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Transparent amorphous oxide semiconductors are a relatively new class of

materials which show significant promise for electronic device applications. The electron

mobility in these materials is at least ten times greater than that ofthe current dominant

material for thin-film transistors: amorphous silicon. The density of states within the gap

of a semiconductor largely determines the characteristics of a device fabricated from it.

Thus, a fundamental understanding of the electronic structure within the mobility gap of

amorphous oxides is crucial to fully developing technologies based around them.

Amorphous zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO) were

investigated in order to determine this sub-gap structure. Junction-capacitance based

methods including admittance spectroscopy and drive level capacitance profiling (DLCP)

were used to find the free carrier and deep defect densities. Defects located near

insulator-semiconductor interfaces were commonly observed and strongly depended on

fabrication conditions. Transient photocapacitance spectroscopy (TPC) indicated broad
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valence band-tails for both the ZTO and IGZO samples, characterized by Urbach

energies of 11 0±20 meV. These large band-tail widths imply that significant structural

disorder exists in the atomic lattice of these materials. While such broad band-tails

generally correlate with poor electronic transport properties, the density of states near the

conduction band is more important for devices such as transistors. The TPC spectra also

revealed an optically active defect located at the insulator-semiconductor junction.

Space-charge-limited current (SCLC) measurements were attempted in order to deduce

the density of states near the conduction band. While the SCLC results were promising,

their interpretation was too ambiguous to obtain a detailed picture of the electronic state

distribution. Another technique, modulated photocurrent spectroscopy (MPC), was then

employed for this purpose. Using this method narrow conduction band-tails were

determined for the ZTO samples with Urbach energies near 10 meV. Thus, by combining

the results of the DLCP, TPC and MPC measurements, a quite complete picture of the

density of states within the mobility gap of these amorphous oxides has emerged. The

relationship of this state distribution to transistor performance is discussed as well as to

the future development ofdevice applications of these materials.
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CHAPTER I

INTRODUCTION

1.1. Amorphous Materials

A wide variety of materials used every day including window glass, candle wax and even

cotton candy have an amorphous atomic structure. The term amorphous simply means

that there is short range atomic order in the lattice, however there is no long range

repeatability of this order. There may be the same number of nearest neighbors to an

atom which are located approximately the same distance away from said atom with

roughly similar bond angles. A cartoon of a disordered lattice as opposed to a crystalline

lattice is shown in Figure 1.1, illustrating the disorder present in these materials.

However, if one were to look at the radial distribution function of the next nearest

neighboring atoms and those further away, the function would appear smeared out,

without any of the discrete features that are found in crystalline lattices. A good example

of this, for amorphous germanium, can be found in Zallan.[I] Amorphous matrices are

formed when materials do not have time for the constituent atoms to rearrange
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Figure 1.1: Sketch of a crystalline lattice (left) as opposed to an amorphous lattice (right).

The underlying crystalline structure is evident in the amorphous network, however the

bond angle disorder negates any long-range periodicity. Structural disorder such as

impurities, interstitial atoms, and lattice vacancies may also be present in disordered

materials.

themselves into the most thermodynamically stable state before they are cooled. Thus it

is theoretically possible for most materials to be fabricated with an amorphous structure,

although it may not be practically possible. For electronic device applications,

amorphous materials are desirable because they can typically be fabricated in large areas

at lower temperatures, opening the door to flexible substrates and lower costs of

manufacturing.

The very possibility of amorphous semiconductors was debated until the 1950s, when

research began on amorphous selenium. The fact that the bond lengths and angles are

distorted destroys the repeatability of the unit cell, thus the materials do not contain any

of the long-range periodic structure which enables mathematical descriptions of
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crystalline semiconductors. In spite of this, many of the formalisms used to describe

crystalline materials work well in describing amorphous semiconductors as well. Most

notable, and most important in semiconductor physics, are the conduction and valence

bands, and the "forbidden" energy gap between the bands. The difference in the

descriptions of the crystalline and amorphous materials arises in exactly how one defines

the band-gap in the amorphous state. In purely crystalline materials, there is a complete

lack of states within the band gap, and the delocalized conduction and valence bands

begin somewhat abruptly at the band edges. In amorphous materials there is a smooth

transition between the localized states (in which carriers can become trapped) and the

states which extend throughout the lattice. Thus, it is more common to speak of a

"mobility gap" in amorphous materials. That is, in crystalline materials there are no

states below the gap for electrons to reside, while in amorphous materials electrons below

the mobility gap can become trapped in localized states. In either material, an electron

with energy above the gap will be able to conduct DC current.

In addition to the band-tails extending into the band-gap, in amorphous and disordered

materials it is also common to find bands of defect states within the mobility gap. These

defects are the result of lattice disorder including atomic vacancies, substitutions and

interstitials. In most amorphous and disordered materials being developed for

semiconductor applications, these defect states typically have a density between 1014 cm-3

and 1017 cm-3
• A worthwhile goal in order to produce the full potential of a device built

around an amorphous material is to completely understand and control the defect
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structure within the mobility gap. Some parts of the density of states are intrinsic to a

material, however others can by modified with fabrication and passivation methods.

Hydrogenated amorphous silicon (a-Si:H), probably the most prototypical disordered

semiconductor, has been very extensively studied since the first report of an a-Si

photovoltaic solar cell in 1976 by Carlson and Wronski. [2] The promise of cheap,

renewable energy brought many investigations, both experimental and theoretical, into

the fundamental nature of this disordered material. The amount of insight gained into the

atomic processes that are present in a-Si certainly sets the standard high in the

development of other disordered materials. While there are still many questions that

remain unanswered, there is a majority consensus on the sub-band gap defect structure

and the atomic origin of the defects. This is illustrated in Figure 1.2 showing exponential

band tails extending into the gap plus several mid gap defects attributed to dangling Si

bonds. Amorphous silicon was nearly unusable for devices because of the very large

density of dangling bond defects initially. Spear and LeComber discover that the defect

density could be greatly reduced through hydrogenation, and also that a-Si:H could

exhibit both n-type and p-type conductivity as dopants were added.[3] Brodski later

quantified the importance of hydrogen in the network in 1977.[4] Hydrogen passivates

the silicon dangling bonds and can reduce the deep defect density from near 1019 cm-3 to

1015 cm-3
. As a result of these investigations, the stabilized conversion efficiency of

amorphous silicon photovoltaic solar cells has increased from 2.4% to over 12%.

Amorphous silicon has also become widely used in thin-film transistor devices and
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maintains a dominant rote in driving LCD disptays. The benefits of large area and lower

temperature deposition outweigh the downsides of decreased device performance when

compared to crystalline silicon in certain apptications such as LCD displays.
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Figure 1.2: Sub band-gap density of states in amorphous silicon showing exponential

band taits and discrete defect bands. The exponential band tails stem from the structural

disorder in the lattice while the discrete defect bands arise from impurities such as

dangling bonds.

To fUl1her complicate the sub-band gap defect structure in amorphous materials,

electrically active defects can also readily appear at interfaces and junctions as well as in

the bulk of the semiconductors. All of these electrically active defects can limit the

performance of whatever device is being utilized, whether that refers to switching speeds

in electronic circuits or conversion efficiencies in photovoltaic solar cells. Thus, in order
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to achieve the full potential of devices that are manufactured from amorphous and

disordered materials, a fundamental understanding of the sub-band gap defect structure is

required. Only at this point can the material be fine-tuned by means of passivating

detrimental defects or introducing dopants to control the carrier density.

1.2. The Urbach Edge

The states which extend from the edge of the gap into the "forbidden region" are

commonly referred to as band-tails. The density of states typically decreases

exponentially into the gap for at least several orders of magnitude. This phenomenon

was first noticed in 1953 by Franz Urbach[5] while studying optical absorption in AgBr,

and has consequently been found in a very wide range of materials. The slope of this

decay is thus called the Urbach energy, and is closely related to the amount of disorder in

the material. The density of states extending into the gap is typically represented as

follows:

£-£0

N oc NoeE"iJ

Where No is the density of states either at the conduction band or valence band edge, E is

the optical energy, Eo is a fitting parameter that has to do with the band gap of the

material, and Eu is the Urbach energy representing the slope ofthe decay. The disorder
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represented by the Urbach energy can be both thermal and structural. Crystalline

materials have an Urbach energy which is attributed solely to thermal fluctuations in the

lattice, thus providing a direct measurement of the thermal occupation of phonon states in

the crystal. In amorphous materials the Urbach energies are typically much larger, and

contain contributions from the bond angle variations, interstitial atoms, and vacancies

where an atom is missing from the lattice. While studying hydrogenated amorphous

silicon, Cody concluded that the types of disorder are additive[6], meaning that the

Urbach energy can be represented as follows:

Where T and X correspond to the thermal and structural contributions to the disorder.

The investigation into understanding the origins and effects of Urbach edges in

amorphous materials continues to yield interesting developments. Recently Pan and

Drabold used a simulated 512-atom model to investigate the atomic origins of the Urbach

tails in amorphous silicon[7]. They found very interesting results including the presence

of "islands and filaments" of long and short bonds which appear to be connected to the

tail states in the electronic structure. While the most intuitive explanation ofband tails

might be the random fluctuation of the conduction and valence bands[8], this result finds

more established order in the amorphous network.
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1.3. Thin-Film Transistors and Mobility

Transistors in general are one of the primary building blocks in any electronics

application. Since the first transistor action was demonstrated in 1947 by Bardeen and

Brattain[9], transistors have become smaller and more efficient devices. Transistors act

as a very low-power switch: by applying a potential to the gate, the semiconductor is

converted from an insulating layer to a conducting channel between the source and the

drain. The typical structure of a thin-film transistor (TFT) is shown in Figure 1.3,

illustrating the co-planar source and drain contacts as well as the gate. The transistors are

termed "trun-film" to refer to the channel layer thickness, which is normally less than

several hundred nanometers and are at most several micrometers thick.

Source
Channel

Drain
I I I

I I
Insulator

Gate

Figure 1.3: Thin film transistor (TFT) structure. When the correct bias is applied to the

gate, the channel layer will switch between being conducting and insulating between the

source and drain.
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When a sufficient potential is applied to the gate, an excess of carriers (either electrons or

holes) collects along the interface between the insulator and the semiconductor, creating

the conducting layer. Depending on the materials used, transistors can be either depletion

mode or enhancement mode, referring to whether or not the channel is conducting with

no potential applied to the gate, respectively. These types of transistors can be thought of

as normally on devices or normally off devices. This nomenclature persists whether the

channel is n-type or p-type. A typical way to characterize transistor devices is shown in

Figure 1.4, measuring the current between the source and the drain (at one voltage) while

varying the potential on the gate.
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Figure 1.4: Typical characterization of thin-film transistor performance. This device

shows very good performance behavior with a on/off current ratio of>106 and a turn-on

voltage near VGS = OV.
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When this device has Vos ~ -10 V, the device is "off' and very little current flows

between the source and the drain, less than 10-10 A. However, when Vos ~ +lOV, the

current increases by more than seven orders of magnitude to better than 10-3 A. Note also

the turn-on voltage where the current starts to increase (in this device near -5 V) and the

quite shallow slope of the plot near 0 V. Both of these parameters are very important for

device performance as well, and depend strongly on the characteristics of the interface

between the channel layer and the insulator.

1.4. Mobility: Device and Bulk

Mobility measurements can provide a good idea of the quality of a material for

electronics applications. In the most general sense, mobility measures how efficiently a

carrier moves in response to an applied electric field. The mobility, !l, is then defined to

be

With this constant, the electron drift velocity can be written as a function of the applied

electric field E. In crystalline materials, where the mean free path is much larger than the

bond length, the mobility can be related to other fundamental properties:
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where q is the fundamental charge, 'tc is the mean free time, and mn is the effective mass

ofthe carrier. The mean free time is determined by the probability of scattering events,

both with the lattice and with impurities. The effective mass of the carrier is determined

by the band structure of the material. In amorphous materials the mobility becomes

much more complicated. For instance, how could one determine an effective mass for an

electron without a band structure, when the band structure is calculated from the

periodicity of the lattice? In most amorphous materials, an "effective mobility" is used

which may be influenced by a number of factors including the disorder and fluctuations

in the structure ofthe lattice.[l, 10]

Thorough discussions of carrier mobility in semiconductors can be found in texts such as

Sze[ll]. For reference, doped crystalline silicon will typically have electron mobilities

near 200 cm2(V*s-l) while the highest mobilities measured for amorphous silicon are

around 1 cm2(V*s-I). The mobility of a material is typically limited by disorder in the

material such as impurities and grain boundaries, thus it is easy to recognize that the

mobility is greatly impacted by the Urbach energy in a material. It is important, however,

to distinguish between several different ways to measure the mobility. These can be

divided into two sets: mobility measurements on the bulk of a semiconductor, and

mobilities derived from transistor current vs. voltage characteristics.
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Bulk Measurements

Hall effect and four point resistivity measurements are the most common way to

determine the carrier concentration and mobility of a semiconductor. The Hall effect

measures the potential generated across a sample when a magnetic field is applied in a

direction perpendicular to the direction of current flow.[ll] That is, the potential (and the

associated electric field, cy ) is generated in the direction orthogonal to both the direction

of current flow (In) and the applied magnetic field (Bz). The Hall coefficient is defined as

Thus the carrier concentration can be determined from the Hall effect measurements (q is

a fundamental unit of charge). Although the conductivity of a semiconducting sample

technically depends on both the electrons and holes, typically the carrier concentration of

the majority carrier is many orders ofmagnitude larger than that of the other, which is

then regarded as insignificant. The conductivity for a sample with an excess of electrons

(n-type) can then be written as

(J = nq/ln

Now, knowing the carrier concentration and the conductivity of a sample, the electron

mobility can be determined. Both Hall Effect and four point resistivity measurements
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can be performed on samples fabricated in the van der Pauw geometry, enabling accurate

mobility determinations.

Another common way to measure the bulk mobility is a time-of-flight measurement,

where carriers are generated at one side of a sample and allowed to drift to the other

under an applied electric field. For a good descriptions of drift-mobility experiments in

relation to the Urbach edges in disordered silicon materials, see the articles written by

Tiedje[12] and Schiff (2004)[13]. Also, Orenstein and Kastner discuss mobilities in the

amorphous chalcogenide system.[14]

Device Mobility Measurements

Transistor curves such as shown in Figure 1.4 can also provide mobility information.

Mobilities derived from the transistor curves are typically referred to as device mobilities,

and while they do not necessarily reflect the mobility of the bulk of the semiconducting

channel, they effectively characterize the characteristics of the entire device. The average

device mobility is derived as follows:
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In this expression, VGS is the potential between the gate and the source, Wand L are the

width and length of the channel, C1ns is the insulator capacitance, VON is the turn-on

voltage, and Go(VGS) is the drain conductance. The expression is evaluated at small

values of Vos, in the linear regime of transistor performance, so that the channel can be

modeled as a resistor. The drain conductance, Go, is found at small values ofVos as

well:

Incremental and saturation mobilities can also be derived from transistor current vs

voltage characteristics. These mobilities contain very specialized information and will

not be referenced here. For a discussion of all three types of device mobilities with

respect to thin film transistors, see Hoffman[15].

1.5. Transparent Conducting Oxides

Transparent conducting oxides (TCOs) formed with post-transition metal cations such as

indium tin oxide (ITO) and zinc oxide (ZnO) have been investigated for a variety of

applications for over 50 years. The material properties of high conductivity combined

with transparency have proven to be very useful in a wide variety of applications from
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photovoltaic solar cells to defrosting car windshields to UV opto-electronics. The

conductivity ofmost TCOs is intrinsically n-type, however typically several orders of

magnitude less than that of metals, so a variety of doping schemes are used to increase

the conductivity of the materials such as SnOz:F, Inz03:Sn and ZnO:AI.[16] The electron

mobility in these crystalline materialsis quite high: up to 100 cmZy-ls-l.

Because of the broad applicability of these materials, a wide variety of new components

have been investigated for application in TCOs with the hope of increasing the

conductivity to near metallic levels while at the same time decreasing costs. Researchers

at the National Renewable Energy Laboratories have developed a way to explore broad

regions ofcompositional phase space quickly by stoichiometrically grading samples in

one and even two dimensions on a single substrate. [17] Many of these materials could be

good candidates for semiconducting applications as well, with slightly different

processing conditions and goals.

The amount of experimental work directed towards TCOs has also attracted theoretical

investigations into the fundamental processes of present in the materials. There is some

consensus that the conductivity in the materials is controlled by oxygen vacancies[18-20],

however recent work by Janotti[21] has challenged this idea, at least in ZnO. While

initial work suggested that the oxygen vacancies were close enough to the conduction

band to donate carriers, more recent work has shown that the level is actually quite deep.
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Janotti suggests that all intrinsic point defects in the material are too deep to efficiently

dope the material, and instead outside dopants, such as hydrogen, should be considered.

Another possibility for the source of intrinsic carriers in these materials could be

interstitial metal atoms, as suggested by Kilic and Zunger.[22]

Transparent conducting oxides in the amorphous, rather than the crystalline, state have

been attracting attention recently as well. Amorphous Tcas have been shown to retain

the high electron mobilities associated with crystalline TCas, with the added benefit of

enabling low-temperature depositions and flexible substrates.[23, 24] While many of the

formalisms developed in the extensive research into electronic processes in a-Si can be

readily applied to amorphous TCas, the differences between the materials must be noted

as well. In a-Si, band structure calculations have determined that the valence band

maximum is composed primarily of p-states and the conduction band minimum consists

of mixed s- and p-states.[25] The angular dependence of the p-states means that the band

structure is very susceptible to disorder in the material, and localized states near the

mobility edges are easily produced. Indeed, the Urbach energy of the valence band tail in

a-Si is typically near 45-50 meV and while the Urbach energy of the conduction band tail

is lower, around 25-30 meV, it is still large enough to reduce the effective electron

mobility to roughly 1 cm2V-1s-1 at room temperature. In contrast, the conduction band

minimum in TCOs is composed primarily of s-states from the metal cations such as Sn,

Zn or Ga. If one were to consider any interaction between the orbitals of two
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neighboring atoms, the distance between the atoms (r), angle between the orbitals (0),

and the dihedral (vertical) angle (qJ), or

V(l, m) = VCr, fJ, lfJ)

However, when only the s-states need to be considered, all angular dependence to the

orbitals can be neglected due to the spherical symmetry of the system, leaving just

variations in the next-nearest neighbor distance. [25, 26]

VCl, m) = VCr)

Thus, structural disorder in amorphous TCOs should be expected to have little effect on

the electron transport mechanism. The valence band maximum, however, is composed of

p-states from the oxygen anions in TCOs, so the Urbach edge of the valence band-tail

could be expected to reflect the structure disorder of amorphous TCOs. The first material

known to exhibit this dichotomous type of behavior was amorphous SiOz.[27] The

electron drift mobility of this disordered material was measured by Hughes to be near 20

cmZV-1s-1.[28] This high mobility can be explained by realizing that the conduction band

of SiOz is composed of Si and 0 s-states, while the valence band depends on p-states.

Thus there will be very few localized states to trap electrons and limit the mean free path

length.
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Zinc stannate, the crystalline form of one of the semiconductors on which I will focus,

was the subject of some attention for a while. Young, following the preliminary work of

Wu and Mulligan[29], found that the intrinsic optical band gap of zinc stannate to be 3.35

eV, which increases with increasing carrier density up to 3.85 eV due to the Burstein

Moss shift.[30] He also found that the electron effective mass ranges from 0.16 IIle to

0.26 me depending on the carrier density. Young also briefly examined amorphous ZTO

films to determine the local atomic environments and concluded that they were very

similar to the crystalline films. [31 ]

Further work has been carried out by Walsh[32], Da Silva[33] and Nomura[34]

investigating the nature of conduction in the amorphous TCOs with an emphasis on

amorphous InGaZn04. Walsh used density functional theory (DFT) to model the

amorphous system in order to analyze the distribution of electronic states near the

conduction band and valence band edges. He found that the primary difference between

the amorphous and crystalline phases of IGZO is a series of bands which reside near the

valence band maximum. He found no additional states near the conduction band

minimum, explaining the persistence of good n-type conductivity in amorphous TCOs.

Nomura[34] compared x-ray absorption fine structure (XAFS) data for IGZO to

calculations to investigate the short range ordering and coordination structures. He found

that the short range structures in a-IGZO are almost identical to that of crystalline IGZO,

and that the conduction band minimum is composed primarily of In 5s orbitals.
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1.6. Amorphous Oxide Semiconductors

Prior to 1996, only one transparent conducting material was investigated in its amorphous

state: a-In20d35, 36] In 1996, Hosono et. al. proposed that many ofthe crystalline

materials used for transparent conducting oxides would retain their high mobility even if

they were fabricated in an amorphous state. [37] It is now known that a wide range of

heavy metal cations, such as In, Ga, Sn, Zn, Cd, etc., retain their high electron mobilities

after they have been alloyed into amorphous oxides. Additionally, by controlling the

processing conditions, the carrier concentration can be varied from 1015 cm-3 to around

1020 cm-3
. This enables the use of amorphous oxides in both conductive applications and

semiconducting applications. The band gaps of the amorphous oxide semiconductors

(AOSs) vary significantly depending on the cations used, from around 2 eY to 3.8 eY,

opening the door to high performance fully transparent electronic devices (all visible light

photons have energy less than 3.1 eV). The first fully transparent TFT was fabricated

around a crystalline ZnO channel layer in 2003 by Hoffman et. al.[38], however the

channel mobility was barely better than that of a-Si:H: around 1 cm2y-1s-1
. Further

development of the AOSs led to a completely transparent TFT built around a ZTO

channel layer which yielded mobilities up to 50 cm2y-1s-1.[39] So, while the mobility of

AOS's are not as good as those of doped crystalline silicon (c-Si) (typically at least 200

cm2y-1s-1
), they are much higher than those of a-Si:H. The transparency ofthese

materials is illustrated in Figure 1.5, adapted from Chiang et. al.[39], which is the
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transmission through an entire transparent thin film transistor built around a ZTO channel

layer.
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Figure 1.5: Transmittance of fully transparent thin film transistor with ZTO channel

layer.

Anwar[40] has investigated the optical absorption characteristics of several amorphous

oxide semiconductors in the ZnO:Sn02 family. Through direct optical absorption

measurements, he found very broad Urbach edges in the majority of the samples, from

170 meV to 230 meV. Substrate temperature had a large effect on the properties of the

evaporated films: increased substrate temperature led to a decrease in the optical band

gap, which was attributed to impurity scattering. It was also found that the optical band

gap increased as the film thickness was increased up to 200 nm. Tin was identified as a

source of electrons which increased the carrier density in the films.
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1.7. Zinc Tin Oxide and Indium Gallium Zinc Oxide

The two AOSs on which r have focused, zinc tin oxide (ZTO) and indium gallium zinc

oxide (IGZO) both have band gaps between 3.3 and 3.6 eV, and are currently being

developed for transparent electronics applications. Transistors based on ZTO and rGZO

show very good device characteristics, with turn-on voltages near 0 V and on to off

current ratios of > 106
. Displays are already being produced which are fabricated around

AOS TFTs. However, the properties of these devices are very dependent on the growth

and annealing conditions which means they need to be well characterized and understood

at a basic level. For example, transistors with amorphous ZTO as the channel layer

perform best after a 600°C post-deposition anneal. Table 1.1, adapted from Chiang[39],

illustrates the increase in device performance (high mobility and turn-on voltage near 0

V) with increasing anneal temperature up to the point where the ZTO was observed to

start crystallizing, 650°C.

Table 1.1: The transistor performance increases as the post-deposition anneal

temperature increases up to the crystallization temperature of 650°C.

Tanneal (OC) 100 200 400 600 800

J.L (cm2V-1s-1) 25 25 30 26 6

Von (V) -5 -5 -1.5 .1 -3
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While these preliminary results (good transistor devices) are very promising, and

encourage further exploration into the development of these devices, the transistor

performance is currently not good enough to realize the full potential of these materials.

Modeling transistor performance to learn about basic materials properties has been

actively pursued and can be useful. However such device characteristics are typically

embedded within three levels of integration of the fundamental material properties, so

that a lot of the underlying physics can be obscured or misinterpreted. [4 1] As was

learned from the investigations into amorphous silicon, a fundamental understanding of

the density of states requires simplified device structures and specialized experiments.

At the same time, while there are many similarities between amorphous silicon and the

amorphous oxide semiconductors, key differences must also be kept in mind. Indeed,

there are sharp distinctions already. A notable example is the temperature dependent hall

mobility in a-Si:H, which changes sign at low temperatures. [42] The temperature

dependence of the hall mobility of at least several amorphous oxide semiconductors

including IGZO has been investigated by Narushima,[43] and Hosono[37] with no

indication of sign change. This can be understood by considering the mean free path of

an electron in these materials as indicated from the mobilities. In the case ofAOSs, the

mean free path is much larger than the bond length, while in amorphous silicon the mean

free path is at most equal to, and usually less than the bond length. This makes transport

in amorphous silicon more susceptible to structural disorder and much more difficult to

understand. [44]
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In order to simplify the device structure and thus hopefully gain more insight into the

fundamental structure of these materials we have focused our investigation primarily on

metal-insulator-semiconductor (MIS) capacitors, rather than transistor (triode) structures.

Such MIS capacitors allow us to investigate not only the relevant junction in the

transistors, the interface between the insulator and the semiconductor, but also the bulk of

the semiconductor independent of the source-drain interactions.

1.8. Summary

Amorphous oxide semiconductors are a new class of materials which are very promising

for the development of new electronic devices, particularly those involving transparent

electronics. The electronic properties of AOSs exceed those of hydrogenated amorphous

silicon, the current material of choice for thin-film transistors. Extensive investigations

into the basic structure and processes of amorphous silicon have allowed this material to

become heavily used in many different applications. This dissertation will attempt to

understand the fundamental structure of the density of states within the mobility gap of

the AOSs zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO). While there are

differences between amorphous silicon and AOSs, we can understand much more about

the new disordered material by drawing upon what has been learned from amorphous

silicon. An understanding of the defect structure of AOSs will allow the full potential of

these materials to be reached.
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CHAPTER II

DEVICE FABRICATION AND STRUCTURE

2.1. Fabrication Methods

All samples discussed here were fabricated either at Oregon State University or at the

University of Braunschweig in Braunschweig, Germany. Unless noted otherwise,

samples consisted of a commercially available heavily doped Si substrate capped with a

Si02 insulating layer on which the amorphous oxide semiconductor was deposited. The

samples were then finished with either a gold or aluminum thermally evaporated top

contact. This top contact was designed to be semi-transparent to enable electro-optical

characterization techniques. For a good overview of thermal oxidation techniques used

to grow the Si02 and metal evaporation techniques, consult Sze.[l] A brief discussion of

the techniques used to fabricate the amorphous oxide semiconductor layers will be

presented here.
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R.fSputtering

All amorphous oxide semiconductor layers deposited at Oregon State University were

fabricated in a custom system fabricated and designed by Chris Tasker and Hai Chiang.

Details of the tool can be found in Chiang's thesis. [2] Sputtering in general refers to the

process in which atoms are removed from a compressed target by impinging ions. The

ejected atoms then travel from the target to the substrate, on which they nucleate, to form

thin films. The sputtering target and the sample are kept in a controlled atmosphere

which depends on the material being fabricated. In this case, the environment was mixed

90% Ar and 10% O2.

In the case of conductive substrate, a DC bias between the substrate and target is

sufficient to accelerate ions produced by the interaction of cosmic rays with the ambient

gas and start the sputtering process. However, this does not work with insulating

substrates (as are used here) and an additional AC voltage must be used to sustain the

discharge. The most typical frequency of this AC voltage is 13.56 MHz, although other

frequencies can be used.
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Post-Deposition Anneal

High temperature post-deposition anneals are often used to control the structure of thin

films. Anneals were carried out at Oregon State University in either an AET Thermal

Processing, Inc. Rapid Thermal Processing System or a Barnstead Thermolyne box

furnace. Temperatures ranged from 300°C to 600 °C with ramp rates near 10°C/sec.

Anneals were performed in air, and typically lasted 1 hour.

Pulsed Laser Deposition (PLD)

Pulsed laser deposition (PLD) is a process in which a high power laser beam is focused

onto the target which is to be evaporated. [3] The constituent atoms of the target form a

plume above the target and then nucleate on the substrate. The process can either be

carried out under ultra-high vacuum or in the presence of an ambient gas beneficial to the

film being deposited, such as oxygen, as is the case for the materials discussed here.

Further information about the specifics of the PLD system employed at the University of

Braunschweig are discussed by G6rm elsewhere. [4] AOS devices deposited by PLD

have very good device characteristics without needing a post-deposition anneal, pushing

the overall fabrication temperature as low as 150°C.
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2.2. Scherrer Equation

The Scherrer equation is used to help determine the structure of a material from x-ray

scattering experiments.[5] Crystalline materials will typically produce very sharp rings in

the scattering data, and while amorphous materials will also produce rings, they will

typically be very fuzzy and smeared out. The Scherrer equation adds some quantification

to the "fuzziness" of the rings to estimate the largest grain size possible to produce the

rings. Analysis of the ZTO thin films prepared in a manner similar to that of the devices

analyzed here reveals that if there are nanocrystallites present, they are no larger than 5

nm. In contrast, ZTO films subjected to anneal temperatures above 650 DC exhibited a

multiplicity of sharp peaks, indicating that the film was becoming much more

crystalline. [6]

2.3. Device Structures

The devices examined using junction capacitance methods were all fabricated in metal

insulator-semiconductor (MIS) structures. These MIS structures typically consisted of a

degenerately doped Si substrate, ~ 100 nm insulator (usually Si02), and then 1-2 !lm of

semiconductor. The devices were then finished with a semi-transparent Au or Al top

contact. These structures are illustrated below in Figure 2.1. It is crucial that the Si

substrate has a very high level of doping, around 1018 cm-3 is usually sufficient. Doping
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levels closer to 1016 cm-3 can influence some of the characterization techniques discussed

here, in particular the transient photocapacitance spectroscopy method.

Au

p+ Si
AI

Figure 2.1: Metal-insulator-semiconductor (MIS) device structure used for junction

capacitance measurements.

The capacitive characterization methods employed require a semiconductor junction in

the device. While one-sided p+-n or Schottky baniers are the most simple to investigate,

there is no material available at this time which produces a robust rectifying contact with

the amorphous oxide semiconductors. This is actually beneficial for investigating the

issues relevant to transistor device performance with these materials though, as the MIS

structure is one key part of the thin film transistor. This structure allows us to examine

electronically active defect states at the insulator-semiconductor interface and in the bulk

of the semiconductor which may be affecting transistor performance.
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Modulated photocurrent spectroscopy measurements were carried out both on coplanar

and sandwich (metal-semiconductor-metal) geometry samples. The coplanar samples all

had a length/width ratio of 10:1 and semiconductor thicknesses ranging between 50 nm

and 200 nm. The samples were fabricated on ESR grade quartz substrates and finished

with aluminum contacts. Devices were then subjected to post-deposition thermal anneals

ranging from 300 DC to 500 DC. The ESR grade quartz substrates proved necessary for

these experiments as the gated Si/Si02 substrates influenced the MPC results

dramatically. Although the coplanar geometry samples provided meaningful results

about the nature of the conduction band tail, the conduction path is somewhat ambiguous.

There is no way to determine whether the primary conduction path is through the bulk of

the semiconductor, along the surface of the semiconductor which is exposed to air, or

along the semiconductor-insulator interface. The sandwich geometry samples resolve

this dilemma by forcing the conduction path to be only in the bulk of the semiconductor.

These samples consisted of an indium tin oxide (ITO) back contact, a 1.2 ~m ZTO layer,

and then an aluminum top contact.
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CHAPTER III

MEASUREMENT TECHNIQUES

3.1. Introduction

A wide range of measurement methods exist to characterize semiconducting materials.

However, measurement techniques applied to these materials must be carefully

considered, not just applied blindly, in order to obtain meaningful results. For example, a

resistivity measurement on a semiconductor using a two-point probe will yield wildly

different (and incorrect) results, whereas the four-point resistivity measurement will

generally provide a good idea of the intrinsic properties of the materiaL In order to

determine the density of states within the mobility gap of amorphous zinc tin oxide

(ZTO) and indium gallium zinc oxide (IGZO), a variety of methods were utilized.

Several methods based around the junction capacitance of a device will be discussed.

Junction capacitance methods account for a large portion of our map of the electronic

structure within the band gap of these amorphous oxide semiconductors (AOSs) with the
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remaining piece completed through the use of modulated photocurrent spectroscopy

(MPC).

Junction capacitance measurements have proven extremely useful for investigating the

fundamental properties of semiconducting materials and devices.[1-4] A depletion

region, from which the capacitance stems, is present in nearly any sandwich geometry

semiconductor device that contains a junction, for example photovoltaic solar cells or the

metal-insulator-semiconductor (MIS) devices discussed here. A good overview of

admittance spectroscopy, or junction capacitance as a function of frequency and

temperature, was provided by Losee[5]. Cohen and Lang calculated the AC and thermal

dynamic response of a Schottky barrier[6] for a semiconductor containing broad

distributions of defect levels within the mobility gap, thus demonstrating the usefulness

of deep level transient spectroscopy (DLTS) in characterizing amorphous semiconducting

materials. A wide range of optical techniques are available for characterizing the density

of states within the band-gap including direct absorption methods, photothermal

deflection spectroscopy[7], and the constant photocurrent method (CPM)[8]. While these

methods have strengths and weaknesses, transient photocapacitance spectroscopy (TPC)

has shown superior usefulness in characterizing optically active defects in semiconductor

devices with a very large dynamic range, sensitivity to carrier type, and ability to

effectively probe buriedjunctions[9].
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The aforementioned techniques are all useful in characterizing states that are usually

filled with the majority carriers (electrons in n-type devices such as amorphous oxide

semiconductors). However, additional measurements are required to probe states that are

usually empty, or above the Fermi energy. These states typically have a very large effect

on the conduction mechanism. Modulated photocurrent spectroscopy[lO] and space

charge-limited current[ll] were employed to gain understanding about the conduction

mechanism in these materials. Combining all of these techniques can yield a thorough

understanding of the structure of the density of states within the mobility gap of

amorphous oxide semiconductors.

3.2. Junction Capacitance Overview

The measured capacitance of a metal-insulator-semiconductor (MIS) device can be, in the

simplest manner, considered as two capacitors in series. The capacitance of the first, the

insulating layer, will be largely independent of any varying measurement condition, for

example temperature or applied voltage bias. In contrast, the second capacitance, due to

the depletion layer in the semiconductor, will be very dependent on those same

measurement conditions and thus provide a large amount of information about the

material properties of the semiconductor. Understanding how the measured capacitance

changes with respect to the measurement conditions is necessary in order to interpret our

results.
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A rudimentary energy band diagram for a MIS capacitor is shown in Figure 3.1, showing

the wide gap insulating layer and the n-type semiconducting layer with a band of deep

defects an energy depth Ed from the conduction band, Ec. The intrinsic depletion region

is formed because of the requirement that the material is charge neutral: the Fermi energy

must remain constant throughout the material thus the conduction and valence bands are

bent. Charges of opposite polarity accumulate at the metal-insulator interface and at the

edge of the depletion region in the semiconductor, resulting in a dipole. This creates an

electric field which sweeps carriers to the edge of the depletion region, marked W. The

amount that the bands are bent is called the interface potential.

Metal

Insulator

Semiconductor

w

Figure 3.1: Energy band diagram of an n-type MIS capacitor including a band of defects

in the upper half of the band gap.
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In order to begin interpreting the infonnation provided by junction capacitance

measurements, we must first discuss differential capacitance, defined as

dQ
C = dV

where dQ is the change in the amount of charge responding as a result of a change in the

applied potential dV. The charge response in the sample is limited by the characteristic

energy of the measurement, set by the frequency and temperature, and the response time

of carriers trapped in the deep defect states. The characteristic energy of the experiment,

Ee, can be written as

In this expression, T and OJ are the measurement temperature and angular frequency,

respectively, and v is the thermal emission prefactor (with units of S-l) of states within the

mobility gap. The value ofv can be related to materials properties through detailed

balance arguments: When Ed = EF, the carrier capture and escape times must be

equivalent, as the probability that the state is occupied is equal to Y2. In doing this, one

obtains the following expressions for the emission ('td) and capture ('tc) times:
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Setting these two equations equal when Ed = EF then yields

where Nc is the effective density of states in the conduction band, <v> is the average

thermal velocity, and (In is the electron capture cross-section.

Now the capacitance response for the deep states can be calculated for an arbitrary

distribution of defects within the band-gap. We start with Poisson's equation in the

direction perpendicular to the junction (we assume uniformity in the plane of the

junction)

where lJf is the potential within the depletion region, p is the charge density, and E is the

dielectric constant of the semiconductor. Far from the junction, lJf is defined to be O. The
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additional knowledge that there will not be any band-bending far from the junction (or

dlfJ/dx = 0 as well), allows us to solve for the potential at the interface:

1
00 p

t/J(O) = - x-dx
o E

A small, additional, voltage applied across the junction will perturb the potential at the

interface and result in a small change in the charge density within the depletion region.

f
OO ap

aV = - x-dx
o E

The total amount of charge responding to this small applied bias within the measurement

area A is now

aQ =A Loo

apex) dx

Thus the differential capacitance for any distribution of states within the band gap

responding to a small change in applied potential is just

dQ EA fo
OO

apex) dx EA
c=-= =-

dV fo
oo

xap(x) dx (x)
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Where <x> is the first moment of charge response

1
0

00
x8p(x) dx

(x) = --"--:::00,--------

1
0

8p(x) dx

In the case ofa material without any defects responding to the applied voltage within the

depletion region, <x> will just be equal to the depletion width Wand the junction

capacitance reduces to C=eA/W. A material such as illustrated in Figure 3.1 will have an

additional response at Xc, where Ed crosses EF, as shown in Figure 3.2.

Insulator

Metal Semiconductor

E
F
------1

·: w:.
x :_

e :··
I,,,,,.,

~~ ----'-:-Un~.......ffi'-'-'1'-__<x>

Figure 3.2: Materials with deep defects within the band gap will have an additional

charge response at the point where the defect energy crosses the Fermi energy.
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The first moment, <x>, now becomes

(x) = NDxe +nW
ND +n

ND is the density of deep defects responding and n is the free carrier density of the

sample, responding at the edge of the depletion region W. The first moment, <x>, is

now essentially a weighted average of where the charges are responding in the sample.

3.3. Measuring Capacitance

As was previously discussed, the differential capacitance measures the change in charge

response due to a change in the applied potential, dQIdV. The change in charge response

can then be detected by measuring the current response of the sample, I = dQldt. MIS

devices can be modeled in the most simple way as a circuit consisting of a capacitor (Cox)

(the insulating layer) in series with a capacitor and a resistor in parallel (the

semiconducting layer), as shown in Figure 3.3.
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(a) (b)

1 U

cox

Cm
c>
~c> c·

Cd c· Rp -<>
~>

o
Figure 3.3: (left) Equivalent circuit model of MIS device consisting of a capacitor

representing the insulating layer (Cox) in series with the depletion capacitance of the

semiconductor (Cd) and the resistance (Rp) which represents losses from traps. (right)

Circuit measured by lock-in amplifier.

A lock-in amplifier differentiates between the in phase and out of phase responses, thus

the data collected actually represents the circuit in Figure 3.3(b). In most analysis

presented here, the oxide capacitance only represents an offset in the calculated effective

width which can be subtracted away ifnecessary. Solving for the current response of this

(measured) circuit to an applied oscillating voltage bias V=Vo*cos(rot) clearly shows the

phase difference between the capacitive and conductive responses, yielding

Vo
I = - cos(wt) - VowCmsin(wt)

Rm
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For the junction capacitance measurements presented here, a Stanford Research Systems

SR850 lock-in amplifier was used. This lock-in amplifier has an internal oscillator for

providing the reference AC signal between 1 Hz and 100 kHz. The current pre-amplifier

used in these experiments was a Stanford Research Systems 570. The general

experimental setup is sketched in Figure 3.4. The temperature of the measurement was

controlled with either a Linkam 340 cold stage or with nitrogen gas flow-through dewars.

Both of these temperature control systems allow the measurement temperature to vary

between 80 K and 400 K, spanning a wide range of emission energies.

To computer
Current - Voltage

Preamplifier

SR870 lock-in amplifier

DC Bias source

Adder Box
Sample

Cold/Hot
Stage

Figure 3.4: General experimental setup for measuring the capacitance and conductance as

a function of frequency and temperature.

3.4. Admittance Spectroscopy

Admittance spectroscopy examines the complex response of a sample to an applied AC

signal as a function of both frequency and temperature. A lock-in amplifier is used to

distinguish between the in-phase and out-of-phase components of the response. The in-
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phase and out-of-phase components are related by the Kramers-Kronig relation as the

capacitance and the conductance (divided by the frequency, G/ro). Two terminal devices,

such as the MIS capacitors, are thus the easiest to interpret, as the sample can be thought

of as simply a complicated, bias-dependent capacitor.

Admittance spectroscopy provides information both about the free carriers and the deep

defects in a material. By controlling the frequency and temperature of the measurement,

one defines a characteristic energy of the experiment, Ee = kBT In (v/ro), where v is the

thermal emission prefactor and ro is the frequency. When this emission energy is low,

such as at either low temperatures or high frequencies or both, only the free carriers in the

sample can respond. When the emission energy is high, both the free carriers and

electron traps deeper in the band gap can respond. The transition between these two

situations is characterized by an observed step in the capacitance response, from a low

capacitance value at high frequencies/low temperatures to a high capacitance value at

high temperatures/low frequencies. An example of this step is shown in Figure 3.5

below.
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Figure 3.5: Admittance spectrum showing the step transition as a deep carrier begins to

respond. At high frequencies and low temperatures, only the free carriers can respond,

while at low frequencies and high temperatures all carriers can react to the AC signal.

Correspondingly, there will be peaks in the conductance spectra at the inflection point of

the capacitive step. Activated processes such as this, where the system must overcome an

energetic barrier, are typically regarded as below:

EA is the energy barrier, Xo is the prefactor of the process, and T is the measurement

temperature. The temperature dependence of the system is utilized to find the activation

energy: Either the peaks in conductance or the inflection points in capacitance can then
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be plotted in an Arrhenius plot (Figure 3.6) to determine the activation energy of the deep

level.

106
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Figure 3.6: Arrhenius plot of the inflection point in a capacitance step used to determine

the activation energy of the trap. Identical results could be obtained by using the peaks in

the conductance vs. frequency data as well.

While admittance spectroscopy is useful in determining the activation energy of a step, it

does not provide any information about the spatial location of the defect within the

device. Electron traps located at the junction interface can respond in a manner almost

identically to traps located in the bulk of the semiconductor. That is, as the interface

defects begin to respond as the characteristic energy of the measurement increases, the

effective width measured by the capacitance decreases exactly as if a bulk defect were

responding. In order to differentiate between these two situations, admittance spectra

must be taken under several different DC biases. If the activation energy one obtains
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under different biases is the same, then the deep level is likely in the bulk of the

semiconductor. If the activation energy changes with different applied DC biases, then

the defect is likely situated at the junction interface and the activation energy that is being

measured is the potential at the interface. Figure 3.7 is a sketch of how the measured

activation energy may change if the states responding are located at the insulator-

semiconductor interface.

c

F

-----tf-----Ev

x

Figure 3.7: Admittance spectroscopy performed under varying DC biases can help reveal

the location of the states responding in a MIS device. If the measured activation energy

changes as the DC bias changes then the state is most likely located at the insulator

semiconductor junction, and the activation energy is representative of the interface

potential 'Ps.
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Admittance spectroscopy was performed on a wide range of samples as a first step in the

characterization procedure. In some cases, the defect level appeared to be bias-

independent, suggesting that the defect level is located in the bulk of the semiconductor.

In other samples, the activation energy of the defect was very bias dependent, suggesting

that the defect level was located at the insulator-semiconductor interface.

If the capacitance step is determined to stem from a state at the interface, a simple model

can be used to estimate the area density of the defects. The basis of the method is very

similar to that of a bulk defect: at high frequencies and low temperatures we assume that

the capacitance is only due to the free carriers at the edge ofthe depletion region, and at

low frequencies and high temperatures we are seeing the response of the trapping states

as well as the free carriers. A simple circuit model is shown in Figure 3.8, with the

High F equencies
Cox

Low requencies

Cox

Figure 3.8: Circuit model for estimating the area density of states at the interface from

the capacitance step.
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interface capacitance added in parallel for low frequencies. As long as the oxide

capacitance is known, the interface density of states can be isolated and the interface

density of states estimated from the high frequency (CHF) and low frequency (CLF)

capacitances.

1 1 -1 1 1-1

qD· ~ C. - (---) - (---)It mt - C C C C
LF ox HF ox

For more detail, I will outline the method as presented by E. H. Nicollian[12] below.

Terms with the subscript "s" refer to the semiconductor in question, and the subscript "it"

refers to the interface trap. Start with the differential capacitance at low frequencies:

Gauss' law sums and balances the charge present around the interface.

Note that if there were no charges present at the interface, any small change in the charge

(bias) on the gate would be completely reflected by the charge in the semiconductor.

However, with the interface charges present, a larger change in the gate bias is required
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for the same change in the charge in the semiconductor. This leads to broadened

transitions in the transistor IV characteristics as well.

For a slow change in the gate bias, and defining the differential interface and

semiconductor capacitances as Cit = -dQildlfls and Cs = -dQ/dlfls we obtain

Now we obtain the expression for the low frequency capacitance, equivalent to adding

the interface traps in parallel with the bulk response of the semiconductor:

(Cs + Cit)Cox

Cox + Cit + Cs

While this method will come in handy for estimating the density of states at the interface

between the semiconductor and the insulator, it does not account for deep states within

the bulk of the semiconductor. Thus this derivation is somewhat limited for providing

actual defect densities when there may be both interface and bulk defect densities.



3.5. Spatially Sensitive Capacitance Profiling Methods

Two spatially sensitive capacitance profiling methods were used to determine the free

carrier densities and deep defect densities in the amorphous oxide semiconductors.

Capacitance vs. DC bias measurements, as outlined in semiconductor texts such as

Sze[13], are based on the assumption that there are no deep states within the gap

responding. This makes the C-V profile a sum of the free carriers, deep states, and any

states responding at interfaces within the device.

An applied potential across a junction, bV, can be written as a change in the charge

density within the junction as

1 wr 1
JV = - Jxp(x)dx ::::;-Wp(W)5W

t: w, t:
I

Where t is the dielectric constant of the material. Rearranging to solve for the charge

density gives:

t:JV
p(W)=--

W8W

The capacitance ofa parallel plate capacitor is:

eAc=w

52
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Differentiating with respect to the depletion width W:

.sA
dC = --dWW2

And then combining to solve for the change in capacitance with respect to a change in

applied voltage:

Finally yields an expression for the charge density responding to the potential:

C3
peW) = - dC

cA2
dV

Thus the charge density that is responding to the DC bias reflects the number of carriers

present at that spatial position.

Drive Level Capacitance Profiling

Another spatially sensitive profiling method is drive level capacitance profiling, DLCP.

DLCP improves on the standard C-V profiling defect measurement method by adding an

AC signal of varying magnitude to each of the DC biases, then examining the capacitive

response of the sample to the magnitude of the AC signal at each DC bias. Thus ONLY
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the carriers that can respond at the single characteristic energy of the measurement are

included in the calculation. By varying the frequency and temperature of the

measurement, differentiation between free carriers, deep trapping states, and states at

interfaces becomes possible.

Drive Level Capacitance Derivation

Here the basis of drive level capacitance profiling will be outlined, as it is also presented

by Heath et al.[2] We start with Poisson's equation for l-D:

Where ljI is the electrostatic potential, p is the charge distribution, and c: is the dielectric

constant in the material. By using the boundary conditions that far from the junction

(X=O) ~O and also dljl/dx=O, the potential at the interface can be written as

(00 p f~ P foo pt/J 0 ( 0) = Jf X -.!!.. dx = x -.!!.. dx + x -.!!.. dx
o E 0 E X e E

Then with the addition of a small voltage, DV, Xe is perturbed to Xe+DX, such that

(e p fxe
+

8x
P foo P (x dx)t/J (0) = Jr x -.!!.. dx + x~ dx + x 0 - dx

o E X e E x e+8x E



If p(x) is spatially unifonn, then p(x);:::; po(x-dx)

Continuing then

t/J(O) = (X
e
x Po dx + P

2
E((x

e
+ + dX)2 _ x/) + feo xpo(x - dx) dx

Jo E E x e+8x E

Investigating the last tenn a bit, and letting y = x - ox

f
eo xpo(x - dx) dx = feo (y + ox) p(y) dy

x e+8x E X e E

Now, recognizing that the first term in the equation for ljf(O) can be combined with the

transformed tenn above,

Pe feo p(y)
t/J(O) = t/Jo + -2 ((xe + OX)2 - xD + ox-dy

E ~ E

Then,

oV = t/J(O) - t/Jo = ~: ((xe + OX)2 - xD - oxFe

Where Fe is the electric field at xe. One can then solve for ()x, which gives

55
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ox = (:e Fe - Xe)[1- 1+ (EF~":.:~~e)'1

Expanding the term within the square root yields a quadratic expression (neglecting the

insignificant higher order terms) in <5V, which can be turned into the amount of charge

responding at xe•

Then, assigning the coefficients Co and C1 to the leading factors, we obtain the expression

dQ
C = dV = Co + C10V +

And after some re-working, the number of carriers responding to the applied <5V is

Pe CJN - - - - -----,,....--
DL - q - 2qEA2C

1

The drive level density is equal to the amount of charge responding between the Fermi

energy and the emission energy.
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f
EF

NDL = n + g(E)dE
Ee- Ee

In order for the emission depth, xe, to remain constant, the maximum (forward) applied

voltage must remain constant. Thus during the measurement, the amplitude of the DC

bias must be adjusted simultaneously with the AC signal. This is illustrated in Figure 3.9,

showing the AC signals added to a 0.5 V DC reverse bias.
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Figure 3.9: The amplitude of the DC bias must be adjusted for each value of AC signal

so that the maximum forward bias is kept constant throughout the DLCP measurement.

This is necessary so that the maximum emission depth is kept constant throughout the

measurement.
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3.6. Transient Photocapacitance Spectroscopy

Transient photocapacitance spectroscopy (TPC) is a sub-band-gap optical absorption-like

technique used to obtain information about the optically active states within the mobility

gap of disordered materials. By analyzing the transient capacitance response after a bias

filling pulse with and without sub-band-gap monochromatic light on the sample, a signal

which is proportional to an integral over the density of states within the gap is obtained.

TPC can effectively probe the density of states within the mobility gap of completed

devices and buried semiconductor junctions. This makes it very useful for investigating

structures such as are used in photovoltaic solar cells and also MIS capacitors.

The general form for optical transitions is shown in the equation below:

There are two possible transitions for an n-type material: Either from an occupied defect

into the conduction band or from the valence band into an unoccupied defect. These

transitions are illustrated below in Figure 3.10. Note that transitions always involve at

least one delocalized state. Unless the semiconductor is degenerately doped (when the

localized wavefunctions of the discrete defect states begin overlapping), transitions

between two defect states are not possible.
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Figure 3.10: Possible optical transitions in a semiconductor. All transitions occur

between an occupied state and an unoccupied state. Transitions between localized states

are not possibly unless the density is degenerately high.

If we focus only upon the transition from filled localized states into the conduction band,

then the general equation for an optical transition can be simplified for the n-type

semiconductor into
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where geE) is the density of states within the gap and gc(E) is the density of states in the

conduction band. Transitions into the conduction band can occur as long as the states are

occupied after a time t following a voltage filling pulse, i.e. up to an energy

Ee=kBT*ln(vt). To further simplify the integral we sill assume that the optical matrix

element does not vary significantly over the energies probed, and we will also take the

density of states within the conduction band tobe a constant as well.

Ee-Ee

P(Eopt ) ex: J g(E)dE

Ee-Eopt

Under these assumptions, the optical signal will simply be proportional to an integral

over the density of states within the band gap. Indeed, very good fits to TPC spectra are

obtained most of the time with an integral over a Gaussian defect band (error function)

plus an exponential Urbach edge.

Carrier type sensitivity

Although not utilized yet in these materials, TPC has the added capability of being

sensitive to the type of carrier which is being trapped. [14] For a dominantly n-type

material,

TPC ex: n - p
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This can affect the spectra in several different ways. If the minority carriers (holes) are

being collected efficiently above the band gap, then the TPC signal will be suppressed

significantly. This is seen in some photovoltaic solar cell materials where the minority

carrier mobilities are significantly higher than that in amorphous oxide semiconductors.

The other way that this sensitivity can affect the spectra is in the defect signal. If there is

a defect which can strongly trap an optically excited minority carrier, a sign change in the

TPC spectrum will be observed. This means that the recovery of the depletion

capacitance after the bias pulse will be optically suppressed. In order for this to happen

there must be a higher concentration of minority carrier traps which are optically active.

An example of the transient responses is shown in Figure 3.11, showing the light

difference in response when the device recovers under illumination as opposed to in the

dark. It is important to keep the intensity of the incident light very low in order to obtain

a linear response from the sample; that is, we work in a regime such that if the intensity

of the monochromatic light is doubled, the measured signal doubles as well.
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Figure 3.11: Transient capacitance response of sample with (left transient) and without

(right transient) incident light.

If the incident photon flux is too high the signal will begin to saturate, which then results

in a sub-linear intensity response. The timing sequence of the measurement is shown in

Figure 3.12. Note that the DC bias pulse is never applied while the light is on the sample.
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Figure 3.12: Timing sequence ofTPC measurement. Note that the sample is not

illuminated while the bias pulse occurs.
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A wide variety of disordered semiconductors have been investigated with TPC, with

band-gaps ranging from 1.0 eV (CulnSe2) to 3.7 eV (ZTO). Figure 3.13 shows TPC

spectra of several of these materials. All of the TPC spectra exhibit an exponential

(Urbach) edge (which is ubiquitous in disordered semiconductors), and several of the

spectra show mid-gap optically active defects. The fits to the spectra are integrals over

the Gaussian defect band plus an exponential edge. The Urbach edges have characteristic

energies which range from 11 meV for the CulnSe2 to 120 meV for the ZTO.
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Figure 3.13: Transient photocapacitance spectra of materials with a wide range of band

gaps (typically the maximum of each spectrum). The materials with band gaps between

1.0 and 1.8 eV are designed for photovoltaic solar cell applications.
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The Urbach energies are a reflection of the amount of structural disorder in the material.

Like any sub-band-gap optical absorption measurement, the measured Urbach energy

reflects the broader of the two band-tails. Therefore, depending on the type of device,

this mayor may not be correlated with its performance.[15] In the case of ZTO and

IGZO, the valence band tail is the broader of the two; however the transistor device

properties are primarily determined by the density of states near the conduction band.

Thus, while we can obtain information about the amount of structural disorder in the

materials, we do not expect to establish direct correlations to transistor performance via

the deduced Urbach energies.

While a one-sided junction (p+-n in this case) would be ideal for interpreting TPC results,

currently there are no materials which make a good rectifying contact with the n-type

amorphous oxide semiconductors. As a result, there is some ambiguity as to the physical

location of the defect band because states located at the AOS/insulator interface will have

an associated dipole moment and thus also contribute a capacitive response. However,

by investigating a structure which is similar to that of an AOS transistor, more direct

relations to device performance can be made.
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3.7. Modulated Photocurrent Spectroscopy

While the aforementioned characterization techniques are very useful in determining the

sub-mobility-gap density of states, they are limited in the fact that they only probe states

which are normally filled with electrons, that is, those lying below Er. The performance

of uni-polar devices based on these materials, such as transistors, depends more strongly

on the density of states near the conduction band edge. The modulated photocurrent

spectroscopy (MPC) method probes the density of usually empty defect states (above Er)

by examining the amplitude and phase shift of the photocurrent induced in the sample in

response to a chopped light source, as illustrated in Figure 3.14.

s

Reference

/'

......

L'!f

Figure 3.14: The amplitude (A) and phase shift (M) of a sample in response to a chopped

light source is probed by the MPC measurement. This response yields information about

the density of states near the majority carrier band edge, in this case the conduction band.
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MPC was developed first by Oheda[lO], with later contributions by Briiggeman[16] and

Hattori[17]. There are several requirements for MPC to provide insight into the density

of states near the conduction band (for an n-type semiconductor). The sample must be

very intrinsic, or EF must be at least several tenths of an eV from the band-edge. MPC

can be performed on either co-planar or sandwich geometry samples, but in a sandwich

geometry there must be a substantial portion of the film lying outside the depletion

region. MPC must be performed in a regime within or near the dielectic freeze-out, so

that the free charge in the sample does not have time to move and screen the photo-

generated charge.

Modulated Photocurrent Theory

The photoinduced carriers are governed by rate equations which take into account the

generation rates, recombination time, and the density of states. I have briefly reproduced

the derivations first presented by Oheda[lO] and Briiggeman[16] below. The rate

equation for the free carriers is:

dn . t fEe dnt(E) n - nd
-d = fo + f1 eUJJ - d dE -

t E t TRFn
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And the trapped carriers:

Wherefo andjj are the DC and AC generation rates, respectively, ill is the modulation

frequency, v is the thermal velocity, (J is the electron capture cross section, nd is the free

carrier density in the dark and LR is the characteristic recombination time. These

equations can be solved exactly, and solutions have the form

With nj given by

A and B are the in-phase and quadrature components of the modulated photocurrent, and

are given by
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And thus the phase shift is given by

¢ = tan- 1 (~)

G ,(E) and G2(E) are weighting functions which give the relative contributions of traps to

the in-phase and quadrature components of the response. G ,(E) is sharply peaked at the

excitation energy Ew while G2(E) is flat below Ew and then falls exponentially above Ew .

These weighting functions are shown in Figure 3.15 for excitation energies near 0.4 eV

and 0.6 eV.
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Figure 3.15: Graphic representation of weighting functions used in MPC derivation.

Gj(E) peaks sharply at the excitation energies Ew near 0.4 eV (blue) and 0.6 eV (red).
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By approximating GdE) as a delta function and G2(E) as a step function, Oheda[IO] was

able to develop a recursive method for calculating the density of states. Additionally, this

calculation required independent measurements ofthe thermal velocity, electron capture

cross section and the effective recombination time. Bruggeman[16] improved the MPC

derivation by including the amplitude of the modulated current, as the current is directly

related to the number of photogenerated carriers.

Where ~ is the free carrier mobility, A is the area of the device being investigated, E is

the applied electric field. If we use the same approximations for 0 1 and 02 now we can

directly calculate the relative density of states at energy EOl •

The frequency term in the braces is usually negligible. This equation will be referred to

as the Bruggeman analysis. The Bruggeman analysis is very convenient and useful

method, however suffers from a resolution limited by kBT. That is, at room temperature

(kBT ~26 meV) it would be impossible to resolve a band-tail with a characteristic energy

less than 26 meV. Cold stages capable of using liquid nitrogen as the coolant are then



necessary to resolve band tails near 10 meV, however even then ambiguity about the

resolution limit vs. the band tail can occur.

Hattori[17] formulated another method for determining the density of states from the

amplitude and phase shift data using a derivative method. While this method requires a

much greater signal to noise ratio, the increased resolution limit of Yz ksT is very

beneficial.

In the Hattori analysis, the modulated photocurrent signal S(co) is defined as:

d cos¢
Sew) = dln(w) f:!,.J

Where ¢ is the phase shift and ~J is the amplitude of the modulated current. The

increased energy resolution in this analysis is due to the derivative with respect to the

measurement frequency, d/d(ln(m)).

70
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Sample Geometry Considerations

MPC may be performed on samples in either the co-planar or sandwich geometries

without any change in the analysis procedure. The co-planar geometry is advantageous

in some respects: it does not require a thick layer of the material under investigation, the

device more closely mimics the structure of Mas transistors, and because the channel

layer is typically very long any effects due to non-ohmic contacts to the semiconductor

are usually negligible. However, the co-planar geometry also leaves some ambiguity

about the exact conduction path. There is a very distinct possibility that the dominant

conduction path is along the insulator-semiconductor interface or on the surface of the

semiconductor. Indeed, samples fabricated on transistor substrates of heavily doped Si

with a Sia2 insulating layer showed a much different photocurrent response than samples

fabricated on ESR grade quartz (Sia2) substrates. While these differences could have

also been caused by optical absorption in the silicon gate, in general this indicates the

difficulty in trying to make precise conclusions from triode structures such as that of the

transistor.

The sandwich geometry samples solve the conduction path problem by requiring that the

conduction path is through the bulk of the semiconductor. Sandwich geometry samples

however typically do need much thicker layers to be analyzed, on the order of 1-2 fJm as

opposed to ~100 nm for coplanar geometry samples. Fabricating thick devices can raise
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questions as to the morphology of the sample - whether the material is still truly

amorphous or whether crystallites are forming.

3.8. Space Charge Limited Current

In insulating materials, currents much larger than what would be possible with purely

ohmic conduction are possible. These currents are referred to as space-charge-limited

currents (SCLC). SCLC measurements were initially performed on vacuum diodes, after

which the technique was then transferred to insulating materials with very low carrier

densities as a direct analog. In materials with deep trapping states, the actual current will

be much less than what would be theoretically expected. As such, SCLC can reveal

information about the density of states within the band gap of insulating materials.

Rose[11] was one of the first to actively pursue space charge limited currents as a way to

characterize the energy distribution of states within the band-gap of insulators. The

measurement was then applied to a-Si:H and a-SiGe:H by researchers including

Solomon[18], Weisfield[19] and den Boer[20] as they attempted to understand the sub

band-gap structure ofthese disordered materials.
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SCLC is characterized by a super-linear dependence of the current Ion the applied

voltage, that is:

I oc Vm

If m = 1, then there is an ohmic response. If m > 1, then a space charge limited response

may be observed. In this case, a characteristic energy can be obtained which is likely

representative of the slope of the density of states near the Fermi energy. In this case

E
m = 1 + ;;c:;

where Tis the measurement temperature and kB is Boltzmann's constant. If the Fermi

energy is located near the band-tail in a disordered material, then the characteristic energy

may be indicative of the Urbach energy ofthe majority carrier band-tail.

SCLC measurements were initially attempted on ZTO MOS transistor structures. Results

indicative of SCLC were obtained, however it became apparent that the gate was

influencing the IV characteristics. In an attempt to resolve this issue, matched samples

were fabricated, one device on a Si gated Si02 substrate matched to an identically

finished coplanar device on an ESR grade quartz (Si02) substrate. The samples with the

Si gate showed SCLC characteristics; however the sample on the quartz substrate did not.

We believe that in the Si gated samples a narrow conducting channel is formed near the
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ZTO/SiOz interface. When a bias is applied between the source and the drain, the

majority of the current is carried by this channel. Since the charge density within the

channel is very high, the current is much more likely to become space charge limited. In

the quartz substrate devices, this conduction channel is not formed and the current is

carried by the bulk of the ZTO. The charge density then does not become high enough to

limit the current through the sample. While one cannot obtain information about the bulk

of the semiconductor with this technique, it does provide insight into the conduction path

in ZTO transistor devices. Results are discussed further in the Appendix.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1. Admittance spectroscopy

Admittance spectroscopy measurements were performed on a wide range of samples as a

preliminary way of determining whether each sample could provide useful information

from the other capacitive profiling methods. A scan of capacitance and conductance

versus frequency and temperature provides information about whether or not there are

sub-band-gap defect states responding in the sample, or if the sample is completely

depleted. Additional information about the spatial location of defect states that are

identified by the step in the capacitance spectrum is gained by performing admittance

spectroscopy at different DC biases. Sandwich geometry samples with some sort of

barrier junction are required for admittance spectroscopy measurements; in this study the

metal-insulator-semiconductor (MIS) device structure was utilized.
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Zinc Tin Oxide (ZTO)

Admittance spectroscopy was performed on a wide variety of ZTO MIS devices. Most

devices exhibited evidence defect states in the bulk of the ZTO, at the ZTO/insulator

interface, or both. As a result of the observation that the performance of thin-film

transistors (TFT's) based around ZTO channel layers generally improved with increasing

post-deposition anneal temperature up to the point where the ZTO began to crystallize, a

series of MIS capacitor samples were co-deposited and then subjected to varying post

deposition anneal temperatures. Several different sets of devices were fabricated on

heavily doped Si/Si02 substrates with ZTO layers varying from 600 nm to 1.8 !Jm.

Capacitive steps in the spectra such as illustrated in Figure 4.1 were observed for many

devices. This step is indicative of a broad band of defects responding within the mobility

gap.
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Figure 4.1: Admittance spectrum of ZTO MIS device indicating that a very broad band

of defects are beginning to respond above 250 K. The activation energy for this step is

near 800 meV.

Initially the results from admittance spectroscopy were unclear. Arrenhius plots to

determine the energies of activation from these steps yielded anything from EA = 1 eV to

EA = 200 meV for different samples, with no apparent underlying mechanism. However,

when the DC bias dependence of these energies was examined it became clear that trap

states at the ZTO-Si02 interface were having a large influence on the spectra. Figure 4.2

displays the capacitance and conductance of the same ZTO sample as in Figure 4.1, only

with a 3 V DC bias applied in the forward direction. The activation energy is near 800

meV when the sample does not have any bias applied, and then decreases to near 380

meV with the forward bias.



80

3000

2500

,!;
2000CIlu

c
CI:l 1500~
u
CI:la.
CI:l 1000u

500
250 K

0
102 103 104 105

Frequency (Hz)

700

- 600u..a.- 250 K-8 500-c>-CIl 400u
c
CI:l....

300u
::J

"C
C

2000
u

100

102 103 104 105

Frequency (Hz)

-.-250
.-260
... 270

-., 280
290

... 300
310

Figure 4.2: Capacitance (top) and conductance (bottom) ofZTO MIS device under 3 V

forward bias. Now the activation energy is near 380 meV, down from 800 meV when

admittance was performed under 0 V bias.
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The dependence of the activation energy on applied DC bias for two co-deposited

samples subjected to different post-deposition anneal temperatures (500°C and 600°C)

are shown in Figure 4.3.
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Figure 4.3: Activation energy vs DC bias for ZTO MIS device subjected to (a) 500°C

post-deposition anneal and (b) 600°C anneal.

Based on the large variation in the activation energy of the sample annealed at 500 °C, it

is clear that we are not measuring the energetic depth of a band of defects in the bulk of

the ZTO. Rather, we are likely observing the response of defects at the ZTO/Si02

interface and the "activation energy" is actually related to the interface potential. In the

600°C annealed device there is a much smaller variation in the activation energy with

DC bias. While the sample is in reverse bias there appears to be some contribution from

states at the interface, however there is likely a band of defects in the bulk of the ZTO

approximately 400 meV from the conduction band. Indeed, the activation energies of the
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sample annealed at 500°C appears to reach a limiting value near this as the DC bias is

increased. Thus the post-deposition anneal increases the TFT performance by reducing

the number of states at the ZTO/Si02 interface, also making the TFT ''turn-on'' voltage

much closer to 0 V.

The density of interface defects can be estimated in the manner presented in the previous

chapter. Figure 4.4 is the derived density from the high and low frequency capacitance

values plotted as a function of the activation energy derived from the Arrhenius plots,

which we take to be the interface potential.
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Figure 4.4: Area density of defects derived as a function of interface potential for 500°C

anneal ZTO sample. The derived density at activation energies below 400 meV are likely

influenced by a bulk defect level in the ZTO as well.
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Note that the values at low activation energies may include some of the response from a

bulk defect, so our most accurate estimate of interface density would be near ~ 5* lOll

cm-2ey- l .

Indium Gallium Zinc Oxide

The admittance spectra ofIGZO MIS devices are very similar to those of the ZTO

devices, suggesting commonalities within the amorphous oxide semiconductor class of

materials. Some IGZO devices exhibited bias-independent deep levels, while others

showed features likely located at the IGZO/insulator interface. Figure 4.5 shows the bias

dependence of the activation energy for IGZO deposited on a 25 nm chemical-vapor

deposited Si02 insulator layer. The activation energy drops dramatically, and finally

appears to reach a limiting value near 170 meY, slightly closer to the conduction band

than for the ZTO device discussed previously.
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Figure 4.5: Bias dependent activation energy in an 1GZO MIS device on a SiOz

substrate.

1GZO samples on different substrates, such as the AIPO[l] insulating layers, exhibited

activation energies which were much less sensitive to the applied DC bias. The very

abrupt capacitive step shown in Figure 4.6, for example, did not vary at all as the

admittance spectra were measured under different DC biases.
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Figure 4.6: Admittance spectrum of IGZO on 50 nm AIPO insulating layer. This

activated step was relatively bias-independent, with an activation energy of 600±30 meV

over DC biases ranging from -2 V to 2 V.
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4.2. Spatially Sensitive Capacitance Profiling

Zinc Tin Oxide

In order to further understand the changes induced in ZTO thin-film transistors inducted

by the differing post-deposition anneals, several sets of co-deposited ZTO MIS capacitors

were fabricated at Oregon State University. [2] The devices were annealed for one hour

in air at temperatures ranging between 400°C and 600 °C[3] ZTO thin-film transistors

processed in an identical manner as to this experiment were found to possess uniform

properties across the substrate. Thus, the films being assessed in this study are believed

to be quite homogeneous.

Drive-level capacitance and capacitance-voltage (C-V) profiles could only be obtained

for the higher temperature anneals of 500°C and 600 °c and these are compared in

Figure 4.7. Samples annealed at lower temperatures showed evidence of a very large

defect density which would not allow us to profile into the bulk of the films. The profiles

indicate free carrier densities of5xl0 14 cm-3 and Ixl015 cm-3 for the 600°C and 500 °c

samples, respectively. As the profiles are presented, x = 0 corresponds to the Si/Si02

interface so that as x increases the distance to the insulator-semiconductor interface is

becoming larger.
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Figure 4.7: DLC and C-V profiles for 500 DC (top) and 600 DC (bottom) ZTO samples.

The DLC and C-V profiles taken at lower measurement temperatures show the free

carrier and deep defect densities, respectively. The higher temperature DLC profiles are

likely influenced by the response of states at the ZTO/SiOzjunction (x :=: 0.1 /-lm).
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The profiles also exhibit deep defect densities of 1.5xl 015 cm-3 and 5xl 015 cm-3 for the

respective samples. Thus, as the post-deposition anneal temperature increases, the free

carrier density and deep defect density both decrease. The profiles taken at the highest

measurement temperatures are most likely influenced by the response from the interface

charges which are observed in admittance spectroscopy, and so cannot yield a good

estimate of the bulk film free carrier density or deep defect density at that temperature.

However, note that the maximum defect density in the high temperature DLC profile

corresponds with the low temperature C-V density. This agrees with the interpretation of

the differences between drive level and C-V profiling as discussed in the previous

chapter, and so the information contained in the low temperature profiles is likely

representative of the basic materials properties.

By examining the temperature dependence of one of the ZTO samples and also using the

thermal prefactor obtained from admittance spectroscopy, a rough idea of the energetic

width of the deep defect was obtained. Using the relation Ee = kBT In(v/27if) the

measurement temperature can be converted to an energy scale. Figure 4.8 is the

temperature dependence of the drive level carrier density of a ZTO sample annealed at

600°C on an energy scale.
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Figure 4.8: Carrier density vs emission energy for 600 °C annealed lTO. A broad band

of defects centered near 0.4 eV is the most likely explanation [or lhis increase in carrier

density as the measurement temperature increases.

In devices with the MIS structure, a large pari of the applied DC potential will drop

across the insulating layer. The profile depth, <x>, from the drive level profiles can be

used to estimate the amount of potential difference within the semiconducting layer as the

DC bias is varied. By using the following equation, it was determined that for the lTO

samples on a 100 run Si02 insulating layer, for every 1 V DC bias applied across the

sample, there was a 0.9 V drop over the insulating layer and a 0.1 V drop across the lTO.

This corresponds closely to the result obtained with admittance spectroscopy for the same

sample, where the activation energy obtained by the Arrhenius plots varied by

approximately 800 meV as the DC bias changed from -4 V to +4 V.
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z z 2fAz
< Xz > -< Xl > = -- (Vi - VZ)

qN

Where N is the carrier density, q is a fundamental charge unit, A is the sample area, f is

the dielectric constant of the material, and (V,- V2) is the change in the potential across the

semiconductor.

Amorphous ZTO defect profiles commonly showed evidence of a large defect located at

the ZTO/Si02 interface as well. The samples discussed previously exhibited a sudden,

large shift in the profile depth from which we inferred a state at the interface. Another

way in which interrace traps are identified is by comparing the drive level profiles to the
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Figure 4.9: DLC (closed symbols) vs. C-V (open) profiles for the ZTO sample provides

strong evidence for an interfacial defect; namely, the peak in the C-V profiles which is

not present in the DLC profiles.
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C-V profiles. In most situations, drive level capacitance profiles are insensitive to

interface states whereas C-V profiles can be strongly influenced by the same states.

Large differences between profiles produced by the two methods can then be attributed to

interfacial states. In Figure 4.9 this large discrepancy between the two profiling methods

is clearly evident in pulse laser deposited ZTO MIS devices. Although the peak in the C

V profiles might indicate a spatially localized state deep within in the sample, it is much

more likely to be located at the ZTO/SiOz interface. When the sample is strongly reverse

biased, the interface defect is partially filled. This allows the charges within the defects

to respond dynamically to the AC bias, altering the shape of the C-V profile, and thus

influencing the C-V carrier profiles. As the reverse bias is decreased, the band of defects

becomes more completely filled, thus less of the charges can respond to the AC bias.

This lessens the influence of the interface states on the carrier profile. When the reverse

bias is decreased even more, or perhaps even when the sample is forward biased, the

defect is completely occupied and then can no longer respond to the AC bias. The C-V

profiles then decrease and become more similar to the DLC profiles. This series of

situations is illustrated in Figure 4.10.
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Figure 4.10: As the reverse bias is decreased from (a) to (c), the interface state initially

responds to an AC peliurbation, then can respond slightly less in (b), then does not

respond in (c), when the state is completely occupied.

Figure 4.11 displays profiles for a ZTO MIS device co-deposited with the previously

mentioned device; however, the substrate for this device is commercially available

ITO/ATO. ATO refers to an Ah03/Ti02 super-lattice, which is used for the insulating

layer. This device was examined to make a comparison to the Si/Si02 devices since the

ITOIATO substrates are more commonly used to fabricate completely transparent TFT's.
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Figure 4.11: DLC (solid symbols) and C-V (open) profiles ofZTO on an ITO/ATO

substrate. This sample is matched to the sample shown in Figure 4.9 but does not show

signs of interface states.

Of particular interest in these profiles is the lack of the interface defect signature which

was observed in the sample with the Si/SiOz substrate. Interfacial defects commonly

occur because lattice mismatches at surfaces, so this suggests that there may be a

difference between the SiOz and ZTO resulting in an electrically active defect which is

not present between the ATO and ZTO. The defect may be either not present at all, or

shifted in energy such that it is not electrically active under our measurement conditions.
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Indium Gallium Zinc Oxide

rGZO shows many similarities to ZTO with respect to the spatially sensitive profiling

methods. IGZO on Si02 MIS devices exhibited free carrier densities near 8x10 14 cm-J

and deep defect densities near 1.5x10 15 cm-J
, as shown in Figure 4.12. rGZO on

aluminum phosphate (AIPO) insulators[ I] were also investigated. While the drive-level

profiles for these devices never showed a clear lower limit in their profiles to estimate the

carrier density, they appeared to be approaching roughly the same free carrier density as

for the IGZO on Si02 devices. The spatial defect profiling methods again did not show

the signature of interface defects as was observed in the ZTO devices.
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Figure 4.12: DLC (closed symbols) and C-V (open) profiles ofIGZO on Si02 showing a

free carrier density near 8xlO l4 cm-J and deep defect density around 3xlO I5 cm-J
.
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4.3. Transient Photocapacitance Spectroscopy

Zinc Tin Oxide

Transient photocapacitance spectroscopy (TPC) was used to investigate the optical

transitions in ZTO MIS capacitors. TPC is useful in amorphous and disordered materials

for two primary reasons: 1) The TPC spectra can determine the exponential slope of the

density of states, also known as the Urbach edge, into the band gap, and 2) the spectra

can provide information about optically active defects within the band gap. The set of

ZTO samples which were co-deposited and then subjected to varying post-deposition

anneals were all examined with TPC as well. The TPC spectra along with fitting

functions are shown below in Figure 4.13.
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Figure 4.13: TPC spectra of amorphous co-deposited ZTO MIS capacitors annealed at

varying temperatures. (left) The spectra have been offset to exhibit the different Urbach

energies. (right) The same spectra aligned near 3.5 eV in order to compare the magnitude

of the defect bands, which actually does not significantly change in these samples.

The spectra show that the Urbach edge actually increases with increasing post-deposition

anneal temperature, as is summarized in Table 4.1. This implies that the amount of

structural disorder in the sample increases up to the point where the ZTO begins to

crystallize. The energetic position of the sub-band-gap optically active defect also moves

further from the conduction band as the annealing temperature increases, however the

magnitude of the defect band does not change significantly.
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Table 4.1: Fitting parameters of TPC spectra for samples subjected to different post

deposition anneals.

Anneal temperature 400°C 500 °C 600°C

Eu(meV) 110 120 140

ED (eV) 2.05 1.9 1.6

While it is somewhat counterintuitive that transistor device performance would increase

as the structural disorder increases, it must be remembered that the TPC spectra only

discloses information about the broader of the two band tails. In these materials this is

likely the valence band tail: the conduction band is composed primarily of s-orbitals

which are mostly insensitive to bond angle disorder while the valence band is composed

ofp-orbital hybrids which do depend on the angular disorder. Therefore the TFT device

performance is likely unrelated to the Urbach energy in these samples.

The use of MIS capacitors for TPC measurements leaves the spatial location of the sub

band-gap defect ambiguous. One-sided junctions are ideal for these measurements as

defects located at the junction interface do not have any effective moment and so do not

generate a capacitive response. The thickness of the insulating layer in these devices

means that optically active defects at the insulator-semiconductor interface will generate

a capacitance response and so could potentially be observed with TPC. Several

observations about the TPC spectra for ZTO have indicated that this is indeed the case,
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that the sub-band-gap feature is an optically active defect located at the insulator

semiconductor junction rather than in the bulk of the ZTO.

First, the magnitude of the defect band can be estimated even though the TPC spectra are

in arbitrary units. The density of states at the edge of the band gap is commonly around

1020 cm-3.[4] The shoulder feature in the spectra in Figure 4.13 is approximately three

orders of magnitude below the band-gap, which gives a density near 1017 cm-3
• This

defect density approaches that of amorphous silicon, which was nearly abandoned for any

kind ofelectronic device before it ws realized that the defects could be passivated with

hydrogenation.

Additionally, the magnitude of the defect band varies drastically between depositions and

samples. Figure 4.14 shows the two endpoint samples, the sample annealed at 500°C

with a very large defect band and another ZTO sample with no defect band present.
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Figure 4.14: TPC spectra of ZTO on different insulator substrates, indicating the large

variations in the magnitude of the sub-band gap optically active defect feature.

The final argument for locating the optically active defect at the insulator-semiconductor

interface in ZTO comes from the dependence of the magnitude of the signal on the bias

conditions. Figure 4.15 shows the magnitude of the signal increasing nearly two orders

of magnitude as the bias conditions are adjusted. The height of the pulse is the same in

all of the spectra, 1 V forward, only the steady state DC bias is adjusted. If the defect

was located in the bulk of the ZTO there might be a small amount of variation in the TPC



100

signal due to the spatial sensitivity of the measurement. This small amount of variation

does not account for the nearly 100x change however.
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Figure 4.15: The amplitude of the defect signal depends on the bias conditions,

suggesting that the defect is located at the insulator-semiconductor interface.

Indium Gallium Zinc Oxide

The similarities between the ZTO and IGZO devices suggest that there is an underlying

fundamental structure to these amorphous oxide semiconductors. The Urbach energies in
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IGZO MIS capacitors were all observed to be near 110 meV, much like the ZTO devices.

Once again, there remained ambiguities as to the spatial location of the sub-band-gap

optically active defect. In this study we were able to co-deposit 1.8 11m IGZO layers on

four AlPO insulating layers with thicknesses varying between 25 nm and 200 nm. Drive

level capacitance profiling confirmed that the IGZO layers had similar free carrier and

deep defect densities. The TPC spectra for the IGZO devices are shown in Figure 4.16.
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Figure 4.16: TPC spectra of IGZO on AlPO insulators of different thicknesses. The

wide variation of the magnitude of the defect (shoulder) feature suggests that this state is

located at the AlPO-IGZO interface.
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The devices all exhibit the same exponential Urbach edge of 100 meV. The variation in

the magnitude of the defect band again suggests that this optically active site is located at

the AlPOIIGZO interface rather than in the bulk of the IGZO. As was seen in the ZTO

samples as well, in some IGZO samples the magnitude of the defect signal also depended

strongly on the biasing conditions, further suggesting that we are observing an interface

state. Alternatively, some samples did not show any optically active defect feature within

the sensitivity of the measurements, as shown in Figure 4.17. This particular sample was

IGZO deposited on 25 nm thick Si02.

•

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 4.17: TPC spectra ofIGZO on CVD Si02 showing no sign of an optically active

defect in the middle of the optical gap within the measurements sensitivity. The Urbach

energy in this sample is 110 meV.



103

Transient Photocapacitance Summary

The Urbach edges which were measured for both ZTO and IOZO MIS capacitors are

summarized in Figure 4.18. For both of these amorphous oxide semiconductors the

degree of structural disorder is characterized by the Urbach edges. For reference, a-Si:H

typically has an Urbach edge of 45 meV for the best devices. Both types of transparent

semiconductors show optically active states at the insulator-semiconductor interface.

These states might be responsible for metastable effects observed in transparent

transistors.
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Figure 4.18: Summary of Urbach edges measured for ZTO and IOZO MIS capacitors by

transient photocapacitance spectroscopy.
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4.4. Modulated Photocurrent Spectroscopy

Modulated photocurrent spectroscopy (MPC) examines the amplitude and phase shift of

the current generated in a device in response to a chopped light source. While the

aforementioned junction capacitance based measurements only provide information about

states in the gap which are usually filled with electrons, MPC probes states which are

usually empty, or above the Fermi energy. The operation of uni-polar devices such as

AOS transistors (which are n-type) is most affected by trapping states close to the

conduction band. If the photogenerated current is limited by trapping in states within the

band gap, then careful analysis of the amplitude and phase shift ofthe current with

respect to the modulated signal can disclose the density of states near the conduction

band.

In order for the MPC method to provide information that can be interpreted in this

manner, the material and experimental conditions must satisfy several requirements.

First, the material must be highly intrinsic, or the quiescent carrier concentration must be

very low. Correspondingly, the Fermi energy must be sufficiently far away from the

conduction band. Measuring the DC conductivity as a function of temperature provides a

good estimate of the depth of the Fermi energy. In the most simple model, not taking

into account deep states,
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Ec-EF

n = Nee - kaT

And the resistivity is p = (ne/l)-l.

Therefore one can estimate the Fermi energy depth via an Arrenhius plot of the

conductivity. As shown in Figure 4.19, the Fermi energy appears to be at least several

tenths of an eV from the conduction band for the coplanar samples subjected to several

different post-deposition anneal temperatures.
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Figure 4.19: Depth of Fermi energy in band gap for coplanar ZTO samples subjected to

several different post-deposition anneal temperatures.

Secondly, the experimental frequency and temperature must be chosen such that carriers

cannot move to screen the light-induced charge before the charge is collected.

Admittance spectroscopy measurements, such as shown in Figure 4.1, indicate that these
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materials approach dielectric freeze-out conditions below approximately 220 K for

frequencies commonly used for lock-in spectroscopy techniques, at or below around 40

kHz.

Initially a set of coplanar geometry samples were fabricated on ESR grade quartz

substrates and subjected to varying post-deposition anneals. The amplitude and phase

shift of the photogenerated current from the sample annealed at 300°C are shown in

Figure 4.20.
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Figure 4.20: Amplitude and phase shift of photogenerated signal for coplanar ZTO

sample annealed at 300°C.
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From this amplitude and phase shift information, the Briiggemann[5] and Hattori[6]

analyses are applied (see section 3.7). Figure 4.21 displays the Briiggemann analysis of

this data. It shows what appears to be an exponential band tail, however as the

measurement temperature increases the band tail broadens significantly. Further

investigation reveals that the band tail width simply reflects the temperature resolution of

the analysis, as the exponential slope is just kBT at each value of measurement

temperature.
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Figure 4.21: Briiggemann analysis of amplitude and phase shift of photogenerated

current in coplanar ZTO sample. The fit line at the lowest temperature shows a lOmeV

exponential slope.
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The analysis developed by Hattori has a higher energy resolution of 12 k13T, and since our

data has sufficiently high signal to noise ratio this technique can be used effectively.

Figure 4.22 now clearly shows an exponential band tail with a characteristic slope of 10

meV along with a defect band just below the band tail. The exponential palt of the

calculated density of states is largely temperature independent until approximately 220 K,

when it statts broadening significantly. It is wOlth noting that the two analysis techniques

agree at the lowest temperatures, where k13T ~ 10 meV.
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Figure 4.22: Exponential band tail and defect band as calculated from the Hattori method

for the coplanar ZTO sample annealed at 300 °e.

Sandwich geometry ZTO samples were fabricated to confirm the value for the band tails

found in the coplanar samples. In that case, ITO was used as the conducting back contact
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and aluminum as the top contact with a 1.2 11m ZTO layer. For these samples it proved

difficult to obtain data that was not too noisy. However, one clear spectrum was

obtained, shown in Figure 4.23, which yielded a 12 meV Urbach edge in the Brliggemann

analysis. This sample was subjected to a 300°C post-deposition anneal. Because this

spectrum was obtained at 80 K, where kgT = 6.8 meV, we could be certain that the slope

of the exponential edge was not being limited by the energy resolution of the analysis or

the temperature of the measurement.
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Figure 4.23: MPC results for ZTO sandwich geometry sample showing 12 meV Urbach

edge from Brliggemann analysis. This spectrum was taken at 80 K, where kBT = 6.8

meV, thus the analysis is not being limited by the measurement temperature.
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The high mobility of ZTO can now be understood in terms of the very steep conduction

band tail obtained by these MPC measurements. It is indeed very difficult to obtain the

energy resolution necessary to resolve the band tail from the discrete defect band located

just below the conduction band tail. We suspect that many other methods of estimating

the density of states near the conduction band tail would not be able to distinguish

between the two features.
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CHAPTER V

SUMMARY AND DISCUSSION

Amorphous materials are at the same time incredibly complicated from a fundamental

physics point of view and also extremely appealing as the foundation of new and

improved electronic devices. Hydrogenated amorphous silicon (a-Si:H) is used in the

transistors that drive most LCD displays in spite of relatively poor electron transport

properties. This device development has been enabled by a fundamental understanding

of the electronic structure. That comprehensive knowledge base is the result of many

years of specialized experiments aimed specifically at understanding the properties and

distribution of defect levels within the mobility gap. Amorphous oxide semiconductors

(AOS) offer an entirely new system on which to test ideas and theories on the

fundamental properties of disordered materials. While there are some similarities

between a-Si:H and AOSs, there are also many distinct differences. Most notable, from a

electronic transport perspective, the electron mean free path in a-Si:H is on the order of

one bond length, whereas in AOS the mean free path can be more than ten times as much.

Thus electronic properties such as mobility in AOSs can be considered much like those in

crystalline materials, whereas a-Si:H requires the formalisms to be modified and relaxed.
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A complete understanding of the density of states within the mobility gap of AOSs offers

both a way to frame the electronic transport properties and also a basis for guiding the

development of devices fabricated around these materials.

Admittance spectroscopy, drive level capacitance profiling (DLCP), transient

photocapacitance spectroscopy (TPC), and modulated photocurrent spectroscopy

(MPC)[l] were used to determine the density of states within the mobility gap of

amorphous zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO). Although MPC

was not able to be performed on our amorphous IGZO samples, the other measurements

were sufficiently similar that it is likely that the Urbach edge of the conduction band tail

is very steep as well. The device performance of transistors based on these materials can

now be understood in relation to a very steep conduction band tail near lOmeV, a

distribution of defects deep within the band gap, and a very broad valence band tail, as

illustrated in Figure 5.1.
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Figure 5.1: Density of states within the mobility gap of amorphous ZTO as compiled

from DLCP, TPC and MPC measurements. The interface state disclosed by TPC is likely

located at the insulator-AOS interface, rather than in the bulk of the semiconductor.

5.1. Density of States near the Conduction Band Edge

The density of states near the conduction band controls most of the electrical transport

characteristics of an n-type semiconductor. Thus obtaining a fundamental knowledge and

understanding of the electronic structure near the conduction band edge is crucial to

optimizing devices based around AOS materials. It was only through the increased
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energetic resolution of the Hattori[2] analysis of the MPC data that the steep conduction

band tail was distinguished for amorphous ZTO. Additionally, low temperature

measurements (less than 200 K) were required in order to distinguish the Urbach edge

from the ksT/2 energetic resolution of the measurement. Higher temperature

measurements gave results which could have been incorrectly interpreted n terms of a

much broader Urbach edge. While the Briiggemann[3] analysis did agree with the Hattori

analysis at the lowest temperatures, there was not enough information to unambiguously

identify the slope of the band tail versus the energetic resolution of the analysis

technique. The Hattori analysis of the MPC data of ZTO at low temperatures also

disclosed a band of defects located very near to the bottom of the Urbach tail. Again,

without the low temperature measurements and enhanced resolution limit of the analysis

technique, this feature would likely be smeared into the conduction band tail.

Another technique which was attempted to measure the conduction band tail in ZTO,

space charge limited current (SCLC), gave hints of a very steep conduction band tail;

however, again there was an ambiguity about which feature was actually being probed.

These ambiguities arose from the use of the transistor triode structure: there were

multiple possibilities as to the conduction path and no way to determine which path was

dominating the measurement. Subsequent measurements of coplanar devices on ESR

grade quartz substrates (similar to the triode structures, without the gate) did not reveal

any signs of SCLC. Thus we concluded that in the transistor devices we were likely

measuring a conduction path located in a narrow channel near the SiOz/ZTO interface



116

rather than in the bulk of the ZTO, while in the ungated devices we were measuring the

conduction primarily through the bulk of the ZTO. That is, it appears that the charge

density within the conduction path of the gated devices could become high enough to

show space charge limited behavior.

It is worth noting that attempts to determine the conduction band tail from the analysis of

transistor device characteristics have produced results which do not agree with the results

presented here. Hseih et. aL[4] derived very broad conduction band tail from IGZO

transistor characteristics, ranging between 80 meV and 140 meV. This was later

corrected by some of the authors as being too large and was replaced with a broad range

of estimates from 20 meV to 100 meV[5]. This illustrates the difficulty in attempting to

determine fundamental materials properties from transistor (or any three-terminal device)

and co-planar geometry samples. The gate action of the transistor greatly influences the

conduction properties of the material. Additionally, co-planar devices leave ambiguities

about the conduction path between the source and drain. Thus exploring the basic

properties of a material is best accomplished with two-terminal, sandwich geometry

structures whenever possible.
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5.2. Interface and Bulk Deep Defects

Admittance Spectroscopy

Admittance spectroscopy has revealed that processing conditions can greatly influence

the density of states at the insulator-semiconductor interface. Under lower temperature

post-deposition anneals, ZTO showed the very clear signature of defect trapping at this

interface, a strongly bias dependent activation energy of the capacitive step. This

activation energy varied from close to 1 eV to nearly 200 meV as the DC biased was

increased. The density of interface defects could be estimated to be near 5*1011 cm-2eyl.

As the post-deposition annealing temperature was raised, the activation energy became

much less bias-dependent, possibly indicating a band of deep defects in the bulk of the

ZTO.

IGZO also exhibited characteristics of both interface and bulk defect trapping which

varied as the fabrication process was varied. The sample fabricated on chemical vapor

deposited Si02 exhibited a smooth transition of the activation energy from 800 meV to

200 meV as the DC bias was varied from 0 V to 5 V in the forward direction. Other

samples processed differently did not show such strong DC bias dependence, indicating

that there was likely a bulk deep defect present with an activation energy near 600 meV.
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Drive Level Capacitance Profiling

Drive level capacitance profiling showed that typical free carrier densities for good ZTO

and IGZO transistor devices were near IxlOI5 cm-3
. Deep defect densities were typically

several times this, in the mid_IOI5 cm-3 range. Both the free carrier and deep defect

densities depended on the processing conditions, with higher post-deposition anneal

temperatures yielding lower carrier densities. The signatures of interface defects were

also noted in DLC and C-V profiling technique. In the PLD deposited ZTO, there was a

clear "hump" in the C-V profiles while the DLC profiles were completely flat. This

indicates a trapping state located at the interface which responds as the Fermi energy

moves through the state, and then stops responding as the states become either

completely filled or completely emptied. In the rf-sputtered ZTO, there was a clear shift

in the DLC profiles as the measurement temperature was raised to near room

temperature. This is significant because typically DLC profiles are generally insensitive

to interface states.[6] Transistor devices based around ZTO channel layers could thus be

strongly influenced by these interface states which respond so easily.

Transient Photocapacitance Spectroscopy

TPC has revealed a large, optically active, defect state located near the center of the

mobility gap. This state is typically very broad, with a FWHM of near 0.8 eV. Because
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of the MIS structure of samples which were investigated, it was not initially clear

whether this state was located in the bulk of the semiconductor or at the semiconductor

insulator interface. A series of results have indicated that this feature is actually located

at the interface rather than in the bulk of the material. Thus this broad band may be

responsible for instabilities observed in ZTO thin-film transistors when the TFTs are

subjected to light and bias stresses. [7]

When the series of rf-sputtered, co-deposited ZTO MIS devices were subjected to

varying post-deposition anneal temperatures, the TPC spectra of all of the devices

exhibited optically active sub-band gap features of differing magnitudes. The feature

moved closer to mid-gap as the anneal temperature was increased, as was presented in the

previous section. [8]

ZTO MIS devices fabricated by PLD exhibited behavior that appears to strongly indicate

that the sub-gap feature is located at the insulator-semiconductor interface. The intensity

of the defect changes by nearly two orders of magnitude as the biasing conditions are

changed. By changing the pulsing conditions, different regions in the bulk of the sample

are being probed. A small change in the magnitude of the defect feature would be

expected due to the spatial sensitivity of the measurement technique. This change could

not explain the observed large difference however. Thus the evidence points to the defect

being located at the insulator-semiconductor interface.
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A series ofIGZO samples were grown on AIPO[9] insulators of varying thicknesses in

order to investigate the spatial location of the sub-band gap defect feature in IGZO. As

discussed in the previous chapter, the thickness of the insulator varied between 25 nm

and 200 nm while the IGZO was 1.8 J.lm thick. The samples were found to have very

similar deep defect and free carrier densities from capacitive profiling methods. The

defect signal varied from nearly indistinguishable from the noise to very strong.

Additionally, the magnitude of the defect feature in these samples exhibited a similar sort

of bias dependence as was noted in the ZTO samples. This bias dependence, along with

the large variation with different insulator thicknesses, suggests that the feature originates

at the insulator-semiconductor interface. IGZO MIS devices fabricated on other

substrates such as Si02 did not show any indication of a band of defects within the gap,

again indicating the importance of the insulator-semiconductor junction.

5.3. Density of States near the Valence Band Edge

Transient photocapacitance spectroscopy has revealed that the valence band tail is very

broad in the amorphous oxide semiconductors studied. The distribution of Urbach

energies is actually quite narrow: all 25 ZTO and IGZO samples measured had Urbach
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energies of 110 meV ± 20 meV, as was shown in figure 4.18. A series of co-deposited

samples which were subjected to varying post-deposition anneal temperatures exhibited

an interesting correlation: as the anneal temperature increased, the Urbach energy

increased as well. This implies that the amount of structural disorder in the sample

increases up to the point where the material begins to crystallize. The Urbach energies of

the IGZO samples were all found to be very near those of the ZTO samples. They were

all found to be much lower than the Urbach energies measured by Anwar[lO] in the

Inz03-SnOz materials system (between 170 meV and 230 meV).

Devices which have been fabricated out of these amorphous oxide materials thus far have

been uni-polar n-type and thus unaffected by the large density of states near the valence

band tail. However, further development ofthese materials for technology may be

limited until a suitable p-type oxide semiconductor is found. One of the advantages of

amorphous silicon is its ability to be doped both n-type and p-type, making p-n junctions

very easy to form. The large density of states extending from the valence band edge will

both limit the carrier concentration which can be achieved in a p-type AOS and also

greatly limit the transport properties of holes. Thus in order to develop a p-type material

based on these (Zn, Sn, Ga and In) there must be a way to neutralize the disorder. There

has been progress in oxide semiconductors with different cations, such as Cd and Cu[ll

13], however nothing has progressed as quickly as the semiconductors formed with heavy

metal cations such as Zn, Sn, In and Ga.[14]
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CHAPTER VI

CONCLUSIONS

The electronic states within the mobility gap of amorphous zinc tin oxide (ZTO) and

indium gallium zinc oxide (IGZO) were successfully mapped using several different

characterization methods. These materials belong to the larger class of transparent

amorphous oxide semiconductors which are receiving a large amount of interest due to

their attractive electronic transport properties; that is, the electron mobility is much

greater than that of amorphous silicon in spite of their amorphous structure. In

disordered and amorphous materials, the carrier transport properties are largely

determined by the density of states within the mobility gap. Thus a fundamental

understanding of the structure of the mid-gap density of states is crucial to the full

development of technologies based on amorphous and disordered materials.

The class of materials "amorphous oxide semiconductors" as a whole only began in

earnest in 1996.[1] Since then there has been significant progress towards developing

them into transparent thin-film transistor (TFT) applications. Device mobilities of up to
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80 cm2V-1s-1have been reported for IGZO and 50 cm2y-1s-1 for ZTO in laboratory

samples. However, stability and deposition issues have kept the mobility ofTFTs in

electronic devices to near that of a-Si:H, ~1-2 cm2V-1s- l
. An in-depth understanding of

what processes are at work within the material will allow the development of more

efficient and better performing devices. Transistor action has been modeled in an attempt

to uncover the basic structure of the density of states within the mobility gap. However,

it is very hard to derive basic materials properties from device action, and the results of

these investigations have been largely unrepresentative of the true materials properties.

We have used a number of experiments on simplified device structures in order to

determine the sub-gap structure in amorphous oxide semiconductors. Junction

capacitance based measurements were performed on metal-insulator-semiconductor

(MIS) devices to investigate the free carrier and deep defect concentrations. The MIS

structure allowed us to directly examine two critical components of a thin-film transistor:

the bulk of the semiconductor and the insulator-semiconductor interface. Drive level

capacitance profiling (DLCP) revealed that the free carrier density in both ZTO and

IGZO is typically near lxlO l5 cm-3 and tended to increase as the post-deposition anneal

temperature was decreased. A broad band of bulk defects with density near 3xlOl5 cm-3

was also found, centered approximately 0.4 eV from the conduction band edge. Both

admittance spectroscopy and DLCP indicated the presence of a significant amount of

deep trapping defects at the insulator-semiconductor junction. The presence of these

defects also appeared to depend on the fabrication conditions; less evidence of interface
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traps appeared in devices that were subjected to higher annealing temperatures. In other

sets of co-deposited MIS devices, ZTO fabricated on Si02 insulating layers showed the

clear response of interfacial defects, whereas ZTO grown on ATO (gate dielectric

composed of Ah03 and Ti02 super-lattice) did not show any evidence of interface states.

Several types of opto-electronic measurement techniques were also used to investigate

the density of states within the mobility gap of these materials. Transient

photocapacitance spectroscopy is a sub-gap optical absorption-like method where the

capacitive response of a sample is analyzed after a voltage filling pulse with and without

the presence of monochromatic light. TPC has revealed a very broad Urbach edge in the

amorphous oxide semiconductors: 110±20 meV for 24 ZTO and IGZO devices. Like any

sub-band gap optical absorption technique, this only shows the broader of the two band

tails. In the case of AOSs, this is likely the valence band tail, as the conduction band

consists mostly of s-orbitals from the metal cations, which are much more resistant to

lattice disorder. [2] There were very few differences observed between the ZTO and

IGZO TPC spectra, suggesting that this large Urbach edge could be present in most of the

AOSs. While the performance of n-type thin film transistors will be unaffected by this

large band tail, p-type oxides may be difficult to fabricate using the same heavy metal

cations that are discussed here.
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Finally, the density of states near the conduction band edge in ZTO was determined

through modulated photocurrent spectroscopy (MPC).[3] MPC examines the amplitude

and phase shift of the current generated in a sample in response to a modulated light

source. A narrow conduction band tail with an Urbach energy of 10 meV was found as

well as a defect feature located very close to the bottom ofthe Urbach tail. It was only

with the enhanced energy resolution ofthe method developed by Hattori[4] that we were

able to distinguish the band tail from that defect band.

Thus a complete picture of the density of states within the mobility gap of amorphous

ZTO and IGZO has been determined. It is hoped that this fundamental understanding of

the electronic structure within the gap will allow further development of technologies

based around these materials by means ofcontrolling carrier densities and deep defects

located both at interfaces and in the bulk of the material.
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APPENDIX

SPACE CHARGE LIMITED CURRENT

Space-charge-limited current (SCLC) measurements were used in an attempt to examine

the density of states near the conduction band edge in amorphous zinc tin oxide (ZTO).

The density of states near the conduction band is the most relevant for n-type device

performance. SCLC has been used to study a wide range of insulating and

semiconducting materials; however results must be interpreted carefully. Thus an

experiment was designed to investigate the temperature dependence of the SCLC

characteristics which had been previously observed. The study was sparked by initial

results examining IGZO films at Oregon State University and Samsung Electronics. [1 , 2]

Hong's results suggested that SCLC could indeed be used on amorphous oxide

semiconductors and indicated an interesting result: that the total number of states within

the conduction band tail remains the same in samples subjected to different post

deposition anneals, however the energetic distribution of the states varied. The Urbach

energies in these samples were estimated to vary between 50 meV and 130 meV,

becoming steeper with higher anneal temperatures.

---- ---------------
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A series of coplanar ZTO samples were fabricated on Si/SiOz substrates and then

subjected to varying post-deposition anneal temperatures. Initial results showed behavior

indicative of SCL conduction: a transition in the current vs. voltage (IY) curves from

ohmic behavior at low biases (IocY) to super-linear behavior (Iocym
, m>2) at higher

biases. Some samples even showed the transition at high biases to trap-limited currents,

when m=2.[3] An example of this behavior is shown in Figure A.I, a ZTO device

annealed at 600°C.
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Figure A.I: Space-charge-limited current in coplanar ZTO device annealed at 600°C.

As was discussed earlier in Chapter III, the exponent of the voltage can be converted to a

characteristic energy in the following way:

E
m = 1 + ;;c:;
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For the device in Figure AI, a characteristic energy near 60 meV was found at the

measurement temperature of 260 K. This characteristic energy is representative of the

slope of the density of states near the Fermi energy. [4] Thus, if the characteristic energy

is constant, independent of the measurement temperature, then the quantity being

measured is likely related to the Urbach energy of the conduction band tail.

As such, the temperature dependent I-V measurements were undertaken over a range of

temperatures from 80 K to 320 K. The results for the sample shown in Figure Al are

shown in Figure A2, along with the characteristic energies determined for each

temperature. The characteristic energies are clearly very temperature dependent,

indicating that the Fermi energy is not within a band tail, rather near some mid-gap

feature.
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Figure A,2: (a) Temperature dependent IV characteristics ofZTO annealed at 600°C. (b)

Characteristic energies from IV curves varies greatly with measurement temperature.

Temperature dependent IV measurements were performed on a series of co-deposited

samples which were then subjected to varying post-deposition anneal temperatures. All

samples exhibited characteristics of SCLC. The characteristic energies derived from the

IV curves are shown below in Figure A,3 for the varying anneal temperatures.
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None of the samples showed the temperature-independent behavior which might indicate

a band taiL This would imply that the Fermi energy is fairly deep in the band gap, rather

than near the conduction band edge.

During this investigation, questions were raised about the influence of the Si gate on the
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Figure A.3: Characteristic energies derived from SCLC measurements on a set ofco

deposited ZTO samples subjected to varying post-deposition anneal temperatures. None

of the samples show the temperature-independent behavior which would indicate a band

taiL
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conduction characteristics of the ZTO. Indeed, there was evidence that the conductivity

of the channel was changing between measurements. This could be caused either by

deep traps in the channel becoming charged, or by the gate becoming charged as well. In

order to rule out the influence of the gate, a series of samples were co-deposited on ESR

grade quartz (Si02) substrates and on the gated Si/Si02 substrates. Typical temperature

dependent IV curves of this set of samples is shown in Figure AA.
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Figure AA: Matched coplanar devices show very different IV characteristics depending

on the substrate.

There is clearly no sign of space-charge-limited conduction in the sample on the quartz

substrates. This suggests that the gate has a significant effect on the conduction in the

first set of devices, even without any applied bias.
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In order for SCLC to occur, the charge density induced in the conduction path by the

applied bias must be sufficiently high. Our results suggest that perhaps a narrow

conducting channel forms at the insulator-ZTO interface when the Si gate is present.

When the Si gate is not present, the conduction occurs throughout the entire ZTO film.

Thus for similar applied DC biases, the charge density within the narrow conduction path

will be much greater than when the entire ZTO film is conducting. This is only one

possible explanation for the results, however it illustrates the difficulties in understanding

transport mechanisms when there may be more than one conducting path. While the

SCLC measurements are likely revealing important information about the conduction

mechanism in AOS TFTs, it is impossible to extract fundamental materials properties.
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