 Commissioning Runs

43558 Abnormal Normalized ω Yield

43586-43596 TOF Problem in Sector 3

43675-43676, 43777-43778, 44013 Different Trigger Configuration

43871 Data Processing Error

43981-43982 Logbook Lists DC Problems

43989-43991 Logbook Lists DAQ Problems

44000-44002, 44007-44008, 44010-44012 TOF Problem in Sector 2

44108-44133 5.021 GeV Beam Energy

TABLE 5. g11a cooked runs excluded from analysis and justification.
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4.2 EVENT SELECTION

The trigger and detector timing information was used to select events. Events were

selected with three charged tracks identified as a p, π+ and π− and one γ in the final state.

These particles were selected according to particle id assigned by the CLAS Simple Event

Builder (SEB) package. It uses the start counter (SC) to get an interaction vertex time

for each charged particle and links it up with photons tagged by electrons in the tagger,

where there are up to 10 photons for a given event. The photon with the closest time to a

given track is considered to be the photon that caused the event. Specifically, the electron

beam bucket (RF time) that produced the event is used to obtain the interaction time. A

coincidence of the tagger T-counter with the SC is used to correlate the photon production

time with the interaction time. The photon interaction time (vertex time) for the event

is then obtained from the RF time for the photon. The velocity βmeas for each particle is

calculated using the time of flight from the event vertex to the scintillator counter (the TOF

detector subsystem). Each track in the event needs to have a hit registered in the SC for its

mass to be calculated. Mass can be calculated from β and a particle’s measured momentum

as:

mcal =

√

p2(1− β2
meas)

β2
measc

2
(43)

where

βmeas =
L

ctmeas

(44)

• L is the path length from the target to the scintillator,

• c is the speed of light,

• tmeas = tsc − tγ is the time difference between the time at which the particle hits the

TOF scintillator wall (tsc) and the time at which the photon was at the interaction

vertex.

For an assumed mass, the time of flight is calculated as:

tcal =
L

c

√

1 + (
m

p
)2 (45)
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where m is the particle’s assumed mass.

Such that

βcal =
L

ctcal
(46)

It then becomes possible to reject events that do not belong to the correct RF beam bucket

(i.e. suppress accidental coincidences from different beam bunches) by implementing a ±2 ns

cut on

△ t = tmeas − tcal (47)

To identify a particle type, the SEB package computes the velocity βmeas of the detected

particle and compares it with the expected velocity βcal corresponding to the measured

momentum and the masses of different possible types of particles. The type of particle is

then chosen based on the minimum difference between βmeas and βcal.

4.3 ENERGY AND MOMENTUM CORRECTIONS

The quality of data used for this analysis was improved by doing energy and momentum

corrections so as to be certain the energies and momenta of tracks were as accurate as

possible. There were three corrections implemented which consisted of the tagger energy

correction, charged particle energy loss correction [42] and momentum correction [43], in

that order. The major concern when the corrections were carrried out was whether the

charged particles in the events used were actually p, π+ and π−. In the sections that follow,

the procedure used for each of these corrections will be discussed.

4.3.1 TAGGER ENERGY CORRECTION

The frames holding the photon tagger’s focal plane sagged under the influence of gravity,

thereby causing misalignments of some components from their nominal positions. These

alignment issues of the tagger’s E-counters were first discovered in 2003 ([44],[45],[46]). The

sagging leads to inaccuracy in the reconstructed energy of the photon from the raw tagger

information. The photon energy correction was implemented by using the channel γp →
π+π−X [47]. The relative tagger energy correction as a function of E-counter are shown in

FIG. 33, where the three curved segments correspond to the sagging of the aluminium frame
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holding the tagger focal plane between its support points. The several points inconsistent

with the curve correspond to cable swaps.

FIG. 33. Relative Tagger energy correction (∆Eγ/Ebeam) as a function of tagger channel
number. Structure corresponds to the physical distortion of the tagger detector plane and
shifted points correspond to the cable swaps. Image source [47].

4.3.2 ENERGY LOSS CORRECTION

Tracking generally begins after a particle had already traversed through the target and

start counter (ST). Therefore, the measured momentum would be decreased by the “energy-

loss” the particle had undergone before entering the Region 1 DC. This “energy-loss” is

due to charged particles losing their energy through atomic excitation and ionization while

traveling through materials in the CLAS detector. The effect of “energy-loss”, in CLAS, is

only indicative to all charged particles. The momenta of the p, π+ and π− were corrected to
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account for energy lost in the target material (lH2), kapton target walls, the beam pipe, the

start counter and the air between the start counter and the Region 1 DC. The corrections

were applied by the eloss software package written by Eugene Pasyuk for the CLAS detector

[42]. The “energy loss” was estimated using momenta and masses of charged particles.

4.3.3 MOMENTUM CORRECTION

Inaccuracies in the magnetic field map of the toroidal magnet as well as differences in the

survey information from faulty drift chambers can lead to discrepancies in the reconstructed

momenta of charged particles. The g11 momentum corrections obtained by V. Kubarovsky

[43] have been implemented in this analysis. The corrections were determined based on the

missing mass technique. The corrections as functions of angle were obtained for p, π+ and

π− after applying energy loss and tagger energy corrections to the data.

The reactions γp → π+π−p and γp → K+K−p were used to derive the proton momentum

corrections, while only the inclusive reaction γp → π+π−p was used to obtain the momentum

corrections for π+ and π−. The corrections (R = Pcorrected/Pmeasured − 1) are plotted for the

positive and negative particles in FIG. 34 and FIG. 35, respectively. A polynomial fit to

the data in these figures were used to calculate the momentum corrections. The maximum

momentum correction factors as a function of φ angle are on the order of 1%.
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FIG. 34. Momentum correction factor R = Pcorrected/Pmeasured − 1 as a function of φ angle
for positive particles estimated from the missing mass distributions in γp → π+π−p reaction
for: (a) π+, (b) protons. Image source: [48].
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FIG. 35. Momentum correction factor R = Pcorrected/Pmeasured − 1 as a function of φ an-
gle for π− estimated from the missing mass distributions in γp → π+π−p reaction. Image
source: [48].
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4.4 DETECTOR PERFORMANCE CUTS

It is important to implement cuts to data that are related to the CLAS detector perfor-

mance. When some components or regions of the detector have rapidly changing efficiencies

that are not well understood in the Monte Carlo simulation, corresponding events were

removed from the analysis. Two of such cuts were performed in this analysis.

4.4.1 FIDUCIAL CUTS

An acceptance study comparing the agreement between data and Monte Carlo (see [47])

was used to remove regions of the detector that weren’t well modeled and needed to be

removed from the analysis. In particular, the magnetic field changes rapidly near the torus

coils thereby making these zones hard to model. Hence, any particle whose path is close to a

torus coil is removed from the analysis. This cut is most pronounced in the forward region,

where the coils occupy a larger fraction of the solid angle. Regions of the dectector where

the efficiency is less than 40% are cut out. FIG. 36 shows the outcome of these cuts.
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FIG. 36. θ(radians) vs φ(radians):(a) All tracks in run 43582. (b) Tracks in 43582 which
pass our fiducial volume cuts. The effects of the fiducial cuts are most dramatic at the sector
boundaries and in the forward direction where the torus coils occupy a larger fraction of the
solid angle. Image source [47].
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4.4.2 TOF PADDLE KNOCK OUTS

Another necessary cut required removing dead scintillator paddles. The paddles were

identified by comparing occupancy plots of both the data and Monte Carlo. Table 6 lists

problematic paddles in each sector that were neglected.

Sector Paddle number

1 18,26,27,33

2 none

3 11,24,25

4 26

5 20,23

6 25,30,34

TABLE 6. Time-of-flight paddles excluded from our analysis.

4.5 PARTICLE IDENTIFICATION

The decay of η′ meson to π+π−γ stemming from the photoproduction process γp →
pη′ → pπ+π−γ requires the identification of final state particles p, π+, π− and γ. While

the charged particles where easily identified, the separation of a single photon from π0 was

necessary. Several cuts were implemented to reduce the background and to remove events

outside of our reaction of interest. In general, the strategy is to use kinematic constraints

to eliminate backgrounds while ensuring that the signal remains robust. The efficiency of

various cuts was tested with Monte Carlo simulations.

The kinematic constraints used so far are listed below:

• FIG. 37 shows the missing mass squared of all detected particles with a cut on missing

energy |ME − Eγ| < 0.12 GeV. Where ME = Ebeam − Epπ+π− , is the missing energy

of all charged particles and Eγ, is the energy of the detected photon. This plot shows

a peak around zero, but it does not yet secure rejection of π0 in the event.
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FIG. 37. Missing mass M2
X(pπ

+π−γ) of all detected final state particles.
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• Energy cuts included that for the out-going photon, the combined energy of the three

detected charged particles, and the energy difference between these two cuts (FIGs. 38,

39 and 40).

• To ensure there is no π0 amongst p, π+ and π− in the final state, the square of the

missing massM(pπ+π−)2 with additional cut |M(pπ+π−γ)2| < 0.01 GeV2 for the range

of missing mass MX(p) in the η′ region (FIG. 41) were plotted for the peak and two

side bands of the distribution of MX(p)−Mη′ (FIG. 42). One can clearly see how the

peaks of γ and π0 can be seperated by side band substraction (FIG. 43).
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FIG. 38. Photon momentum cut (Pγ > 0.1 GeV).
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FIG. 39. Missing energy of pπ+π−, Ex(pπ
+π−) > 0.1 GeV.
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FIG. 40. Difference in the photon momentum and charged particles momentum combined,
| Ex(pπ

+π−)− Pγ |< 0.12 GeV.
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• Reconstruction of all particles of interest with the best resolution was obtained by

plotting the missing mass MX(p) with the cuts |M2
X(pπ

+π−γ)| < 0.01 GeV2 and

|M2
X(pπ

+π−)| < 0.005 GeV2, FIG. 41.

FIG. 41. Distribution of missing mass of the proton in the exclusive reaction γp → pπ+π−γ.
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4.6 EXTRACTING SIGNAL EVENTS

For each 5 MeV-wide mππ bin, signal and sideband regions were selected for a 3σ range

from the MX(p) − Mη′ spectrum. Giving a total width of each of the regions as 15 MeV,

FIG. 42.

The missing mass squared distribution of the three selected charged particles, M2
x(pπ

+π−)

was then analyzed for eachmππ bin, FIG. 43. The sideband region distribution is substracted

from that of signal region leading to a more regular distribution that was fitted with a

gaussian or double-gaussian as deemed necessary to get the number of π+π−γ signal events,

with corresponding statistical errors stemming from the fitting procedure, for each mππ bin,

FIG. 44.
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FIG. 42. Distribution of MX(p)−Mη′ for 0.32 GeV< mππ < 0.92 GeV in the η′ region from
FIG. 41
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FIG. 43. Histograms of M2
x(pπ

+π−) from peak (blue) and side bands (red) of FIG. 42. The
difference of this histograms signifigantly separates γ’s from π0’s arising from the reaction
η′ → π+π−π0.
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FIG. 44. Sample M2
x(pπ

+π−) distribution for mππ bin 0.765-0.770 GeV after side band
substraction.
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4.7 ACCEPTANCE CORRECTION AND NORMALIZATION

4.7.1 MONTE CARLO SIMULATION

Some particles in the reaction γp → pη′ → pπ+π−γ hit “dead” regions not covered by

the CLAS detector and cannot be detected. In addition, the CLAS detector deos not have a

100% acceptance. Hence the number of measured events needs to be corrected to take these

into account by calculating the acceptance of the CLAS. To obtain the acceptance corrections

for the reaction γp → pη′ → pπ+π−γ, an η′ Monte Carlo generator was used (SGEN) along

with the CLAS GSIM and RECSIS packages.

For this analysis, η′ meson was generated using the Monte Carlo generator SGEN. The SGEN

uses FOTRAN based programs and it is very commonly used in hadron physics experiments

to generate hadronic production and decay of mesons. It gives a user the freedom to include

physics models to obtain desired output. The simulated events in the analysis are modelled

with a bremsstrahlung photon, the η′ differential cross-section, the pion vector form factor

FV (m
2
ππ) and the decay matrix element of η′ → π+π−γ. The output of SGEN are extracted

in standard CLAS “gamp” files which are then processed with the CLAS simulation suite in

the following way:

• The gamp files are first converted into the format of PART bank containing the event.

• GSIM: Geant3-based simulation in CLAS simulates processes affecting particles in the

detector, including the energy losses of particles in the detector, particle decays and

multiple scattering and finally the digitized informations is sorted in the simulated

“raw” banks.

• GPP: GSIM post-processor smears detector signal more accurately to reflect the actual

resolution and to simulate the experimental conditions.

• RECSIS : It is used for reconstruction of simulated data and in the same manner that

the raw experimental data are analyzed. The cuts applied to the experimental data

are also applied to the Monte Carlo (MC) data to select events. Corrections from the

CLAS eloss package are applied to the reconstructed momenta of the p, π+ and π−.

However, the momentum corrections and beam energy corrections are not applied to

the MC data.
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4.7.2 ACCEPTANCE AND RESOLUTION

Acceptance is the probability that an event of a given kinematics will be kept by the

analysis. Once the detector acceptance is accounted for, the data must then be normalized to

convert the number of events detected into the probability with which events were produced.

The acceptance is calculated as

Acceptance =
Reconstructed events (with corrections and cuts)

Generated events
(48)

for each bin in mππ.

The CLAS detector acceptance for η′ → π+π−γ decay and resolution for two pion invari-

ant mass have been obtained from large statistics Monte-Carlo simulation (GSIM). For this

analysis we have chosen a two pion invariant mass range from 0.32 to 0.92GeV, splitted into

60 (10MeV wide) bins. In Monte-Carlo we simulated 20 million events for each of such a

bin and additionally for one bin below and one bin above this range. Results for acceptance

and mass resolution are shown on FIGs. 45, and 46.

Small efficiency enhancement at low mass end is statistically significant and needs to

be understood. Decrease of mass resolution σ at high mass end can be caused by limited

range for fluctuations at the edge of phase space. We can also note here that Monte-Carlo

simulations show minor sytematic shift of two pion invariant mass (∼1...2MeV).
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FIG. 45. CLAS detector acceptance for η′ → π+π−γ decay as a function of two pion inv.
mass
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FIG. 46. CLAS detector resolution for two pion inv. mass from η′ → π+π−γ decay. Blue
curve - fit with fifth order polynomial.
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4.7.3 THE MONTE CARLO AND DATA COMPARED

To check how well the η′ meson event generator, used for this analysis, describes the

experimental data, we compare some kinematic variables for simulation and data. The mo-

mentum, and angular distribution of the outgoing photon and the detected charged particles

of both the data and simulation were compared to verify how well the simulation explains

the g11 data, as shown in FIGs. 47 through 58. From all these plots we observe that the

overall agreement between the data and Monte Carlo is good.
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FIG. 47. Comparison of γ momentum with g11 data (blue) and simulated events (red).
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FIG. 48. Comparison of γ θ with g11 data (blue) and simulated events (red).
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FIG. 49. Comparison of γ φ with g11 data (blue) and simulated events (red).
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FIG. 50. Comparison of π− momentum with g11 data (blue) and simulated events (red).
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FIG. 51. Comparison of π− polar angle θ with g11 data (blue) and simulated events (red).
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FIG. 52. Comparison of π− azimuthal angle φ with g11 data (blue) and simulated events
(red).
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FIG. 53. Comparison of π+ momentum with g11 data (blue) and simulated events (red).
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FIG. 54. Comparison of π+ polar angle θ with g11 data (blue) and simulated events (red).
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FIG. 55. Comparison of π+ azimuthal angle φ with g11 data (blue) and simulated events
(red).
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FIG. 56. Comparison of proton momentum with g11 data (blue) and simulated events (red).
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FIG. 57. Comparison of proton polar angle θ with g11 data (blue) and simulated events
(red).
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FIG. 58. Comparison of proton azimuthal angle φ with g11 data (blue) and simulated events
(red).



89

4.7.4 THE TARGET DENSITY

In order to calculate the η′ meson photoproduction cross section we need to know the

density of the LH2 target used in the g11 experiment. The density is

ρ = a1T
2 + a2P + a3 (49)

where T is the temperature, P is the pressure and the values of a1, a2 and a3 are given in

Table 7.

Parameter Value

a1 -2.89 × 10−5 g/cm3K2

a2 1.0 × 10−7 g/cm3mbar

a3 8.249 × 10−2 g/cm3

TABLE 7. The values of the parameters used to calculate the LH2 density [48].

At the begining of each CLAS run, the target’s temperature and pressure were measured.

The mean density of the LH2 used in g11 was

ρ̄ =
1

Nrun

∑

r

ρr = 0.07177g/cm−3, (50)

and the variance is calculated to be

σ2 =
1

Nrun − 1

∑

r

(ρr − ρ̄)2 = 6.776× 10−9g2/cm−6, (51)

leading to relative fluctuations of the density of about 0.1%.

4.7.5 PHOTON FLUX NORMALIZATION

The estimation of the luminosity includes calculation of the number of target particles

and the total number of photons incident on the target. Obtaining the total number of

photons, or photon flux, incident on the target is an important piece of information required

to calculate the η′ meson photoproduction cross section. A package, the gflux, a standard

CLAS normalization technique was used to determine the photon flux of the g11 experiment
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[49]. The gflux program obtains the photon fluxes for each tagger T-counter and for each

g11a run by using the rates at which the electrons hit the given T-counter in a fixed time

window. The number of electrons that hit the T-counter is adjusted to account for the

detector live time. Then the T-counter flux is used to calculate the flux for different photon

energy bins [50].

A beam current dependent normalization problem was first observed by the CLAS Col-

laboration Genova group [40] which derived a correction factor by doing a linear fit to the

dependence. At a current of 65 nA, the correction factor was 1.187. The Carnegie Mellon

University (CMU) group suggested the issue might arise from the inaccurate estimate of the

DAQ dead time. Events associated with a beam trip are excluded from the analysis [51]. In

FIG. 59 the photon flux is plotted as a function of incident photon beam energy for 0.05

GeV energy bins.



91

FIG. 59. Photon flux as a function of incident photon beam energy for all good runs. Image
source: [48].
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CHAPTER 5

RESULTS

The main purpose of this analysis is to study radiative decay of η′ → π+π−γ. In particular,

as it was shown in [21], the invariant mass of π+π− (mππ) is sensitive to the underlying

dynamics of this decay. However in order to study the decay itself one needs to account

for the photoproduction cross section and only after that compare mππ distribution with

theoretical predictions. In this chapter we present our measurement of the photoproduction

cross section in this decay mode and comparison with a previous mesurement of the same

data set by the CLAS collaboration in η′ → π+π−(η) decay mode, where the η meson

was reconstruced via missing mass technique. After equalizing for a photoproduction cross

section, the experimental distribution of invariant mass of pion pairs was fitted using Monte

Carlo simulation with all components of the decay matrix elements taken into account.

5.1 DIFFERENTIAL CROSS SECTIONS

In this section, we shall compare the differential cross section measured for the reaction

γp → pη′(η′ → π+π−γ) to that of the published diffrential cross section for the reaction

γp → pη′(η′ → π+π−η) [52]. This is an additional check of the level of correctness of our

analysis.

5.1.1 CALCULATION

In a similar manner as in [52], each differential cross section point is extracted using the

equation

dσ

d cos θη
′

CM

= (
A

F(W )ρlNA

)
Y(W, cos θη

′

CM)

∆ cos θη
′

CMAcc(W, cos θη
′

CM)

1

BR(η′ → π+π−γ)
(52)

where ρ, l and A are the target density, length and atomic weight respectively, NA is Avo-

gadro’s number, F (W ) is the (corrected) number of photons in each W bin incident on the

target, ∆ cos θη
′

CM is the width of each cos θη
′

CM bin (for our analysis, this quantity is always

0.075) and BR ≈ 0.291 is the η′ → π+π−γ branching ratio. The values used for the target

factors are listed in Table 8. Y and Acc are the detected data yield and the acceptance in

each (W ,cos θη
′

CM) bin, respectively.
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Factor Value Description

ρ 0.7177 g/cm3 Target density

ltarget 40 cm Target length

NA 6.022× 1023 Avogadro’s number

Atarget 1.00794 g/mole Target atomic weight

TABLE 8. Target factors used for all dσ/d cos θη
′

CM measurements.

As a supplementary way to check the analysis of this work, we compared the cross sections

for the photoproduction of η′ in the radiative decay mode η′ → π+π−γ to those of published

cross sections in the decay mode η′ → π+π−η [52]. The comparison was done for 20 bins

within the range −0.65 < cosθη
′

cm ≤ 0.85, as the yield drops near the beam pipe, and 36 bins

in the invariant mass range of 1.97 GeV < W < 2.83 GeV. FIGs. 60 to 63 show comparison

of our calculated cross section (tabulated in Appendix A) to that of [52]. There is a very

good agreement.
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FIG. 60. dσ/dΩ (µ b/sr) vs. cos θη
′

CM for γp → pη′ reaction for W = 1.96 − 2.05 GeV. The
red points are published results, [52] while the blue points are verifications from our analysis
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FIG. 61. dσ/dΩ (µ b/sr) vs. cos θη
′

CM for γp → pη′ reaction for W = 2.05 − 2.18 GeV. The
red points are published results, [52] while the blue points are verifications from our analysis
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FIG. 62. dσ/dΩ (µ b/sr) vs. cos θη
′

CM for γp → pη′ reaction for W = 2.18 − 2.36 GeV. The
red points are published results, [52] while the blue points are verifications from our analysis
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FIG. 63. dσ/dΩ (µ b/sr) vs. cos θη
′

CM for γp → pη′ reaction for W = 2.36 − 2.73 GeV. The
red points are published results, [52] while the blue points are verifications from our analysis
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Ratio of Cross Sections

FIG. 64 shows a constant fit to the fitted ratios of our measured cross sections to those of

[52] for all 36 W bins, With fit result R = 0.945 ± 0.006. This fit can be used to get an

independent measurement of η′ branching ratio (BR). In [52] BR(η′ → π+π−η) = 0.429 was

used. In this analysis we have used BR(η′ → π+π−γ) = 0.291. In order to be consistent with

previous measurement, that is, to have the ratio to be equal to 1, one needs to have BR =

0.291× 0.945 = 0.275 with statistical error (0.275× 0.006)/0.945 = 0.002. Hence we obtain

BR(η′ → π+π−γ) = 0.275 ± 0.002. The best measurement in PDG by CLEO Collaboration

has a value 0.287± 0.007± 0.004 [53]. Within error our analysis is consistent with CLEO and

further studies need to be done to estimate systematic errors. However, statistically we have

the best measurement of the BR.
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FIG. 64. Zero order polynomial fit to fitted ratio of cross sections at each W bin giving fit
R=0.945 ± 0.006.
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5.2 METHOD TO EXTRACT η′ → π+π−γ DECAY PARAMETERS α

AND β

5.2.1 DEFINITIONS AND FORMALISM

The distribution of the invariant mass of the two pions, m, in the radiative decay η′ →
π+π−γ (2.4.3) could be written in the following terms of the differential decay rate:

∂ Γ

∂ m
= Cαβ f(m) (1 + αm2 + βm4 +O(m2))2, (53)

such that

mmax
∫

mmin

∂ Γ

∂ m
dm = 1. (54)

where the normalization constant term Cαβ depends only on the parameters α and β, but

the function f(m) does not depend on α and β. The parameter α is introduced to account

for a box anomaly, while β is due to a contribution from a2 tensor meson ([17], [21]). For

simplicity the higher order term O(m2) would be skipped, but it could be easily added in

the calculations. The η′ → π+π−γ decay matrix element can be written (according to [54])

as:

|M|2 ∼ |FV (Sππ)|2 (1 + αm2 + βm4 +O(m2))2 E2
γ q

2 sin2(θ) (55)

where Eγ is the photon energy, q is the pion momentum, and θ is the angle between the pion

plane and the photon (everything in the rest frame of the π+π− pair).

The function f(m) in Eqn. 53 includes product of the decay phase space distribution and

squared matrix element function (Eqn. 55) with α = β = 0. The pion vector form factor

|FV (Sππ)|2 is given in [22] (Table 2) as a function of squared mass of two pions Sππ ≡ m2.
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The shape of two pion mass spectrum for simple phase space and with matrix element

|M|2 applied (without the α and β terms) are shown on FIG. 66.
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FIG. 66. Inv. mass distrubution for two pions from η′ → π+π−γ decay. Dashed histogram
- decay according to phase space, solid histogram - according to function f(m) in Eqn. 53,
i.e. decay with matrix element and parameters α, β = 0.
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Eqn. 53 can be written in the following form:

∂ Γ

∂ m
= Cαβf(m)+2αCαβf(m)m2+(α2+2β)Cαβf(m)m4+2αβCαβf(m)m6+β2Cαβf(m)m8

(56)

Now let’s define the following functions and their normalization:

Fn(m) ≡ Cn · f(m) ·m2n, (57)

such that

mmax
∫

mmin

Fn(m) dm = 1, (58)

where n = 0, 1, 2, 3, 4.

We also need to define additional parameters:

In ≡
mmax
∫

mmin

F0(m)m2n dm (59)

and note that In = C0

Cn
because:

In =

mmax
∫

mmin

C0f(m)m2n dm =
C0

Cn

mmax
∫

mmin

Cnf(m)m2n dm (60)

and the last integral in this equation is equal to 1 according to our definitions (Eqn. 57).

Using all these equations we can again rewrite formula (Eqn. 56):

∂ Γ

∂ m
= C{F0(m) + 2αI1F1(m) + (α2 + 2β)I2F2(m) + 2αβI3F3(m) + β2I4F4(m)} (61)

where C ≡ Cα

C0
, and C = (1 + 2αI1 + (α2 + 2β)I2 + 2αβI3 + β2I4)

−1 due to normaization.

Function F0(m) (Eqn. 57) can be numericaly obtained from η′ → π+π−γ decay simua-

tion: it simply equals to m (Mπ+π−) distribution function normalized to 1 and generated

with parameters α, β in matrix element reset to zero. Other functions Fn(m) in Eqn. 57

and parameters in Eqn. 59 can be numericaly calculated using known shape of F0(m). The
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obtained shapes of these functions are shown on FIG. 67, with the following values of pa-

rameters: I1=0.486, I2=0.252, I3=0.136 and I4=0.076.
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FIG. 67. Simulation result for functions F0(m) - solid histogram, F1(m) - dashed histogram,
F2(m) - dotted histogram

Before using the function of Eqn. 61 in the fitting procedure it should be convoluted with

the detector acceptance and resolution function r(m,mmeas.), see Sec. 4.7.2, (index meas.

denotes the measured value of the quantity):

∂ Γ

∂ mmeas.

(mmeas.) =

mmax
∫

mmin

∂ Γ

∂ m
(m) · r(m,mmeas.) dm (62)

The function r(m,mmeas.) was obtained from MC simulations (see FIG. 46). Thus to

extract parameters α and β from two pion mass distribution observed in the data we can
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use fitting function ∂ Γ
∂ mmeas.

(Eqn. 62).
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5.2.2 FITTING PROCEDURE

The aforementioned formalism was coded in C++ program. The program is designed

to call the MINUIT minimization package in the CERNLIB library [57] and fits Eqn. 62 to

determine the parameters α and β.

In the MINUIT, the minimization algorithm used is called MIGRAD. This uses a variation

method suited for minimizing a function F (~x) of n variables ~xT = (x1, x2, ..., xn) where

the gradient vector ∇xF = ~g(~x) can be obtained explicitly. The variation method uses an

iterative approach to minimize F (~x). Each iteration starts at some point ~x with gradient

~g(~x). The objective is to find another point, ~y, such that F (~y) < F (~x). This procedure is

then repeated until the convergence criteria, δF ≡ F (~x) − F (~y) < tolerance, is met. For

more information on the minimization algorithm see [58].

5.2.3 PHYSICS RESULTS OF Mππ DISTRIBUTION

Using resolution and acceptance obtained from large statistics Monte-Carlo (section 4.7.2)

in Eqn. 62 we performed the fit with the log likelihood option [47] to our data to extract free

parameters α and β (FIG. 68). The final results of the fit give α = 1.13 ± 0.20 GeV−2 and

β = −1.39± 0.21 GeV−4 with χ2/Ndof = 134.6
116

= 1.16.

If we force both parameters to be zero, the data can not be properly fitted as χ2/Ndof

shoots up to 3.87, FIG. 69. Note the kink from the shape of the square of the pion vector

form factor |FV (Sππ)|2 reflected in FIG. 65.
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FIG. 68. Fit to acceptance corrected Mπ+π− distribution for the exclusive reaction γp → pη′

(η′ → π+π−γ) of the g11 dataset.
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FIG. 69. Fit to Mπ+π− distribution with both α and β fixed to zero.
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5.3 SYSTEMATIC UNCERTAINTIES

The systematic uncertainties were estimated by varying each cut used in the event selec-

tion process. In addition the selected events were split into two run periods.

Below, we re-list the stantard cuts applied to our analysis leading to α = 1.13 ± 0.20

GeV−2 and β = −1.39± 0.21 GeV−4 (χ2/Ndof = 134.6
116

):

• |MX(pπ
+π−γ)|2 < 0.0005 GeV2

• |ME(pπ
+π−)− Pγ| < 0.12 GeV

• ME(pπ
+π−) > 0.1 GeV

• Pγ > 0.1 GeV

• |MX(p)−M(η′)| < 0.015 GeV

• |M(π+π−γ)−M(η′)| not applied

• −0.65 < cos θη
′

CM < 0.85

Each cut based systematic uncertainty was performed individually, that is when a cut

is changed, the remaining cuts maintained their original values. Lets denote the original fit

parameters as ζo and the new fit parameters obtained after the implementation of a new cut

as ζn, then the systematic error is calculated as

δζ =
|ζo − ζn|

ζo
=

∆ζ

ζo
(63)

Table 9 shows changes in the fit parameters with cut variations.



109

Cut variation ∆α (GeV)−2 ∆β (GeV)−4

|MX(pπ+π−γ)|2 < 0.00055 GeV2 -0.042 +0.049

|MX(pπ+π−γ)|2 < 0.00045 GeV2 +0.025 -0.023

|ME(pπ
+π−)− Pγ | < 0.15 GeV -0.014 -0.011

|ME(pπ
+π−)− Pγ | < 0.10 GeV +0.046 -0.065

ME(pπ
+π−) > 0.12 GeV +0.021 -0.013

ME(pπ
+π−) > 0.07 GeV +0.002 -0.01

Pγ > 0.2 GeV +0.035 -0.028

|MX(p)−M(η′)| < 0.012 GeV -0.051 +0.068

|MX(p)−M(η′)| < 0.017 GeV +0.043 -0.062

|M(π+π−γ)−M(η′)| < 0.1 GeV +0.034 -0.028

−0.7 < cos θη
′

CM < 0.9 +0.004 +0.014

−0.6 < cos θη
′

CM < 0.8 +0.062 +0.073

TABLE 9. Cut variations and changes in fit parameters.

Run periods ∆α (GeV)−2 ∆β (GeV)−4

First 285 runs +0.005 +0.055

Second 285 runs -0.059 +0.073

TABLE 10. Run periods.
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Table 11 shows the systematics for each variable and the total systematics each calculated

by adding in quadrature as follows

δζ =

√

√

√

√

∑

i

(

∆ζi
ζo

)2

, (64)

and

σtot =

√

∑

i

δζ2i . (65)

Source δα δβ

|MX(pπ+π−γ)|2 4.33× 10−2 3.89× 10−2

|ME(pπ
+π−)− Pγ | 4.26× 10−2 4.74× 10−2

ME(pπ
+π−) 1.87× 10−2 1.18× 10−2

Pγ 9.59× 10−4 4.06× 10−4

|MX(p)−M(η′)| 5.90× 10−2 6.62× 10−2

|M(π+π−γ)−M(η′)| 9.05× 10−4 4.06× 10−4

cos θη
′

CM 5.50× 10−2 5.63× 10−2

Run times 1.79× 10−2 6.58× 10−2

Total Systematic 1.15× 10−1 1.26× 10−1

TABLE 11. Systematics for each variation.

5.4 COMPARISON WITH PREVIUOS DATA AND THEORY

The most recent high statistics study [59] (≃ 8000 events) of this η′ spectrum measured

in the reactions pp̄ → π0π0η′, pp̄ → π+π−η′ and pp̄ → ωη′, has been done at Crystal Barrel,

using two parametrizations of the ρmeson without including contributions from ω and effects

of the a2 tensor meson in the πη system. This experiment confirmed the existence of box

anomaly with a statistical significance of 4σ and that the box anomaly allowed to find the ρ0

mass in η′ → π+π−γ decay at values expected from e+e− → π+π− annihilation [60]. FIG. 70

shows a comparison of CLAS data scaled to fit the Crystal Barrel data.

From theory a dispersive analysis of the anomalous η′ decay process η′ → π+π−γ by the

effects of a2 was done, arriving at a strong motivation to further scrutinize the physics of light

mesons (from higher statistic data) relevant for hadronic corrections to the muon’s anoma-

lous magnetic moment. FIG. 71 shows our result compared to the most recent theoretical

prediction [21].
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Table 12 shows comparisons to world data and theory.
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FIG. 70. Comparison of CLAS data (red dotes) with Crystal Barrel data (black crosses). The
CLAS data was scaled to fit the Crystal Barrel data [59].
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FIG. 71. Comparison of CLAS data (solid line fit) with theoretical prediction from [21]
(dotted).
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Experiment α [GeV−2] β [GeV−4]

GAMS-200 (1990) 2.7± 1.0

CRYSTAL BARREL (1997) 1.80± 0.49± 0.04

CLAS(g11) (2017) 1.13± 0.20± 0.12 −1.39± 0.21± 0.13

Theory

Kubis (2015) 1.4± 0.4 −1.0± 0.1

TABLE 12. Experimental and theoritical results compared.

5.5 SUMMARY

The η′ meson photoproduction cross sections has been measured before in CLAS from the

g11 data for the decay mode η′ → π+π−η and our work for the decay mode η′ → π+π−γ is

in very good agreement with the previous measurement for an extensive angular coverage.

With the inclusion of this work, the world data on BR ratio of η′ → π+π−γ will be potentially

improved with our high statistics data. The affirmation to the published η′ differential cross

section information will give more insight to possible resonance couplings to the pη′ channel.

For the first time in CLAS, we have also extracted two free parameters, α and β, from

a model-independent fit to the m(π+π−) distribution of the anomalous decay η′ → π+π−γ.

The values obtained are found to agree well with recent theoretical expectations. The results

of both parameters confirm the existence of the box anomaly, ρ-ω mixing and the effects of the

a2(1320) tensor meson (the lowest-lying resonance) that can contribute into π+π−γ system.
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APPENDIX A

TABULAR DATA

TABLE 13. dσ
dΩ

data for W = 1.965± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.06039752 0.006039635
-0.5375 0.0375 0.05317042 0.005316483
-0.4625 0.0375 0.07486979 0.007486788
-0.3875 0.0375 0.05469645 0.005471025
-0.3125 0.0375 0.06058728 0.006100342
-0.2375 0.0375 0.0635877 0.00634998
-0.1625 0.0375 0.0545789 0.00545801
-0.0875 0.0375 0.05769554 0.005770154
-0.0125 0.0375 0.06302402 0.006301865
0.0625 0.0375 0.05697672 0.005694227
0.1375 0.0375 0.0860348 0.00898436
0.2125 0.0375 0.07389437 0.007394837
0.2875 0.0375 0.08677573 0.008956362
0.3625 0.0375 0.07177166 0.006999843
0.4375 0.0375 0.05960176 0.005959694
0.5125 0.0375 0.08324076 0.008363499
0.5875 0.0375 0.06118819 0.006174867
0.6625 0.0375 0.05982341 0.005954583
0.7375 0.0375 0.0554771 0.00574867
0.8125 0.0375 0.06931417 0.006958728
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TABLE 14. dσ
dΩ

data for W = 1.975± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02140342 0.002395524
-0.5375 0.0375 0.03838949 0.003824076
-0.4625 0.0375 0.06759843 0.006039752
-0.3875 0.0375 0.07428759 0.007477573
-0.3125 0.0375 0.07150523 0.006302402
-0.2375 0.0375 0.06862579 0.006118819
-0.1625 0.0375 0.07427985 0.007389437
-0.0875 0.0375 0.06140342 0.006140342
-0.0125 0.0375 0.08346937 0.008177166
0.0625 0.0375 0.0738725 0.00748697
0.1375 0.0375 0.08222747 0.008324076
0.2125 0.0375 0.07974887 0.007394837
0.2875 0.0375 0.07883179 0.006450839
0.3625 0.0375 0.07741286 0.007486788
0.4375 0.0375 0.08571341 0.008346937
0.5125 0.0375 0.07624314 0.007394837
0.5875 0.0375 0.07978077 0.007741286
0.6625 0.0375 0.07767853 0.007978077
0.7375 0.0375 0.05183729 0.007624314
0.8125 0.0375 0.06450839 0.007883179
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TABLE 15. dσ
dΩ

data for W = 1.985± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.06103414 0.005288554
-0.5375 0.0375 0.0736816 0.008383631
-0.4625 0.0375 0.04852055 0.004626232
-0.3875 0.0375 0.06546507 0.00638428
-0.3125 0.0375 0.07187053 0.00727756
-0.2375 0.0375 0.06031146 0.008275089
-0.1625 0.0375 0.08831324 0.009173434
-0.0875 0.0375 0.07309996 0.00723881
-0.0125 0.0375 0.09416297 0.00960655
0.0625 0.0375 0.06660266 0.00623425
0.1375 0.0375 0.07331361 0.00725076
0.2125 0.0375 0.0747347 0.009805234
0.2875 0.0375 0.06808763 0.007533036
0.3625 0.0375 0.07573305 0.007463966
0.4375 0.0375 0.06917511 0.00616626
0.5125 0.0375 0.08821015 0.00822539
0.5875 0.0375 0.06946776 0.0060639
0.6625 0.0375 0.07517381 0.0073087
0.7375 0.0375 0.06568973 0.00627649
0.8125 0.0375 0.05566317 0.00593396
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TABLE 16. dσ
dΩ

data for W = 1.995± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.03525703 0.003103414
-0.5375 0.0375 0.05589088 0.00736816
-0.4625 0.0375 0.06417488 0.004852055
-0.3875 0.0375 0.08256188 0.006546507
-0.3125 0.0375 0.0751837 0.007187053
-0.2375 0.0375 0.05516726 0.006031146
-0.1625 0.0375 0.06115622 0.006831324
-0.0875 0.0375 0.07492539 0.007309996
-0.0125 0.0375 0.07071035 0.007416297
0.0625 0.0375 0.06822832 0.006660266
0.1375 0.0375 0.08167175 0.007331361
0.2125 0.0375 0.06536823 0.00647347
0.2875 0.0375 0.05022024 0.005808763
0.3625 0.0375 0.06309311 0.006573305
0.4375 0.0375 0.0744417 0.006917511
0.5125 0.0375 0.06816926 0.006821015
0.5875 0.0375 0.07137593 0.006946776
0.6625 0.0375 0.06953913 0.007017381
0.7375 0.0375 0.06184326 0.006568973
0.8125 0.0375 0.07955973 0.007566317
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TABLE 17. dσ
dΩ

data for W = 2.005± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.05821417 0.005008077
-0.5375 0.0375 0.04973809 0.004634119
-0.4625 0.0375 0.05231525 0.005387528
-0.3875 0.0375 0.06972187 0.006480262
-0.3125 0.0375 0.07064737 0.00643113
-0.2375 0.0375 0.05534458 0.00560519
-0.1625 0.0375 0.06208323 0.006256011
-0.0875 0.0375 0.06482619 0.00686561
-0.0125 0.0375 0.06843199 0.00645587
0.0625 0.0375 0.07891417 0.00718669
0.1375 0.0375 0.0633669 0.00615405
0.2125 0.0375 0.07511355 0.00728079
0.2875 0.0375 0.06444787 0.00602108
0.3625 0.0375 0.07598692 0.00738338
0.4375 0.0375 0.08227851 0.00868224
0.5125 0.0375 0.08327643 0.00836425
0.5875 0.0375 0.06785467 0.0065083
0.6625 0.0375 0.06760388 0.00604801
0.7375 0.0375 0.07604692 0.00782543
0.8125 0.0375 0.05811399 0.00597372
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TABLE 18. dσ
dΩ

data for W = 2.015± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.05338718 0.005821417
-0.5375 0.0375 0.05089413 0.004973809
-0.4625 0.0375 0.04258352 0.004231525
-0.3875 0.0375 0.04986842 0.004972187
-0.3125 0.0375 0.07620754 0.007064737
-0.2375 0.0375 0.05736793 0.005534458
-0.1625 0.0375 0.05504007 0.006208323
-0.0875 0.0375 0.06577073 0.006482619
-0.0125 0.0375 0.07637246 0.007643199
0.0625 0.0375 0.08124457 0.007891417
0.1375 0.0375 0.07436035 0.00633669
0.2125 0.0375 0.0685386 0.006511355
0.2875 0.0375 0.08680718 0.008444787
0.3625 0.0375 0.07588922 0.007598692
0.4375 0.0375 0.08454829 0.008227851
0.5125 0.0375 0.08242832 0.008327643
0.5875 0.0375 0.08338867 0.008385467
0.6625 0.0375 0.06698673 0.006760388
0.7375 0.0375 0.08550284 0.008504692
0.8125 0.0375 0.08649148 0.008511399
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TABLE 19. dσ
dΩ

data for W = 2.025± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.03914 0.003813141
-0.5375 0.0375 0.06196897 0.006280674
-0.4625 0.0375 0.06603038 0.005208798
-0.3875 0.0375 0.04273526 0.004570041
-0.3125 0.0375 0.0615481 0.006913394
-0.2375 0.0375 0.0654143 0.006639169
-0.1625 0.0375 0.07156413 0.007702073
-0.0875 0.0375 0.06074424 0.006278178
-0.0125 0.0375 0.07342597 0.007373903
0.0625 0.0375 0.06229765 0.006176675
0.1375 0.0375 0.07846701 0.007018508
0.2125 0.0375 0.06909584 0.006578478
0.2875 0.0375 0.07679106 0.007799884
0.3625 0.0375 0.08019667 0.008043127
0.4375 0.0375 0.08848971 0.008107805
0.5125 0.0375 0.08212528 0.008391873
0.5875 0.0375 0.08807202 0.008812295
0.6625 0.0375 0.08420361 0.008426697
0.7375 0.0375 0.09452591 0.00879425
0.8125 0.0375 0.07615122 0.007453953
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TABLE 20. dσ
dΩ

data for W = 2.035± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.05813141 0.005871001
-0.5375 0.0375 0.06280674 0.006295346
-0.4625 0.0375 0.05208798 0.005204557
-0.3875 0.0375 0.07570041 0.007410289
-0.3125 0.0375 0.06913394 0.0069232215
-0.2375 0.0375 0.06639169 0.006512144
-0.1625 0.0375 0.06702073 0.00673462
-0.0875 0.0375 0.06278178 0.006111637
-0.0125 0.0375 0.06373903 0.0060139
0.0625 0.0375 0.07176675 0.007344647
0.1375 0.0375 0.07018508 0.0077005
0.2125 0.0375 0.08578478 0.00836438
0.2875 0.0375 0.07799884 0.00751866
0.3625 0.0375 0.08843127 0.00820295
0.4375 0.0375 0.08107805 0.00807346
0.5125 0.0375 0.09391873 0.00931879
0.5875 0.0375 0.09812295 0.00832108
0.6625 0.0375 0.07726697 0.00763054
0.7375 0.0375 0.1179425 0.01017889
0.8125 0.0375 0.09453953 0.00942268
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TABLE 21. dσ
dΩ

data for W = 2.045± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.04681724 0.004422759
-0.5375 0.0375 0.05234811 0.005503584
-0.4625 0.0375 0.04469055 0.004396619
-0.3875 0.0375 0.05194306 0.005274038
-0.3125 0.0375 0.0491015 0.004999803
-0.2375 0.0375 0.05053788 0.005072388
-0.1625 0.0375 0.06309509 0.005764529
-0.0875 0.0375 0.05395871 0.005188978
-0.0125 0.0375 0.06359103 0.00608369
0.0625 0.0375 0.05763539 0.00587203
0.1375 0.0375 0.06249335 0.00646429
0.2125 0.0375 0.07070159 0.006841989
0.2875 0.0375 0.07530943 0.00701746
0.3625 0.0375 0.07949424 0.00669956
0.4375 0.0375 0.08185483 0.00824478
0.5125 0.0375 0.09956655 0.00953879
0.5875 0.0375 0.0881072 0.00828633
0.6625 0.0375 0.1006342 0.01006057
0.7375 0.0375 0.1013941 0.01005204
0.8125 0.0375 0.09589207 0.0097506
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TABLE 22. dσ
dΩ

data for W = 2.055± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.05615173 0.005681724
-0.5375 0.0375 0.03669056 0.005234811
-0.4625 0.0375 0.04264413 0.004469055
-0.3875 0.0375 0.05516025 0.005194306
-0.3125 0.0375 0.05333202 0.00491015
-0.2375 0.0375 0.05981592 0.005053788
-0.1625 0.0375 0.05843019 0.005309509
-0.0875 0.0375 0.05459319 0.005395871
0.0625 0.0375 0.06581353 0.005763539
0.1375 0.0375 0.0764286 0.007249335
0.2125 0.0375 0.06561326 0.006070159
0.2875 0.0375 0.08011642 0.007530943
0.3625 0.0375 0.08466376 0.007949424
0.4375 0.0375 0.08163188 0.008185483
0.5125 0.0375 0.09692525 0.009956655
0.5875 0.0375 0.09524223 0.00921072
0.6625 0.0375 0.1164038 0.01006342
0.7375 0.0375 0.1150136 0.01013941
0.8125 0.0375 0.07167068 0.007089207
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TABLE 23. dσ
dΩ

data for W = 2.065± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.04213847 0.004476785
-0.5375 0.0375 0.02852335 0.002468452
-0.4625 0.0375 0.03673056 0.003124921
-0.3875 0.0375 0.04818282 0.00408956
-0.3125 0.0375 0.06042725 0.00605826
-0.2375 0.0375 0.05708745 0.005763453
-0.1625 0.0375 0.05544073 0.005135796
-0.0875 0.0375 0.05864837 0.005268965
0.0625 0.0375 0.05394124 0.005191613
0.1375 0.0375 0.0643249 0.006167033
0.2125 0.0375 0.06151588 0.006439373
0.2875 0.0375 0.0855298 0.008491438
0.3625 0.0375 0.07784094 0.00759018
0.4375 0.0375 0.06886086 0.00657301
0.5125 0.0375 0.09697597 0.00957764
0.5875 0.0375 0.08375398 0.00803932
0.6625 0.0375 0.1302786 0.01938016
0.7375 0.0375 0.1121454 0.01986476
0.8125 0.0375 0.1094686 0.01216787
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TABLE 24. dσ
dΩ

data for W = 2.075± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.0365119 0.00332077
-0.5375 0.0375 0.02978968 0.002278502
-0.4625 0.0375 0.04083281 0.004009583
-0.3875 0.0375 0.04726373 0.004227423
-0.3125 0.0375 0.0587055 0.005064087
-0.2375 0.0375 0.06508969 0.006563117
-0.1625 0.0375 0.04757197 0.00431611
-0.0875 0.0375 0.04845977 0.004797255
-0.0125 0.0375 0.05929037 0.005372348
0.0625 0.0375 0.04794409 0.004091185
0.1375 0.0375 0.06111355 0.006148735
0.2125 0.0375 0.05626249 0.005627381
0.2875 0.0375 0.05660959 0.00562947
0.3625 0.0375 0.07726788 0.00767614
0.4375 0.0375 0.07715339 0.00732913
0.5125 0.0375 0.09051761 0.00905464
0.5875 0.0375 0.1069288 0.0105631
0.6625 0.0375 0.129201 0.01254179
0.7375 0.0375 0.1324317 0.01282181
0.8125 0.0375 0.08111912 0.007642029
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TABLE 25. dσ
dΩ

data for W = 2.085± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02492446 0.002413299
-0.5375 0.0375 0.05067958 0.005013631
-0.4625 0.0375 0.03553381 0.003789708
-0.3875 0.0375 0.04098077 0.004197068
-0.3125 0.0375 0.0333995 0.003220952
-0.2375 0.0375 0.05178476 0.005608883
-0.1625 0.0375 0.06677384 0.006609497
-0.0875 0.0375 0.06682673 0.006632921
-0.0125 0.0375 0.04428886 0.004026875
0.0625 0.0375 0.0704947 0.007001119
0.1375 0.0375 0.05471223 0.00516192
0.2125 0.0375 0.06982348 0.006578394
0.2875 0.0375 0.06059332 0.006073453
0.3625 0.0375 0.09189622 0.009141866
0.4375 0.0375 0.08250698 0.008206254
0.5125 0.0375 0.1081336 0.01022313
0.5875 0.0375 0.1438038 0.01402746
0.6625 0.0375 0.09689141 0.00930714
0.7375 0.0375 0.1320402 0.01261452
0.8125 0.0375 0.09528224 0.01045987
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TABLE 26. dσ
dΩ

data for W = 2.095± 0.005 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.03613299 0.003738669
-0.5375 0.0375 0.03613631 0.003601937
-0.4625 0.0375 0.02789708 0.002330072
-0.3875 0.0375 0.03197068 0.003147116
-0.3125 0.0375 0.05220952 0.005009925
-0.2375 0.0375 0.05608883 0.005567715
-0.1625 0.0375 0.04609497 0.00401608
-0.0875 0.0375 0.06332921 0.0062401
-0.0125 0.0375 0.05026875 0.005043329
0.0625 0.0375 0.06001119 0.0065021
0.1375 0.0375 0.0616192 0.006206835
0.2125 0.0375 0.06578394 0.00647352
0.2875 0.0375 0.06873453 0.00688998
0.3625 0.0375 0.08541866 0.00878443
0.4375 0.0375 0.08406254 0.0082376
0.5125 0.0375 0.1022313 0.01022004
0.5875 0.0375 0.1302746 0.0141057
0.6625 0.0375 0.1330714 0.01353371
0.7375 0.0375 0.1261452 0.01250603
0.8125 0.0375 0.1045987 0.01042923
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TABLE 27. dσ
dΩ

data for W = 2.110± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02907782 0.002836502
-0.5375 0.0375 0.0195848 0.001491346
-0.4625 0.0375 0.03547647 0.00356506
-0.3875 0.0375 0.03229984 0.003218025
-0.3125 0.0375 0.04225512 0.004354062
-0.2375 0.0375 0.0447961 0.00422327
-0.1625 0.0375 0.03431915 0.00330044
-0.0875 0.0375 0.05275687 0.00520987
-0.0125 0.0375 0.05866496 0.00569285
0.0625 0.0375 0.05655913 0.00530903
0.1375 0.0375 0.05825958 0.00572905
0.2125 0.0375 0.05995527 0.00595505
0.2875 0.0375 0.05829164 0.005836804
0.3625 0.0375 0.06675728 0.00661902
0.4375 0.0375 0.09603893 0.00933143
0.5125 0.0375 0.09983484 0.009867489
0.5875 0.0375 0.09250242 0.01017034
0.6625 0.0375 0.1178284 0.01138534
0.7375 0.0375 0.1085905 0.01078439
0.8125 0.0375 0.1113461 0.01113661
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TABLE 28. dσ
dΩ

data for W = 2.130± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02836502 0.002361673
-0.5375 0.0375 0.03491346 0.00335848
-0.4625 0.0375 0.02756506 0.00254767
-0.3875 0.0375 0.03218025 0.003044976
-0.3125 0.0375 0.03554062 0.00353827
-0.2375 0.0375 0.02722327 0.002719415
-0.1625 0.0375 0.0390044 0.003147872
-0.0875 0.0375 0.04420987 0.003913531
-0.0125 0.0375 0.0369285 0.003799744
0.0625 0.0375 0.03930903 0.003483869
0.1375 0.0375 0.04072905 0.004038938
0.2125 0.0375 0.05095505 0.00509329
0.2875 0.0375 0.05236804 0.00513746
0.3625 0.0375 0.0661902 0.00601359
0.4375 0.0375 0.0833143 0.00840584
0.5125 0.0375 0.08067489 0.00807523
0.5875 0.0375 0.1017034 0.01087536
0.6625 0.0375 0.09385349 0.00967426
0.7375 0.0375 0.1178439 0.0118857
0.8125 0.0375 0.1143661 0.01170191
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TABLE 29. dσ
dΩ

data for W = 2.150± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02219742 0.004221804
-0.5375 0.0375 0.02719673 0.00263556
-0.4625 0.0375 0.02511947 0.00238027
-0.3875 0.0375 0.02390143 0.002304675
-0.3125 0.0375 0.0197142 0.00195767
-0.2375 0.0375 0.025717 0.002374496
-0.1625 0.0375 0.02817169 0.002380625
-0.0875 0.0375 0.02808889 0.002571881
-0.0125 0.0375 0.03811999 0.003623127
0.0625 0.0375 0.02926869 0.002910482
0.1375 0.0375 0.04351689 0.004577788
0.2125 0.0375 0.03988253 0.003885692
0.2875 0.0375 0.04714821 0.004629067
0.3625 0.0375 0.06855668 0.006798056
0.4375 0.0375 0.07454068 0.0071899
0.5125 0.0375 0.0924199 0.0091422
0.5875 0.0375 0.09630208 0.00983223
0.6625 0.0375 0.1025116 0.01036426
0.7375 0.0375 0.1337334 0.01336322
0.8125 0.0375 0.1336763 0.01436692
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TABLE 30. dσ
dΩ

data for W = 2.170± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02981202 0.002329614
-0.5375 0.0375 0.02242371 0.002279509
-0.4625 0.0375 0.02492018 0.002467921
-0.3875 0.0375 0.02031172 0.002085214
-0.3125 0.0375 0.02238404 0.00225713
-0.2375 0.0375 0.02249664 0.002257549
-0.1625 0.0375 0.0225375 0.00225753
-0.0875 0.0375 0.02381254 0.00213334
-0.0125 0.0375 0.02415418 0.002417999
0.0625 0.0375 0.02206988 0.00220304
0.1375 0.0375 0.03718525 0.003527533
0.2125 0.0375 0.04590461 0.004598237
0.2875 0.0375 0.04086045 0.004072232
0.3625 0.0375 0.0586537 0.0052835
0.4375 0.0375 0.07279329 0.0071811
0.5125 0.0375 0.07276148 0.00738628
0.5875 0.0375 0.07888152 0.00744531
0.6625 0.0375 0.0957617 0.00937674
0.7375 0.0375 0.0924199 0.00906001
0.8125 0.0375 0.1413661 0.01406001
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TABLE 31. dσ
dΩ

data for W = 2.190± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.02341976 0.002665562
-0.5375 0.0375 0.0221043 0.002860849
-0.4625 0.0375 0.01720224 0.00171392
-0.3875 0.0375 0.01907007 0.001907925
-0.3125 0.0375 0.02256621 0.0022022
-0.2375 0.0375 0.01493136 0.001553852
-0.1625 0.0375 0.01856755 0.00188816
-0.0875 0.0375 0.02548382 0.002376192
-0.0125 0.0375 0.02056756 0.002096515
0.0625 0.0375 0.01982932 0.013448607
0.1375 0.0375 0.02691172 0.002579149
0.2125 0.0375 0.03202303 0.00377645
0.2875 0.0375 0.03490448 0.00314329
0.3625 0.0375 0.04423534 0.0048968
0.4375 0.0375 0.05779133 0.0056737
0.5125 0.0375 0.07428567 0.007457776
0.5875 0.0375 0.06645044 0.00644771
0.6625 0.0375 0.07621416 0.0156095
0.7375 0.0375 0.07276148 0.00744531
0.8125 0.0375 0.0924199 0.0091315
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TABLE 32. dσ
dΩ

data for W = 2.210± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01777041 0.001512964
-0.5375 0.0375 0.01907233 0.0019646
-0.4625 0.0375 0.0140928 0.001380336
-0.3875 0.0375 0.01405283 0.00286051
-0.3125 0.0375 0.01707233 0.00184932
-0.2375 0.0375 0.01468133 0.00139704
-0.1625 0.0375 0.01702568 0.001785132
-0.0875 0.0375 0.01725877 0.001822573
-0.0125 0.0375 0.01584128 0.00185133
0.0625 0.0375 0.0153101 0.00143985
0.1375 0.0375 0.02299071 0.00226758
0.2125 0.0375 0.03719433 0.00303454
0.2875 0.0375 0.03585096 0.003635672
0.3625 0.0375 0.04209552 0.004635301
0.4375 0.0375 0.04565933 0.004668699
0.5125 0.0375 0.06778247 0.00614285
0.5875 0.0375 0.06305184 0.00630567
0.6625 0.0375 0.07631805 0.00743212
0.7375 0.0375 0.1040633 0.01040601
0.8125 0.0375 0.09942097 0.00976741



139

TABLE 33. dσ
dΩ

data for W = 2.230± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01255823 0.001265124
-0.5375 0.0375 0.02481115 0.002485249
-0.4625 0.0375 0.01645079 0.001681163
-0.3875 0.0375 0.01042323 0.00107769
-0.3125 0.0375 0.01281931 0.001340713
-0.2375 0.0375 0.01077704 0.001076179
-0.1625 0.0375 0.01310041 0.0014354
-0.0875 0.0375 0.008984278 0.0008351594
-0.0125 0.0375 0.009706857 0.00097182
0.0625 0.0375 0.0141538 0.001460253
0.1375 0.0375 0.02313719 0.002335908
0.2125 0.0375 0.01476848 0.00143186
0.2875 0.0375 0.02834806 0.002674956
0.3625 0.0375 0.03467844 0.00330862
0.4375 0.0375 0.04518837 0.004067297
0.5125 0.0375 0.05084315 0.0051912
0.5875 0.0375 0.06117879 0.00621372
0.6625 0.0375 0.07473516 0.0072851
0.7375 0.0375 0.09584209 0.00971065
0.8125 0.0375 0.1046391 0.01093835
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TABLE 34. dσ
dΩ

data for W = 2.250± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01843416 0.001883735
-0.5375 0.0375 0.01190166 0.0011673
-0.4625 0.0375 0.009207755 0.0009673
-0.3875 0.0375 0.01478513 0.001463485
-0.3125 0.0375 0.008938088 0.0009226
-0.2375 0.0375 0.01174527 0.00116556
-0.1625 0.0375 0.009569332 0.00096501
-0.0875 0.0375 0.00556773 0.00054642
-0.0125 0.0375 0.01184788 0.00116028
0.0625 0.0375 0.01306836 0.0013307
0.1375 0.0375 0.01557272 0.0015709
0.2125 0.0375 0.01982124 0.0019272
0.2875 0.0375 0.03116637 0.00325209
0.3625 0.0375 0.0353908 0.003501767
0.4375 0.0375 0.03378198 0.00338256
0.5125 0.0375 0.04127466 0.00426472
0.5875 0.0375 0.05780915 0.00576819
0.6625 0.0375 0.07952335 0.00791027
0.7375 0.0375 0.07807097 0.0077631
0.8125 0.0375 0.1062556 0.01069586
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TABLE 35. dσ
dΩ

data for W = 2.270± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01616722 0.001675067
-0.5375 0.0375 0.01771956 0.00175425
-0.4625 0.0375 0.006906362 0.000645038
-0.3875 0.0375 0.01059519 0.00105693
-0.3125 0.0375 0.01495268 0.001433285
-0.2375 0.0375 0.009339672 0.000985257
-0.1625 0.0375 0.0101712 0.00102587
-0.0875 0.0375 0.007621692 0.000736082
-0.0125 0.0375 0.006310953 0.000608207
0.0625 0.0375 0.008290208 0.000870364
0.1375 0.0375 0.01219495 0.001269168
0.2125 0.0375 0.02535802 0.0022971
0.2875 0.0375 0.0260708 0.00281652
0.3625 0.0375 0.03983289 0.00399932
0.4375 0.0375 0.03553111 0.00343725
0.5125 0.0375 0.04014345 0.004077039
0.5875 0.0375 0.07374203 0.007199296
0.6625 0.0375 0.08279529 0.00821402
0.7375 0.0375 0.09391621 0.0092867
0.8125 0.0375 0.1102619 0.0112566
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TABLE 36. dσ
dΩ

data for W = 2.290± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01316711 0.001425083
-0.5375 0.0375 0.006769501 0.000657933
-0.4625 0.0375 0.01630025 0.001635954
-0.3875 0.0375 0.0104623 0.00105898
-0.3125 0.0375 0.01088857 0.0010902
-0.2375 0.0375 0.008568378 0.0009514
-0.1625 0.0375 0.009817246 0.001008
-0.0875 0.0375 0.007573881 0.000743254
-0.0125 0.0375 0.01072138 0.001946429
0.0625 0.0375 0.00913576 0.000943531
0.1375 0.0375 0.01179446 0.001182924
0.2125 0.0375 0.008197997 0.000803703
0.2875 0.0375 0.0187768 0.00191062
0.3625 0.0375 0.01999547 0.001974934
0.4375 0.0375 0.02914834 0.0029666
0.5125 0.0375 0.03318026 0.00341517
0.5875 0.0375 0.05466197 0.006131
0.6625 0.0375 0.06809344 0.00741929
0.7375 0.0375 0.06857801 0.0068743
0.8125 0.0375 0.1083773 0.0106539
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TABLE 37. dσ
dΩ

data for W = 2.310± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.01537126 0.002305689
-0.5375 0.0375 0.005577521 0.0008366281
-0.4625 0.0375 0.01339554 0.00200933
-0.3875 0.0375 0.007929342 0.001189401
-0.3125 0.0375 0.008438152 0.001265723
-0.2375 0.0375 0.0123959 0.001859385
-0.1625 0.0375 0.0115878 0.00173817
-0.0875 0.0375 0.005986869 0.0008980304
-0.0125 0.0375 0.009737564 0.001460635
0.0625 0.0375 0.01068013 0.001602019
0.1375 0.0375 0.01067212 0.001600818
0.2125 0.0375 0.01352945 0.002029417
0.2875 0.0375 0.02556168 0.003834251
0.3625 0.0375 0.02592296 0.003888444
0.4375 0.0375 0.031473 0.00472095
0.5125 0.0375 0.03432272 0.005148408
0.5875 0.0375 0.05358644 0.008037965
0.6625 0.0375 0.06129158 0.009193737
0.7375 0.0375 0.0932304 0.01398456
0.8125 0.0375 0.1136758 0.01705138
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TABLE 38. dσ
dΩ

data for W = 2.330± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.008732281 0.001309842
-0.5375 0.0375 0.007168361 0.001075254
-0.4625 0.0375 0.01016431 0.001524647
-0.3875 0.0375 0.008942798 0.00134142
-0.3125 0.0375 0.005015417 0.0007523126
-0.2375 0.0375 0.003954974 0.0005932461
-0.1625 0.0375 0.004859784 0.0007289676
-0.0875 0.0375 0.007332777 0.001099916
-0.0125 0.0375 0.007356951 0.001103543
0.0625 0.0375 0.009756714 0.001463507
0.1375 0.0375 0.01089654 0.001634481
0.2125 0.0375 0.01797617 0.002696426
0.2875 0.0375 0.01714692 0.002572038
0.3625 0.0375 0.01370093 0.00205514
0.4375 0.0375 0.03063086 0.00459463
0.5125 0.0375 0.03972464 0.005958696
0.5875 0.0375 0.05286775 0.007930162
0.6625 0.0375 0.06290077 0.009435115
0.7375 0.0375 0.07852696 0.01177904
0.8125 0.0375 0.1074581 0.01611871
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TABLE 39. dσ
dΩ

data for W = 2.350± 0.010 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.004289021 0.0006433531
-0.5375 0.0375 0.007954809 0.001193221
-0.4625 0.0375 0.006030439 0.0009045658
-0.3875 0.0375 0.007822247 0.001173337
-0.3125 0.0375 0.005516218 0.0003774328
-0.2375 0.0375 0.005215077 0.0007822615
-0.1625 0.0375 0.006553603 0.0009830405
-0.0875 0.0375 0.006999124 0.001049869
-0.0125 0.0375 0.01085278 0.001627917
0.0625 0.0375 0.008114471 0.001217171
0.1375 0.0375 0.007183496 0.0006275244
0.2125 0.0375 0.0137387 0.002060804
0.2875 0.0375 0.02463611 0.003695417
0.3625 0.0375 0.02426786 0.003640179
0.4375 0.0375 0.03644476 0.005466714
0.5125 0.0375 0.02846118 0.004269177
0.5875 0.0375 0.05182724 0.007774086
0.6625 0.0375 0.08261397 0.01239209
0.7375 0.0375 0.09202031 0.01380305
0.8125 0.0375 0.09914898 0.01487235
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TABLE 40. dσ
dΩ

data for W = 2.380± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.003439683 0.0006879365
-0.5375 0.0375 0.006397519 0.001479504
-0.4625 0.0375 0.00808561 0.002017121
-0.3875 0.0375 0.003935012 0.0003870024
-0.3125 0.0375 0.005124992 0.001024998
-0.2375 0.0375 0.005691437 0.001138287
-0.1625 0.0375 0.004951225 0.000990245
-0.0875 0.0375 0.01059925 0.00211985
-0.0125 0.0375 0.009943535 0.001988707
0.0625 0.0375 0.004704973 0.0007409945
0.1375 0.0375 0.01518588 0.003037175
0.2125 0.0375 0.01288198 0.002576395
0.2875 0.0375 0.01241571 0.002483143
0.3625 0.0375 0.02208237 0.004416475
0.4375 0.0375 0.01533162 0.003066324
0.5125 0.0375 0.02659439 0.005318877
0.5875 0.0375 0.04905312 0.009810623
0.6625 0.0375 0.05542368 0.01108474
0.7375 0.0375 0.06742439 0.01348488
0.8125 0.0375 0.09061724 0.01812345
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TABLE 41. dσ
dΩ

data for W = 2.420± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.00381006 0.00236012
-0.5375 0.0375 0.003242614 0.0006485229
-0.4625 0.0375 0.002130519 0.0002261037
-0.3875 0.0375 0.007008017 0.001401603
-0.3125 0.0375 0.003300331 0.0006600663
-0.2375 0.0375 0.004450344 0.0008900687
-0.1625 0.0375 0.003039626 0.0006079252
-0.0875 0.0375 0.004886001 0.0009772002
-0.0125 0.0375 0.005849805 0.001169961
0.0625 0.0375 0.0065406 0.00310812
0.1375 0.0375 0.007156455 0.001431291
0.2125 0.0375 0.00844757 0.001689514
0.2875 0.0375 0.01821382 0.004642765
0.3625 0.0375 0.01538998 0.003077996
0.4375 0.0375 0.02069992 0.004139983
0.5125 0.0375 0.02991633 0.005983265
0.5875 0.0375 0.04392683 0.008785366
0.6625 0.0375 0.04611666 0.009223333
0.7375 0.0375 0.06791974 0.01358395
0.8125 0.0375 0.07345816 0.01469163
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TABLE 42. dσ
dΩ

data for W = 2.460± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.005912514 0.001182503
-0.5375 0.0375 0.003424137 0.0006848275
-0.4625 0.0375 0.002077152 0.0004154303
-0.3875 0.0375 0.0017126214 0.0001425243
-0.3125 0.0375 0.003080046 0.0006160091
-0.2375 0.0375 0.001806488 0.0003612976
-0.1625 0.0375 0.006363892 0.001872778
-0.0875 0.0375 0.001530188 0.0003060376
-0.0125 0.0375 0.006001724 0.001200345
0.0625 0.0375 0.0107137 0.002142741
0.1375 0.0375 0.006809697 0.001361939
0.2125 0.0375 0.009328133 0.001865627
0.2875 0.0375 0.01433785 0.002867569
0.3625 0.0375 0.01239963 0.002479927
0.4375 0.0375 0.0151719 0.00303438
0.5125 0.0375 0.02369766 0.004739531
0.5875 0.0375 0.03324573 0.006649147
0.6625 0.0375 0.04414127 0.008828253
0.7375 0.0375 0.06291191 0.01258238
0.8125 0.0375 0.1096725 0.02193449
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TABLE 43. dσ
dΩ

data for W = 2.500± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.003196983 0.0007992458
-0.5375 0.0375 0.001192025 0.0002980062
-0.4625 0.0375 0.001183027 0.0001795757
-0.3875 0.0375 0.001481957 0.0003704893
-0.3125 0.0375 0.001564945 0.0003912362
-0.2375 0.0375 0.002499707 0.0006249266
-0.1625 0.0375 0.006560223 0.001890056
-0.0875 0.0375 0.007370022 0.00092505
-0.0125 0.0375 0.004512946 0.0003782365
0.0625 0.0375 0.006969774 0.00642443
0.1375 0.0375 0.00152241 0.000180602
0.2125 0.0375 0.002428659 0.0006071647
0.2875 0.0375 0.001888922 0.0004722305
0.3625 0.0375 0.007727962 0.000931991
0.4375 0.0375 0.003907208 0.0009768021
0.5125 0.0375 0.01585854 0.001964634
0.5875 0.0375 0.02854106 0.007135264
0.6625 0.0375 0.04944441 0.0043611
0.7375 0.0375 0.05789483 0.00547371
0.8125 0.0375 0.1010014 0.01525034
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TABLE 44. dσ
dΩ

data for W = 2.540± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.001921216 0.00017842
-0.5375 0.0375 0.001739837 0.0003479675
-0.4625 0.0375 0.001394763 0.0002789526
-0.3875 0.0375 0.001749773 0.000149955
-0.3125 0.0375 0.001033204 0.0002066408
-0.2375 0.0375 0.001994448 0.0003988897
-0.1625 0.0375 0.005635781 0.00734156
-0.0875 0.0375 0.004670004 0.0009340008
-0.0125 0.0375 0.005212459 0.00062492
0.0625 0.0375 0.004829325 0.0009658651
0.1375 0.0375 0.007000614 0.000700123
0.2125 0.0375 0.009288988 0.000857798
0.2875 0.0375 0.004890108 0.0009780217
0.3625 0.0375 0.008011029 0.001602206
0.4375 0.0375 0.005912882 0.00082576
0.5125 0.0375 0.02287262 0.004574524
0.5875 0.0375 0.02292876 0.004585753
0.6625 0.0375 0.03784345 0.007568691
0.7375 0.0375 0.05108257 0.0051651
0.8125 0.0375 0.06698237 0.00639647
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TABLE 45. dσ
dΩ

data for W = 2.580± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.00375705 0.0007514101
-0.5375 0.0375 0.001395024 0.0002790048
-0.4625 0.0375 0.0009604822 0.0001064179
-0.3875 0.0375 0.001753251 0.0003506502
-0.3125 0.0375 0.002618278 0.0005236556
-0.2375 0.0375 0.001157468 0.0002314937
-0.1625 0.0375 0.002618278 0.0001920964
-0.0875 0.0375 0.006741399 0.00134828
-0.0125 0.0375 0.004433619 0.0008867238
0.0625 0.0375 0.006363535 2.403985e-04
0.1375 0.0375 0.003396804 0.001272707
0.2125 0.0375 0.008112113 0.0006793608
0.2875 0.0375 0.003325523 0.001622423
0.3625 0.0375 0.003977073 0.0004651045
0.4375 0.0375 0.01055155 0.0007954147
0.5125 0.0375 0.01914663 0.00211031
0.5875 0.0375 0.01987435 0.003829326
0.6625 0.0375 0.04112102 0.00397487
0.7375 0.0375 0.06865016 0.008224204
0.8125 0.0375 0.06698657 0.00783003
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TABLE 46. dσ
dΩ

data for W = 2.620± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.003026282 0.0007565704
-0.5375 0.0375 0.00257802 0.000394505
-0.4625 0.0375 0.0007173029 0.0001793257
-0.3875 0.0375 0.0009944373 0.0002486093
-0.3125 0.0375 0.006388471 0.000597118
-0.2375 0.0375 0.004802513 0.001200628
-0.1625 0.0375 0.002026178 0.0005065446
-0.0875 0.0375 0.001787721 0.0004469301
-0.0125 0.0375 0.0058332 0.00064583
0.0625 0.0375 0.001267136 0.0003167841
0.1375 0.0375 0.002091556 0.0005228891
0.2125 0.0375 0.002064092 0.0005160229
0.2875 0.0375 0.003918611 0.0009796527
0.3625 0.0375 0.007672107 0.000918027
0.4375 0.0375 0.004249731 0.00062433
0.5125 0.0375 0.02560011 0.006400027
0.5875 0.0375 0.01684348 0.004210871
0.6625 0.0375 0.05357679 0.0053942
0.7375 0.0375 0.05049508 0.0062377
0.8125 0.0375 0.09838795 0.00096992
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TABLE 47. dσ
dΩ

data for W = 2.660± 0.020 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.0019992 0.0003998399
-0.5375 0.0375 0.001028262 0.0002056524
-0.4625 0.0375 0.0008103393 0.0001620679
-0.3875 0.0375 0.00133841 0.0002676819
-0.3125 0.0375 0.0016724416 0.0001344883
-0.2375 0.0375 0.002373279 0.0004746559
-0.1625 0.0375 0.001733588 0.0003467176
-0.0875 0.0375 0.001984559 0.0003969117
-0.0125 0.0375 0.004630781 0.0009261562
0.0625 0.0375 0.002180126 0.0002360253
0.1375 0.0375 0.002560149 0.0003120297
0.2125 0.0375 0.002244725 0.0002489449
0.3625 0.0375 0.006135997 4.935519e-05
0.4375 0.0375 0.00615062 0.001227199
0.5125 0.0375 0.008686558 0.001230124
0.5875 0.0375 0.02116351 0.001737312
0.6625 0.0375 0.03084692 0.004232702
0.7375 0.0375 0.04084692 0.006169384
0.8125 0.0375 0.04441338 0.008882677
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TABLE 48. dσ
dΩ

data for W = 2.705± 0.025 GeV

cos θη
′

cm ±d cos θη
′

cm
dσ
dΩ

[

µb

sr

]

∆
(

dσ
dΩ

)

-0.6125 0.0375 0.001087858 0.0002175716
-0.5375 0.0375 0.0008115155 0.0001623031
-0.3875 0.0375 0.001277962 0.0002555923
-0.2375 0.0375 0.0009437799 0.000188756
-0.1625 0.0375 0.001325875 0.000265175
-0.0875 0.0375 0.0022782676 0.0001556535
-0.0125 0.0375 0.00220606 0.0004412119
0.1375 0.0375 0.004174573 0.001034915
0.2125 0.0375 0.00562374 0.001324748
0.2875 0.0375 0.001748479 0.0003496958
0.3625 0.0375 0.00332434 0.000664868
0.4375 0.0375 0.002364784 0.0004729568
0.5125 0.0375 0.005352685 0.001070537
0.5875 0.0375 0.01653375 0.003306751
0.6625 0.0375 0.02268334 0.004536667
0.7375 0.0375 0.03401515 0.006803029
0.8125 0.0375 0.08351634 0.00870327
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APPENDIX B

M 2
X(pπ

+π−) DISTRIBUTIONS

The figures below show M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for

mππ bins in the range 500 - 860 MeV with a regular background fitted with a polynomial of

first order. Depending on each bin, after the polynomial background is rejected, the signal

is obtained from a gaussian or double gaussian fit to the histogram.
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FIG. 72. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 500 - 560 MeV.
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FIG. 73. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 560 - 620 MeV.
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FIG. 74. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 620 - 680 MeV.
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FIG. 75. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 680 - 740 MeV.
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FIG. 76. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 740 - 800 MeV.
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FIG. 77. M2
X(pπ

+π−) distributions after side band substraction (FIG. 43) for mππ bins in
the range 800 - 860 MeV.



162

VITA

Georgie Mbianda Njencheu

Department of Physics

Old Dominion University

Norfolk, VA 23529

August 2012 - May 2017: PhD in Physics- Old Dominion University,

Norfolk, VA, USA

August 2010 - May 2012: MS in Physics- Old Dominion University,

Norfolk, VA, USA

August 2008 - June 2010: MEng in Materials and Sensor Systems for Environmental

Technologies - University of Bologna, Italy and

Polytechnic University of Valencia, Spain

August 2006 - June 2008: MSc in Physics - University of the Witwatersrand,

Johannesburg, South Africa

August 2005 - June 2006: PGDip in Mathematical Sciences - AIMS

(African Institute for Mathematical Sciences)

University of Cape Town, South Africa

January 1994 - July 1997: BSc in Physics and Computer Science - University of Buea,

Cameroon

Typeset using LATEX.


	Old Dominion University
	ODU Digital Commons
	Spring 2017

	Photoproduction and Radiative Decay of ηt Meson in CLAS at JLAB
	Georgie Mbianda Njencheu
	Recommended Citation


	List of Tables
	List of Figures
	Introduction and Motivation
	Unique capabilities of JLab
	Structure of the Thesis

	Theoretical background
	Pseudoscalar mesons
	The bremsstrahlung process
	The  Photoproduction
	Radiative decay of 

	CEBAF and the CLAS detector at Thomas Jefferson National Accelerator Facility 
	Continuous Electron Beam Accelerator Facility
	The Bremsstrahlung Photon Tagger
	Hall-B Beamline Devices
	CEBAF Large Acceptance Spectrometer (CLAS)
	Triggering and Data Acquisition

	Data Analysis
	Good Runs
	Event Selection
	Energy and Momentum Corrections
	Detector Performance Cuts
	Particle Identification
	Extracting signal events
	Acceptance Correction and Normalization

	Results
	Differential Cross Sections
	Method to extract  + -  decay parameters  and 
	Systematic Uncertainties
	Comparison with previuos Data and Theory
	Summary

	BIBLIOGRAPHY
	Tabular Data
	MX2(p+-) distributions
	VITA



