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ABSTRACT

FORWARD LIGHT SCATTERING IN AN EXTENDED SAMPLE OF
COLD ATOMS

Stetson Roof
Old Dominion University, 2016
Director: Dr. Mark D. Havey

We present results on the forward emitted light from a cold atomic sample of 87Rb. Specif-

ically, we study single-photon superradiance which is characterized by a rapid decay faster

than the single atom lifetime with the light preferentially emitted in the forward direction.

Additionally, we report measurements on its counterpart, the cooperative Lamb shift. The

results are interpreted using microscopic light scattering theory as well as techniques from

classical optics. The comparison of the two analytical techniques provides a new perspective

on what is meant by cooperative and collective scattering effects in cold atomic physics.
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CHAPTER 1

INTRODUCTION

The study of many body systems has become a hot topic in recent years. One reason for this

is that it opens up the door to vast new areas of study and the prospect of creating the next

generation of technology. P. W. Anderson summed up the field appropriately with the state-

ment, More is Different [3]. N bodies do not just interact with an external force individually

but can add their contributions coherently in reaction and, most importantly, interact with

one another. These many body interactions are what make the studies interesting and what

give the deviation from a single-body response. While the field shows great promise, much

work is left to do theoretically, and most importantly experimentally, to realize the potential

of the physics. We seek to discuss and show how many body effects may be observed.

To give an example for the general reader as to what a many-body effect could mean

we start with a case commonly encountered in classical electrostatics. Consider a region of

space occupied by a dielectric medium and with an applied external electric E present within

it. Due to the external field, a polarization will be built up in the medium given by

P = ǫ0χE (1)

where χ is the susceptibility which gives a measure of the over all electrical response of the

medium and ǫ0 is the permittivity of free space; we ignore the vector nature for simplicity.

A single atom responds according to

d = αE (2)

where d is the dipole moment of the atom or molecule and α is the polarizability. The

susceptibility can be related to the polarizability as the polarization is just the dipole moment

per unit volume and so

χ =
ρaα

ǫ0
(3)

where ρa is the sample density. This relation is true for low densities. However, as the density

increases the atom/molecule begins to feel a significant contribution from the polarization

within the sample such that the local field it is subject to is given by [4]

Eloc = E +
P

3ǫ0
(4)
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and now

d = αEloc. (5)

These adjustments lead to a new relation between the polarizability and susceptibility,

χ =
ρaα/ǫ0

1− ρaα/3ǫ0
. (6)

This is sometimes called the Clausius-Mossotti or Lorenz-Lorentz relation when written in

terms of the dielectric constant. When the material consists of two-level atoms it leads to a

shift of the resonance line for the susceptibility. The resonance line refers to the frequency

the atoms are most responsive to when radiated with an external light field of frequency ω.

While the interpretation of this result has become a subject of heated debate of late [5, 6]

the fact that more material causes a fundamental change of how that material responds to

an external field is a significant realization.

The above example in fact belongs to an even larger area of study in the realm of light

scattering in aggregate media. The field, generically called light scattering, encompasses

many ideas such as multiple light scattering [7, 8, 9], random lasing [10], suppressed resonant

fluorescence [11], density dependent dipole-dipole shifts [12, 13], coherent back scattering

[14], Anderson light localization [15, 16, 17] and many more. The interest has grown partly

out of the work to build viable quantum memories using light-matter interactions as the

interface [18, 19, 20, 21]. The realization of the above studies are typically referred to as

observing collective and cooperative effects. These terms are sometimes used rather broadly,

interchangeably, and even ambiguously as will be the case at first in this text. We hope by

the end to add some better defined meaning to their usage.

One rich, many-body, light scattering effect to study is that proposed by Dicke [22] but in

the context of enhanced emission rates. In his work, Dicke considered how a group of atoms

in close proximity to one another (V ≪ λ3 of a single atomic transition, where V is the

volume of the sample) could interact through their own radiated fields to give cooperative

enhancement of the collective emitted radiation. To formulate this, Dicke considered a

collection of two-level systems (we will call them atoms) with all possible states arranged

in a hierarchy of energy levels. These energy levels were taken to correspond to essentially

the sum of atomic excitations present within the system. A diagram of the state structure

is given in Fig. 1. Dicke introduced raising and lowering operators, analogous to angular

momentum operators, such that the the states could be specified by the quantum number

m = 1
2
(N+ −N−) which is the difference in the number of atoms in excited state and in

the ground state. Additionally, a second quantum number r, called the cooperation number,
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m = −N/2

m = −N/2 + 1

m = −N/2 + 2

m = 0

m = N/2− 2

m = N/2− 1

m = N/2

r = N/2 r = N/2− 1

N − 1 fold degenerate

r = N/2− 2

(N − 3)/2 fold degenerate

FIG. 1: The Dicke Manifold. The energy states of the N -atom system are arranged such
that there is one unit of energy separation (one atomic excitation) between vertically ordered
states. Due to the possible arrangement of atomic excitations, there are varying levels of
degeneracies for particular m-states.

was introduced which corresponds to the “length” of the angular momentum vector with m

being its projection along the z−axis. An analysis of the radiation rate from such a system

gives

Γcoop. = Γ(r +m)(r −m+ 1), (7)

Γ being the single atom decay rate. For m = 0, Γcoop. scales as N
2 and for m = −N/2 + 1

it scales as N . Samples that are large in extent (V ≫ λ3) somewhat modify the anticipated

rate but the scaling remains the same [23]. Experiments carried out early in the development

of superradiance consisted of studies in warm vapor cells where systems were fully inverted

(m = N/2) and the cascade of fluorescence down the Dicke chain was observed [24, 25, 26].

What was particularly interesting about the inversion of the whole system was the eventual

observation of the N2 scaling for the emitted intensity and decay rate once the m = 0 level

was reached; indicating there was a coherent process coming out of spontaneous emission.

While the m = −N/2 + 1, r = N/2 state only has the N dependent scaling, it too

carries a unique significance separate from all others: it lies adjacent to states that do not

decay as there are no energy levels that reside below them. The population essentially

becomes trapped in these states and never re-emits the incident light. In reality, motional

effects, collisions, and other dephasing mechanisms will cause the system to slowly decay.
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Nevertheless, with a long decay time these states could be used as a type of light storage

for quantum memories. Originally, the decay from the r = −N/2 + 1 states was labeled

as limited-superradiance [27], but now has taken on the name subradiance [28, 29, 20]. Its

study is a topic of much research and due to recent experimental work [28], the door has

been opened to study subradiant states as a way of creating quantum memories.

The subradiant states are not directly accessible due to the way the system is excited.

They must be reached indirectly through the superradiant states. One way which has been

proposed [20] is to transfer the population from the first excited superradiant state. For

the case of an extended sample, this state has been called a timed-Dicke state [30] (to be

discussed more in depth later on) and its emission of light called single-photon superradiance.

It has been studied fairly extensive theoretically [31, 32, 33, 34], but only until very recently

has single photon superradiant decay been studied experimentally in a gas of atoms [35, 36,

37, 38]. Experimental investigation of single photon superradiance will be the main feature

of this thesis.

Other than linking the outside world with subradiant states, the study of single photon

superradiance importantly impacts many fields such as precision measurements and quantum

sensors [39, 40]. This is in part due to a counterpart of single-photon superradiance known

as the cooperative Lamb shift. The cooperative Lamb shift is analogous to the single atom

Lamb shift in that it involves a shift of the atomic absorption line but results from the

exchange of virtual photons between different atoms. The shift is highly dependent on the

shape of the atomic sample and we will give an expression for it in the next chapter. With

regards to precision measurements, optical lattice clocks [41] have become the most precise

time standard device ever and they require very specific knowledge of sources of light shifts of

the atomic energy levels. The shift and decay rate from superradiance would act as parasitic

effect in this case and means must be taken to properly account for them.

Cold atoms provide a great environment to study both of these effects. The samples

created are nearly free of Doppler broadening and can be arranged into shapes as desired for

specific applications. Atom species can be chosen with nearly closed electric-dipole transi-

tions that allow for close comparison with simple two-level system theory. Unlike many new

research areas, the samples do not have to be degenerate gases and the single photon studies

can be done with standard atom traps such as magneto-optical traps and far-off resonance

traps. We choose these systems as our tool to study the superradiant effects.

The thesis is organized as follows: In Chapter 2, we will discuss from a microscopic point

of view the theory of light scattering in a large atomic sample and explain how it leads
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to the idea of single-photon superradiance. However, we will need, in addition, the use of

analysis from the point of view of classical optics to also explain experimental results. The

classical optics approach will be developed slowly throughout as it is needed in different

places in different contexts. In Chapter 3, we will discuss the basics of atom trapping and

the techniques we use to realize cold atom samples. Chapter 4 describes an experiment

revealing the pitfalls of doing absorption measurements in small, dense atomic ensembles

and how the index of refraction comes into play through beam propagation. In Chapter 5,

the experimental setup used to measure the fast decays and frequency shifts of the atomic

sample is described. In Chapter 6, we will present the time resolved and spectrally resolved

measurements of the forward emitted light from the atomic system. We will also draw

parallels with what one would expect from a classical system and discuss how this affects

the interpretation of the experimental results and of microscopic light scattering theory in

general.
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CHAPTER 2

THEORY OF MICROSCOPIC LIGHT SCATTERING

In this chapter the general formalism is derived and presented for understanding cooperative

effects in a large sample of atoms at zero temperature. This analysis is based on a quantized,

scalar photon field interacting with an atomic system represented by point particles. While

a realistic model would include effects due to polarization, atomic dipole orientation, and the

multi-level atom structure, a scalar formalism serves well to show the qualitative response

and corresponds closely to experimental observables due to the low density and nearly-closed

transition probed in the experiments reported here.

2.1 THE INTERACTION HAMILTONIAN

The Hamiltonian describing the interaction between an electromagnetic field and an atom

can we written in the Coulomb gauge as [42],

Ĥ =
1

2m

∑

α=1

[

p̂α + eÂ(rα)
]2

+
1

2

∫

drσ(r)φ(r) +
1

2

∫

dr
[

ǫ0ÊT(r)
2 + µ−1

0 B̂(r)2
]

, (8)

which is also known as theminimal-coupling Hamiltonian. Here,m is the mass of an electron,

pα the momentum of the αth electron, rα the position of the αth electron, e the electron charge,

Â the quantized vector potential, σ(r) the charge density, φ(r) the scalar potential, ǫ0 the

electric permittivity of free space, ÊT the quantized transverse electric field, µ0 the magnetic

permeability of free space, and B̂ the quantized magnetic field. Expressions for the electric

field and vector potential are given by [42, 43],

ÊT(r) =
∑

kλ

ekλ

(

~ωk

2ǫ0Vph

)1/2
[

âkλe
ik·r + â+

kλe
−ik·r] (9)

Â(r) = −i
∑

kλ

ekλ

(

~

2ǫ0ωkVph

)1/2
[

âkλe
ik·r − â+

kλe
−ik·r] , (10)

where k is the wave vector of a particular mode, λ one of two polarization directions about the

wave vector, ekλ the polarization vector, ~ the reduced Planck’s constant, ωk the frequency

of the kth mode, Vph the vacuum quantization volume, and âkλ and â+
kλ the lowering and

raising operators of the photon field, respectively. The first term of (8) represents the
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kinetic energies of the electrons and the interaction of the quantized field with the atom.

The second term represents the atomic electrostatic energy and the final term is the energy

of the free electromagnetic field. By an appropriate unitary transformation [44, 45], (8)

can be put into a more convenient form which serves to remove the vector potential from

the Hamiltonian and leave dependence only on the field variable operators, ÊT and B̂.

Performing the transformation and keeping only the lowest order multipole term results in

(where the relative size in magnitude is determined by powers of the fine structure constant)

Ĥ = Ĥa + ĤR + ĤED. (11)

Here Ha is the atomic Hamiltonian which contains the terms that involve the kinetic energies

of the charges and all Coulomb interaction energies. The second term, HR, is the free-field

Hamiltonian given by,

HR =
∑

kλ

~ωkâ
+
kλâkλ. (12)

The last term is the electric dipole interaction,

HED = −d̂ · Ê, (13)

where d is the electric dipole moment operator of the atom and the T subscript has been

dropped from the electric field (9). 1 In consideration of a two-level atom, the Hamiltonian

can be second quantized by assigning operators that take the atom from the ground state to

the excited state and vice-versa. This can be formalized as

σ̂ = |g〉 〈e|
σ̂+ = |e〉 〈g| . (14)

The operators σ̂ and σ̂+ are known as the lowering and raising operators of the atom,

respectively. The ground state is represented by the letter g and the excited state by the

letter e. Their commutation relations are The atomic Hamiltonian can then be re-written as

Ĥa = ~ωaσ̂
+σ̂, (15)

1Here the electric dipole interaction has been written as d̂ · Ê for sake of understanding, but formally
under the Power-Zineau-Woolley unitary transformation briefly mentioned, (9) no longer has the meaning

of the electric field. Specifically, Ê
′

T
= Û−1

PZW ÊTÛPZW = ÊT − 1
ǫ0
P̂T, which has the form ǫ0E = D − P

where P is the electric polarization of the sample and D is the electric displacement. Therefore, (9) should
be interpreted as the electric displacement [46, 47, 48]. This is a subtle point, but is necessary when seeking
to recover Maxwell’s equations from a microscopic approach [49].
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where ωa is the transition frequency between the ground state and the excited state. The

zero of energy is taken as the level of the ground state. The dipole-moment operator can

also be redefined,

d̂ = deg

(

σ̂ + σ̂+
)

, (16)

where deg is the dipole matrix element that is taken to be real. Inserting the above expression

for d̂ into Eq. (13) results in

HED =
∑

kλ

~gkλ
[

âkλe
ik·r + â+

kλe
−ik·r] [σ̂ + σ̂+

]

, (17)

where

gkλ =

(

ωk

2ǫ0~Vph

)1/2

ekλ · deg (18)

describes the coupling between the atom and photon field. The variable r should be under-

stood as the position of the center of mass of the atom.

In solving for the dynamics of the atom-radiation system it is convenient to analyze in

the interaction picture where the time dependence is shared between both the wavefunction

and the operators. The equation of motion for an operator in the interaction picture is,

i~
dÔI

dt
=
[

ÔI(t), Ĥ0

]

, (19)

where the interaction operator is defined as,

ÔI(t) = eiĤ0t/~ÔSe
−iĤ0t/~. (20)

ÔS stands for the operator representation in the Schrodinger picture where the operator

carries no time dependence and Ĥ0 is the unperturbed Hamiltonian which is the sum of

equations (12) and (15). Substitution of the atom and photon operators into (19) and (20)

results in the following expressions,

σ̂I(t) = σ̂e−iωat (21)

âIkλ(t) = âkλe
−iωkt (22)

with σ̂+
I (t) and â

+
Ikλ(t) given by the complex conjugates of (21) and (22), respectively. The

advantage of configuring the system in the interaction picture can be clearly seen as the

operators pick-up a simple harmonic time dependence with their respective frequencies. The

electric dipole interaction term is now

ĤED = ~

∑

kλ

{

gkλσ̂
+âkλe

ik·r−∆kt + adj.
}

, (23)
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where ∆k = ωk − ωa, adj. is the adjoint or hermitian conjugate of the first term, and

the counter-rotating terms ∆k = ωk + ωa have been dropped. The high frequency terms

are dropped in what is known as the rotating-wave-approximation as they are non-resonant

and will contribute very little to the absorption and emission processes of the atom. From

here on, (23) will serve to describe the interaction between the atom and the photon field.

However, as it will be seen later on, the inclusion of the counter-rotating terms are necessary

to describe correctly the interaction between individual atoms in a sample [50, 51, 52].

We will now move to implementation of (23) in solving for the state evolution of a

two-level atom. This will require the use of a technique known as the Wigner-Weisskopf

approximation [53] where the time dependence of the wavefunction will be explicitly solved

for and an expression for the single-atom decay rate can be obtained.

2.2 WIGNER-WEISSKOPF THEORY FOR A SINGLE ATOM

The Wigner-Weisskopf theory is incorporated by making the ansatz,

|Ψ(t)〉 = β(t) |e〉 |0〉+
∑

kλ

γkλ(t) |g〉 |1kλ〉 , (24)

where it is assumed that the system can only exist in one of two states: the atom excited

and no photons present or the atom in the ground state and one photon present. Here, β

represents the excited state amplitude, e the excited state, γkλ the ground state amplitude

of a particular photon mode, and g the ground state. Eq. (24) represents the wavefunction

in the interaction picture, and because of such the dynamics of the state amplitudes can be

solved from

i~
∂

∂t
|ψ(t)〉 = ĤED(t) |ψ(t)〉 . (25)

For the sake of simplicity we will take the scalar [51] form of (23) which involves considering

only linearly polarized light and assuming the atom’s dipole is aligned with the orientation

of the electric field. This approximation will demonstrate the essential steps for evaluating

the time dependence of the system.

Inserting (24) into (25) gives the coupled equations,

β̇ = −i
∑

k

gke
−i∆kt+ik·rγk (26)

γ̇k = −igke−ik·r+i∆ktβ. (27)

The latter equation can be formally integrated to give,

γk(t) = −igke−ik·r
∫ t

0

dt′ei∆kt
′

β(t′) (28)
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Substituting (28) into (26),

β̇ = −
∑

k

g2
k

∫ t

0

dt′e−i∆kt
′

β(t− t′) (29)

where the time variable has been changed from t′ → t − t′. As the excited state evolution

occurs on a time scale much slower than the natural frequency of the transition, the Markov

approximation can be made β(t − t′) ≈ β(t). This is also equivalent to saying that β̇ only

depends on the current value of β and that all memory of past events are forgotten [54].

Using this approximation and converting the sum over k to an integral
∑

k
→ Vph

(2π)3

∫

dk,

β̇ = −Vph
2π2

β

∫ ∞

0

dkk2g2
k

{

1− cos(∆kt)

i∆k

+
sin(∆kt)

∆k

}

, (30)

with the time integral being explicitly carried out. The time scales of concern, as stated

before, are large compared to 1
∆k

so that t→ ∞. Evaluating the limit,

lim
t→∞

[

1− cos(∆kt)

i∆k

+
sin(∆kt)

∆k

]

= −iPV
(

1

∆k

)

+
π

c
δ(k − ka), (31)

where PV stands for the principal value. Physically, the first term corresponds to the Lamb

shift for a single atom and requires more detail to be properly calculated [42]; here it will be

neglected. Finally, upon evaluation of the integral over k we get,

β̇ = −Γ

2
β (32)

where Γ = Vphk
2
ag

2
ka
/πc is the single atom decay rate in the scalar approximation. It should

be noted that this expression can be easily obtained by a simple application of Fermi’s

golden rule to the interaction potential (23), however it is insightful to see the Wigner-

Weisskopf theory applied to a single atom before analyzing the multi-atom case. Now with

the expression for Γ, we have an absolute scale factor when considering the enhanced decay

rates and frequency shifts of extended atomic samples.

2.3 WIGNER-WEISSKOPF THEORY FOR MANY ATOMS

Extension to the many-atom case is accomplished by considering the excited state amplitude

for each atom. Additionally, it is desirable to include the presence of a driving field as will

be the case in the experiment. To this end, the wave function can be written down as

[33, 34, 55, 56],

|ψ(t)〉 = α(t) |g〉 |0〉+
N
∑

j=1

βj(t) |j〉+
∑

k

γk |g〉 |1k〉 , (33)
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with the interaction Hamiltonian now given by,

Ĥint = ~

N
∑

j=1

{

Ω0

2
σ̂je

i∆0t−ik0·rj + adj.

}

+ ~

∑

k

N
∑

j=1

{

gkσ̂j â
+
k
ei∆kt−ik·rj + adj.

}

. (34)

Here α is the amplitude of the state that allows for coupling between the laser field and the

atoms, βj is the excited state amplitude of the jth atom, N is the total number of atoms, Ω0 is

the Rabi frequency of the driving field defined by degE0

~
where E0 is the electric field amplitude

of the laser, and ∆0 = ω0−ωa is the detuning of the laser from the atomic transition frequency.

Without the presence of the last term in (33), (33) and (34) would describe the semi-classical

evolution of the sample with α(t) assuming the role of the ground state amplitude. As in

the experiment, we will only consider the effect of low light intensity incident on the atoms

such that α(t) ∼ 1, meaning there is low probability of atomic excitation.

Applying Schrodinger’s equation (25), as in the last section, results in the time evolution

equations

β̇j = −iΩ0

2
e−i∆0t+ik·rj − i

∑

k

gke
−i∆kt+ik·rjγk (35)

γ̇k = −igk
∑

j

ei∆kt−ik·rjβj (36)

Again, the equation for γk can be formally integrated and inserted into (35). The Markov

approximation is invoked and the summation term over k turned into an integral such that

it becomes,

−
d2egc

2~ǫ0(2π)2

∑

m

βm(t)

∫ t

0

dt′
∫ ∞

−∞
dkk3e−i∆kt

′

∫ 1

−1

d(cos θ)eikrjm . (37)

Here the lower limit on k has been extended to −∞ as this artificially restores the counter-

rotating terms that were neglected in (23) [42, 33]. The significance of this will be described

shortly. Carrying out the cos θ integral,

−id2egc
2~ǫ0(2π2)

1

rjm

∫ ∞

0

dt′eickat
′

∫ ∞

−∞
dkk2

[

e−ik(ct′−rjm) − e−ik(ct+rjm)
]

. (38)

Considering the integral over k, it can be written as

∫ ∞

−∞
dkk2

[

e−ik(ct′−rjm) − e−ik(ct+rjm)
]

= −2π

c3
∂2

∂t′2
[δ(t′ − rjm/c)− δ(t′ + rjm/c)] , (39)

where the delta function is defined by,

δ(t′ ± rjm/c) =
1

2π

∫ ∞

−∞
dωke

−iωk(t
′±rjm/c). (40)
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The second delta function corresponds to times outside the limits of integration and will be

discarded. This amounts to keeping only the retarded time contribution. The time integral

portion is now,
∫ t

0

dt′eickat
′ ∂2

∂t′2
δ(t′ − rjm/c) = −c2k2aeikarjm , (41)

after integrating by parts twice. Expression (38) becomes,

Γ

2

eikarjm

ikarjm
, (42)

where Γ =
d2egk

3
a

2π~ǫ0
is an equivalent form of the decay rate achieved in the previous section.

Substitution of (42) back into the rate equation (35) and making the slowly-varying-envelope

approximation for the excited state amplitudes βj ≃ βje
−i∆0t gives

β̇j = −iΩ0

2
eik0·rj + i∆0βj −

Γ

2

∑

m

βm
eikarjm

ikarjm
. (43)

The m = j terms in the summation will have a real and imaginary part which correspond

to the single atom decay rate and Lamb shift, respectively. Pulling out both terms, but

absorbing the Lamb shift into the natural frequency ωa, produces,
2

β̇j = −iΩ0

2
eik0·rj +

(

i∆0 −
Γ

2

)

βj −
Γ

2

∑

m 6=j

βm
eikarjm

ikarjm
. (44)

Finally, we obtain a set of equations that model the time-evolution of a system of inter-

acting atoms in what is called the coupled-dipole model [33, 34, 55, 56]. Looking at the form

of (44) it can be seen that there are two terms driving the dynamics. The first is the external

laser field Ω0 which not only excites the atoms, but imprints upon each a distinctive phase

k0 · rj which is responsible for the strongly forward emitted light to be studied. The second

term in the rate equation represents the scattered light from surrounding atoms onto atom

j. This scattered light is comprised of real, radiated photons which come from the real part

of the summation [51] and virtual photons from the imaginary portion [50, 51]. The ability

to incorporate both comes from the fact that the counter-rotating terms were placed back in

at (37). Had only the resonant terms been kept, the summation in (44) would only contain a

sin kernel and it would not be possible to explain cooperative frequency shifts for extended

samples [50].

2When the vector nature of the light is taken into effect the interaction term in the summation can replaced

by the more general form [55, 38], Gµν(rjm) = e
ikrjm

krjm

[

(δµν − r̂µr̂ν) +
(

i
krjm

− 1
(krjm)2

)

(δµν − 3r̂µr̂ν)
]

βν
m,

where r̂ is the unit displacement vector bewteen atoms j and m. This is also representive of the potential
for interacting radiating dipoles encountered in classical electrodynamics [4].
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In the experiment the detected signal will be scattered light from the atoms and therefore

it is necessary to know both the time dependence of the excited state amplitude and the

resulting emitted intensity. The total average scattered intensity at time t is [47],

〈I(rs, t)〉 = cǫ0

〈

Ê−(rs, t)Ê
+(rs, t)

〉

, (45)

where rs is the observation point for the scattered intensity and Ê+
s is the positive frequency

component of the electric field from (9),

Ê+
s (rs, t) =

∑

k

(

~ωk

2ǫ0Vph

)1/2

âke
−iωkt+ik·rs (46)

using the representation in the interaction picture. The expectation value can then be taken

with respect to the wavefunction in the interaction picture (33),

〈

Ê−(rs, t)Ê
+(rs, t)

〉

=

∣

∣

∣

∣

∣

∑

k

(

~ωk

2ǫ0Vph

)1/2

e−iωkt+ik·rsγk(t)

∣

∣

∣

∣

∣

2

. (47)

The expression for γk(t) was obtained previously from (36) so that (46) becomes,

∣

∣

∣

∣

∣

∑

j

∑

k

(

ωkdeg
2ǫ0Vph

)

e−iωkt−ik·rsj
∫ t

0

dt′ei∆kt
′

βj(t
′)

∣

∣

∣

∣

∣

2

, (48)

where rsj = rs − rj. Just as in the former analysis for the single atom Winger-Weisskopf

theory and for the coupled-dipole equation, the time variable will be changed to t−t′ and the

Markov approximation used. Applying this and again extending the lower limit of integration

of k to −∞,3

〈

Ê−(rs, t)Ê
+(rs, t)

〉

=

∣

∣

∣

∣

∣

deg
4πǫc2

∑

j

βj(t)

rsj
e−iωat

∫ t

0

dt′eiωat′
∂2

∂t′2
δ(t′ − rsj/c)

∣

∣

∣

∣

∣

2

(49)

=

∣

∣

∣

∣

∣

k2adeg
4πǫ0

∑

j

βj(t)

rsj
e−iωa(t−rsj/c)

∣

∣

∣

∣

∣

2

, (50)

3Here it can be seen that the exponential term contains the retarded time t − rsj/c indicating the
casuality of the process. In reality, the βj term time dependence should also have this form [33], but the
Markov approximation was made. One could have simply retained βj within the time integral and obtained
the correct time dependence, but the approximation was made for consistency with previous calculations.
Either way, due to the time scale by which the atomic state evolves, βj(t − rsj) ≃ βj(t) as t is taken much
larger than the transit time for the light signal from the sample to the observation point rs. For extremely
large samples the Markov approximation can not be applied as previous events begin to contribute to the
current state of the system and an effective cavity regime is entered [31].
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The sample dimensions are taken to be much smaller than the point of observation such

that, rsj ≃ rs − rs·rj
r

. With ks = ka
rs

rs
, the intensity (45) takes the form,

〈I(rs, t)〉 =
~ωaΓ

8πr2s

∣

∣

∣

∣

∣

∑

j

βj(t)e
−iks·rj

∣

∣

∣

∣

∣

2

, (51)

and the denominator has just been taken as rsj ≃ rs. The intensity falls off as 1/r2s as

expected for emitted light in the radiation zone [57] and there is a dependence on the relative

phase between the atoms.

We will now be concerned with solving (44) numerically and looking at the emergent

collective properties from the scattered fields. This will serve as a good starting point for

determining where and how to look for the cooperative effects experimentally.

2.4 NUMERICAL SOLUTION OF THE COUPLED-DIPOLE

EQUATION

To put (44) into dimensionless form, we will take the natural time scale as 1/Γ and the

natural length scale as 1/k0,

β̇j = − i

2
Ω0e

ik̂0·r̄j +

(

i∆− 1

2

)

βj +
i

2

∑

m 6=j

eir̄jm

r̄jm
(52)

where k̂0 is the unit vector of the laser beam wave number, Ω0 ≡ Ω0/Γ, ∆ ≡ ∆/Γ, r̄j = k0rj,

and the approximation ka/k0 ≃ 1 has been made. Then (52) can be cast into a matrix form,

β̇ = Ω+Mβ, (53)

with (Ω)j = − i
2
Ω0e

ik̂0·r̄j and (M)jm =
(

i∆− 1
2

)

δjm + i
2
eir̄jm

r̄jm
. In reality, Ω0 = Ω0(t) and

represents the time-dependent pulse shape incident on the atoms. For simplicity and speed

of the calculation it will be taken as a square pulse. In experiment this is not exactly the

case as there will be some finite rise and fall time of the pulse generated in the electronics

used to switch on and off the laser beam. However, we find the square pulse matches well

with observed signals in experiment.

Equation (53) can be solved exactly for a square pulse by finding the associated eigen-

vectors for M and making the solutions match at the boundary for the laser beam on and

the laser beam off. However, this becomes computationally expensive when diaganolizing

M for many atoms. A more straightforward method is to use the Runge-Kutta method to

solve for β in discrete time-steps. Particularly for an equation of the form y′ = Ay + b(t)
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the solution can be written down using 4th-order Runge-Kutta as [58],

yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6 (54)

where

k1 = h [Ayi + b (ti)] k2 = h

[

A(yi + k1/2) + b

(

ti +
h

2

)]

k3 = h

[

A(yi + k2/2) + b

(

ti +
h

2

)]

k4 = h [A(yi + k3) + b (ti + h)] (55)

The term A takes the role of M and b the role of Ω. The step size is denoted by h and the

error in this integration method is to fifth order in its value. Simulations can be performed

quite fast using (54) with limitations in the maximum number of atoms stemming from

computer memory allocation.

To replicate as closely as possible what is probed in experiment, atoms are distributed

randomly within an ellipsoidal Gaussian shape given by

ρ(r, z) = ρ0e
−r2/2r20−z2/2z20 (56)

where r0 and z0 are the short and long axis radii, respectively (see Fig. 2). All atoms are

given the initial condition βj(0) = 0 and the system is averaged over multiple configurations

to achieve good statistics. Fig. 3 shows the angular distribution of scattered light for an

increasing number of atoms for 12 sample realizations. The laser beam is incident along

the z-direction of the sample. For a single atom the scattered light is isotropic but quickly

obtains directional emission with an increasing number of atoms.

In the time domain, the cooperative decay rate also builds up a characteristic dependence

on the number of atoms. To examine this, the sample is excited by a temporally short

probe pulse (T = 2/Γ) and the forward emitted light is observed as function of time. For

the forward direction (Fig. 4(a)), the decay is single exponential, scales linearly with the

number of atoms, and is proportional through a factor that depends on the particular shape

of the sample. This will be discussed in the next section. The single exponential behavior of

the scattered light is not a uniform feature as shown in Fig. 4(b). Superradiant emission is

strongly coupled to the forward direction, but off axis its intensity is much weaker and it is

possible to see contribution from other modes excited in the sample; particularly interesting

are subradiant modes which have much longer decays as compared to the single atom case.

This effect is more profound for longer probing cycles where state mixing transports larger

portions of the population into subradiant modes [29, 28].
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y

z

x

FIG. 2: A single realization of the simulation for 1000 atoms with indications for the long
axis z and the short axises x and y (in units of λ/2π). The atoms are placed randomly
within a normal distribution of the form (56) with r0 = 8/k0 and z0 = 80/k0.

The spectral response is also of interest as the atoms can show a collective shift [13, 59, 51]

in addition to a collective decay rate. To analyze this, the atoms are probed in steady state

and the scattered light is detected as a function of detuning. Similar to the decay rate, the

width of the spectrum has a dependence on the number of atoms and shows a slight shift

for the largest number (Figs. 6 and 7). Using the assumption that the atomic response will

be Lorentzian as in the single atom case, the scattered light is fit to

I(δ) =
A

1 + 4 (∆−∆N)
2 /Γ2

N

, (57)

where ΓN is the collective decay rate of the sample and ∆N is the collective shift. With

regards to the specific kernel used in (44), sin(kr) does not produce a shift as the exp(ikr)

kernel does. Retaining the full exp(ikr) term is necessary for describing the correct sample

response [27] and for an accurate comparison with experimental data.

The coupled-dipole model is very successful in simulating the many-body dipole-dipole

interactions and gives excellent agreement with experiment. However, it would be advan-

tageous to be able to predict the emergent collective properties a priori to the simulation

or to the experiment with some physical significance given to the sample’s decay rate and

spectral shift. In fact there is such a way and it involves preparing the sample in what is

known as a timed-Dicke state [30] where a single photon is absorbed within the sample but

it is not known which atom absorbed it. This will be the focus of the next section and will
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(a) N=1 atom
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(b) N=10 atoms
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(c) N=100 atoms
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(d) N=1000 atoms
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FIG. 3: Simulation of the coupled-dipole equation (44) for N=1, 10, 100, and 1000 atoms on
a normalized scale for 12 sample realizations. The sample has the same dimensions as Fig.
2 and is probed with a laser pulse in the z-direction on resonance. Each sample is probed
with a laser beam of equal intensity. The angle in the caption refers to the zenith angle θ.
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FIG. 4: Time dependence for different numbers of atoms for the same sample dimensions as
in Fig. 3 with the laser detuning value ∆ = −6Γ. (a) The light is collected in the forward
direction and the system shows a single exponential behavior. (b) The light is collected at 90◦

with respect to the direction of the laser beam and averaged over 48 sample configurations.
There is no longer a simple exponential behavior. This is due to more contribution from
subradiant modes.
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FIG. 5: Decay rate values extracted from the sample-emitted light in units of the single
atom decay rate Γ. After the laser beam is shut off the decay of the scattered light is fit to a
single exponential and it is found that the decay rate increases linearly with the number of
atoms converging to the single atom limit at low N. The red line is a linear fit to the data.
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FIG. 6: Spectral response as a function of the number of atoms. The frequency of the laser
beam is represented in units of the single atom decay rate. As the number increases the width
of the scattered light increases and also shows a shift in the peak response. Eventually, the
shift develops a distortion that is linked to propagation effects within the sample.
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FIG. 7: The shift extracted from fitting the spectral data to a Lorentzian spectral line shape
(57). The red line is a linear fit to the data.
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add more meaning to the idea of collective system properties.

2.5 SINGLE-PHOTON SUPERRADIANCE

If we assume there is a way to excite the sample of atoms such that, on average, each one

has equal probability to absorb a photon, but it is not known which, we could construct a

state of the system given by

|+〉
k0

=
1√
N

∑

j

eik0·rj |j〉 (58)

where each atom picks up a phase factor eik0·rj determined by the laser beam direction

of propagation and the atom’s location in space. This state is commonly referred to as a

timed-Dicke state [30] due to the order in which the atoms are excited as the phase in (58)

corresponds to a time tj. As opposed to solving for the time evolution of each indivdual atom

we could seek to find the time dependence of this state and modify the previous wavefunction

(33) to

|ψ(t)〉 = α(t) |g〉 |0〉+ β+(t) |+〉
k0

+
∑

k

γk(t) |g〉 |1k〉 , (59)

where β+(t) is the state amplitude of (58) and allows us to consider the time evolution of

the entire sample. The interaction Hamiltonian is still given (34) and applying the same

analysis as in the previous sections, the state evolution equation is found to be,

β̇+ = − i

2

√
NΩ0 + i (∆0 −∆N) β+ − 1

2
ΓNβ+, (60)

with

∆N =
Γ

2N
Im

[

∑

j,m 6=j

eikarjm

ikarjm
e−ik0·rjm

]

(61)

ΓN =
Γ

N
Re

[

∑

j,m

eikarjm

ikarjm
e−ik0·rjm

]

. (62)

The terms corresponding to j = m in (61) have been removed as before and renormalized

into ωa. The interpretation of (60) is as follows: the state of the system is governed by the

dynamics of the β+ amplitude by which interactions between the atoms gives rise to a real,

enhanced decay rate ΓN produced by real photon scattering from one atom to the next and

a virtual (imaginary) shift ∆N of the resonance line by virtual photon exchange between

atom pairs [51]. Taking N → ∞ such that we can assume the continuous limit, (62) takes

the form of ΓN = Γ + α(N − 1)Γ, where the factor α is given by,

α =

√
π

4σ
√

η2 − 1
exp

[

σ2

η2 − 1

]

{

erf

[

σ
√

η2 − 1

(

2η2 − 1
)

]

− erf

[

σ
√

η2 − 1

]}

. (63)
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This result is derived in appendix A. Here σ = k0r0 and η = z0/r0 which is commonly referred

to as the aspect ratio of the sample [55, 60]. Putting (61) into a closed form expression is

more difficult and is only possible in extreme sample limits [61]. For comparison between

simulation and experiment we will calculate it explicitly using the atom positions as randomly

distributed within a Gaussian shape given by (56). Because the construction of the timed-

Dicke state only assumes one photon within the sample at a time, the process is also referred

to as single-photon superradiance.

Below, the emergent collective properties that were observed in simulation through the

coupled-dipole equation are compared with the quantities obtained in (61) and (62). The

decay rates are in good agreement for the lower number of atoms and some discrepancy

begins to occur for the larger number. The effect is more associated with the optical depth

of the sample than it is the absolute number, and so the sample geometry chosen also plays a

role. The origin of the deviation stems from the fact that the sample is not quite represented

by a timed-Dicke state. This is because it is very optically thick and so picks up a more

complicated decay structure compared to the anticipated single-exponential behavior from

(62) [32]. The shift predicted from (61) is on the same order as the simulation but the

differences are more noticeable. One reason for this could be that in the simulation the

scattered fields are subject to propagation effects which come from the effective index of

refraction of the medium. This causes, as will shown in Chapter 4, red-detuned light to be

pulled more into the sample resulting in a greater chance of further scattering.

An important feature must be mentioned in regards to the accessible states in the timed-

Dicke manifold. By virtue of the symmetry of the wavefunction (58), the problem of the

time evolution of β+ is only a superradiant one; meaning there is no way to determine the

subradiant response of the system which corresponds to anti-symmetric states. This is where

the analysis falls short and why the coupled-dipole equation (44) must still be counted on

in helping to understand experimental results. The timed-Dicke state can be thought of

as an ideal case in which there is no mode-coupling between superradiant and subradiant

states such that what is observed is always superradiant. In actuality, a timed-Dicke state

can be initially excited but due to the presence of virtual photons the superradiant state is

degraded and some of the population is transfered into subradiant modes [62, 63]. However,

the current problem of interest is the forward emitted light which is almost entirely dominated

by superradiance and so the analysis in this section still provides a very good platform for

understanding and discussing the results.
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FIG. 8: Comparison of the timed-Dicke state and simulation of the coupled-dipole equation.
The match is good for lower number of atoms, but as the number increases there is a slight
deviation. This deviation is not explicitly related to the number of atoms but more to the
optical thickness of the sample.
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FIG. 9: Comparison of the shift of resonance for the timed-Dicke state approach and the
simulation. Both show a linear dependence and are on the same order. Slight differences
are potentially from propagation effects of the emitted fields in simulation which cannot be
accounted for in the timed-Dicke state.
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CHAPTER 3

TRAPPING ATOMS

The analysis of the previous chapter introduced some intriguing ideas regarding the many-

body physics of interacting atoms. In order to observe these effects experimentally, one must

be able to collect a large group of atoms and localize them in space. This task is not trivial

and requires extensive knowledge of atom-light interactions and the use of technical labora-

tory equipment. Fortunately, researchers in cold atom physics have worked hard to perfect

trapping techniques and the ability to create atomic samples has become quite standard.

Here, we will present the concepts of creating two specific atom traps; namely magneto-

optical traps (MOTs) and far-off-resonance traps (FORTs). MOTs involve the process of

laser cooling intertwined with the use of a magnetic field to create large, but dilute samples.

FORTs rely on optical dipole forces to trap atoms in samples that are not as large as MOTs,

but which can be many orders of magnitude more dense [11].

3.1 MAGNETO-OPTICAL TRAPS

Magneto-optical traps have become an essential part of cold atoms physics. What started

out 30 years ago [64] as a ground-breaking method for trapping atoms has now turned into

just another basic step in an experiment. MOT’s are probably the simplest way to create a

large collection of cold atoms and they typically serve as a reservoir for more advanced traps

such as FORTs, optical lattices, and magnetic traps. While the future may prove to use

more novel, general techniques for producing cold atoms [65], MOTs for the time being are

the standard. We discuss briefly the mechanisms that allow atoms to be confined in MOTs

and then describe how MOTs are made in practice.

3.1.1 THEORY BEHIND MAGNETO OPTICAL TRAPS

From its name, optical implies the presence of a light field that will induce a scattering

force to cool the atoms. This will require some background into a simple two-level atom

interacting with an external field and presentation of the optical Bloch equations. As it is

not only required that the atoms move slowly, but that they are also confined spatially, the

role of the magnetic field will also be explained.



24

Two-level Atom in an External Field

In order to understand the trapping mechanisms of a MOT, we must see how an atom

interacts with an external field. The Hamiltonian is again centered around the electric

dipole interaction and is given by,

Ĥ = ~ωaσ̂z − deg
(

σ̂ + σ̂+
)

Eext (64)

where σ̂z = |e〉 〈e| and determines the occupation of the excited state. The electric field

Eext will be taken as real. The free electromagnetic field (12) and its interaction with the

atom has been left out, but it will be inserted later by hand. The ability to explain the

forces on the atom requires us to understand the dynamics of the state populations which

are represented by the diagonal elements of the density matrix,

ρ̂ =

(

ρee ρeg

ρge ρgg

)

, (65)

where ρee and ρgg are the excited and ground state populations respectively. ρeg and ρge are

some times referred to as the optical coherences and will be shown later to correspond to the

polarization field of the atom. By use of Liouville’s equation, rate equations can be obtained

for the density matrix elements given by,

ρ̇ee = − i

~
(ρegdgeEext − ρgedegEext)− Γρee (66a)

ρ̇gg = − i

~
(ρgedegEext − ρegdgeEext) + Γρgg (66b)

ρ̇eg = − i

~
[~ωaρgg + (ρee − ρgg)degEext]−

Γ

2
ρeg (66c)

ρ̇ge = ρ̇∗eg (66d)

The effects of the vacuum field have been added by hand through insertion of the dephasing

rates Γ and Γ/2 [66]. To simplify the analysis we can assume the electric field is represented

by,

Eext =
1

2
A(r, t)eik·r−iωt + c.c (67)

where A(r, t) is a slowly varying function in r and t, and the electric field is monochromatic

with frequency ω. Additionally, we will also assume that the optical coherence ρeg can be

put into the same form,

ρeg = ρ̃eg(r, t)e
ik·r−iωt (68)
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where ρ̃eg is also a slowly varying function in r and t. Its dependence on r has been inserted

for generality. Substituting (67) and (68) into (66c) and dropping the rapidly oscillating

terms,

˙̃ρeg = − ideg
2~

A(ρee − ρgg)− (Γ/2− i∆)ρ̃eg, (69)

and ∆ = ω − ωa. We assign a value to the population difference W = ρee − ρgg and enforce

ρee+ρgg = 1 (meaning the system population is conserved) to get the optical Bloch equations,

Ẇ = −Γ(W + 1) + i(Ωρ̃∗ge − Ω∗ρ̃eg)

˙̃ρeg = − i

2
ΩW + (i∆− Γ/2)ρ̃eg (70)

where Ω = deg
~
A is the Rabi frequency. The form of (70) along with Maxwell’s equations are

helpful in determining the transient response of the atom. However, we are only concerned

with the steady state populations. Setting the time derivatives in (70) to zero we obtain,

W = − 1 + 4(∆
Γ
)2

1 + 4(∆
Γ
)2 + s0

ρ̃eg =
iΩ

Γ

1 + 2i∆
Γ

1 + 4(∆
Γ
)2 + s0

, (71)

where s0 = 2|Ω|2/Γ2 is the on-resonance saturation parameter and gives a measure of how

strongly the atom is being driven.

Laser-Cooling

When an atom is subjected to a beam of light it will experience a force in the direction of

the incident photon. After absorption, this photon is emitted in a random direction such

that on average the emission exerts zero force. Therefore, the net average force the atom

feels comes from the initial absorption which is written as [67, 68],

Fabs = ~kΓρee =
~ks0Γ/2

1 + 4(∆
Γ
)2 + s0

, (72)

using the expression for W and the conservation of population to solve for ρee. This has

the interpretation that there is a change in momentum for the atom given by ~k in a time

interval Γ−1 regulated by the effect of detuning and saturation.

An atom allowed to move in free space will actually see a detuning ∆± |ωD| due to the

Doppler effect where ωD = k · v and v is the velocity of the atom. If we limit ourselves to

movement in one dimension, we can see that in order to cause the atom to absorb a photon,
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regardless of the direction of its velocity, we will have to impose two counter-propagating

laser beams. The force then exerted is Ftotal = F+ + F−, where

F± =
±~ks0Γ/2

1 + 4(∆∓|ωD|
Γ

)2 + s0
(73)

If we only consider small velocities such that kv ≪ Γ, the total force reduces to

Ftotal =
8~k2∆s0v

Γ
[

1 + 4(∆
Γ
)2 + s0

] (74)

Choosing the sign of ∆ < 0 causes the force to oppose the velocity and dampens the motion.

By overlapping three orthogonal sets of beams and retro-reflecting them one can make what is

called an optical molasses [69], and realize a sample of cold atoms in free space. Unfortunately

this method cannot achieve absolute zero velocity as fluctuations in the absorption and

emission processes lead to a form of heating [68]. The Doppler cooling limit, TD = ~Γ
2kB

,

is reached when the rate of cooling due to (74) is equal to the heating from absorption

and emission fluctuations [67]. For alkali metal atoms this corresponds to a temperature

of a several hundred µK. This limit can be overcome with the help of polarization-gradient

cooling or Sisyphus cooling [70, 71]. Sisyphus cooling occurs as the counter propagating

beams form a standing wave whose electric field polarization changes as a function distance

to create an oscillatory, spatially-varying light shift in the ground state that depends on

the particular Zeeman sublevel. When atoms pass through regions where the light shift is

the largest they encounter a potential that is positive and there kinetic energy is reduced.

By absorbing a photon at these locations and subsequently decaying into the portion of the

standing wave that is at a lower potential, the atoms lose kinetic energy. This process cools

the atoms and allows for temperatures below the Doppler limit.

Adding a Magnetic Field

Due to the spatially random nature of light absorption and re-emission, an atom will even-

tually diffuse its way out of the cross hairs of the laser beams and be lost from the optical

molasses. This happens as the force (74) is only velocity dependent and cannot confine it

spatially; i.e. there is no restoring force. To do so, requires the use of a magnetic field

along with the internal Zeeman structure of the atom. If a magnetic field with the form

B = A0z is applied in the vicinity of the atom, it will feel a position-dependent Zeeman shift

ωz = µA0z/~. Here, µ is the effective magnetic moment of the transition. The force from
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(74) can be readjusted for this effect,

F± =
±~ks0γ/2

1 + 4(∆∓|ωD|±ωz

Γ
)2 + s0

(75)

Considering a basic Zeeman structure and magnetic field orientation as in Fig. 10, if an

atom moves in the +z direction it will experience a negative Zeeman shift of the MJ = −1

level such that it is brought into resonance with the red-detuned laser beam. Making the

laser beam σ− circularly polarized causes an increased chance of absorption and greater

scattering force. Likewise, atomic motion in the other direction induces the same effect but

with the MJ = +1 and the beam is σ+ polarized. Appropriate choices of ∆ and A0 give an

optimal trapping force and substantially increase the capture velocity compared to optical

molasses (5 m/s → 50 m/s). Indeed one can see that the resulting force is now restoring by

expanding the denominator so that,

Ftotal = −αv − βz (76)

where the force has just been written out for one dimension, α is given by the prefactor in

(74), and β = µA0

~k
α. Finally, we have a magneto-optical trap [64]. Using it, as many as 1010

atoms can be trapped in 2 cm diameter beams with average temperatures around 100µK.

3.1.2 REALIZING A MAGNETO-OPTICAL TRAP

For our experiments we trap 87Rb atoms on the 52S1/2 F = 2 → 52P3/2 F = 3 nearly closed

hyperfine transition (Fig. 11). Here F = I + J and is the total atomic angular momentum

where I = 3/2 and is the nuclear spin and J is total electron angular momentum written

as the subscript next to the orbital angular momentum numbers S and P . The trapping

beam derives from a laser diode (Thorlabs DL7140-201S) in a Littrow configuration (Fig.

12), where a small portion of the emitted light is sent back into the diode with a grating.

The laser diode is driven by a homemade current controller and temperature stabilized with

a thermo-electric cooler (Marlow Industries DT12-6-01L) working in a feedback loop with

a thermistor (Thorlabs TH10K) and homemade temperature cooler. The linewidth of the

laser in this setup is ∼ 500kHz.

The laser is frequency stabilized using Doppler-free saturated absorption spectroscopy [72]

in conjunction with feedback provided by a lock-in amplifier and homemade servo-circuit.

The lock-in amplifier is used to current modulate the diode and produce a derivative-like

signal where the laser can be locked to a zero-crossing. Once locked, the servo-circuit corrects

for temperature and current drifts via adjustment of a piezo connected to the diode gating.
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FIG. 10: Energy diagram for an atom with a J = 0 → J = 1 transition in the presence
of a magnetic field and a laser with frequency ωL. As the atom moves to the right, the
Zeeman shifts brings the laser frequency into resonance and causes there to be a near-
resonant scattering force from the σ− beam. Likewise, for an atom moving to the left the
MJ level is brought down and it is more likely to absorb the σ+ beam.

For our application, we lock to the F ′ = 2 and F ′ = 3 cross-over peak (Fig. 14). This

laser provides the main trapping beam for the MOT and is appropriately called the “MOT

laser.” After passing through the saturated absorption the beam is frequency shifted by a

double pass acousto-optic modulator (AOM) (Brimrose TEM-200-50-.780) and then injected

into a distributed feedback laser (EYP-DFB-0780). This laser is driven by a SRS LDC501

controller and serves as a stage of power amplification for the trapping beams (sometimes

called a “slave laser” as it follows the frequency of the master (MOT) laser). The beam is

then sent through a final AOM (Gooch and Housego R23080-1-LTD) for fast chopping and

over to the vacuum chamber table. A portion of the beam, which will be described later, is

sent to a secondary slave laser which is used to probe the atoms in experiment. This setup

is featured in Fig. 13.

As there is a small probability for population transfer to the F = 1 ground state by

inelastic optical scattering from the 2 − 2 transition, an additional laser must be used.

This laser is tuned from the F = 1 to the F ′ = 2 excited state and serves to repump the

atoms back into the F = 2 ground state; accordingly we call this laser the repumper. It

is frequency stabilized in the same manner as the MOT laser and its optical setup and
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FIG. 11: 87Rb energy level diagram (vertical axis not to scale). TheD2 transition corresponds
to the 52S1/2 → 52P3/2 electronic transition.
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Laser Diode

Grating

Mirror

m=1

m=0

FIG. 12: Schematic of the tunable diode laser in the Littrow configuration. The 1st order
beam (m=1) is injected back into the diode and the zeroth order beam (m=0) is sent out.
A mirror is added to the output to adjust for beam deflection as the grating is tilted (tuning
the laser).

-
+

To probe laser

To vacuum chamber

MOT - Master 

DFB - Slave

f=-225 MHz

f=-201 MHz

f=+67 MHz

FIG. 13: Optical setup for the MOT laser. Appendix B gives a listing of all optical elements
used throughout the dissertation.
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FIG. 14: Saturated absorption spectrum and derivative locking signal for the MOT laser.
The transitions for F = 2 to an excited F ′ state are labeled as F ′. The crossover peaks
are denoted as combinations of the excited state hyperfine energy levels. Here, we lock to
the 2′ − 3′ crossover transition. In reality, the peaks to left side of the trace are at a higher
frequency but here are represented as they are observed in the lab due to the particular
triggering used on the oscilloscope.
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FIG. 15: Optical setup for the repumper laser.

associated saturation absorption are pictured in Figs. 15 and 16, respectively.

Both the MOT and repumper beams are passed over to a second optics table, where

the beams are enlarged and a shutter is added to provide additional beam chopping (Fig.

17). The vacuum chamber is pumped with a diode ion pump (VacIon 20 l/s model 911-

5036) to a pressure around 10−9 Torr. A set of Helmholtz coils is positioned above and

below the chamber to provide the necessary magnetic field gradient (∼ 10 Gauss/cm) for

trapping as discussed in the MOT theory section. Typically, the MOT laser power is kept

around 24 mW (beam area ∼ 1 cm2) and the detuning at ∆ = −3Γ with respect to the

F = 2 to F ′ = 3 transition, which are both determined empirically from optimizing the

MOT and FORT atom number. The repumper power is ∼ 3.5 mW (beam area ∼ 1 cm2)

and is tuned to be resonant with the F = 1 to F ′ = 2 transition. Atoms are supplied to the

chamber by the use of getters (SAES Rb/NF/3.4/12 FT 10 + 10). The getters are dispensers

coated with rubidium chromate (Rb2CrO4) and a reducing agent (St 101). Running current

through the getter generates heat to which a reduction reaction occurs and liberates the

rubidium [73]. Once the atoms are trapped (loading time ∼ 3 − 6 seconds depending on

Rb getter current), the sample can be characterized with a charge-coupled device camera

(CCD) and photodetector by measuring fluorescence. This characterization, which will be

the focus of the next session, lays out how the MOT’s atom number, size, and temperature

are determined.
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FIG. 16: Saturated absorption spectrum for the repumper laser. The initial ground state is
F = 1 and we lock to the 1′ − 2′ crossover transition.

MOT Beam
Repumper Beam

FIG. 17: Optics setup from a top view of the vacuum chamber. The atom fluorescence is
represented in orange and is collected on a CCD for sample characterization. Not pictured
are the vertically-oriented trapping beams for sake of clarity.
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3.1.3 CHARACTERIZATION

Atom Number Determination

The number of atoms is measured by an optical pumping technique [74, 75] where atoms

initially in the F = 2 ground state are probed on the F = 2 → F ′ = 2 transition and, by

repeatedly scattering, will eventually end up in F = 1 ground state and will not be resonant

with the probing beam. By monitoring the transmission of the probe beam, the number of

atoms can be backed out if the associated branching ratios are known. The branching ratios

can be determined by calculating the decay rate for 87Rb taking into effect its multilevel

structure [76],

Γ =
w3

a

3πǫ0~c3
2J + 1

2J ′ + 1
|〈J ||d||J ′〉|2

∑

F

SFF ′ , (77)

where

SFF ′ = (2J ′ + 1)(2F + 1)

{

J F I

F ′ J ′ 1

}2

(78)

is the normalized strength factor or partial width of the F ′ → F decay. J and J ′ are

the ground and excited state electronic angular momentum values, respectively. I denotes

the nuclear spin and the electron dipole moment operator is taken to be approximatively

diagonal in its basis [77]. Each strength factor SFF ′ corresponds to the branching ratio for

the F ′ → F decay, and evaluation for 2 → 2 and 2 → 1 produces 1/2 for each. Using this

knowledge of the branching ratios, one can deduce that it takes on average 2 photons to

completely pump the atom to the F = 1 ground state.1

The optical pumping technique is performed by sending a laser beam resonant with the

F = 2 → F ′ = 2 transition through one of the vacuum chamber windows, as indicated in

Fig. 17, and collecting the transmitted light with a photodetector on the other side. One

data run is performed with no MOT present to calibrate the laser power to the photodetector

signal and to see what the unperturbed pulse signal is. With the MOT present, the laser

beam shows an initial absorption period which eventually approaches the steady state value

(Fig. 18). During the pumping cycle, the repumper beam is turned off and the magnetic

field is left on. The required pulse length varies depending on laser detuning and power, but

1The number of photons scattered can be estimated by considering the probability that the atom returns
to the initial ground state (F = 2) in subsequent events. With each return to the original ground state, the
atom will scatter an additional 1×( 12 )

n photons (n being the number of events). Adding up all contributions
gives the total number of photons scattered: Nphoton = 1+ 1

2 +( 12 )
2+ · · · = 2. The process essentially follows

from a Bernoulli distribution.
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for PL ≃ 20 µW (beam waist ∼ 4mm) on resonance the pumping time typically takes no

more than 500 µs. Each data run is accumulated for 16 cycles and the difference between

the no sample-present run and the sample-present run gives the total absorbed light. The

number atoms is then given by,

NA =
λ

2hc
χ

∫

dtV (t) (79)

where χ is the conversion from beam power to photodetector signal and V (t) is the pho-

todetector signal as a function of time. The factor of 1/2 accounts for the fact that each

atoms scatters on average 2 photons. The method is very robust for varying experimental

parameters and requires very little time to perform. It also more accurate and less cumber-

some compared to traditional atom number determination methods such as absorption and

fluorescence imaging [74].

FIG. 18: (a) Optical pumping transmission with the MOT present (solid line) and without
the MOT present (dotted line). (b) Difference between the two signals corresponding to
4.01(3)× 108 atoms.
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MOT Temperature

The sample of atoms can be well approximated as having a Maxwell-Boltzmann velocity

distribution with a spatial profile given by,

ρ(x, y, z) = ρ0e
−x2/2r2x(t)e−y2/2ry(t)2e−z2/2rz(t)2 (80)

where r2i (t) = r2i (0) + v2i t
2 and vi is the root-mean squared velocity of the distribution for a

particular direction. The velocity is related to the temperature by v2i =
kBT

m
. Therefore, by

observing the spatial profile of the MOT as a function of time the temperature of the atoms

can be calculated.

To observe the average motion of the atoms, the trapping beams are turned off for a period

of time allowing the sample to expand and then are briefly turned back on to illuminate it.

The fluorescence is captured with a CCD camera (PIXIS 1024BR, 13 µm2 resolution) in a

optics train configuration as in Fig. 17. The flash time is chosen as 100 µs to achieve a

strong signal without introducing significant image distortion. This process is performed for

several different expansion times until enough points are obtained to perform a statistically

significant fit to the image radii. The slope of the fit then corresponds to the temperature

of the sample. Figure 19 shows an expansion image of the MOT along with a fit to r2i (t) vs.

t2. The MOT temperature is typically around 250µK, but this can be significantly reduced

by sending it through a compression phase. The compression phase is discussed below for

the loading techniques of the FORT. Essentially it involves reducing the radiation pressure

within the MOT such that it decreases in size and scatters fewer photons on resonance to

give a lower temperature. Getting fluorescence images with the CCD also allows us to make a

quick assessment of the atom number if we know the proper atom-to-count ratio between the

image signal and atom number determined from methods described in the previous section.

3.2 FAR-OFF-RESONANCE TRAPS

While the operation of a magneto-optical trap relies on radiation pressure from scattering

photons, an optical dipole trap operates by spatially confining the atoms in a potential well

via a dipole force. This potential well is created by light-shifts induced on the atom’s energy

levels in the ground state by the interaction with a far-detuned laser beam. Among important

parameters for the trap are the wavelength of the laser beam used, the focused spot size, and

the beam power. Perhaps the most critical of these specifications is the wavelength used as

this will determine how the energy levels shift. Choice of a particular wavelength depends
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FIG. 19: Temperature measurements for the uncompressed and compressed MOT. Gaussian
radii are extracted for the both horizontal and vertical directions on the CCD, squared, and
plotted versus time squared. Averaging the slope for both directions gives temperatures of
257 µK and 53 µK for the uncompressed and compressed MOT, respectively. The inset
shows a typical CCD image of the MOT.

on the application, but most generally red-detuned lasers are used as they can trap atoms in

a simple single pass geometry. This happens as atoms are pulled into more intense regions

of the trapping beam. FORTs [78] have been employed almost as long as MOTs but offer

a few advantages over their radiation pressure counterparts. These include the ability to

create denser atomic gases (up to 1014 atoms/cm3 compared to 1010 atoms/cm3), probe the

atoms with no magnetic field present, and evaporatively cool in a pathway to Beose-Einstein

condensation [79].

Here we will discuss the theory behind optical dipole trapping as well the methods used

to estimate the frequency dependent light shifts. This will be followed by a description of

the experimental techniques used to create a FORT and how the sample is characterized.
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3.2.1 THEORY OF OPTICAL DIPOLE TRAPS

The potential responsible for optical dipole forces is given by [80],

Udip = −1

2
〈d · E〉 = − 1

2ǫ0c
Re(α)I(r), (81)

where I(r) is the intensity of the laser field and α is the polarizabilty. For a two-level atom

in a field well below saturation, the polarizability is (see Chapter 4)

α = −2|deg|2
~Γ

2∆
Γ
− i

1 + 4(∆
Γ
)2

(82)

where the imaginary portion corresponds to absorptive properties of the atom and the real

part to dispersive properties. Dipole traps typically work at frequencies very far from the

atomic resonance such that the dipole potential can be written as2,

Udip ≃
πc2

w3
a

Γ

∆
I(r), (83)

where the definition for Γ has been used to rewrite the dipole matrix element deg. For ∆ < 0

the potential is attractive and the energy is minimized in regions of higher intensity (see

Fig. 20). It can be seen that the dipole force will fall off as 1/∆ in contrast to the 1/∆2

dependence for the scattering force. It is this property that allows dipole traps to be effective,

as the atoms can scatter very few photons yet still be spatially confined.

For a more realistic atom with a multilevel structure the polarizability is written as [81],

Re(α) = α0 + α2Q̂ (84)

where α0 and α2 are the scalar and tensor polarizabilities, respectively. Q̂ is a tensor operator

that couples the total angular momentum J to the electric field direction [81, 1],

Q̂ =
3(u · J)2 − J(J + 1)

J(2J − 1)
, (85)

u being the polarization of the electric field. The light-shift is then calculated by diago-

nalizing the combination of the hyperfine interaction and the dipole potential (81) in the

hyperfine basis [81] with matrix elements given by,

〈F ′,m′
F |Vhfs −

I(r)

2ǫ0c

(

α0 + α2Q̂
)

|F,mF 〉 . (86)

2The expression (83) has been written down assuming the rotating-wave approximation, but in some
instances the frequency of the laser will be so far detuned that ω−ωa and ω+ωa will be on the same order.
In this case, 1/∆ should be replaced by 1/∆eff where 1

∆eff
= 1

ω−ωa
+ 1

ω+ωa
[1, 80].
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FIG. 20: Light shift created by the dipole potential (83) for the ground state and excited
state for a two-level atom; ωa denotes the transition frequency and ωL the frequency of the
dipole trapping beam. The shift has a z-dependence as determined by the laser intensity
(94).

The matrix elements of the hyperfine interaction are [76]

〈F ′,m′
F |Vhfs |F,mF 〉 =

1

2
AhfsK +Bhfs

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
, (87)

where

K = F (F + 1)− I(I + 1)− J(J + 1) (88)

and Ahfs and Bhfs are the magnetic dipole and electric quadrapole hyperfine structure

constants, respectively, and I is the total nuclear angular momentum equal to 3/2 for 87Rb.

Taking the trapping beam to be linearly polarized, the matrix elements of Q̂ are,

〈F ′,m′
F | Q̂ |F,mF 〉 =

[

(J + 1)(2J + 1)(2J + 3)

J(2J − 1)

]1/2

(−1)I+J+F−F ′−mF×

[(2F + 1)(2F ′ + 1)]
1/2

(

F 2 F ′

mF 0 −mF

){

F 2 F ′

J I J

}

,

(89)

which is diagonal in mF .

Estimates for the values of the polarizabilities can be taken from works of Safranova et

al [82, 83, 84, 85, 86]. Here we will describe the general approach and present character-

istic results. The polarizability for a particular nL-state (n being the principal quantum



40

number and L the angular momentum number) is approximately given by the sum of the

polarizability of the ionic core of the atom and the valence portion,

αnL ≃ αcore + αnL
val.. (90)

For rubidium, αcore = 9.1(5) a30 for the scalar polarizability and αcore = 0 for the tensor.

Here, a0 is the Bohr radius. The valence contribution to the scalar polarizability is,

αv
0(ω) =

2

3(2Jv + 1)

∑

k

∣

∣

∣

〈

k||d̂||v
〉∣

∣

∣

2

(Ek − Ev)

(Ek − Ev)2 − ω2
, (91)

where v = nL for a particular nL-state, k is an intermediate state,
〈

k||d̂||v
〉

is the reduced

matrix element between the state of interest and the intermediate state, and ω corresponds

to the frequency of the trapping laser. The valence contribution to the tensor polarizability

is,

αv
2(ω) = −4C

∑

k

(−1)Jv+Jk+1

{

Jv 1 Jk

1 Jv 2

}

∣

∣

∣

〈

k||d̂||v
〉∣

∣

∣

2

(Ek − Ev)

(Ek − Ev)2 − ω2
(92)

where C is

C =

[

5Jv(2Jv − 1)

6(Jv + 1)(2Jv + 1)(2Jv + 3)

] 1
2

. (93)

We take the theoretical values for the reduced dipole matrix elements as quoted in [82, 83, 85]

to compute (91) and (92) (see Table 1). Values for the polarizabilites and hyperfine constants

for a trapping beam of λ = 1064 nm are tabulated in Table 2.

Theoretical work has shown that the ground state polarizability is 686.9(9)a30 [84] and

recent experimental studies [87] have measured the excited state polarizabilies directly and

found that the scalar and tensor values are −1149(22)a30 and 563(22)a30, respectively. This

gives good confidence in the estimated values of Table 2.

The eigenvalues for the combination of the hyperfine and dipole interactions can now

be calculated. In Fig. 21(a) it is shown the effect the dipole trapping beam has on the

ground state. Because there is no quadrupole interaction for the symmetric S orbital, the

ground state only experiences a light shift due to the scalar polarizability. This shifts all

hyperfine and Zeeman levels equally. For the excited state, the tensor operator Q̂ mixes the

F -states which gives rise to differential shifts in both the hyperfine and Zeeman levels. The

Zeeman levels remain degenerate in |mF | due to the linear polarization of the laser beam.

The z-dependence of the light shift comes from the functional form of the intensity, I(r),
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TABLE 1: The reduced dipole matrix elements (RDME) used for calculation of the polar-
izabilites for the 52S1/2 and 52P3/2 levels. The wavelengths of the transitions are given for
their measured values in air.

52S1/2[82, 83] 52P3/2 [85]
λair(nm) RDME (ea0) λair(nm) RDME (ea0)
780.03 5.977 1528.95 10.899
794.76 4.231 1366.5 6.047
420.18 0.541 780.027 5.977
421.56 0.333 1528.84 3.633
358.71 0.202 775.76 1.983
359.16 0.115 629.92 1.512
334.87 0.111 740.82 1.35
335.09 0.059 572.44 1.104

543 0.845
615.96 0.708
526 0.672
775.94 0.665
629.83 0.506
565.37 0.466
572.49 0.37
539 0.341
543 0.283
526 0.225

TABLE 2: Polarizabilities and hyperfine constants for the levels of interest. The polarizabil-
ities can be converted to standard units by multiplication by 4πǫ0 [1, 2].

Energy Level Hyperfine Constants [76] Polarizabilities (a30)
5S1/2 Ahfs = h · 3.417 GHz α0 = 688
5P3/2 Ahfs = h · 407 MHz α0 = −1129

Bhfs = h · 85 MHz α2 = 554
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which is taken as a Gaussian-beam [88],

I(r) = I(ρ, z) = I0

(

w0

w(z)

)2

exp
(

−2ρ2/w2(z)
)

, (94)

where I0 =
2P
πw2

0
, P is the power of the laser, w0 is the radius of the beam at the focal point,

w(z) = w0

√

1 + (z/zR)2, zR =
πw2

0

λ
known as the Rayleigh length, and λ is the wavelength

of the beam.

For practical purposes it is sufficient to know the shift in the ground state as the atoms will

be trapped there and experimental procedures can be adjusted to account for the differential

excited state shifts to optimize trap loading. However, for work that is concerned with

precision measurements and time-frequency standards [89, 41], it is pertinent to understand

in detail the light shifts. Normally, the interest is in finding ways to shift the ground and

excited states the same amount and in the same direction such that there is zero relative

light shift for an atom in the trap. This can be done with magic wavelength dipole traps

[90, 91], where a single trapping beam shifts the excited and ground state levels by the same

amount, or by a combination trapping wavelengths [92].

With some background into the physics of how atoms are retained in optical dipole

traps, we will now move on to discussing how the traps are realized. The procedure is a

more involved than that used to make a MOT and requires fine control over experimental

conditions, but the payoff will be in the production of a denser atomic gas and a more

compatible sample geometry for experiments on superradiance.

3.2.2 EXPERIMENTAL SETUP FOR THE FORT

The FORT is loaded by tightly focusing a 1064 nm laser beam (IPG, YLR-30-1064-LP

PL1211875) through the middle of the MOT (Fig. 22). As there is very little scattering

by the atoms from the FORT beam, careful alignment procedures must be used that rely

on overlapping the 1064 nm laser with a resonant 780 nm beam and looking for radiation

pressure effects on the MOT with a video camera. The switching of the FORT beam is

controlled with a high power AOM (Gooch & Housego, I-M080-1.5C10G-4-AM3) with a

rise-time ∼ 50 ns. The AOM is powered by a Q-switch driver (Gooch & Housego, QC080-

15DC-M05-24V) that allows for external attenuation and modulation control.

Once aligned, the MOT is compressed and cooled in the presence of the FORT beam for

a period of 70 ms. This is done by reducing the MOT beam detuning from −3Γ to ∼ −10Γ

and reducing the repumper power by a factor of ∼100. The compression increases the density

of atoms around the most intense portions of the FORT and hence increases the chance that
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FIG. 21: Shifts of the 87Rb energy levels for (a) the ground state for F = 2, (b) the excited
state for F ′ = 3, and (c) all excited state hyperfine levels. The beam parameters are P = 2.12
W and w0 = 18 µm. For (a) and (b) the shifts are compared relative to the unpertubed
energy levels. For (c) the zero corresponds to the relative 52P3/2 level location, in the absence
of hyperfine structure.
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Beam Dump

FIG. 22: Optics setup for the dipole trap laser. The mirror on the exit window is dichroic and
reflects 1064 nm light, but passes 780 nm. This is needed in the experiments, as discussed
later.
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they will become trapped.3 During the process the magnetic field is left on and MOT power

is left constant. Some protocols [93, 94] find that the MOT power must be decreased to

reduce two-body collisions, but for our trap it was not found necessary. Towards the end of

the loading process, the repumper AOM is shut off 4 ms prior to the MOT AOM so as to

ensure that most of the atoms get optically pumped to the F=1 ground state. Atoms in the

F=1 ground state have a smaller collisional cross section which increases the lifetime of the

FORT [80]. Once both AOMs are shut off, the mechanical shutters for each beam are closed

to extinguish any light leakage. A diagram for the timing sequence is pictured in Fig. 23.

MOT Shutter Opened

Closed

Fiber Laser On

Off

Repumper AOM On

Off

Repumper Intensity 3.5 mW/cm2

30 µW/cm2

MOT AOM On

Off

MOT Detuning -3Γ
-10Γ

Magnetic Field On

Off

Repumper Shutter Opened

Closed

70 ms

4 ms

FIG. 23: Timing diagram for FORT loading.

After the MOT and repumper beams are shut off, the atoms are held for typically 200 ms

to allow for thermalization. A plot for the number of atoms as a function of time is pictured

in Fig. 24 with a double exponential fit to the decay. The initial decay gives approximately

the thermalization time and the second decay corresponds to the lifetime of the trap which

3The atoms, without any other dissipating mechanism, will move through the potential well without
becoming trapped as energy is conserved in the process. Dissipation comes about by spontaneous emission
which carries away excess energy from the atom’s kinetic energy leaving it trapped within the potential well.
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FIG. 24: Hold time of the FORT with a fit to a double exponential. The initial decay gives
a time of ∼ 90 ms and the long time decay is ∼ 830 ms. This sample was created with a
beam focus of 13 µm and beam power of 2 W.

is determined by background gas collisions. At a vacuum chamber pressure of 10−9, we get

a lifetime of ∼ 1 s. The atom number is inferred by taking CCD images of the FORT and

converting the pixel counts to atom number using calibration methods discussed in Section

3.1.3.

3.2.3 CHARACTERIZATION

FORT Temperature

The FORT temperature is obtained in much the same way as it is for the MOT: the atoms

are released from the trap for a period free expansion and then a CCD image is taken by

quickly flashing the MOT and repumper beams for a few different expansion times. While

the temperature of the MOT is limited by photon recoil from near resonant scattering,

the temperature of the FORT is limited by the trap depth. After the initial period of

thermalization, the sample will have a temperature which is a certain percentage of the

trap depth. In some cases [94], this can be as low as 10% but it is highly dependent on the
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wavelength of the trapping beam and the trap geometry [93, 92, 80]. As a demonstration, Fig.

25 compares the atom temperature for two different well depths. Because the temperature

of the atoms is determined solely by the trapping potential, techniques such as evaporative

cooling [95, 96] can be used to achieve quantum degeneracy [79, 97] which cannot be done

in a MOT.

FIG. 25: Temperature of the FORT for two different well depths. For Ttrap = 1.16 mK,
the temperature is 164(12) µK and for Ttrap = 810 µK the temperature is 59(3) µK. These
temperatures are for the pulsed-technique to be discussed in the experimental arrangement
chapter.

FORT Size

Knowing the size of the FORT is important when a high density sample is needed. The

radii determined from sample temperature and time dependent extrapolation is not accurate

enough to make confident estimates on the unexpanded sample shape. A better method is

given by a process called parametric resonance. For an atom moving within a one-dimensional

harmonic trap potential, the dynamics are governed by

ẍ+ ω2
0x = 0, (95)
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where x is the position of the atom and ω0 is the natural frequency of the trap. If the trap

depth is modulated sinusoidally with frequency ω, then (95) can adjusted to

ẍ+ ω2
0 (1 + h cosωt) x = 0, (96)

where h is known as the modulation depth. This specific form is known asMathieu’s Equation

[98, 99] and for frequencies ω = 2ω0

n
(n = 1, 2, ...) the system experiences a resonance with

decreasing amplitude in n. In the FORT, the potential is shaped by the beam profile,

V (r, z) = −V0
1

1 + (z/zR)2
e−2r2/w2

0 . (97)

At low temperatures atoms will mostly occupy the very center of the trap such that the

expression for the potential can be approximated by

V (r, z) ≃ −V0 +
1

2
mω2

r +
1

2
mω2

z . (98)

Here, ωr =
√

4V0

mw2
0
and ωz =

√

2V0

mz2
R

, which correspond to the resonant frequencies in the

radial and longitudinal directions, respectively. In thermal equilibrium the atoms will be

represented approximately by a Maxwell-Boltzmann distribution with density profile given

by

ρ(r, z) = ρ0 exp

(

−V (r, z)

kBT

)

. (99)

Inserting expression (98) into (99) and assuming the form

ρ(r, z) = ρ0 exp
(

−r2/2r20 − z2/2z20
)

(100)

the sample radii are

r20 =
kBT

mw2
r

and z20 =
kBT

mw2
z

. (101)

Hence, by knowing the power of the trapping beam and the ground state light shift, a soft

modulation will reveal the trap frequencies. Then along with the temperature, the sample

shape near the potential minimum can be calculated.

To modulate the trapping beam, a small amplitude sine wave (∼ 5% of the trap depth)

is produced by a function generator (BK Precision, 4084) and added into the analog control

line for the AOM driver via a homemade bias tee. The atoms are trapped in the FORT,

allowed to thermalize, and then modulated for period of 200 ms at a particular frequency.

After the modulation, a fluorescence image is taken and the process is repeated for a different

frequency. The number of atoms will be at a minimum once the resonant frequency 2f0 has

been reached (Fig. 26).
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FIG. 26: Parametric resonance response of the FORT near the radial resonance frequency.
For a FORT laser power of P = 2 W, this gives r0 = 2.3 µm and z0 = 123 µm.
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CHAPTER 4

MIPCROSCOPIC LENSING BY A DENSE, COLD ATOMIC

SAMPLE

Before interest was taken into the collective time-dependent emission properties of cold atom

samples, we focused primarily on the density dependent shifts of the resonance line. To study

these effects we created high density atomic samples within the FORT and probed the system

in steady state through the most dense portion (Fig. 27). What was observed was a shift

of several MHz to the blue of resonance (Fig. 28). Varying the density revealed a linear

dependence with respect to the shift as was predicted by theory [12]. However, as further

diagnostics were performed it was noticed that the line shift changed depending on where

the probe focus was located. As in Fig. 28, the shift moves to the red side of resonance for

a different probe focus.

Checking the shape of the transmitted beam on the CCD, it was noticed that the beam

profile changed as a function of detuning. As pictured in Fig. 29, for one side of detuning

the beam was larger and for the other side of detuning the beam was smaller. This effect is

consistent with the dispersive response of the atoms and is analogous to the atoms collectively

behaving as a lens. With respect to the transmission curves of Fig. 28, the lensing by the

atoms causes the beam to be apertured differently, as a function of detuning, by the collection

optics.

In this chapter we will present results that examine the microscopic lensing properties

of a high density, cold atomic gas. This involves performing z-scan measurements on the

atoms [100] where a tightly focused beam is propagated through the profile of the sample.

Direction of incidence

FORT

Transmitted beam of light

FIG. 27: Earlier experiment where a tightly focused beam is passed through the FORT and
the transmitted light is detected on the other side.
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FIG. 28: Normalized probe transmission through the FORT. Position 1 shows an absorption
profile shifted to the blue and position 2 shows an absorption profile shifted to the red.
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FIG. 29: Fitted radii of the observed probe profile normalized to the probe profile with no
sample present. The long axis of the FORT is what is observed in the horizontal direction
on the CCD. Likewise, the short axis corresponds to the vertical orientation of the FORT.
Because the short axis has a smaller radius of curvature the lensing is more exaggerated.
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The results are interpreted using numerical simulations and by modeling the sample as a

thin lens with a spherical ball-lens type focal length.

4.1 EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 30(a). There, a linearly polarized probe beam is

focused to a 5 µm, 1/e2 radius with a peak intensity of 300 µW/cm2. The beam bisects

the sample of 87Rb atoms prepared in a FORT. The FORT in this case has Gaussian radii

of rx = 255 µm and ry = 3.5 µm. Atoms in the trap, initially prepared in the 52S1/2

F=1 ground state, have a temperature ∼ 100 µK and number around 9×105, giving a peak

density of 1.8×1013 atoms/cm3. The experimental duty cycle consists of holding the atoms

until they thermalize (∼200 ms), upon which they are pumped to the higher energy F=2

ground level and probed about the resonant 52S1/2 F=2 → 52P3/2 F′=3 D2-line transition.

The probe light is focused to controllable locations before and after the FORT by translating

the focusing lens, and pulsed for a duration of 10 µs. This interval is chosen to maximize the

signal-to-noise without introducing any significant optical pumping. The transmitted light is

then spatially filtered with a 0.5 cm diameter aperture and the resulting spatial distribution

of intensity captured on a charge-coupled device camera (CCD). The aperture serves as a

way to measure intensity and phase fluctuations by a saturable Kerr media, as has been

done in other z-scan technique experiments [101, 102]. For each detuning the probe signal

is accumulated over 50 runs to acquire good signal-to-noise.

Shown in Fig. 31 is a set of transmission spectra for each focal position of the probe beam.

The curves have been normalized by the intensity of the unattenuated probe beam intensity

(i.e. the probe transmission with no atomic sample present) and, for sake of demonstration,

have been given a constant vertical-offset to show the signal progression as a function of z. It

can be seen that there is a distinct flip in the frequency response of the sample depending on

where the beam is focused. This can be attributed to focusing and defocusing effects similar

to those described by Labeyrie et al. [103], except that in the present case the saturation

parameter is low (s0 = 0.2). With observations as in Fig. 31, it easy to perceive why

absorption measurements of small, high density samples can be particularly cumbersome to

interpret, especially when the numerical aperture of the imaging apparatus is small itself.

Measurements at high-field intensities (s0 ∼ 500) were also performed; these yielded

curves similar to the ones shown in Fig. 31. The detailed shape of these curves, however,

were dependent on the intensity. We attribute this to the fact that, as the F = 2 → F ′ = 3

transition is strongly saturated, off resonance scattering on the nearby F = 2 → F ′ = 1, 2
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FIG. 30: (a) The experimental configuration used. A near-resonant light beam is incident on
a sample 87Rb atoms prepared in a FORT. The transmitted beam is apertured and collected
on a CCD camera. Contrary to traditional z-scan measurements, the focal spot of the beam
is moved rather than the sample. (b) An enhanced view of the incident probe on the sample,
showing the coordinate system used.

FIG. 31: The frequency response for several different focal locations with respect to the
atomic sample. Curves are sequenced in 100 µm steps extending from z = −500 µm to
z = +500 µm. To give a sense of contrast, each spectrum has been given a fixed vertical
offset from the previous one.
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transitions contribute significantly to the spectral response. Modeling these effects is com-

plicated, and would require calculation not only of the relative strength of these transitions,

but knowledge of the scaled cross-sections and line widths, which are generally known to be

density dependent [104, 11]. These have not all been determined by measurement or calcu-

lation. With this concern, and to maintain the cleanest interpretation of our measurements,

we limited our focus to the low-field regime.

4.2 BEAM PROPOGATION SIMULATIONS

As a way to model the z-scan measurements, simulations were performed that closely re-

sembled the experimental conditions. To do this requires a continuation of the discussion

started in Section 3.1.1 about the interaction of an atom with an external field. In classical

mean-field theory, how a material reacts to an applied electric field can be described by its

susceptibility χ [4, 66, 105] with the relation

P =
1

2
peik·r−iωt + c.c. = ǫ0χ

1

2
Aeik·r−iωt + c.c. (102)

where A is the complex electric field amplitude, c.c. stands for complex conjugate, P is

the polarization of the dielectric medium and p is a slowly varying function that allows the

polarization to be written in the same form as the electric field. It is also still assumed that

the orientation of the electric dipole is along the direction of the electric field polarization

vector. Alternatively, the polarization is defined as the average dipole moment per unit

volume,

P = ρa 〈d〉 (103)

where ρa is the local atomic density assumed to be constant for now. Using the definition of

the expectation value of an operator in conjunction with the density operator leads to

〈d〉 = tr (ρ̂d) = ρegdge + ρgedeg. (104)

The expressions from Section 3.1.1 for the matrix elements of the density matrix and the

expression for the electric field, gives

P = −2ρa|deg|2
~Γ

2∆
Γ
− i

1 + 4
(

∆
Γ

)2
+ s0

A

2
eik·r−iωt + c.c. (105)

Comparing (105) with (102), it can be seen that the susceptibility takes the form

χ = −2ρa|deg|2
~ǫ0Γ

2∆
Γ
− i

1 + 4
(

∆
Γ

)2
+ s0

. (106)
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This is often called the non-linear susceptibility [66] as it has a dependence on the field

intensity through the variable s0. The single atom response which is encompassed in the

polarizabilty, mentioned earlier in Section 3.2.1, is related to the susceptibility by ǫ0χ = ρaα

[4]. The factor 2|deg |2
~ǫ0Γ

is proportional to the total light scattering cross section of the atom

and we generalize it for multilevel structure by 2|deg |2
~ǫ0Γ

→ σ0/ka, where

σ0 =
2F ′ + 1

2F + 1

λ2

2π
. (107)

Therefore we write the complex susceptibility as

χ = −σ0ρa
ka

2∆
Γ
− i

1 + 4
(

∆
Γ

)2
+ s0

. (108)

The expression for χ shows that the two-level system is saturable as relation to the index of

refraction n = nr + ini ≃ 1 + 1
2
χ gives an absorption coefficient that falls off with increasing

electric field intensity [42, 66]

κ = kani =
σ0ρa

1 + 4
(

∆
Γ

)2
+ s0

. (109)

We have a basic, but solid description of how the medium responds to an applied electric

field and what it left to do is explain how the electric field varies within the medium. Using

Maxwell’s equations, the wave equation for the electric field is
(

∇2 − 1

c2
∂2

∂t2

)

E = µ0
∂2P

∂t2
. (110)

The electric field and electric polarization both have positive and negative frequency com-

ponents with amplitudes that vary slowly in time and space (equations (67) and (102)).

While these assumptions were made somewhat out of convenience for calculation purposes,

in reality they are a good approximation as to what happens to the beam as it propagates.

If the laser beam is not focused too tightly, then it can be expected to vary minimally in the

direction of propagation [66] and, as in experiment, the system will be probed in steady state

such that the amplitude change in time will be small when compared to the laser frequency

ω. With these two ideas in mind, the slowly-varying envelope approximation can be applied

to (110) resulting in
∂A

∂z
=

i

2k
∇2

TA+
i

2kn2
0

χA, (111)

sometimes called the non-linear Schrodinger equation (NLSE) [66, 106]. Here, ∇2
T is the

transverse (x-y) Laplacian and n0 is the linear index of refraction,

n0 = 1− σ0ρa
ka

∆
Γ

1 + 4
(

∆
Γ

)2 . (112)
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For densities not too high, n0 ∼ 1.

To solve (111) exactly is impossible due to the non-linear dependence on the field intensity

through the susceptibility. However, numerical techniques do exist that can handle (111).

One method in particular is quite straightforward and it is known as the beam propagation

method or split-step method [106]. In the split-step method, the beam is propagated forward

in discrete steps through free space and non-linear corrections, due to the presence of the

sample, are made between each one. This method is limited to calculating the beam profile

in the forward direction, but it serves well for its intended purposes.

The algorithm can be implemented as follows: The NLSE is grouped into linear and

non-linear terms,
∂A

∂z
=
{

L̂+ N̂
}

A, (113)

where L̂ ≡ i
2k
∇2

T and N̂ ≡ i
2k
χ. Integrating (113) formally between z and δz gives,

A(z + δz) = exp

{

δzL̂+

∫ z+δz

z

N̂dz

}

A(z). (114)

The trapezoidal rule can be used to estimate the integral containing the non-linear term,

∫ z+δz

z

N̂ ≃ z + δz

2

[

N̂(z + δz) + N̂(z)
]

. (115)

The exponential expression in (114) can be approximated by [106]

exp

{

δzL̂+

∫

N̂dz

}

≃ exp

(

δz

2
L̂

)

exp

(∫

N̂dz

)

exp

(

δz

2
L̂

)

+O
(

δz3
)

. (116)

To apply the linear operator directly to A(z) is difficult and can be handled better through

frequency space. Numerically this is done by applying Fourier and inverse Fourier transforms

so that

A(z + δz) =

FFT−1
{

e−iδz2π2(q2x+q2y)FFT
[

e
∫
NdzFFT−1

(

e−iδz2π2(q2x+q2y)FFT {A(z)}
)]}

. (117)

Here, FFT stands for fast Fourier transform [107]. As the susceptibility will have a spatial

dependence through the atomic density ρa and s0, A(z+δz) will have to be solved iteratively.

This is done by making the approximation that A(z+δz) ≃ A(z) in (115) for the first iteration

to solve for A(z + δz) in (117). In the next iteration, A(z + δz) in (115) is updated to the

most recent value and a better estimate is obtained for the electric field amplitude. This

process converges quickly and it is found that only two iterations are needed to calculate
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(a) z0 = −200 µm (b) z0 = +200 µm

FIG. 32: Probe focus for (a) z0 = −200 µm and (b) z0 = +200 µm. The horizontal axis
is the direction of propagation and the vertical axis is aligned along the short axis of the
FORT. The intended probe focus is denoted by the vertical purple line and the location of
the FORT is indicated by the green circle.

the electric field for z + δz. To start the initial step, the input electric field is taken as a

Gaussian beam [88],

A(x, y, z) = A0
w0

wz

exp

{

−x
2 + y2

w2(z)
+ ik

x2 + y2

R(z)
− iξ(z)

}

, (118)

where w(z) = w0

√

1 +
(

z−z0
zR

)2

is the z-dependent beam waist, R(z) = (z−z0)
[

1 +
(

zR
z−z0

)2
]

is the radius of curvature, and ξ(z) = tan−1
[

z−z0
zR

]

is the Gouy phase. Here, z0 is the

focal location. The beam that is transmitted is one whose amplitude is attenuated by the

imaginary part of the χ and whose phase is adjusted by the real part.

Results of the simulation are shown in Figs. 32 (a) and (b). The beam is focused to the

same spot size as estimated in experiment and is incident on the broad side of the atomic

sample. For red detuned light, the sample acts as a positive focal length lens causing the

beam to focus. For blue detuned light, it acts as a negative focal length lens and spreads

the beam out. Comparison between experiment and simulation can be made by taking the

center portion of the simulated beam in the far-field (∼ 10zR) and plotting it along side the
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FIG. 33: Comparison between experiment and simulation. Blue curve and blue circles
represent z0 = −200 µm. Red curve and red triangles represent z0 = +200 µm.

experimental probe transmission through the aperture. We get very good agreement between

experiment and simulation, which suggests that the main cause for the distorted line shapes

is due to refraction of the laser beam. It should be noted that our prior experiments [104],

although plagued by the lensing effects, consistently showed a broadened spectrum and

decreased absorption. Both of these effects could be explained by superradiant scattering

in the forward direction, but further investigation was not performed on this experimental

setup. The width and cross section determined from that data were 13.2 MHz and 0.04

µm2 (compared to 0.14 µm2), respectively, for the density of 2× 1013 atoms/cm3 probed in

the z-scan experiment. Those values were used in the simulation and were found to help

better match it to experiment. Other possible discrepancies could stem from how well the

probe focal location is known experimentally and computational limitations in being able to

propagate the beam well into the far-field regime.

4.3 SIMPLE LENS MODEL

As mentioned before, the results can be described as a lensing effect [108], but on a much

smaller length-scale than has been previously studied. This scale can be estimated by con-

sidering beam deflection along the smaller radius of the sample and approximating it as a
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ball lens with a focal length given by

f =
n0r0

2(n0 − 1)
, (119)

where r0 is the radius of the lens and will be taken as 2ry so that it is given in terms of the

beam profile definition. The expression for the linear index of refraction (112) will be used

with the density taken as constant. Observing the detuning dependence one can see that

for ∆ < 0, n0 is greater than 1 leading to a positive focal length and hence a focusing effect.

Likewise for ∆ > 0, n0 is less than 1 giving a negative focal length or de-focusing effect.

To give an idea of scale for this ball-type lens, the most acute response occurs for ∆=−Γ/2

(n0=1.02) and ∆=+Γ/2 (n0=0.98) which corresponds to f = +176 µm and f = −169 µm,

respectively.

FIG. 34: Comparison between the model (dashed-line) and simulation (solid-line). z0 is the
intended focus of the probe beam, but with the presence of the atom sample, the actual focal
location is shifted along z.
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With an effective focal length for the sample, a focusing distance can be estimated by

using ray transfer matrices or the ‘ABCD’ Law for Gaussian beams [88] which states that

1

q2
=
C +D(1/q1)

A+B(1/q1)
(120)

where A,B,C, and D are the elements for the transfer matrix and q(z) is the complex beam

parameter given by
1

q(z)
=

1

R(z)
− i

λ

πw2(z)
. (121)

The transfer matrix can be constructed as a combination of a thin lens with focal length

given by (119) followed by a free-space propagation of length z,

T =

(

1− z
f

z
−1
f

1

)

. (122)

Solving for the minimum waist results in a focusing location of

z′ =
(1− f

R(−z0)
)f

(1− f
R(−z0)

)2 + ( f
z′
R

)2
, (123)

where z′R = πw2(−z0)/λ and z0 is the intended probe focal location. This approach works

well when the incident beam is comparable to or less than the size of the sample. Once

the beam exceeds the dimensions of the sample, geometrical optics no longer applies as

diffraction makes a significant contribution to the propagated beam.

Using the above model and simulation, it becomes clear why the data takes the form it

does in Fig. 31. For an intended probe focus before the sample z0, only the low frequency

side of resonance affects the actual probe focus z′ by converging the beam after it passes

through the sample (Fig. 34). The high frequency side of resonance, due to having an index-

of-refraction less than one, only serves to spread the beam out. This gives an absorption

profile lower on the blue side than the red. However, once z0 is sufficiently greater than

zero, the red side of resonance will cause the probe beam to focus prematurely while the

blue-side extends the focal location giving the illusion of more absorption for −∆. We may

then consider the atomic sample as a microscopic lens as the probe beam can be caused to

focus on a micron-length scale.

The above experiment and analysis, while not based on cooperative effects, gives some

insight on the difficulty of interpreting measurements on atom-light interactions. Standard

classical optics can, in a sense, become parasitic in nature when the underlying microscopic

workings are desired. Nonetheless, the lensing experiment provided valuable insight into the
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original forward scattering experiments and help lay the ground work for the superradiant

experiments with regards to a proper optical setup.
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CHAPTER 5

EXPERIMENTAL ARRANGEMENT

The requirements for our experiment to be able to measure single photon superradiance and

the cooperative Lamb shift can be categorized into a few areas:

• Fast laser beam shut-off The lifetime for 87Rb is ∼ 26 ns which is close to the

response time of a standard AOM. To shorten the switching time, so that faster,

supperadiant emission can be observed, requires more state of the art equipment.

• Photodetection Atom fluorescence can be measured a variety of ways, but when the

detected signal is fast and of low light intensity, photon counting techniques must be

applied.

• Blocking the incident probe beam A long time problem with superradiance of any

sort is the parasitic effect of reducing the amount of incident light compared to scattered

light in the forward direction. There are ways of measuring off-axis superradiant light

[35], but for direct comparison with the ideal timed-Dicke state case, the forward

directed light is needed.

• More efficient duty cycle In our previous experiments the duty cycle of the experi-

ment (the time interval between creation of one atomic sample to the next) was around

6 s which involved creating only one dipole trap per realization. When the prospect of

only detecting, on average, fractions of a photon per trap cycle due to photon counting,

it is seen that the rate at which data is taken must be increased.

We will now address these issues and describe the techniques to handle each one.

5.1 FAST PROBE SHUT-OFF

When a sample is illuminated with an excitation pulse, the resulting detected time depen-

dence of the fluorescence is given by [109],

I(t) = P (t)⊗G(t) (124)
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Input Output

RF DC Bias

FIG. 35: Basic layout for the LiNbO3 intensity switch.

where P (t) is the response function of the detection system to the excitation pulse, G(t)

is the decay law of interest from the sample which is generally single exponential, and ⊗
denotes the convolution between the two functions. Provided that the signal level can be

observed far enough down in contrast, regardless of the fall time of the excitation pulse, the

decay constant can be extracted from the convoluted function I(t) (as the excitation pulse

will eventually fall off faster than the exponential). However, in experiment the amount of

contrast is limited due to signal-to-noise and there will be some limit as to how fast of a

decay can be measured.1

The AOM is a typical device used to measure time dependent fluorescence due to its

relatively short shut-off (∼ 10 ns) compared to most applications. With the decay of 87Rb

being on a similar time scale (26 ns), any faster decay from supperadiance would be difficult

to measure with good contrast and the decay would essentially blend in with the shut-off of

the AOM. To circumvent this we employed the use of a Lithium Niobate (LiNbO3) intensity

switch (EOSPACE, AZ-0S5-10-PFU-SFU-780). The LiNbO3 intensity switch acts as a Mach-

Zehnder interferometer by splitting the beam into two separate paths that can have their

relative phase controlled by the index of refraction of the material. The index of refraction is

adjusted by an external RF electric signal and can be used to modulate the intensity output

of the switch once the two separate beams are combined. A list of the specifications of our

particular switch are included in Table 3.

Just as in any other interferometer the arms must be balanced which can be done through

control of a DC bias voltage. The balancing is not perfect as there will still be residual

effects from material inhomogeneity, but fluctuations to temperature instability and laser

power can be corrected for. In our case, this control voltage is supplied by a home built

controller. The circuit diagram is shown in Fig. 36. The circuit is centralized around an

1Here we speak of obtaining the decay by observing the response I(t) signal on scale where P (t) has
significantly fallen off. Usually [109], the contribution of P (t) is handled with a least squares fitting scheme
that takes into account the convolution (124) and the separation of I and P is not as critical. What we will
see later on with the experimental data is that there is significant leakage light into the detector from the
probing pulse which makes least square fitting algorithms less useful, and so fitting relies on observing the
decay tail, following sufficient decay of the probe pulse itself.
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TABLE 3: Specifications for LiNbO3 switch as quoted by EOSPACE.

Spec Value
Insertion Loss 2.5 dB

Extinction Ratio 23 dB
Response Time 100 ps
RF Vπ @ 1 GHz 2.3 V

Input/Output Fiber 1 m long, 5 µm PANDA

7812
IN OUT+15V

10k

Digital 6

Digital 5

Digital 8

Digital 9

Power

Arduino Uno

TTL Control

10k5VGround
Lock

A0
10k

Photodetector
5k

4.7u

5k

4.7u

TL074

U4

5k

TL074

U1100k

100k 100k

100k

100k

-15V

+15V

50k

100k

Set Voltage

Out to Switch

FIG. 36: Circuit diagram for the dc bias control for the LiNbO3 switch. Code for the Arduino
microcontroller is included in Appendix D.

Arduino microcontroller which (code in Appendix D) is programmed to correct for power

fluctuations detected in a photodetector. Digital output 6 adds positive voltage to the DC

input of the switch and digital output 5 adds negative voltage. The correction voltages stem

from pulse-width-modulated signals that are integrated to give smooth DC levels. To avoid

overdriven oscillations in the output voltage, the photodetector signal is averaged over a

coupled hundred ms. The desired operating point can be set with a potentiometer and then

locked to that level. A TTL input is also added that temporarily disables the read function

with respect to the photodetector when the LiNbO3 switch is modulated. This keeps the

circuit from trying to correct for the switch being turned off and on again.
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The LiNbO3 modulator can be operated in a variety of modes including non-return-to-

zero modulation (NRZ), differential phase shift key modulation (DPSK), amplitude mod-

ulation, and pulse modulation [110]. Our specific needs require the latter function which

involves driving the switch at the full π voltage. Operating in pulse mode is achieved by

tuning the bias voltage such that transmission through the switch is at a minimum and

then sending in a fast, large pulse (see Fig. 37 for an example of how the switch varies

with bias voltage). Our pulse is generated with a fast voltage comparator (Analog Devices,

ADCMP606 Evaluation Board) that has a fall time of approximately 200 ps and an output

near 2 V. The comparator, purchased at mouser.com, is meant to be used in differential out-

put mode. However, we were able to use it in a single ended configuration and it provided

satisfactory pulse shapes with proper snubbing (Fig. 38). The output of the comparator is

sent through a variable attenuator (Kay Elemetrics, 1/839 Attenuator), and amplified by a

pulse amplifier (Mini-Circuits, ZPUL-30P $300) with 35 dB gain and 1 ns response time.

Normally LiNbO3 switches are driven with RF driver modules that are seeded with ultrafast

pulse generators (< 30 ps response time). This equipment would be ideal for creating the

fast pulses needed to observe superradiance, but are quite costly. Since the transit time jitter

of the PMT used to detect the signals is very near 1 ns, and fundamentally limits the timing

resolution of the experiment, the comparator and Mini-circuits amplifier were sufficient.

The fast pulse is delivered to the vacuum chamber using the setup in Fig. 39. A second

slave laser (the probe laser) powered by a SRS diode driver is injected with light from the

DFB slave laser (Fig. 13). The probe beam is sent through an AOM operating at f = 75

MHz and the −1st order beam is taken. To monitor the stability of this laser and ensure that

it is following the seeding light, the zeroth order beam is picked off and sent to a spectrum

analyzer (Thorlabs, SA200-7A). The −1st order beam is sent through another AOM with

f = 160 MHz. The −1st order beam from this AOM, which is now near the F = 2 → F ′ = 2

transition, is used as the optical pumping light for the atom number determination method

(Section 3.1.3). The +1st order is on resonance with the F = 2 → F ′ = 3 transition and is

sent to the LiNbO3 switch. The third role of this AOM is to further extinguish the probe

beam once the intensity switch has pulsed. Usually, the AOM is allowed to turn on ∼ 15ns

before the switch pulse such that light intensity is constant in time and then turned off ∼ 15

ns after. Adding the AOM in series ensures that the atoms see no resonant light until the

actual probing pulse is sent. Preceding the switch is a linear polarizer which serves to clean

the polarization as the switch is quite sensitive to any polarization drift and the extinction

is degraded if not properly keyed to the slow axis of the fiber.
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FIG. 37: Intensity switch transmission as a function of DC bias voltage. The dependence
varies sinusoidally with bias voltage.

2.5 V

120

30p

Fast Pulse
ADCMP606

50

+1V
BNC Pulse Generator

FIG. 38: Comparator circuit used to create a sharp square pulse. A triggering pulse, from
an external pulse generator, is sent into a bias-tee to give a positive offset from ground.
The comparator is triggered when this NIM level pulse drops below 0 V and the output is
taken from the non-complementary side. To reduce ringing on the output, a snubber circuit
is added via trial and error with different combinations of capacitors and resistors. It was
found that no hysteresis was needed to condition the output signal.
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Master Laser
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Spectrum
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Probing Pulse 
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FIG. 39: Optics setup for the probe laser. The 200 MHz AOM is used for better extinction
in conjunction with the LiNbO3 switch and for frequency shifting to the F = 2 → F ′ = 2
transition for the atom number determination via optical pumping.

It was noticed that the output beam, even when keyed properly on the input, could have

some polarization ellipticity which caused issues when the beam was sent to the vacuum

chamber table. To overcome this, the beam was passed through a non-polarizing beam

splitter with a polarizer in each arm (one path for probing the atoms and the other for

biasing control). This cleaned the polarization and as well made the DC bias controller

sensitive to these drifts which it could correct for by beam intensity compensation. An

attenuator, placed before the beam was sent to the chamber table, provided control over the

probing light power.

5.2 TIME CORRELATED SINGLE PHOTON COUNTING

Time correlated single photon counting is a technique for registering individual photon events

that relay information on the dynamics of the underlying physics. Typically, the systems

of interest are radiative transitions from atoms or molecules where the quantity desired is

the intensity decay law followed. With proper equipment this technique can be use to make

timing measurements on the order of picoseconds [109]. This fact, along with its sensitivity,

makes photon counting a great tool for detecting single photon superradiance.

The process can be pictured as detecting an incident photon with some efficiency on a

detector. The photon generates an electron or collection of electrons that are carried to an

external circuit where the arrival time is correlated with respect to some start event (usually

an electrical signal from a pulse generator). With each detection there is an associated dead
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time which limits the system to sensing only one photon event at a time. By repeating this

process a great number of iterations, a time dependent function can be developed that is

representative of the physical process at hand.

CFD

Input

Out

CF Delay

e

ee

Detector

TAC

Start

Stop

Out

Coincidence

Pulse Generator

MCA

Input

Output

PC

FIG. 40: Setup for time correlated single photon counting. Light incident on a detector emits
a charge pulse that is discriminated, compared in time to a pulse generator using a TAC,
and counted with a MCA. More details with respect to the overall timing of the experiment
will be given in later sections.

Photons are usually detected with a photo multiplier tube (PMT) or avalanche photodi-

ode (APD). APDs are fast devices (down to 10’s of picoseconds transit time jitter) and have

high quantum efficiencies in the infrared, but require many stages of amplification. PMTs

have very high gain with moderate timing resolution if chosen properly, but suffer from low

quantum efficiency in the infrared. In our setup we have a Hamamatsu 9110P PMT built

specifically for photon counting due to its low dark-count rate (500 s−1) and extremely high

gain (108). With such high gain we find that it is not necessary to amplify the output signal

which is advantageous in terms of reducing noise and electronic pick-up. The transit time

jitter is 1.2 ns and fundamentally limits the timing resolution in the experiment.
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The individual photons can be counted and binned using a time-to-amplitude converter

(TAC) and a multi-channel analyzer (MCA). The TAC (Tennelec, TC862) operates by con-

verting the difference in time between two input pulses into a pulse of constant width but

varying height; the two inputs are appropriately called the start and stop pulses. This height

is recorded by the MCA (Ortec, EASY-MCA-2k) which bins it into a histogram plot. The

timing calibration between the TAC and MCA is carried out by taking the PMT signal

generated by background light and splitting it into two lines, delaying one, and using the

advanced signal as the start pulse for the TAC and the delayed one as the stop pulse. A

delay line box (Ortec, DB463) is used for this purpose, and the observed signal on the MCA

can be recorded in time as the set delay. The calibrated time resolution is a combination of

the TAC time range settings and the number of bins used in the MCA. Typically, the time

range chosen is 250 ns over 512 bins giving a calibrated value of ∆t = .522(1) ns.

As stated above, the PMT pulses are timed relative to an external source such as a

triggerable pulse generator. The natural setup for this is to assume that the external source

sends a start pulse to the TAC and some time later the PMT pulse is received which can be

binned accordingly. However, because the detection of photon signals is random in nature

there will be some cases in which the TAC receives the start pulse and no stop pulse from

the PMT arrives. This is problematic as this type of event increases the recovery time of the

TAC and hence leaves it inactive for the next round of measurements. If the experiment is

being operated on a fast duty cycle then signals will be lost. A clever work around [109] is

to use the PMT signal as the start pulse and the external source as the stop pulse. In this

way, the user is never penalized for not reading a photon and the TAC is ready for operation

on the next event cycle. The only adverse effect produced is to make the measured response

appear backwards in time on the MCA, but this is easily fixed in post-processing procedures.

Not all counts transfered to the TAC will be of interest as there will some contribution

due to thermionic emission of the PMT photocathode or other sources. To block this signal a

constant fraction discriminator (Ortec, 584) is placed before the TAC. The CFD will trigger

off a PMT pulse for a given level and generate an output pulse with fixed width and height.

This pulse is then sent to the start input of the TAC. The discriminator level is chosen by

empirically changing the threshold setting until a satisfactory level of background noise is

acquired over a certain time range. In addition, the use of a CFD helps guard against time

walk from the PMT. Time walk occurs because the distribution of pulses coming from the

PMT will vary in height and this causes the time at which they are detected to move around

(as the slope of the pulse once it passes the trigger level is more steep for some than others).
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FIG. 41: Fluorescence decay from the FORT obtained by photon counting at 90◦ to the
incident probe beam on a linear scale (a) and on a log scale (b). At long times the decay is
mostly single exponential with some distortion due to imperfect background subtraction.

The CFD corrects for this by only triggering at a certain “fraction” of the peak of an input

pulse. Therefore, all pulses are timed with respect to the same point in their rise time.

A signal obtained from photon counting is displayed in Fig. 41. The temporal shape is a

combination of the incident probe beam and a single exponential decay given by (124). The

light is detected at 90◦ with respect to the incident beam which scatters off ∼ 105 atoms.

For this measurement the time interval is 1.29 ns and the probe frequency is on resonance.

One last concept to discuss about photon counting is the issue of pulse-pileup. Pulse-

pileup occurs because TCSPC is limited to detecting one photon at a time and for stronger

light signals there will be a tendency to count more photons on the leading edge of the signal.

This leads to measured responses such as that in Fig. 42. This can be corrected for by using

the formula [109],

NA =
Ni

1− 1

NE

i−1
∑

j=1

Nj

(125)

where Ni is the observed counts in channel i, NE is the number of excitation cycles, and

NA is the corrected number of counts for channel i. In our time resolved measurements the

pulse duration is very short and the count rate (
∑

j Nj/NE) is less than 5% over the whole

course of a data taking run. Because of this, and the fact that our experiment does not seek
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FIG. 42: Example of pulse-pileup correction. The signal comes from stray laser light detected
by the PMT. For earlier times there is not much difference between the raw signal and
the corrected one. At larger times, however, the effect is more pronounced and must be
addressed.

to make a precision measurement [111], we do not perform pulse-pileup correction for the

time-resolved data with regards to a short pulse excitation. This is not the case for a longer

probe pulse where the distortion builds up over time and is one of the reasons we avoid using

TCSPC when investigating the scattered light in the steady state regime of the atoms.

5.3 EXPERIMENTAL GEOMETRY

Observing fluorescence in the forward direction presents a challenging task as the signal prop-

agation direction coincides with that of the incident beam. This means any observed signal

would be dominated by un-scattered laser light and runs the risk of saturating the PMT.

There are instruments capable of filtering out the more intense laser light [112] that rely on

the photorefractive effect in which the laser beam is deflected away from the exact forward

direction. However, no material has been developed for the low intensities used in typical

cold atom, light scattering experiments. In addition, polarization analyzer arrangements

prove useless when the scattered light has the same polarization as the incident beam.
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The key to suppressing the laser light is knowledge of how the sample emits the scattered

light. Referring to Sections 2.3 and 2.5, the light emitted in the timed-Dicke state will have

the form

〈I(rs, t)〉 =
~ωaΓ

8πr2s

|β+(t)|2
N

∣

∣

∣

∣

∣

∑

j

ei(k0−ks)·rj

∣

∣

∣

∣

∣

2

. (126)

Taking the distribution of atoms to the continuous limit [60], the summation term can be

written as

1

N

∣

∣

∣

∣

∣

∑

j

ei(k0−ks)·rj

∣

∣

∣

∣

∣

2

= 1 +
N − 1

(2π)3r40z
2
0

∣

∣

∣

∣

∫

dre−(x2+y2)/2r20−z2/2z20ei(k0−ks)·r
∣

∣

∣

∣

2

≃ 1 + (N − 1) exp
{

−σ2
[

η2 (cos θ − 1)2 + sin2 θ
]}

(127)

where the approximation comes from assuming that k0/ks ≃ 1, σ = r0ks, η = z0/r0, and θ

is the scattering angle with respect to the long axis of the sample. This gives an analytical

solution to the spatial distribution of the scattered light in the coupled dipole model. The

presence of 1 in the first term signifies there is a incoherent piece of the signal that reduces

to isotropic scattering in the low number limit [113]. For sample geometries that keep an

elongated aspect ratio but are physically smaller, (127) is broader as function of θ meaning

the light is scattered over a greater angular range. If one intentionally mode-mismatched the

external field with respect to the emitted light, it should be possible that, given a far enough

distance away from the sample, the laser light could be spatially discriminated against with

respect to the scattered intensity.

The sample used in experiment has dimensions r0 = 2.7(1) µm and z0 = 156(7) µm. This

corresponds to a full angle of 0.12 radians using (127) and approximately 1 cm radius spot

at the observation window for our chamber geometry. To be able to block the probe and

collect a significant amount of fluorescence, the Gaussian radius of the laser beam must be

well within the cone of emission. Ideally this could be accomplished with a nearly collimated

laser beam with a small radius as in Fig. 43. Here the collimated beam is incident on the

sample and far down stream is occluded with a block that allows the emitted light to pass

around. Of course there will be some leakage due to diffraction but with a small enough

beam and a large enough block, this can be minimized. The scattered light could then be

collected in a standard 2f − 2f lens configuration onto a detector.

To implement the above setup is somewhat complicated due to the limitation of accessible

window ports on our vacuum chamber. The only viable option is to come in either with the

direction of the dipole trap laser or in the opposite direction (Fig. 22). Coming in the
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k0

FIG. 43: Possible arrangement for light detection of the forward emitted light.

opposite direction is cumbersome as that requires being able to collect the scattered light

through many 1064 nm optics, meaning there would be much optical loss for the 780 nm

light. The best option, then, is coupling in the probe beam with the 1064 nm beam splitter

and sending it in parallel with the dipole trap laser. There will be some loss for the probe

beam, but that is better handled than the emitted light which is the quantity of interest.

To accomplish this requires shaping the probe beam to match the lens setup of the dipole

trap laser which cannot be moved due to the sensitivity in keeping the trap laser and MOT

overlapped with one another.

The optics setup used is displayed in Fig. 44. To be able to use the dipole trap laser

optics to collimate the excitation light, the output beam must be adjusted to focus 100 mm

before the last positive focal length lens. The calculated collimated beam radius for this

setup is 670 µm. Using the CCD to image the beam we estimate the horizontal and vertical

radii to be 505 µm and 637 µm, respectively. We take the average of the radii, 570 µm,

as the actual radius of the probe beam. Alignment of the dipole trap and probe beam is

performed by picking two points of reference on either side of the chamber and walking the

probe beam until it passes through both points. It also checked that a fluorescence image

of the FORT can be seen at 90◦ with respect to the direction of incidence by scattering the

probe beam off the atoms.

In practice, blocking the unscattered probe beam is made difficult by spurious reflections

of the 780 nm light off the 1064 nm optics which have ∼ 15% reflection per surface. This

causes off-axis probe light to mix with the atomic emitted light and dominates the detected

signal. By chance, most of the off-axis light spreads out further than the coherence cone

of the forward emission. We therefore insert an iris that blocks this light but still allows

most of the fluorescence through. It is found that a small strip of metal blocks a large
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FIG. 44: Optical setup for exciting the atomic sample with the probe beam.

portion of the on-axis probe beam such that the forward emission can be observed. A CCD

image of the forward emission is shown in Fig. 46. We determine where the forward emitted

light should appear by taking a fluorescence picture of the FORT by flashing the MOT and

repumper beams. Then using that location as the region of interest, we flash only the probe

beam and look for scattering off the FORT. There is obviously some image aberration but

we successfully observe the forward emission. The images can be seen in single shot runs

indicating the directional strength of the scattering.
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FIG. 45: An iris is inserted to block the reflections of the 780 nm beam off the 1064 nm
optics. In addition to the dichroic mirror, an interference filter at 780 nm is placed to block
the dipole trap laser from getting into the detector. A shutter is placed before the detector
(either the PMT or CCD) to reduce background light detection during periods of no data
collection.

(a) (b)

FIG. 46: CCD image in the longitudinal direction of the FORT by (a) flashing the MOT
and repumper beams and (b) scattering the probe beam off the FORT.
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5.4 MORE EFFICIENT DUTY CYCLE

In most dipole trap timing series there is a period of MOT growth, trap loading, thermal-

ization, and actual trap interrogation. The timing series can be quite long and in our case

is about 6 s. This means that for a detection scheme that is built around TCSPC, no more

than one photon can be detected every 6 s. On top of that, under normal (correct) operation,

there is a small chance that one photon is even detected in a single cycle. It can be seen then

that to build up a few thousand total counts, it would take an enormously long time and

this all due to the extremely slow duty cycle of building a FORT. What would be helpful is

a way to build the FORT, release the atoms, probe them, and then quickly re-trap them.

Fortunately this technique has been applied before [11, 114], and is what we use to increase

the rate at which we take data.

We implement this dipole trap pulsing technique by allowing the sample to thermalize

in the F = 1 ground state after which the trap beam is turned off for 10 µs while the atoms

are pumped to the F = 2 ground state. Once there, the dipole trap is turned back on for

an additional 10 µs and the pulsing sequence begins (Fig. 47). A single cycle has a period

of 10 µs itself, where for 0.5 µs the dipole trap laser is shut off. This slot is set aside for

the actual probing of the sample and enough time is alloted after the dipole trap is shut off

and before it is turned on, for the atoms to be probed without any light shift present. To

align the dipole trap and probe pulse in time, we use two separate photodetectors to capture

their relative location. This is presented in Fig. 48 on a normalized scale along with the

coincidence and stop pulse which are used for timing the TAC read operation.

To ensure there were no adverse effects from pulsing the FORT2, we characterized the

sample’s temperature and atom number as a function of the number of pulses. This is

important as the atoms being retrapped will be in the F = 2 ground state manifold which

has a higher collisional cross section. We found that there was no significant atom loss for

a couple hundred pulse cycles (< 5%, see Fig. 49) and that the sample returned to its same

size when imaging it on a CCD camera. For the experiment we limit ourselves to 300 pulses.

The temperature, in fact, was observed to decrease for an increasing number of pulses. This

would suggest, along with the trap loss versus time, that some form of evaporative cooling

was taking place. We did not investigate this effect further, but it would be an interesting

2In this system the atoms are subjected to a square wave modulation of the trap depth. This is similar
to what was presented in Section 3.2.3 with regards to the Mathieu equation. However, with the square
wave modulation (also known as Meisser’s equation) the equation is exactly solvable. For frequencies much
higher than the natural frequency of the trap, there should be no resonances encountered.
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Repumper On

Off

Fiber Laser On
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Probe On
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0.5 µs

300 pulses = 3 ms duration

0.5 µs
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=250 ns
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FIG. 47: Timing of the pulsing sequence. Due to constraints with availability of timing
channels, the probe pulse has to be set towards the back end of the coincidence.
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FIG. 48: Scope traces of the switching pulses for the dipole trap, probe beam, TAC coin-
cidence, and TAC stop. The alignment of these four are important for correct detection of
scattered light off the sample when the trapping beam is off.
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FIG. 49: Atom loss as a function of the number of pulse cycles obtained from fluorescence
imaging with the CCD. Results are presented for the F = 1 and F = 2 ground states. For
the F = 1 ground state detection, both the MOT and repumper beams must be flashed to
image the atoms while for the F = 2, only the MOT beam is flashed. This produces a small
offset between the two curves but the interpretation of the data is not affected.

process to study in future work.

5.5 PUTTING IT ALL TOGETHER

The previous four sections covered the challenges of creating the experiment and how each

is addressed individually. What is left to explain is how to bring all these aspects into one

functioning unit that will work reliably. The cornerstone of this, like many other experiments,

is timing. With limitations to only standard electronics and on the time scale that we seek,

jitter in the instrumentation becomes an issue; normal timing jitter being on the order of

nanoseconds for triggerable devices. This requires careful daisy-chaining of the control lines

from the center operating platform.

In our case, all operations stem from a computer running Labview connected to a data

acquisition card (National Instruments, PCI-DIO-32-HS) with 16 output channels. The

channels and their respective control responsibility are listed in Table 4. They are for the

most part self-explanatory, but some require further detail. For non-pulse applications,
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TABLE 4: NI DAQ channels used and their specific operation.

Channel Operation
3 MOT Shutter
4 Fiber Laser AOM
5 Trigger for Second Quantum Composer
6 Repumper AOM
7 MOT AOM
8 Probe Frequency
9 Probe AOM
10 Trigger for Digital Level Boxes
11 Probe Shutter
12 Magnetic Field
13 FORT Loading Trigger for Digital Level Boxes
14 Repumper Shutter
15 Trigger for First Quantum Composer

channel 4 controls the simple on/off function for the fiber laser AOM to build the FORT.

The same goes for channel 9 which functions to keep the AOM warm while the sample is

being prepared. Once the pulsed phase is entered, channel’s 4 and 9 give up their control by

the switching of the digital level boxes by channel 10. The digital level boxes (DLB) [115, 1]

are centered around analog switching chips (Maxim, DG419) that allow one input voltage

to pass through for a low-level logic control and another input voltage to pass through for

a high-level logic control. These boxes are used for tuning the repumper intensity, MOT

laser detuning for MOT and FORT loading, probe detuning, and allowing the passage of the

pulse sequence to the probe and fiber laser AOMs. The DLB’s can be stacked in series to

give multiple logic options and we provide one of the schematics below as a reference.

Once all DLB’s have switched over, channel 15 from the DAQ triggers an external pulse

generator (Quantum Composer, 9614); we will call this QC1. QC1 is set to function on a

10 µs duty cycle running on a burst mode off 300 iterations. Channel 1 on QC1 is used to

control the on/off pulse of the dipole trap which is on for 9.5 µs beginning on the leading

edge of the cycle. Channel 2 from QC1 is delayed 9.5 µs from ch. 1 and triggers another

pulse generator (Standford Research Systems, DG535) that we label as SRSPG. The SRSPG

has a total of 9 output channels labeled T0, A, B, AB, AB, C, D, CD, and CD. Channel A

runs proceeds channel B in time by 250 ns such that ch. AB can produce a TTL pulse to

send to the TAC as a coincidence signal. Channel B is delayed from the trigger pulse from
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FIG. 50: Example of one of the DLB’s used. This specific circuit is designed for switching
between another DLB that controls the normal repumper power during MOT loading and
reduced power during FORT loading, and the variable repumper pulse width and power
during the atom number selection stage before the pulse cycle begins. There is a small
integrator on the input to the control switch (pin 6, “IN”) that reduces ringing from the
external TTL.

QC1 by 1.15 µs and is a NIM level signal that serves as the stop pulse for the TAC. Channel

C is delayed from the QC1 trigger by 268 ns and channel D is delayed from C by 40 ns.

This creates a pulse with a 40 ns duration from channel CD that is sent to the probe AOM

through the DLB’s and overlapped with the LiNbO3 switch pulse. The additional channel

T0 is used to trigger a BNC 8020 pulse generator (BNCPG) that sends a variable pulse

width signal to the ADCMP606 fast voltage comparator. The BNCPG signal pulse is fast

and clean enough that no hysteresis is required for the comparator circuit (see Fig. 38). The

delay setting for the BNCPG is kept very low as there was found to be considerable jitter

effects at higher delay; presumably stemming from variable warming times in the device’s

circuit board.

The relative timing between the channels from the SRSPG do not line up at the output of

the device because of the latency in sending the signals to different parts of the lab. Ideally,

all trigger-able devices would be in close proximity to reduce the effects of latency and other

signal distortions from line propagation. However, due to the constraints of the laboratory

setup, variable length cables have to be used to trigger different devices. This is why a scope

had to be used to line up the different signals in Fig. 48. All cables for the pulsing sequence

of the experiment are shielded to reduce pick-up and broadcast between adjacent lines.



81

Channel 5 from the DAQ is used to trigger a second Quantum Composers pulse generator

(QC2) 50 ms prior to the onset of the pulse sequence. The main use of QC2 is in the atom

number determination for an experimental run, with the exception being its channel 2 which

is used to open the external shutter for the PMT or CCD before a pulse sequence begins.

The atom number determination method has two stages, the first being the initial repump

of some of the atoms in the F = 1 up to the F = 2 ground state. To only get a partial

fraction of the atoms into the F = 2 ground state we reduce the repumper power to ∼ 40µW

using the DLB pictured in Fig. 50 with the switch trigger coming from ch. 4 of QC2. The

atom number is further selected by using a variable length repump pulse generated by ch.

3 of QC2. This length can vary from 8 µs down to 100 ns. The second stage of the atom

number determination method comes from fluorescence obtained from the atoms at the end

of the pulse sequence. To get this fluorescence we turn on only the MOT beam (so as to

only see F = 2 atoms) for a period of 3 ms. During this time, the atoms are pumped very

slowly down to the F = 1 ground state by inelastic scattering off the F = 2 → F ′ = 2

transition. This is not an efficient process, but gives ample signal to be detected by a

secondary PMT (Hamamatsu, R636) even at low atom number. The PMT is shielded from

all other fluorescence, but the FORT, with a home made shutter triggered off channel 1 of

QC2 (see Fig. 51). The shutter is simply constructed from a hard-drive motor with leads

connected to the voice coil actuator. Any sufficient drive voltage causes the motor to rotate

and reduction of that voltage causes it to rotate back.3 There is considerable latency for

this device and it is why QC2 is triggered so early. The fluorescence is calibrated to atom

number using the ratio of it to counts collected on the CCD for a fixed number of atoms

(Figs. 52). The CCD count corresponds to a certain atom number determined from before

(Section 3.1.3).

A schematic diagram for all the important timing connections is shown in Fig. 53. Any

timing jitter, with respect to the data, that could occur from the electronics would be after

the signals are sent out from the SRSPG. This is because the lines that go to the LiNbO3

switch and the TAC run in parallel. However, the jitter is estimated to be about 100 ps

which is far below the time resolution in experiment.

3See ref. [116] for a more advanced description of this technique. The homemade shutter was needed for
the experiment as we had run out of commercial shutters and shutter drivers. It worked well for its intended
purpose and actually had opening and closing times of 1 ms.
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FIG. 51: A homemade shutter created with a hard-drive motor. A piece of metal is epoxied
to the fins to serve as the light block and is placed directly in front of a multimode fiber
used to direct fluorescence to the photocathode of a PMT.
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FIG. 52: Fluorescence detected from the FORT with a PMT and counted on a multichannel
scalar (Stanford Research Systems, SR430). The PMT signal passes through two stages of
amplification (Stanford Research Systems, SR445A) before reaching the MCS. The MCS is
triggered on the falling edge from channel 15 on the DAQ.
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FIG. 53: Schematic of the important timing lines for the experiment. The text in red and
green denotes outputs and inputs, respectively.
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CHAPTER 6

TIME AND SPECTRAL RESOLVED MEASUREMENTS OF

THE FORWARD EMITTED LIGHT

Here we will present the results of measurements in the time domain on single photon

superradiance and in the frequency domain of its counterpart, the cooperative Lamb shift.

Both measurements are made in the weak field limit such that they can be compared with

the analysis of Chapter 2. We will also give a discussion with the comparison to classical

optics and the conflict of interpretations for understanding the data.

6.1 TIME DOMAIN MEASUREMENTS

For each set of experimental conditions, the time domain measurements were collected over

a period of two hours using time correlated single photon counting (TCSPC). With the

trap creation cycle of ∼ 6 s and the embedded pulse sequence, the number of experimental

realizations was 3.6 × 105. The probe was programmed for a short 15 ns duration and had

a saturation parameter of s0 = 0.03 such that we were in the linear response regime for

the atoms. A few of the typical detected curves are depicted in Fig. 54. The curves are

characterized by an initial build-up of the signal and the subsequent decay after the probe

beam is shut-off. As stated before, there is light leakage of the probe beam present in the

detected signal. This occurs because the probe beam has to go through optics anti-reflection

coated at 1064 nm, not at the probe wavelength of 780 nm, and each surface has ∼ 15%

reflection. With the curvature of the lenses this leads to additional off-axis light with respect

to the original probe direction that finds its way to the detector. Additional background

may also come from diffraction off the beam block used to separate the probe and forward

emitted fluorescence.

To extract the lifetime of the decays we treat the probe signal as a background offset and

subtract it from the signals with the sample present. We then choose a point along the curve

where the probe has shut off and fit from that point on as single exponential with a vertical

offset. The value of the decay depends on the initial point chosen but varies by no more

than 10%. The issue of pulse pileup and the distortions it can cause were not considered

until after the data was taken and processed. Because the count rate (number of detected
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FIG. 54: Representive decay curves for the forward emitted light. The blue curve is light
leakage into the PMT from the probe beam and the red and green curves are responses of
N = 10(1) × 103 and N = 21(2) × 103 atoms, respectively. The decay times are 10.6(7) ns
for N ≃ 10, 000 and 5.5(2) ns for N ≃ 20, 000.
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FIG. 55: Decay rate ΓN vs. N for several detunings, ∆ = 0,±2Γ,±4Γ, and ±6Γ.

counts over number of experimental realizations) was around 5% and the signal duration

was so short, analysis of pulse pileup correction showed negligible change with respect to the

extracted decays.

Figure 55 shows the decay rate dependence on the number of atoms. The decay rate is

obtained by simply inverting the fitted decay constants from the time dependent data. As

predicted from the microscopic theory, the decay rate increases nearly linear in the number

of atoms and has a slope of 1.6(1) × 10−4 Γ/N and a vertical offset of 1.3(2) Γ. This is

relatively close to the expression given by (63), where for our trap parameters α = 2.43(3)×
10−4 Γ/N (uncertainty coming from uncertainties in trap radii). Aside from experimental

errors in knowing the exact sample shape and the number of atoms, a likely candidate for

the discrepancy in the two values is the effect of multilevel structure in 87Rb. While a full

vector theory analysis of our system would be advantageous in comparing to experimental

data, the scalar approximation is a useful tool to explain the general results. In addition to

being linear with respect to the number of atoms, the decay is also independent of detuning
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FIG. 56: Fourier transform of the probe pulse that excites the atoms.

within the range of detunings explored in these experiments. This is consistent with the

results from the coupled-dipole model over the detuning range probed in experiment. In

addition, the probe pulse used has a large bandwidth. In Fig. 56 we show the frequency

transform of the probe pulse; it has full a width (within the first envelope) of 165 MHz.

This width is quite large compared to the single atom decay rate of 6.1 MHz and if there

were any detuning dependence to be discovered faraway from resonance, it would be hard

to measure due to the bandwidth. Using the naive approximation that the probe pulse is

essentially square, the exact duration can be pulled out which is 12.1 ns;1 a few ns shorter

than the programmed pulse width.

In looking at the polarization degree of the forward emitted light (Fig. 57), we find that

it is nearly completely linear polarized in the same direction as the incident probe beam.

The polarization is detected by completing a run with no polarizer, a run with the polarizer

in the detection arm and in the parallel channel, and a run with the polarizer turned to the

perpendicular channel. The results indicate that the emitted light is almost entirely from

1The Fourier transform of a square pulse gives a width of 2
T

within the first envelope where T is the
duration of the pulse.
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Rayleigh scattering (at least in the forward direction).

The data presented in Fig. 55 only shows decays that are observed to be single expo-

nential. As the the number of atoms is increased there is a departure from the exponential

behavior and a more complex time dependence appears. Fig. 58 gives an example of the

observed signal as well as that predicted by the coupled-dipole model. To compare to the

experimental data, the simulation sample has to be rescaled due to computer memory limi-

tations. The optical depth is used as an approximate scaling factor and is matched to what is

used in experiment by changing N, r0, and z0. For this simulation r0 = 0.7 µm, z0 = 41 µm,

N85k = 5864, and N147k = 10000. The larger samples appear to show an evolution that

acquires a bump at the end of the initial decay. As the sample number increases the effect

becomes more pronounced. This time evolution is not predicted within the model of the

timed-Dicke state (assuming no subradiant coupling [32, 117]) and indicates that propaga-

tion of the scattered fields within the sample is more complicated than a single scattering

event. Effects similar to this have been seen before but in the context of free-induction decay

and optical coherent transients in cold atoms [118, 119, 120, 121, 122]. The reality of these

experiments puts an interesting twist on the interpretation of single-photon superradiance

and will be a topic of discussion at the end of the chapter.

6.2 SPECTRAL DOMAIN MEASUREMENTS

To make measurements on the spectral dependence of the scattered light we step away from

the use of TCSPC due to the issue of pulse pileup and use a very long (10 µs) probe pulse

to excite the atoms into their steady state response. The data is no longer taken in a series

of pulse trains measurements; instead the sample is probed once per trap realization. The

scattered light is detected with a CCD camera with a quantum efficiency of > 90%. The

better detection efficiency and increased pulse length make up for the reduction in the total

number of experimental realizations that was achieved in the pulse mode. We systematically

check that no optical pumping of the atoms occurs during this time from the F = 2 ground

state to the F = 1, so that the atom number can be assumed constant. The data is collected

over a period of 30 minutes for each run at fixed detuning. A background image is taken at

the beginning of the detuning runs and after, and then averaged. This averaged background

is then subtracted from each detuning measurement. The emitted light only takes up a small

portion of the CCD (Fig. 59) and so the signal is integrated over that pixel region which

is normally a 3 pixel× 3 pixel square. Larger integration areas were tried but the presence

of background noise outside the main image profile caused the count signal to fluctuate for
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FIG. 57: Polarization dependence of the forward emitted light. (a) No polarizer present with
the light from the probe pulse and light from the probe-plus-atomic-sample represented by
the dashed blue line and solid green line, respectively. (b) Data taken with a linear polarizer
aligned parallel with the polarization of the probe beam. (c) Data taken with the polarizer
aligned 90◦ to the polarization of the probe beam.
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FIG. 58: (a) Measurements for an increased number of atoms. The decay of the scattered
light departs from a single exponential behavior and develops oscillations that increase in
frequency for an increase in atom number. (b) Simulations using the coupled dipole model,
but the sample size is to be rescaled due to computer memory limitations for large numbers
of atoms.
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FIG. 59: CCD images for a few different probe beam detunings. The number of atoms for
this particular data run is ∼ 2.7× 104. In this case a 3 pixel× 3 pixel box has been drawn
around the most intense portion of the image.

increasing box size. The 3 pixel× 3 pixel box was found to provide the best signal-to-noise.

Several curves are presented in Fig. 60 showing the response of the system to the detun-

ing of the incident probe. For a small number of atoms the scattered light is approximately

Lorentzian and shows a slight shift to the red side of resonance. The width of the response

is also broadened which would be indicative of superradiant emission. Comparing the re-

sults with what is expected from microscopic theory (61) gives reasonable agreement. The

differences likely stem from the same discrepancies described in the value of the slope for

Fig. 55 and the shape factor α. In Fig. 61, the shifts are extracted from the detuning curves

and plotted versus the number of atoms. The shifts are on the same order as predicted by

Eq. (61). Widths extracted from the Lorentizian fits do not follow such a smooth pattern as

would be predicted by Fig. 55. This likely due to significant background in the CCD image

for lower number atoms which would tend to give an apparent broadening. As the sample

number increases, a double peak spectrum can be seen to arise. This is interesting as it

significantly departs from the expected behavior predicted by single photon superradiance,

yet still is described by simulation with the coupled dipole model. We interpret the results

as meaning that propagation effects contribute to the sample’s response and distort what is

expected from the ideal case.

Commonly, the scaling factor that is associated with the collective Lamb shift is the

density. However, in what was shown the shift was measured to be quite large even at low

density (< 1012 a/cc). This is because the shift is also associated with the geometry of the

sample, just like in the case for the collective decay rate. Shown in Fig. 62 is the numerical

calculation of (61) for different geometries with an indication for which one is our sample.
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FIG. 60: (a)-(c) are steady-state detuning response curves for N ≃ 14k, 27k, and 53k atoms.
The results are compared to the coupled-dipole model by scaling the sample number down
and reducing the sample size so that the optical depth is the same as in experiment. The
plots (d)-(f) correspond to N = 2.5k, 5k, and 10k atoms.
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FIG. 61: (a) Shift of the response as a function of the number of atoms. (b) Width of the
response as a function of a number of atoms. The error bars are statistical and largely due
to background signal contribution.
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FIG. 62: Numerical evaluation of (61) for the cooperative Lamb shift showing the sample
size dependence for (a) fixed z0 and varying r0 and (b) fixed r0 and varying z0. In each case
the black dashed line indicates the experimental value for r0 and z0.
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6.3 DISCUSSION

The observed emission rate and spectral dependence of the scattered light are in good agree-

ment with the expectations from microscopic scattering theory. One would be encouraged

to say that the existence of cooperative effects in extended samples is quite evident and that

the realm of quantum optics has become that much richer. However, in interpretation of

the microscopic theory it was assumed that only the “interesting” quantum nature of the

process would be observed, but at some level the microscopic description and that predicted

by classical optics must overlap. This brings the question [5, 6, 123]: how much of the

extended sample response can be explained by classical optics?2 Certainly if a majority of

the observed effects identified as cooperative in microscopic theory can be just as well be

explained by classical optics, which makes no attempt in labeling enhanced decay rates and

frequency shifts, it might suggest that the microscopic results are misinterpreted. This will

be the topic of discussion for this section and will produce some sobering realizations about

what is really meant by cooperative and collective.

6.3.1 CLASSICAL OPTICS IN THE TIME DOMAIN

To analyze the temporal response of the atomic ensemble, classically, requires solving the

time-dependent Maxwell-Bloch equations. Contrary to what was done in Ch. 4, we will seek

solutions in one dimension for simplicity without losing context for the discussion. The one

dimensional problem comes down to solving (70) and the Maxwell wave equation for the

electric field,
(

∂2

∂z2
− 1

c2
∂2

∂t2

)

E = µ0
∂2P

∂t2
. (128)

Invoking the slowly varying envelope approximation and introducing the Bloch variables

[124] U and V such that ρ̃eg =
1
2
(U − iV ), the Maxwell-Bloch equations become
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(129)

(

∂

∂z
+

1

c

∂

∂t

)

Ω =
κΓ

2
(U − iV ) . (130)

2Classical optics in this sense refers to solving the Maxwell-Bloch equations for an extended atomic
sample. While the Bloch equations were derived quantum mechanically, a corresponding set of equations
could have been obtained assuming the atom was a damped harmonic oscillator driven by an external force.
From this point of view the system is purely classical.
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Equations (129) and (130) can be solved numerically a few different ways. In Appendix

E we give an overview of the method we use to solve them. Pictured in Fig. 63 is the

scattered intensity for an elongated one dimensional sample with length L close to what we

have in experiment. The sample is excited with a low intensity pulse (s0 = 0.01) and has

a duration of 0.5Γ−1. Similar to the microscopic simulations and experimental data, the

scattered field is characterized by a fast decay at the end. For increasingly larger optically

deep samples (b0 = κL), the trailing oscillations appear. It can actually be shown [119, 32]

that the functional form for the free-decay contains a J0(
√
2b0Γt) term which agrees with

the oscillatory behavior.

It may seem surprising, coming from the perspective of microscopic cooperative effects,

that such a simple model of light scattering can produce the complex behavior observed in

experiment. Certainty there are differences, such as the fact that the increased decay takes

effect at much lower optical depths than in experiment (b0 ∼ 50 − 100), but the model is

only in one dimension and a full three dimensional analysis is necessary for determining the

real difference in the microscopic and classical theories. The term free-induction decay is

normally used to describe the results when the classical approach is taken and numerous

experiments have been performed that examine it in cold atoms [118, 119, 120, 121, 121].

The argument for the fast decays from this perspective is that it is due to the transient

response of the susceptibility when subject to a driving pulse (see Appendix D). This is

much like in linear systems theory where a filter network changes the input by some transfer

function H(ω) (see Fig. 64). In the experiments mentioned above, the probing beam is well

within the sample of cold atoms such that a one-dimensional system can be assumed. Also,

the transmitted intensity is measured, not the scattered intensity. Cases like ours where

the entire sample is excited by a plane wave and only the scattered intensity in the forward

direction is measured have not been well studied for the temporal evolution.

6.3.2 CLASSICAL OPTICS IN THE SPECTRAL DOMAIN

We continue the comparison with the classical response by once again looking for the solution

to the Maxwell-Bloch equations but in the steady state regime. Here, for a two level atom,

the bandwidth of excitation pulse will no longer make a contribution to the spectral response

and the detuning dependence of the process can be extracted. We use the same technique

from Chapter 4, but with the beam directed down the long axis of the FORT. Contrary to the

previous section, the exact three dimensional response can be simulated which is important

as off-axis scattering modes come into play.
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FIG. 63: (a) Temporal response for a single atom, a sample with b0 = 1, and a sample
with b0 = 16. The response is faster for an increasing optical depth (approximately single
exponentially) and develops an oscillatory behavior as in experiment and the microscopic
model. (b) The extracted decay rate for several optical depths. The decay rate increase
is nearly linear with some deviation due to the non-exponential behavior for higher optical
depth samples. Since we are not changing the length of the sample, the peak optical depth
and number of atoms are directly proportional to each other.
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H(ω)X(ω) Y (ω) = H(ω)X(ω)

FIG. 64: Demonstration of the linear response of a filter network. The sample can be thought
of as a filter with response function H(ω). In the diagram, X(ω) is synonymous with the
incident field and Y (ω) with the transmitted field.

Fig. 65 shows the total absorbed light one would expect for a bi-Gaussian sample as is

probed in the experiment. Here the light is collected a distance of ∼ 2000λ (1.6 mm) away

from the sample which is approximately in the far field limit. The absorption is small as the

incident beam is much larger than the radial cross section of the sample and most of the light

passes around it. In addition, the amount of light that passes around a rectangular area is

pictured. This is similar to what we have in experiment where we occlude the main portion

of the incident field. From the figure it can be seen that the response is quite different than

the total transmitted intensity and more light on the red side of resonance passes around

the block than the blue. The transmission around the beam block appears similar to what

is measured in the experiment and what is predicted as the scattered intensity from the

microscopic theory.

The root of the observed transmission curves from the simulation can be explained from

the beam trajectories through the sample. Fig. 66 gives an example of the process showing

what happens to light as it propagates for red and blue detunings. The sample in this case

has the same dimensions as in experiment with N = 17, 500. For red detunings, like we

observed in the microscopic lensing experiments [125], the light is refracted into the sample

leading to a longer path length and thus more absorption. For blue detunings, the light

is refracted away from the center of the sample. In the far field this lensing effect causes

what red detuned light is transmitted to diverge at a greater angle giving more transmission

around the beam block. The transverse profile of the transmitted field is shown in Fig. 67 and

the presence of the sample causes diffractive rings to appear. These diffractive rings cause

there to be an angular dependence to the spectral profile meaning a different collection angle

results in a different detuning dependent curve (see [126] for a discussion of this effect from

a microscopic point of view).

We are now left with a conflict of interpretations as to what are the origins of the

observed effects in the experiment. We should at this point give a definition for the meaning
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FIG. 65: (a) The total transmitted laser intensity at a distance of 2000λ from the sample.
The intensities have been normalized to the probe intensity at the point of observation. (b)
The transmitted intensity around a beam block 80λ wide and a very large height (similar
to experiment). The intensities have also been normalized to the probe intensity that gets
around the block with no sample present.
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FIG. 66: Propagation of the probe beam through the long axis of the FORT using the split-
step algorithm for (a) ∆ = +1Γ and (b) ∆ = −1Γ. The green ellipse indicates the location
of the sample. The intensity is normalized to the peak intensity of the incident beam.
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FIG. 67: Normalized transmitted beam profile at z = 2000λ for (a) ∆ = +1Γ and (b)
∆ = −1Γ. Diffraction rings are clearly visible.
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of collective and cooperative. We define collective as the observation of effects from many

atoms, different than what is expected from a single atom. These effects are not because the

atoms are having one-on-one interactions but because of the overall effect of the scattered

intensity from many radiators in the far-field. We will define cooperative as one-on-one

interactions that lead to deviations from the single atom response. The definitions mean

that on the one hand the data can be interpreted as the interesting effects of cooperativity

which result in enhanced, directional spontaneous emission and a shift of the resonance line

for the atomic sample. Or, on the other hand, interpreted as the role of classical optics

and how the intricate form of the atomic susceptibility due to sample geometry can give

rise to complex, collective behavior which may be mistaken for other physical phenomena.

A pessimistic approach to the problem would be to say that all behavior concerned with

low light excitation of atomic media is a mundane consequence of classical optics. Yet, it is

still very interesting that non-single atom responses can be predicted and given a descriptive

form from a microscopic theory as opposed to running “black-box” classical simulations.

While the true cooperative nature of a collection of atoms may be best encased by

subradiance and far off-axis superradiance [123], the ability to predict and control a generic

sample’s emission properties in the forward direction could lay the groundwork for interesting

future studies such as microscopic optical element devices. Perhaps a better approach for

handling the problem in the future is to look into the statistics of the emitted light and,

for example, make second order correlation function measurements (g(2)(τ)) [42]. There,

along with other broadening mechanisms such as Doppler motion, radiation trapping, and

magnetic field contributions [127], effects from cooperativity, if they do exist, should show

up in the functional form of g(2). Similar steps have been taken in the past to analyze the

phenomena of Anderson localization of light [128] by statistical measurements, which has

also seen its fair share of controversy in making time-domain measurements [15, 129].
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CHAPTER 7

CONCLUSIONS

We have presented measurements of forward scattered light from a highly extended, cold

atomic sample of 87Rb in the time and spectral domain. The measurements are consistent

with the study of single-photon superradiance and the cooperative Lamb shift. The time do-

main measurements were characterized by a fast decay that depended approximately linearly

on the number of atoms and on the particular shape of the sample. The spectral domain

measurements showed a large shift to the red side of resonance with an increased width that

also depended on the number of atoms and the geometry of the sample. While the results

were well explained by the theory of microscopic scattering and the timed-Dicke state for-

malism, classical optics also proved able to replicate the observed data. The durability of

classical optics brings into light the interesting parallel between a quantum optical approach

of the process and a semi-classical based approach. Further work is needed, theoretically

and experimentally, to fully answer the true nature of this light scattering process [5, 6, 123].

The realization of the experiment required extensive use of precision timing equipment

and the method of mode-mismatching to detect the forward scattered light. Fast pulses were

generated with rise and fall times well below the single atom decay with a LiNbO3 intensity

switch that was controlled with homebuilt circuitry. By using time correlated single photon

counting we were able to detect the superradiant decay from the atoms with timing resolution

limited by the electron transit time jitter of the PMT. We incorporated a pulse cycle protocol

to increase the duty cycle of the experiment which involved quickly turning on and off the

dipole trapping beam. For the spectral domain measurements, we made one long probe

excitation and recorded it with a CCD camera.

Along the way we explained the physics of atom trapping for creating MOTs and FORTs.

The MOT, created by laser radiation pressure and magnetic fields, was used to load the

FORT which provided us with the necessary sample geometry for the experiment. The

FORT, unlike the MOT, was created by a dipole trapping force that had a very low scattering

rate (0.5 s−1 for our trap parameters). Calculations were given for the expected light shift

in the FORT that have been confirmed by other theoretical and experimental investigations.

Use of the light shift and the technique of parametric resonance allowed us to know the

specific sample characteristics very well.
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We also described experiments that investigated microscopic lensing effects from laser

propagation through the small radius of the elongated atom trap. The results, which were

initially assumed to be shifts of the resonance line due to density effects, were found to

be explained by a beam propagation simulation. The beam propagation simulation, what

was called the “split-step method”, allowed to very accurately predict how the beam was

affected by the presence of the sample. We provided a simple model of a thin lens that

matched agreeably with the simulation and gave a focal length on the order of a few hundred

microns.

For the future it would be interesting to study the superradiant and cooperative Lamb

shift effects in different geometries. It should be possible to find specific shapes for which

there is no cooperative Lamb shift which may be advantageous for precision measurements

and quantum sensors. Additional studies of superradiance and subradiance that incorporate

Doppler motion and other inhomogenous broadening mechanisms are also warranted [29].

Involving controlled inhomogenous broadening may provide a very robust way of transporting

a large portion of the atom population into subradiant states and hence creating quantum

memories. It would also be interesting to pursue measurements that examine the statistics

of the emitted light, such as g(2), which could help clarify if cooperative line broadening

mechanisms are actually present.
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APPENDIX A

DERIVATION OF THE SHAPE FACTOR FOR THE

COOPERATIVE DECAY

The equation for the cooperative decay rate (62) can be expressed as,

ΓN =
Γ

N

[

∑

j,m

sin(karjm)

karjm
e−ik0·rjmδjm +

∑

j,m 6=j

sin(karjm)

karjm
e−ik0·rjm

]

. (131)

The first term sums exactly to the total number of atoms N and the second term can be

taken to the continuous limit,

N(N − 1)

∫

dr

∫

dr′
sin(ka|r− r′|)
ka|r− r′| e−ik0·(r−r

′)ρ(r)ρ(r′) (132)

where

ρ(r) =
1

(2π)3/2r20z
2
0

e−(x2+y2)/2r20e−z2/2z20 (133)

is the normalized density distribution of the sample. Making the change of variables s = r−r′

and τ = r+ r′, the spatially dependent integral becomes,

1

8

∫

ds

∫

dτ
sin(kas)

kas
e−ik0·se−(s2x+τ2x)/4r

2
0e−(s2y+τ2y )/4r

2
0e−(s2z+τ2z )/4z

2
0 (134)

where the 1/8 comes from the evaluation of the Jacobian from the coordinate transformation.

The integrals over τ can be carried out so that (134) becomes,

π3/2r20z
2
0

∫

ds
sin(kas)

kas
e−ik0·se−(s2x+s2y)/4r

2
0e−s2z/4z

2
0 . (135)

We can write the sin(kas)
kas

term as

sin(kas)

kas
=

1

4π

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)eika·s (136)

taking ka = kan̂, where n̂ is a unit vector pointing radially outwards [130, 61]. The spatial

integrals Is can now be carried out,

Is =

∫ ∞

−∞
dsxe

−s2x/4r
2
0+iqxsx

∫ ∞

−∞
dsye

−s2y/4r
2
0+iqysy

∫ ∞

−∞
dsze

−s2z/4z
2
0+iqzsz

= 8π3/2r20z0e
−(q2x+q2y)r

2
0e−q2zz

2
0 , (137)
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where qx = ka sin θ cosφ, qy = ka sin θ sinφ, and qz = ka cos θ − k0. ΓN is now,

ΓN = Γ +
(N − 1)Γ

2

∫ 1

−1

dξe−r20k
2
a(1−ξ2)e−z20(kaξ−k0)2 , (138)

where the φ integral has been evaluated and ξ = cos θ for shorthand. Introducing the

parameters σ = r0k0 and η = z0/r0, and making the approximation that k0/ka ≃ 1, the

integral over ξ is

Iξ = exp

[

σ2

η2 − 1

] ∫ 1

−1

dξ exp

[

−σ2(η2 − 1)

(

ξ − η2

η2 − 1

)2
]

. (139)

Changing variables to u = σ
√

η2 − 1ξ − ση2/
√

η2 − 1, (139) becomes

Iξ =
exp

[

σ2

η2−1

]

σ
√

η2 − 1

∫ −σ√
η2−1

−σ(2η2−1)√
η2−1

due−u2

. (140)

Using the definition of the error function,

erf(x) =
2√
π

∫ x

0

dte−t2 , (141)

(139) reduces to,

Iξ =

√
π

2σ
√

η2 − 1
exp

[

σ2

η2 − 1

]

{

erf

[

σ
√

η2 − 1
(2η2 − 1)

]

− erf

[

σ
√

η2 − 1

]}

. (142)

Substituting (139) into (138) gives the final expression,

ΓN = Γ + α(N − 1)Γ,

α =
√
π

4σ
√

η2−1
exp

[

σ2

η2−1

]

{

erf

[

σ√
η2−1

(2η2 − 1)

]

− erf

[

σ√
η2−1

]}

. (143)

Fermi’s Golden Rule can also give this result if the timed-Dicke state (58) is made the initial

state, coupling to subradiant modes are neglected [117], and the sum over final states is over

all possible emission directions k.
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APPENDIX B

NOMENCLATURE FOR OPTICAL ELEMENTS AND OTHER

DEVICES

The optical elements are based on schematic drawings by Alexander Franzen (http://www.

gwoptics.org/ComponentLibrary/) and have been partially modified for use in this thesis.

http://www.gwoptics.org/ComponentLibrary/
http://www.gwoptics.org/ComponentLibrary/
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LiNbO3 switch

1064 nm laser

linear polarizer

1064 nm laser beam

attenuator l/4 waveplate

interference filter
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APPENDIX C

ARDUINO CODE FOR DC BIAS LOCKING CIRCUIT

int outputPlus=6;

int outputMinus=5;

int setValue =100; // has to be g i v en some va l u e i n t i a l l y

f loat i e t a =.05;

int l e v e l =0;

int s t a r t e r =0;

int inputPin=8;

int TTL=9;

void setup ( ) {

S e r i a l . begin ( 9600 ) ;

pinMode ( outputPlus ,OUTPUT) ;

pinMode ( outputMinus ,OUTPUT) ;

pinMode ( inputPin , INPUT) ;

pinMode (TTL,INPUT) ;

d i g i t a lWr i t e ( outputPlus ,LOW) ;

d i g i t a lWr i t e ( outputMinus ,LOW) ;

}

void loop ( ) {

i f ( d ig i ta lRead ( inputPin)==1 && dig i ta lRead (TTL)==0){

int previousValue ;

while ( e r r o r ( currentValue (A0))> i e t a ){

previousValue=currentValue (A0 ) ;

//Add p o s i t i v e v o l t a g e //

i f ( s t a r t e r==0){

pos it iveAdd ( ) ;

i f ( e r r o r ( currentValue (A0))> e r r o r ( prev iousValue )){

l e v e l=l ev e l −1;

s t a r t e r =1;

}

}

// Sub t r a c t p o s i t i v e v o l t a g e //

i f ( s t a r t e r==1){

i f ( l e v e l ==0){

d i g i t a lWr i t e ( outputPlus ,LOW) ;

s t a r t e r =2;

}

else{

po s i t i v eSub t r a c t ( ) ;

i f ( e r r o r ( currentValue (A0))> e r r o r ( prev iousValue )){

l e v e l=l e v e l +1;

s t a r t e r =0;

}

}

}

//Add n e g a t i v e v o l t a g e //

i f ( s t a r t e r==2){

negativeAdd ( ) ;

i f ( e r r o r ( currentValue (A0))> e r r o r ( prev iousValue )){

l e v e l=l ev e l −1;

s t a r t e r =3;

}

}

// Sub t r a c t n e g a t i v e v o l t a g e //

i f ( s t a r t e r==3){

i f ( l e v e l ==0){

d i g i t a lWr i t e ( outputMinus ,LOW) ;

s t a r t e r =0;

}

else{
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negat iveSubtract ( ) ;

i f ( e r r o r ( currentValue (A0))> e r r o r ( prev iousValue )){

l e v e l=l e v e l +1;

s t a r t e r =2;

}

}

}

//Check and see i f sw i t c h was opened

i f ( d ig i ta lRead ( inputPin )==0){

break ;

}

}

}

else i f ( d ig i ta lRead ( inputPin)==1 && dig i ta lRead (TTL)==1){

l e v e l=l e v e l ;

s t a r t e r=s t a r t e r ;

}

else i f ( d ig i ta lRead ( inputPin )==0){

d i g i t a lWr i t e ( outputPlus ,LOW) ;

d i g i t a lWr i t e ( outputMinus ,LOW) ;

l e v e l =0;

s t a r t e r =0;

S e r i a l . p r i n t l n ( ”The switch i s not c l o s ed ” ) ;

setValue=currentValue (A0 ) ;

S e r i a l . p r i n t l n ( setValue ) ;

}

else{

l e v e l=l e v e l ;

s t a r t e r=s t a r t e r ;

}

}

int currentValue ( int x){

int i ;

int va l =0;

int valMean ;

for ( i =0; i <10; i++){

va l=val+analogRead (x ) ;

}

valMean=val /10 ;

return valMean ;

}

f loat e r r o r ( int x){

f loat er ;

e r=( f loat ) abs ( setValue−x )/ setValue ;

return er ;

}

void pos it iveAdd (){

l e v e l=l e v e l +1;

analogWrite ( outputPlus , l e v e l ) ;

de lay ( 2 00 ) ;

}

void po s i t i v eSub t r a c t ( ){

l e v e l=l ev e l −1;

analogWrite ( outputPlus , l e v e l ) ;

de lay ( 2 00 ) ;

}

void negativeAdd (){

l e v e l=l e v e l +1;

analogWrite ( outputMinus , l e v e l ) ;

de lay ( 2 00 ) ;

}

void negat iveSubtract ( ){

l e v e l=l ev e l −1;

analogWrite ( outputMinus , l e v e l ) ;

de lay ( 2 00 ) ;

}
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APPENDIX D

NUMERICAL SOLUTION TO THE TIME DEPENDENT

MAXWELL-BLOCH EQUATIONS

Here we will present the techniques used to solve the Maxwell-Bloch equations in the time

domain. Making the change of variables z′ = z and t′ = t− z/c, the MBEs (129) and (130)

can be written as

∂

∂t′









W

U

V









=









−Γ −Im (Ω) −Re (Ω)

Im (Ω) −Γ/2 ∆

Re (Ω) −∆ −Γ/2

















W

U

V









+









−Γ

0

0









(144)

∂Ω

∂z′
=
iκΓ

2
(U − iV ) . (145)

The absorption coefficient κ for a simple two-level atom as considered here is

κ =
2d2egka

~ǫ0Γ
(146)

(see section 4.2). The numerical solution follows [58, 118] by the slicing the one dimensional

sample into very thin slabs with thickness δz and solving for the time evolution of the Bloch

variables in the mth slab at t′ = (n + 1)δt using the electric field and Bloch variables at

t′ = nδt in the mth slab. The electric field in the (m + 1)th slab at t′ = (n + 1)δt can be

solved using the electric field and Bloch variables at t′ = (n + 1)δt from the mth slab. A

schematic of the algorithm is shown in Fig. 68. To estimate the derivative in (144) we use

4th-order Runge-Kutta just like in section 2.4 where now

A ≡









−Γ −Im (Ω) −Re (Ω)

Im (Ω) −Γ/2 ∆

Re (Ω) −∆ −Γ/2









(147)

and

b ≡









−Γ

0

0









(148)
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Ω
n

m

ρ
n

m

Ω
n+1

m

ρ
n+1

m

Ω
n+1

m+1

ρ
n+1

m+1

mδz (m+ 1)δz

nδt

(n+ 1)δt

FIG. 68: Schematic of the algorithm used to solve the MBEs. The arrows indicate which
variables are used to solve for the next step of variables in either space or time. The symbol
ρ is used to indicate the Bloch variables.

The derivative in (145) can be estimated with the simple trapezoidal rule,

Ωn
m+1 = Ωn

m +
δz

2

iκΓ

2
(Un

m − iV n
m) (149)

The process is started by setting (W,U, V ) for t = 0 and ∀z equal to (−1, 0, 0); meaning

the atoms start in their ground state. For the electric field, Ω(0, t) is the programmed input

pulse which is usually taken as a square pulse. The variables are propagated along the z axis

for each value of t′ until the two-dimensional grid has been completely filled. The transmitted

field is taken as the value of the electric at the position z = L and the scattered field can be

calculated by noting that Et = E0 + Es. Stability for the step sizes δz and δt is checked by

ensuring the inner product ρ · ρ is conserved throughout the process and that the solution

converges for decreasing values of the step size. Typical step sizes are chosen as 1
1000

L− 1
100
L

and 1
1000

Γ−1 − 1
100

Γ−1 for δz and δt, respectively.

An additional method is possible by solving the optical bloch equations in the frequency

domain [119]. To do so, we resort back to the former notation for ρ̃eg and use the definition

f(t) =
1

2π

∫ ∞

−∞
dωf(ω)e−iωt (150)

for the Fourier transform. The frequency domain equivalent of (70) in the low light excitation
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limit is then

ρ̃eg(ω) = −1

2

Ω(ω)

ω +∆+ iΓ/2
(151)

Substituting (151) into (145) gives,

∂Ω

∂z
=
ik0
2
χ(ω)Ω(ω) (152)

where

χ(ω) = − κ

k0

Γ/2

ω +∆+ iΓ/2
(153)

is the frequency dependent complex susceptibility [119]. Integrating (152) over the length of

the sample gives

Ω(L) = Ω(0)ei
k0
2
χ(ω)L, (154)

which is the transmitted field ΩT and Ω(0) is the incident field Ω0. Since the transmitted

field must be a superposition of the incident field and the scattered field, Ωs, from the sample

[122], Ωs can be written as

Ωs(ω) = Ω0(ω)
[

ei
k0
2
χ(ω)L − 1

]

. (155)

Transforming back to the time domain gives the temporal response of the scattered field

from the sample. In this formalism, the sample is essentially a linear response filter and the

resultant fast decays are a by-product of the transient response of the susceptibility.
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