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We analyze the effect of geometry and surface morphology on the optical properties

of metal-dielectric systems. Using both analytical and numerical modeling, we

study how surface curvature affects the propagation of surface plasmon polaritons

(SPPs) along a metal-dielectric interface. We provide an intuitive explanation

for how the curvature causes the phase front to distort, causing the SPPs to

radiate their energy away from the metal-dielectric interface. We quantify the

propagation efficiency as functions of the radius of curvature, and show that it depends

nonmonotonically on the bend radius. We also show how the surface morphology

influences the transmittance and the reflectance of light from disordered metal­

dielectric nanocomposite films. The films consist of semicontinuous silver films of
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various surface coverage that are chemically deposited onto glass substrates. They

exhibit a large and broadband reflection asymmetry in the visible spectral range. In

order to investigate how the surface morphology affects the asymmetry, we anneal the

samples at various temperatures to induce changes in the morphology, and observe

changes in the reflection spectra. Our study indicates that the surface roughness and

the metal surface coverage are the key geometric parameters affecting the reflection

spectra, and reveals that the large asymmetry is due to the different surface roughness

light encounters when incident from different side of the film. Additionally, we analyze

how thin metal and dielectric layers affect the optical properties of metal-dielectric

systems. Using the concept of dispersion engineering, we show that a metal-dielectric­

metal microsphere-a metal sphere coated with a thin dielectric shell, followed by

a metal shell-support a band of surface plasmon resonances (SPRs) with nearly

identical frequencies. A large number of modes belonging to this band can be excited

simultaneously by a plane wave, and hence enhancing the absorption cross-section.

We also find that the enhanced absorption is accompanied by a plasmon assisted

transparency due to an avoided crossing of dominant SPR bands. We demonstrate

numerically that both the enhanced absorption and the plasmon assisted transparency

are tunable over the entire visible range. We also present an experimental study of

light scattering from silica spheres coated with thin semicontinuous silver shells, and

attempt to describe their optical response using a modified scaling theory. This

dissertation includes previously published co-authored materials.
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CHAPTER I

INTRODUCTION

Surface Plasmon Polaritons

In 1956 \Valter H. Brattain, a physics graduate of the University of Oregon, began

his Nobel lecture with the following words[l]:

I would like to start by emphasizing the importance of surfaces. It is at a surface
where many of our most interesting and useful phenomena occur. We live for
example on the surface of a planet. It is at a surface where the catalysis of
chemical reactions occur. It is essentially at a surface of a plant that sunlight is
converted to a sugar. In electronics, most if not all active circuit elements involve
non-equilibrium phenomena occurring at surfaces. Much of biology is concerned
with reactions at a surface. If surfaces are so important, what do we know about
them'? What is a surface! What properties does a surface have that a physicist
can measure?

The science of surfaces is indeed a fascinating subject of research; studies of

surface phenomena often reveal crucial aspects of the underlying physics behind

the phenomena and frequently lead to new technological applications. For example.

Dr. Brattain's invention of the transistor, for which he received the Nobel Prize,

originated from his attempt to understand the electronic phenomena at the surface

of semiconductors.

Interesting and useful phenomena also occur at the surface of metals. It

is commonly known that metal surfaces are highly reflective. \Vhen light is
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dielectric
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FIGURE 1. A schematic diagram of SPPs. The TM-polarized electromagnetic field
is coupled to the free electrons of the metal near the surface, and oscillates coherently
with the charge density.

incident on smooth metal surfaces, its interactions with the free electrons generate

electromagnetic (EM) waves that decay exponentially into the metal. Unlike

propagative waves, these evanescent waves cannot transmit energy through the

medium. Without anywhere else to go, the light is reflected back into the

surrounding medium giving the surface its "shiny" appearance. However, under

certain circumstances, the light becomes trapped at the surface and produces surface

waves known as surface plasmon polaritons.

Surface plasmon polaritons, or SPPs, are coupled oscillations of free electrons and

EM waves that are confined near metal-dielectric interfaces. When propagating along

a flat interface as shown schematically in Fig. 1, the EM field peaks at the interface

and decays exponentially into the two adjoining media. The electromagnetic field of
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(a) W w=ck (b) (c)

"'-------'------'---_k

metal metal

FIGURE 2. (a) The dispersion relations for SPPs. Since it is on the right of the light
line, SPPs cannot be excited directly by the incident light. Two common methods
of exciting SPPs use a prism (b) or a periodic corrugation (c) to provide the missing
momentum.

the SPPs is transverse magnetic (TM) with its magnetic field given by

~ 'k' t {exp(-roY) Y~ 0B = iBoe2 'X-jW

exp(riY) Y < 0

where

k = ~ EiEo
C Ei + Eo

(1.1 )

(1.2)

and ro,i = ±WEo,iJ -1/ (Ei + EO) / c. The optical response of the metal is described

by its dielectric function Ei(w) with a negative real part, while that of the dielectric

medium is given by a positive permittivity Eo. Since Eof metal is generally complex,

the wavenumber k of SPPs are also complex. As is shown in Fig. 2(a), the dispersion

relations of SPPs lie outside the light line, rendering a direct excitation by a free-

propagating light impossible. Two common methods of exciting SPPs use a prism or

a periodic corrugation to provide the missing momentum as depicted in Fig. 2(b) and

(c) [2]. In the prism coupling, also known as the attenuated total reflection (ATR)

coupling, the wavenumber of the incident light becomes ki = nw / c instead of ki = W / c.
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metal

b

dielectric

FIGURE 3. A schematic diagram of the nanoshell. Its resonant frequencies can be
tune by varying the ratio of its inner and outer radius.

As a result, a part of SPP dispersion relation would now be inside the light cone of

the prism and SPPs, and SPPs are resonantly excited when the in-plane momentum

of the incident light matches that of SPPs:

w [wn-sinBi = Re -
c c

Once excited, SPPs are tightly confined near the surface and propagate along the

interface and travel a distance determined by the dissipation in the media. According

to Eq. (1.1), SPPs propagate along the metal surface with a complex wavenumber

k. Therefore, as they propagate, the field intensity decays exponentially. The

propagation length is given by L spp = 1/Im[2k]. The degree of the surface confinement

of the electromagnetic intensity is determined by t5o,i = 1/Re[2io,i]. In the visible

range, SPPs on a silver-air interface travel tens of microns, and have 15o ~ 150nm and

t5i ~ 10nm, well below the difi'raction limit of >./2.
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SPPs can also be excited on non-planar metal-dielectric interfaces. Nanoscopic

metal particles, for example, support SPPs that are localized in space. Unlike the

extended SPPs on flat interfaces, the localized modes can be excited directly by a

plane wave, and they exhibit resonant behaviors. These surface plasmon resonances

(SPRs) are highly sensitive to the dielectric environment and the geometry of the

nanoparticles. By adjusting the shape and size of the metal particles, it is possible to

geometrically tune the resonances over a broad frequency l'ange[3-5]. For instance,

resonant frequencies of nanoscale core-shell particles, called nanoshe11s (Fig. 3), can

be tuned from near-UV to mid-infrared frequency by varying the ratio of the inner

and outer shell radius[6, 7]. By increasing the number of metal-dielectric interfaces,

it is also possible to tune multiple resonance frequencies simultaneously [8] or even

engineer the entire dispersion relations [9, 10].

Emergence of Plasmonics and Plasmon-based Metamaterials

Scientists have known about the existence of surface waves at metal-dielectric

interfaces for over 50 years[ll]. However, the study of SPPs has intensified only in the

last several years. The growing interest in plasmonics, a subfield of photonics which

investigates the nature of SPPs of metal-dielectric systems, is primarily application

driven. Much of ongoing research is aimed at developing novel plasmon-based optical

devices and materials by utilizing the unique properties of SPPs-specifica11y, their

subwavelength confinement and geometric tunability.
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One of the main areas of research in plasmonics is waveguiding and manipulation.

Vvhile today's conventional photonic elements are capable of fast data transfer and

processing, their size scales are limited by the diffraction limit. On the other hand,

the surface confinement of SPPs can be well below the diffraction limit as shown

in the previous section. Therefore, SPPs may lead to a miniaturization of photonic

devices. Thus far, efficiencies of various plasmonic waveguides and other plasmonic

elements have been studied. Many of the waveguides are based on triple layered

structures, both dielectric-metal-dielectric and metal-dielectric-metal, to guide SPPs

through metal strips or dielectric gaps[12-16]. Metallic nanowires, nanopatterned

metallic films, ordered arrays of metal nanoparticles, and other complex structures

have also been shown to guide SPPs[17-22]. Other fundamental circuit elernents such

as mirrors, beamsplitters, interferometer, Y-splitters, ring resonators, modulators,

and switches have been demonstrated[23-28]. A major limitation of surface plasmon

waveguiding and manipulation is the attenuation of SPPs through the dissipation

of the metal. However, studies have shown that a gain medium may be used to

compensate for the energy 10ss[29-33].

Another area of active research is plasmon-based optical sensing. When SPPs

are excited by a propagating wave, their electromagnetic field at the metal-dielectric

interface can be greatly enhanced over that of the incident light. This near-field

enhancement is due to the evanescent field profile of SPPs, and it can be exploited

to perform highly sensitive chemical and biological sensing. The plasmon-based
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optical sensing was initially performed with SPPs on a fiat, chemically functionalized

metal surface under the ATR coupling, as shown in Fig. 2(b)[34, 35]. The surface

functionalization allows a specific chemical or biological agent to bind to the metal

surface, which modifies the refractive index or the dielectric permittivity Eo. This in

turn alters the dispersion relations of SPPs via Eq. 1.2. Thus, a measurement of

the incident angle ei at which SPPs are resonantly excited reveals the presence or

the absence of the target agent. Such prism-based sensors are capable of detecting

a refractive index change less than 3 x 10-7 [36], and are already commercially

available from a number of companies, including Biacore, Nomadics, and DKK­

TOA Corporation. Sensitive detection of chemical and biological agents can also

be accomplished with a variety of other metal-dielectric systems. In nanoparticle­

based sensing, a shift in SPR frequencies is often monitored as a way to detect a

small change in the dielectric environment. Studies have shown that ordered and

disordered arrays of nanoparticles can be used for protein detection[37-40]. DNA

and antigen sensing with functionalized gold nanoparticles and nanoshells have also

been reported[41, 42]. Furthermore, localized SPRs of nanoshells have been shown to

enhance Raman scattering of molecules absorbed on surface by a factor of 1012 [43],

and can be used for chemical identification. Additionally, nanoshell-based cancer

imaging and treatment of cancer have been demonstrated[44, 45].

Plasmonic metamaterial engineering is yet another active area of research.

Metamaterials are a class of artificial materials designed to produce tailored
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electromagnetic responses. Unlike photonic crystals whose periodicity is comparable

to the wavelength A, metamaterials consists of building blocks whose dimensions

are significantly smaller than A. Therefore, it is generally possible to consider a

metamaterial as a homogeneous medium with an effective permittivity fell and

permeability ILefI This is analogous to assigning f and p to a conventional material

to describe the collective response of its constituent atoms. The macroscopic

optical properties of a metamaterial are typically derived from the electromagnetic

response of its microscopic constituents. As a result, the geometric tunability of

SPRs is an ideal tool for metamaterial engineering. In recent years, a number

of plasmonic metamaterials that exhibit optical properties not readily observed in

nature have been studied. Of those, metamaterials with simultaneously negative

permittivity and permeability, also called left-handed materials (LHMs), are perhaps

most intensely investigated. In LHMs, the index of refraction is negative. This leads

to unusual optical phenomena such as negative refraction, perfect lensing, reversed

Doppler shift, and inverse Cherenkov radiation [46-48] . To date, several left-handed

metamaterials composed of plasmonic elements-such as split ring resonators[49]'

paired parallel nanorods[50] , H-shaped metal wires[51], double metal pillars[52], and

cut-wire structures[53]--have been demonstrated. Studies have also shown that

metamaterials may lead to optical cloaking[54--57].

Although significant progress has been made in vanous applied aspects of

plasmonics, our present understanding of the fundamental nature of SPPs is still
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far from complete. In particular, how the general features of metal surfaces, such as

curvature and roughness, affect fundamental SPP behaviors are not well understood.

Acquiring this knowledge is critical as it would provide a set of conceptually intuitive

tools for controlling and manipulating SPPs. 'With such tools, we are better able to

design new plasmonic devices, which would outperform existing plasmonic devices.

In this dissertation, we show, both theoretically and experimentally, the effect of

geometry and surface morphology on SPPs and the optical properties of metal­

dielectric systems.

Outline of this Dissertation

In Chapter 2, we present a theoretical study of the propagation of SPPs on curved

metal-dielectric interfaces. First we qualitatively describe the origin of curvature­

induced radiation of SPPs propagating around bends and its effect on the SPP

propagation efficiency. We then develop an analytical model for quantifying the

transmission efficiency, and show that the problem is analogous to the scattering

from a one-dimensional (lD) finite potential well/barrier. Subsequently, a numerical

analysis of the bend propagation is presented, and its results are compared with the

analytical results. Vife further show that it is possible to enhance the transmittance

by introducing a plasmonic resonator at bends. The material in this chapter was

previously published with J. U. Nockel and M. Deutsch in Ref. [58] and [59].
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The effect of surface roughness on SPPs and the scattering of light from random

metal-dielectric systems is explored in Chapter 3. The chapter begins by reviewing

the effective medium theories of disordered media, which ignore the effect of surface

roughness. \Ve present a theoretical and experimental investigation of thin, random

metal-dielectric films which act as double-sided metamaterial mirrors exhibiting a

large, broadband reflectance asymmetry. We show that the asymmetry cannot

be described by any effective medium theory, which ignores the effect of surface

roughness. The study of the broadband asymmetric mirrors was previously published

with A. Chen, V. A. Podolskiy, and M. Deutsch in Ref. [60]. We next investigate the

origin of the broadband reflection asymmetry by observing how changes in surface

morphology induced by annealing affect the reflectance spectra, and show that the

reflection asymmetry is due to the different surface roughness light encounters when

incident from different sides of the film.

In Chapter 4, we present a study of SPRs in layered metal-dielectric particles.

\Ve focus on two types of systems: metal-dielectric-metal (MDM) spheres, consisting

of metal cores, surrounded by a thin layer of dielectric shell, followed by a metal

shell; and percolative nanoshells, made of dielectric cores surrounded by a layer of

semicontinuous metal film. In the first part of the chapter, we discuss the geometric

tunability of the JVIDM sphere's dispersion relations. In particular, we derive a simple

geometric condition for which the system supports a band of SPRs whose resonant

frequencies are nearly identical. \Ve demonstrate numerically that these SPRs can be
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excited simultaneously by a plane wave, and enhance the absorption cross section of

the system. \Ve also show that the system also exhibits a tunable optical resonance.

The material in the first part of the chapter previously published with C. Rohde and

IvI. Deutsch in Ref. [9] and [10]. The second part of the chapter present a study

of the scattering of light from percolative nanoshells. Our experiment indicates that

such nanoshells support cluster-localized SPRs that are coherently driven due to the

spherical geometry. Vile present a modified scaling theory to model the dynamics of

the SPRs. This material was previously published with C. Rohde and IvI. Deutsch in

Ref. [61]. \Ne close the dissertation with concluding remarks in Chapter 5.
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CHAPTER II

SURFACE PLASMON POLARITON PROPAGATION ON CURVED METAL

SURFACES

This chapter introduces a theoretical study of the propagation and the curvature­

induced radiation of SPPs propagating around bends. The material in this chapter

was previously published with J. U. Nikkel and M. Deutsch in Ref. [59], which, in

turn, was based on our earlier work in Ref. [58]. My specific contribution was to

develop the analytical and numerical models under the guidance of J. U. Nockel and

M. Deutsch

Introduction

The propagation of SPPs on curved metal surfaces is an important, yet often

misunderstood topic. As discussed in Chapter 1, when SPPs travel on flat metal

surfaces, the propagation distance is only limited by the dissipation in the metal.

However, vi'hen traveling on curved surfaces, SPPs also experience radiation loss,

degree of which depends on the radius of curvature, much like light traveling through

bent optical fibers. This additional loss mechanism can significantly alter the

propagation length of SPPs. Yet there is a general misconception among some

scientists that SPPs can travel on curved metal surfaces efficiently. For example,
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in Physical Review Focus, Don Monroe writes "[SPP] travels only along the surface

and ... turns corners like a sports car" [62]. In fact, as shown in this chapter, in many

instances of practical interest where tight (and preferably subwavelength) turns are

desirable, SPPs lose most of their energy through radiation, and thus, do not travel

efficiently around bends.

As the need for integration of compact lightwave devices is growing, it is

necessary that we develop a quantitative theory of curvature-induced radiative energy

loss in SPPs propagating at curved metal-dielectric interfaces. This enables the

determination of SPP propagation efficiencies when the radius of curvature is smaller

than or comparable to the signal wavelength[58, 59, 63, 64]. Careful analysis

of the relations between the propagation efficiency and the interface curvature is

essential when designing plasmonic devices, as it should set a limit on the radius

of curvature and, subsequently, on feature size in plasmonic-circuits. Several recent

studies have addressed surface plasmon waveguiding around bends. However, these

studies are primarily focused on in-plane guiding[13, 14, 65, 66] or on using multiple­

interface geometries such as metal-dielectric-metal waveguides[67] or long-range SPP

waveguides [68] . To date, SPP guiding on a single bent interface remains largely

unknown.

This chapter presents a theoretical analysis of the propagation and curvature­

induced radiation of SPPs traveling around bends at metal-dielectric interfaces. First,

we introduce the geometry of our system, followed by a simple qualitative analysis
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describing the radiative nature of SPP propagation around bends. This enables us

to develop a more rigorous analytical approach for calculating losses and propagation

efficiencies, which we present in the subsequent section. A numerical analysis is

also described, and its results are compared with the analytical results. Moreover, a

novel resonator-based method for enhancing the transmittance is also described and

analyzed. Conclusions are presented in the last section.

Geometry of the Curved Metal-Dielectric Interface

The geometry of our study is shown in Fig. 4(a). The system consists of a

curved metal-dielectric interface occupying region II in space, matching smoothly

to planar and semi-infinite interfaces in regions I and III. The axes Xl and X2 define

the boundaries between the three regions, and the system is infinite in the z direction.

The rounded edge is characterized by a permittivity Ei, with a fixed radius R and a

finite bend angle (). The surrounding space is characterized by a permittivity Eo.

Propagating SPPs of frequency ware incident from region I onto the boundary at Xl,

and their counterclockwise transmission through region II into region III is analyzed.

vVe initially consider the case of SPPs propagation around a metallic corner with

Re[EiJ < 0 and Eo > 0, depicted schematically in Fig. 4(b). This is essentially a

segment of an infinitely long metal cylinder. We then analyze the complementary

reverse geometry shown in Fig. 4(c), in which SPPs propagate around an open

dielectric 'Void.
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Re[eo] <0

eo>O

Re[ei] <0

(b)

(c)

X1

Region IIeo
X2

(a)

FIGURE 4. (a) The geometry of the curved metal-dielectric interface. A rounded
edge, characterized by a permittivity C'i, has a bend angle eand a finite bend radius
R. The bend is confined to the region of space shown, with center of curvature at the
origin. The rest of space is occupied by a medium with co. Axes Xl and X2 extend
along the boundaries between regions I and II and regions II and III, respectively. In
the Xl - X2 plane, regions I and III are semi-infinite. The system is also infinite in
extent along the entire z axis. Arrows indicate incident and reflected fields in region
I, and transmitted field in region III. In addition, (a) shows the intensity of SPPs
in greyscale. The intensity distribution is calculated for SPPs traveling around a
metallic corner (b), using the single-mode approximation developed in the text. \\le
also consider the complementary configuration, in which SPPs propagate around a
dielectric void (c).

Curvature-induced Radiation: Qualitative Analysis

The generalized dispersion relation of SPPs propagating at a metal-dielectric (i.e.

anisotropic) interface is

w2

c - k 2 + k 2
'--0,'i7}2 - II l.o,i (11.1 )

where kll and kl.o,i are the components of the k-vector parallel and perpendicular to

the interface, respectively. For a surface-guided mode, we require k ll > "jE;w / c such



16

that kl..o,i becomes imaginary, hence non-radiative. Rewriting this simple expression

yields w/ k ll < elf;. Simply stated, the phase velocity in the direction parallel to

the interface, vII == w/ k ll , cannot exceed the speed of light, c/If;, in order to sustain

non-radiative guiding.

\tVhen propagating around a bend, vII acquires a radial dependence, with EM

fields more distant from the interface traveling at greater phase velocities. Thus,

there exists a threshold radius, r*, where the parallel phase velocity reaches the speed

of light. Beyond r* the EM field of the SPP becomes radiative. As a result, SPPs can

be guided along curved interfaces with negligible radiation loss as long as the fields

are confined near the metal-dielectric interface and do not extend beyond T*. This

claim is verified analytically in the next section.

Transmission Efficiency: Quantitative Analysis

In order to quantify the degree of radiation loss and the propagation efficiency

of SPPs around the bend we now exploit known solutions of Maxwell's equations

describing angular propagation of EM waves at the surface of an infinitely long metal

cylinder. These solutions are applicable in region II. The magnetic field is hence given

by

fj = ze- iuJt L {
{n}

[A~e+in</J + A~e-incl>] In(kir)

[B~ e+in</J + B;: e-in</J] H~l)(kor)

r < R

r > R

(II.2)

where ki,o = w~/e, I n is the Bessel function, and H~l) is the Hankel function of
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the first kind. The set of mode indices {11}, denoting radial excitations, is determined

by the metal boundary matching equation

(II.3)

where the prime denotes differentiation with respect to the argument. Since region II

comprises only a segment of a full cylinder (i.e. e< 27r,) periodic boundary conditions

need not be satisfied, and 11 is therefore not constrained to integer values. In fact,

since we choose the frequency w to be real-valued, one finds 11 to have a non-vanishing

imaginary part as well. The latter is a consequence of radiation loss and absorption

in the bend.

The azimuthal dependence of the SPP wave is given by the standard expression

exp[±in¢], where ¢ is the measured from the Xl axis. Thus only solutions with

Im[n] ~ 0 are admissible, describing attenuated propagation. Away from the interface

in the dielectric region, where kor » Re[n] is satisfied, we may use the asymptotic

form of the Hankel function: H~l)(kor) ~ J2/7rkorexp[i(kor - (2n + 1)7r/4)]. Each

mode can now be written as

(IIA)

thus recovering the expected free propagating cylindrical wave form.

In general, Eq. (11.3) cannot be solved algebraically, and it is necessary to employ

a numerical method to find the set {n}. One convenient numerical approach employs
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graphical plotting of the right-hand side of Eq. (II.3) as functions of both Re[n] and

Im[n] , and identifying its zeros in the complex n-plane.

In principle, the set of solutions denoted by {n} is infinite. In practice, we find

that a single mode of this set dominates the propagation problem we are analyzing

in this work. The set {n} contains a fundamental mode (i.e. the surface plasmon

mode), which we label with mode index m E {n}. The EM field of this mode

is concentrated near the metal-dielectric interface. The solid line in Fig. 5 shows

the dispersion relation of this fundamental mode. In the limit of large momentum,

it asymptotically approaches wsp == wp/~, the conventional limit for surface

plasmon modes. Also shown in Fig. 5 are the dispersion relations of modes in the set

{n} with higher radial excitation values (dashed lines). We see that these modes do

not approach wsp asymptotically. Compared to the fundamental, these modes are also

found to be less confined to the interface. As the radial excitation number increases

even further, the modes corresponding to these values of n all lie to the right of the

three non-fundamental modes shown in Fig. 5. As expected from the fundamental

mode, Im[m] is the smallest of the set {n} since the confinement of this mode to the

interface is maximal, hence its radiation losses are the lowest. This is generally true

for metals such as gold and silver, where the absorption losses are relatively low. If

the metal is highly absorptive modes with stronger field confinement may have larger

Im[n] , since they experience greater absorption loss.
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FIGURE 5. Dispersion relations of transverse-magnetic modes on a metal cylinder
with R = 2J-tm. The dispersion relation for the fundamental mode (solid line) closely
follows that of SPPs on a fiat metal-dielectric interface (dash-dotted line). The
horizontal scale of the latter is normalized by the factor R, so that the curve is a
plot of w as function of kR, instead of k. Dispersion relations of modes with higher
radial excitations are also shown (dashed lines). These modes are less confined to the
interface and do not approach wp / J2 asymptotically. Higher radial excitation modes
with even weaker surface confinement exist (not shown), all lying to the right of the
three dashed lines shown.

As shown in Fig. 5, away from wsp the fundamental mode has the smallest

angular momentum (~ kR) at a given frequency. To understand this, we consider

the following: The angular momentum is L = J('r x § / c2 )dT3
, where § is the

Poynting vector. Compared to other modes, the fundamental mode is more strongly

confined near the surface. Since § for this mode is significant only at T :::::::: R, the

integrand is minimal (as long as § of the fundamental mode is not disproportionately

large.) However, as the frequency approaches wsp , § increases asymptotically, which
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overcompensates for the smaller value of i:;'. This is seen in Fig. 5 as a crossover of the

fundamental mode and the other depicted modes, such that at w rv wsp its angular

momentum is higher than that of the less confined modes.

The radiative nature of the SPP solutions described by Eq. (11.2) is also consistent

with the qualitative analysis presented in the previous section. This can be verified

by analyzing the nature of the Hankel function H~l). The Hankel function is non-

oscillatory (depicting non-radiative fields) while its argument is smaller than the order

Re[n]. \Alhen the argument exceeds Re[n], H~l) starts to approach its oscillatory

(radiating) form, as shown by the asymptotic expression leading to Eq. (11.4). The

non-oscillatory-to-oscillatory transition occurs when the argument and the order are

approximately equal. We are thus led to conclude that each mode of Eq. (II.2)

undergoes a non-radiative-to-radiative transition at a radius given by kar ~ Re[n].

The transition radius described above coincides with the previously introduced

threshold radius, r*. By definition, at r = r~ we require vII = c/ j"E;, where the

mode index n is added to r* since each mode with index n has a different threshold

radius r~ in region II. The phase flow in the parallel direction is characterized by

exp(iRe[n]<tJ), and its associated wavenumber and phase velocity are kll = Re[n]jr

and 'ull = w/ k ll = wr /Re[n] , respectively. We thus obtain

* Re[n]
rn=~, (II.5)

verifying that the threshold radius is indeed the non-radiative-to-radiating-SPP

transition radius. From this it follows that the fundamental mode m, with lowest
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angular momentum ( for W < wsp ,) also has the smallest threshold radius for radiation:

(II.6)

The approximation above follows from Re[rn] ~ kR, where k = WVEiEa/(Ei + Ea)/C is

the wavenumber of SPPs propagating at a flat metal-dielectric interface. The validity

of this approximation is confirmed in Fig. 5, where it is shown that the dispersion

relation of the fundamental mode is very close to that of SPPs at a flat interface.

The above analysis implies that when the majority of the SPP field is confined to

a region with r < r-:n, we should expect a negligible radiation loss during propagation.

On the dielectric side of the interface the SPP field decays as exp{-Reba(r - R)]},

with the decay coefficient is given by /a = wEaV=1/(Ei + Eo)/C. Vve see that the field

confinement in the dielectric is therefore characterized by Reba]. Thus, we conclude

that the radiation loss is insignificant if 0 > 1, where 0 is the exponent evaluated at

(II.7)

In Fig. 6 we plot Im[rn] as function of O. The metal is assumed lossless (i.e.

Im[Ei] = 0), therefore Im[rn] is related solely to radiative loss. We find that Im[rn]

is a monotonically decreasing function of 0, as expected from the arguments above.

Moreover, when 0 = 1 Im[rn] = 1.24 rv 1, confirming again that 0 = 1 is a very good

approximation of the threshold where SPP propagation changes from significantly

radiative (Im[rn] 2:, 1) to mostly non-radiative (Im[rn] :s 1).
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FIGURE 6. Plot of the radiative loss as a function of the field confinement for
wR/c = 1000 and Eo = 1. The permittivity E'i is real and varies from E'i = -30 to
-200.

To quantify the radiation loss and propagation efficiency around the bend it is now

necessary to consider the coupling of these metal-cylinder modes to planar-interface

SPP modes (i.e. propagating modes in regions I and III). The magnetic field of the

SPP incident from Region I is given by

(II.8)

with A the amplitude and 'Y'i = -WEn/-l/(E'i + Eo)/C. Similar expressions hold for

the SPPs reflected into region I and the fields transmitted into region III.

Calculating exact values of the transmission and reflection coefficients is often

impractical, since it requires matching an infinite number of modes in Eq. (II.2)
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to planar SPP modes in regions I and III. The mode matching must be carried out

along the entire spatial extent of the Xl and X2 axes at the boundaries. However, in

certain cases it is possible to derive relatively simple approximate expressions for the

required field coefficients. This is because although each mode of region II has an

EM field profile normal to the surface which does not exactly match the field profile

of the incident planar SPP, the fundamental mode of region II minimizes this spatial

mismatch. Non-fundamental modes are characterized by EM fields which are less

confined to the surface, therefore their field profiles deviate more strongly from those

of the planar SPPs whose fields are always strongly bound at the metal-dielectric

interface.

In the short wavelength limit, it is possible to show that incident SPP and the

fundamental mode have identical field profiles near the interface. In this limit, the

field distribution of the fundamental mode in the radial direction can be obtained by

taking the appropriate limit of the Bessel equation

to which Jm(kir) and H~)(kor) are solutions, respectively. As wR/c -----+ 00, the

curvature of the metal surface becomes insignificant and m approaches kR. With

T = R + X, in the limit X « R the Bessel equation reduces to R2 d2f /dx 2 + (ki,o -

k2 )R2f = 0, to which the solutions are exponentials. Thus, noting that Ii 0 = k2
- ki 0', ,

Jm(kir) rv eXPhir ) and H1~;)(kor) rv exp(-'or) which is identical to the behavior

of the SPP fields in regions I and III near the interface. Far from the interface
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FIGURE 7. Comparison of intensity profiles of SPPs in region I (solid line) and the
fundamental mode in region II (dashed line), calculated for wR/c = 800. The profile
mismatch is barely visible, indicating that SPPs in region I couple predominately to
the fundamental mode in region II.

where the condition x «R no longer holds, Jm(k(r) and H~)(kor) no longer exhibit

exponentially decaying behaviors. However, due to the exponential decay near the

interface, their values are small far from the interface, making the mismatch negligible

along the entire Xl and X2 axes. This is illustrated in Fig. 7, where we show that the

intensity profiles of the fundamental mode and the planar SPP are well matched in

the short wavelength limit.

\Ve are thus led to conclude that in the short wavelength limit planar SPPs couple

predominately to the fundamental mode, and neglect their coupling to all other non-

fundarnental modes. For this reason, under this single-mode approximation, it is

necessary to consider only a small number of modes: the incident and reflected SPPs
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in region I, the clockwise and counterclockwise propagating fundamental mode in

region II, and the transmitted SPP in region III. These modes are matched at a

single point on at each axis, at a distance H from the origin, via the standard Maxwell

boundary conditions. Our analysis above ensures that the boundary conditions are

then approximately satisfied over the entire extent of the axes. The problem of

quantifying the propagation efficiency has now essentially become one dimensional

(lD), and it is mathematically analogous to scattering from a 1D finite potential

well[69]. However, since the allowed m values are always complex, bound-state

solutions in this type of well do not exist. This distinguishes SPPs at curved surfaces

from waveguide bends enclosed on all sides by infinite potential walls [70] .

Applying the appropriate boundary conditions to the fields at the Xl and X2

boundaries results in expressions for the transmittance T and reflectance R:

1 1

2
T = 4mkR

_e im8 (m - kR)2 + e- im8 (m + kR)2

R = 1 2sin(me)(m
2

- k
2
R

2
) 1

2

-eirn8 (m - kR)2 + e- im8 (m + kR)2

(11.9)

(II.10)

In the presence of significant absorption or radiation loss, such that Im[m]e » 1,

these expressions become

T ~ 16 ImkRI
2

e-2Im[mJ8

1m + kRI4

R~ Im-kR1
2

m+kR

As wR/c -----+ 00, these expressions become exact.

(II.ll )

(II.12)
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In general, conservation of energy is expressed by 1 = T + R + P + A, where P

and A are the radiation and absorption loss coefficient, respectively. For a metal

characterized by a real permittivity, the absorption loss vanishes, and the radiation

loss can be easily calculated using the above expressions for T and R. For a lossy metal,

radiation losses must be calculated independently in order to extract the absorption

loss from the expression above. The radiation loss is obtained by integrating the

Poynting vector for unit incident flux in region II at r - 00:

1
8+¢o

P ==. ,§ . frd¢.
CPo

(II.13)

The lower integration limit is set to ¢o instead of 0, Sl11ce the energy radiated

from the surface at 1) = 0 propagates at an angle ¢o into the far field. Likewise,

the upper integration limit is e+ ¢o instead of e. In the short-wavelength limit

only the amplitude of the forward-propagating mode is significant, therefore the

radiation losses are well approximated by integrating only the counterclockwise

propagating mode. A stationary phase approximation is used to obtain an expression

for (jJo, using the position-dependent phase cP = kor + Re[m]¢. The change in

angle as the wave propagates a radial distance Or is o¢ = Re[mJl(kor 2 )or, giving

¢o = tOO Re[m]/(kor 2 )dr = Re[m]/koR.

Calculations were carried out using typical values of silver (ci = -15 + iO.5) in

air (co = 1) with wR/c = 800 and e= 90 0
• Assuming that the metal is lossless (Ci =

-15), we find that most of the incident SPP energy is transmitted with T = 0.997,

R = 1.19 X 10-8
, and P R:;; 0.003. When the absorption loss is accounted for the
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results change drastically to T = 0.0516, R = 1.18 X 10-6
, and P ~ 0.00282. This

result implies that absorption is the dominant loss mechanism when R » A even for

metals such as silver with relatively low losses. Surprisingly, we find that the overall

absorption and radiation losses of SPPs propagating at a non-planar interface may

be lower than the absorption loss of SPPs traveling the equivalent arc distance on a

flat surface. This counterintuitive result comes from the fact that the field inside the

metal in region II travels an arclength less than eR due to the curvature. As a result,

SPP fields sample less of the metal volume when propagating on the curved interface

than when propagating on a flat surface, resulting in the reduced absorption.

In order to evaluate the accuracy of our results, it is necessary to quantify

the validity of the single-mode approximation. As discussed earlier, the single

mode approximation is only appropriate when the field profile of the fundamental

mode (represented by the solution to the Bessel equation) well approximates the

exponentially decaying behavior of the planar SPP. Thus, evaluating the mismatch

between the Hankel function and the decaying exponential gives a measure of whether

the approximation is appropriate or not. We define the normalized mismatch as

JR+rrY;;l lexp[-rv (r _ R)] _ H~)(kor) 1

2
dr

,6,2 = R /0 H~)(koR)
- R+ 1 2 (11.14)

JR 7110 lexp[-io(r - R)]I dr

where Tl = 0(1). The expression in the numerator quantifies the field mismatch near

the interface. The condition ,6, « 1 constitutes a criterion for the validity of our

approximation. For example, when Tl = 3, Ei = -15, and Eo = 1, ,6,2 = 0.002 for

wR/c = 800, rendering our result applicable. On the other hand, for wR/c = 100
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we obtain ~2 = 0.3, indicating that the approximation is less reliable now, hence the

coupling to non-fundamental modes can no longer be neglected.

'When the single-mode approximation is not appropriate, it is still possible to

derive a physical quantity from the above analysis. As discussed previously, the

mode index m associated with the fundamental mode has the smallest imaginary part

compared to the mode indices of non-fundamental modes. Since the wave depends

on n as exp[±in¢]' modes with large Im[n] decay rapidly. Thus, the transmission in

the presence of coupling to nonfundamental modes does not exceed the upper bound

of

Tu = exp(-2Im[m]e). (II.15)

Here we neglect reflections at the Xl and X2 boundaries, thus excluding interference

effects. Figure 8(a) is a plot of Tu as function of R. A peak is clearly visible, moving

to higher values of R as the wavelength increases. To the right of the peak, at

large radii of curvature absorption losses in the metal dominate, and the maximum

transmittance decreases with increasing radius. To the left of the peak radiation due

to the high curvature is the dominant loss mechanism, leading to a rapid drop in

T u . At very high curvature (R ::; l0J..Lm) there is a change in trend, and Tu starts

to 'increase with decreasing R. When calculating the radiation loss per arclength,

we find that for this range of radii it increases slower than elsewhere, allowing Tu to

increase even as R attains very small values.



29

(a)
0.12

/ ...

t \/ --\ .,;
I \ /

0.08 \:::::lr- \

\
0.04

...

40 5030

(t-t m)
2010

DaDO 1....I.- ---L ..1......_..._-__---.L._-_-__----J-L...--_-_-_----L...J

o

0.14

0.12
~

0.10

:::::l

r- 0.08

0.06

0.04

0.0 0.5 1.5

(b)

2.0

FIGURE 8. (a) The upper bound for the transmittance, Tu, plotted for a silver-air
interface with bend angle e = 900

, as function of bend radius R for wavelengths
A = 500nm (dashed-dot ted line) I A = 600nm (dashed line) I and A = 700nm (solid
line). (b) Magnified view of the upper bound in the diffraction-dominated regime.
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The behavior of the transmittance for very high curvature is a consequence of

diffraction of the incident SPPs. In general, diffraction is associated with the finite

wavelength of light, and the diffraction coefficient approaches zero in the limit of

small wavelength[71]. For SPPs propagating around bends, a decrease in the radius

of curvature is equivalent to an increase in the effective wavelength, AIR. For this

reason, SPP diffraction around a corner increases as R decreases, resulting in greater

transmittance for smaller R. Since the diffraction is only significant at sharp corners,

the transmittance becomes weakly dependent on the dispersion of the metal at small

radii of curvature. Hence, as shown in Fig. 8(b), the upper bound at different

wavelengths converges to a single value as R approaches zero.

From the discussion above, it is clear that the nonmonotonic behavior of the

transmittance is a result of three competing mechanisms: absorption, radiation, and

diffraction. Depending on the radius of curvature, one of the three mechanisms

becomes dominant, creating three distinct regimes in Fig. 8(a). However, it is not

possible to evaluate the potential discrepancies between the upper bound model

plotted here and the analytical results, since our analytical approach is not valid at

high curvatures. To examine the transmittance for such cases, we turn to a numerical

study using the finite-difference time-domain method (FDTD).
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Comparison between Analytical Results and FDTD Calculations

Vlfe apply here numerical FDTD calculations to study the propagation of SPPs

about bends, and compare with our analytical results. Previously, the method of

lines has been used to study the diffraction and the propagation of SPPs at a sharp

bend with R = 0[72]. Our present numerical study examines how the transmission

efficiency depends on the radius of curvature of the bend. The dielectric function in

our simulations is given by the Debye model

( )
Cs - Coo 47f(J

C W = Coo + . + i --.
1- 'tWT W

(11.16)

\iVith the choice of parameters Coo = 3.90838, Cs = -25658.4, T = 1.20973 x 1O-14sec ,

and (J = 1.68931 X 1017sec- 1 the Debye model closely matches experimentally

obtained values for silver[73] in the wavelength range 400-1200nm. We implement

a nonuniform orthogonal grid, with mesh size in the range A/300-A/40. Dispersive

perfectly matched layers [74] are used as absorbing boundary conditions throughout

our study. The wavelength in vacuum is fixed at A = 630nm. A trial simulation of SPP

propagation at a planar metal-air interface indicates that the simulated SPPs are well

characterized by the effective dielectric constant Cs = -14.0+iO.9, which is reasonably

close to c = -15.7 + iLl calculated using the Debye model. A detailed discussion

of the FDTD methods employed to simulate the SPP propagation is presented in

Appendix A.
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FIGURE 9. (a) FDTD simulation of SPP propagation around curved metal bends for
A = 630nm. The SPPs are incident from the bottom and propagate counterclockwise
around the bend. (b) Analytical result for the transmittance upper bound (black
trace) compared to numerical simulations for various values of R (red points). The
upper bound values are clearly higher than the simulation results, confirming the
consistency of our analytical method.

Ninety-Degree Bend

A series of FDTD simulations were performed to analyze propagation about the

90° rounded edge shown in Fig. 9(a). The transmittance, T, is extracted for various

radii of curvature. As shown in Fig. 9(b), the transmittance increases with decreasing

radius, peaking at R = 0 with T ~ 0.07. Hence, the numerical approach confirms the

diffraction-dominated small-radius behavior of T predicted from our earlier analysis

of TIL in Fig. 8. Interestingly, our simulations reveal that the actual transmittance is

reasonably well described by the upper bound (calculated now using Es ) even for R ::;

A. Moreover) for R > A the discrepancy between the simulation and the analytical

upper bound is less than 0.01. This mismatch is expected to decrease even further

with decreasing curvature because the coupling to the fundamental mode increases as
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AIR -----+ O. Vie therefore conclude that the calculated upper bound is a good estimate

for the transmittance for all R ~ A.

Bend with Negative Curvature

The analytical formalism developed above may also be used to analyze the reversed

geometry, where the metal occupies the outer space, and the SPPs propagate around

a dielectric void in it as shown in Fig. 4(c). In this complementary picture the planar

SPP modes are now matched to the solutions of a hollow cylindrical void in the metal.

However, care must be taken when choosing the appropriate solutions in region II for

the mode matching. For a dielectric cylinder surrounded by metal, the radial solutions

in the dielectric are the Bessel functions. These functions, except for the one confined

to the interface, have field nodes. Since the existence of nodes implies that photons

are exchanged between opposing points on the cylindrical interface, these solutions

are unphysical in an open geometry such as our system. Therefore, the only solution

represented by the Bessel function in region II is the surface confined mode, which

lacks any nodes.

As before, the surface confined mode corresponds to the fundamental (SPP) mode,

which minimizes the field mismatch with the incident planar SPP under the single­

mode approximation. Since the fundamental mode is represented by the Bessel

function, Eq. (11.3) remains unchanged and the expressions for the transmittance

and the reflectance are valid for this reversed geometry. Our calculations have shown

that this problem is now appropriately analogous to the finite potential barrier model.
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We also find that the absorption loss in region II is now greater than the absorption

of planar SPPs. From the argument above, it also follows that in the single-mode

approximation SPP propagation around a bend is nonradiative. For this reason, SPP

transmission through the reversed geometry becomes highly efficient when material

losses and reflections at the boundaries are negligible.
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FIGURE 10 FDTD simulation of SPPs propagating around negative curvature bends
for (a) R = A = 630nm and (b) R = 0 when SPPs, incident from the bottom,
propagate around a circular dielectric void. The radiation loss is significantly reduced
compared to the propagation around a metallic bend.

Our simulations show that efficient propagation is indeed possible. For example,

we find that when R = A the transmittance is T = 0.73, in sharp contrast to

the value of T ~ 0.06 obtained for an equivalent curvature in the geometry of

Fig. 9(a). However, when R = 0, back-reflection at the bend becomes the dominant

loss mechanism with R = 0.96, while the radiation loss remains small as shown in

Fig. 10(b). The transmittance decreases to T ~ 0.002. Because of its high reflectance,
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this particular geometry is essentially a SPP mirror and may be implemented to

construct SPP resonators[75].

(a)
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FIGURE 11. (a) Schematic diagram of a SPP microresonator embedded near a sharp
edge. SPPs are incident from the bottom along the direction of the red arrow, couple
to the resonator and couple out again. (b) Numerical FDTD simulation showing the
magnitude of the magnetic field for d = 8.4nm and r = 378nm. A significant portion
of the field is seen to couple into the resonator.

Resonator-Enhanced Transmission around a Sharp Bend

We have shown that efficient transmission of SPP energy around bends is possible

when propagating around small voids in metals, while SPP propagation about metallic

bends is highly radiative. In what follows we demonstrate a method for reducing

radiation losses by introducing an additional metal-dielectric interface into the system,

which provides an alternative, low-loss transmission channel for SPPs. Consider

the geometry shown in Fig. 11 (a). A cylindrical hole of radius r is placed in close

proximity to two fiat metal interfaces joined by an abrupt 90° edge. Incident SPPs
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propagating upward along the vertical interface are coupled through their near-fields

into the void and our of it onto the second interface. Positioning of the resonator

within the skin depth of the metal allows efficient excitation of the resonator modes

by the incident SPPs, and subsequent outcoupling. The role of the dielectric void is

similar to that of a dielectric microring resonator, and the evanescent wave coupling

scheme is analogous to optical coupling between microring resonators and dielectric

waveguides [76] . The SPP resonator provides an alternative transmission channel into

which the field couples, leading to a reduction in the total SPP energy impinging

on the highly radiative sharp edge. Hence, the efficiency of propagation increases

significantly when a resonator is properly incorporated into the metal in the vicinity

of the bend. Figure 11 (b) shows the results of a simulation for a typical resonator­

coupled system. We find that the transmission around an infinitely sharp bend in

the absence of a resonator, (T ~ 0.07) increases to T = 0.17 when a cavity of

radius r = 378nm is incorporated at a distance d = 8.4nm from the interfaces.

A scattering-theory formalism has been previously developed to treat waveguide­

resonator couplings[77, 78]. However, this method requires ab-initio knowledge of the

scattering-matrix elements, attainable by solving Maxwell's equations using FDTD

or other numerical methods. \iVhen applied to the geometries of our system, we

find that this approach is less straightforward than our demonstrated method of

extracting the transmission efficiency directly from FDTD simulations of resonator­

coupled interfaces. The transmitted signal levels may be then optimized by fine-
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tuning additional parameters of the system, such as resonator shape, the number

of (cascaded) resonators and their relative positioning near the bend. In addition,

incorporating a gain medium[29, 30] (i.e. SPP amplifier) inside the resonator cavity

may further enhance transmission efficiencies. Future work will address the enhanced

transmission via SPP resonators in detail.

Conclusions

In summary, we have studied the propagation of SPPs at a curved metal-dielectric

interface both analytically and numerically. We have presented and confirmed a

physically intuitive picture of the bend-induced radiation, and how the radiation loss

is related to the SPP confinement at the interface. In the short wavelength limit,

we have shown that calculating the propagation efficiency is analogous to a quantum

mechanical ID finite square well which is readily solved to obtain the expressions

for energy transmission and reflection coefficients. The analysis of the upper bound

on the transmittance has revealed that absorption, radiation, and diffraction are

three competing mechanisms, responsible for the nonmonotonic behavior of the

transmittance. Furthermore, our numerical study has shown that the calculated

upper bound Tu is a good estimate for the actual transmittance for all bend radii

R ~ A. In the complementary reversed geometry, when the SPPs propagate around a

dielectric void, it is argued that the fundamental mode is nonradiative, and thus SPP

propagation is overall less radiative. This prediction was verified numerically. Finally,
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we have studied a bend geometry in which a surface plasmon resonator is introduced to

provide an alternative transmission channel for enhancing the propagation efficiency.
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CHAPTER III

OPTICAL PROPERTIES OF RANDOM METAL-DIELECTRIC FILMS

Realistic metal surfaces are never perfectly flat, and are always rough to some

degree. Thus, a thorough understanding of how surface roughness affects the

SPPs and the optical properties of metal-dielectric systems in general is critical

in plasmonics. In this chapter, we shift our focus from SPPs on curved metal

surfaces to the optical response of rough metal-dielectric films. In particular, we

focus our attention on how surface roughness affects the optical properties and SPPs

of disordered metal-dielectric composites. The outline of this chapter is as follows. We

first review the concept of random composites as metamaterials in the introductory

section. In the second section, we report a study on a reflection asymmetry from

rough metal-dielectric films, which was previously published with A. Chen, V. A.

Podolskiy, and M. Deutsch in Ref. [60]. My specific contribution to this work was to

perform the numerical modeling of the random composites. Subsequently, we describe

the inadequacies of effective medium theories to describe our observations. We then

present our recent investigation on the effect of surface morphology on the optical

properties of random metal-dielectric composites. Conclusions are given in the final

section.
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Introduction: Random Metal-Dielectric Composites as Metamaterials

As was discussed in Chapter I, metamaterials are a class of artificial composites

designed to produce an engineered electromagnetic response, often described in terms

of effective permittivity and permeability. Metamaterials can be comprised of ordered

or disordered arrays of subwavelength elements. The scientific studies of a disordered

metal-dielectric composites as metamaterials date back over 100 years. In 1904, J.

C. Maxwell Garnett developed an effective medium theory (EMT) to explain bright

colors observed in metal doped glasses, such as the stained glass windows found

in churches and cathedrals. According to the Maxwell-Garnett (MG) theory, the

eff'ective permittivity of an heterogeneous structure made of small spherical particles

in a host medium is given by

(III. 1)

where f is the filling fraction of the spheres, and fl and f2 are the permittivities

of the inclusions and the host, respectively[79]. The MG theory is derived with an

assumption that the coupling between the spheres can be neglected, and hence, is

valid only for small filling fractions. Another commonly used EMT is the Bruggeman

(BR) theory, according to which the effective permittivity fBR is determined by[80]

(III.2)

The BR theory treats two media symmetrically, and is applicable for a wider range

of filling fraction. In general, EMTs use a quasistatic approximation and assume
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that the inclusions are much smaller than the wavelength. This renders the effective

permittivity independent of particle size as is evident in Eq. (IlL 1) and (III.2). As a

result, it essentially ignores the effect of different roughnesses that may arise at the

surface of the heterogeneous material due to different inclusion sizes.

Over the years, the MG and BR theories and their modified versions have been

employed to describe various experimental results. For example, a number of studies

have shown that the EMTs and their modified versions agree reasonably well with

the transmission and reflection spectra of light from semicontinuous metal films

on substrates[8l-85]. Interestingly, the EMTs have only been used to model the

reflectance from one side of the films. In fact, to our knowledge, the reflectance of

light from both sides of random metal-dielectric films have never been investigated. As

a first step toward understanding the effect of surface roughness, in the next section

we present a study of a reflection asymmetry from semicontinuous metal films. We

then test if any EMT, which ignores the effect of surface roughness, can adequately

explain our experimental results.

Asymmetric Mirrors

The reflection spectra from two sides of a film are symmetric in most textbook

examples; that is, t::.R =.=: R1 - R2 = 0 where R is the reflectance and the subscripts

refer to the direction of the incident light. However, if a system lacks inversion

symmetry and is lossy (either in the form of absorption or diffusive scattering
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FIGURE 12. (a) Calculated 6R from a smooth silver film on a glass substrate as a
function of the metal thickness d. (b) A schematic diagram of the film, defining the
direction of the incident light.

induced by surface roughness or material inhomogeneity), then the reflectance can be

asymmetric. For instance, a smooth layer of silver on a glass substrate has 6R AJ 2%

as shown in Fig. 12(a). The system is known as the asymmetric mirror if in addition

the transmittance T of the film is nonzero[86]. The energy conservation dictates that

T + R 1,2 + A 1,2 = 1, where A is the losses. Therefore, 6R = -6A, and the reflection

asymmetry is a direct measure of difference in the losses. Note that the reciprocity

guarantees that the transmittance is symmetric; 6T == T1 - T2 = O. See, for example,

Ref. [87] for detailed discussions of the optical reciprocity.

In our experiment, asymmetric mirrors consist of semicontinuous silver films

deposited on 1mm thick glass substrate using a modified ToBen's reaction [88] . The

amount of silver deposited was controlled by varying the deposition time between 1

to 6 hours. Figure 13(a) and (b) show high-resolution scanning electron microscope

(SEM) images of typical samples. The images are taken with a Zeiss Ultra SEM,
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FIGURE 13. Reflection asymmetry from semicontinuous films. Left: SEM images of
typical samples with p = 0.52 (a), and p = 0.93 (b). Right: Measured T1,2 and R1,2

of the samples.

and are used to measure the metal filling fraction p of the samples. The statistical

information of the surface, such as the root mean square (rms) of the height variation

(Jh, is obtained from atomic force microscope (AFM) images taken with a Digital

Instruments MultiMode scanning probe microscope.

The reflection and transmission spectra were taken using an inverted optical

microscope with a lOX objective (0.25 N. A.), coupled to a Horiba-Jobin-

Yvon Triax320 spectrometer and a liquid-nitrogen-cooled Spectrum One CCD

detector. White light from a tungsten-halogen source was incident normally on the

samples. The reflectance was normalized by using two mirrors (Newport Broadband

SuperMirror and UV Enhanced Aluminum Mirror) to cover wavelength ranging from
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400nm to 850nm. Optical data was collected over rv 1mm across the sample to average

out local inhomogeneities. The reflection and transmission spectra of the samples are

shown in Fig. 13(c) and (d). The subscripts 1 and 2 refer to when light is incident

from the air-silver and substrate-silver side, respectively. In addition, Fig. 14 shows

a plot of 6.R vs p. The samples exhibit broadband reflection asymmetries, the signs

of which can be both positive and negative. The absolute value of 6.R can be an

order of magnitude greater than that of a smooth silver film, and especially large 6.R

is observed for high filling fraction samples. A large 6.R has also been observed from

ordered metamaterials, however, over a narrower spectral range [89, 90]. Remarkably,

6.R is nearly' dispersionless (i.e. independent of the wavelength) for the sample with

p = 0.74.

Inadequacies of Effective Medium Theories

If the reflection asymmetry can be modeled with an EMT, then there must

be an effective dielectric function Eeff that can simultaneously fit T, R 1 , and R 2

reasonably well. By solving Maxwell's equations for a triple layered system with

smooth interfaces, we obtain

Itt i., ['T
n3 12 23 e

(IIl.3)
n1 1 + r12r23e2i<P2

I 2 I'R1
r12 + r23 e ~<P2

(IlIA)
1 + r12r23e2i(h

I 2 1
2

R2
r32 + r21 e t({J2

(IIl.5)
1 + r32 r 21 e 2i(h
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FIGURE 14. Dependence of the reflection asymmetry on the filling fraction. The
sign of 6.R can be positive or negative, and the absolute value of 6.R can be an order
of magnitude larger than that of a smooth silver film.

refractive index of the i-th medium. We numerically invert the expressions and use

the measured values of T and R1 to calculate the real and imaginary part of ceJJ.

The film thickness d was used as a fitting parameter to obtain the best fit for R 2 .

Here, we ignore the interference effect from the finite thickness of the substrate since

the interference fringe spacing is significantly smaller than the spectral resolution of

our setup (O.lnm vs 0.5nm). However, we have taken the 4% reflection from the

air-substrate interface into consideration when deriving cefJ.

In Fig. 15(a), we plot ceJf for the sample shown in Fig. 13(b). The best fit for

R2 is obtained when the film thickness is d = 440nm, which is several times greater
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FIGURE 15. Effective permittivity fit. (a) The real and imaginary part of the
effective dielectric function calculated from T and R I . (b) A comparison between the
experimental and the theoretical R2 .

than the rms height of 50nm. The calculated and the measured R2 are shown in Fig.

15(b). From the graph, it is evident that even the best-fit R2 with such unphysical

value of d does not agree well with the measured R 2 Our analysis yields similar

results for other samples with different surface coverage. Therefore, we conclude that

semicontinuous films cannot be described by any EMT that is based on the smooth

interface assumption. Surface roughness cannot be ignored.

As an aside, we note that although EMTs cannot describe our observations, it

may be possible to use the EMTs as qualitative guidelines for designing asymmetric

mirrors. For example, suppose we are interested in fabricating an asymmetric mirror

exhibiting a dispersionless asymmetry with 6.R = 0.12 when d = 50nm. Without

specifying the transmittance, inverting the expressions for RI and R2 yield the

effective permittivity shown by the solid lines in Fig. 16(a). The plot of 6.R vs
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FIGURE 16. Effective permittivity modeling. (a) Solid lines: real (red, lower) and
imaginary (blue, higher) parts of the effective permittivity obtained by numerically
inverting R1 and R2 . Dashed lines: the effective permittivity according to the BR
theory. (b) The reflection asymmetry as a function of film thickness d.

d calculated from the derived effective permittivity is shown in Fig. 16(b), and it

illustrates that the reflection asymmetry resembles that of the semicontinuous films

shown in Fig. 14. Comparison with the EMTs indicates that the real part of the

derived permittivity is in excellent agreement with that of the modified BR theory

with p = 0.71 [80, 81]. As discussed in the previous section, the semicontinuous film

with p = 0.74 exhibit a nearly dispersionless asymmetry with I::1R ~ 0.12. Therefore,

while there is a significant discrepancy in the imaginary part, the filling fraction set

by the EMT may be used as a starting point for fabricating the desired asymmetric

mirror. For further discussion, see Ref [60].
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The Effect of Surface Morphology

In the previous section, we have demonstrated that the surface roughness of

the semicontinuous films influences their optical properties. However, it is not

yet apparent how their roughness and surface morphology affect the reflectance

and the transmittance. Moreover, it is not clear what physical mechanisms are

responsible for the large broadband tlR, or how they are related to the surface

morphology of the disordered metallodielectric films. From a practical point of

view, understanding the mechanisms behind the asymmetry is important in order to

design and optimize the metamaterials for practical applications such as Fabry-Perot

interferometers [91]. More fundamentally, understanding how surface morphology

affects the reflection spectra is the first step toward understanding the optics of

the disordered metallodielectric films and how the different morphology created, for

instance by different deposition methods, can influence their optical properties. In

this section, we present a study of the effect of the surface morphology on the reflection

asymmetry from disordered metallodielectric films.

Disordered silver films of various surface coverage are fabricated using the same

chemical-deposition method as above. However, for the present study, the silver is

deposited on 15mm x 15mm x 0.15mm glass cover slips. Unlike the previous samples,

the reaction is carried out at room temperature resulting in larger silver grains. This

deposition method is developed and refined by S. Peterson, and the details can be



49

found in Ref. [92]. The amount of silver deposited is controlled by varying the

deposition time between 5 to 25 minutes. The average mass thickness dm is obtained

from the mass of deposited silver measured with a Sartorius ME5 Microbalance.

Figure 17(a) shows a high-resolution SEM image of a typical sample.

In order to study how surface morphology influences the reflection asymmetry,

we induce morphology change by annealing the samples in ambient for 2 hours at

temperatures ranging from 70 0 e to 2200 e using a Barnstead Thermolyne F79,300 tube

furnace. SEM images are taken to observe changes in the morphology. Furthermore,

to detect changes that are not observable under the SEM, the sheet resistance Rs of the

film is measured by the van der Pauw method[93] using a Keithley 2004 SourceMeter.

SEM images in Fig. 17(a)-(d) show typical morphologies of a sample with dm =

101nm before and after annealing at various temperatures. No surface morphology

change is detected with the SEM and the sheet resistance measurement below 70oe.

At 70-80oe, the sheet resistance starts to decrease. This is associated with a removal

of defects and vacancies within the silver crysta.llites[92]. SEM images indicate that

the filling fraction also decreases slightly. As the annealing temperature increases, the

sheet resistance continues to decrease. At rv 100oe, the resistance begins to increase

while the surface coverage keeps decreasing due to the dewetting of the silver films.

Annealing at a higher temperature further dewets the samples and smoothes the silver

grains. At rv 220oe, the films dewet completely as shown in the environmental SEM

image in Fig. 17(d), obtained using a FEI Quanta ESEM.



50

0.7

0.6

0.5

0.4

0.3

0.2

0.1

---..L0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.7

:"--";;;;iWl~ 0.6

0.5

0.4

0.3

~~=tA..-( 0.2

0.1

lOOOnm

p =0 . 6 9 I Rs =11 . 93 Q O. 04 ..t=:~~'!::=--__.__-___r--_._-.J
400 500 600 700 800

Wavelength (nm)

p= 0 . 72 I Rs= 1 0 . 66Q 0.02 +=~~~=----r-----r---r-..J

1r'"~1f'J~~:i£li~1 0.14 4-_-L-_----L_---I._---l----,

(g)

p=0.42
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(g) l70D C. (h) a side view image of a typical sample.
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The reflection and transmission spectra of the sample are shown in Fig. 17(e)-(g).

The sample exhibits a large, negative reflectance asymmetry, between 6.R rv -40%

and -20%. The transmittance spectra are always symmetric as before. Below rv

220a C, the shape of R 1,2 and T1,2 are insensitive to the changes in morphology induced

by annealing. We observe that R2 is relatively flat, and its overall level decreases

monotonically with increasing annealing temperature. These observations indicate

that the reflectance from the substrate-silver side is dominated by a specular reflection

of the incident light from the bottom surface of silver grains for the following reasons:

As the annealing temperature increases, the filling fraction decreases. Therefore, a

smaller fraction of the incident light is reflected from the bottom surface of the grains

as a specular reflection. This also causes the sample to essentially act as a "poor"

mirror, which explains the weak dependence of R2 on the wavelength. To test this

hypothesis, we compared R2 of a sample before annealing with that of another sample

with significantly greater mass thickness. In order to match their filling fractions, the

second sample was annealed at l70a C. As shown in Fig. 18, two reflectance spectra

are well within their errors even though the amount of silver deposited on the samples

differs by nearly 60%.
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FIGURE 18. Reflection spectrum comparison of two samples with significantly
different mass thickness (dm = 101nm and dm = 160nm). The sample with higher
larger thickness was annealed at 170°C, such that the two samples have similar surface
coverage (p = 0.74 ± 0.02 and p = 0.76 ± 0.03).

Unlike R2 , R1 dips near ), ~ 480nm, and increases monotonically for longer

wavelength. Moreover, compared to R2 , the overall level of R 1 is significantly less

sensitive to the annealing. The side view image of a sample taken with SEM in

Fig. 17(h) clearly shows that the film is considerably rougher on the air-silver

side. According to the Rayleigh criterion[94], a surface is considered optically rough

(smooth) if the root mean square height, O"h, is greater (smaller) than ),/8 cos Bi ,

where Bi is the angle of incidence. AFM measurements of the surface profile of

the air-silver side indicate O"h ~ llOnm. As a result, the sample is at the smooth-

rough transition in the wavelength range, and we expect both the specular reflection
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and nonspecular diffusive scattering to be significant when light is normally incident

from the air-silver side. Since the surface appears smoother on the substrate-silver

interface, we also predict a significantly smaller diffusive scattering when the light is

incident from that side. The specular reflection from the air-silver side increases with

the wavelength since the surface is relatively smoother for longer wavelength. As the

sample is annealed, its surface profile changes. However, since the amount of silver on

the surface is unchanged and the filling fraction does not change drastically, change

in CTh should be slight, causing R1 to be less sensitive to annealing.

Note that although the average silver gram sizes differ, the general shapes of

R 1 and R2 here resemble the reflection spectra from the high filling fraction sample

studied in the previous sections (see Fig. 13(d)). Therefore, the analysis above is

likely to apply to the reflection asymmetry from the sample composed of smaller

silver particles. However, the same interpretation would not apply for low filling

fraction shown in Fig. 13(a), as its reflection from the air-silver side is greater than

that from the substrate-silver side. Further study is necessary to investigate what

physical mechanisms are responsible for creating a positive t::.R.

In order to test our prediction regarding the diffusive scattering and to investigate

the effect of surface roughness further, we performed an angular-resolved experiment

to compare the amount of diffusive scattering from the two sides of the film. The

experimental setup was built by C. Rohde, and the details can be found in Ref. [95].

The source was a p-polarized helium-neon laser (>' = 633nm) with the incident angle
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FIGURE 19. Diffusive scattering measurement from the air-silver side (red) and the
substrate-silver side (green) of the asymmetric mirror. The source was a p-polarized
helium-neon laser (A = 633nm) with the incident angle set at ei = 45°.

set at ei = 45°. An off-normal incident angle was chosen such that the source was

not blocked by the detector when scanning near the specular reflection. Figure 19

shows a plot of the diffusing scattering signal as a function of the scattering angle

when the light is incident from the air-silver side and the substrate-silver side. The

scattering angle is measured with respect to the surface normal as shown in the inset.

Therefore, the spike at e= 45° corresponds to the specular reflection. For both sides

of the film, the diffusive scattering peaks at e = 0°, (i.e. in the direction normal

to the sample surface), and decreases as the angle approaches 90°. For e < 90°,
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the diffusive scattering from the air-silver side is approximately 3 times larger than

from the opposite side. Thus, as predicted, the film behaves as a rough or smooth

surface depending on the incident direction, resulting in the reflection asymmetry.

A difference in absorption loss could also contribute to the asymmetry. However,

as shown in the previous section, no effective permittivity, which ignores the surface

roughness, reproduces the measured reflection and transmission spectra. This implies

that the surface roughness is critical for the presence of the large asymmetry. The

signal is symmetric for e> 90 0 because the scattered light must encounter both rough

and smooth sides of the film.

Figure 19 reveals that tbe diffusive scattering curves agree well with Lambert's

Cosine Law. According to the Lambertian model, the radiant intensity of scattered

light is proportional to the cosine of the angle between the surface normal and the

scattered direction[96, 97]. A Lambertian reflection generally results from multiple

scattering of light by inhomogeneities, and is normally considered as volume reflection.

Surface reflection, on the other hand, arises from a single scattering of light from

the surface, and often preferentially scatters light in directions toward the specular

reflection, not toward the surface normal as shown in Fig. 19[94, 97, 98]. Further

study is necessary to clarify why a multiple scattering seems to be preferred over a

single scattering.
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Conclusions

In summary, we have studied the effect of surface roughness on the optical

properties of the disordered metal-dielectric films. Semicontinuous silver films of

various surface coverage are deposited on glass substrates, and they are shown to

exhibit a large broadband asymmetry in reflectance. By inverting the expressions for

the transmittance and the reflectance, it has been shown that no EMT, which ignores

the effect of surface roughness, can adequately describe the reflection asymmetry. The

Rayleigh criterion was applied to show that the large asymmetry is due to the different

surface roughness light encounters when incident from different sides of the film. More

specifically, it was shown that the air-silver interface is at the smooth-rough transition,

and produces significant diffusive scattering and small specular reflection RI . On the

other hand, we identified that R2 is primarily due to coherent reflection of light from

the smooth bottom surface of the silver grains, and hence, depends primarily on

the surface coverage. Angle-resolved measurements have revealed that the diffusive

scattering obeys the Lambert's cosine law, indicating that multiple scattering is

preferred over single scattering from the surface. Much work remains to be done

to investigate if SPPs play any vital role in the optical properties of disordered films.
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CHAPTER IV

SURFACE PLASMON RESONANCES OF MULTILAYERED

METAL-DIELECTRIC SYSTEMS

In recent years, metal nanoparticles and nanoshells have attracted much attention

due to their ability to support geometrically tunable SPRs that can be used to control

the interaction of light with micro- and nanoscale particles. These SPRs essentially

provide a channel through which the incident EM field is efficiently focused to the

particles. The geometric tunability and the field enhancement may be improved

by increasing the number of metal-dielectric interfaces or by using a metamaterial

coating for the layers. In this chapter, we present a study of SPPs on layered metal­

dielectric systems. In the first section, we review SPRs of spherical metal particles and

of nanoshells. We then present a theoretical study of triple layered metal-dielectric

spheres in the second section. We show that when properly designed, the spheres

exhibit an enhanced absorption as well as optical transparency that are both tunable

over the entire visible range. The work in this section was previously published with

C. Rohde and M. Deutsch in Ref [9] and [10]. My specific contribution was to develop

a theory of the dispersion engineering and the enhanced absorption for the layered

particles, as well as to derive a recursive algorithm for calculating the absorption and

scattering cross-sections. Subsequently, we report a study on light scattering from



58

++++ +

a
III

metal em
sphere _ eo

FIGURE 20. Schematic diagram of a dipolar SPR excited by incident light.

semicontinuous silver nanoshells, which was previously published with C. Rohde and

M. Deutsch in Ref. [61]. My specific contribution to this work was to collaborate

with C. Rohde to develop a theoretical model for describing the dielectric response

of the nanoshells. Our findings are summarized in the final section.

Introduction

As discussed in Chapter I, spherical metal-dielectric systems, such as metal

nanoparticles and nanoshells, support SPPs that are localized in space. Because

of the spherical geometry, the SPPs excited in these systems exhibit multipolar

resonances, and they create a large field enhancement near the metal-dielectric

interfaces. Moreover, due to the surface curvature, the SPRs are not completely

evanescent and are coupled to free propagating EM waves, much like the SPPs

propagating around bends discussed in Chapter II. Therefore, unlike SPPs on planar

metal-dielectric interfaces, it is possible to excite the localized SPPs directly by light
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FIGURE 21. Extinction efficiencies of silver spheres of various radii. The extinction
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illumination. Figure 20 shows a schematic diagram of a dipolar SPR of a metal sphere

excited by incident light. The interactions of light with the spherical particles are

primarily mediated by SPRs. Therefore, the geometric tunability of SPRs can be

used to control the particles' optical properties, such as the extinction cross-section.

The extinction cross-section O"ext is defined as the rate of energy absorbed and

scattered normalized to incident intensity. When a SPR is excited, the incident light

couples strongly to the resonance and an enhanced EM field is established around the

particle. The light is then absorbed or scattered, resulting in a peak in the extinction

spectrum. Calculated extinction spectra for silver spheres in air are plotted in Fig
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21. Although the spheres are much smaller than the wavelength, they exhibit sharp

resonances, and the position of the resonance peak varies with sphere radius a. At

resonance, the EIvI energy density near the metal-dielectric interfaces can be orders of

magnitude larger than that of the incident light. In the quasistatic limit (i.e. a ~ 0),

the resonant frequencies are determined by

Em(W) l + 1
--+--=0

Eo l '

where l is a positive integer denoting the multipole number, and Em and Eo are the

permittivities of the metal and the surrounding medium, respectively. Note that

realistic metals have complex dielectric functions, Em(W), and the equation above

yields a complex w. The real and imaginary part of W determine the resonant

frequency and the spectral width of SPRs, respectively. When the sphere is much

smaller than the incident wavelength, only the dipole resonance makes a significant

contribution to the extinction. By setting l = 1 in the equation above, we obtain the

resonant frequency for the dipole SPR:

If the Eo = 1 and Em is given by the lossless Drude model, Em(W) = 1 - W~/W2' then

WZ=l = wp / V3 where wp is the plasma frequency. As a becomes larger, the quasistatic

approximation becomes less accurate, and the dipole resonance red shifts and becomes

broader. For sufficiently large spheres, contributions from the quadrupole and higher
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FIGURE 22. (a) Schematic diagram of a nanoshell. (b) The extinction efficiencies
of silver-glass nanoshells. Compared to silver spheres, the SPRs of nanoshells can be
tuned over a larger spectral range by varying the inner and outer radii.

multipole modes start to appear in the spectrum. For silver spheres, the geometric

tunabili ty of the sharp dipole resonance is between A ~ 350nm-550nm[11].

The geometric tunability can be improved by increasing the number of metal-

dielectric interfaces. Nanoshells consist of spherical dielectric cores surrounded by

thin metal shells, and their SPRs can be tune over a significantly greater spectral

range of geometric tunability as shown in Fig. 22. Studies have found that SPRs

of silver and gold nanoshells can be tuned from near-ultraviolet to mid-infrared, or

A~ 400nm-9000nm[11]. The resonant frequencies of the nanoshell in the quasistatic

limit is

If Eo = Ed = 1 and Em is given by the lossless Drude model, then the expression
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The improved tunability of nanoshells is a result of a SPR hybridization as illustrated

in Fig. 23. In the hybridization picture[8], the SPRs of the nanoshell are considered as

the coupled modes of the sphere and cavity SPRs. Varying the inner and outer radius

alters the coupling strength, and hence, the resonant frequencies Wl,±' In principle,

SPRs of a metal-dielectric system with an arbitrary number of layers can be thought

of as multiply hybridized sphere and cavity modes.

The size scale of a typical nanoshell is of the order of lOOnm or less, a small fraction

of the excitation wavelength. As a result, only a single, low order multipole resonance

plays a vital role in channeling the incident EM energy towards the metallic shell. On

the other hand, mesoscopic layered particles open up the possibility for simultaneous

excitation of a large number of SPRs, further increasing the efficiency of the EM field

focusing. This, in turn, enhances optical phenomena such as absorption and nonlinear

response. In the next section, we show how to utilize dispersion engineering to enhance

the EM field focusing and the absorption cross-section of mesoscopic multilayered

spheres. We also show how the spheres exhibit a tunable transparency due to an

avoided crossing of plasmonic bands.
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FIGURE 24. Schematic diagram of an MDM sphere. A metal sphere of radius R
and permittivity Em(W) is coated with a concentric dielectric shell of thickness L
(permittivity Ed,) which in turn is covered with a concentric metal shell of thickness
T and the same permittivity Em(W) as the core. The layered sphere is embedded in a
dielectric host Eo.

Metal-Dielectric-Metal Microspheres

The system consists of a spherical resonator comprised of thin, alternating layers

of dielectric and metal shells around a concentric metal core. The composite particle

is embedded in a homogeneous, isotropic dielectric host with permittivity EO. More

specifically, we address metal-dielectric-metal (MDM) microspheres: metallic cores

comparable in size to optical wavelengths, surrounded by one sequence of lossless

dielectric shell of thickness L followed by a metal shell of thickness T. A schematic

diagram of a MDM sphere is shown in Fig. 24. We show that it is possible to obtain

a band of SPRs with nearly identical resonant frequencies (flat-dispersion band) by

adjusting the above geometric parameters. By solving Maxwell's equations using a

spherical multipole expansion, we calculate the dispersion relations for the flat band

and the resultant enhanced absorption cross-section.
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Dispersion Engineering

To analyze the SPRs excited in the system, we initially address the dispersion

relations of a simplified geometry in which the outer metal shell is infinitely thick

(infinite MDM). This model is complementary to a metal nanoshell on a dielectric

core, [43] the DMD. Unlike the DMD 1 the presence of a properly designed dielectric

shell in the MDl'v1 is necessary and sufficient for achieving a fiat-dispersion band.

We first consider a metal characterized by a lossless Drude model, Em (w) = Eb -

W~/W2, where Eb is the contribution of inter-band transitions and wp is the plasma

frequency. The dielectric shell has a real permittivity Ed. The eigenfrequencies of the

simplified MDM system are determined by the eigenmode equation[99]

(IV.1)

where 7] = 1 for transverse electric (TE) modes and 7] = Ed/Em for transverse magnetic

(TM) modes, and km,d = JEm ,;;' W / c. The radius of the inner metal core is Rand

s = R +L, The spherical Bessel and Hankel functions of the first kind of integer order

l are denoted respectively by jl and hi, and the prime denotes differentiation with

respect to the argument. We limit our discussion to large enough particles, satisfying

1 « kdR and 1 « Ikm IR. Thus, the expression above cannot be simplified by using
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the quasistatic approximation. Using a real Em (w) leads to straightforward analytic

solutions of Eq. (IV.I) with real w. Vve show later that using a realistic (lossy) metal

only modifies quantitative aspects of the fiat band, while its fundamental physical

origins remain unaltered.

For each polarization there is an infinite number of solutions to Eq. (IV. 1) ,

each characterized by a multipole number, land n ~ 0 roots, the latter yielding

a radial excitation number (i.e. band index). We first examine the resonant modes

for asymptotic limits of Eq. (IV.l). For high-order multipoles satisfying l » IkmlS

and l » kdS we expand jz and hi to obtain the resonance condition

(IV.2)

for TM polarization. No similar resonance condition exists for TE polarization. We

next look for an expression for L such that Eq. (IV.2) is also satisfied for the TM

mode with the smallest multipole number. For l = 1 where expansions of jz and hi

may be applied, Eq. (IV.l) reduces to

(IV.3)

with n ~ 1.

The high order multipole modes of Eq. (IV.2) belong to the n = 1 radial excitation

band, hence by setting n = 1 in Eq. (IV.3), we obtain the geometric condition

L=L*=~
4JEd

(IV.4)
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where .Asp = 2Jrc/wsp and wsp is given by cm(wsp ) + Cd = O. The position of the flat

band given by Eq. (IV.2) and the geometric condition, Eq. (IVA), do not depend

on R and are identical to those for the planar [100] and cylindrical MDM geometries.

See Appendix C for detailed derivations of the flat-dispersion conditions for planar,

spherical, and cylindrical MDIvI systems.

Figure 25 (a) shows the resonant frequencies of the system plotted as a function of

the multipole number l. To approximate the optical response of silver, we have chosen

Cb = 5.1 and nwp = 9.1eV[101]. The dielectric shell has Cd = 3.53, corresponding to

the measured value of amorphous titania. For clarity, we have chosen a high dielectric

constant to place wsp well away from the bulk plasma resonance at wp . Using Eq.

(IVA), we obtain L* = 53Anm. We set R = 500nm. From the figure, it is clear that

there is a band of TM modes whose frequencies are weakly dependent on the multipole

number. This flat-dispersion band is near wsp/wp = (cb + cd)-1/2 ~ 0.34 as expected,

and the width of the band is given by 15w/wsp = 0.014 where 15w is the difference of the

largest and the smallest frequencies in the band. For comparison, Fig. 25 (b) shows

the dispersion relation of a dielectric sphere of radius R + L embedded in a metallic

host.

By analyzing the dispersion relation of MDM spheres with various core radii, we

have found that when R 2:: 100nm, 15w depends weakly on the core radius R. For

example, 15w/wsp = 0.018 for R = 100nm and 15w/wsp = 0.014 for R = 1000nm.

Vie have observed that the material dispersion of the metallic medium affects the
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FIGURE 25. (a) Dispersion relations of an MDM sphere for TM (squares) and TE
(crosses) modes. Near the plasmon frequency wsp (solid line), there is a flat band of
TM modes weakly dependent on the multipole number. (b) Dispersion relation of
the same structure without a metal core. The insets show schematic cross-sections of
the systems.

flatness Ow / wsp more significantly; a larger and positive dEm / dw [w,p leads to a flatter

dispersion relation.

The weak dependence of the resonant frequency on l is reminiscent of the Coulomb

potential system in quantum mechanics. In nonrelativistic quantum mechanics, if the
2

potential is V (r) = - ~, then the energy level is given by
r

It is independent of the angular momentum number l, because, in addition to

the spherical symmetry, the system has an extra symmetry. The generator of the

symmetry is given by the Laplace-Runge-Lenz vector[102]'

- 1 (- -') i'K=-- Lxp-pxL +-,
2me2 T

which commutes with the Hamiltonian. By writing Maxwell's equations in an
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operator form, i.e.

where

H= ( a
-icVx

and

(
Enlm)'l/Jnlm = -+ '

Bn1m

we have attempted to find an analogous operator K. Compared to the quantum

system, there are two difficulties. First, the resonant frequencies of the SPRs of the

fiat band are only approximately equal. Therefore, if there is an analogous operator

K, its commutator with H must be small, but not identically zero. Second, the weak

dependence of Wnl on l is only observed for one TM band. As a result, the symmetry

defined by j{ cannot be the symmetry of the Hamiltonian. The fiat-dispersion modes

must have some special properties which renders [H, K]'l/J ~ O. Further research is

necessary to see if the fiat-dispersion band can be explained by a hidden symmetry

the system.

Enhanced Absorption

Next, we analyze the absorption cross-section of the MDM sphere with a metal

shell of finite thickness (finite MDM), and study the coupling between the incident

plane wave and the fiat-dispersion modes. Such spheres may be realized by chemical
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synthesis of layered metallodielectric particles[8, 103]. We have developed an exact

and numerically stable algorithm for calculating the absorption cross-section of

multilayered spheres based on previous publications [104-108]. A detailed derivation

of the algorithm is presented in Appendix C. We also account for absorption losses

in the metal by modifying the Drude model to Em(W) = Eb - w;(w2 + ifw)-1, with f

describing the electron relaxation rate. We set lif = 0.021eV [101] and EO = 1.

A sharp absorption peak near Asp is seen in Fig. 26(a). For a core of R = 500nm

this is maximized when L = 62nm and T = 77nm, and it is positioned at A = 428nm.

The deviations of the peak from Asp = 401nm and of the optimal value of L from

L * = 53.4nm are explained as follows: In addition to SPRs of the fiat-dispersion

band, SPRs of the outermost metal-host interface contribute to this peak. In fact,

the two SPR branches are coupled through the finite metal shell. These plasmon

hybridizations lead to slight modifications in peak position as well as in the optimal

dielectric shell thickness.

The degree of coupling between the incident plane wave and the fiat dispersion

band is tuned by adjusting T, the thickness of the outer metal shell. As we show later,

the value of L may be varied in the vicinity of L * to spectrally tune the absorption

maximum while maintaining a nearly fiat dispersion band. For each such value of

L there exists a T which optimizes the coupling. Nevertheless, if the metal shell is

made too thin, strong plasmon hybridization will eventually distort the fiat band.
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FIGURE 26. (a) Optimized absorption cross-section spectrum of MDM sphere with
R = 500nm. (b) Mode decomposition of the spectrum from l = 1 (bottom) to
l = 15 (top), showing contributions from TE modes (blue hatches), and TM modes
(red hatches). (c) Absorption spectrum of a metal sphere of radius R + L + T. (d)
Absorption spectrum of a sphere with a dielectric core of radius R + L and metal
shell of thickness T.

The mode decomposition of the spectrum, shown in Fig. 26(b), confirms that a

large number of multipoles share nearly identical resonant frequencies and shows that

the first 13 multipoles are excited concurrently by the incident plane wave. Higher

order multipoles have negligible contribution to the absorption peak. Compared to

the absorption spectrum of a metal sphere and of a core-shell of the same size, plotted

in Fig. 26(c) and (d), the absorption cross-section of the MDM near A = 428nm is

enhanced by a factor of 10 and 4, respectively. The enhancement factor relative to

the maximal absorption is seen to be rv 4 for both cases. The enhanced absorption

exists for all core radii R 2: 100nm. The value of R affects the peak height and the
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FIGURE 27. Absorption spectra of silver-titania MDM spheres with R = 500nm and
various dielectric shell thickness L. The value of T is chosen to maximize the peak
height.

number of simultaneously excited SPRs. Other spectral characteristics, such as the

peak position, its FWHM, and the optimal values of Land T, are insensitive to the

core size. For example, a change of a few hundred nanometers in the core radius

alters the latter by less than several nanometers. For radii smaller than lOOnm, the

absorption broadens, splitting into multiple peaks. Below R = 50nm, the effect of

the metal core on the absorption diminishes, the spectrum rapidly approaching that

of a DMD nanoshell.

The enhanced absorption is also demonstrated numerically using the experimentally

obtained dielectric function for silver[73]. For R = 500nm, the absorption cross-

section peak is maximized for L = 94nm and T = 31nm, and it is at A = 533nm with

64nm FWHM as shown in Fig. 27. The absorption enhancement factors relative to
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a solid metallic sphere and to a core-shell sphere of a comparable size are 7 and 3,

respectively. While the spectral position of the fiat dispersion (i.e. wsp ) depends only

on the optical properties of the constituent media, the absorption peak position can

be tuned by adjusting L. As discussed above, an arbitrary L does not produce a fiat

dispersion. However, the slope of the band, WI - WI-I, is generally small as long as

L rv L*. Thus, it is possible to vary the value of L by tens of nanometers and shift

the resonant frequencies, and still retain a significant overlap of the absorption cross­

section peaks of various multipoles. Figure 27 shows the geometric tunability of the

enhanced absorption over the visible range. Since the enhancement implies a large

EM field concentration, these results suggest that the fiat-dispersion MDM spheres

may be used to enhance nonlinear optical phenomena, and more generally, they may

lead to a new generation of mesoscale plasmonic systems in which numerous modes

are excited to manipulate SPR-assisted light-matter interactions.

Plasmon Assisted Transparency

\Ve have also found that the enhanced absorption of MDM microspheres is

accompanied by a plasmon assisted transparency. The scattering cross-section for

the same geometry and materials as above was also computed. As shown in Fig. 28,

the transparency window is also tunable with the geometric parameters Land T.

The low-scattering window follows the enhanced absorption as the values of Land T

are varied. To establish the scale of the transparency peak, the figure also shows the

well-known non-tunable transparency window near 320nm, attributed to the bulk
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plasma resonance of the metal. Such intrinsic transparencies have been utilized to

create high efficiency polarizing filters in planar MDM geometry[109].
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FIGURE 28. Scattering cross-section spectra of silver-titania MDM spheres with
R = 500nm. The values of Land T are chosen to correspond to those found for the
maximal absorption cross-section shown in Fig. 27.
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FIGURE 29. Surface plasmon hybridization for an MDM sphere. A finite MDM can
be considered as a hybridized system of a solid metal sphere of radius R + L +T and
an infinite MDM with a core radius R and a dielectric shell thickness L.

In order to understand the mechanism behind the transparency, we consider a

finite MDM sphere as a hybridized system of a solid metal sphere of radius R + L +T
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and an infinite MDM with core radius R and a dielectric shell thickness L as illustrated

in Fig. 29. Unlike the nanoshells, the size scale of the MDM systems considered

here are comparable or larger than the wavelength. Therefore, we must consider the

hybridization of different SPR bands.

Figure 30(a) shows the eigenfrequencies of the three geometries in Fig. 29. The

line labeled ESP is the SPR band of the solid metal sphere, while the dashed horizontal
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line labeled ISP is the flat-dispersion band of the infinite MDM. In the finite MDM,

these two bands become hybridized, resulting in an avoided crossing as shown by

blue dots. The width of each resonance is given by a vertical bar in the figure. For

clarity, the figure does not show the lowest (n = 0) SPR band or the TE bands. In

Fig. 30(b)-(c), we plot the EM energy densities corresponding to three eigenmodes

denoted by red circles in Fig. 30(a). The energy densities of the high- and low­

frequency modes (Fig. 30(b) and (d)) are concentrated near the outer interface of

the metal shell. They resemble the SPRs of a solid metal sphere, and are associated

with the external surface plasmon(ESP) branch of the finite MDM. Since the energy

density is concentrated near the outer interface, they are coupled to radiative modes.

As a result, when excited, these modes make significant contribution to the scattering

cross-section. On the other hand, the energy density of the intermediate frequency

mode is primarily focused near the inner two metal-dielectric interfaces as shown in

30(c). The distribution is similar to the flat-dispersion mode of an infinite MDM,

and it belongs to an internal s'urface plasmon(ISP) branch of the finite MDM. Since

the energy density is primarily localized inside the MDM sphere, it does not couple

strongly to radiative modes. Hence, an excitation of the ISP modes makes an

insignificant contribution to the scattering cross-section. Near the avoided crossing,

the ESP and ISP modes are strongly coupled. The coupling causes the resonant

frequencies of the ESP and ISP to split, producing a window of w where the highly

radiative ESP modes are absent. As a result, the scattering cross-section is reduced
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FIGURE 31. Extinction cross-section spectra of silver-titania MDM spheres with
R = 500nm. The values of Land T are chosen to correspond to those found in Fig.
27 and Fig. 28.

considerably within the window as shown in Fig. 28. The transparency window is

tunable with Land T, since the spectral position of the avoided crossing can be

shifted by modifying the slope of the fiat-dispersion band.

In many experiments, the quantity of interest is the extinction cross-section, which

is equal to the sum of the absorption cross-section and the scattering cross-section. If

the transmittance intensity Ir of light through a suspension of particles is measured,

then it is related to the extinction cross-section (Jext of the individual particle through

the Beer's law:

where n is the number density of the particles, l is the path length of the suspension,

and 10 is the incident intensity. For the MDM spheres considered, the absorption
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cross-section is considerably smaller than the scattering cross-section. Moreover, the

enhanced absorption peak is generally slightly shifted in frequency relative to the

transparency window. Therefore, the extinction cross-section spectrum also exhibits

a tunable transparency window as shown in Fig. 31.

In order to evaluate the degree of the transparency, we compare the extinction

cross-section of an MDM with that of solid metal spheres of various radii in Fig.

32. Within the transparency window, the extinction cross-section of the MDM is

considerably smaller than that of a solid metal sphere of the same geometric cross-

section. Surprisingly, it is even smaller than the extinction cross-section of the metal

core by itself. Therefore, by adding thin dielectric and metal shells, we have made
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FIGURE 33. The absorption and extinction cross-sections of multi-MDM spheres:
silver-titania MDM (black), MDMDM (red), and MDMDMDM (green). For each
sphere, the total radius is lOOOnm, and the dielectric and metal shell thicknesses are
L = 94nm and T = 31nm, respectively.

the metal core less visible to incident light. Such metal-dielectric coatings may be

used for an optical cloaking of macroscopic objects.

Beyond MDM

Thus far, we have shown that a properly designed MDM sphere exhibits an

enhanced absorption peak and a plasmon assisted transparency window. It is

possible to create multiple enhanced absorption peaks and transparency windows

by introducing additional layers of alternating metal and dielectric shells as shown

in Fig. 33. By adding another sequence of dielectric and metal shells to MDM, we

create a MDMDM sphere, which exhibits two well-resolved absorption peaks as well

as two transparency windows. Introducing another sequence of shells to MDMDM

produces yet another absorption peak and transparency window. These multiple
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FIGURE 34. (a) SEM image of a percolative nanoshell with diameter If-lnm with
20nm thick silver shell. Scale bar corresponds to 500nm. (b) Digitally processed
binary image of the square region in (a). Scale bar corresponds to 200nm. Similar
images from rv 100 spheres are used to obtain the average filling fraction of 15 = 0.55.

enhanced absorptions and plasmon assisted transparencies are results of multiple flat-

dispersion bands and avoided crossings in the dispersion relations. Further research

is necessary to systematically investigate the optical properties of spherical systems

with an arbitrary number of alternating layers of metal and dielectric shells.

Semicontinuous Nanoshells

We now turn our attention to light scattering from semicontinuous nanoshells.

As discussed earlier in this chapter, nanoshells with smooth metal coatings support

geometrically tunable multipole SPRs. In this section, we show that semicontinuous

metal nanoshells also support geometrically tunable SPRs. Semicontinuous silver

films of various filling fractions are deposited on silica spheres (300-l000nm diameter)

using a modified Tollen's reaction[llO]. Transmission electron micrographs (TEM)
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FIGURE 35. (a) The measured extinction spectrum of 1flnm diameter spheres
sparsely coated with silver nanocrystals. The inset shows the TEM image of a typical
sphere. (b) Measured (dots) and calculated (line) extinction spectra of 1flnm diameter
spheres with 70nm thick silver shells. The MG theory is used to obtain the calculated
extinction. The SEM image of a typical sphere is shown in the inset.

of the coated samples are used to measure the average shell thickness. Moreover,

scanning electron micrographs (SEM) are taken to determine the filling fraction p.

Figure 34 shows a SEM image of a typical sample.

The optical response of the semicontinuous nanoshells are characterized by

measuring their extinction spectrum of dilute aqueous suspensions of the particles

with a UV-Vis spectrometer. For sparsely coated spheres, the extinction has a sharp

resonance peak near A = 420nm as shown in Fig. 35(a). This is characteristic of the

SPRs of the individual, nonaggregate silver nanocrystals on the silver sphere. Note

that the peak position is slightly shifted toward longer wavelength compared to Fig.

21 because the nanocrystals are in water. Due to the sparsity of the coating, these

nanoparticle SPRs are not coupled to each other. Furthermore, since they are not

coupled to the weak Mie resonance of the silica sphere, the extinction peak is not

geometrically tunable with the sphere diameter.
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On the other hand, silica spheres with thick silver coatings as in Fig. 35(b)

exhibit SPRs that depend on the radius and the thickness of the particles. The

extinction spectra exhibit resonant peaks, which we attribute to the multipolar SPRs

of the nanoshells. Unlike the extinction in Fig. 22, several peaks are visible since

the size scale of the nanoshells is comparable to the wavelength, and thus, several

SPRs lie within the spectral range. SEM images indicate that the silver shells have

high filling fractions (0.8 ;S ]J ;S 0.9) with small interparticle voids. As a result, the

Maxwell-Garnett (MG) effective medium theory, described in Chapter III, may be

used to model the dielectric response of the porous shells. Recall that the MG theory

provides an effective permittivity of a heterogeneous structure made of small spherical

inclusions within a host medium. By considering the thick coating as a metal host

with small dielectric inclusions, we derive the dielectric function fMC, which is used to

calculate the extinction spectrum of the particle using a modified Mie theory. While

there are some discrepancies in the spectral positions of some resonant peaks, the

calculated extinction spectrum reproduces the measured extinction well as shown in

Fig. 35(b).

Semicontinuous nanoshells with intermediate surface coverage, such as the one

shown in Fig. 34, also exhibit geometrically tunable resonances as shown in Fig. 36.

Near-field studies of vacuum deposited, semicontinuous metal films on flat substrates

have shown that the samples whose filling fraction is near the percolation threshold

support cluster-localized surface plasmon "hot spots" that are randomly distributed
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in Fig. 34. For comparison, calculated extinction obtained using the modified ST
(red), the BR theory (blue), and the tabulated bulk silver dielectric function (black).

over their surfaces[111, 112]. SEM images indicate that the surface morphology of

our chemically deposited, semicontinuous films are similar to that of the vacuum

deposited samples. Therefore, we expect the cluster-localized surface plasmons to

exist on the nanoshells. The observed geometrically tunable peaks in the extinction

indicate that these localized modes are coupled to the cavity Mie resonances of the

silica sphere. Thus, varying the sphere size modifies the cavity modes, which in turn,

affects the number of peaks and their positions.

In the past, the dielectric response of vacuum deposited, semicontinuous films near

the percolation threshold has been modeled with a scaling theory (ST)[84, 113, 114].

We develop a model for describing the dielectric response of nanoshells by modifying

ST. In the following paragraphs, we summarize the basic concept of ST and explain

our modifications. For the details of ST, see Ref. [84].

A number of experiments have indicated that the electric conductivity of

disordered conductor-insulator composite films near the percolation threshold has a
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power-law dependence on IP-Pe/ where P is the filling fraction and Pc is the percolation

threshold [115~117]. We assume that the average conductivity satisfies

(IV.5)

for a square piece of the sample with a linear dimension Ld118]. Here, Jp = (P-Pe) /Pe,

(Ji and (Jm are the conductance of the insulating and conducting inclusion, respectively.

The critical parameter Tl measures how close the system is to the percolation threshold,

while the other critical parameter X is associated with the scale transformation

invariance of Kirkoff's law (i.e. multiplying (Ji and (Jm by a common factor changes

((J) by the same factor). The length scale L( is the maximum length scale over which

the system obeys the scaling law. Therefore, it is defined as

where L is the system size, Lw is the coherence length, and ~ is the percolation

correlation length. The coherence length is given by

where ,\ is the wavelength, e= 0.79, and B is a coefficient of order 1. It determines

the average distance electrons travels through the random network of conductors, and

is often identified as the localization length[114]. The percolation correlation length

~ = ~olp - Pel-v describes the "connectivity" of the random network of the insulators

or the conductors, with ~o as the typical nanocrystal size. For 2D systems, the critical

exponents are f-i = S = 1.3 and v = 4/3[113].
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Let X = O"mlbplJ-L and T) = Ibpl· Then, Eq. (IV.5) becomes

(0") = O"mlbPl/LF (sgn(p - Pc), :~ Ibpl-S-J-L, 1) .

Near the percolation threshold, the function F can be expanded as

F(l, z, 1) :::::: Al + A2z

F( -1, z, 1) :::::: A 3 z + A4 z2

with A as the coefficients of the order 1. The constant term is absent in the second

equation since for p < Pc (i.e. sgn(p - Pc) = -1) there is no conducting path across

the sample. Following Ref. [84], we describe the ac conductivities of the insulating

and conducting inclusions by

O"i -iwCo

(IV.6)

where Co is the capacitance between two neighboring metal grains, O"dc is the dc

conductivity of the metal, and T = TO + bT w2 is the frequency dependent relaxation

time. The average local permittivity of a LE x LE patch is determined by the usual

relation

Since the local filling fraction p of a L E x L E patch can deviate from the average

filling fraction j5, each patch can be either conducting or insulating with an average

dielectric function (E(W, LE))c or (E(W, LE))i, respectively.
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As is mentioned above, the cluster-localized SPRs are coupled to the cavity Mie

resonances of the silica sphere. Therefore, the localized SPRs can be driven coherently

by the incident light. To account for this coupling, we modify ST by defining the

shell-averaged dielectric permittivity using the Newton formula[1l9]:

(IV.7)

Figure 36 shows the calculated extinction of the nanoshell using ST, the Bruggeman

(BR) theory, and the tabulated bulk silver dielectric function[73]. The parameters

for ST follow Ref. [84] except the following modifications: (Jdc = 2.574 x lO17sec-l,

bT = 3 x 1O-16sec, L = I,um, and Co = 0.884. Due to the large number of ST

parameters, we have found the multivariate fitting to be impractical. Both ST

and the BR theory curves are obtained by performing Gaussian averaging over

the measured filling fraction distribution and the sphere size distribution with the

following parameters: 15 = 0.55, (Jp = 0.08, F = 500nm, (Jr = 10nm, T = 24nm,

(JT = 3.lnm where T is the shell thickness. As the figure illustrates, the number

of resonances, their positions as well as their contrast are poorly described by the

BR theory and the tabulated bulk silver dielectric function. On the other hand, ST

reproduces the spectral positions of some of the resonances as well as the overall trend

of the measured extinction, indicating that the coherently driven cluster-localized

SPRs of the semicontinuous nanoshells can be described reasonably well by ST. Like

EMTs, ST ignores the effect of surface roughness. In the previous chapter, we have

discussed the importance of surface roughness in describing the optical properties
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of semicontinuous films. Given this fact, it is not surpnsmg that there are some

discrepancies between ST and the observed extinction.

Conclusions

In summary, we have presented a study of SPRs on layered metal-dielectric

particles. In the first part of the chapter, we have investigated the optical properties

of MDM spheres. Using the concept of dispersion engineering, we have shown that

the spheres support a band of SPRs whose resonant frequencies are nearly identical.

A large number of these SPRs can be excited simultaneously by an incident light,

enhancing the absorption cross-section of the spheres. Moreover, the dispersion

relations exhibit an avoided crossing, which creates a plasmon assisted transparency

window in the extinction cross-section. In the second part of the chapter, we have

presented a study of light scattering from semicontinuous nanoshells. We have shown

that when the filling fraction is close to the percolation threshold, ST can be used to

model the coherently driven cluster-localized SPRs. Further research is necessary to

refine ST and our understanding of the coherently driven localized SPRs.
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CHAPTER V

CONCLUSIONS

In recent years, the promises for new technological applications have led to a

surge of interest in plasmonics among scientists. While a number of novel plasmonic

devices have been developed, our present understanding of the fundamental nature

of SPPs and how they affect the optical properties of metal-dielectric systems is still

far from complete. In this dissertation, we have investigated the effect of curvature,

roughness, and number of metal-dielectric layers on SPPs and the optical properties of

metal-dielectric systems. In Chapter II, we explored how surface curvature affects the

propagation of SPPs on metal-dielectric interfaces. We developed a qualitative and

intuitive model for describing the origin of the curvature-induced radiation. Using

the model, we derived the parameter G whose magnitude determines the degree of

the radiation. This quantity sets a limit on how small the radius of curvature can be

without significantly affecting SPP propagation length, and may also set a limit on

the size scale of plasmonic circuit devices.

Moreover, we have quantified the propagation efficiency both analytically and

numerically. In the short wavelength limit, we derived the energy transmission

and reflection coefficients using a method analogous to a quantum mechanical ID

finite square well. By analyzing the upper bound on the transmittance, we also
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showed that the nonmonotonic behavior of the transmittance is a result of three

competing mechanisms: absorption, radiation, and diffraction. Furthermore, our

FDTD simulation results indicate that the upper bound is a good estimate for

the transmittance for all bend radii larger than the wavelength. When the SPPs

propagate around a dielectric void, it is shown that SPP propagation is less radiative,

and hence, more efficient. This prediction was confirmed with simulations. Finally,

we introduced a bend-resonator geometry for enhancing the transmission efficiency.

In general, our results indicate that an efficient propagation around a curved surface is

possible only when SPPs propagate around a metal surface with a small and negative

radius of curvature. In other systems we have studied, most of the incident energy is

lost either as radiation loss or absorption. One way to compensate for the losses could

be by incorporating a gain medium to amplify SPPs. Further research is necessary

to test if presently available gain media would provide large enough gain to overcome

the losses.

In Chapter III, we investigated how the surface morphology influences the

transmittance and the reflectance of light from disordered metal-dielectric films.

Using a modified Tollen's method, semicontinuous silver films of various surface

coverage are deposited on glass substrates. The films exhibit a large broadband

asymmetry in reflectance, and it has been shown that the asymmetry cannot be

explained adequately by any EMT, which ignores the effect of surface roughness.

To investigate how the surface morphology influences the reflection asymmetry, we
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annealed the samples at various temperatures to induce changes in the morphology

and measured corresponding changes in the reflectance. We discovered that the large

asymmetry is due to the different surface roughness light encounters when incident

from different sides of the film. It was shown that the air-silver interface is at the

smooth-rough transition according to the Rayleigh criterion, and produces significant

diffusive scattering and small specular reflection R I . On the other hand, R2 is largely

due to the coherent reflection of light from the smooth bottom surface of the silver

grains, and therefore, depends primarily on the surface coverage. We have performed

angle-resolved measurements to compare the diffusive scattering from both sides of

the film, and shown that it is significantly greater from the air-silver side than from the

substrate-silver side as predicted. Moreover, the measurements have shown that the

diffusive scattering obeys Lambert's Cosine Law, indicating that a multiple scattering

is preferred over a single scattering from the surface. Our investigation so far has not

revealed if SPPs play any important role in the optical properties of disordered metal­

dielectric films. To better understand the optics of disordered films, it is essential

to investigate how surface morphology affects the nature of SPPs on the disordered

system, and how those SPPs in turn affect the far-field optical measurements. Further

research is necessary to uncover how surface roughness influences the optical response

of semicontinuous metal films.

In Chapter IV, we explored light scattering from layered metal-dielectric systems.

Using the concept of dispersion engineering, we have shown that a properly designed



91

MDM microsphere supports a band of SPRs whose resonant frequencies are nearly

identical. Unlike SPRs of nanoscale metal-dielectric systems, these SPRs can be

excited simultaneously by a monochromatic incident light, producing a geometrically

tunable enhanced absorption. Moreover, using a modified Mie theory, we have shown

that the extinction cross-section of the system exhibits a tunable plasmon assisted

transparency window. Surprisingly, our study shows that coating a metal sphere

with one sequence of dielectric and metal shells reduces its extinction cross-section,

rendering the particle less visible. This suggests that alternating metal-dielectric

coatings may be used for an optical cloaking of macroscopic objects. Additionally,

we have studied light scattering semicontinuous silver nanoshells, and developed a

modified scaling theory in an attempt to model their optical response. Our study

suggests that particles support coherently driven cluster-localized plasmons. Much

work remains in the investigation of optical properties of layered metal-dielectric

particles. It would be interesting to fabricate MDM spheres in a laboratory and to

test if the spheres exhibit enhanced absorption and plasmon assisted transparency in a

laboratory setting. It would also be interesting to investigate how well a simultaneous

excitation of a large number of SPRs enhances the nonlinear optical response of MDM

systems. Further research is also necessary to systematically explore the optical

properties of spherical systems with an arbitrary number of alternating layers of

metal and dielectric shells.
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The research presented in this dissertation has been fundamental in its approach to

plasmonics. Rather than attempting to develop novel plasmonics devices, our attempt

has been to improve our present understanding of SPPs and how they are affected by

surface curvature, surface roughness, and the number of metal-dielectric interfaces.

Further research will improve scientists' insight into the fundamental nature of the

SPPs, and into the true potentia.! of plasmonics.
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APPENDIX A

FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR SIMULATING

SURFACE PLASMON POLARITONS

The finite-difference time-domain method (FDTD) is a versatile numerical

technique for solving Maxwell's equations in time domain, which was originally

introduced by Kane Yee in 1966[120]. FDTD offers a number of advantages over

other numerical methods such as the finite element method. In general, FDTD

requires less memory and is more robust compared to other techniques. Moreover,

unlike frequency-domain methods, FDTD can treat the propagation of pulses and

the nonlinear response of systems naturally. Furthermore, it can simulate the

electromagnetic response of inhomogeneous, lossy, and anisotropic media with relative

ease. For these reasons, FDTD has become one of the most widely used numerical

methods for solving electromagnetic problems. It has been used to simulate a

wide variety of electromagnetic systems, including the propagation of low-frequency

electromagnetic waves around the Earth's ionosphere, interference of electromagnetic

radiation from a cell phone with the human head, detection of breast cancer using

microwave radar, and photonic crystal microcavity laser (See [121] and references

therein).
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There are three major difficulties associated with using FDTD to simulate the

propagation of SPPs. First, when discretizing the computational domain, the lattice

spacing must be much smaller than the wavelength. Due to the evanescent nature

of SPPs, their electromagnetic field decays rapidly into the metal and dielectric. For

example, in the visible range, the typical decay length into the metal is rv 20nm. Thus,

in order to simulate this evanescent nature of SPPs on a discretized computational

domain, the lattice spacing must be much smaller than 20nm. For comparison, a

typical lattice spacing for FDTD simulations not involving an evanescent field is

>-/20, or rv 30nm in the visible range. Using a small, uniform grid size in the

computational domain is straightforward. However, it also requires a large memory

and long computational time.

It is possible to increase the efficiency of the FDTD simulation by using

nonuniform orthogonal grids [121]. Since SPPs only decay rapidly near metal­

dielectric interfaces and in the direction perpendicular to the surface, it is only

necessary to employ small lattice spacing near the surface in the perpendicular

direction. In the parallel direction or away from the interface, grid size of >-/20

is generally sufficient. In our simulation, using a nonuniform, orthogonal grid where

lattice spacing was varied between >-/300 and >-/20 reduced the memory requirement

and computational time by one to two orders of magnitude.

T'he second difficulty for simulating the propagation of SPPs is incorporating the

proper optical response of metal. Since FDTD simulations are carried out in the
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time domain, it is essential that the dispersions of all materials are modeled using

dielectric functions that preserve the causality, such as the Debye model or the Drude

model. For this reason, it is not possible to let the electric permittivity of the metal

be a constant with negative real part. Such simplification of the dielectric function

renders FDTD unstable. To include the proper frequency response of the metal

in the time domain, the electric displacement field must be obtained by computing

the convolution of the electric field and the material response function (i.e. time­

domain susceptibility). In FDTD, this is accomplished using a numerical technique

for, such as the piecewise linear recursive convolution (PLRC)[122], Z-transform[123],

and auxiliary differential equation[124], for calculating the convolution.

The third difficulty is the absorbing boundary conditions (ABCs) for truncating

the computational domain. In our simulations, the transmitted and the reflected SPPs

as well as any radiation must "leave" the computational domain without producing

any spurious numerical reflection at the domain boundaries. This is accomplished by

using ABCs. While they are effective, commonly used ABCs, such as Mur's ABC[125]

and Berenger's perfectly-matched layer (PML)[126], were developed for truncating

non-dispersive media. Therefore, they are not suited for absorbing outgoing SPPs,

which propagate on metal surfaces. Other ABCs must be used to terminate dispersive

media.

This Appendix presents one way to overcome these difficulties by employing the

FDTD algorithm with PML for dispersive media developed by Fan and Liu[74] and
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using a nonuniform orthogonal grid. We assume that the magnetic field of SPPs to

be parallel to z: jj = Hzz. As we have done in Chapter 2, we assume that the

system is uniform in the z-direction. As a result, there are only three nontrivial

field components-Hz, Ex, and Ey-and they depend only on x and y coordinates,

rendering the FDTD 2-dimensional. (It is straightforward to extend the following

algorithm to 3D systems with all six field components present.)

Vie begin by modifying Maxwell's equations in the frequency domain. The curl

equations in Gaussian units are

--j - W -\7xE='i-B
c

~ ~ w ~ 41f0" ~
\7xH=-'i-D+-E

c c

where 0" is the electric conductivity. To formulate the FDTD algorithm with PML

for dispersive media, the differential operator '\7 is replaced with '\7e, where[127]

and

In order to understand the significance of ai and Di , consider a plane wave propagating

in the x-direction eikx
. Replacing '\7 with '\7e in Maxwell's equations transforms x to

Xl = x(ax + 'iDx/w) and the planewave wave eikx to

This expression indicates that Di and ai represent an attenuation and a scaling factor,

respectively. In the physical region where we study the propagation of SPPs, we let

ei = 1 (i.e. Di = 0 and ai = 1) so that we recover the unmodified Maxwell's equations.



97

In the PML region near the computational domain boundaries, where we want the

outward propagating waves to be absorbed without spurious numerical reflection, we

let r2i i' O.

Next, we split the vector fields (if, i5, iJ, and H):

and similarly for other vector fields. For example, the z-component of the magnetic

field becomes Bz = B zx + Bzy . Roughly speaking, we can consider B zx and B zy

as the z-component of the magnetic field associated with an electromagnetic wave

propagating in the x and y direction, respectively. The field splitting allows us

to selectively absorb the electromagnetic field associated with waves propagating in

a specific direction while minimizing spurious numerical reflections caused by the

impedance mismatch at absorbing boundaries.

With these modifications, Maxwell's curl equations become

oEy
ox

oEx
oy

oBz

ox
oBz

oy

. ax OX
'lW- Bzx - -Bzxc c

. ay Oy
?,w-Bzy - -Bzyc c

. ax Ox 4mJ' E '41T(J Ox E
-'lw-Dy+-Dy+--a +1,----

c C c xy cw y

. ay Oy 4mJ' .4mJ' Oy
-'lw-Dx + -Dx + --ayEx + 'l----Ex.

c c c c w

Vve assume that the system is nonmagnetic (i.e. I-L = 1), so that iJ = H. Moreover,

we have used our original assumptions that the system of interest is uniform along the

z axis and that the magnetic field points in the z direction. Under these assumptions,
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equations into the time domain by the Fourier transform yields

BEy
Bx

BEx

By
BBz

Bx

BBz

By

ax BBzx Qx------Bc at c zx

a y BBzy Qy B
- -;; -----at - c; zy

ax BDy QXD 47W. E 47fIJ n jt E ( ')d';::) + y + a:c y + ~ &x Y t t
c ut c c C-CXJ

a y BDx Qy D 47fIJ E 47fIJ n jt E ( ')d ';::) + x + a y x + ~ &y X t t.
c ut c c C-CXJ

(A.I)

(A.2)

(A.3)

(A.4)

The electric displacement D in the time domain is given by

(A.5)

where ECXJ is the electric permittivity at w --+ 00, and X( t) is the time-domain electric

susceptibility. The optical response of a medium determines ECXJ , X, as well as IJ. For

a dielectric medium that is nondispersive or weakly dispersive, we let X = 0, IJ = 0,

and Eoo = E where E is the dielectric constant. For a dispersive medium that follows

the Debye model of the form Eq. (II.I6), the time-domain susceptibility is

where e is the Heaviside step function.

We now proceed to discretize Eq. (A.I) through Eq. (A.5). vVe assume that the

magnetic field is evaluated at t = (n + I/2)~t, while the rest of the vector fields

are evaluated at t = n~t where n is an integer. Then, the time derivative of field
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FIGURE 37. A unit cell of the 2-dimensional Vee lattice for transverse magnetic
modes.

component U evaluated at t = n6t becomes

where urn = U(n6t). To discretize the spatial derivatives, we assume that the fields

are evaluated following the standard 2D Vee lattice for the transverse magnetic modes

shown in Fig. 37. We denote a point (x, y) in Cartesian coordinates by two integers

(i,j) where

where 6:rp and 6Yq are the dimensions of the pq-th Vee cell. If the grid is uniform such

that 6xp and 6Yq are independent of p and q, the expressions simplify and become

Xi = i6~l: and Yj = j6y. According to the Vee lattice, B zx and Bzy are evaluated at

(Xi, Yj), or more simply (i,j). Likewise, Ex and Dx are evaluated at (i,.7 + 1/2) where
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j + 1/2 denotes the midpoint between Yj and Yj+1/2, and E y and D y are evaluated at

(i + 1/2, j). Using these notations and suppressing the time dependence for now, the

spatial derivatives of field components can be written as

oBz
1

Bzli+1,j - Bzli,j
(A.6)

ox i+1/2,j ~Xi

OB21 BzkH1 - Bzli,j
(A.7)

oY '+1/2 ~Yj
~,J

O~y', ,
Ey IH1 / 2,j - E yli-1/2,j

(A.8)
[~Xi + ~Xi-1Jl2

~,J

O~x I;,j E x kH1/2 - Exli,j~1/2
(A.9)

[~Yj + ~Yj-1Jl2

According to the Yee lattice, the separation between E y1i+1/2,j and E yli-1/2,j is the

average of ~Xi and ~Xi-1' Thus, the denominator of Eq. (A.8) is [~Xi + ~Xi-1Jl2

and not ~Xi' The denominator of Eq. (A.g) is [(~Yj + ~Yj-1Jl2 for an analogous

reason.

Discretizing the time and spatial derivatives as above turns Eq. (A.1) through

(A.4) into finite difference equations. Equation (A.1) becomes

Eyl~1/2,j - Eyl~-1/2,j

~Xi

B In+1/2 - B In-1/2ax zx i,j zx i,j

c ~t

B In +1
/

2 B In -
1

/
2

Dx z:r: i,j + zx i,j

C 2

approximation is necessary since the magnetic field is only evaluated at t = (n +

1/2)~t but not at t = n~t. Rearranging the expression yields

B In+1/ 2 = 2ax - Dx~t B In-:- 1/ 2 _ 2c~t/~Xi (E In , _ E In ,) (A.10)
zx ~,J 2ax + Dx~t zx ~,J 2ax + Dx~t y ~+1/2,J y ~-1/2,J .
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Similarly, Eq. (A.2) becomes

(A.ll)

In FDTD, the two equations above are used to calculate the value of the magnetic

field at time (n + 1/2)6.t from its value at (n - 1/2)6.t and the electric field at n6.t.

Hence, these finite-difference equations constitute a part of the recursive algorithm

for FDTD.

To obtain analogous recursive finite-difference equations for Eq. (A.3) and (A.4),

we must first derive recursive equations for Dand the time integral of E. Let t = n6.t.

Assuming E is zero for t < 0 and suppressing the spatial coordinates, Eq. (A.5)

becomes

To discretize the electric field inside the integral, we use a piecewise linear

approximation to E(t) between t E [m6.i, (m + l)6.t]:

E\m+l Elm
E(t) ~ Elm+l + - [t - (m + l)6.t] .

6.t

Then
n-l

Din = cooEln + L [xlmEln-m + tim (Eln-m-l - Eln-m)]
m=O
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where

1
(ffi+1)6.t

x(t')dt'
m6.t
1 j,(m+1)6.t
~ (t/ - mt1t)x(t')dt'.

t m6.t

For the Debye model,

X
A e-m6.t/T.o ,

A ( ) T [ ( t1t) -6.t/T]~o = Cs - Coo t1t 1 - 1 + ------;- e .

Let

n-l

<J7ln= L [xlmEln-m + tim (Eln-m-l - Eln-m)] ,
m=O

so that

(A.12)

At t = (n + l)t1t, the expressions for <J7 and jj are

n

<J7/ n+1 L [xlmEln-m+l + tim (Eln-m _ Eln-m+l) ]
m=O

n

- L [(Xo - to) Eln+l-m + toEln-m] e-m6.t/T
m=O

- (xo - to) Eln+l + toEln
n

+L [(XO - to) Eln+l-m + toEln-m] e-m6.t/T
m=l

(xo - to) Eln+l + toEln + e-6.t/T <J7l n (A.13)
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and

(A.14)

respectively. Equation (A.13) and (A.14) can be used to calculate 15 recursively.

Recursive equations for the time integral of E are calculated as follows. Since Eq.

(A.3) and (A.4) are evaluated at t = (n + 1/2)6t, we set the upper integration limit

to (n + 1/2)6t. Assuming again that E = 0 when t < 0, the lower integration limit

becomes zero. Then

1
(n+l/2)L'l.t ___

E(t')dt'
o 1

(n-l/2)L'l.t lnL'l.t

E(t')dt' + E(t')dt'
o (n-l/2)L'l.t

1
(n+l/2)L'l.t ___

+ E(t')dt'
nL'l.t

1(n-l/2)L'l.t ___, , 6t [Eln 1 Eln + Eln-l]
E(t)dt +- --+------'-------

o 2 2 2 2

6t [1 Eln+l + Eln Eln]
+2 2: 2 +2

1
(n-l/2)L'l.t At 3 At At

E(t')dt' + _Ll Eln+l + _Ll_ Eln + _LlEln-l
o 8 4 8

where the trapezoid rule was employed to approximate two of the integrals.

Rearranging the expression above yields

or

(A.15)
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where E] is defined as

Using the equations for ,j; and if] derived above, we now discretize Eq. (A.3);

B In +1
/

2
_ B I

n+1
/

2
z ~+l,J z ~,J

-C-~---"'-----"------

t::.Xi
Dyl~:1/2,j - Dyl~1/2,j + D Dyl~://2,j + Dy/r+1/2,j

ax t::.t x 2

4 Ey1~:11/2,j + EyI~+1/2,j+ 7UJ"ax 2

+47fO"Dx t::.t ( E]yl~+1/2,j + ~EyI7:1
1
/2,j)

(
ax Dx ) ([ A C ]E In+ 1t::.t + 2 too + XO + <,,0 Y i+1/2,j
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By rearranging the expression, we obtain

E I
n+1 ­

y i+l/2,j - In (In +I
/

2 In +I
/

2
)CEylEy i+1/2,j + CEy2 B z i+1,j - B z i,j

(A.16)

The four coefficients are defined as

A similar calculation gives a recursion relation for Ex

I
n+l

Ex i,J+I/2 =

CExl

CEx2

CEx3

CEx4

E In (B In +
I

/
2 B In +

I
/
2

)CExl x i,j+I/2 + CEx2 z i,j+1 - z i,j

(
ay fly) }
-- - - E + 2Tu:m A6.t 2 00 y x

(A.17)

In summary, the FDTD algorithm is derived for the perfectly matched layers for

dispersive media with a nonuniform orthogonal Vee lattice. The algorithm is based
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where

Bzxln+l/2
Z,J

Bzyln+l/2
Z,J

B In +1
/

2
z 'I,J

E I
n+l

x i,j+ 1/2

E In+l
y i+ 1/2,j

0/' In+l
'fix i,j+l/2

0/' In+l
'fly i+l/2,j

E In+l
fa: i,j+l/2

E In+l
Iy i+l/2,j

B
zx

\n+l/2 + B
Zy

\n+l/2
Z,J Z,J

E In (B In+1
/

2 B In+1
/

2
)CExl x i,j+l/2 + CEx2 z i,j+l - z i,j

E In (B In+1
/

2 BI
n+ 1

/
2

)CEyl y i+l/2,j + CEy2 z i+l,j - z i,j

E In 7E In+1 1E In
Ix i,j+1/2 + '8 x i,j+l/2 + '8 x i,j+l/2

E In 7E In+l 1E In
Iy i+l/2,j + '8 y i+1/2,j + '8 Y i+1/2,j

CBzx1

CBzx2

CBzyl

CBzy2

2ax - rl x 6t
2a:r + rl x 6t

2c6t/6xi

2ax + rl x 6t
2ay - rly6t

2ay + rl y 6t
2c6t/6Yj+--_-----:'--

2ay + rl y6t
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{ ( ay n y) ~ ( ay n y) }CExl - + - ~o - - - - E + 27rcYa AD.t 2 D.t 2 00 y x

C
CEx2 +6Ay

Yi

CEx3 { (~ _ n y) _ (~ + n y) e-~t/T } A
D.t 2 D.t 2 x

CEx4 -47rtJ"nyD.tAx

A-I { ( an) A 7r~n D.t};t + 1- [Eoo + XO + ~o] + 27r~ay + 2
Y

x

{ ( ax n x) ~ ( ax n x) }CEyl - + - ~o - - - - E + 27r~a, AD.t 2 D.t 2 00 x y

C
CEy2 --A

D.Xi y

CEy3 { (~ _ n x ) _ (~ + n x ) e-~t/T } A
D.t 2 D.t 2 y

CEy4 -47r~nxD.tAy

A-I { ( ax n x) ~ 7r~nxD.t }
y D.t + 2 [Eoo + XO + ~o] + 27r~ax + 2

C1,b1 XO - ~o

C1,b2 ~o

C1,b3 e-~t/T

Although not explicit, the coefficients above depend on the coordinates (i, j).
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APPENDIX B

FLAT-DISPERSION CONDITIONS FOR PLANAR, SPHERICAL, AND

CYLINDRICAL METAL-DIELECTRIC-METAL GEOMETRIES

The plasmon enhanced absorption of the metal-dielectric-metal (MDM)

microspheres presented in Chapter 4 are based on the existence of a band of transverse

magnetic (TM) modes whose resonant frequencies are nearly identical. This band,

called the fiat band, is present in the dispersion diagram when the system satisfies

the fiat-dispersion condition,

L=L* '=~,
4JEd

where L is the thickness of the dielectric shell. The condition is independent of

the metal core radius, R. Moreover, as stated in Chapter 4, the same condition

also applies to planar and cylindrical MDM geometries. The existence of the flat-

dispersion band in a planar MDM geometry was originally presented by H. Shin et

al. in [100]. We have also shown[9] that the flat-dispersion band exists for spherical

as well as cylindrical geometries, and that the conditions are identical to that of the

planar geometry. In particular, our analysis has revealed that the conditions are

independent of the radius of the metal core. In this Appendix, the fiat-dispersion

conditions are derived for planar, cylindrical, and spherical MDM systems, and it is

shown explicitly that the conditions are identical for the three geometries.
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(a)

Metal

€m

Dielectric Ed

Metal
€m

(b)

Metal

€m

Dielectric Ed

Metal

€m

FIGURE 38. Schematic diagrams for the planar and spherical metal-dielectric-metal
geometries.

The planar MDM geometry is shown in Fig. 38(a). For this system, the resonant

frequencies of TM modes are given by

o

(B.l)

where k is the wavenumber, and Cd and Cm are the permittivity of the dielectric and

metal, respectively. In the limit of k -----7 00, the exponential approaches zero, and the

expression becomes 0 = k / Cd + k / Cm, or

(B.2)

Since Cm depends on frequency w, the equation above determines the resonant

frequencies of TM modes in the limit of k -----7 00.

To obtain the fiat-dispersion band, we look for an expression for L such that Eq.

(B.2) holds for small k. Let k « JEdw/c, 1~lw/c and cm(w) = -Cd in Eq. (B.l).
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Then, to the first order in k, the equation becomes

o = _e-i2LVEdW/C (_Z_' + _1_) 2 + (_Z_' __1_) 2 + O[(k)2]
vIEd vIEd vIEd vIEd

_ -~ (e-i2LVEdW/C + 1) + O[(k)2],
vIEd

or

W
(2n - 1)/T = 2LJEd-

C

where n ~ 1 is the band index. The resonance modes given by Eq. (B.2) belong to

the lowest TM band (i.e. n = 1). By setting n = 1, we obtain the fiat-dispersion

condition

(B.3)

with Asp = 2/Tc/wsp and wsp given by 0 = Ed + Em(W sp ). The subscript is added to

W to indicate that it is identical to the resonant frequency for SPPs on a fiat metal

surface. Therefore, when L = L*, the resonant frequencies of the modes belonging

to the lowest TM band approach wsp in both limits of k (i.e. k -----> 00 and k -----> 00),

causing the TM band to be fiat.

For the spherical MDM geometry shown in Fig. 38(b), the TM mode frequencies

are given by

o

(B.4)
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with kd,m = JEd,mW / C, S = R + L, and jl and hI denoting the spherical Bessel and

Hankel functions of the first kind, respectively, The prime denotes differentiation

with respect to the argument. The metal core radius is denoted by R as shown in

Fig. 38 Like the planar MDM case, L represents the thickness of the dielectric layer.

Note that the positive integer l is a measure of the angular momentum, and takes the

place of the wavenumber k in the planar geometry.

Vie first calculate the resonant condition in the limit of l -+ 00. For l » lxi,

jl(X)
Xl

'"'-'
'"'-'

(2l+1)!!

hl(x) '"'-'
.(21-1)!!

'"'-' -1, X1+1 '

with (21 + I)!! = 1 . 3 . 5 ... (21 - 3) . (21 - 1). Therefore, in the limit of the large

multipole number I, we substitute the expressions above in Eq. (B.4)

o

--+ CXJ as 1--+ CXJ

and obtain

(B.5)

which is identical to Eq. (B.2).

To derive the flat-dispersion condition, we look for a condition for L such that

Eq. (B.5) also holds for low multipole modes with I « kdR, IkmRI. We assume that
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R is at least comparable to the wavelength such that kdR, IkmR I >> 1. Then, by

employing the asymptotic forms of the spherical Bessel and Hankel functions valid

for Ixl » l,

jl(X) rv
sin(x - 21f)

rv

X
ix

hl(x) rv (_i)l+l~,rv

x
(B.6)

Eq. (B.4) becomes

o

cos (ikdR _ ~l)

sin (ikdR- ~l) ~
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Substituting these approximate expressions yields

o Ok S+k S [{ .sin(kdR - ¥) cos(kdR - ¥)} {' }
2e~ d d ~ + 't + 1

ie-i(ikdR-¥) e-i(ikdR-¥)

-{ - ie-i(ik~R-¥) - e-i(ik~R-¥)}

{ ( 1rl) ( 1rl)} ikL]x sin kdS - 2 - cos kdS - 2 e- d

2eikdS+kdL-i¥ (1 + i) [{sin (kdR _ ~l) + cos (kdR _ ~l) }
-i{sin (kdS- ~l) -cos (kdS- ~l) }e-ikdL]

eikdS+kdL-i¥ (1 + i) [( -i + 1)ei(kdR-¥) + (oi + 1)e-i(kdR-¥)

+(-1 + i)ei(kdR-¥) + (1 + i)e-i(kdR+2ikdL-¥)]

which reduces to cos(kdL) = 0, or (2n - 1)1r = 2kdL where n 2: 1 is the band index.

The higher multipole TM modes of Eq. (B.5) belong to the lowest band. Thus,

letting n = 1 yields the fiat-dispersion condition for the spherical geometry,

L=L*=~,
4ftd

which is identical to the planar case.

(B.7)

The cylindrical MDM geometry does not permit pure TM and TE modes in

general[99]. However, there are two cases for which pure TM and TE modes exist:

~

Case I: wave vector k orthogonal to z,

Case II: wave vector k orthogonal to (/Y.
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Here, z and ~ are unit vectors pointing in the axial and angular directions of the

cylindrical geometry. We consider these two cases separately below. For Case I, the

resonant frequencies of TIVI modes are determined by

o

(B.8)

where l is a non-negative integer, and JI and HI denote the cylindrical Bessel and

Hankel functions of the first kind, respectively. The geometric parameters R, Land

S are defined as the spherical case.

We first let l -t 00. In this limit, the Hankel and Bessel functions, valid for

Ixl « l, are approximated by

Then, Eq. (B.8) reduces to

o
{ } { } { }

2 ( ) 21Ed Em JEd ~ L
--1 1-- - -+- 1+-
Em Ed ~ JEd R

'-v--'
--->00 as 1--->00

From the expression above, we obtain a familiar expression

(B.9)
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As for the planar and spherical cases, we now look for a condition for L such that

Eq. (B.9) is satisfied for TM modes with smalll such that kdR, IkmRI » 1, l. Then,

by employing the asymptotic forms of the functions appropriate for Ixl » 1,

(B.10)

(B.ll)

Eq. (B.8) reads

a
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Thus,

1 ·(·k R (21+1)7r)_e- 2 2 d - 4

2
i ·(·k R (21+1)7r)_ e-2 1, d - -4- .

2

o
[{

(k R (21+1)1T) ,'n (k R (21+1)1T)}cos d - -4- ::>1 d - -4-

i 1 ·(·k R (21+1)7r) + . ·(·k R (21+1)7r)_e-22 d --4- le-21 d --4-

2 2

{
.eikdL eikdL }

X 'l--+-~
1 1

-{

r: ·k S k L .(21+1)7r2vie1 d + d -'1-4 -

X [{iCOS (kdR - (2l: 1)7f) _ isin (kdR _ (2l: 1)7f)} {i + I}

_ {-I - i} {cos (kdS _ (2l: 1)7f) + sin (kdS _ (2l: 1)7f) } e-ikdL]

Vieikd,'3+kdL-i(21~1)7r (1 + i) [(i - 1)ei(kdR-(21~1)7r) + (i + 1)e-i(kdR-(21~1)7r)

·(k (21+1)7r) .( (21+1)7r)]+(1 - i)e1 d R--4- + (1 + i)e-1 kdR+2kdL--4 -

which simplifies to cos(kdL) = 0, or (2n - 1)7f = 2kdL. Choosing n = 1, we obtain

the flat-dispersion condition for Case I of the cylindrical MDM geometry,

L = L* = AsP.
4y'Ed

(B.12)
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The dispersion relations of the TM modes in Case II are determined by

(RI3)

o = {
~Jo(>\dR) _ Jb(AdR ) }

::11 JO(AmR) Jb(AmR)

x { ~Ho (AdS) _ Hb (AdS) }
:: Ho(AmS) Hb (AmS)

_ {~HO(AdR) _ Hb(Ad R)}
:: JO(AmR) Jb(AmR)

x { ~Jo (AdS) Jb (AdS) }
:: Ho(AmS) Hb (AmS)

with Ad,m = Jk~,m - k; and kz is the z component of k. We assume that R is at

least comparable to the wavelength. Then in the limit of kz -----+ 0 and also kz -----+ 00,

IAd,mIR» I and we can approximate the Bessel and Hankel functions with Eq. (RIO)
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As kz -----+ 00, Ad,m -----+ ikz and Eq. (B.14) reduces to

o ei(ikzS-ikzL- 'f) [ ( ~: e-i(ikzR-~) _ e-i(ikzR- ~)) (~: - 1)
_ (:: + 1) (:: e-i(ikzS-~) + e-i(ikzS-~)) ekzL ]

(::_1)2 _ (::+1)2e2kzL, (B.15)

hence

(B.16)

In the limit of kz -----+ 0,

Assuming that Eq. (B.16) is also satisfied in this limit, the fiat-dispersion condition

is derived from Eq. (B.14):

° 2iei(kdS-ikdL-%) [{i cos (kdR - ~) + i sin (kdR - ~) } {i - I}

- {i + I} {i cos (kdS - ~) - i sin (kdS - ~) } e-ikdL ]

ei(kdS-ikdL-%)(I_ i) [(1- i)ei(kdR-~) + (1 + i)e-i(kdR-~)

+(i _1)ei(kdR-%) +(i + l)e-i(kdR-2kd L-%)]

Therefore, the fiat-dispersion condition is

L = L* = AsP.
4JEd

(B.l?)

(B.18)
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for Case II as well.

Vve have demonstrated that the fiat-dispersion condition is identical for planar,

spherical, and cylindrical rvIDM geometries. This result suggests that the fiat­

dispersion band is not specific to a particular geometry, and that any MDM system

may exhibit a fiat-dispersion band as long as its local radius curvature is at least

comparable to the wavelength and if L = Asp /4fid.
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APPENDIX C

RECURSIVE MIE ALGORITHM FOR MULTILAYERED SPHERICAL

PARTICLES

The theory of light scattering by a spherical particle, commonly known as the

Mie theory or the Mie solution, was developed by Gustav Mie one hundred years

ago[128]. It is an exact solution to Maxwell's equations in the spherical coordinates

with an incident plane-wave as the boundary condition. Mie's original work was

concerned with homogeneous particles. Later, the theory was extended for coated

spheres[129] and multilayered spheres[130]. The objective of the theory is to calculate

the scattering coefficients, an and bn, which may be used to obtain the electromagnetic

field distribution as well as the scattering and extinction coefficients via

I7sca

l7ext

where k is the wavenumber.

2 CXlk: I)2n + 1) [lan l2 + Ibn l2]

n=l

27f CXl

k2 I)2n + l)Re [an + bn],
n=l

(C.1)

(C.2)

There are a few difficulties associated with using the Mie theory to obtain

numerical values of an and bn. First, as the number layer L increases, the calculation

becomes complicated very rapidly because it essentially requires computing the

determinants of four 2L x 2L matrices. Second, if the layers are absorptive and if the
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FIGURE 39. Schematic diagram for the L-layered spherical particle. Each layer has
the index of refraction Ni and the outer radius rio The sphere is embedded in a
homogeneous medium with index N.

wavelength is comparable or greater than the radius of the sphere, the solution often

involves subtraction of two large but nearly identical numbers, causing their difference

to be numerically inaccurate. Moreover, the expressions for an and bn contain the

spherical Bessel functions of a complex argument. These functions grow exponentially

with their argument, and may lead to computer overflow. Over the years, much work

has been published to address these issues[104, 107, 108, 131]. Vve have found the work

of T. Kaiser and G. Schweiger [10.5] and by W. Yang[106] particularly appealing for

their efficiency and ease of computer programming implementation. In this Appendix,

we present an efficient and stable recursive Mie algorithm for a spherical particle with

an arbitrary number of layers, which we developed based on their work.

Considered a sphere with L concentric layers as shown in Fig. 39. The l-th layer

has the refractive index of Nl , and inner and outer radii of rl-l and rl, respectively,
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where I = 1,2, ... L The sphere is embedded in a lossless dielectric host with an index

of refraction N. Let the incident light be an x-polarized plane wave Ei = Eoeikzx, or

00

~ _ '""" 'n 2n + 1 [~(l) . ~(l)]
Ei - Eo~ 1, n(n + 1) Mo1n - 'lNe1n (C.3)

using the spherical wave expansion[132]. Throughout this appendix, we suppress the

e-iWt time dependence. The scattered field can be written in terms of the scattering

coefficients an and bn as

(C.4)

~(j) ~(j) ~(j) ~(j) .. .
Here, M o1n , 1I1e1n , Noln , and Ne1n are the vector sphencal harmomcs. The superscnpts

j = 1, 3 signify that their radial dependence is specified by both the Bessel function

for j = 1 and the Hankel function of the first kind for j = 3. The solution to Maxwell's

equations in the l-th region are

E ~ in 2n + 1 [c(l) iVI(1) _ id(l) jJ(1) + ia(l) N(3) _ b(l) iVI(3) ] (C.5)
o~ n(n+1) n oln n eln n eln n oln

n=l

_ k1c E ~ in 2n + 1 [d(l) M(I) + ic(l) N(1) _ ib(l) jJ(3) _ a(l) 1\1(3)] (C.6)
W 0~ n(n + 1) n eln n oln n oln n eln

n=1

with k1 = N1w / c. Since the Hankel function diverges at the origin, a~l) = b~l) = O.

Moreover, from Eq. (C.3) and Eq. (C.4), c~L+I) = dn(L + 1) = 1, a~L+I) = an, and

b(L+I) = b
n n'
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Using the orthogonality of the vector spherical harmonics, the standard Maxwell

boundary conditions yield

0 del) 1/;' ( ) (I) (' ( )n ml-l n mlxl-l - an ml-l n mlxl-l

d(l-l) 1/;' ( ) (1-1) (' ( ) (C.7)- n ml n ml-lXl-l + an ml n ml-lXl-l

0 c~)ml-l1/;n(mIXI-l) - b~)ml-l(n(mlXl-l)

(1-1) 1/; ( ) b(l-l) (( ) (C.8)-cn ml n ml-lXl-l + n ml n ml-lXl-l

0 (1)1/;' ( ) b(l)(' ( )cn n mlXl-l - n n mlxl-l

(1-1)1/;'( ) b(l-l)('( ) (C.g)-cn n ml-lXI-l + n n ml-lXl-l

0 d~)4)n(mlXl-l) - a~;)(n(mlXl-l)

d(l-l)1/; ( ) (1-1) ( ( ) (C.lO)- n n ml-lXl-l + an n ml-lXl-l ,

where 1/;n is the Riccati-Bessel function, (n is the Riccati-Hankel function of the first

kind, ml = Nl!N, and Xl = NWTl/C. The primes denote differentiation with respect

to the argument. Let

( ) (l)
-(l) (n mlXI an

(C.Il)An
1/;n(mlXl) d~)

( ) (l)
-(l) (n mlXl bn (C.12)Bn

1/;n(mlXl) c~)

Then, by rearranging the terms in Eq. (C.7) through Eq. (C.l0), we obtain recursive
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relations for A~) and 131~Z):

'I/J"./,(mZXZ-l) (n(mZXZ)
7/'10 (mzxz) (n(mzxz-d

A~~~l) [~Fn(mz-lXZ-d - Dn(mzxz-d] - [~Dn(mz-lXZ-l) - Dn(mzxz-d]
ml~l ml-l

x----==------------~-___=__-----------~

A~;-l) [~Fn(mz-lXZ-d- Fn(mzxz-d] - [~Dn(mz-lXZ-l) - Fn(mzxz- 1)]
rnl-l ml-l

'l/Jn(mZXZ-l) (n(mZXZ)
'l/Jn(mZXZ) (n(mzxz-d

131~-1) [~Dn('mzXz-l) - Fn(mz-1xZ-d] - [~Dn(mzxz-d - Dn(mz-lXZ-l)]
ml-l ml-l

x-------=:c----------------'::---------:o------------_=_
13,~-1) [~Fn(mzxl-l)- Fn(mz-1XZ-l)] - [-.271LFn(mzxz_d - Dn(mz-1XZ-l)]

ml-l ml-l

for l = 2, ... L, and

'l/Jn(XL) A~L) [~Fn(mLXL) - Dn(xd] - [~Dn(mLXL) - Dn(xd]

(n(xd Ar) [~L Fn(mLXL) - Fn(xd] - [~L Dn(mLXd - Fn(XL)]

'l/Jn(XL) 131\L) [~Dn(xd - ~t(mLxL)] - [~Dn(XL) - Dn(mLXL)]

(n(XL) B7\L) [~L Fn(XL) - Fn(mLXL)] - [~L Fn(XL) - Dn(mLXd]

with A~/,l) = 0 and 13,~1) = 0 as initial conditions. Here, we have used

'I/J:t (z )
'l/Jn(z)
(~(z)

(n(z)'

(C.13)

(C,14)

To render the recursive algorithm more suitable for computer programming, we

define new variables,

'l/Jn(mZXZ) (n(mZXZ-l) A(l)
'l/Jn(mZXZ-l) 'l/Jn(mZXZ) 10

'l/Jn(mZXZ) (n(mZXZ-l) 13(l)
'l/Jn(mZXZ-l) 'l/Jn(mZXZ) 10'

and bring the recursion relations to a form similar to that of T. Kaiser and G.
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Schweiger[105] :

A*(l)11,

B*(l)11,

for l = 2, ... L, and

D ( ) ml D-(I-l)11, mlxl-l - -- 11,
rnl-l

F ( ) m/ D- (1-1)11, mlxl_l - -- 11,
ml-l

ml D ( ) C-O- 1)-- 11, mZxZ-l - 11,
ml-l

ml D ( ) C-(l-l)--£11, mZxZ-l - 11,
rnl-l

(C.15)

(C.16)

with

(C.17)

(C.18)

as initial conditions, where

A*(1)11,

B*(1)11,

o

o

(C.19)

(C.20)

iJ(ll =11, -
D (m x) - 4>n(mlx/-Jl (n(mIXI) F (m x )A*(Z)

11, I Z 4>n(m/xz) (n(mlx/-l) 11, I Z 11,
1 _ 'i/Jn (m/Xl_ d (n(mlxt) A*(Z)

'ljJn(m/xz) (n(mIXI-l) 11,
D (m x ) - 'ljJn(m/xl_l) (n(mIX/) F (m x )B*(l)

11, I I 'ljJn(mIX/) (n(m/Xl_l) 11, Z I 11,
1 - 'i/Jn(mlXl-l) (n(m/xt) B*(l)

'ljJn(m/XI) (n(m/X/-l) 11,

(C.21)

(C.22)

Note that these equations are expressed in terms of the Riccati-Bessel and Riccati-

Hankel functions with a real argument ('l/J11,(XL) and (11,(XL)), the logarithmic

derivatives (D11,(z) and F11,(z)), and the ratios of the functions ('l/J11,(Zl)/'l/J11,(Z2) and

(11,(Zl)/(11,(Z2)), all of which can be calculated reliably, without numerical instability,

using known upward or downward recursions[104, 108]. The computer program for
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the recursive algorithm was written by C. Rohde using C/C++, and the details of

the code can be found in his Ph.D. dissertation[95].
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