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ABSTRACT

MESON PHOTO-COUPLINGS FROM LATTICE QUANTUM
CHROMODYNAMICS

Christian J. P. Shultz 
Old Dominion University, 2015 

Director: Jozef J. Dudek D.Phil

We explore the calculation of three-point functions featuring a vector current in­

sertion in lattice Quantum Chromodynamics. These three-point functions, in general, 

contain information about many radiative transition matrix elements simultaneously. 

We develop and implement the technology necessary to isolate a single matrix ele­

ment via the use of optimized operators, operators designed to interpolate a single 

meson eigenstate, which are constructed as variationally optimized linear combina­

tion of meson interpolating fields within a large basis. In order to frame the results 

we also explore some well known phenomenology arising within the context of the 
constituent quark model before transitioning to a lattice calculation of the spectrum 

of isovector mesons in a version of QCD featuring three flavors of quarks all tuned 

to approximately the physical strange quark mass. We then proceed to calculate 

radiative transition matrix elements for the lightest few isovector pseudoscalar and 

vector particles. The dependence of these form factors and transitions on the photon 

virtuality is extracted and some model intuitions are explored.
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CHAPTER 1

INTRODUCTION

Our modern understanding of particle physics is built upon quantum field theo­

ries possessing local gauge invariance which describe the interactions of fundamental 

spin-| fermions with spin-1 gauge bosons. The standard model is built out of two 

such theories, Electroweak theory1 - in which the gauge group is U( 1) x 517(2), and 

Quantum Chromodynamics, which possesses local S U (3) gauge invariance.

For orientation we first consider the more familiar case of Quantum Electrody­

namics. The Lagrangian for this theory, describing the interaction spin-| fermions 

via exchange of gauge bosons (photons), is

£  =  ip {i$ -  m) ip +  gA^ip^ip -

The piece ip {i$ — rnj ip is the Lagrangian for a free spin-| particle which yields the 

Dirac equation. The second piece, gA^ip'y^ip, describes the coupling of the gauge 

field to the electrically charged vector current, while the term F ^ F ^ ,  featuring the 

field strength tensor F^u, contains the kinetic term for the gauge bosons2.

In this theory the coupling, g, is small and one can perform perturbative expan­

sions. This is to say that one can calculate observables, in a systematically improvable 
manner, via performing an expansion in the coupling. Such a theory, in which there 

is a small parameter in which to expand, is called perturbative.

The Weak theory is mediated by three gauge bosons commonly referred to as the 

charged and neutral currents corresponding to the W ± and Z  gauge bosons. Here 

the gauge bosons are massive, m z  ~  90GeV, m ^± ~  80GeV, and at low energies 
one can perform a perturbative expansion in where p and m  are the momentum 

and mass of the gauge boson. We can construct an effective field theory, describing 
the low energy dynamics of the weak theory, which is perturbative3.

1Electroweak theory is the unified theory of Quantum Electrodynamics and Weak Theory. Spon­
taneous symmetry breaking causes U (1) and the ‘z-projection’ of S U (2) to  mix, one linear combina­
tion becoming the photon of Quantum Electrodynamics, the orthogonal combination the Z-boson.

2In a non-abelian theory FIW also contains the self-couplings of the gauge bosons.
3This is possible due to the large masses associated with the W and Z bosons.
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Quantum Chromodynamics, at low energies, is not perturbative. Like QED and 

the Weak Theory it is a relativistic gauge theory. The theory corresponds to the 

SU(3) piece of the SU(3) x S U (2) x U (1) Standard Model of particle physics and 

describes the interaction of color charged fermions, quarks, with gauge bosons, the 

gluons. A Lagrangian with local SU(3) gauge invariance for the theory can be 

obtained in the standard manner by ‘gauging’ the derivative and including the lowest 

dimensional gauge and parity invariant function of the field strength tensor

C q c d  =  $  ( i $  -  m )  ip +

In QCD, the piece g A describes the coupling of the gauge field to the color 

charged vector current, while the term G ^  is the field strength tensor. Owing to the 

non-abelian4 nature of the theory the gauge portion of the Lagrangian, G,wGflUl also 

includes gluon-gluon interactions. The field strength tensor can be obtained as the 

commutator of two gauge covariant derivatives5,

Gfiii ig Dp.] — dfiAv duAfi ig [A^, A „].

From which we can see that the square of this term will contain three and four field 

combinations which generate the three and four gluon vertices present in QCD.

The fermion fields featured in C q c d  come in six f l a v o r s ,  up, down, charm, strange, 
top, and bottom. Each quark has a different mass, u and d, quarks corresponding to 

the up and down flavors are quite light6, m u>d ~  (9(5MeV). The strange quark is a 

bit heavier, m s ~  O(lOOMeV), while the charm, top, and bottom are much heavier. 

The QCD coupling is ‘flavor-blind’ in the sense that each quark flavor couples to 

gluons with the same strength, g.

Owing to the approximate mass degeneracy between the up and down quark 
flavors QCD also possesses an approximate i s o s p i n  symmetry. The gauge field in­

teraction is flavor blind, if the masses of the up and down quark are exactly the

4Non-abelian refers to the fact tha t generators of the gauge group do not commute. A more 
familiar physical example is the rotation group, 5 0 (3 ). Rotating an object 7r/2 away followed by 
a clockwise rotation of n /2  will not yield the same result as the opposite ordering. This is because 
the generators of the rotation group do not commute [Ji, J j ] — UjkJk- In QCD the gauge group is 
SU (3); there are matrices a t every point in space-time which do not commute. In order to properly 
account for the color phase we must specify the endpoints and the path between them. This is to 
be contrasted with QED which is an example of an abelian theory.

5The gauge covariant derivative D fi is defined as D (J =  — igA^.
6Quark masses are renormalization scheme and scale dependent quantities. The hierarchy of 

masses is presented to give the reader an intuitive notion of the range of quark masses featuring in 
QCD.
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same then we would expect to find exact degeneracies in the experimental spectrum 

corresponding to the u —> d isospin symmetry7. This apparent symmetry can be 

seen in the degenerate masses of different charge states present in the experimental 

spectrum of QCD. In the meson sector, we could for example look at the different 

charge states of the kaon, m K± — 494MeV, m Ko ^o = 498MeV. The A baryon is 

another example of the apparent isospin symmetry, the four different charge states, 

corresponding to different combinations of u and d quarks, all have masses at ap­

proximately tma ~  1232MeV.

Another interesting feature of QCD is the ‘running’ of the coupling constant g. At 

high energies g becomes small and perturbative calculations are successful. Indeed 
the 3-jet events, first observed at DESY, provide perhaps the strongest evidence of 

the existence of gluons and the validity of perturbative QCD at large energies8. At 

lower energies however the situation becomes more complicated: g takes large values 

and perturbative expansions fail to converge. One of the most pressing questions then 

is understanding how the color charged degrees of freedom present in the Lagrangian 

bind together to form the experimentally observed spectrum of color-singlet hadrons 
at low energy.

To a large degree, our understanding of hadronic spectroscopy is built on phe­
nomenological models, particularly the constituent quark model. Mesons and baryons 

are thought of as composite objects formed from two and three constituent quarks 
respectively. Here the constituent quarks can be loosely thought of as spin  ̂ fermions 

which describe the effective degrees of freedom manifest in the spectrum of observed 

hadrons9. Within such a model we then identify the hadrons as aggregate combina­

tions of constituent quarks bound in a potential of gluonic origin. Allowing for such 

a picture, in conjunction with the assumption that the potential is central, permits 

us to construct allowed angular momentum wave functions which in turn enables us 

to postdict a spectrum of states in terms of their J pc quantum numbers.

The spectral content of these models is not however exhaustive, they have no 

support for glueballs, states composed entirely out of the gauge degrees of freedom.

7Even if the quark masses were identical the u  and d quarks have different charges and thus the 
symmetry would be broken by QED interactions.

8In a simple sense jets occur when quarks ‘hadronize’. Since quarks are only produced in pairs an 
additional particle is required to  explain events containing an odd number of jets -  QCD indicates 
th a t this extra particle is a particularly energetic gluon radiated by one of the quarks.

9These constituent quarks are, in the light sector, 0 (300—500MeVj fermions. They correspond to 
‘dressed’ versions of the 0 (5  — lOOMeV) up, down, and strange quarks appearing in the Lagrangian.
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More relevant to our analysis, they also do not feature hybrid hadronic m atter -  states 

that can loosely be classified as being composed of both quark and gluonic degrees 

of freedom. Experimental observation and theoretical investigation of this set of 

hybrid states is an intriguing prospect. These states probe the thus far unmanifested 

low-energy gauge degrees of freedom of the underlying field theory, QCD.

A common thread amongst the hadronic spectroscopists who create these models 

is a desire to understand the origin of the spectrum of states. This is expected to be 

difficult; we believe that the theory is confining -  the quark and gluon fields, present 

in the Lagrangian, are hidden. In a simple sense this means that we do not observe 

the fundamental field content of the theory, as opposed to, say, the electron featured 

in Quantum Electrodynamics. Rather we have access to a set of asymptotic hadronic 

eigenstates, composite objects made of quarks and gluons, whose properties are not 

easily inferred from the underlying Lagrangian.

Mesons in particular serve as an ideal meeting ground between theory and ex­

periment10. Experimentally the spin and parity distribution of states in conjunction 

with the lack of states with strangeness or isospin greater than one indicates that 
mesons might be described, in a minimal context, by simply coupling together a 

constituent quark and antiquark into an object of spin, S  =  0,1. Inclusion of orbital 
angular momentum allows for a prediction of multiplets of states, based on quantum 

mechanical angular momentum addition rules, in terms of their spin, parity, and 
charge conjugation quantum numbers J p c .

For example, considering a quark-antiquark pair in S-wave with I  =  1, yields 

a prediction of two states, J PC = 0"+, the pion, and J pc = 1 the rho meson. 
Considering instead one unit of orbital angular momentum, a P-wave, one predicts 

J pc = l+ “ and J pc = (0 ,1,2)++. Opening the Particle Data Group summary 

table for mesons one finds experimental candidates, (1235), ao(1450), ai(1260), and 

a2(1320), which match the expected pattern of states. The same pattern repeats 

if one considers a quark anti-quark pair in D-wave, one again finds experimental 

candidates matching the predicted pattern of states11.

Absent however, under a naive inspection, is any sign of a gluonic contribution. 

Short of transforming the bare quarks into constituent quarks12 it seems to play

10Mesons, unlike baryons, have a charge conjugation quantum number in addition to  the spin 
and parity quantum  numbers. This third quantum  number makes identifying exotic signals more 
straightforward.

11 There is no p2 experimental candidate.
12By this we mean the process by which the 0 (5  — lOOMeV) quarks featuring in the Lagrangian
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no role in the spectrum. This is unexpected, QCD is a strongly coupled gauge 

theory. The simple qq should not be the entire story, indeed even in the absence of 

quarks, in pure gauge theory, gluons can interact to form bound states formed entirely 

from glue, glueballs [44]. Investigation of this phenomena in the isoscalar sector is 

however complicated. Glueballs are expected to mix strongly with the quark anti­

quark excitations thus making it difficult to extract a clear and concise picture of the 

role of glue in the spectrum.

The hybrid sector provides a more promising testing ground of the hidden glu­

onic contributions to the spectrum of QCD. Provided the gluonic field excitation has 

quantum numbers other than 0++ we can generate J PC outside of the set allowed 
in a quark-antiquark picture, for example J pc  =  0 , 0+~, 1~+, 2+~. These quan­

tum numbers are known as exotic and are one of the best signature for hadronic 

physics extending beyond the constituent quark picture. To date there has been no 

unambiguous experimental observation of any such quantum numbers.

Existence of exotic excitations might also suggests the existence of hybrid can­

didates, with conventional quantum numbers, occurring in multiplets which should 
be embedded in the non-exotic spectrum. Observation of these hybrid candidates, 

understanding their placement in the spectrum, and calculation of their expected 
properties provide exciting benchmarks for experimentalists and theorist alike. In 

fact, a good portion of the theoretical groundwork, aimed at predicting their location 

in the spectrum of non-exotic states, has already been performed. Hybrid candidates 

have been identified in a number of lattice calculations, [18, 19, 13, 15, 16, 37], albeit 

at unphysical quark masses, the observed pattern of states responding only mildly 

to changes in the quark mass. Indeed it is the observation of this hybrid multiplet 

in lattice calculations which spawned much of the motivation for this dissertation 

project.

The tool we propose to use to investigate the dynamics giving rise to the spectrum 

of hadrons is lattice QCD. This is a first principles numerical approach to estimating 

correlation functions, theoretical quantities encoding the dynamics of QCD, based on 

discretizing the theory on a finite grid of Euclidean space-time points. Correlation 

functions are evaluated over a large but finite number of field configurations providing 

for a systematically improvable framework within which we can obtain information

are ‘dressed’, by QCD, to  form the 0(300 — 500MeV) effective degrees of freedom present in the 
spectrum.
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about the non-perturbative dynamics of Quantum Chromodynamics.

Utilizing the tool, lattice QCD, in conjunction with intuition, provide by the 

quark model, promises to be a fruitful avenue of approach when investigating the 

spectrum of hadrons. In this manuscript we will concern ourselves first with the 

spectrum, extracting the excitations of the theory in the mesonic sector which in 

conjunction with novel lattice techniques will allow us to speculatively identify the 

lowest lying hybrid supermultiplet13. We will then take the next step, calculating 

vector current matrix elements between various hadronic states in order to provide 

a non-perturbative estimation of their photo-couplings, a quantity relevant to ex­

perimental physicists interested in performing photo production studies such as the 
GlueX experiment due to begin this year.

When the initial and final state hadrons are of the same type we speak of form- 

factors. Phenomenologically these form-factors can be related to the quark charge 

and current distributions within the parent hadron. The photon can also induce a 

transition from one initial hadronic eigenstate to another, in this case we refer to the 

Lorentz invariant functions encoding dynamics as transition formfactors.
The central problem we will be solving is extracting radiative transition matrix 

elements from three-point functions calculated non-perturbatively using lattice QCD. 
These functions have the generic structure

(OlO/fAO/W OlW IO),

where the operators, O f are color singlet constructions, built out of the fermion 

and gauge fields present in QCD, capable of creating eigenstates of QCD. The vector 
current, j 11, couples the external photon field to the quarks, and induces the transition 

from the initial to final state.

We will find that the operators featuring in the preceding equation can create all 
states with the same quantum numbers at the source and sink (e.g. spin, helicity, 

momentum), each state propagating through time with a factor e~Bnt where En de­

notes the energy of the n’th  state. The problem at hand is then to extract a single 

radiative transition matrix element out of one of our three-point functions where in 
principle we are also interested in excited states whose contributions occur as sub­

leading exponentials. We will show that, via the construction of optimal operators, 

which dominantly produce a single state, we can isolate both ground and excited

13This is a reproduction of work already completed by colleagues [13].
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state contributions to three-point correlation functions. We will then proceed to use 

these matrix elements to extract radiative transition form factors directly from the 

lattice.

There is also a rich phenomenology related to radiative transition formfactors 

arising from calculations performed in the charmonium sector as well as those ob­

tained via non-relativistic quark models. Observation of relative scales of transition 

amplitudes, or equivalently relative sizes of photo-couplings, allows for a model in­

terpretation of the underlying hadron structure. As lattice gauge theorists we are 

uniquely poised to provide non-perturbative, model independent theoretical input 

on the size of such photo-couplings. This manuscript will describe a calculational 

scheme in which one can extract these parameters from lattice calculations before 

implementing the method and examining the phenomenology of the results.
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CHAPTER 2 

A QUARK PICTURE OF HADRONS

The Quark Model was conceived in the mid-sixties as a classification scheme for 

the veritable zoo of hadrons which had been discovered (e.g. ir ,K ,p ,n ,A ,H ,E)  . If 

one assumed the existence of three elementary particles, called quarks, the masses 

of experimentally observed states could be organized into specific patterns based 

on the different ways of combining the quarks1. This was an extremely powerful 

realization. It yielded a theoretical prediction of the existence and mass of the Q,~ 

baryon in 1962. Eventual observation of this baryon in 1963 at Brookhaven National 

Laboratory confirmed suspicions about the existence of quarks, resulted in a Nobel 

Prize for Murray Gell-Mann, and was an important milestone on the road that led 

to the discovery of the theory of Quantum Chromodynamics.
A more modern understanding of QCD tells us that the hadrons are actually 

strongly interacting admixtures of quarks and gluons, the fundamental fields of the 

theory. While we know that valence quarks are an approximation, it turns out to be 

a quite useful one.

Quantum Chromodynamics is an asymptotically free Quantum Field Theory. 
This means that at small distance scales the coupling, which can be thought of as 

describing the strength of quark-glue and glue-glue interactions, is small. At larger 

distance scales the coupling takes on a larger value and the theory is said to be 

confining2. We cannot directly observe the fundamental quark and gluon fields (as 

opposed to the electrons and photons of Quantum Electrodynamics), rather we only 

have access to the hadronic excitations of the theory.

The Quark Model takes advantage of the confining nature of QCD, organizing the 
hadrons into patterns of multiplets based on the purported existence of constituent 

quarks corresponding to the up, down, and strange flavor quarks present in the

*We will use the term valence quarks to  describe the minimal number of quarks necessary to 
construct the spin, flavor, parity, and charge conjugation quantum numbers of hadrons. These are 
to be distinguished from constituent quarks which refer to the dressed or massive quarks used in 
model calculations. In the simple picture we consider the constituent quarks are also the valence 
quarks.

2Here a large distance scale can be roughly thought of as O.lfm =  10~16m, about a tenth of the 
size of a typical hadron.
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standard model. Effectively we add a minimal number of constituent quarks together 

to form the valence structure of the hadron.

As an example we can consider a simple baryon; generically we think of these 

objects as being composed of three valance quarks, bound in a potential of gluonic 

origin, which gives rise to the hadronic states we observe in nature such as protons 

and neutrons. Although we know that the Quark Model lacks a fundamental feature 

of the actual gauge theory (the gluons), the valence quark picture yields an extremely 

effective classification scheme still in use today.

Colloquially we use the term Quark Model as a catch-all phrase for calculations 

and models which feature quarks without explicitly including the gauge degrees of 

freedom occurring in QCD.

In this chapter we introduce some background material pertaining to Quark Mod­

els focusing in particular on mesons, hadrons which can be thought of as quark anti­

quark pairs. In Section 2.1 we demonstrate the construction of qq states finding that 

this construction produces a spectrum of allowed states with no support for a subset 

of quantum numbers which are generically referred to as exotic and are one of the 
main focuses of this manuscript.

2.1 QUARKONIA MULTIPLETS

One starting point for quark model calculations is the realization that the bulk 

properties of the experimentally observed hadronic spectrum appears to favor an 
interpretation of hadrons as combinations of 0(3OOMeV) constituent quarks. Equiv­

alently, the degrees of freedom manifest in the experimental spectrum appear to be 
constituent quarks as opposed to the nearly massless quarks featuring in the QCD 

Lagrangian. Assuming for the moment that constituent quarks do appear as effec­

tive degrees of freedom within QCD we illustrate some well known phenomenology 

related to quark anti-quark angular wave functions.

By making the approximation that mesons are bound states made up of one 

quark and one antiquark we will find that we can derive the allowed J pc  (spin, 

parity, charge-conjugation) quantum numbers. We will specialize to a non-relativistic 
theory in which there is a single heavy flavor and work under the assumption that 

the potential between the quarks is central.

2.1.1 CONSTRUCTION OF MESON WAVEFUNCTIONS
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The construction of wavefunctions is easiest in momentum space. Working in 

the center of momentum frame we can generically decompose the wave-function into 

a radial momentum space wave-function, </>, multiplying a spherical harmonic. In 

order to construct a state of total angular momentum, J , we first couple the quark 

spins together (S  = 0,1) and then add in any additional angular momentum from 

the spherical harmonic (L =  0 ,1 ,2 ,.. .) .  The generic form of the wave-function for 

the n ’th  radial quantum number is:

Here the variable m j  is the projection of spin of the meson along the z-axis while r 

and f  are the spin projection of the quark and anti-quark respectively. At rest these 

qq constructions, along with being eigenstates of total angular momentum, J , have 

good quantum numbers under parity and charge-conjugation.

The parity operator, V,  reverses the coordinates of the state. The operator 
acts only on the qq state and takes the momentum p —> —p. We can derive the 

transformation of our model hadron under parity. We find:

n 25+1 Lj,  m j ) qq =  {LmL]Sm a\ J m j ) ^ { \ r \ \ r \ S m s)
rriL,ms

J  YL L(p) Qr(p)qf(-p,))

x /  M I p I) K ' i f i ) v  <ir{p)qf{-p)) 

=  ( -1 )  ^ 2  {LmL]Sm s\Jmj)  ± f \Sms)
TTll,̂ Tfls r,r

( - 1) ^ 2  (LmL\S m s\ J m j ) Y ^ { \ r \ \ r \ S m s)
m L,m3 r,r

x  /  y l l ( ~ p ) qr ( p ) q f ( - p )}

( -1 )L+1 (LmL;S ras|J ra j) ]P (± r ;± f |S r a s)
m L,ms r,r
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The first minus sign arises because the quark and antiquark have opposite intrinsic 

parity quantum numbers. We then perform a change of variables in the momentum 

integral taking pi —> —p̂  which changes the argument of the spherical harmonic. 

Spherical harmonics transform under parity as Y™L(—p) =  (—1 )l Y™L(p), we use 

this relation to arrive at the result, V\n2S+1Lj,  m j ) qq =  (—1)L+1|n2S+1L j , m j ) qq.

Charge conjugation is the second discrete symmetry we consider. Under charge 

conjugation particles are transformed into antiparticles. For example, acting with 

the charge conjugation operator, C, on the fermion state Ig) produces an anti-fermion 

state, C\q) — \q). For our purposes we will consider only flavor neutral states3. 

Considering for the moment any state, the application of the charge conjugation 

operator twice must return us to the same state, C2\̂ j) =  p C\tpc) = VVc\ip) =  W)- 
Now considering our flavor neutral construction it is also the case that \tp) =  \tpc)-, and 

so r] =  rjc- Further we see that for the flavor neutral states, to which we specialize, 

the eigenvalues, qc, under charge conjugation must be pc =  ±1 since p^ =  1.
Since our model hadron is composed of a flavor neutral quark-antiquark pair it 

is an eigenstate of the charge conjugation operator, under charge conjugation this

3In general only charge neutral states can be eigenstates of charge conjugation.
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state transforms as:

C\n2S+1Lj,  m j ) qq

=  X  (LmL-,Sms\Jmj)Y2(2r’2f \Sms)
m ^ ,m 5 r ,f

=  X  (LmL;5 m s|J m j ) ^ ( 5 r ; 5 f |5 m s)
mL,ms r ,f

X /  ^ ( P )  l?r(p)9f(-R»

=  ( - 1 )  ^  (LmL;5 m s| J m j ) ^ ( i r ; i f | 5 m s)
,m s r ,r

x  /  ‘W I p D  ^ ( p )  l9r ( - p ) g r (p ))

= (-!)L+1 X] (LmL,Sms\Jmj)Y2&'î \Sms)
m L,ms r ,r

x J  <t>nL{\p\) YFL(p) \Qf(p)qr(-p))
= ( - 1 ) L+1( -1 )S+1 X  (i'm L;S'ms|Jm j)  X ( J f ;

m ^ ,m 5 r ,f

X /  ^ ( P )  I 9 f ( p ) $ r ( - P ) >

=  ( - l ) i+ s  |n2S+1L j,m 7)99-

Here the first minus sign arises from exchanging the order of the quark and the 

anti-quark. The factor of (—1)L arises in the same manner as it did in the parity 

calculation. Finally the factor of (—l) s+1 comes from the exchange symmetry of 

the 50 (3 ) Clebsch-Gordon coefficients4. We see that under charge conjugation our 

constructions transform as C\n2S+1Lj ,  m j ) qq =  (—l )L+s\n2S+1Lj,  m j ) qq.

2.1.2 ALLOWED AND EXOTIC QUANTUM  NUM BERS

Having derived the transformation properties of our model hadrons under parity 

and charge conjugation we are ready to construct the allowed quantum numbers 

within this model. The procedure boils down to the following:

4The spin wave function for |  0  1 —> 0 is antisymmetric (e.g. |t4 ) — |4T))» while those for 
\  ® \  - t  1 are symmetric (|TT), | t i )  +  |4t)> |U » -
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1. Couple the quark spins into S  =  0,1.

2. Couple the spin and orbital angular momentum together to form the total 

angular momentum, J , using the ordinary angular momentum addition rules 

\L — S\ < J  <  L + S. This forms a piece of the s u p e r m u l t i p l e t  5 .

3. For each J  in the multiplet construct the parity and charge conjugation quan­

tum numbers using the rules P  = (—1)L+1 and C  =  (—1)L+S.

The patterns for quark-antiquark bound states in terms of their J PC quantum 

numbers are identified in Table 1 for the lowest few allowed values of orbital angular 
momentum. The signal for an apparent underlying bound state structure would 

manifest itself as an approximate degeneracy in the spectrum of mesons across the 
multiplet6. Higher radial excitations would appear as recurring set of degenerate 

states at higher masses in the spectrum. Later we will compare our expectation to a 

spectrum of states calculated from first principles on the lattice and find that these 

patterns indeed manifest themselves.
Conspicuously absent are a set of J PC referred to as e x o t i c  q u a n t u m  n u m b e r s ,  the 

lowest few being J PC =  0 , (1,3, • ■ ■)~+, (0,2, • • •)+“ . In terms of the PDG naming
scheme, for the isovector mesons we specialize to, the states are the p 0 , n i ,  ir3 , b0 , b2 . 

Table 2 presents a reorganization of Table 1 and we can see the absence of exotic 

quantum numbers.

2.2 THE LIGHTEST HYBRID SUPERMULTIPLET?

As previously mentioned, the underlying theory, QCD, is strongly interacting. 

Indeed it would be a strange story if one could exchange the strongly interacting 

dynamics present in the Lagrangian for a set of effective degrees of freedom, present 
in the experimental spectrum, which did not feature contributions of gluonic origin. 

One possible avenue of approach, aimed at resolving this puzzle, is to numerically 
simulate QCD and explicitly search for exotic excitations. Leaving the details of the 

numeric simulation and analysis methods to later in the dissertation we now provide, 

as a primer, a spectrum of states calculated using lattice QCD in Figure 1.

5We use the term  supermultiplet to  refer to  the common underlying angular momentum structure 
amongst mesons of different J PC.

6In general there are additional forces, for example the fine structure arising from spin-orbit inter­
actions (L-S) which splits states. Tensor interactions, proportional to  (ff\ • f)  (<f2 • r),
are also present and cause mixing of the basis states (e.g. 3D i and 3Si  mix).
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Table 1: Allowed qq 2S+1L j  patterns within the quark model and the corresponding 

J pc  supermultiplets.

qq Supermultiplet

Orbital Angular Momentum Spin (Jp c )

oII 5  =  0 Q-+
5  =  1 I —

L =  1 ( P)
5  =  0 1+-

5 = 1 (0, 1, 2)++

L =  2 (D)
5 =  0 2~+

(1, 2,3 )—5  =  1

L =  3 ( F)
5  =  0 3+“

5  =  1 (2,3,4)++

L =  4 (G)
5  =  0 4~+

50 Cn 1 15  =  1

Table 2: Non-exotic and exotic J pc  quantum numbers, (g) represents an exotic 

quantum number not allowed within our quark anti-quark bound state model.

Possible quantum numbers 

for J  < 3
j p C — - + + + + -

J  =  0 (8 ) 0 “ + 0 + + (8 )
J =  1 1— (8 ) 1++ 1+-
J  =  2 2“ 2-+ 2++ <8 >
J  =  3 3— <8 ) 3++ 3+"
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There are three main features of particular relevance to our current analysis of the 

quark model. The first is the presence of the nearly degenerate quarkonia multiplets 

presented in red (S-wave), blue (P-wave), and green (D-wave). We observe multiplets 

that appear to be describable by postulating constituent quarks as effective degrees 

of freedom.

The second main feature present in a lattice extraction of the spectrum, but yet 

to be determined experimentally, is the support for exotic quantum numbers featured 

at the far right of the figure. Simply stated, exotic states are present in QCD when 

the theory is computed on the lattice. This suggests that glue does in fact play a 

non-trivial role in the hadronic spectrum. Analysis of the properties of these exotic 
states may be one avenue by which we can begin to glean more information about 

the strongly interacting gluonic degrees of freedom.

A final noteworthy observation is the appearance of a nearly degenerate set of 

states, lying at approximately 2.2GeV, the scale at which the exotic 1_+ also appears. 

This set of states appearing with quantum numbers (0,1, 2)~+ and 1 was first 

tentatively identified as 3<S'i ® l +~ —> J pc =  (0 ,1 ,2)~+ and x5o ® l +_ -> J PC =  1 
in [13]. We may potentially be seeing a signal for a hybrid supermultiplet. This is to 

say that if the lowest gluonic excitation has the quantum numbers, l +“ , a chromo- 
magnetic field, then we might expect the lightest set of states to appear as qq S -wave 

constructions coupled to an excitation of the gauge field. We seem to see some signal 

that this could be the case in Figure 1 (dark blue).
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Figure 1: Here we present a lattice calculation where we have identified the spin, 
parity, and charge conjugation quantum numbers for a variety of states. Boxes 

represent energy levels extracted in our calculation, the size of the box corresponding 

to the uncertainty of the extracted energy. Different supermultiplet candidate states 

are grouped according to color. This calculation was performed in a version of QCD 

with three flavors of quarks all tuned to approximately the strange quark mass, 

further details of the lattices can be found in Section 7.1.
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CHAPTER 3

RADIATIVE TRANSITIONS

In the previous chapter we reviewed the constituent quark model and constructed 

the angular momentum wave functions for simple qq constructions. We found an 

allowed spectrum of states which could be labeled by their spin, parity, and charge 

conjugation quantum numbers, J PC. We then proceeded to briefly examine a lattice 

spectrum and found that we could tentatively identify the spectrum as a conventional 

set of qq eigenstates supplemented by a spectrum of hybrid and exotic states.

These hybrid states offer an intriguing opportunity to investigate some of the 

non-perturbative dynamics giving rise to the spectrum of QCD. Specifically we will 

concern ourselves with the calculation of vector current matrix elements which po­

tentially allow us to probe the underlying quark current and charge distributions 
within hadrons.

Here we present a non-relativistic expansion of the vector current and identify 
the origin of heavy quark spin flip suppression. We then proceed to introduce the 

multipole expansion of vector current matrix elements which effectively organizes 

the vector current into reduced matrix elements of irreducible spherical tensors which 

encode the dynamics of hadron-hadron matrix elements. The chapter concludes with 

an overview of some of the phenomenology associated with radiative decays.

3.1 HEAVY QUARKS AND THE VECTOR CURRENT

3.1.1 THE VECTOR CURRENT

In this section we expand the vector current, in the heavy quark limit.

Since we will be performing a non-relativistic reduction we use the Dirac gamma 

matrix convention,
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The (Tfc are the Pauli Matrices,

a i = 0 2 0 3

In this normalization the matrices satisfy the commutation relation [<7*, Oj] =  2ielJkOk 

as well as the anti-commutation relation {<7j,er,} =  25^.

The quark fields, ip, are represented by vectors in Dirac space which are solutions 

to the free Dirac equation.

[ i^ d ^  - m q]ip = 0

The quark field, ip, can be represented in terms of ladder operators:

d3p 1 
>. hv.~ip(x) =  J

(2ir)3v/2 W f E *

and the creation and annihilation operators for quarks and antiquarks obey the anti 

commutation rules,

=  {bb K - }  =  q)Srs,

with all other anticommutators equal to zero.

For our purposes it will be sufficient to consider only the positive frequency solu­

tions to the Dirac equation1, they are given by2

1

y/2Ep
us(p)e~ •tpx ua(p) =  a /^p  +  m q

1
Bp »

. Ep+rriq .

is a two-spinor representing a spin 1/2 particle and satisfying =  fis,s

Choosing to quantize along the z-axis yields

X(

In quantum field theory the dual form of a quark field is given by ip = ip^/°. The 

extra factor of 70 relative to the hermitian adjoint is introduced in order to make

’1" XH > = o'
0 1

1 We seek a non-relativistic reduction of the current operator Writing out the current
we find four terms (cda, cd6 , 6 ^6 ). Under normal ordering terms proportional to  a^b and b^a 
will not contribute. The negative frequency solution (6 ^6 ) simply provides a copy of the positive 
frequency result with quarks exchanged for anti-quarks.

2ip+ (x) =  5 Z»=± /  (2JP (x)aye~%V'x -  we are concerned with the general form of the vector 
current and it is sufficient to consider only a single momentum.
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bilinear forms well behaved under Lorentz transformations (e.g. ipip is a Lorentz 

scalar while ipty is not). Some details of the transformations of Dirac bilinears under 

Lorentz transformations can be found in Section 5.2.2.1.

Having introduced the machinery and notation we now turn to the problem at 

hand, namely extracting the heavy quark limit of the bilinear ip~fkip which, when 

contracted with a photon field, provides the interaction between photons and quarks 

in QED. Explicitly writing the structure of the current we see

^p',y(z)7fĉ p>(z)
p ip ' x  p —ipx

-.u(p' ,s ' )^°yku(p,s)-
y/%Ep> ’ V 2 Ep

= ^  ^  +  mq  >/E p  +  mq  y(«')t (  ° " P ’ a  +  \  YW_
s j  2 Ept \f2Ep \  Ep> +  mq E p + m q)

The r.h.s. of the above equation can be further manipulated using the identity 

(er • a) Ok =  ajfc — i [a x a]k, one finds:

<Pp',s'{x ) 7fĉ )S(f) =

ez ( p > - p ) - x ^ +rrig^ e p +  m q (s,)f / p'k - j \ p '  x a\k pk + i \ p x a } k \  {s)
y/2 Ep, y/2 Ep V Ep> + m q Ep + m q )

Choosing to work in the frame |p| =  \p'\ simplifies the result considerably. We find

V frv O zb N M * ) =  x (y)t (  Ip’ + p]k - i [ q x  #]k )  x (s)-

where q — p ' —p. Recalling that we are working in the limit of large quark mass we 

remind the reader that in this limit the momentum transfer, q is also much smaller 

than the momentum of the struck quark p. This is akin to trying to deflect a bowling 

ball with a ping-pong ball. The relative difference in inertial masses mean that the 

impulse delivered to the bowling ball is very small relative to the momentum of the 
bowling ball.

Expanding the energy for momenta small relative to the quark mass we arrive a t3

1pp>,s<{x)lk^pAx)

“ e X V 2mq 2mq ) X ^  2m* + 8 m * ) + U [ m f

3Working only to  order m 1 negates the need for making the simplification |p| =  \p'\.



20

It is sufficient for our purposes to work only to order to- 1. Exchanging the momenta 

for a velocity-like term (v =  which has a good limit as the quark mass becomes

arbitrarily large, the non-relativistic vector current is

J nr(p 's' ,P s ;x ) = el*s y (s')f (l)

The second term appearing between the spinors flips the spin of the quark and 

is the origin of heavy quark spin-flip suppression which is the notion that matrix 

elements of the vector current involving quark spin flips are depleted relative to 

those which leave the spin wave-function untouched. For example a 25+1 L j  — 3 Si 
state decaying to ‘So should, from the viewpoint of a quark model, be suppressed 

by a power of the quark mass since the structure of the spin wave-function changes 

from triplet to singlet.

3.1.2 M U L T IP O L E  E X P A N S IO N

Having demonstrated the expansion of the vector current in the case of heavy 
quarks we now turn to the expansion of the result in terms of multipoles. This 

procedure eventually reduces to organizing the vector current into a sum over irre­

ducible spherical tensors. The multipole elements then correspond to the reduced 

matrix elements of these irreducible tensors.

As usual when considering angular momenta it is most convenient to work in a 

spherical basis. We choose to quantize along the z-axis. The vector current can be 

rewritten in terms of its angular momentum components which we label by m.  The 

components are defined by

JNR{p's' ,P s ',r ) =  ■ JN R (pV ,ps;r) (2)

where e(q, m)  represents a polarization vector for a spin-1 particle quantized about 

the z-axis. We use the basis

e(q = \q\z, m  = 0) =  [0,0, E / m ] 

e(<7 =  \q\z,m = ± ) =  [1,±*,0].

The plane wave appearing in the vector current (Equation 1) can be expanded 

into products of Bessel functions and Legendre polynomials (Wigner D-matrices)
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using

1=00

ei k x ^ * '( 2 /  +  l)ji(hx)Pi(cos6) =  ^  il(2l + l ) j t(kx) 0 ^ ( 0 , 6 , 0 )
1=0

where we have used the fact that Pi(cosf3) = Do,o(a  =  0, /3, 7 =  0).

Rewriting Equation 1 in terms of its angular decomposition yields

1=00

J N R(p's' ,ps;r)  = ^ V ( 2 /  +  l ) j i (qr)D^(e)
1=0

x ^£fc(<f,ra)x(s,)t ( vk +

In order to elucidate the transformation properties of the current it is useful to 

decompose the term in brackets into spherical tensors.

Specializing our discussion to real photons (m =  ± ) and recalling that for a real 

photon the polarization is orthogonal to the momentum we can use the scalar triple 

product identity to rewrite the term featuring a cross-product as

where the variable sm takes the sign of the spin projection, s+ =  1 and s_ =  — 1. 

So it follows that the combination e(q, m)  • [<f x a) is nothing more than a raising or 

lowering operator acting in spinor-space. The vector current becomes

Both terms transform like spin-1 under rotations. Upon inspection one sees that 

the velocity term transforms like a vector, it is negative under parity. The magnetic

with an ordinary vector, it too is negative under parity.

The problem now reduces to reorganizing the current into a sum over irreducible 

spherical tensors. Such a tensor is defined by its transformation properties under 
rotations, namely a rank-A; spherical tensor transforms as

e(q, m)  • [q x <j] =  <7 • [e (<f, m)  x q] 

= isma  • e(q,m)\q\

1=0

dipole term, originates from an axial vector appearing in a cross product

U(R)XL»U(R)'  =
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Where U(R) is a unitary representation of the rotation, R, and D^jm(R) is a Wigner 

D-matrix.

The angular structure of the current can then be exposed via the group theoretic 

projection formula (orthogonality relation)

r2
. , ,  ,JmUm2

which allows us to pick out various components of arbitrary rank tensors. The 

integral, f  dR, is an integral over the group space, for example the three Euler 

angles. Projecting out the various irreducible spherical tensors we find the generic 

formula

^  = ̂ r -  J  dRU (R )JZ 'R(p 's ' ,ps ,r)U(R) '  D ^ ( R )

which tells us how to access any given term in the expansion.

Generically these current operators will appear sandwiched between states of 

definite angular momentum which taken with the symmetries of the current restrict 
the various values of k that may appear. The multipole moments are then identified 

with the reduced matrix elements in the standard way, denoting the spin, parity, and 

spin projection eigenstate using | J pm),  the reduced matrix elements are given by

(J’p'rri\T&k)\Jpm) = { - l ) m+J' - k (J ,F'| |T (fc) 11 J p ). (4)
m  m

One conventional labeling of the reduced matrix elements is

(J,P' \ \ T ^ \ \ J P) = \ [ ( l  + ( -1  )kSP) Ek + ( 1 -  ( ~ l ) kSP) M k

where Ek and M k are the electric and magnetic multipole moments and SP is the 

product of the initial and final state parities. This redefinition separates electric from 

magnetic transitions based on the relative parity of the initial and final state -  for a 
given k the transition is either of magnetic or electric type.

There is in fact a phenomenological hierarchy of multipole amplitudes associated 

with this decomposition. Returning, for a moment, to qq angular momentum wave 

functions within the quark model, we recall that the allowed J PC quantum numbers 

followed from the symmetries of the qq angular momentum constructions. We first 

coupled the spins of the two fermions into S  = 0,1 and then added in relative orbital 

angular momentum to form \L — S\ <  J  < L + S. Within our non-relativistic
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expansion of the vector current the current can either leave the spin wave function 

invariant or flip the spin of one of the quarks moving from S  = 0 to S  = 1 or vice 

versa. This may be seen by considering Equation 3. The term in brackets may be 

rewritten as

Vm ^a's +  5m^ X (S,)td!mX{s) =  Vm 5s>s -  (5 )
t m  v2m

Here we explicitly see that transitions involving quark spin flips get suppressed by a

power of the quark mass. Using this decomposition in conjunction with our definition

of the multipole matrix elements one can show that the two terms occurring above can

be identified as the origins of electric and magnetic multipole transitions respectively.
As a simple example we can consider a vector (35i) state radiatively decaying to 

a pseudoscalar ^So). Using Equation 4 we see that in order for the 3-J  symbol to 

be non-zero we must have k = 1. Since the initial and final states are both 5-wave 

we see that the product of the initial and final parities is positive an by inspection 

of Equation 3.1.2 we can identify the transition to be of magnetic dipole type (Mi). 

Now inspecting the relative spin wave functions we also notice that we move from 
triplet to singlet, a spin flip has occurred. Thus on the basis of our non-relativistic 

model we expect this transition to be suppressed by the quark mass.

The current can potentially also connect states of the same spin but different 
spin projections, for example consider a vector meson interacting with an external 
photon field via the absorption of a photon which changes the spin wave function 

from positive to zero spin projection ( |TT) —̂ IT!) +  l i t )  ) ~ this too should be 
suppressed.

Transitions in this vein have in fact already been calculated non-perturbatively 

on the lattice in the charmonium sector where the quark model is expected to be 

rather successful owing to the heavy nature of the charm quark. y Cl —> y J/U  and 

Xc2 iJ/ifr were calculated using lattice QCD in [14, 22]. For the Xc transitions4 the 
expected hierarchy of multipoles was observed. In particular for yCl —> yJ/V* there 

are three transition amplitudes, one longitudinal5, and two transverse (E\, M2); the 

authors found that | ^ |  ~  0.1. A similar relative scaling was found in Xc2 y^/V , 
here there are five multipoles, three transverse and two longitudinal. The authors 

extracted ~  °-4 and ~ a0 1 '

i Xcj ~  3P j
5When considering off shell photons there is a third polarization state, the longitudinal state, 

corresponding to  helicity zero.
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The gradation of sizes of multipole amplitudes will be of particular interest in our 

analysis. We expect, on the basis of this non-relativistic expansion for heavy quarks, 

that all magnetic transitions for conventional qq mesons are suppressed. One possible 

signal of observation of a non-conventional meson is then a large magnetic transition 

amplitude where the photon provides the angular momentum for an excitation of 

gluonic origin. In some sense we will be looking for transitions that do not fit within 

the expected pattern in the hopes that they may provide some insight into the gauge 

degrees of freedom of QCD.
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CHAPTER 4

LATTICE GAUGE THEORY

The properties of hadrons constructed from strongly interacting quarks and glu­

ons should be calculable within the relevant gauge field theory, Quantum Chromody­

namics (QCD). At the energy scale of hadrons, QCD does not have a small coupling 

constant and must be treated non-perturbatively. The tool we will use to achieve this 
is lattice QCD, in which the field theory is discretized on a finite grid of Euclidean 

space-time points, and where we can compute correlation functions as an average 

over a finite but large number of possible gauge-field configurations.

4.1 THE PATH INTEGRAL

The functional integral formalism underpins modern understanding of quantum 
field theory. It was originally introduced by Feynman in the context of quantum 

mechanics, later gaining widespread use in quantum field theory. Here we sketch the 

basics of the path integral approach used to simulate QCD. We will work in natural 
units in which h = c = 1.

The two most fundamental objects we will be working with are the QCD La- 

grangian, £ qcd, and the generating functional, -Zqcd- The Minkowski Lagrangian 
is

£ q c d  =  ^  ^  +  g A f f i f t a t l )  -  ^ G > G T -  (6 )

The quark fields, denoted by ipf(x), are color-spinor fields which are functions of 

the space-time coordinate, x, with a SU(3) color index i — 1,2,3 and a Dirac spinor 

index a = 0 ,1 ,2,3. The quark fields transform locally1 under S U (3) color gauge 
rotations while the Lagrange density is a gauge invariant scalar density.

The gluon fields, A“ , transform as Lorentz vectors and have a color index a =  1—8 
corresponding to the adjoint representation of S U (3) while the ta are the generators 

of the gauge group, one possible basis being the Gell-Mann matrices.

1Under a gauge transformation the quark field transforms as ipf{x) £ tJ(x )y “ (x)i where Qt]{x) 
is an element of S U (3) representing the gauge transformation at space-time point x.
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The 7fj, are Dirac matrices and in Minkowski space obey the anti-commutation 

relation {7^ ,7,,} =  7^7  ̂ — 7^7^ =  2g^J2. G“u is the field strength tensor for the 

chromo-magnetic and chromo-electric fields, it is defined as

A ° ~  a- K  -  9/ ^ K a i ,

where g is the coupling and f abc are the structure constants which re-express the Lie 

brackets of pairs of generators as a linear combination of generators from the same 

set (i.e. [ta, t b] = i f abctc).

Having introduced the Lagrangian, we may now turn to the QCD generating 

functional, it is defined as

2 q c d  =  J  D \ ^ , A ] e iS^ * ’A\

which on its own is a non-convergent oscillating integral3. In this expression S  is the 

action,

S = j  (14x Cqcd{x ).

In order to regularize the functional integral we perform an operation called a Wick 
Rotation. F o rm a lly  th is  is a n  a n a ly t ic  c o n tin u a tio n  of t im e  in to  th e  co m p le x  p la n e  

which can be practically achieved by taking t = —ir  for r  > 0. This has the advantage 
of replacing the oscillating weight, e~lS, occurring in the generating functional with 

an exponential damping, e~s .
Specializing our discussion from this point forward to the Euclidean path integral 

we see the generating functional becomes

Zqcd = j  Dli, ,̂A}e-s^*Al (7)

Working in a Euclidean space-time we now introduce the field theoretic quantities 

of interest, correlation functions, which encode information about the spectrum and 

matrix elements we wish to extract. These correlation functions may be written in 

a compact manner in path integral form. Allowing, for the moment, a somewhat 

nebulous definition of an operator as a collection of quark and gluon fields, the 

expectation of these operators may be written as

^QCD J

2gflu =  d ia g (+  )
3This integral may be defined using for example an ie-prescription. The functional differential,

D[ip, ip, A], stands for ‘integrate over all possible values the field can take a t each point in space-time’. 
We will instead choose to  regulate the integral via a Wick rotation which effectively corresponds to 
integrating along the imaginary direction in time.
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Here, and from this point forward, it is to be understood that t represents a time 

variable that has been analytically continued via a Wick Rotation.

We stop for a moment to point out one noteworthy property of the preceding 

equation, namely that on the l.h.s we have operators which are operator valued 

functions of the quark and gluon fields -  on the left the quark and gluon fields are 

operators4. This is to be contrasted with the r.h.s. where the quark and gluon fields 

are just numbers which should be integrated over.

Integrating over all possible field configurations should be expected to be an ardu­

ous task, in fact we do not yet know how to compute functional integrals analytically 

except for a few simple systems5. One technique, which allows the integral to be 

estimated numerically, involves discretizing spacetime onto a mesh of points. This 

process, of discretizing the path integral, essentially defines a scheme in which we 

can calculate correlation functions. We will now proceed to sketch the basics of the 

numerical approach to estimating the path integral of lattice QCD.

Working in a discrete space-time it is natural to label the nodes of the lattice by 

a vector of integers, n — [nx,n y,n z,n t\. Using a to denote the lattice spacing, the 
allowed space-time coordinates are Xu = a n .  Here we will specialize to a case where 

the length of the box is the same in all directions, Lx = Ly = Lz — Lt =  Na = L, 
where we have imagined that we have divided each direction into N  segments6.

The quark fields, ipfix), reside on the nodes of the lattice. They are chosen to 
obey periodic boundary conditions in the spatial direction, ip?(x) = (x +  L), and 

anti-periodic boundary conditions in time7.

In the continuum theory the gluon fields j4“ appear in the parallel transporters

U(x,y) = V { e i9^ dẑ {z)tc}

which tell us how to accumulate color phase as we move through space. Here the 

symbol V  denotes a path ordering and means to compute the exponentiated integral 

along some specific path from x  to y. When we discretize the theory the parallel

4By this we mean th a t we could reexpress the quark and gluon fields as creation and annihilation 
operators for one-particle states.

5For example the harmonic oscillator in non-relativistic quantum mechanics
6Later in the text we will consider QCD on an anisotropic lattice where the discretization along 

the temporal direction is finer than  along the spatial directions.
7One could in principle choose alternate boundary conditions for the spatial directions periodic 

B.C. will be useful in our calculation as they naturally allow for quantization of momentum in units 
of 27r/L . The anti-periodic boundary conditions in time are a consequence of putting fermions on 
a toroid, the sign must be introduced to make the density m atrix positive definite.
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transporters must be anchored at the nodes of the lattice, we call the resulting trans­

porters which take us from one node to its neighbor gauge links, they are elements 

of S U ( 3) and are defined as:

U ^ x )  =  U{ x ,  x  +  p )  =  e i9aAt {x)tC.

Where a is the lattice spacing along the /i direction8.

In Figure 2 we show a toy representation of the discretization of QCD in 1 -f 

1 dimensions. The fermion fields “live” on the lattice sites while the gluons are 

contained in the gauge links that connect neighboring sites. The operators O, defined 

in more detail in Section 5.2, are constructed out of gauge invariant combinations of 
the quark fields and gauge links.

The discretization of the underlying field theory onto a lattice provides us a 

systematically improvable framework in which we can non-perturbatively evaluate 

correlation functions in the strongly coupled regime of QCD.

4.2 FERMIONS IN THE PATH INTEGRAL

Having introduced the lattice discretization of the Euclidean path integral we 

now turn to an overview of methods which enable us to numerically estimate corre­

lation functions. We look first to the fermion content of the path integral. Fermions 
anti-commute. In the language of operators this condition is imposed on the cre­

ation/annihilation field operators. However, as mentioned previously, within the 

path integral formulation the fermions are replaced by numbers which should be in­

tegrated over. In order to build in the anti-commutation under the path integral 

we represent the fermions by Grassman numbers -  anti-commuting complex num­

bers. A more detailed discussion of fermions and Grassman algebra can be found 
Appendix A.l

The main result is j  = det(M ), (8)

where r] and £  are vectors of Grassman numbers.

Armed with this knowledge of Grassman integration, Equation 8, we now look to 

how we can use this formula to analytically integrate out the fermionic fields from

8Note the variable change, when talking about gauge fields in the context of a lattice dis­
cretization we exchange the field variable, A r̂ (x),  for the link variable U^(x)  which is the parallel 
transporter taking us from site x  to  site x  + afi along the straight line path, not for example a path 
th a t has the shape of a staple, which is an im portant distinction in non-abelian theories.
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Figure 2: A 1 +  1 dimensional toroid. When we discretize QCD onto a lattice the 

quark fields sit on the nodes of the lattice while the gluon fields live along the 
gauge links in the matrices U which are elements of SU(3).
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the path integral. Recalling that we may specify any node on our lattice by a vector 

of integers, n =  [nx, ny, nz, n t], and defining ipn = ip(an), we may proceed to write 

the action in discretized form as

S['lp,'tpiU\ ‘S'gaugeff/] T" ^   ̂ A/nin2 [f/]^n2
n 1,712

Where M nuJl2[U] represents the lattice discretization of the piece of the continuum 

Euclidean action appearing between the quark fields, {jj) — m ), U 9 is the gauge 

field10, and 5,gauge[t/] represents a lattice discretization of the gauge portion of the 

Lagrangian. The generating functional of the discretized Path Integral may be writ­

ten as

-Zq c d  =  J
Now using the integration formula for Grassman numbers (Equation 8) we see the 

fermion fields may be analytically integrated yielding

-Zq c d  =  /  D[f/]e~5gaugĉ  det(M[{7]).

This is an extremely powerful realization -  we do not need to represent anti- 

commuting complex numbers on a computer. Further the preceding equation can 

be estimated via standard Markov-Chain Monte Carlo methods.

4.2.1 CORRELATION FUNCTIONS

As mentioned previously, the fundamental theoretical objects of interest are cor­

relation functions. For now it is useful to consider operators composed entirely of 

gauge links, we will lift this restriction after we have introduced the essential details 

related to the numeric estimation of correlation functions. Denoting our operator, 
composed only out of gauge links, as O q , such a correlation function takes the form

<0|OG|0) =  — [  D[U]e~s^ W  de t ( M[ U] )  O g {U].
Z qCD J

The simplest way one could estimate this correlation function is by drawing gauge 

configurations, at random, and then averaging over a finite but large number of 
configurations. For a lattice which contains N  sites along each direction there are

9U, the gauge field corresponds to  a link variable. It is an element of 517(3). There is a matrix, 
describing the gauge field, a t each link on the lattice.

10The matrix, MniiT,2 [{7], contains dependence on the gauge field through the gauge covariant 
derivative appearing in the Lagrange density.
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4N 4 gauge links. Each link variable can be specified by eight real numbers11, thus the 

parameter space of such a simulation is 32N 4. Modern lattices contain roughly twenty 

nodes along any given direction; as a simple baseline we can consider a parameter 

space consisting of 512 x 104 real numbers in the interval [0,2it\ -  one may expect 

that such a naive approach to estimating the correlation function would have poor 

convergence properties.

Fortunately we can do much better. We do this by drawing the gauge configura­

tions according to the probability density,

P(U) = - L - e~s^ [u] det(M[U}). (9)
-2-q c d

Integration methods of this form, drawing sample points according to some prob­

ability distribution, fall under the general class of algorithms called Markov Chain 

Monte Carlo methods12.

Drawing from such a probability density also admits a classic interpretation of 

the integration path. Consider for a moment the principle of stationary action from 
Classical Mechanics. Minimization of the action corresponds roughly to a gauge field 

of maximum probability. Thus in an intuitive sense we can consider this formulation 

as sampling the Path Integral near the classical equations of motion. Those field 
configurations which minimize the action are exponentially preferred relative to those 

which are far from the classical solution13.

By drawing a finite but large set of gauge configurations, {£/;}, according to the 

probability density in Equation 9, we can estimate the expectation value14 as

<o|d0 |o} =  ^ ] T o 0 M -
N m

More generally we will also be interested in computing correlation functions involving 
fermion fields. The numeric estimation of such correlation functions proceeds in the 

same manner and where the fermion fields are contracted together, the combination 

is replaced by the propagator, M ~ X[U].

n There axe 8  generators of S U (3), any element of the group can be written as e,0ata where 0a is
a real number and ta is a generator. There is an implied summation on a.

12The Metropolis-Hastings algorithm is one such algorithm seen commonly in the context of 
numeric integration.

13More correctly the probability is also proportional to  det(M [[/]). The ‘action’ in this case is 
then e-SGl^+WdetCAfg/])^

14This formulation also provides us with an estimate of the variance of the distribution.
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4.2.2 SYMMETRIES AND INTUITION

Having introduced the general technology used to sample correlation functions 

we now aim to build some intuition for the effect the lattice discretization has on 

our calculation. In particular we focus on the loss of rotational symmetry. When we 

consider QCD on a grid we do not have the ability to rotate by any infinitesimal angle 

as we do in the continuum. Rather, we can only perform rotations and reflections 

which leave the grid invariant. This means that the Hamiltonian, and thus the 

eigenstates, of our lattice discretized theory have a different symmetry group than 

their infinite volume continuum counterparts15.

For example, if we think about a square discretization of a two dimensional theory, 

Figure 3, we immediately realize that the square is only invariant under rotations 
by 7t/2. In a simple sense we have lost the ability to perform infinitesimal rotations 

which in turn mixes the angular momentum eigenstates. For example, considering 

only rotations by 7r/2 we lose the ability to distinguish m  = 0 angular wave functions 

from m — 4.
This feature, reduced symmetry arising from the discretization, will reappear 

when we consider spectroscopy and matrix elements. We will find that particles 

transforming like spin-J in the continuum are instead labeled by the irreducible 

representations of the symmetry group of the cube, multiple values of J  being present 

in any one irreducible representation.

15Another way of saying this is tha t the operator which rotates by an infinitesimal angle does not 
commute with the lattice discretized Hamiltonian. The traditional set of quantum  numbers must 
be replaced with a set th a t are good under cubic symmetry.
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Figure 3: A two dimensional lattice discretization.
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CHAPTER 5

SPECTROSCOPY ON THE LATTICE

Extraction of the spectrum begins with the calculation of Euclidean two-point 

functions which encode the spectrum of eigenstates of lattice QCD. The functions 

of interest appear as matrix elements between creation and annihilation operators 

separated by some Euclidean distance in time. We will see that such a two-point 

function has a spectral representation whose time dependence is governed by the 

set of eigenstates of the finite volume, lattice discretized Hamiltonian, H. Here we 

present the essential details of correlator construction, a variational based analysis 

method which allows access to the lowest lying hadronic eigenstates, and the results 

from a spectroscopic calculation.

5.1 CORRELATION FUNCTIONS

Determination of the excited spectrum of QCD proceeds from the calculation of 

correlation functions between a basis of creation and annihilation operators, {O}}, 
separated by a distance t in Euclidean time. Such a correlation function takes the 

form

C ij( t)  =  ( 0 |0 j ( t ) 0 } ( 0 ) |0 )

where |0) denotes the vacuum. By inserting a complete set of states of the lattice 

discretized Hamiltonian, H |n) =  E„|n), and time evolving the annihilation operator 

back to the origin, Oi(t) =  em Oi(Q)e~m , we can decompose the correlation function 

into its spectral representation 1 .

=  £  ^ ( 0 |0 ,(0)|n)<n|0 *(0)|0)e -E-'
n Zt jn

The index n runs over particle species, angular momentum, and momentum. It is 

worth noting that formally all strongly interacting eigenstates, including for example

!In a finite volume the spectrum is discrete rather than  continuous owing to the quantization of 
momentum ( 1  =  2i r l n)(n l )■ Some details of momentum conservation in a finite volume are 
presented in Appendix B.2.
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the nucleus of Carbon-12, are contained in this sum. We will specialize to the case 

of the lowest few mesonic excitations.

By constructing operators with good quantum numbers (e.g. total angular mo­

mentum, parity, and charge conjugation quantum numbers) we can filter the sum 

into excitations within a given channel. This is to say that the vacuum operator 

state overlaps, (n|CT(0)|0), will only be non-zero if the operator O has the same 

quantum numbers as the state n.

Operators appearing in the two-point functions we consider are constructed to 

be gauge invariant combinations of the fundamental quark and gluon fields (gauge 

links). The generic form of the operators we will use is

2,V

where T acts in the suppressed color and spin spaces as well as coordinate space2. 

A two point function between two such operators may be re-expressed in terms of 

Wick contractions and evaluated numerically.

(0|Oi(t)ot(0)|0) = (0|fe(t)rif(«)^-(t) • <M0)ry0)>fe(0)|0)

= (o, o > r y  o)}

+ ^ { A ^ M ) r i f , r(t)} T U M jy o .o j r y o ) }

Here the traces are over color and spin, there are implied sums on the spatial indices. 

The second term involving a product of two traces is referred to as a disconnected 

diagram and does not feature in the isovector correlation functions to which we 

specialize.

The correlation functions are evaluated over the set of gauge configurations. We 

will see later in this chapter that constructing a matrix of such two point functions 

and inspecting the time dependence allows for robust extraction of the spectrum. 

The actual method we use, the variational method, becomes more powerful as one 

increases the redundancy of operators in a given channel of quantum numbers and, as 

such, we are well served by techniques that allow for both the efficient construction 

of a basis of operators3 and subsequent numerical evaluation of correlation functions. 

Motivated by the need for a large basis in conjunction with the infrastructure to

2r also includes momentum projection. Later, in our three-point function analysis, we will 
require operators projected to  be at rest as well as those projected into definite momentum.

3Details of operator construction appear in the subsequent section.
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efficiently evaluate two-point functions we now turn to some of the more technical 

details regarding operator construction before transitioning to spectroscopic methods 

and results.

We will only be considering the lightest few mesonic excitations and as such it

interest. One well-known way of improving operator overlap onto the lightest set of 

hadrons is ‘smearing’ [1]. The thrust of these methods is to construct a new set of 

fields, as a combination of the fields appearing in the Lagrangian, which will be used 

in the operator construction.

A good smearing algorithm should be gauge covariant; we do not want to change 

the transformation properties of the quark fields under color gauge rotations. We 

would also like to preserve the properties of the quark fields under parity, charge 

conjugation, and rotation. The smearing function we wish to use should then preserve 
as many symmetries as possible while removing the presence of short range modes, 

which do not contribute to the long range physics we are interested in.

Historically the method of choice is Jacobi smearing [1]. This method is one of 
several based on use of the lattice Laplacian as a smearing function. One represen­

tation of the Laplacian is

i =i

where U represents a gauge field which may be itself be constructed from a covariant 

gauge field smearing algorithm 4. The smearing function (operator) is defined as

where the parameters a  and na are tunable and can be used to optimize overlap onto 

the states of interest. It should be understood that the smearing function Sa%na(t) has 

suppressed color and space indices, it is a polynomial function of the gauge covariant

discretization error, relative to  the continuum value, which is polynomial in a the lattice spacing. 
Various formulations of the Laplacian, based on different finite difference derivatives (e.g. forward, 
backward, central), will introduce different discretization effects.

5.2 OPERATOR CONSTRUCTION

is judicious to construct operators which overlap predominantly onto the low modes 

of the theory with reduced overlap onto higher lying excitations which are not of

3

) =  6<SW -  £  t)si + l i + u } ( g - l

4Since we are working on a grid with finite spacing introduction of a derivative introduces
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Laplacian, in discretized space-time the operator becomes a matrix with color and 

x-space (3-space) indices.

When considering the effect of smearing on quark fields it is helpful to expose the 

previously suppressed color and space indices of the smearing operator

and can be shown to be a weighted average of the quark fields amongst neighboring 

sites connected by parallel transporters to ensure the proper transformation under 

color gauge rotations.

It is helpful to consider the limit of large na (i.e. many applications of the

be thought of as a smearing width. This function exponentially damps out the 
higher lying eigenmodes of the Laplace operator whilst retaining the lowest modes

the Laplacian are plane waves, damping out the higher modes can be intuitively 

understood introducing a soft momentum damping on the quark fields which should 

not be relevant to the spectrum of low lying hadrons.

A more modern incarnation of Laplacian based smearing, which we choose to use,

use in our operator construction. In this formulation the smearing operator is written 
as an outer product of some number of vectors in position and color-space. One then 

exploits the outer product nature of the smearing operator to factorize correlation 

functions into products of matrices in the distillation space. Our implementation 

chooses to make use of the eigenvectors of the gauge covariant Laplacian as the 
smearing basis.

The algorithm proceeds as follows:

5Recall for the fc’th  eigenvector, £}k\  the Helmholtz equation is =  —A T h u s  ea^
damps the projection along fc’th  eigenvector with weight e~aXk. If we consider the free field case 
then this smearing algorithm becomes a projection onto plane waves, =  etk x and A*, =  fc2.

The smeared quark fields are defined as

smearing operation). In this limit the smearing function becomes e<rV2 and a can

which are of interest5. Indeed in the non-interacting limit the eigenfunctions of

5.2.1 DISTILLATION SMEARING

is called Distillation [48]. Distillation can be thought of as a choice of quark fields to
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1. Let Vd be the vector space of the gauge covariant three dimensional Laplacian, 

it is rank N 3 x Nc where N  is the integer length of the box and Nc =  3, the 

number of colors.

2. Define the distillation operator, □, on timeslice t as the product of an Vd x  Nd  

matrix, E, and its hermitian conjugate. Nd  is the rank of the smearing operator 

and is chosen to be small Nd « V d -

□(«) =  E( t ) E ' ( t )

3. Choose the fc’th column of E(t) to be the fc’th  eigenvector of V 2, on 
timeslice t where the eigenvectors have been ordered by eigenvalue6.

a w = 3(t)st(<) □ W( f ) = E ? f w ? r , w
fc=l

4. Define the distillation smeared quark fields as

i ’At)  =  ^ 2  D*y (*%(*)
y

Such a smearing operator has numerous advantages, namely, the distillation op­

erator is scalar under rotations, covariant under gauge rotations, and is parity and 

charge conjugation invariant. The operator is also idempotent, D2 =  □, and has 
the property that when we increase the number of distillation operators to be the 

dimension of the space Vd the distillation operator becomes the identity operator 

and the quark fields are unsmeared.

The biggest advantage of distillation becomes evident when we consider construct­
ing meson operators out of distillation smeared quark fields. Such an operator may 

be written as
Oi(t) =  ■ TV(t)  ■

Here repeated indices, as well as the suppressed color and spin indices, are summed 

over. We can write a two point function composed of two such distillation smeared 
operators in shorthand notation (suppressing all indices) as

Cij(t) =  <o|CM*)0t(o)|o> =  < 0 | t o r j c w t • v50n o rJ0no^o|o).
6In principle one can choose an alternate basis of vectors as well as include some k dependent 

function which assigns relative weights to the vectors.
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After evaluating the quark field portion of the path integral the connected portion 

of the two point function is

c«(t) = -Tr{o„M07‘D1r;D1M̂ ‘n0r;}.

Now exposing the outer product nature of the smearing operator we see the true 

ingenuity of distillation smearing, namely a factorization of the correlation function 

into a trace over the product of a set of No  x N D matrices where N D is the rank of 

the distillation operator. Explicitly,

=  - T Y { t P9( 0 ,  t) ■ % r {t)  ■ Trs{ t , 0 )  • 0 ) } ,

where 7

=  «Sp)tM0; ‘d ,) « t )  =  ?“ ,ne<r).

T h e  p e ra m b u la to rs , r p9 ( 0 , t ) ,  d e sc r ib e  q u a rk  p ro p a g a tio n  w h ile  th e  $  e n c o d e  o p ­

erator construction. Of particular note is the fact that the choice of source and sink 

operators $  is completely independent of the computation of the perambulators8. 
Indeed in practice one precomputes and stores the r  and d>, this allows for the ef­

ficient calculation of a large number of correlation functions a posteriori. A similar 

factorization occurs for the disconnected correlation functions, those involving the 
product of two or more traces, arising in isoscalar calculations.

The essential ingredients, needed to construct our implementation of the distilla­

tion operator, are the first few eigenvectors themselves and the object We
again stress the value of factorization of the correlation function. In practice the rank 

of the distillation operator is an 0(100) number which should be compared to the 

size of the full space propagator, M ~ l , a matrix of rank O(107) even in modest cal­

culations. In practice we actually only have access to M,  computing the unsmeared

7Here we have used the cyclic property of the trace (TrfABC} =  Tx{B C A })  to “slide” ^  
around the trace.

8This is not the case in traditional smearing algorithms. Older algorithms make use of ‘point-to- 
all’ propagation which requires knowledge of the source or sink prior to computation of the quark 
propagators.

9In practice these vectors can be efficiently extracted using conjugate gradient algorithms to 
solve the system A x  =  b where A  = M , b = and x  is the aptly named solution vector we 
desire,
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correlation function would require the inversion of this entire space of this matrix. 

Conversely distillation only requires 0(100) inversions.

5.2.2 MESON INTERPOLATORS

Having reviewed the smearing algorithms and exposed the factorization of cor­

relation functions we are now ready to turn to the construction of the operators 

appearing in these functions. In general the method we use for spectroscopic anal­

ysis, the variational method, makes use of a redundancy of operators within any 

channel of quantum numbers, the robustness of our variational solution being tied 

to the size and efficacy of our basis of interpolators.

We will proceed by first considering the simplest set of operators we can construct, 

local fermion bilinear operators. That is, operators of generic structure ipTip where 

T is one of the sixteen Dirac matrices (e.g. 757^, ollv). In distillation the quark

fields, ip, will be replaced by the smeared fields ip, but this does not change the 

nature of the operator under rotations and thus the quantum numbers will be the 
same. We reproduce a known result, namely that the simplest local bilinears are 
somewhat limited in that they only allow access to J pc — 0-+ , 0++, 1 , 1++, l +~.

More complicate operator constructions, considered later, will include combinations 

of gauge links in addition to some Dirac structure which offer both redundancy in 
these channels as well as access to higher spins.

5.2.2.1 QUANTUM  NUM BERS OF DIRAC BILINEARS

In the interest of conveying the essence of the derivation we make use of the 

familiar Minkowski space conventions in this subsection. We will show how to derive 

the transformation properties of Dirac bilinear operators using p'rfip as an example. 

The quantum numbers J p c , of this operator at rest are accessed by examination of 

its transformation under rotations (J), parity (P ), and charge conjugation (C). We 

first consider the transformation of ipY*P under rotations.

A general Lorentz Transformation can be parameterized using six numbers, for 

example rotations using the three Euler angles and boosts along the three cartesian 
directions, and has the following form [49].

A =  e~ ^ s^ ,  Ai =  = -  [ f ,  71
2 4

for 07,„ an anti-symmetric tensor. Under such a transformation the fermion fields
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become

ip(x) -> Ait/>(A_1:r), ^(x)  —> '0(A~1x)A71 (10)
2 2

Rotations are a subset of Lorentz transformations and can be parameterized10 by 

where u 0fl =  0 (ie: no boosts). We will use a general Lorentz parametrization 

with the understanding that the boost parameters are zero. It is sufficient to consider 

infinitesimal transformation to 0 ( u )  when determining the transformation laws. For 

small uj the operator ipj5ip transforms like

working on the term (l +  -ys ( l  -  ^up(JS pa) we see

( i + \ ^ s A  y  ( i  -  ' ^ s A

=  ( 7S +  { Y , Y ] Y )  ( l  -  ^ 5 " )

= (7s + (YYis ~ YYY)\  (1  -  ' ^ s A  .

Using the formula 'y^Y'y8 =  27pguS — 2 Y g fiS +  we see

( 7s + i u v j  (YYY -  YYY)\  (1 -  l ^ s A

=  ( 7s ( l  +  5^ 5 '" ')  -  j - v  ( W *  -  7 V S) )  (1  -  

= Y - ^ Y Y ‘ + o(uj2).

The operator 'tprfip behaves as a Lorentz 4-vector under transformations11 

■07(5'0 —> +  0(u>2).

Equivalently, the temporal portion of this operator, 8 =  0, transforms like a scalar 
while the spatial portion transforms like a vector and can be assigned to total angular 

momentum J  = 1.

Under parity transformations, V,  the quark fields transform as

Vip(t, x )V  =  777°'0(i, - x )

10For example w12 =  —^ 2 1  = 6 with all other components zero is just a rotation in the xy-plane.
11 This is ju st the 4-vector encoding of the more familiar infinitesimal rotation in three dimensions, 

Ti l j  +  Ujkjk,  where the m atrix ui encodes the rotation parameters.
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where \rj\2 =  1. Applying this rule to the quark fields we see the bilinear 

transforms as

=  \r]\2'ij)'y0'ySry0'ip(t, —x )  =
+-07'V for <5 =  0

—xjj'yS'ijj for 5 =  1, 2,3.

Here we see that the operator, acquires the same minus sign on the spatial

components as the vector xM, thus we conclude that the bilinear transforms as a 

Lorentz 4-vector under parity transformations.

The other discrete transformation we will consider, particle-antiparticle symme-

Evaluating each component individually and recalling that 70 and y2 are symmetric 
while 71 and 7s are antisymmetric 12 we find

number with eigenvalue —1 13. For the sake of brevity we summarize the transfor­

mation properties of the sixteen fermion bilinears in Table 3 separating the vector 

and scalar positions of the 4-vectors.

12We need to exchange 7 ^  for its transpose, 7 ^ .
13Strictly one can only form charge conjugation eigenstates when the quark and antiquark fields 

are the same flavor. For two degenerate flavors charge conjugation generalizes simply to  G-parity.

try, or charge conjugation (C) effectively changes fermions to antifermions. Under 

this transformation the quark and antiquark fields transform as

CipC — -i('ipr)°^2)T CipC = —i( 7<W ) t .

Working out the charge conjugation can be a bit tricky and it is helpful to write out 

the spinor indices. For the vector bilinear we find

Cip^ifrC = <

V

Thus we conclude that the operator ij)7*V is has a good charge conjugation quantum
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Table 3: J PC quantum numbers of the simplest fermion bilinears.

ijjtp ■07°^ ■0757°'0 'tp'y5' j  kip

j P C  Q+ +  Q - +  Q + - l ~ ~  Q -+  1+4- I ----  1 +  -

5.2.2.2 DERIVATIVE BASED MESON OPERATORS

As we have just seen the simple local fermion bilinear operators are limited in 

the sense that they restrict us to a small set of quantum numbers without very much 

redundancy in any given channel. In order to construct operators of higher spin and 

to produce multiple operators within a given symmetry channel one can consider the 

use of non-local operators. We consider operators of generic structure

O  ~  . . . i p .

D ~  — ~3 where D is a gauge covariant derivative. We have suppressed color,
space, and spin indices for clarity. The use of the “forward-backward” derivative 

is not strictly necessary but it simplifies the construction of operators of definite 
charge conjugation symmetry at non-zero momentum. Working first with continuum 

rotational symmetry we form a circular basis of cartesian vector-like operators and 

gamma matrices (e.g. D  it 7*, t i jk l j lk , ■ • •)>

k

for

I
- ^ ( l , i , 0) for m =  +1

(0, 0, 1) for m  =  0

^ ( l , - i , 0) for m  =  —1.

Expressed in this basis the derivatives and vector like gamma matrices transform 

like J  =  1. Higher spins can be constructed by coupling components together using 

the standard SO{3) Clebsch-Gordon symbols. For example if we couple a vector­
like gamma matrix to a single derivative we can form operators of total angular 

momentum J  =  0 ,1 ,2  as

(rJ=1 x = ]T (1, m x; 1, m2| J, M)
7711,7772
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Two derivative operators may be constructed in a similar manner. We use the con­

vention where the derivatives are first coupled together to form angular momentum 

Jd =  0, 1, 2, then the angular momentum from the vector-like gamma matrix is 

added allowing access to total angular momentum J  =  0 ,1 ,2,3.

( r f c , x B f ; ) W =  Y ,  <h m ; J D , m D\ J , M )
m \ ,7712 
ins.m o

x ( l ,m 2; l ,m 3|JD,m£,) m2*3m3ip

Of particular interest in this example is the fact that the Clebsch-Gordon coeffi­

cients for 1 ® 1 —» 1 are antisymmetric in the two indices, this means the operator 

constructed from two gauge covariant derivatives coupled together into spin 1 is pro­

portional to a commutator of two derivatives. In the absence of gauge fields this 

commutator is zero, derivatives in different directions commute. Once we promote 

the derivatives to the gauge covariant derivatives the commutator is proportional to 

the field strength tensor14 which does not vanish on non-trivial gauge configurations.
Higher spins may be accessed in a similar manner by coupling together more 

derivatives. In practice we use up to three derivatives for operators projected into 

rest and up to two derivatives for mesons projected onto non-zero momentum. We 

have access to J  <  4 at rest and J  < 3 in flight.

5.2.2.3 SUBDUCTION INTO LATTICE IRREPS

In lattice QCD calculations the theory is discretized on a four dimensional Eu­

clidean hyper toroid grid. This means that the full rotational symmetry of the 

continuum, which gives rise to angular momentum conservation and allows for the 

classification of eigenstates in terms of their total angular momentum J , is broken. 

Instead, we are left with the symmetry group of the cube, or equivalently the oc- 

trahedral group. At rest the single cover cubic group relevant to the integer spin 

mesons we consider has five irreducible representations (irreps): Ai, A 2, E, 7 j, T215. 
The process of distributing the various M  projections of a spin J  meson across the 

cubic irreps is called subduction. The essence of the procedure reduces to taking linear 
combinations of the projections (M ) to create operators which transform irreducibly

Upnv  _  D v], since we only work with spatial derivatives we only access the spatial (mag­
netic) portion of the field strength tensor.

15The Ai and Ai irreps are one dimensional. The E irrep has dimension two. T\ and are 
three dimensional.
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under the cubic symmetry of the box

=  J 2  S ^ ° J'M <u )
M

where A is the cubic irrep, A i , A 2, E , T i ,T2, and fx is the “row” of the irrep 

(1 .. .  dim(A)).

is a subduction matrix, it is unitary, S ^ S ^ *  =  which fixes

the normalization of the subduction coefficients16. The distribution of continuum 

spins into lattice irreps is presented in Table 4 17.

Table 4: Continuum spins subduced into lattice irreps A(dim).

J  irreps

0 A i(l)

1 Ti(3)
2 T2(3) © E (2)
3 T i(3 ) © T2(3) © A 2( l)

4 A i(l) 0  Ti(3) © T2(3) ® E(2)

It is worth noting that, at rest, parity and charge conjugation remain good quan­
tum numbers even in discretized space-time.

A representation of the subduction matrix may be constructed in a number of 

different ways, here we give one possible derivation. The simplest case we can consider 

is a J  = 0 operator, considering Table 4 this only subduces into the A\  irrep. It 

follows that 5^° j =  1. Subduction of J  =  1 operators is also straightforward, spin 1 

only subduces into the Tj irrep. Here =  S ^ - m , it is simply a relabeling of the 
continuum angular momentum projections.

The subduction of higher spins can be constructed with an iterative algorithm

16The subduction coefficients for integer spin can be rephased such th a t all coefficients are real. 
This is not true in the case half integer spin.

17Table reproduced from [20]
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starting from the J  = 0,1 coefficients and using18

Aj,A2 Mi,M2

Here {J\, M\; J2, M2\J, M)  is the usual 50(3) Clebsch-Gordan coefficient for J\ ®

for Ai ® A2 —> A. N  is a normalization factor, fixed by the requirement that the 

subduction coefficients form a unitary matrix as discussed above. Explicit values of 

subduction coefficients, further discussion, and an alternate derivation via a group 

projection formula are presented in [20].

A similar set of subduction coefficients for mesons projected onto non-zero mo­

mentum also exists19. Here the relevant symmetry group is called the little group 

which are the set of rotations that leave the momentum invariant. The correspond­
ing subduction matrices subduce the different helicity components, A, of a spin J  
meson into another set of lattice irreps.

5.2.2.4 CUBIC SYMMETRY

An illustrative example of subduction is J  =  2 at rest. Here the five equivalent 

‘rows’ (M  =  —2 . . .  2) get distributed into a three-dimensional irrep called T2 and 

a two-dimensional irrep called E.  Because there are only a finite number of these 

irreps, they must also accommodate multiple values of J , such that T2 additionally 

contains parts of J  =  3 ,4 . . .  (see for example Table 4).

Considering only the cubic symmetry of the lattice, and not any underlying 

continuum-like symmetry, we would not expect there to be any relationship between 
different irreps. For example a correlation function featuring operators subduced 

from J  =  2 into T2 takes values that need not be related to one containing E  oper­

ators. The correlation functions we extract feature eigenstates of the finite volume 
Hamiltonian, the different quantum numbers correspond to different irreducible rep­

resentations, there is no symmetry which links them.

18Discussion and formulas reproduced from [20]
19These coefficients are reproduced in Appendix B.3.

j is the octahedral group Clebsch-Gordan coefficient 
Ai A2 '
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Table 5: Allowed lattice momenta on a cubic lattice in a finite cubic box, along with 

the corresponding little groups (the double covers relevant for integer and half-integer 

spin) from Ref. [43, 42]. We list only the single cover irreps relevant for integer spin. 

Lattice momenta are given in units of 2n /(N as) where n ,m ,p  G Z* are non-zero 

integers with n  ^  m  ^  p. The A  and B  irreps have dimension one, E  two and T  

three. Dicn is the dicyclic group of order 4n. Reproduced from [53].

Lattice
Momentum

Little Group
(double cover)

Irreps (A or Ap ) 

(for single cover)

(0,0,0) O du h A f ,  A t ,  E ± ,  T f ,  I f

(n,0,0) Dic4 Ai, A 2 , B\,  B-2, E 2

(n,n,  0) Dic2 Ai, A 2 , Bx, Bi
(n, n, n ) Dic3 A\, Ai,  Ei
(n, m, 0) c4 A\, Ai
(n, n, m) c4 A\, Ai
(n ,m ,p ) c2 A

However, were there really to be no relation, we could hardly claim to be approxi­

mating QCD in a realistic manner. In practical calculations it should be the case that 

through a combination of sufficiently fine lattice spacing, reduction of discretization 

artifacts through improvement of the action [52], and interpolation of hadrons using 

operators smoothed over many lattice sites [11], that the continuum symmetry is 

manifested to a good approximation with only small deviations.

For example we might expect to see a relation between T2 and E  correlation 
functions corresponding to them originating from the same J  =  2 meson. In previous 

two-point function calculations we have observed that the rotational symmetry of the 

continuum theory is clearly visible in relations amongst the irreps both for eigenstate 
masses and the values of matrix elements ( 0 |C ^ |n )  [19, 20].

Observation of this approximate restoration of rotational symmetry, present in 

the continuum theory, indicates that the different eigenstates residing in the E  and 

T2 irreps may be faithfully assigned to different angular momentum projections of a
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spin J  =  2 meson20. We will make use of this feature when it comes time to explore 

three-point functions later in this dissertation.

5.3 CORRELATOR CONSTRUCTION AND ANALYSIS

We extract the spectrum via the calculation of a set of correlation functions 

between the distillation smeared creation and annihilation operators previously de­

scribed. The correlation functions take the generic form

C„(t) =  <0|C4(t)Cj(0)|0),

where |0) denotes the vacuum. As described earlier we time evolve the annihilation 

back to the origin and insert a complete set of states yielding a spectral decomposition 

of the correlation function21,

c a(t)  =  E ^ < 0i0 ‘(0)in><n i0 i(0)i°>e_B' ' '  <12>
n

We remind the reader that the discrete nature of the identity operator follows from 
performing the calculation in a finite volume.

The variational method for spectral extraction, which we use throughout, takes 
advantage of the redundancy of operators within the basis we described previously. 

The crux of the method reduces to the intuitive notion that there should be a particu­

lar linear combination of operators within our basis that is most suited to interpolate 

the lightest state of the spectrum, another linear combination that optimally inter­

polates the first excited state, a third combination for the second excited state and 

so on.

The method is akin to the Rayleigh-Ritz method in ordinary Quantum Mechanics 

were one attempts to diagonalize the Hamiltonian in a basis of well motivated trial 
wave functions when an analytic solution is overly complicated. Here we attem pt to 

diagonalize the exponentiation of the Hamiltonian in a trial basis of well motivated 
operators that we believe resemble the low lying eigenstates of the theory.

20For states lying above two-particle kinematic thresholds the boundary can have an effect and the 
situation becomes more complicated. A set of methods, generically referred to  as Liischer methods, 
see for example references [34, 38, 50] .allow one to extract information about two-particle infinite 
volume scattering below three particle threshold from lattice two-point correlation functions. These 
methods are beyond the scope of this manuscript. We do not address them  further.

21This form of the spectral representation is valid provided t  «  L t where L t is the temporal 
length of the box.
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Mathematically the method arises from a variational optimization problem within 

a set of trial weights -  we want to maximize the signal to produce, for example, a pion 

within a basis of operators. More practically, it requires us to solving a generalized 

eigenvalue problem of the form

A„(£) is called a generalized eigenvalue, An(t0) =  1. The generalized eigenvectors,

eigenvalues behave like An(t) rsj g '̂n [6, 39],

We present a derivation of the variational method, cast as a solution to an opti­

mization problem, in Appendix B.l where we show that this method produces the 

best, in a variational sense, linear combination of operators to interpolate a single 

eigenstate of the finite volume Hamiltonian.

The spectral representation of the correlation function, Equation 12, can be 

rewritten in terms of operator overlaps, Z f  = (n|C?J |0), where we have chosen the 
phases on the operators such that all overlaps are real numbers22, as

These operator overlaps are time independent numbers which measure the strength 
with which an operator creates an eigenstate of the Hamiltonian and are related to

The orthogonality condition on the generalized eigenvectors, =  5n,m,

also proves to be very powerful in the extraction of near degenerate states, the res-

Simply put there are different linear combinations of operators for degenerate states, 

the different linear combinations orthogonal on the metric C(t0). Use of the vari­

ational method in conjunction with an extensive basis capable of supporting the 
spectrum of states allows us to resolve near degeneracies.

Naive inspection of the orthogonality condition also suggests a range of validity of 

the variational solution. The generalized eigenvectors are forced, by the method, to be 

orthogonal on the metric C(t0) -  this is an approximation to the ‘true orthogonality’,

22This is a choice, generically the definition of operators appearing in Euclidean correlation func­
tions may be rephased such th a t all two-point correlation functions are real. The more general form  7"*7" .

C(t)vM(t) = \ n(t)C(t0)v^ ( t ) . (13)

u(n), are orthogonal on a metric, v ^ C ( t 0) v ^  = 5n,m. For large times the generalized

z * z z
(14)

the generalized eigenvectors via Z" =  \ / 2 EneEn (j.{ (t0)

olution of which would be complicated by only considering their time dependence.

of the spectral representation is Cij(t)  =  e  Ent
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which is defined between a much much larger number of states and operators. One 

then realizes that t0 should be chosen to be large enough that the correlation functions 

are dominated by the lightest dim(C') states, the higher excitations having decayed 

away exponentially, the signals being in a loose sense numerically small enough to 

neglect23.

The orthogonality condition then implies one should simply push t0 out to larger 

and larger values in order to further damp out states with energies larger than 

•£'n'=dim(C)- In practice this approach tends to be unreasonable. We work on a finite 

set of gauge configurations and so each estimate in time of the correlation function 

also has some variance associated with it. A general rule of thumb in lattice calcu­

lations is that the signal to noise ratio becomes smaller as one considers correlators 

across longer and longer times24. As we can see from Equation 13 this noise will also 

enter into the variational solution and thus the orthogonality condition, we do not 

want to make to so large that the statistical noise spoils the orthogonality and thus 
the solution.

5.3.1 PRINCIPAL CORRELATORS

The actual details of the implementation of our variational solution in terms of 

Singular Value Decomposition is discussed along with the derivation in Appendix B.l. 

We now turn to the details of spectral extraction from the principal correlators, 

An(t). The principal correlators can be shown by perturbation theory [6] to behave 

asymptotically like
A„(t) ~  g-^nd-to )  +  0 ( e -®n+it).

Here, for a basis of N  operators, E*n+1, is the energy of the N  + l ’th  state. The cor­

rections, as expected, are proportional to the exponentiation of the energies of states 

that lie outside the reach of our variational basis, the smallest of which produces the 

largest correction.

In practice we fit the principal correlators to the form

A„(i) =  (1 -  A n)e~En{t- to) +  A ne - Ê - to)

23In actual calculation we explore a number of to values and observe th a t after a sufficiently 
long time the spectrum tends to  ‘settle’, the solution then remaining stable until statistical noise 
becomes troublesome enough to  spoil the data.

24The signal to noise on correlators typically decreases for all correlators except those featuring 
the ground state, the pion.
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where the fit parameters are An, En, and E'n. The second exponential term is present 

to help stabilize the fit and allows us to consider the behavior of the principal cor­

relator at smaller times. We require the energy of the second exponential, E'n to be 

larger than E„ typically finding in practice that E'n is of roughly the same size as E<n 

(i.e. it is of the size of the energy of states lying just outside the reach of our basis 

of operators).

We plot a subset of principal correlators, extracted in this analysis, along with 

their fits, in the left and right panels of Figure 4. The dominant time dependence, 

due to state n, has been divided out such that the correlator becomes flat at the 

point the fit becomes dominated by the single state of interest. Empirically the 
importance of the second exponential becomes smaller as one increases the value of 

t0. Further, in agreement with the perturbative analysis, the mass scale of the second 

exponential becomes larger than Ew, 04 =  dim(C). At too early values of to this is 

not necessarily true, and indication that we are forcing an incorrect orthogonality 

relation as discussed previously.

5.3.2 CONTINUUM  SYMMETRIES

As discussed previously, it should be possible through appropriate smearing, con­

struction of operators with good continuum symmetry, and a reduction of discretiza­

tion effects via improvements to the action and a sufficiently fine mesh, to restore 

continuum rotational symmetry to a good approximation with only small deviations. 

We do in fact see this apparent restoration in our lattice calculations. In Figure 5 
we plot a correlation matrix for Apc — Tj , organized by the continuum spin-J of 

each operator, and normalized such that the diagonal elements are unity. We see, in 

explicit calculation, a nearly block diagonal matrix, an indication that the underlying 

continuum symmetry is approximately restored.

5.3.3 STATE IDENTIFICATION

Having identified an approximate restoration of rotational symmetry we can ask 

the question “Can we identify the continuum J pc  quantum numbers of a state from 
our lattice calculation?” Formally the most rigorous method to determine the spin of 

a state would be to perform a set of lattice calculations on successively finer meshes 
and then extrapolate the result to the continuum limit in which the discretization is 

removed. Such an extrapolation would involve a fit of the lattice masses to a function
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Figure 5: Approximate restoration of rotational symmetry in the Apc =  T x irrep. 

We plot the normalized correlation matrix, \Ci;)/ \ / C l%C^\  on timeslice 5. Operators 
subduced from spin 1 appear first followed by those subduced from spin 3 and then 

spin 4.
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Figure 6: A toy continuum limit on a J  =  2 meson. In general the extrapolation to 

the continuum limit may also include higher powers of the lattice spacing a.



55

that is polynomial in a, the lattice spacing. One expects that after performing such 

a fit patterns of degeneracies would emerge, according to the patterns of subduction, 

and the result would be free of the discretization effects present in any single calcula­

tion. For example a spin-2 meson would appear as a degenerate set of energies in the 

T2 and E  irreps (as in Figure 6), a spin-3 state as a degeneracy across 7\, T2, and A 2, 
and so on. Such extrapolations have indeed been performed in pure gauge theory, 

SU(3) Yang-Mills Theory, in the extraction of the low-lying glueball spectrum [45].

This procedure, applied to hadrons, is more complicated. Firstly it relies on a 

series of calculations on finer and finer meshes and thus comes at a large computa­

tional cost. Additionally one must simulate at a fixed quark mass, a quantity which 

has non-trivial dependence on the lattice spacing, thus one has complications asso­

ciated with generating the required lattices beyond just the price tag. Even more 

troublesome however is the degree of near degeneracy manifest in the continuum 

spectrum when organized in terms of J p c . When we move to the lattice the problem 

of degeneracy is vastly magnified, we exchange an infinite number of irreducible rep­

resentations, spin-J, for the finite number of irreps of the cube. This means that the 
extracted spectrum becomes significantly more dense and would require statistical 

precision beyond that which we show here25 .

In order to demonstrate the density of states in any given irrep we plot the 

spectrum of states obtained by considering APC — (A \ , 7j, T2, E, A2)~+ mesons in 
Figure 7. While the ground states in any given channel are readily identified we see 

the spectrum becomes fairly dense once one considers excited states. The calculation 

we present is performed at the SU(3)f point where all of the quarks are tuned 
approximately to the strange quark mass.

To alleviate the difficulties with spin identification it would be useful to have a 

procedure which is effective at only a single spacing. This spacing should be fine 
enough that the spectrum exhibits, to a sufficient degree, the underlying rotational 

symmetry present in QCD. As shown in Figure 5 the lattices we employ, coupled with 
appropriate smearing and operator construction, appear to manifest the requisite 
underlying symmetry.

25The prototypical example of the difficulty in level identification comes from considering the 
subduction patterns of a J p c  — 4++ meson. The fingerprint of such a continuum state would be 
nearly degenerate energy levels lying in ( A \ , T i , T 2 , E ) ++. This fingerprint is not however unique. 
J PC =  (0,1,2)++, corresponding to a 3P j  multiplet would have the same pattern. Further, on 
the basis of the quark model outlined earlier, we would also expect these states to  also be nearly 
degenerate.
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The procedure, first demonstrated in [19], which we employ, makes use of both the 

spectrum and the operator state overlaps, Z" =  (n |d ||0 ), to identify the continuum 

J pc  quantum numbers. As mentioned previously, our operator basis is constructed 

to fully respect cubic symmetry. However, from Figure 5, it is also apparent that 

these operators contain a ‘memory’ of the continuum spin from which they were 

subduced26. The correlation matrix appears to be approximately block diagonal 

when the operators are ordered according to the spin from which they were subduced.

Motivated by the block diagonal nature of the correlation matrix we propose to 

use the operator overlaps, Z f  =  (n|C?J|0), in order to assign, to each state in our 

spectrum, an integer continuum spin, J .

The essence of the method relies on the observation that operator overlaps should 

be degenerate in each irrep up to discretization artifacts. Our operators are con­

structed to be of definite spin, (0\OJ'M\J', M') = Z ^ 8 from which it fol­

lows27 that (0|<9j^JjA', //)  «  SAy S A, y  *Z ^ 8,i «  Z ^ 8 AtA'8ll4l>. Spin-J states should 

have the same operator overlap up to small deviations.

This sort of logic, states overlapping dominantly onto a single spin, is indeed 
present in explicit calculation. In Figure 8 we plot the unit normalized overlap for a 

hierarchy of extracted masses in the T2 irrep corresponding to spin J  — 2 ,3 ,4 ,.. .  
mesons.

In order to make use of this information we should also show that we do observe 
the degeneracy previously outlined. This conjectured degeneracy of both masses 

and operator overlaps is indeed observed in our lattice calculations [20, 19]. In 

Figure 9 we show a pattern of degenerate masses and operator overlaps across the 

Apc = (A i ,T 1,T2,E)~+ irreps consistent with a spin-4 meson. We plot the state 

overlaps with the three derivative operator28

o  ~  ( U j k l i l j  X o S ) J=4-

This is to say an operator in which three gauge covariant derivatives are coupled 

together to form spin-3 which is then combined with a positive parity vector gamma 
matrix structure to form J PC =  4“+. In all four irreps we find that the tentatively

26If they did not there would be no block diagonal sub structure in Figure 5.
27For a sufficiently fine discretization one might imagine tha t the cubic degrees of freedom are an 

approximate relabeling of the continuum spin degrees of freedom, j A, p) *  E m  S ^ \ J ,  M) .
28The symbol D ^ \  means ‘construct a three derivative operator, couple the outer two derivatives 

into J  = 2, then couple the third derivative to make J  — 3’.
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1500 -

Figure 8: State identification in the Apc = T2 irrep. Each operator has been 

normalized, across states, so that (0|OT2ln; ^ 2) takes a maximal value of one.
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identified J pc  =  4 + state overlaps predominantly with this operator. Further, we

find that the extracted masses and overlaps are statistically compatible across each 

irrep and indicating the observation of a spin-4 meson.

Turning now to the state identification, the procedure proceeds by identifying 

the dominant J  overlapping with each state. Returning to Figure 8 we explicitly 

demonstrate the efficacy of our procedure using a subset of the available operators 

corresponding to the most relevant constructions. Read, along any single histogram, 

from top to bottom, the operators are

We find, as might be expected assuming that rotational symmetry is approxi­

mately restored, that each state appears to have dominant overlap onto only a single 

spin. The other irreps, both at rest and in flight, also exhibit similar behavior. By 

repeating this procedure, identifying the dominant spin component of each state in 

each irrep, we are able to find the patterns of degenerate states in our lattice cal­

culation. We reproduced the spin identified spectra, for the lowest set of isovector 

mesons, in Figures 10, 11, 12, and 13. Across each of these plots vertical ellipses 

represent additional states, present in the spectrum, but whose spin we were unable 

to unambiguously identify.

0 % '[J~2] ~  (757* x D [l]) J 2

n (5),[J=3]
^T 2

5.4 SU(3)f SPECTRUM

We conclude this chapter by presenting the spin identified SU(3)f  spectrum.
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CHAPTER 6 

RADIATIVE TRANSITIONS ON THE LATTICE

In this chapter we first introduce radiative transition matrix elements and show 

how they can be decomposed into kinematic factors, transforming with the symme­

tries of the vector current, multiplying scalar form factors which encode the dynamics 

of the transition. On the lattice these matrix elements are encoded in three-point 

functions which feature a local vector current insertion appearing between mesonic 
creation and annihilation operators.

By performing a spectral decomposition of the three-point functions, we will find, 

in a manner similar to our two point calculation, that any three-point function in 

principle contains contributions from all states that have the same quantum numbers 

as the source and sink operators. Each contribution will propagate through Euclidean 

time and contribute a factor of e~Et such that for large times only the lightest state 
survives. In general we will also be interested in the excited state matrix elements, 

their contributions arising from subleading exponentially damped contributions. We 

circumvent the problem via the use of ‘optimal’ operators. These optimal operators 

are constructed as linear combinations of operators within our basis. We will show 

they do in fact dominantly produce a single state, and further, that their use in 

three-point function allows for the non-perturbative determination of matrix elements 

featuring excited states at both the source and sink.

6.1 FORM-FACTORS AND TRANSITIONS

The theoretical object we wish to extract is the matrix element,

( M p ' .A'JI/IM p .A)), (15)

which describes the vector current transition of a spin-J, helicity projection A, 

hadron, h, to another spin-J', helicity projection A', hadron ,h'. The photon couples 

to the quark fields 1 within the hadrons (up to a factor of e) via the vector current,

f  =  l u ^ u  -  \ d r f d  ~

1In this calculation we use a non-physical version of QCD in which there are three as opposed 
to  six flavors. Each quark flavor is tuned to  approximately the physical strange quark mass such 
th a t there is an exact S U (3) flavor symmetry.
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The matrix elements are related to the helicity amplitude for the process h —>■ h!7 
via the inclusion of the final state photon polarization vector,

M ( h ( p , A) -+ =  <(?,A 7)(/i'J,(p ' ,A ') | / | / iJ(p,A)>.

where q = p '  —p and the photon has virtuality Q2 — \q\2 — (Eh'(p') — Eh(p})2.
In general one writes the matrix element as a sum over products of kinematic 

factors, transforming with the symmetries of the current, times an unknown coupling 

which is a function of the photon virtuality, the form factor. For example when one 

calculates the form factor of a pseudoscalar meson such as the pion a convenient 

parameterization of the matrix element is

(n+(p ' ) \ f \n +(p)} = (pf + p f  FW(Q2).

Here the kinematic factor is (p' +  p Y  which transforms under parity in the same 

way as the matrix element. The careful reader will realize that there is another 

independent kinematic factor which could appear in the decomposition, namely, 
(P' ~  p Y  e ]t \ Q 2), which also transforms correctly under rotations and parity. This 

quantity can be eliminated via the constraint imposed from current conservation.

In this analysis we consider formfactors and transitions between meson states of 

integer angular momentum J. Form-factors are accessed via vector current matrix 

elements in which the current appears sandwiched between meson states tha t have 

been projected onto definite momentum p and helicity A. A general parameterization 
of such a matrix element is

(M p '.A O I/IM p .A )}  =  * 1 W . A ' ;  J,p,\)Fi(Q2) (16)
i

where K f  is a kinematic factor which transforms in the same way as the matrix 
element.

6.1.1 VECTOR CURRENT MATRIX ELEMENTS

We adopt a straightforward approach in which we write down the most general 

Lorentz covariant and parity invariant decomposition of a vector current matrix 

element in terms of a number of arbitrary form factors. It is convenient in this 

approach to use the 2-component of the spin which is not in general equal to the 

helicity and which we denote by r. The choice of using j z makes the transformation
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properties of the polarization tensors simpler, one can derive a similar result using 

a helicity representation. As an illustrative example we demonstrate the method for 

a pseudoscalar-vector transition relevant to a process such as p —> n-y. The most 

general set of kinematic factors one could write down for such a transition is

(P(p ') \ f \V(p ,r))  = Ai(Q2)c'*(p,r)p“ ga

+ M Q 2)p+ea(p, r)qa 

+  A^(Q2)qpea(p,r)p%

+ B 1(Q2) e ^ e v(p1r)p+pq<T

In which we have chosen to use the basis p+ =p '+ p ,  and q =  p' — p for the momenta. 

ea (p , f ) represents a polarization vector for a spin-1 particle with momentum p and 

spin projection r.

Parity invariance requires that

( P ( p ' m V ( P,r)) =  <P(l/)lV-1Pj'*P-1VlV(p,r))

= [VTu (P ( -p ' ) \ f \V {~ P ,r ) )

Where we have used the fact that under parity our states transform as 

V\P(p,r))  =  - | P(~p,r )) ,  V\V(p,r)) = - | V ( -p ,r ) ) ,  and 2

. Using the fact that eAl(—p, r) — — [P]^ e"(p, r) we see that the above decomposition 
is invariant under parity provided Ai(Q2) = 0. Current conservation provides an 

additional constraint on the decomposition,

0 =  dp{A{p',r ' )\ f \V{p,r))

=> Q = qVL(A{p',r')\f\V{j>,r))

In this case the kinematic factor vanishes when we dot in the photon momentum, 

qllf>ll/prTfvip, r)p+pq„ =  0. Using these tools we can build parity invariant Lorentz 
covariant decompositions of vector current matrix elements for mesons of arbitrary 

spin at the source and sink. We find

{P(p’) \ f \V (p , r ) )  =  B,(C?2)£'“'p<’Mp,>')p+,9„

“ip - ' i;; = r e = .i ia g (^  - — j
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More generally there can be more than one form factor occurring in such a decom­

position3. In this case there is some ambiguity associated with the decomposition. 

As a first example we can consider the variables used, for example p and p' are an 

equally valid set of variables to use in the decomposition (as opposed to our choice of 

p+ and q) but would lead to a different normalization of the form-factor Bi(Q2). In 

the case of multiple form factors one is also free to perform a linear transformation 

on the K?  as K f  =  L i j K j , which in turn causes a redefinition of the Fj. Further 

in the case that one wants to compare results between two different calculations us­

ing different bases it is necessary to construct the mapping, L, which in the case of 

several form-factors becomes algebraically cumbersome.

A conventional parameterization for the matrix elements is the Multipole Expan­

sion introduced earlier in Chapter 2. For convenience of calculation we work with 

an arbitrary set of form-factors which we then eliminate in favor of the multipole 

form-factors where appropriate. This is done in direct analogy with [26, 14],

We now proceed to sketch the derivation4. Defining the vertex function in the 

Breit frame (p = \p\z ,p '  = —p)

^j'xqjx =  (J'Xp'\ei*j2j u\J\p) =

where the operator e~l̂ Kz acting on a rest state effects to boost the state along the 2- 
axis to momentum pz. One can show that this matrix element can be reexpressed as 

a sum over matrix elements of tensors which transform irreducably under the rotation 

group this is the essence of the multipole decomposition. Each tensor appearing in 

the decomposition also independently satisfies the Wigner-Eckart Theorem allowing 

us to solve for the reduced matrix elements which we identify as the various multipole 

moments of the system. Our construction is identical to Durand’s and we refer the 

reader to [26] for further details.

The longitudinal and transverse components5 of the vector current transform 

differently under rotations and one must allow for a different set of reduced matrix 
elements for each. In the Breit frame the scalar and 2 component are linked through 

current conservation as (E ' — F )F j,a,.ja =  — 2pzT3,v .JA and one can reconstruct the

3For example a vector particle has three form factors.
4 A more complete description can be found in [26]
5Here longitudinal refers to  the helicity zero polarization state which appears for virtual photons 

while transverse means the plus/minus helicity projections.
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charge moments using only the scalar portion of the vertex function as

( - 1  )k=8P
(17)

where the variable 8P  is the product of the initial and final parities. A similar 

expression for the transverse components may be derived, one obtains

We note that in the case of identical particles the sum ocurring above is restriced 

to odd values of A;. A conventional redefinition of the reduced matrix elements is

where E(M)[C] indicate electric(magnetic)[charge] multipole elements.
Returning now to our pseudoscalar-vector example we see that Bi(Q2) can be 

identified as a magnetic dipole (Mi) form factor. More generally there can be mul­
tiple form factors occurring in any decomposition, each form factor being a linear 

combination of the multipoles occurring above. One procedure, which allows for 

efficient conversion between multipole form factors and some arbitrary basis, is to 

use the equations above to build a linear system, featuring both sets of formfactors, 

which can be inverted in order to convert to the multipole basis.

6.1.2 K IN E M A T IC  D E C O M P O S IT IO N S

Having introduced the technical machinery used to decompose vector current ma­

trix elements we now turn to the decompositions used in this analysis. In particular 
we will be interested in extracting form factors a transition matrix elements of pseu­

doscalar and vector mesons. As mentioned previously the form factor decomposition 
for a pseudoscalar such as the pion may be written as

(18)

MPt P> = \  [(1 + (-1)‘<SP) Et  + (1 -  ( -1  )*JF) A4] 

<J'l|7?l|./> =  i ( l  +  ( - l ) 'W ) C i

(19)

We will also be interested in transitions between two different pseudoscalar par­

ticles. Again there is a single form factor, but here the kinematic factor is different
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due to the difference in mass between the initial and final states. The decomposition 

we will use is

( 7 r ' + ( p ' ) | / k + W >  =  [(P+pY+m̂ ( p ' - p r ] F , ’AQ1)- (20)

The transition matrix-element between a vector particle and a pseudoscalar can 

be expressed as6

(TT+( p ' ) \ f \ p +{X,p) )  =  e ^ pap'v pp ea ( \ , p )  ^ ^ F p v i Q 2), (21)

and for a vector meson stable under the strong interactions, the transi­

tion form-factor at Q2 =  0 can be related to the radiative decay width 

r(p+ —> 7r+7) =  fQ!(m ^1^)2\Fpn(0)\2, where q is the momentum of the final-state 
photon in the rest-frame of the decaying p meson.

A vector particle has three form factors once current conservation, parity invari­

ance, and time reversal invariance are demanded [4], One basis is

(p+( X , p ' ) \ f \ p +( \ p ) )

=  -  [(p + pT  e*(A',p") -e(A,p)] Gi(Q2)

+ G2(Q2)
~ [(p + pY  ,p 1-P z { \ f i - p '  2^i] G3(Q2), (22)

with a corresponding set of three independent dimensionless form-factors Gi, G2l G3. 

A convenient basis having a clearer physical motivation is provided by the expansion 

of the vector current in terms of multipoles [26], which in this case leads to a set of 
form-factors,

Gc  =  ( l  +  gjpr) Gi -  G2 +  ( l  +  G3

Gm = G2

G q  — G\ — G2 +  ^1 +  ^ 2^ G3, (23)

which are proportional to the charge (Go), magnetic dipole (Mi), and quadrupole 

(C2) multipoles respectively. At Q2 = 0 they are related to the charge, magnetic 

moment and quadrupole moment of the vector meson: Gc(0) =  1, Gm(0) =  2m • //p, 
Gq(0) =  m 2 ■ Qp.

6Note th a t here we use a slightly different normalization relative to  tha t presented in Sec­
tion 6 .1 .1 .
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The other form-factors we considered above may also be identified with a particu­

lar multipolarity -  in the p —> 7T7 transition case the single form-factor is of magnetic 

dipole (Mi) type, while for the 7r cases it is a charge form-factor (Co). The form fac­

tors we extract are real functions of Q2.

6.2 THREE POINT FUNCTIONS

Now that we have introduced the objects of interest, vector current matrix el­

ements, and shown how they can be decomposed into form factors encoding the 

dynamics of hadronic transitions, we can proceed to illustrate how one can apply the 

machinery of lattice QCD to extract the matrix elements of interest from three-point 

correlation functions. The essential structure of the correlation functions of interest 
is

C ,„,(A t,t) =  <0|O/ (At).*(,(t)Oj(0)|0). (24)

Here the operators, are capable of interpolating the mesonic states of interest 

from the vacuum. Insertion of a complete set of states and performing time evolution 
of the operators yields, in a manner similar to that presented in Section 5.1, a spectral 

decomposition,

cam) =  Y, ( n / l i M K )  ( i m l O j t O J I O ) .
n / . n u  nf  *

(25)

In this manner we see that the three-point correlation function encodes the matrix 

element of interest, (n/lj^Ojlmj), as well as all other transition matrix elements 

having the same quantum numbers as the source and sink operators.

Our job now is to determine how we can extract a single matrix element from 

such a correlation function. The summation above runs over all states, but clearly, if 

the separation between operators is large, A t > >  t »  0, we see that the correlation 

function will become dominated by the lightest states in the i and /  channels. At 

more modest separations we expect there to be subleading, exponentially suppressed, 

‘pollution’ terms which could potentially be a source of systematic error in a calcula­
tion interested only in ground state matrix elements. One general feature, present in 

lattice calculations, is that statistical noise tends to increase with increasing operator 

separation -  the naive approach of simply pulling the source and sink far apart may 

not be practical in explicit calculation.
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For our purposes we are also interested in extraction of excited state matrix 

elements whose contribution to the above correlation function is exponentially sup­

pressed. In principle one could attem pt to determine the value of these matrix ele­

ments via their time dependence but the resolution of such subleading, exponentially 

suppressed signals proves troublesome in practice.

6.2.1 OPTIMIZED OPERATORS

Our solution to this problem is to generate ‘optimal’ operators which dominantly 

create only a single state in the spectrum. In general a color-singlet operator 0 \  

having definite J pc  can produce all QCD eigenstates having those quantum numbers,

n

We seek to determine optimized interpolators, 12J, which when acting on the vacuum 

strongly interpolate only a single state with much reduced contributions from other 

states,

nllO) =  ^ r |n )< n |n t  |0) +  £  |0>
2 E " m/n 2 E ™

= ^|n)(n|ftJ|0) + ]T|ni)£m.

In essence we seek a procedure by which we can minimize the £m (m ^  n) relative to 

the strength with which our operator creates the n’th  state, (n|f2j|0)/2£'n.

We will define these optimal operators to be linear combinations of operators 

within a variational basis. That is operators of generic structure

Sli =
i

Returning for a moment to the variational analysis presented in Chapter 5, we al­

luded to the fact that the generalized eigenvalue problem we solve, C{t)v^n\ t )  =  

arises in the context of a variational optimization of the amplitude 

to create the n ’th  state. In the same manner, the best estimate, in a variational 

sense, for the weights wjn\  are the generalized eigenvectors occurring in the general­

ized eigenvalue problem. We define the optimized operators as

n j  =  v ^ c - ^ to/2^ u { n)o t ,
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where the coefficient appearing in front of the sum is chosen to give the normalization 

(n|fi],|0) =  2En. In practice we use the mean value of over the ensemble of gauge 

configurations to generate the weights. This procedure, of solving the generalized 

eigenvalue problem in a basis of variational interpolating fields and using the gen­

eralized eigenvectors to construct optimal operators, is repeated independently for 

each quantum number and momentum projection that we will use.

In order to motivate the use of projected operators we first demonstrate their 

efficacy in projecting a single state out of a two point correlation function. In Fig­

ure 15 we plot the two point function { 0 |0 (t)^ (0 ) |0 )  for O =  where the

data have been normalized such that they ‘flatten’ to a value of one once the pion 

dominates the correlation function7. We find that the optimized operator is capable 

of isolating the pion at significantly earlier times than the fermion bilinear ijj'y-sp­

in this manner optimized operators can be used to make the calculation of ground 

state matrix elements more efficient. As mentioned perviously, we aim to move 

beyond ground state matrix elements. In order to demonstrate the efficacy of our 

optimized operators, applied to excited states, we plot the effective mass8 for the 
lightest four states in the A \  irrep of momentum direction p =  ^ [1 ,0 , 0]9.

6.2.2 THREE-POINT FUNCTIONS USING OPTIMIZED OPERATORS

Turning first to the case of three-point functions with pion-like operators at the 

source and sink, we plot in Figure 17 the form-factor (as defined in Equation 19) 

extracted from the three-point function,

(0|Ow(At ,p f ) f { t ,  q)Ol(0,p ^ |0)

where On represents either ip^ip (in red) or the optimized operator (in blue). 

The sink operator, located at A t =  28 at ~  0.9 fm, is in the Ac = irrep of 

momentum npf =  [1,0,0], while the source operator, located at t = 0, is at rest in 

the APC = Ap+ irrep. We clearly observe that the optimized operators give rise to 

a signal which is flat over a number of timeslices away from the source and sink, 

corresponding to the contribution of just the ground-state pion, while the simpler

7 b 7 sb  is one of the simplest local fermion bilinears th a t is capable of producing a pion.
8Denoting the two point function C(t),  the effective mass is — ̂  ln(C(t)), which is a constant, 

specifically the mass, provided a single state dominates the two point function, C(t)  ~  Ae~ mt. The 
derivative is approximated using a forward finite difference derivative.

9From this point forward we will adopt the convention th a t we describe momentum using a 
directional vector of integers, rip, where the momentum is specified via p = jp  np-
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Figure 15: Rest frame pion correlator using ip̂ s'tp (red) as compared to the optimized 

operator in blue. We plot 2m7rem,rt(0|(!l(t)Clt (0)|0)/|(0|C>|7r)|2
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Figure 16: (a) Effective masses of principal correlators for four lightest states in 

the A \  irrep for momentum direction np =  [1,0,0] along with the energy deter­

mined from a two exponential fit. (b) ‘Optimized’ operator correlation functions, 

(2En)~1eEnt(fln(t) f2|,(0)), for the four states shown above.
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■0750  operators over this time range always retain a non-negligible pollution from 

excited states. Such behavior is expected from our two-point function analysis: for 

example, at rest we find ~  ^ so distillation smeared operator

[0750] \  acting on the vacuum, creates both the ground and first excited state with 

comparable strength.

Our principal motivation for using optimized operators is to get access to tran­

sitions involving excited states. Figure 18 we show matrix elements extracted from 

three-point correlation functions computed using either the ground-state 7r or first- 

excited state 7r' optimized operator at the source (tt = 0, pi =  [-1,0, -1]) and either the 

ground-state p or first-excited state p' operator at the sink (tf = 20 at , Pf = [1,0, -1]). 

We observe that there are clear statistically significant signals for excited-state tran­

sitions when using the appropriate optimized operators.

In general, even for optimized operators, there may still be some residual con­

tamination coming from states that lie beyond the reach of our variational basis, and 

indeed curvature away from flat behavior as we approach the source or sink timeslice 

is observed in Figures 17 and 18.
In order to make maximal use of the time-series data, in particular in those regions 

where there remains some unwanted excited-state contribution, we opt to perform a 

correlated fit over a time range with the form,

F(Q2; t) = F(Q2) +  f f  e~8Ef e~SE*4 (26)

where f f , S E f , f i , S E i  and F(Q2) are real fit parameters. We make further use only 

of the constant term, which corresponds to the desired form-factor. Fitting the 

data to this form also exposes the energy scale of the pollution terms, SEf  and 8Et. 

Generically, when present, we find that these energies lie at or above the scale of the 

largest energies we reliably extract in our two-point function variational analysis. In 

cases where there is a clear extended plateau region, we may exclude the exponential 

terms and perform a fit to a constant value.

We demonstrate the viability of our fitting method in Figure 19. A visible plateau 
is only observed for A t  =  28at, while for A t  — 12 at, 16 at, we make use of a fit 

using Equation 26, extracting compatible values for the form factor even in the face 

of significant amounts of pollution. The upper panel shows that this procedure is 

generally applicable and leads to form-factors from each time-separation that are in 

agreement across a range of Q2 -  additional values of A t  were also explored with
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similar results.

In practice, while we extract a very large number of form-factor determinations at 

many Q2-values, we choose to make use of only those where application of Equation 26 

to F(Q2; t) shows modest excited-state contributions. Any cases where a clear trend 

toward a constant value is not visible are discarded.

6.2.3 EXTRACTING FORM FACTORS

In Equation 16 we present the most general form of the decomposition of a vec­

tor current matrix element into independent form factors, Fi(Q2), multiplying their 

associated kinematic factors, A f, which are functions of the momentum, spin, and 

helicity projection. Moving, for the moment, to an exhaustive notation, we see that 

we can decompose a three-point correlation function featuring optimized operators 

as

=  e~E''f('At^i)e~Enit (nf ,p f ,X f \ j ,x\ni,pi,Xi) + . . .  (27)

=  e~Enf(At~t)e-Enit Kj ( nf , p f ,  A/ ;  nu pi, Ai )Fj{Q2) +  . . . ,  
j

where the ellipses represent suppressed contributions from states other than 

(|ri/), |rij)), which have been shown in the preceding subsection to be small.

In general Equation 27 represents an under-determined linear system. This is to 

say that on the l.h.s. we have a single matrix element while on the right there are 

multiple form factors appearing which must be disentangled. We choose to build a 

constrained or over-constrained linear system featuring many such equations, each 

occurring at the same Q2, which we then invert to obtain the form factors, Fj(Q2). 

Fixing the state choices, n / tj, using the indexing a =  (p/, A /;  /x ;p ,A j) ,  and removing 

the time dependence we can rewrite the above equation as

r .(A M ) -

= Y ,K j ( a ) F i ( Q 2) + - - -  (28)
i

In this manner we exploit the redundancy of form factors appearing for different 
current components and helicity combinations. We also, in some cases, average over 

kinematically equivalent momenta.
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The linear system we solve is F =  K • F. Here F is a vector over the index o, each 

element Ta(At,t ) ,  IK a matrix over kinematic factors with indices a and j , and F a 

vector of form factors indexed by j .  A general formulation of such a linear system 

need not be square, indeed in practice we build over-constrained rectangular linear 

systems. The system can be converted into a square system: IK+F =  [IK*IK] F, which 

we invert using SVD10.

6.2.4 CUBIC SYMMETRY

Implicit in the previous sections were a number of assumptions about the nature 

of states we see in our lattice calculation. Specifically we took advantage of Lorentz 

symmetry (by assuming we could relate various components of the current to one 

another) and the organization of hadrons into irreducible representations of the con­

tinuous rotation group labeled by an integer J  (in the construction of kinematic 

decompositions) neither of these are explicitly good symmetries on the lattice.

The cubic grid, on which we run simulations, is only invariant under cubic rota­

tions, a subset of all rotations, and as such there are different irreps (as discussed 
in Section 5.2.2.3). To correctly reflect the symmetry of our theory then, we should 

label our correlation functions according to irreducible representations of the cubic 

symmetry. In practice this is what we do by computing using the subduced operators 

introduced in Section 6.2.2. Using these operators, the three-point functions take the 

form,

< 0 |! l^ '(a ()j ,-”'‘’ ( 0 « ; i,sit(O)|O), (29)

where the indices A, /t label the cubic group irrep and the ‘row’ (1 • ■ • dim(A)) of the 
irrep.

As explained in Section 5.2.2.4 it may be the case that there are underlying 

continuum-like symmetries which emerge when the mesh becomes sufficiently fine. 

It would be irresponsible to use this putative symmetry without first demonstrating 
its realization in explicit calculation11.

As a primer we first consider the left panel of Figure 20 where we show an example 

of the extracted spectrum across little-group irreps, Ac  =  A^, B±, B2 , A 2 for rip =

10In the case where only a single form factor contributes this method of solution reduces to 
computing an average.

11 The linear system, as presented, would also not be satisfactorily solvable if the symmetry were 
not present.
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[110], where the distribution of states matches the expected subduction patterns for 

two meson states, a lighter p (J pc =  1 ) state and a heavier b\ (J pc — l+_ ) state.

In order to investigate if the lower pattern really does correspond to the different 

helicity projections of a J PC =  1 state we form the optimized ‘p’ operator in each 

of the A j ,  irreps. We then compute the three-point function,

(10 \ Q p ( A t ,p ' ) f ( t , q ) n l ( 0 ,p ) \ 0 ),

for np> = [0,1,1], ftp =  [0,-1,1], and np =  [0,2,0]. The source operator is the 

optimized operator for the ground-state pion in the irrep. The three different 

sink irrep choices correspond to the subduced versions of the three helicity projections 

of a vector meson. For A t = 28 at, the resulting form-factor is plotted in Figure 20, 

where we observe that while the amount of excited state pollution differs slightly in 

each irrep, the form-factor values are consistent, indicating that we are observing 

components of the same 1 meson in the three irreps.

We expect to see a comparable restoration of the rotational symmetry across this 
calculation, we do not attempt to build decompositions according to the symme­

tries of the cube, rather making use of the continuum-like helicity decompositions 

presented earlier, subduced trivially into irreducible representations of the cube.

A slight additional complication in this analysis arises from our use of anisotropic 

gauge configurations in which the space and time directions are discretized with dif­

ferent spacings. Spatially directed currents will need to be renormalized separately 
from temporal currents and the discretization effects along the two directions are 

expected to be different -  in explicit calculation we will not mix spatially directed 

currents with their temporal counterparts. Had we used isotropic lattices the tem­

poral component of the vector current would be related to the spatial components, 

however here we will keep them separate with the temporal component of the cur­

rent subducing differently from the spatial components. For spatial components, the 

subduced current is \ 3 X where j x = e(q, A) • j ,  whereas temporal

components subduce as jp ypy =  S j l ’oh j u=0■
In order to relate the irrep-based correlation functions that we compute, Equa­

tion 29, to the helicity-based decompositions presented in Equation 16, we define



85

subduced matrix elements, which for the spatial current case take the form,

(«f ,Pf, Af, //f | j A7,M71 ni, pi, A;, pi)

E  K c f E ,  « « * » > •  « « * > •

(30)
Af ,A-y,Ai

6.2.5 RENORMALIZATION

In our calculation we use a local vector current, which is not conserved

at finite lattice spacing and must be renormalized, multiplicatively, by a factor Z v . 
Further, owing to our anisotropic formulation, in which we discretize space and time 

differently, there can be one Z v for the spatially directed current, and another
for the temporal direction,

The renormalization coefficient can be determined non-perturbatively via com­

puting the charge form factor of 7r+ or p+ at zero momentum transfer (Q2 =  0). In 

the continuum this corresponds to a measurement of the total charge of the meson 
in units of e, the elementary charge (F(0) =  1). We define the coefficient as

F cont(0) 1
v F lat- (0) F lat- (0)

The value is extracted from correlation functions of the form

(31)

(0 |£ J ,(A t,^ j '‘( ( , f = 0 ) n j r(0 ,^ |0 ).

We plot the results, as a function of momentum, for the 7r+ and p+ mesons in 

Figure 21. The dependence on momentum appears to be fairly mild, each value 

being consistent with the others. There is however dependence on particle type -  

renormalization factors extracted from the rho meson differ from those extracted 

from the pion in a statistically significant manner. This can perhaps be attributed 

to discretization effects which may appear differently for the two particles12 as well 

as the fact that we have not used a conserved vector current13.

We set the scale of the charge via the pion extraction as it is statistically the 

most precise. The data are fit, including data covariance, to obtain

Z£ =  1.180(4), =  1.037(4), (32)

12Some small amount of the discrepancy may also arise from an imperfect tuning of the action -  
in a simple sense we tune the anisotropy in both the gauge and the fermion action, a slight mismatch 
of these parameters may give rise to  additional effects beyond the scope of this analysis.

13If we had used a conserved current we would not need to  renormalize the current.
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Figure 21: Vector current renormalization factor extracted at Q2 =  0 from the pion 

(circles) and the rho (squares). Spatially directed currents appear in blue and green, 

temporal in red and orange.
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for the spatial and temporal renormalization factors respectively. All subsequent pre­

sentations of form-factor values in this paper have been multiplicatively renormalized 

by these factors.
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CHAPTER 7

RESULTS

7.1 CALCULATION DETAILS

In this first investigation of the extraction of excited state form-factors using 

distillation, we restrict ourselves to a single ensemble of gauge-field configurations, 

having three degenerate flavors of dynamical quarks tuned to approximately the 

physical strange quark mass. This set of anisotropic Clover1 lattices [28, 36] has been 

used previously in studies of the meson spectrum [19, 20, 17, 37, 16], meson decay 

constants [40], baryon spectrum [27, 15, 29, 47] and meson-meson scattering [21, 23, 

24, 25]. For the calculations reported on in this paper, we used 535 configurations of 

lattice volume (L /a s)3 x (T /a t) = 163 x 128, with a spatial grid spacing of as ~  0.12 fm 
and a temporal spacing roughly 3.5 times smaller.

In this calculation we have an exact SU(3) flavor symmetry such that all the 
octet mesons (it, K , q) are degenerate with a mass close to 700 MeV. Where results 

are expressed in dimensionful units, they are determined from the dimensionless 
quantities atE  using the scale-setting procedure,

E  =  • m^hys‘.
atmn

where a*raq is the Q baryon mass calculated on this lattice and m^hys' is the experi­

mental value [5].

7.2 EXTRACTED FORM-FACTORS & TRANSITIONS

In this section we present form-factors and transitions for the lightest 

few isovector pseudoscalar and vector mesons. We make use of the current 

j v =  -t-§u7"-u — \ d r fd  — | s 7"s, such that the form-factors are in units of e, the mag­

nitude of the electron charge. This calculation is performed with three flavors of dy­

namical quark all having the same mass, tuned approximately to the physical strange 

quark mass. We extract vector current matrix elements between (/, I z) =  (1, +1)

1Some details, including a brief derivation of the action may be found in Appendix B.4.
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members of SU(3)p octets. Disconnected diagrams do not contribute to the ampli­

tudes considered in this analysis as demonstrated in the appendix of [51], where the 

flavor structure of the current is explored further.

7.2.1 FORM-FACTORS

7.2.1.1 7r FORM-FACTOR

The pion form-factor appears in the matrix element decomposition, 

(7r+(p ') |jM|7T+(p)) =  (p +  p 'Y  F1r( Q 2), which we will extract from three-point Eu­
clidean correlation functions computed using optimized ground-state pion operators 

of definite momentum at the source (at t = 0) and the sink (at At =  28 at). As 

discussed previously, we will present F ( Q 2;t) , where the leading Euclidean time- 

dependence of the correlation function has been removed, with any remaining time- 

dependence signaling the presence of excited state contributions to the correlation 

function. By utilizing many values of p and p'  we can determine the form-factor at 
a range of Q 2 values. We plot FW(Q2; t) for a subset of these Q 2 values in Figure 22, 

where for each Q2 we overlay a fit according to the form in Equation 26.
In Figure 23 we plot the resulting Q2 dependence, shown via both dimensionless 

ajQ2 and scale-set using the Q-bar yon mass prescription presented in Section 7.1. 

A large number of kinematic points are sampled by considering all combinations of 

momentum such that rip < 4, n 2-, < 4 and ri~ < 4. The extracted points appear 

to lie on a single curve, with only small residual scatter which can originate from 

fitting-range systematics and modest discretization effects.

Describing the Q 2 dependence may offer some phenomenological insight, albeit in 
this calculation at an unphysically heavy quark mass. A commonly used approach 

to describe vector-current form-factors of hadrons is to argue that the photon is 

behaving like the lightest vector meson which can couple to the hadrons in question, 
which in this case would be the p. This “vector meson dominance” (VMD) describes 

the Q 2 dependence by Fvmd(<32) = 1+Q2 / m 2 • Using the p  mass determined on these 
lattices, m p =  1020(1) MeV, we have the dashed curve shown in Figure 23, which is 

seen to describe the lattice data reasonably well only for small photon virtualities. 

One possible explanation of this effect is that as we move out to larger Q 2, considering 

only the nearest time-like pole, the p, and neglecting all excitations, becomes a 
progressively poorer approximation.
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Figure 22: Typical F7r(Q2;t) extracted from optimized three-point functions (points) 

with fit descriptions using Equation 26 (curves). Note that the data points have a 

high degree of timeslice correlation which is accounted for in the fitting.
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Section B.4. Vector meson dominance using the p meson mass on this lattice shown 

by the dashed curve. Fits to the small-Q2 points using gaussian and single-pole forms 

shown by the gray curves.
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The distribution of charge within the pion can be characterized by the 

charge radius, defined via the slope of the form-factor at zero virtuality, 

(r2) =  —6^ 2^ (Q 2) |q2=0- We may obtain this quantity from the discrete Q2 data 
presented in Figure 23 by parameterizing the ( ^  dependence for small virtualities. 

Considering gaussian [FW(Q2) = F(0) e_Q2/ 16̂ 2) and pole (Fn(Q2) = F(0) 1+Q^m2) 

forms to describe Q2 < 0.3GeV2, we obtain2 a charge radius (r2) lJ 2 = 0.47(6) fm, 

where the error includes the variation over fit-form. As we might expect, in 

a calculation where three flavors of quarks all have approximately the strange 

quark mass, we obtain a pion charge radius somewhat smaller than the phys­

ical pion (r2)]/2 = 0.67(1) fm [3, 5], and also smaller than the physical kaon 
(r2)][2 = 0.58(4) fm [2],

7.2.1.2 p F O R M -FA C T O R S

The three form-factors required to describe the vector-current response of a vector 

hadron may be defined as in Equation 23, which makes use of a multipole basis. 
The decomposition presented in Equation 22 defines the linear system which we 
may solve, as described in Section 6.2.3, for the form-factors. We plot the charge, 

G e ( Q 2), magnetic, G m {Q2), and quadrupole, G q ( Q2) form-factors in Figure 24. 
Examination of Equations 22, 23 indicates that only the charge form-factor has a non­

zero kinematic factor when Q2 =  0, and as such only it is determined there, while all 

three form-factors are sampled for positive non-zero Q 2. The smallest form-factor, 
G q , shows the largest scatter, which likely originates from modest discretization 

effects and timeslice fitting-range fluctuations.

Fitting the Q2 dependence of the charge form-factor with various forms3, over 

various Q 2 ranges we obtain Gc(0) =  0.94(1) and (r2)lJ 2 =  0.55(5) fm where the 

errors include a systematic variation over different fit forms. The deviation of the 

charge from 1 was discussed previously Section 6.2.5.

In order to determine the magnetic and quadrupole moments from G m {0) and 
G q (0) it is necessary to parameterize the Q 2 dependence of the form-factors and

2If F ( 0 ) is allowed to  float in fits, a value statistically compatible with 1 is obtained, as it must 
since the pion form-factor at zero Q 2 was used to  set Z y .  The fit y 2 values obtained are fairly large 
due to the scatter in the statistically precise data, which is likely due to small discretization effects 
which are not described by these smooth fit-forms.

3G(O)e~Q2/ 1602, G (0 )e -« 2<1+“« 2>/16̂ ,  G (0)/(1 +  Q 2 /m 2), G (0)/(1 +  Q2/ m 2 +  7 (Q 2 /m 2)2), 
rvnW Q2/I632
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Figure 24: Ground-state p meson multipole form-factors. Points have the same color 

and shape labeling presented in Figure 23. Fits to the Q2 dependence, described in 

the text, are shown as gray curves.
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extrapolate back to Q2 =  0. Utilizing a range of possible forms, we obtain 

Gm (0) =  2.17(10) and Gq(0) =  —0.54(10), accounting for the variation over fit- 

forms, which is much larger than the statistical uncertainty, in the errors. More 

precise determinations of these quantities could be obtained if twisted boundary 

conditions were used to sample the form-factors at smaller Q2 (see for example [31]).

Within a simple picture of the pas&qq  bound-state, the presence of a quadrupole 

moment would indicate a required admixture of D-wave into the dominantly S- 

wave wavefunction. Previous estimates of the p-meson magnetic moment in versions 

of QCD with heavier than physical quarks come from chiral effective theory [12] 

where Gm (0) ~  2.2 for large pion masses, and quenched lattice QCD using either 

an energy shift in a magnetic field [35] where Gm {0) =  2.13(6), or extrapolation to 

zero Q2 from a single spacelike virtuality [32] where C?m(0) =  2.05(4), at comparable 

unphysical pion masses. A dynamical calculation, Ref. [46], which appeared while 

this manuscript was in the final stages of production, found, at a comparable pion 

mass, Gm (0) =  2.23(2) and Gq(0) =  —0.362(20), using a model extrapolation to 

Q2 = 0 from a single non-zero Q2 point.

7.2.1.3 tt' FORM-FACTOR

The examples presented in the previous two subsections were the lightest states 
with the relevant quantum numbers. As such it was not strictly necessary to use opti­

mized operators -  any suitable meson interpolators used in the three-point functions 

will, in the limit of large time separations, give access to the matrix elements. We 

will now move to the case of an excited state, the first excitation of the pion, which 

we access using optimized operators to eliminate the contribution of the ground-state 

pion.

As described in Chapter 5, the signals for excited states are typically noisier than 

those for the ground state, and as such we separate the source and sink operators by a 

smaller time, in this case A t = 16 at. The decomposition for this matrix element is of 

the same form as the pion described previously, Equation 19. We plot the extracted 

form-factor, Fw>(Q2;t), as a function of the current insertion timeslice in Figure 25.
The Q2 dependence of the form-factor, Fn>(Q2), is presented in Figure 26. While 

the extracted values at Q2 =  0 are not statistically precise, they are certainly con­

sistent with unity. The charge radius can be extracted from the slope at Q2 = 0
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Figure 25: Current insertion time dependence for the form-factor of the first exci­

tation of the pion, shown for a range of source and sink momenta. The

high degree of timeslice-timeslice data correlation is manifested in the error on the fit 

which is not significantly reduced relative to the error on the individual data points.
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Figure 26: First-excited pion form-factor, F7r/(Q2). Points have the same color and 

shape labeling presented in Figure 23. Fits to low Q2 dependence used to constrain 

charge-radius, as described in text, shown as gray bands.
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which we determine by parameterizing4 the data for Q2 <  0.3 GeV2, yielding 

(r2)]/,2 =  0.74(6) fm where the error includes variation over parameterization form. 

As we might expect for a state which likely can be characterized as a radial excita­

tion, this is significantly larger than the 0.47(6) fm found for the ground-state pion 
at this quark mass.

Ref. [46], computing at a very similar pion mass found 0.517(4) fm for the ground- 

state pion charge radius, and 0.59(3) fm for the first excitation of the pion. Their 

approach determines a single point on the form-factor curve at Q2 ~  0.16 GeV2 which 

is used to determine the slope at Q2 = 0 assuming monopole dependence on Q2.

7.2.2 RADIATIVE TRANSITIONS

7.2.2.1 tt' -> 7T7 TRANSITION

In a transition between different pseudoscalar mesons, the decomposition of the 

current in terms of a form-factor F„>^(Q2) is as in Equation 20, and the form- 
factor must vanish at Q2 — 0. The transition form-factor is extracted from three- 

point functions with A t  — 20 at, fitting the time-dependence as previously to ac­

count for any residual unwanted excited state contribution. We plot the extracted 

form-factor in Figure 27 -  that we are now able to explore the timelike Q2 region, 

where previously all points were spacelike, follows from the differing masses of the 

hadrons at source and sink, a simple example being the case where p '  = p, so that 

Q2 = ~ (E '(p )  -  E(v ) Y  0. In order to be able to trivially relate our Euclidean 

amplitudes to Minkowski amplitudes, we must restrict ourselves to the region where 

the current is not timelike enough to produce on-shell hadrons. In this calculation 

where the 7T7T threshold is above the p mass, this limits us to Q2 > —m 2 ~  — 1 GeV2. 

In order to explore further into the timelike region, a somewhat more sophisticated 

approach must be followed [41, 30].

7.2.2.2 p 7T7 TRANSITION

A suitable decomposition for a vector to pseudoscalar transition in terms of a 

dimensionless form-factor is given in Equation 21. Using optimized operators for the 

ground-state p and ground-state 7r we computed correlation functions with A t  =  28 at

4Gaussian ( F ^ (0) e -c  ̂ / 16̂ 2) and one-pole (Fn>(0 ) /( l  + Q2/ m 2)) forms were used.
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for a large range of source and sink momenta -  the resulting determination of the 

form-factor, Fp7r(Q2) is presented in Figure 28.

The value of the form-factor at Q2 =  0, known as the photocoupling, is of partic­

ular interest since it controls the rate of the physically allowed radiative transition 

process, p± -> n ±'y. A s can be seen in Figure 28, we do not determine this quan­

tity directly, but we may estimate it using interpolation between our space-like and 

time-like points. Using a range of fit forms over several Q2 ranges (plotted in grey) 

we estimate Ffm(0) =  0.494(8), where the error includes variation over fit-forms.

The Lorentz invariant matrix element for the decay p+ -» n +/y can be obtained 

by contracting the matrix element in Equation 21 with a final state polarization 

vector, M \ yt\  =  e*tl(X1,q}(^n+(p,)\ j IJ'\p+(\,p}),  and for a vector stable under the 

strong interaction, we may obtain the decay width from

9 a7 ,a

where we have summed over the final state photon polarizations and averaged over 
the initial state polarization of the p. Using the decomposition above, and restoring 

the factors of e, we obtain the result relating the width to the photocoupling,

where a  =  e2/47r.

The calculation performed here uses three degenerate quark flavors tuned to ap­

proximate the physical strange quark mass and as such our photocoupling deter­

mination cannot be directly compared with experiment. For orientation we show in 

Figure 28, the experimental values, Fp7r(0) =  0.33(2) and FK*K(0) =  0.57(3) extracted 

from the corresponding decay rates obtained via the Primakoff effect for pions and 

kaons incident on nuclear targets [33, 8, 9].

The Q2 dependence of this meson transition form-factor plays a role in models of 

deuteron electromagnetic structure, where a virtual photon probe may couple to the 

bound nucleons or to the meson currents proposed to supply the binding [4].

7.2.2.3 p' -> 7T7 T R A N S IT IO N

The first-excited p state may also undergo a transition to the ground-state pion, 

with the form of the decomposition of the matrix element being the same as in the
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Figure 28: Ground-state p to ground-state 7r transition form-factor. Curves in gray 

show fits used to interpolate between spacelike and timelike regions to determine 

the photocoupling, Fp7r(0). Experimental decay widths converted to photocouplings 

shown for orientation.
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previous section. In Section 5.4 we presented the spectrum of excited vector mesons, 

finding that the first-excited state, m p> =  1882(11) MeV, is close to being degenerate 

with the second-excited state m p» = 1992(6) MeV. Our use of optimized operators 

corresponding to orthogonal combinations of basis operators allows us to reliably 

study the two excitations independently.

We extract the form-factor using optimized operators in correlation functions with 

time-separation, A t  =  20 at , with the results presented in Figure 29. To determine 

the photocoupling, Fp>n(0) =  0.050(4), we perform fits to the data over various Q2 

ranges using several fit-forms, and the quoted uncertainty includes this variation.

The photocoupling for this transition is observed to be an order of magnitude 
smaller than that of p —> n'y extracted in Section 7.2.2.2. Within simple models 

treating mesons as qq bound-states with non-relativistic wavefunctions, such a sup­

pression is expected -  the net effect of the current is to slightly shift in momentum- 

space the wavefunction of the pion, and since the p1 is likely described as a radial 

excitation, the resulting wavefunction overlap is much reduced relative to that for 

the ground-state p. This is described as a ‘hindered’ magnetic dipole transition. A 
relevant experimental example of a hindered transition lies in the charmonium sector 

-  the relative rates of ip(2S) —» and J/ip —>■ ~  0-1 show
the expected hierarchy of hindered versus non-hindered [5].

7.2.2.4 p" -> 7T7 TRANSITION

An extraction analogous to that presented in the previous subsection can be per­

formed for the second-excited p state, leading to the form-factor shown in Figure 30. 

Interpolating to Q2 — 0 using a range of forms yields Fp»n(Q2) =  —0.016(3), which 

is smaller still than the p' —>• 7T7 photocoupling. The sign is somewhat arbitrary and 

would only have definite meaning were we to compare to other transitions involving 
the p".

Within a simple qq bound-state model we might expect the p" state to be dom­

inated by a 3£>i configuration (and indeed the operator overlaps presented in [13] 
seem to suggest this), which would have a ‘hindered’ structure in a transition to 

the ground-state S-wave pseudoscalar owing to the need for the current to provide 

a D-wave angular dependence, which appears only as a relativistic correction to the 
leading behavior.
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Figure 29: First-excited p transition to ground-state 7r form-factor, Fp>7r(Q2). Points 

have the same color and shape labeling presented in Figure 28. Gray curves show 

fits used to interpolate to the photocoupling.
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7.2.2.5 ?r' -> p7 TRANSITION

The first-excited pion may undergo a transition to the ground-state p. The results, 

extracted from A t  =  20 at correlation functions, are presented in Figure 31, along 

with a number of parameterizations used to interpolate a photocoupling of Fnip(0) =  

0.18(2). Again we observe a significant suppression relative to the p —> 7ry case in 

line with this being a hindered transition.

7.2.2.6 p ' ->• 7T 7 TRANSITION

This transition, which occurs between excited states, is not expected to be hin­

dered in the case that the p' and 7r' are identified predominantly as the first radial 

excitations of the p and 7r respectively. As such we might expect a somewhat larger 

photocoupling than in previous subsections. We extracted the form-factor from opti­

mized operator correlation functions with A t = 20 at obtaining the results presented 

in Figure 32. Fits to the Q2 dependence with a range of forms lead to an estimate 

of the photocoupling, FP'^ (Q 2) =  0.7(2), which, although not determined with high 
precision, is of comparable size to the p —> n'y coupling.
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Figure 31: First-excited 7r transition to ground-state p, Fn>p(Q2). Gray curves show 

fits used to interpolate to the photocoupling.
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CHAPTER 8

CONCLUDING REMARKS

We started our discussion with an overview of the Standard Model, introducing 

Quantum Chromodynamics as the relativistic gauge field theory describing the in­

teraction of color charged sp in = | fermions, quarks, with the spin-1 gauge bosons 

mediating the strong force, gluons. We commented on the non-perturbative nature 

of QCD which distinguishes it from the other gauge field theories featuring in the 

standard model -  we don’t currently know how to construct analytic solutions to the 

theory at low energy. In this manner QCD is perhaps the least understood portion 

of the Standard Model.

Historically, a good portion of our intuition comes from models of hadronic 

physics. These models were built to capture the essential effective degrees of free­
dom and symmetries present in the experimentally observed spectrum of hadrons. 

We specifically restricted ourselves to the constituent quark model in which mesons 

appear as quark-antiquark pairs bound in a central potential of gluonic origin. By 

constructing qq angular momentum eigenstates we were able to illustrate a known 

result, namely that the predicted spectrum of quark model states, in terms of the 

J pc quantum numbers is not exhaustive. We identified a set of quantum numbers, 

J pc = 0 , ( 0 ,2 , . . .)+“ , ( 1 ,3 , . . .)~+ known as exotic which may provide hints about

the role of glue in Quantum Chromodynamics.

In order to motivate some of the discussion we also commented on the upcom­

ing GlueX experiments sited at Jefferson Lab which aims to remedy the current 

lack of photoproduction data in the light quark sector. One of the physics goals 

of this experiment is to conduct a search for the J pc  =  1_+ exotic states. Cur­

rently there is some tentative evidence for three candidate isovector exotic states, 

7Ti (1400), 7T! (1600), 7Ti (2015), though none are without controversy.
QCD is non-perturbative in this regime; the lattice presents a unique opportu­

nity to provide theoretical input into the expected rate of photo production of exotic 

mesons. As a first step then we must develop techniques, necessary to extract radia­

tive transition matrix elements directly from the lattice. In the text we show that
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these matrix elements are embedded in three-point correlation functions, which, in 

a general sense contain information about many transitions simultaneously.

Our goal was then to develop analysis methods which allow us to extract a single 

radiative transition matrix element from a tower of transitions occurring simulta­

neously. We demonstrated a technique, the construction of optimized interpolating 

fields, which allow us to project a single contribution out of three point functions, 

enabling us to study both ground and excited state matrix elements directly on the 

lattice.

We then proceeded to use the technique to extract formfactors and transition 

matrix elements for the lightest few isovector pseudoscalar and vector states in a 
version of QCD where there are three flavors of quarks all tuned to approximately 

the physical strange quark mass. Having shown the efficacy of these techniques a 

natural question is their range of applicability -  where else can we use these methods 

to study non-perturbative physics?

One area of immediate interest is in the study of the exotic mesons which mo­

tivated a good portion of this work. Here it is a straightforward application of the 
methods outlined in this manuscript and one could hope to provide some theoretical 

input about the size of exotic photo couplings in the near term future.
The techniques outlined can also be generalized quite readily to the baryon sector. 

In this case one might be interested in reactions such as N* —» N *7 as a method 

to study the internal quark structure of excited baryons non-perturbatively. Also 

of interest are transitions involving nucleons, for example, N* —»• A 7 where the 

dependence of the transition form factor on the photon virtuality can be measured 

quite directly in electroproduction experiments.

Prom a more theoretical perspective, these techniques are also quite interesting 

when applied to unstable particles. Throughout this analysis we have been working 

under the assumption that our states are stable. In general this is not always true, for 

example the p meson occurs as a dynamically generated resonance in txir scattering. 
On the lattice this introduces additional complications associated with form factor 

extraction. To date, however, there is no calculation exploring the coupling of a 
resonance to external currents. A rigorous calculation at physical kinematics, where 

the p is a resonance, seeking the coupling p —> 7ry would in fact need to determine 

the P-wave partial-wave amplitude for txtx —> 7ry as a function of the invariant mass,
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mff7r. By analytically continuing the amplitude to complex values of and extrap­

olating to the p-resonance pole, the coupling could be extracted as the residue of the 

amplitude. Very recently [7] the formalism relating matrix elements extracted in a 

finite volume to the physical amplitude has been developed. Calculations aiming to 

extract the value of the m r -» 7T7 at the p-meson pole using the techniques outlined 

in this analysis are currently underway.

In short, the techniques laid out in this dissertation, allowing for the extraction of 

single matrix elements for each state in a tower of discrete eigenstates, are required 

for any attem pt to determine excited state or resonance couplings to external currents 

aiming to probe these states. The technical formalism has now been implemented and 

explored; more complicated three-point function calculations can now be attempted.
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APPENDIX A

METHODS

A .l GRASSM AN NUM BERS

The generators of an n-dimensional Grassman Algebra obey the anti-commutation 

relation

{G u Gj}  =  GiGj +  GjGi  =  0 G\  =  0

where i , j  =  1,2,..., n. Because of the anti-commutation relation the expansion of 

any function defined on a finite Grassman Algebra contains only a finite number 

of terms (any term quadratic or higher in a single generator is zero). We define 

integration of Grassman quantities as

j  dGi =  0 J  dGiGi =  1 {Gu dGj} =  0 {dGu dGj} = 0

For example let g and g be independent Grassman quantities, then

J  dg = j  dg = 0 J  dgg = j  dgg = 1.

Since gg = gg =  0 we see

e "  = 1 +  gg

and thus

f t n W - f ' M l  +  f ' M M

= 0 -  J  dggdgg

=  - 1

Where we have used the relation {Gi,dGj} = 0 to pick up the minus sign in the 

second line. Now we consider a two dimensional case,

Si i _ i Si i t  -
9 9 =  9\9i +  9292

92 J \  92



T  -

e~ 9 9 =  1 -  (0 i0 i +  0202) +  01010202-

/ '

Defining the integration rule g?0Ĉ0 =  dgidg\dg2dg2 we see then that

dgdge~gTs — 1.

Performing a change of variables 0 =  M£ and 0 =  M'£ then

<?1 \  _  /  M u  A fl2  \  /  £ l  \  _  /  M n £ i  +  M i2 ^ 2

02 y  y  M21 M 22 /  y  £2 y  y  M 2i £ i  +  M 22£2 

So then we can compute 

0102 =  ( M n £ i  +  M l2 £ 2 )(-^ 2 l£ l +  M22&)
— MuM22£i£2 + Mi 2 M21 £2 £1 
=  Mn M22£i£2 — M12M2i£i£2 

=  det(M)£i£2.

In order to preserve integration under change of variables then we require

J  dgidg2gig2 =  J  d£id£2£i£2 — ► d0id02 =  det(M )_1d£xd£2.

It follows by substitution that

1 =  J  dgdge~gTg = (det(M T)det(M /) ) -1 J  d£d£e^MTM'f

Defining M  =  M TM' and using the relations det(M T) =  det(M ) and det(AZ?) 
det(A)det(£?) we find

J  d£d£e^^~ =  det(M).

This formula generalizes to the case where £ and £ are vectors of arbitrary length.

A .2 SINGLE ELIMINATION JACKKNIFE STATISTICS

Given some statistical sample yi G {Y }  the mean and variance are defined
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In order to propagate the error using the jackknife method one takes the sample 

yi in what is called ensemble data format (a list of samples) and converts it to the 

jackknife format by

1 Njack.  1 \  A

= v -  (yi ~ y} ■

By inspection one realizes that the jackknife rescaled data will have the same mean 

as the ensemble format data. The effect is to scale down the fluctuations by a factor 

of One then calculates some function of the samples in the jackknife format

and then inverts the rescaling to obtain the distribution in the ensemble format.

The variance of the ensemble of samples fi is then given by the standard formula.
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APPENDIX B

SPECTROSCOPY

B .l GENERALIZED EIGENVALUE PROBLEM  

B.1.1 DERIVATION

Here we present a derivation of the generalized eigenvalue problem. Considering a 

basis of operators {Ot} composed of the basic quark and gluon fields of QCD, having 

the quantum numbers of the desired hadrons, we seek a procedure by which we can 

maximize the signal to create a hadronic eigenstate of the finite volume Hamiltonian, 

H.
Any operator, 0 t, acting on the vacuum, |0), effects to create a tower of eigen­

states of the Hamiltonian.

0 t | 0) =  £ l f ! > M l o >  (33)

Here we are interested only in the lowest lying eigenstates. We will proceed by 

considering a matrix of two-point functions, C, whose elements are defined:

C„(t) =  <0|0((t)0j(0)|0> =  E  l<n|f J , |0>lV &‘.

We have written the spectral representation of the correlation function where we have 

performed the time evolution G(t) =  eHtO(0)e~Ht, // |n )  =  En|n). The vacuum is 
defined to have zero energy. It is clear that the two point function gives us information 

about the spectrum of the theory and asymptotically decays to the ground state.

Before continuing we remark that provided our basis of operators is linearly in­
dependent it also follows that the matrix C is positive definite which we now prove. 

Denoting Z f  =  (n|0j|O) ,where we may choose a phasing convention such that all 

Z" are real numbers, the m  x m  correlation matrix may be decomposed as:
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c - E

9o9o 9 o 9 i  

9 i9 o  9 i 9 i

9rn9o 9rn9ni

9o9m

9 i9 m

nn nnjmjm

(34)

where g" =  Ent/2. This matrix may then be factorized as

•

9o ■

1CO

1
iP O 

O

9 \  ' ■ 9m

c = 9°i 9i ■ 9 i
X

9o 9} ' 9m

o
fI 9m 1

c 
£ 9o 9\ ■ 9m

=  A 7’A

Where the matrix A is an N  x m  rectangular matrix. A sufficient condition for 

a matrix to be positive definite is if the product zTM z  > 0 for any non-null vector, 

z. Then zTCz — (A z)T(Az) > 0. Thus C is positive definite. In the case that 

our operators are not linearly independent we must first remove the null-space after 
which the proof goes through identically.

Having shown that correlation matrix is positive definite we now turn to the 

problem at hand, namely, we seek a procedure by which we can maximize

n(8) = £ a ,<o|o((t)0,(o)|o>a j , (35)

essentially the amplitude of our signal, as a function of the coefficients {ctfc} which are 

real parameters. In order to introduce an absolute normalization for the coefficients 

we also include a Lagrange multiplier. We then seek to extremize (maximize) the 
function

i] L 13

■N

(36)
where it is understood that t0 < t. This equation may be written more compactly in 

matrix form as

A(a, A) = a T ■ C(t)  • a -  A (a r  • C (t0) ■ a -  M )

where a  is a column vector and C is a real, symmetric, and positive definite matrix. 

We proceed in the standard method by taking the first derivative of the function
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A({a*.}, A) and setting it to zero which gives us the locations of the critical points 

(maxima, minima, and saddle points).

d
d a k

A (a, A) =  2 5 > | o t (f)o ,(o )|o )a ,

d

L 3
- A X > |a ( * o ) ^ ( 0 ) |0 ) a j

L 3
0

dX
A(a, A) = £> ,<O |0,(4„)0,(O )|O )a,

L 13

- M  =  0

Re-expressing the above set of equations in matrix form yields

C (t) ■ a  =  A C (t0) • <5 

a T • C (f0) - a  =  Af. (37)

A similar derivation follows when one considers multiple sets of and pro­

motes the normalization condition to an orthogonality condition. For a basis of N  

operators we have access to, at most, N  states, each vector {a,-n̂ } maping to one 
low lying eigenstates of the Hamiltonian residing within the reach of our basis. Re­
labeling Equation 37, —> v\n>, we arrive at the standard representation of the

Generalized Eigenvalue Problem,

Ci j l f i v f*  =  A<B>Cy(t0)ujn)

v P c i t o h v f *  = 6nm. (38)

B.1.2 IMPLEMENTATION

The variational method involves solving the generalized eigenvalue problem

(39)

This can be achieved via reformulating the problem as a standard eigenvalue problem. 

In practice we choose to do this via Singular Value Decomposition. It is well known 

that any matrix M, real or complex, may be factorized to the form M  =  UY,V\ 
where U and V  are unitary matrices and E is a diagonal matrix whose entries are 

the “singular values” of M. In the case of a symmetric matrix it is evident that 

M  =  UHUT. It also follows that algebraically M~~l =  V  • [diag(l/crj)] • UT, for a3 the
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j th singular value of S. Further in the event that one of the o f  s is singular or near 

singular, it can be shown that the best approximation to the inverse, the pseudoin­

verse (Moore-Penrose Inverse), is obtained by setting —» 0. This machinery will

be useful in constructing a solution involving SVD below.

Noting Equation 39 again,

C(t)V(t) = C(t0)V(t)A(t).

We see we can decompose C(t0) = U(to)Yi(to)UT (to) and the above becomes

C(t)V(t)  =  U(t0)X(tQ)UT(tQ)V(t)A(t).

Multiplying from the left by - j= U T, where is the square root of the pseudoin­

verse (£  is diagonal so the inverse square root is trivial) of the singular value matrix 

with singular values reset to 0, we see the above becomes

- ± = u Tc ( t)V ( t)  =  V £ f u Tv ( t )M t)

Where we have used the property U T U  = 1 . Now inserting 1 = U  \ j § ^ U T we see 

we can recover a standard eigenvalue problem,

- ^ = . UTC ( t ) U - ± J  [ / ^ U TV(t)\ =  [v 'S ? t/7V(«)] A(t).

Which with the identification of M  — - j= U TC(i)U ^7=  and W (t) = \ /E ^U TV(t), 

forms a standard eigensystem, M W (t)  =  W(t)A(t). The generalized eigenvectors 

are recoverable from the standard eigenvectors by simple matrix algebra, V(t) =

u j & m t ) -
In explicit calculation the correlation functions we compute are statistical approx­

imations and as such we have some noise or variance associated with each element 
of the matrix C(t). It is possible for the noise to combine in such a way as to intro­

duce an approximate null-space into the correlation matrices, an approximate linear 

dependence within the basis arising from the variance associated with each element. 

SVD provides, via pseudoinversion, a method by which we can eliminate this null 

space. We show a toy example of the removal of null space in Figure 33.

B.2 M OM ENTUM  CONSERVATION IN A FINITE-VOLUME
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Figure 33: A toy example of SVD resetting. The gray box is the full rank matrix while 

M  represents the subspace we wish to eigendecompose. The transparent column and 

elements represent the portion of the full rank matrix that was approximately null 

which we remove via SVD resetting.
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We define meson eigenstates which in infinite volume have normalization 

(n(k)\n'(p)) = <W(27r)3 2Ej: 6̂ 3\ k  — p), 

such that the completeness relation takes the form

In a periodic cubic volume, L x L x L, the allowed momenta of free particles is 

quantized, k =  where n*, =  (nx,n y,n z) and the completeness relation becomes

< « >

Two-point correlation functions in which the source and sink operators are pro­

jected into definite momentum have a spectral representation which can be obtained 
by inserting Eq. 42,

(40)

(41)

C(t) =  <0|Cf (pi, i) c l  (pi, 0) |0)

=  <o| E / ‘p>* ° i(^ * ) E / ‘ w "'o ., ® ° ) l0>

=  Z ? E E  (L\ s )  ( L \ e y E' ‘ <0|Ot(* = 0,0)|n(r))<n(*)|O,'(j?= 0,0)|0>
n nk n' '

=  L % *  E  <010,(0,0) In(p,)><n(p,) IO,*(6,0) 10>,
n ZjGn

where we note an explicit factor of the lattice volume, L3.

Three-point correlation functions projected into definite source, sink and current 

momentum have a spectra representation,

c( t )  = (o|of(pr, (r) jfly,;) Oi'fp,, f,;|o)

m,nf n* nf

x <01 Of (0,0) I nf (pf)} <nf ̂ ^  0) | nj ( ^ ) > <«! (pi) | C9? (0,0) 10>,

which again features an explicit factor of the lattice volume, L3. This volume factor, 

common to two-point and three-point functions may conventionally be absorbed into 

the meson creation/annihilation matrix elements.

^
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B.3 SUBDUCTION COEFFICIENTS FOR MESONS IN FLIGHT
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G ro u p |A|« A(/r) qfj,X
A,fi

Dic4 0+ ^ i( l ) 1

(n ,0 ,0) 0" 4 .(1) 1

1 M \ ) ((5a>+ ±^(5s _)/v/2
2 B i( l) (<5S,+ +  fj6»,-)/V2
2 B 2( 1) (<Ja,+ -  y/2
3 E2 { \) (±SSt+ + fjd3̂ ) / \ / 2
4 ^ l ( l ) (&»,+ +  ¥ a  ,-)/V 2
4 a 2(1) (<5S,+ -  fj6a-) /y /2

Dic2 0+ A l( l) 1
(n, n, 0) 0" 4»U) 1

1 B i( l) (<Sa,+ +fj8s _ ) /\ /2
1 b 2( 1) (<5Si+ -  ff&a-) /y /2
2 A i(l) (^s,+ +  ¥ s , - ) / V̂ 2
2 A2(l) (<*«,+ -  ¥ * , - ) / V?
3 E l(l) (<5S)+ +  f/5a _ )/\/2
3 B 2( 1) (<Sa,+ -  ¥ » , - ) / y/2
4 ^ l ( l ) (<5S,+ +  ijds,-)/y/2
4 Aa(l) (6a,+ -  ¥ s - ) / V 2

Dic3 0+ ^ l ( l ) 1
(n, n, n ) o- ^ a(l) 1

1 e 2 {\ ) (6s,+ ±  rjSs-)/'/?■
2 E2 ( 2 ) (±5S,+ -  ¥ s , - ) / V ^
3 ^ l ( l ) (<fa,+ -  fjSa,-)/y/2
3 A 2( 1) (6St++Tj6s, - ) / \ / 2
4 **(S) (<ya,+ ^ ¥ a , - ) f y / 2

Table 6: Subduction coefficients, for |A| <  4 with s =  sign(A). Here fj = P( —1)J 

with J  and P  the spin and parity of the operator £>J’P'x(p = 0). The subduced helicity 

operators are different orthogonal combinations of the two signs of helicity, +|A| and 

I A| ■
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B.4 CLOVER ACTION

The process of discretizing QCD onto a grid introduces errors, relative to the 

continuum action, which are polynomial in the lattice spacing, a. The process of 

systematically removing these effects, order by order in o, is called improvement.

For orientation it is useful to consider a finite difference derivative of some smooth 

function / .  The forward difference derivative is defined as f ( x )  =  £ [f(x +  h) — f (x)\  

and has an 0(h)  error relative to the continuous derivative. Another, slightly 

better, definition of a discretized derivative is the central difference derivative, 

f ' (x)  — ^  [f(x + h) — f ( x  — h)]. Here the error is 0 ( h 2). The difference between 
the two discretizations and the observation that the central difference definition ap­

proaches the continuum value more quickly captures the essence of improvement. 

Simply put, we want to remove discretization error up to some order in the lattice 

spacing such that at finite lattice spacing the error introduced by computing QCD 

on a grid is removed to the desired accuracy.

On the lattice we will mainly be interested in improving the Euclidean action,

'F (m +  0 )  \F. (43)

From an effective field theory approach, improvement amounts to adding irrelevant1 
operators to the action multiplied by powers of the spacing and coefficients chosen 

to cancel the discretization artifacts. Since these operators are multiplied by powers 
of a they disappear as the continuum limit is taken (a —» 0).

The lattice action we use [28], can be obtained by using the field transformation

'F = +  ^ matm  +  ] p tat^ 4  +  ^ l aas'yj l5 ^ j  $

\F ip ^1 -(- — 4^54 T  — $lsas' y j ^ D , (44)

where [10] describes a method for non-perturbative tuning of the improvement pa­

rameters, Here attS are the lattice spacings in the temporal and spatial

directions which owing to our anisotropic formulation are not the same. One can 

show via integrating by parts, removing the surface terms, and making the choices 

Clt — — fit, =  — Ds, Qm +  Qm =  1, that the action becomes

xIn the context of QCD in four dimensions irrelevant operators are those which have mass 
dimension greater than  four. is an example of a dimension five operator while (‘ipip)2
is a local dimension six operator. Dimension five operators can be used to  eliminate 0 (a )  effects, 
dimension six 0 ( a 2). We will only concern ourselves with O(a) improvement.
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1 +  - atm j  ip m  + % D ^ ip

+  ip O't^t { i g l ^  4 “I" TtOVi^4 ^ g'j T 2 g T f i ^  i “I" fxj ^P

We work in Euclidean spacetime; the gamma matrices and Dirac matrices, a 

are defined by

{ 'T ^tib i'}  — 2 £ m„ [7^5 "Ti'] =  2i(Jfiv-

These relations can be used to re-express pairs of gamma matrices in terms of sym­

metric and antisymmetric tensors ( 7^  =  |  ({7^ ,7^} +  [l^lu])  = -  ia ^ ) .  One

can also reorganize the pairs of derivatives, we find the general relation2

H v  T ' Yv' Yt i j ^f i  = 111 v} V

— d[iv{~3hi T

Using this relation one can show that the action becomes

ip 1 +  - a tm  J m  
z

+ ^1 +  -atm +  mQ,tatj 74^4 + Ẑ 4Ẑ

+  ^1 +  ^ atm + mQsa 7* +  ti3as

T — (QjOf T -l,s7s) (J<h l‘\i T Dsqs ^ ] (Jij I'\j
i>j

ip.

Making the further choices Qs — — ̂ us, Qt = — | ,  discretizing the derivatives, 

and including gauge field smearing in the link variables yields the action presented 
in [28], which we use in this calculation.

Improvement of the action also introduces extra terms into the definition of the 

vector current. Applying the transformation to the vector current, = # 7^  allows

2It is conventional, in lattice gauge theory, to  absorb the coupling, g, into the definition of 
the gauge field such th a t the covariant derivative takes the form DM = — iA)l. Using this

re commutator of two gauge covariant derivatives is related to the field strength tensorconvention t

by ' iFpv which differs, by a factor of g J, from tha t presented in Chapter 1.
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us to obtain the classically 0 ( a ) improved current. The transformation gives

h  =  (! +  2atTn) f a r t
-  \a t {dA{ ^ c r ^ )  -  ^ 4̂ ( S 4 -  3 4)t/>)

-  -  S ^ C D j  -

and use of the classical equations of motion for the quark fields allows for the elimi­

nation of the gauge-covariant derivatives acting on quark fields to give

h  =  (! +  | ( m +  mo H )  f a r t  +  i f ! 1 -  0  asdj(ipa4j^ )

jk = ( l  +  5(m +  m 0̂ )at) ^ 7kil> +  J (1 -  £) atd4(^a 4k7p),

where £ =  as/a t is the anisotropy. In our formulation we choose to non-perturbatively 

determine the vector current renormalization and so we conventionally choose to ab­

sorb the mass dependent prefactor into the definition of the vector current renormal­

ization. The improved current is then given by

U =  Z y { f a r t  + ~  0  asd j(^ a 4jt/>))

j k = Z(r ^ 7kip +  J (1 -  £) atd4 ( f a ^ ) )  ■ (45)

As expected we observe that the improvement terms vanish at classical level in the 
case of an isotropic action, £ =  1.

In this manuscript we concern ourselves only with the unimproved current, finding 

in explicit calculation that improvement alters the results at approximately the 5% 
level [51].
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