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ABSTRACT

STUDIES OF TWO-NUCLEON INTERACTIONS AND
FEW-BODY ELECTROMAGNETIC STRUCTURE IN CHIRAL
EFFECTIVE FIELD THEORY

Maria Piarulli
Old Dominion University, 2015
Director: Dr. Rocco Schiavilla

A coordinate-space nucleon-nucleon potential is constructed in chiral effective
field theory (xEFT) retaining pions, nucleons and A-isobars as explicit degrees
of freedorn. The calculation of the potential is carried out by including one-
and two-pion-exchange contributions up to next-to-next-to-leading order (N2LO)
and contact interactions up to next-to-next-to-next-to-leading order (N3LO). The
low-energy constants multiplying these contact interactions are fitted to the 2013
(Granada database in the laboratory-energy range 0-300 MeV. Three versions of this
chiral potential, corresponding to three different cutoffs, have been developed. The
cutoft regularizes the one- and two-pion exchange as well as the contact part of
the potential. A study of the electromagnetic structure of 4 = 2 and 3 nuclei is
also presented in this thesis. The calculation of the static properties and elastic
form factors of the deuteron and trinucleons (*He and *H) is implemented in
momentum-space, by utilizing nuclear wave functions obtained either from chiral or
realistic potentials, in combination with chiral electromagnetic operators derived up
to one loop. Predictions for these physical observables are in a satisfactory agreement

with the experimental data.
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CHAPTER 1

INTRODUCTION

The force responsible for binding protons and neutrons (nucleons) in atomic
nuclei, also known as the nuclear interaction, has been the subject of intense study
since the beginning of the twentieth century. Although the existence of nuclei and
their constituents has been known for a century, nuclear forces are not understood
very well at a fundamental level. The nuclear force is now understood as a residual
effect of the even more powerful force, or strong interaction, that binds particles
called quarks together, to form the nucleons themselves. This more powerful force is
mediated by particles calied gluons. Quantum chromodynamics (QCD), established
to be the theory describing the interactions between these fundamental degrees of
freedom, 7.e. quarks and gluons, does not have a simple solution in the low-encrgy
regime characteristic of nuclear physics. At these energies the strong coupling
constant becoines too large and perturbative techniques cannot be applied to solve
low-energy QCD. Therefore a direct derivation of nuclear forces from QCD is not yet
available. It is for this reason that the relevant degrees of freedom in which nuclei
are described are bound states of QCD, called hadrons, such as nueleons, pions and
A-isobars.

The recent history of nuclear physics has witnessed the tremendous development
of nuclear chiral eftective ficld theory (xEFT), originally proposed by Weinberg in a
series of papers in the early 1990’s [1]. The (approximate) chiral symmetry exhibited
by the underlying theory of QCD in the low-energy regime scverely restricts the form
of the interactions of pions among themselves and with other particles. In particular,
pions couple to baryons, such as nucleons and A-isobars, by powers of their momenta
@, and the Lagrangian describing these interactions can be expanded in powers of
Q/A,, where A, ~ 1 GeV specifies the chiral-symmetry breaking scale. As a result,
classes of Lagrangians emerge, each characterized by a given power of @/A, and each
involving a certain number of unknown coefficients, so called low-energy constants
(LEC’s), which are then determined by fits to experimental data. Thus, yEFT
provides, on the one hand, a direct connection between QCD and its symmetries, in

particular chiral symmetry, and the strong (and electroweak) interactions in nuclei,



and, on the other hand, a practical calculational scheme amenable, in principle, to
systematic improvement. In this sense, it can be justifiably argued to have put
low-energy few-nucleon physics on a more fundamental basis.

Within the nuclear yEFT approach, a variety of studies have been carried out
in the strong-interaction sector dealing with the derivation of not only two-nucleon
potentials (2N or NV N) [2-15] but also three-nucleon potentials (3N or NV N) [16-19]
and accompanying isospin symmetry-breaking corrections [20-26]. Current chiral 2N
(3N} potentials commonly used in calculations include up to next-to-next-to-next-to
leading order, N3LO or @* for 2N (next-to-next-to leading order, N2LO or Q® for
3N) corrections in the chiral expansions.

In parallel to these developments in the strong interaction sector, much effort has
been devoted to electroweak interactions. Among the great advantages of the yEFT
framework is the possibility of deriving nuclear electroweak currents consistently with
the nuclear interactions. In the present thesis, the focus is on nuclear clectromagnetic
(EM} charge and current operators. These were originally derived up to one loop
level in the heavy baryon formulation of covariant perturbation theory by Park et
al. [27], where the baryons are treated as heavy static sources, and the perturbative
expansion is performed in terms of the involved momenta over the baryon mass.
More recently, xEFT EM charge and current operators up to one loop have been
derived within two different implementations of time ordered perturbation theory
(TOPT): one is by the Jlab-Pisa group (see [28-31]) and the other one is by the
Bochum-Bonn group (see [32, 33]). In this study we adopt the formalism developed in
Refs. [28-31] in which the NN potential and the electromagnetic charge and current
operators are derived by considering suitable transition amplitudes for the processes
NN — NN and NN~y —» NN based on TOPT [34, 35). These amplitudes are
convenicntly represented by time-ordered diagrams scaling as a power of @/A,. The
power of @/A, associated with each diagram in the perturbative expansion follow the
rule of the so-called power counting. The Hamiltonians employed in the calculation
are derived from the chiral Lagrangians formulated in Refs. [4, 36-39|, describing
the interaction between pions, nucleons and A-isobars. Only terms entering the
two-nucleon potential and electromagnetic charge and current operators up to one
loop are considered here. In particular, integrals entering the loop contributions arc
ultraviolet divergent and are regularized via dimensional regularization {40, 41]. The

divergent part of these loop integrals are absorbed in the redefinition of the relevant



LEC’s, which are then fixed by fits to experimental data. Howcver, the resulting
renormalized operators have power-law behavior for large momenta, and must be
further regularized before they can be used for solving the Schrédinger equation
and for the calculation of the current matrix elements. This is accomplished by the
inclusion of a cutoff function.

Following the formalism described above, two calculations are presented in this
thesis. The first one deals with the construction of a coordinate-space NN potential
derived up to next-to-next-to-next-to leading order (N3LO or Q%) in the chiral
expansion, including pions, nucleons and A-isobars degrees of freedom. At this
order, it consists of the venerable one-pion exchange {OPE) potential at leading
order (LO or Q°), the two pion-exchange (TPE) potential at next-to leading (NLO
or @?) and next-to-next-to-leading order (N2LO or Q3), derived from leading and
sub-leading pion-nucleon (#N) and pion-nucleon-delta (7 NA) couplings, and also
contact interactions entering at LO, NLO, and N3LO. While the OPE and TPE
potentials represent the long-range part of the N/ interaction, the contact terms,
instead, encode the short-range physics, and their strength are specified by unknown
LEC’s. The inclusion of A-isobars in the TPE component of the NV interaction is
dictated from phenomenoiogical considerations which explain the important role of A
isobars in nuclear structure and reactions. An illustration of this are the important
role that the A plays in 7V scattering and the relevance of electroweak N-to-A
transition currents in radiative and weak capture processes involving few-nucleon
systems [42], specifically the radiative captures of thermal neutrons on deuteron and
*He [43, 44] or the weak capture of protons on *He (the so-called hep process) [45].

The necessity to derive a coordinate-space chiral potential, whose natural
formulation is in momentum-space, is related to the fact that many computational
techniques utilized to calculate properties of nuclei and nuclear matter such as
Quantum Monte Carlo (QMC) mcthods [46] require a local coordinate-space
representation of the nuclear interactions, However, available momentum-space chiral
potentials have the feature of being strongly non-local meaning that, upon Fourier
transformation, they lead to non-local interactions (or p-dependent interactions,
where p — —iV is the relative momentum opcrator) in coordinate-space. The
sources of non-localities in xEFT are mostly due to contact interactions that depend
not only on the momentum transfer k = p’ — p but also on K = {(p’ + p)/2 (p

and p’ are the initial and final relative momenta of the two nucleons), and also to



specific choices of cutoff functions. It is for this reason that we construct a chiral
potential as local as possible by minimizing the number of non-localities due to
contact interactions and removing those due to the choice of regulator functions. In
order to make the short-range part as local as possible, we use Fierz identities [47]
to remove terms which in coordinate-space would lead to powers higher than two in
the relative momentum operator p. However, while this chiral potential is local at
N2LO, terms proportional to p? still persist at N3LO. To avoid non-localities due
to regulators, we choose cutoff functions that depend only on the relative distance
between the two nucleons.

The second calculation, presented in this thesis, deals with the study of the
electromagnetic structure of A = 2 and A = 3 nuclei based on yEFT approach.
Electromagnetic form factors as well as static properties (such as the deuteron
quadrupole moment and charge and magnetic radii for A = 2 and 3 ) of these
few-nucleon systems are interesting observables, since they are known to be sensitive
to both the nuclear potentials used to generate the wave functions and the nuclear
electromagnetic charge and current operators. The goal of this study is to investigate
the validity of the yEFT approach to describe the strong interaction dynamics in
these few-nucleon systems, and their response to electromagnetic probes.

The calculation of the electromagnetic observables is carried out in
momentum-space by utilizing nuclear wave functions derived from both chiral and
phenomenological two- and three-body potentials, in combination with the charge
and current operators obtained up to one loop within the YEFT formalism. In
particular, the A = 2 calculations use either the Argonne v;g (AV18) [48] or the
chiral N3LO potentials [5, 6]. Of course, the A = 3 calculations also include
three nucleon potentials—the Urbana IX model [49] in combination with the AV18
and the chiral local N2LO potential {16] in combination with the chiral N3LO
two-nucleon potentials. One could ask why the calculation of these cbservables has
not been performed with nuclear wave functions obtained from the NN potential
developed in this thesis. This would require a program of its momentum-space
representation, which has vet to be implemented, and also the inclusion of A-isobars
in the three-body potential and in the electromagnetic charge and current operators,
respectively discussed in Refs. [50] and [28], but not yet revised and implemented.

The thesis is organized into five chapters and six appendices. In Chapter 2, we

discuss the formalism used to derive the chiral NN potential and the electromagnetic



charge and current operators, and define the power counting rule adopted here.
In Chapter 3, we present the momentum- and coordinate-space representation of
the renormalized NN potential up to order @* (N3LO) in the chiral expansion,
including A-isobar degree of freedom in its TPE component. In that chapter
particular attention is given to the solution of the Schrodinger equation and also
to fits of the nuclear potential to the pp, np phase shifts, deuteron binding energy,
as well as to the NN scattering data. In Chapter 4 the discussion of the chiral
charge and current operators up to the order e Q is carried out. We present the
calculation of the electromagnetic form factors of A = 2 and 3 nuclei as well
as their static properties. Finally, in Chapter 5 we summarize our conclusions.
A number of details are relegated to the Appendices, including: notation and
conventions adopted in this work as well as a list of the strong and electromagnetic
interaction Hamiltonians required in our calculations {Appendix A); dimensional
regularization of loop integrals at order Q% (NLO)} involving A-isobar intermediate
states (Appendix B); a list of the relevant expressions for the coordinate-space
representation of TPE and contact interaction entering the present NN potential
(Appendix C); the calculation of the pp phase shifts and effective range expansion
with inclusion of the full electromagnetic potential (Appendix D); the pp and np
phase shifts and the various components of the fong-range and short-range potentials
corresponding to three different cutoff functions {(Appendix E}; and finally details on
the evaluations of the loop contributions to the charge operators {Appendix F).



CHAPTER 2

FORMALISM

This introductory Chapter is devoted to describing the formalism and the scheme
adopted to construct the nuclear two-body (VN) potential up to @ in the power
counting, discussed in detail in Chapter 3, and the electromagnetic (EM) charge and
current operators up to ¢ Q needed for the calculation of the EM form factors of
A = 2 and 3 nuclei, presented in Chapter 4.

The NN potential and the EM charge and current operators are derived hy
considering suitable transition amplitude, T’ and T.,, for the processes NN — VN
and NNy — NN based on time-ordered perturbation theory (TOPT) [34, 35]. In
Sec. 2.1, we start off our discussion by introducing the conventional perturbative
expansion for the NN scattering amplitude, and we specify the power counting
adopted in this work. In Sec. 2.2 we introduce the prescription used to derive the
nuclear two-body potential v from the quantum field theory transition amplitude T
Finally, in Sec. 2.3, we generalize the scheme to the inclusion of the EM interaction
in the perturbative series, defining in this way the transition amplitude 7, and the

corresponding EM potential v,.

2.1 NN SCATTERING AMPLITUDE IN TIME ORDERED
PERTURBATION THEORY

In the present work the nuclear two-body potential is obtained by considering
pions, nucleons and also A-isobar degrecs of freedom. In particular, pions are treated
relativistically while mucleons and A’s are considered in the non-relativistic litnit.

The conventional perturbative expansion of the N NV scattering amplitude T reads

T = (fIT]) = (fIHh ) (mfﬁ)n 1|i) ) (1)

where [i} and |f} are the initial and final two-nucleon states of energies E; = Er,
respectively, and n is a positive infinitesimal quantity, inserted to give meaning to

the reciprocal of E; — H,.



In Eq. (1) the Hamiltonian #y describes free pions, nucleons, and A-isobars,
while H; represents the interactions. The interaction Hamiltonians are derived, in

the canonical formalism, from the effective chiral Lagrangian L.g of type
Log = Lon + Lon + Lona +Lyn (2)

where L, [3, 36, 38] deals with the dynamics of pions, and L.y [3, 36, 38 and
Lona [3, 37, 38] describe the interactions between pions and nucleons and between
pions, nucleons and A-isobars, respectively. The two-nucleon contact Lagrangian
Lxyy 13, 4, 39} involves only nucleons. This type of Lagrangian features contact
terms that encode the short-range dynamics of the nuclear force. Their strengths are
specified by the unknown LEC’s of the theory which are determined by a fit to the
NN data. This point will be more extensively discussed in Chapter 3. In principle,
the Lagrangians in Eq. (2} contain an infinite number of interactions compatible
with the QCD symmetries. However, they can be organized in powers of Q/A,,
where Q@ < A, is not only the momentum of the pion, but also the generic value of
the momentum of other particles, and A, ~ 1GeV is the chiral symmetry breaking
scale. As a result, the transition amplitude defined in Eq. (1) can be arranged in
powers of (@/A,)™, where m is determined by power counting. The evaluation of
the scattering amplitude in Eq. {1} is performed by introducing complete sets of Hy

eigenstates |I,) between successive terms of H,, such that

(JITH) = CF1H) + D4 UHi ) gl i)

+éuufluz)MUamlmmmuma bon O
where Ey, E,,....E, are the energies of the intermediate states |y}, |I2),...,|fn),
respectively. Terms in this expansion are conveniently represented by time-ordered
diagrams. In particular, we can distinguish between reducible and irreducible
diagrams. The reducible ones have at least in one of their intermediate states only
nucleons (see panel (a) of Fig. 1), while the irreducible ones have at least one pion or
A-isobar in each intcrmediate state {sce panels (b}, (¢}, {d), {e}, and (f) of Fig. 1). A
generic (reducible and irreducible) contribution is characterized by a certain number,
say n, of vertices represented by (I;}H|I,), each one scaling as Q*~%/2 ( = 1, ..., n),
where «y; is the Q-power implied by the relevant interaction Hamiltonian and 5; is

the number of pions in and/or out of this vertex {this is related to the normalization
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FIG. 1: Examples of time-ordered contributions to the NN transition amplitude
involving pions, nucleons and A-isobars: panel {(a} represents a reducible diagram
while panels (b)—(f) represent irreducible diagrams. Pions are denoted by dashed

lines, nucleons by solid lines, and A-isobars by thick solid lines.

factor in the definition of pion fields as discussed in Appendix A), the corresponding
n — 1 energy denominators (£; — Ey +4n)~! with £ = 1,...,(n — 1), and possibly
L loops. Out of those n — 1 energy denominators, ng will involve only nucleonic
kinetic energies (these enter only the reducible diagrams), which scale as Q2, and
the remaining n —ng — 1 will involve, in addition, pion energies w, and/or the ¥V — A
mass splitting, considered as being of order g. From now on, we define the N — A
mass splitting as A = ma — my = 293 MeV where my and ma are the nucleon and
A-isobar masses, respectively. Loops, on the other hand, contribute a factor Q3 each,
since they imply integrations over the intermediate three momenta. Hence, the power
counting which determines the chiral index m associated with each contribution in

the perturbative series is given by

m = H Qm—,ﬂ,-{? % Q—[n—nx—l)g—‘z‘.n;( % QSL . (4)

i=1



Clearly, each of the n — ng — 1 denominators can be further expanded as

1 1 1 k- Ey, By — Fp.)?
— = : :——[H . ) +} (5)
Eg—Ej—Fi?} Eg“E]jw—Q-FW} Q Q2 02

where, depending on the topology of the diagram under consideration, Fy; denotes

the kinetic energy of the intcrmediate two-nucleon, or one-nucleon and one-A, or
two-A states with corresponding © = w, (if one or more than one pion are involved),
! = w, + A (if one or more than one pion and a A-isobar are involved) or = A
(if only a A-isobar is involved), 2 = w, + 2A (if one or more than one pion and
two A-isobars are involved) or @ = 2A (if only two A-isobars are involved)., The
ratio (F; — Ey;)/S is of order of @ The first order of the Eq. (5) is called the
static limit, which means that the nucleon and A-isobar masses mpy,ma — 00,
while the subsequent terms represent corrections to the static limit, named non-static
corrections. In particular, the first non-static correction is suppressed by a factor Q
with respect to the static limit. As an exampie of power counting, consider panel {a)
of ["ig. 1. Each of the n = 4 vertices, implied from the fI; yy interaction Hamiltonian
listed in Appendix A, scales as @, i.e. a; = 1, and there is only one pion in and/or out
of each vertex, i.e. 3; = 1. The intermediate state |I,) has only nucleons (nx = 1)
while the remaining (n. — ng — 1 = 2} intermediate states, {I;} and |3}, include also
one pion. Obviously L = 1 since there is only one loop. Using Eq. (4) we find that
diagram (a}, in the static limit, scales as Q. All the other diagrams in Fig. 1 scale
as Q? since ng = 0. Note that the vertices, as implied from the /{,ya Hamiltonian
given in Appendix A, also scale as Q.

Finally, the Q-scaling of the interaction vertices and the considerations above

show that the NN transition amplitude 7" admits the following expansion
’ {© 1 {
Ff3 = Tft) + T}Et) + . Tfin) N (6)

where T}?‘) ~

At this point it is worthwhile making a few considerations. Reducible diagrams
are enhanced compared to the irreducible ones by a factor Q for each purely
nucleonic intermediate states. In addition, in the static limit, these contributions
are infrared-divergent (since reducible diagrams involve nucleonic kinetic energy
denominators which lead to infinities for my — o0). According to the prescription
proposed by Weinberg [1] the nuclear potentials (and current operators) are given by

the irreducible contributions only. Reducible contributions, instead, are generated
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by solving the Lippmann-Schwinger (or Schrodinger) equation iteratively with the
nuclear potential (and currents) arising from the irreducible amplitudes. However,
the omission of reducible contributions from the definition of nuclear operators needs
to be dealt with carefulness when the irreducible amplitudes are evaluated under
an approximation. For example, if the irreducible amplitude is evaluated under
the static limit approximation then the iterative process will generate only part of
the reducible amplitude (i.e. the one which includes the approximate static nuclear
operators). The reducible part of the amplitude which is not generated by iteration
(i.e. the one that is obtained going beyond the static limit) needs to be incorporated
order by order—along with the irreducible amplitude— in the definition of the nuclear

operators.
2.2 FROM THE AMPLITUDE TO THE POTENTIAL

The perturbative series discussed in Eq. (3) is not very useful to describe nuclei
and nuclear properties. For example, it cannot treat bound states. Thus, in nuclear
physics a potential v is introduced, and the bound state and continuum two-nucleon
states are derived from solutions of the Lippmann-Schwinger (LS) equation (or
Schradinger equation). We then face the problem of how to obtain the potential
v entering the LS equation from the field theory amplitude (T-matrix). We solve

this problem by requiring that this v, when iterated in the LS equation,
v+ vGov + vGovGou + -+, (7)

leads to the on-the-energy-shell (#; — Ef) T-matrix in Eq. (6) order by order in the
power counting. Here Gy = 1/{E;+ Er-+1in) denotes the free two-nucleon propagator.

We assume that the potential v has an expansion like
v=v0 4o 4@ 4O 4 (8)

where v(™ is of order Q™. By matching the iterated v in Eq. (7) with the field theory
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amplitude 7' order by order in the power counting, we find that

oO = O (9)
NI (I [1,(0)(;0@(0)] , (10)
2 = ) _ [v(“’Gov“’)Gov“’)] _ [U(I)G‘wto) +U(")va(1)] , (11)
v® = 7O [U(O)va(o)Gov(o)va(o)J - [v(l)va(a)Gov(O) + pemlutations]

_ U(])GD,U(I)] _ [Uu)GO,U(D) +v(")va(2)] , (12)
....... (13)

where terms like v®@Gov™ are of order @Q""*+! since (i is of order @2 and the
implicit loop integration brings in a factor @*. The relations above allow us to
construct '™ from the field theory amplitude 7(™.

The leading-order (LO or Q%) v® term consists of the (static) one-pion-exchange
(OPE} potential and two (non-derivative} contact terms arising from the interaction
Hamiltonians given in Appendix A in Eq. (276). The term (") vanishes [30], since
the leading non-static corrections (of order Q) in T to the (static) OPE amplitude
add up to zero on-the-energy-shell, while the remaining diagrams in T} represent
iterations of v(% whose contributions are exactly canceled by [v9 G v(®] terms. The
next-to-leading order (NLO or Q?) and non-vanishing term v® follows from Eq. (11),
and contains two-pion-exchange (TPE) and contact terms. These latter contributions
involve two gradients of the nucleon fields and arise from the interaction Hamiltonians
listed in Appendix A in Eq. (277). The next-to-next-to leading order (N2LO or Q%)
will include sub-leading contributions to the TPE potential obtained from higher

order interaction Hamiltonians (see Chapter 3).
2.3 NNy SCATTERING AMPLITUDE

Because of the smallness of the coupling \/a, where o is the fine structure
constant, electromagnetic interactions are treated in first order in the perturbative
expansion of Eq. (1). The clectromagnetic transition amplitude includes disconnected
and connected contributions schematically represented by panels (a) and (b) of
Fig. 2, respectively. Disconnected contributions involve a d-function in the initial
and final three-momenta of one of the two particles, for example the contribution
of panel (a) is x d(p) — p2) and will be enhanced by a factor @ relative to

the connected diagram in panel (b}. The power counting is not affected by the
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FIG. 2: Schematic representation of the contributions to the NN+ transition
amplitude: panels (a) and (b) represent the disconnected and connected diagrams,

respectively. Solid and wavy lines denote nucleons and photons, respectively.

introduction of the clectromagnetic field and follows Eq. (4). The photon’s energy
denoted as w, is considered to be of order Q?. This scaling follows from the
conservation of energy between final and initial states where By~ E; = AE +w, =0,
AF is the difference between the final and initial nucleonic kinetic energies. The
electromagnetic interaction Hamiltonians are derived from the n#w, N7 and VN
chiral Lagrangians in Eq. (2) by gauging the derivative of nucleon and pion fields,
such that

AN(r) = 3, +icey AL{T)|N(r), Ouma(x) - [0y Lie Au(r)me(r), (1)

where e(> 0) is the electric charge, N(r) and 7.(r) are the nucleon and charged
pion fields, respectively, defined in Appendix A, A* = {AP A) is the external
clectromagnetic field and ey = (1 + 7,}/2 is the isospin project operator. We refer
to these Hamiltonians obtained by gauging the derivative couplings as “minimal”
Hamiltonians. The LEC’s invoived here are the same as those entering the strong
interaction.

However, gauging the derivalives is not sufficient to generate all the
electromagnetic interactions compatible with the symmetries of the underlying
theory. In addition, one has to account interactions involving the gauge invariant
electromagnetic field tensor F,, = 8,A, — 3,A4,. The interactions obtained in this
way are called “non-minimal” and involve additional LEC’s which are not constrained
from the strong-interaction sector. In Appendix A we list the electromagnetic
interactions involved in the calculation of the charge and current operators up to

one loop presented in Chapter 4.
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The vertices associated with the electromagnetic interactions scale as e @* and
inspection of Q scaling of the various interaction terms shows that field theory

electromagnetic amplitude has the expansion [30]

T, =T 4 76D 41 (15)

where Tngm) is of order e @™. In the context of the LS equation, we assume that
the potential v, has the samc cxpansion as in Eq. {15), and then determine the
potential v{™ by matching the field theory amplitude T<™ order by order in the

power counting obtaining the following rclations

Y = T (16)
A = D 9 Goul® 40 Gyl 9] )
WD = T - [0l Gyv® Gov!® + permutations|

- [ A2 Gov @ + 09 Gy v(_z)] (18)

v'(ym - T(O) [ 3 Gy v Gy v Gy o' + permutatlonS]
- [+
[uﬁ, U Ger® 400 G, 'l"(_v l)]
[”'(7 D Ger® +v?@ Gy vf/-3)] , (19)
‘Ugl) - T(l) [?,g D Gov® G v® Gy Gy @ + permutations]

|
|

D Gov™ Gp v + permutations]

27 Gov @ G v® Gov® + permuta'cionS]

vf, D Gov@ Gov® + permuta.tions}
— [v©9 Go v + ¥ Gy v(m]
[vi NGov® G 4 permutatlons}
[v.(, 2 Gov® + 0@ Gy vﬁ,‘ ]
[ (-

v

v Gy e® 4 ¥ Govffa)] , (20)

where o0 = A% — A . j® (p and j are the charge and current operators,
respectively) and v(™ are the NN potentials constructed in Eq. (9) (12). In
Egs. (16)-(20) the use of the fact that v(!) vanishes has been made. Finally, in the
propagator G the intermediate energy /2y may include, in addition to the kinetic
energies of the intermediate nucleons, also the photon energy, depending on the

specific time ordering being considered.
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CHAPTER 3

MINIMALLY NON-LOCAL NUCLEON-NUCLEON
POTENTIAL WITH CHIRAL TWO-PION EXCHANGE

INCLUDING A-ISOBAR

The objectives of the present chapter are twofold. The first is to construct a
minimally non-local chiral ¥ N potential up to N3LO (or @*) in the power counting
including A-isobars in its TPE component. The second ohjective is to determine
the LEC’s entering the strong Hamiltonians, in particular the contact interactions.
These LEC’s are determined by fits to the NN scattering data and deuteron binding
energy.

In our formalism, where nucleons are treated in a non-relativistic approach, the
Hamiltonian describing the two-nucleon system in the center-of-mass {COM) is given
by -

H= ey +UNN (21}
where the first term represents the non-relativistic kinetic energy of the two nucleons,
i is the reduced mass and vyy is the two-body potential. Natural units A =c = 1
are used throughout the present work. The NN potential is written as a sum of
a strong interaction component derived with the formalism described in Chapter 2
and denoted as vy3, and an clectromagnetic interaction component ¢4, including
up to terms quadratic in the fine structurc constant a (first and second order
Coulomb, Darwin-Foldy, vacuum polarization, and maguetic moment interactions).
The vEM component is the same as that adopted in the AV18 potential [48] and
will not be discussed further in the present work. The component induced by the
strong interaction is conveniently separated into long- and short-range parts, labeled,
respectively, v15 and v§,. The v, part includes the one pion-exchange (OPE) and two
pion-exchange (TPE) contributions up to N2LO (or Q?), illustrated in Fig. 3: panel
(b) represents the static OPE contribution at leading order (LO or @°); panels (d)-(i)
represent the TPE contributions at NLO (or @) without and with A-isobars in the
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FIG. 3: Diagrams illustrating contributions to the NN potential entering LO {Q%),
panels (a) and (b), NLO (©Q%}, panels (¢)-(i}, N2LO (Q?), panels {j}-(o), and N3LO
(@%), panel (p). Nucleons, A isobars, and pions are denoted by the solid, thick-solid,

and dashed lines, respectively. The filled circle in panel (c) represent the vertex from

the contact Hamiltonian containing two gradients of the nucleons’ fields. The open

circles in panels (j)—(o) denote the 77NN and 7 NA couplings from the sub-leading

Hamiltonians H ﬁ) vy and H + respectively. The open square in panel (p) represent

the vertex from the contact Hamiltonian invelving four gradients of the nucleons’

fields.
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intermediate states; lastly, panels {j)-(o) represent sub-leading TPE contributions at
N2LO. The open circles denote the a7 NN and 7 NA couplings from the sub-leading
interaction Hamiltonians /1 ,(ri:r)N nand H fj\), A» Tespectively, given in Appendix A. Note
that in Fig. 3 only one among all possible time-ordercd diagrams is displayed. The
short-range part, v$,, consists of nucleon contact interactions up to N3LO. At LO the
contact interactions (panel (a) of Fig. 3) have no derivatives of the nucleons’ field,
while the contact terms at NLO (panel (c} of Fig. 3) and N3LO (panel (p) of Fig. 3),
denoted with a solid dot and open square, involve two and four gradients acting on
the nucleons’ fields, respectively.

The momentum-space representation of the OPE and TPE components as well
as the contact interactions is discussed in Sec. 3.1. The evaluation of transition
amplitudes associated with those contributions are obtained using the approach
outlined in Chapter 2. In Sec. 3.2 we construct the coordinate-space potential
vy starting from its momentum-space representation, while in Sec. 3.3 the fitting
procedure is laid out. Special attention is given to the discussion of the Schrédinger
equation for single and coupled-channeis in order to obtain phase shifts. In Sec. 3.4
we report the x? values obtained in the fits as well as the values for the low-energy
constants that characterize the potential, and show the calculated phase shifts for
the lower partial waves (S, P, and D waves) and compare them to those from recent
partial-wave-analyses (PWA’s). There, we also provide tables of the pp, np and nn
effective range parameters and deuteron properties, including a figure of the deuteron

S and D waves. A number of details are relegated to Appendices B E.

3.1 MOMENTUM-SPACE REPRESENTATION OF THE NN
POTENTIAL

In following section, the momentum-space potential is derived in the COM frame
where the initial and final relative momenta of the two nucleons arc p and p,

respectively. We also define k = p’ — p and K = (p’ + p)/2.
3.1.1 ONE-PION-EXCHANGE

The well-known static one-pion-exchange (OPE) potential illustrated in panel {b)
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of Fig. 3 can be written in the form
sOK) = [v:;-}o(k) oy + 0O (k) sm(k)} nem
+ e 01 - o + 05O (k) Sra()] Tha (22)

where we include the isospin-symmetry breaking induced by the mass difference

between charged and neutral pions. The opcrator Sj3(k) is defined as
512(k)=361-k0'2'k—k20'1-02, (23)

and

Tio =371,T0, — T T2, (24)

is the isotensor operator. The o; (7;) arc the usual spin (isospin) Pauli matrices. The
OPE functions, v710(k), v "O(k), v75°(k), and v O (k) arc defined as

Ok = Yo(k) +32Y+(k)’ (25)
oy — Talk) +32T+(k)’ (26)
SO = }fg(_’fl:g_é@ (27)
WOk To(k).—sﬂ(k), (28)

with Y, (k) and T,(k) given by

Yo (k) = _ﬁk_z (29)
g 3F2R tmZ,

2
Tk = -4 L (30)

3FXk?+m2,
where g4 and F; are respectively the nucleon axial coupling constant and the pion
decay amplitude (see Table 1) and m,, denotes the neutral {m.,,) and charged {m,, )

pion masses. The charged and neutral pion masses as well as other masses and
physical constants adopted in this study are given in Table 2.

3.1.2 LOOP CORRECTIONS TO THE NN POTENTIAL

The two-pion-exchange (TPE} loop diagrams entering the NLO and N2LO NN
potential can be separated into three categories: i} contributions without A-isobar
intermediate state (panels {d)—(f) and (j)—{k) of Fig. 3), denoted with the symbol A;
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TABLE 1: Values of (fixed) low cnergy constants (LEC’s): g4 and hs = 394/ V2

are dimensionless, £, = 2 f; is in MeV, and the remaining LEC’s arc in GeV™?,

ga  ha Fr (s} Ca C3 cg b3+ bs
129 274 18480 -057 ~025 -0.79 133 1.40

TABLE 2: Values of neutral (my,) and charged {m.,) pion masses, neutron (A,)
and proton (M) masses, A-nucleon (A) mass difference, and clectron {m,) mass (all
in MeV), and of the (dimensionless) fine structure constant . Note that fic is taken
as 197.32697 MeV fm.
Mg My, M, M, A M a
134.9766 139.5702 939.56524 938.27192 293.1 0.510999 137.03599

-1

ii) contributions with one A-isobar intermediate states (panels (g)—(h) and (1I)-(n) of
Fig. 3), labeled as 1A, and iii) contributions involving two intermediate A’s (panels
(1) and {o) of Fig. 3), denoted as 2A.

3.1.2.1 A-LESS LOOP CORRECTIONS

We start the discussion considering diagrams that do not include isobars in the
intermediate states. The TPE potential at NLO, given by the sum of diagrams
(d)—(f} in Fig. (3), reads as {29}

2 2 _ 12 2
27,NLO 94 I~k 1 / (W —w.-)
* k; - — . — .
¢ (s 4) F; Tl T2/1w+w-(‘*’+ +w_) 8F; e | waw-{ws + w-)

g4 /wi+w'fwi+w§
2F} Sy wiw? (wy +w-)
+60’1~(le)0’2-(le)], (31)

[ - (8% — k?)?

where wy. = y/(1+ k)2 +4m2. The first and second term in Eq. (31) represent
the irreducible diagrams in panels {d) and (e) of Fig. 3, respectively, denoted
as “triangle-like” and “football-like” diagrams. The last term in Eq. {31) is the
contribution arising from the TPE “box-like” diagrams in panel (f) of Fig. 3.

The sub-leading (N2LQO) TPE potential, given by panels {j)-(k) of Fig. 3, reads
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as [9]

{2_ 2

Y 39?1 k 8 ¢, m2 2 k2
v ( ) ) - F;Z, ! wiwﬁi [ €1 rn"]'r~+.c3( - )]

deg gl 1
- F:rl Tl'Tz/lm[Oj'(kXl)O'Q'(kX].)], (32)
where here the whole contribution is due to diagram (j) in Fig. 3. Note that the
“football-like” diagrams in panel (k} of Fig. 3 vanishes because the loop integrals
involve odd powers of the loop momentum. The parameters ¢; are the LEC’s entering

)

the second order 77 NN Hamiltonian H f ~w Specified in Appendix A. Their values,

as determined by fits to «V scattering data [11], are given in Table 1. Before
investigating all the other contributions to the NN potential, a couple of comments
are in order. The first is that loop diagrams contain ultraviolet divergencies (I — oo)
which need to be removed by using a proper renormalization scheme. Consider as an
example the first term in Eq. (31): it has a quadratic divergence for { — 00. In order
to isolate these divergencies, loop integrals have been regularized with dimensional
regularization (DR) [40, 41] as outlined in Appendix B. In DR a generic TPE

contribution, ©**(k}, can be decomposed as
7 (10) = (k) + 7" (Ko (3

where 727 (k} represents the renormalized (finite) part and v%"(k),0 polynomial terms
in powers of k which include the removed divergencies. In the present chapter we
only give the relevant expressions for the renormalized loop integrals. However, in
Appendix B we sketch the renormalization procedure using as examples diagrams
{g)—(i} which are presented in the next section.

The renormalized (finite) part of TPE at NLO, given in Eq. (31), reads:

@EN’NLO(R; A) = ’Ugﬂ’mo(k; Aoy oy + UEW’NLO(k; A) Si2(k)
N TAdlaat § /.97 L S (34)

where the funtions, vZ*™O(k; A), v2"NO(k; A), and v?"NO(k; A), are defined as
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follow
1
VO ) = TGk &2 (35)
7 ’ 4m? F4 '
. 145
o0 A) = ~5 1;4 G(k) , (36)
. 1 .
w20 4) = yreyaridl) 4m2(1 + 4g4 — 5g4) + K*(1 + 1095 — 234%)
_ 48gamy (37)
4m2 + k2|’
and the logarithmic loop function G(k) is given by
VE 4 AmE . JEE+4Am? +k
HkY=2 l u . .
G(k) . lu . (38)
The finite part of the TPE at N2LO, represented by Eq. (32), reads:
ﬁzfr,NQLO(k; 4&) — 2fr N2i0(k 43) + { 27, NQIO(k;é) oy -0y
g N0 (1 K) S1e(K)] 71 - T2 (39)
where
3
pENELO (. AY - = ‘;‘l [2m2 (2, - ¢3) — esk?] (2m2 + k%) A(k),  (40)
2
- N2LO G4
VITNAO(B A) = I £ esk? (4m2 + k%) A(k) | (41)
21r N2LO gA 2
(k;A) = ~nFi s (dm2 + k%) A(k) | (42)
and the loop function A(k) is defined as
1 k
Alk —arct . 43
(k) = L arctan po— (43)

3.1.2.2 A-FULL LOOP CORRECTIONS

In what follows, we focus our attention on contributions inveolving A-isobar
intermediate states. The TPE loop diagrams involving one and two A’s intermediate

states (panels (g)—{i) of Fig. 3), entering the NLO NN potential, can be written as

VN0 A) = v MOk 14) + 0inN O (ki 14) + vpm WO (ki 28) , (44)
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where v2"MO(k: 1A) refers to contributions associate with “triangle-like” diagrams
(panel {g) in Fig. 3) while 5770 (k; 1A) and 42O (k; 2A) represent the “box-like”
contributions with 1A and 2A’s in the intermediate states (panels (h)-(i) in Fig. 3},

respectively. The evaluation of the corresponding amplitudes lead to the following

expressions
p2eNLO _ 2% / k-0
(ki 14) = 9F4 T2  (wy +2A) (wo + 2 AN wy +ws) (45)
L2mNLO _ _gAh?q 1 2 _ 2y2 _ .
box (k 1A) = 9AF¢/l.liwiw2|i3 (k Z) +2T| T2 (U]Xk) 1
2A b wy +w-

X (o9 Xk)-l} +w+w_ (wy +2A) (w_ +240) (wy +w_)

x[6(01xk)-l(agxk)~l+7']'7'2(k2—£2)2] . (46)

'Z‘KNLO(k 2A) - h‘; / wi+w%+W+w_+4A(w++w_+A)
SLFY filwiw_ (wy +2A)2 (w_ +2A)? (wy +w_)

X (6 + 71 - ) [(k2—12)2+(a'1 xX) 1 (o2 x ) 1]
i 2A 4wy +w.
20 w; w_(wy + 2A) (w. + 2A) (wy +w_)

x (6 — 11 - 73) [(k2—12)2—(01 x k) -1 (azxk)~l]] ,{47)

where A is the A-nucleon mass difference and h, is the N-to-A axial coupling
constant taken as ha = 3g4/V?2 (this value for /i, is take from strong-coupling
model [51], and is in good agreement with the value inferred from the empirical
A-width [52]). The value for A is given in Table 2 while the value for h, is
give in Table 1. The DR procedure of these loop diagrams and the relevant
integration formulas are discussed in Appendix B. In particular, the finite parts of
Egs. (45)—(46) (47) are summarized in Eqs. (343)-(400)-(423), respectively. Their
expressions involve parametric integrals that one can evaluate numerically.

The inclusion of A-isobar degree of freedom in the TPE amplitude has also
been derived by Kaiser et al. [7, 8, 11]. These authors use covariant perturbation
theory {Feynman diagrams) combined with dimensional regularization to evaluate
diagrams (g)—(i) as well as those in panels (1} (o) of Fig. 3. The authors derive
compact expressions for the corresponding non-polynomial pieces. The expressions,

particularly for diagrams (g)—(i) in Fig. 3, obtained in the two formalisms have been
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compared numerically observing an agreement between the results. We list these
expressions in what follows. At NLO the TPE potential corresponding to diagrams
(g)-(h) in Fig. 3 reads
MO 1A) = o VO(k 14) + 07Ok 1A) 01 - 0
+o2" MO 1A) S (k) + [62™NO(k: 1A)
+u2 N 1A) - o + iV O (K5 1A) Spp(K)] 7 - 72 ,(48)

oT tr

where the functions depending on the momentum £ are given by

212
27 NLO/}.. _ gaha 2, 1.2\?
O A) = g (e 4 KA (49)

252
27 NLO/1.. o gahy ot i 2 AAZ
w2 N0 (R 1) = 182 F2 K [~2L(k) + (o® — 4A%) D(k)] | (50)

2h2
N0k A) = —IATAC [ar(k) + (w7 - 48%) D(R)] . (51
27, NLO hi
p2NEO (L 1A

[(6Z — w?) L{k) + 12A%% D(k)]

54 72 F}
g2 h.2
~ ;“rg 1’;4 [(12A% — 20m2 — 11k%) L(k) + 622 D(k)] , (52)
27,NLO gaha 12 2
v, Uﬂ, IA) = mk w A(k) y (53)
27,NLO 9ah% 2
The quantities X, L(k), A(k}, D{k), and H(k) are defined as
N o= 2mi4 k247, w= .k +4am?, (55)
k
L(k) = %1:1“;; , (56)
1 k
Alk)y = ﬁarctan S (57)
Dk - — / T epan Y A (58)
A Jom, w?+ k2 24 ’
2% .
HE) = ——0 [L(k) — L2/BE - mg)} . (59)

The TPE “box-like” contribution corresponding to diagram (i} in Fig. 3 reads as

2 NLO(Kk: 2A) = 1}3”’“'“0(1:; 2A) + u?f’NLD(k; 2A) o - oy

+0f"NO(k; 240) Sia (k) + [p2PNO(k: 24)
+u TNk 28) o g+ 0 (K 20) Sia(k)] - 7, (60)
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where

v NO(k;24) = ——%—%[—4A2L(k)+2[H(k)+(Z‘.+8A2) D(k)]] {61)
NG 28) = A Mkz[ﬁL(k)—’r 12&"‘—-w)D(k)], (62)
PNO(f o) 648 A [6L(k)+ 12A2—w)£)(k)], (63)
VPO (L OA) = “486172 m{ (125 — w?) L{k) + 35[H (k)

+ (842 - E)Dk)]} (64)
vk 9A) = mkﬂ[u + (4A% + w?) D(k)], (65)
wINO(foA) = 3888 L Y~ i [2L(£)+ (AA? + w?) (k)]. (66)

Moving on to the loop corrections at N2LO, the contribution corresponding to
diagrams (1)-(n} in Fig. 3 is
ﬁ2w.;\T2LO(k; IA) — ﬂrr,NQLO k‘ 1&) I UEK,NQLO(k; IA) o1 - O
_I_U;Z?r \T?IO(k; 1A) S]_g(k) + [ ‘211',N2L0(k; ].A)
+1J3’:'N2Lo{k; 1AYo, - 05 + Uff NZLO(k; 1A Spk) -2,

(67)
where
2A
UEN’N%OUC; IA) — 92:2F4 [62 [4clm - ZCZA — O3 (2A2 + E)] D(k)
+ [~24cym? + cp(w? — 65) + 6c3(2A% + X)) L(k)} , (68)
2
N0k Y A) = 2(bs ';:;);’fh”’Ak? [(w? — 4A%YD(k) — 2L(k)] , (69)
gm0y o (s +g’::3?§hﬂﬁ [(w? — 482 D(k) - 2L(K)] , (70)
2PNAO( 1A) — “% [12A28D(k) + (—w* + 65) L(k)]
2(b b
~2(bs ;71:2)% Al [62%)(3:) + [w? - 12(A% + )] } , {71)
cahi A
2:r N?[O(k IA) - 2;F;1F4 k). [( 4&2)D(k) - 2L(k]] N (72)
MO 1A) = D [0 A D(k) - 2] (73)

" 54w 2F4
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The expressions above depend also on the new combination of LEC’s (b3 + bg) arising
from the second order Hamiltonian H,(j\), a given in Appendix A. The value of this
combination of LEC's is also taken by fits to 7NV scattering data [11], and is given
in Table 1.

Finally, the TPE contribution corresponding to diagram (o) in Fig. 3 reads

_27" NQLO(k 2A) 27rN2I0(k QA) + ,v21r N2L0(k 2A) o -0,
-i-'y?’r NQLOUC: 2A) Sia(k) + [ 2mNILO (k; 2A)
+,021r N2LOU€ 2A) o0y + 3)2: N2L0(k; ZA) Slz(k)] n-7y,

(74)
where
3
W2NIO (ki 9A) = _8(%8—;};85)‘2&[3(8132“2)21)(&)%-
35 H(k) + (~* + 128) L{k)] | (75)
W20k 9NY = W}ﬁ[( 2 5 12A2)D(k)+6L(k)] . (76)
LTI _%;%’?_A [(—cﬂ + 12A%YD(k) +6L(k)] ; (77)
. 4{bg + bg)h3 A .
VN0 (. 9A) _Abs £ b)ha A ;4;1,2»4‘4 [3 (8A% — X) T D(k) +
3T H(k) + (—w* + 122)L(k)] ; (78)
2 N2LO (1. ¢ _ M 2 2
N0 28) = SRS (- + 128%D(0) +6LK)] . (19
A
PN 9 A _%%l;;;‘_ [(—w2 + 12A%) D(k) + 6L(k)] - (80)

In conclusion, the long-range part of the VN potential is defined as the sum of
the OPE and renormalized TPE without and with A-isobars:

U{'z(k) Y™ LO(k) + 5211 NIO(k A) + 7 =27, NZLO(k_ A) + —-27r.NLO(k_ IA)
+E’2” NLO(k ZA) —21!’ N’ZLO(k IA) + ‘-)27r N2L0(k 2A) (81)

which can be written, in a compact way, as

6

via(k) = ) o, (k) Ola(k) + w3 ° (k) OFF + vi°(k) O (k) (82)
=1



25

where
05 %k) = (1,01 03,5:K)|®[1,n T, (83)
0y = o1-a3T, (84)
0 (k) = Suk) T, (85)

and the functions v} (k) are given by

v (k) = vFNOk &) + v2NO(k 1A) + o2 NO(k; 2A) + 02 N0k 1A)

FoZm MOk 24) (86)
Wik) = PO L) + o2 NO(k 1A) 4 o2 NIO (e 9A) 4 p3mNIO( 1A)
+ou2m N0k 2A) (87)
(k) = o0k A) + 0" O (ks 1) + o O (ks 28) + w0k 1)
N0 (L9 | (88)
vi(k) = vPNO(k; &) + 07 NO (ks 1A 4+ 2" NO(k: 2A) + v2PNIO (k- TA)
+ofmNAO(k; 24) (89)
vk} = og k) +oT Ok A) + TN Ok 1) + 037N (k; 24)
+oZPNO (5 LAY + o2NO (i 9A) (90)
o (k) = virtO(k) + o NEO(k; A) + o MOk 14) + v N O (ks 20)
4t N0 TA) + 7PNO (R 2A) | (91)

It is worthwhile noting that terms proportional to Ty, (retained in the OPE potential
at LO) are ignored in the NLO and N2LO loop corrections which are evaluated
with the average pion mass m, = (2m,+ + m,o) /3. Additional loop contributions,
such as those represented in Fig. 4, are not considered here, since they only lead to
renormalization of OPE (and also contact interactions) [4, 53]. In other words, these
contributions do not affect the renormalized potential since they are absorbed in the
definition of the LEC’s g4, Cs and Cr {the constants Cs and Cr will be introduced
in the next subsection). Furthermore additional one-loop as well as two-loop TPE
and three-pion exchange contributions at order Q* are not considered in the present
work. These contributions have been neglected, since they are known to be small
(see, for example, Ref. [6]) and are not crucial for obtaining a good x? fit to NNV
data.
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(a) (b) ()

FIG. 4: Loop corrections to OPE, panel (a), and to contact intcractions, pancls (b)

and {c). Notation is as in Fig. 3

3.1.3 CONTACT INTERACTIONS

In this section we focus our attention on the short-range part of the NN
interaction, denoted v},{k, K). The potential +5,(k, K) includes charge-independent
(CI} contact interactions at LO, NLO and N3LO, and charge-dependent (CD) ones
at LO and NLQO such that

vip(k, K) = viy” (k, K) + 4357 (k, K) . (92)

These contributions are represented in panels {a), (¢} and (p) of Fig. 3, respectively.
We start off from the charge-independent contribution. The amplitude resulting from
the contact interaction Hamiltonians Hcorg of Eq. (276) gives risc to the LO contact

CTo

potential v~*¥ which is expressed in terms of two LEC’s, (s and Cyp, as

vCTD:CS+CTO'1'O'2. (93)

Next we consider the contribution implied by the contact Hamiltonian involving two
gradients acting on the nucleons’ field given in Eq. (277}. The corresponding potential
7“T?(k,K) in the COM is expressed in terms of seven independent operatorial

structures (3, 4, 39]:

Tk, K) = 1A+ Co K2+ (Csk? + Cy K)oy - 03 + 165 S - (K x k)
+Ce S12(k) + C7 S1o(K) | (94)

where 8 = (o] + 03)/2 is the total spir of the two nucleons and S12(K) = 30, -
K o, K ~ K20, - 05. The coefficients C; used here are related, of course, to the
cocfficients €] that occur in the Hamiltonian Hore in Eq. (277). These relations,

which are irrelevant for the purpose of this work, can be found in [4, 39]. Finally the
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contact potential at order N3LO, #°T4(k, K), which involves four gradients acting on

the nucleons’ field is epressed in terms of 15 independent operators [6] as

TOT (R, K) = Dik® + Dy K* + Dy k2 K2 + Da (K x k)? + [[)5 k* 4 Dg K
D KK + Dy (K x k)2] oL -or+i(Dek? + Dig KBS - (K x X)
+(Dy1 k* + Dia K*) S1a(K) + (D3 k* + Dig K*) S12(K)
+Dis o - (K x k) o - (K x k)] . (95)

Available versions of NN potentials derived up to N3LO in the chiral expansion,
such those in Refs. [5, 6, 10], implement the parametrizations of contact interactions
at NLO and N3LO given in Egs. (94) and (95), respectively. However terms
proportional to K2 and K* in those expressions, upon Fourier transformation, would
lead to p? and p* operators in coordinate-space (p —» —iV is the relative momentum
operator), making the NN potential strongly non-local. It is for this reason that it
is desirable to replace the non-local contact interactions by local ones. In particular,
these non-local terms can be partially removed by using Fierz identities [47]. These
identities are obtained by considering that a generic operator (O} in Eqs. (94) and
(95) needs to be evaluated between imitial and final two-micleon states that are

antisymmetric
Py =-1i), P™[fi=-1f. (96}
The space-spin-isospin exchange operator, P, is given by

l+n-mlto
2 2

pexc ‘o2 pspace Pexc'f — pexc (97)

where PP ig the exchange operator for the momenta (or coordinates) variables so
that k —+ —2K and K —» —1/2k. It follows that the matrix element for an operator
O satisfies

{1015y = ~(J|P O} . (98)

Consider, for example, terms proportional to K2 and K* in Eqgs. (94) and (95),
respectively.  Applying Eq. (98) to these operators, we find that they can be
completely removed by using the following Fierz relation

1+T1'Tg 1+U]'Ug k™

K™ — 3 2 om

(99)

with m = 2 or 4. Mixed terms of the type k* K? or K xk cannot be Fierz-transformed
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away since
K K? ~1“2"T“+"2""2K%2, (100)
Kxk — -H;"T’*H‘;""Qka. (101)

The use of these identities leads to the following choices of contact interactions at
NLO
V(K K) = QB+ Co kT m+ Ckloy o0+ Cikloy 007 T
+C5 S12(k) + Cs Siz(k) 1 - 2 +1C7 8- (K x k) (102)
and at N3LO
R K) = Dk + Dok o4 Dykloy -0y + Dyktoy oo Ty
+D5 k% S12(k) + De k2 Sia(k) 11 - 12 + iD7 k2 S - (K x k)
+iDgk?*S - (K x k)7 - 75+ D[S+ (K x K)|* + Dyo (K x k)*
+Dy; (K x k)2 oy - 034 D1 K K? + Disk* Ky - o
+D14 K Spa(k) + Dis K? Spa(k) 7 - 73 (103)
The coefficients Cj—; .7 and D;.; ;5 are related to (j’i=1,,_,7 and bi=1,___$15,
respectivelly, via Fierz identities.  Therefore, the charge-independent contact
interaction, including terms at LO, NLO and N3LO, can be written as
v (ke K) = o™ 4 o2k, K) 4+ 0Tk, K)
= (Cs +C1 K + D1 k*) + (Co K + Do k) 1 1
+{Cr+ C3k* + D3 k") oy - 02 + (Co B + Da kP oy 0211 T2
+(Cs + D5 k%) S1a(k} + (Cs + Do k%) Siz(k) 11 - 72
+i(Cr+ D k%) S (K x k) +iDgk*S - (K x k) 11 - 7
+D4(S- (K x K)]* + D1o (K x k)* + Dyy (K x k)2 o, - 02
+Dp K K? + Disk*K%0, - 09 + Dy K2 S12(k)
+Dys K2 Spa(k) 7 -7 (104)
Finally, we also consider a charge-dependent component of the short-range NN

parametrized as

vy Dk, K) = [CEP+ Ok + C) k2 0y - 03 + CF Sia(k) + i CI'S - (K x k)] Tiz
HOY + CIVE + CY kP ay - o2+ CY Sip(k)
+HCYS - (K x k)] (712 + 722) - (105)
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In the potential v33°"(k, K) only terms up to NLO, involving charge-independence
breaking (proportional to 7i2) and charge-symmetry breaking (proportional to
Tz + 72.), are accounted for. The associated LEC’s, labeled with the superscript
IT and IV, while providing some additional flexibility in the data fitting discussed
in Sec. 3.4 {especially C}¥ in reproducing the singlet nn scattering length), are not

well constrained.

3.2 COORDINATE-SPACE REPRESENTATION OF THE NN
POTENTIAL
In this section we derive the coordinate-space NN potential starting from
its momentum-space representation discussed in Sec. 3.1. In particular the
coordinate-space of the OPE potential as well as contact interactions is carried out via
Fourier transformation, while the coordinate-space expressions for the TPE potential
are obtained via spectral function representation {9]. In what follows we define r as

the relative separation between the two nucleons and r the unit vector r/r.
3.2.1 OPE AND TPE IN COORDINATE-SPACE

After Fourier transforming the expressions in Eq. (22}, the OPE potential reads:
() = [urtO(r) ov- o 4 000 S| T
+ [U:'}l'ro(?") o1 o3+ v ) 512] T2, (1086}

where the tensor operator Sy, is defined as Sy = 301 o2 T — 01 - 09. The OPE
functions are given by
Yo(r) +2Y, ()

vyO(r) = 2 : (107)
,”;;,LO(T) — TO(T) +32 T_{..(T] , (108)
o) = BN 3 Yalr) (109)
To(r) - T
vpO(r) = i) ~ 1) 3 +(r) , (110)
where the dimensionless functions Y,{r) and T,(r) are defined as
2 3 ]
_ 94 T € 7
Yalr) = 5 I (111)
3 3 .
Telr) = Yu(r) (1 + =+ —2) . {112)
To 22
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and 2, = my,, 1, with m,_denoting the neutral (m,, ) and charged {(m,, } pion masses.
Note that Eq. (106) only holds in the case r > 0, and a d-function singularity at the
origin has been dropped, since it can be reabsorbed in the contact terms at LO.
Coordinate-space expressions for the TPE terms at NLO and N2LO are obtained
by using the spectral function representation [9] (with no spectral cutoff) since the
TPE potential satisfics a dispersion relation based on NN — 27 amplitude. For

r > 0, one has the representations
1 oc

2n T
Ye (T) 2?1'2?“ dﬂ‘ﬂ‘e ! pC(Ju) b (113)
1 [.¢]
B0 = s | dene O+ i), (114)
w3 o
1 oG
27 _ —jr 2
v (ry = wﬁ:rr?r/o dppe™ [12p(i) — 3p.(12)] (115)
and similarly for v2%(r), v27(r), and v;"(r). The spectral functions p;(1) are given {9]
pu(ie) = Im[Bf"(0* — ip)] (116)

in terms of the left-cut discontinuity at & = 0% — 4y, and the functions 77"(k) are
the momentum-space TPE components of the potential at NLO and N2LO written

using the following basis

6
EHURDILACICE (117)
with O30 = [1, ¢y .09, 01 -k 02-X|®[1, 71 - 7] instead of the basis 03" =

(1, o102, 512(k)] @ [1, 71 - 72], adopted in the previous section. Consider the TPE

at NLO given in Eq. (34). We can rewrite this expression in the following way:

2N A) = 2NOG Ky oy - oy + 0ET NLO (k;A)oy -kay -k

—I—UE"‘NLO(k; Ay, (118)
where now the TPE functions, in the new basis, read as
N 39
1.’3 ’I\LO(k; A) = {2 ;4 p(k) ké (119)
3¢
27,NLO/;,. _ __°%s
PO 4) = o, (120)
1

’U?W’NLO(k; A) —

4872 FA G(k) l:’l'mw(l +4g% — 5g4) + k*(1 -+ 1093 - 23¢%)

(121)

. 489Am1r
am2+k%|’
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and the loop function G({k) is defined in Eq. {38). In order to calculate the
coordinate-space representation of v2NLO(k; A), for example, we first evaluate the

spectral functions p{u) and p, (),

1
H

; . 3 g%
poli) = Im[ZMOO i 8)] = /i@ —dmZ, (122)
. 4 /2 — Am?2
2W,1\L0(0+ . Ep‘,, A)] . 3{}A i iy : (123)

pelp) = Imfy; = gr2 i p

where we used

Im[G(0* — ip)] = —~ /1 — dm2 . (124)

7

The integral in Eq. {115) is then carried out by using the substitution g — p/(2m,)

obtaining the final analytical expression

A my, |37 Ko(22) + (3 + 20) K1 (22) | (125)

27 NLO/,.. _ 9a
e (r A) = 2w3r4p—#

where 2 = m,r (m, is the average pion mass) and K, arc modified Bessel functions
of the second kind. We provide in Appendix C a list of all the coordinate-space
TPE components. In particular those corresponding to diagrams {d)—(f) and (j)-(k)
in Fig. 3 are expressed in closed form and are given in Egs. {430) {432) and
Eqs. (445)-(447), respectively; the remaning ones corresponding to diagrams (g)- (i)
and (1)-{o) are obtained in terms of a parametric integral, and they are given in
Egs. (433)-(444) and Eqs. {448)-(159).

The radial functions v {r) are singular at the origin (they behave as 1/7" with n
taking on values up to n = 6); therefore they need a further regularization. Indeed,
each TPE component in Appendix C is regularized by a cutoff of the form

1

(—’RL. (?‘) =1- [T‘/RL)G elr—-Ay)fer +1 !

(126)

where in the present work three values for the radius R; are considered Ry =
(0.8,1.0,1.2) fm with the diffuseness a;, fixed at a;, = R;/2 in each case. This
ensures that the short-distance part of the long-range potential at r smaller that £

is smoothly cut off and that the singularities at the origin are removed since

Cr, (r — 0) (RLL)G . (127)
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The potential v}, including the well known OPE components at LO regularized also

by the cutoff in Eq. {126), then reads in coordinate space
6
oty = [Z A7) o'm] o) O + o7 (r) O | (128)
=1

where
Oi§1,...,6 — [1 , T - 0'21 ,912] @ [1 y T1° TQ] 3 (129)

O%F = oy - 03 Tio and O = S19Ti,. The radial functions v (r) are summarized in
Eqs. (460)-(465) while the charge-dependent functions vf*(r) and »{7 (r) are given
in Egs. (109)-{110), respectively.

3.2.2 CONTACT INTERACTIONS IN COORDINATE-SPACE

In this section we perform the coordinate-space representation of the short-range
part of the potential, v§,(k,K), defined in Eq. (92). The Fourier transformation
of the single contact terms in Eqs. (104} and (105) is carried out with a Gaussian

regulator, depending only on the momentum transfer &, such that

1

— ~(r/Rs)? .
‘ﬂaz’zﬁge T (130}

Crs (k) =e %1% s Cry(r)

which leads to a coordinate-space representation only mildly non-local, containing at
most terms quadratic in the relative momentum operator as will become clear below.
The coordinate-space representation of a {regularized) term O(K,k} in Egs. (104)

and (105) follows from

— o = k(v K k)& (r'~r)
O(r) / (2703/ BISE e O(K. k)e , (131)
where r is the relative position and K — » p = —i V'é6(r’ ~r), the relative momentum

operator. For the momentum-space operator structures present in Eqs. (104)
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and (105) one finds the following relations:

1 — Cr(r), (132)
K — mcﬂ()—wcm() (133)
Ko— CR0) + - (*(3’(1-) (134)
Sia(k) —> _{*(2)( “)(r)] S, (135)
iS- (K xk) — 70,‘;3&)1,-3, (136)
K> — {p*, Cr(n)} , (137)
(K xk? — -% [C}Q(r)—%cﬁg(f)] L2-{p2’;1;<'»‘§2(r)}

_E 0, (138)

S0 x K — 5 |02 - 00| -5

i+o0, 0 1,
~{ﬁi—7§—ﬁ~oppafp,;6$w%, (139)
where
D0y = Tmln) (140)
Finally v?z in coordinate-spacc reads as
19
vy = [Z vg(r) Oiz] +H{gr)+ o (r) oy - o2
i=1
+051(r) S + V8T (r) Sam -T2, PO} (141)
where O‘El"“'s have been defined in the previous scction,
O _L.8 L.8S1 -7, (L-8)?, L2 L?0y - 03, (142)
referred to as b, br, bb, ¢, qo, and
Oz e :[1v01'02y8121L'S]Q@[TIZ!T{Z-*‘T;] ) (143)

referred toas T, 7z, 0T, 072, tT, trz, bT, brz. The four additional terms, denoted as
p, po, pt, and ptr, in the anti-commutator of Eq. (141) are p>-dependent. The radial
functions v4(r) as well as those multiplying the p%-terms are listed in Appendix C.
We consider, in combination with R, = (0.8,1.0,1.2) fm, R, = (0.6,0.7,0.8) fm,
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corresponding to typical momentum-space cutoffs Ag = 2/Rg from about 660 MeV
down to 500 MeV. While the use of a Gaussian cutoff mixes up orders in the power
counting—for example, the LO contact interactions proportional to Cs and Cr in
Eq. (104} generate contributions at NLO and N3LO—such a choice nevertheless leads
to smooth functions for the potential components v§(r) and the resulting deuteron
waves. Sharper cutoffs, like those o« exp[—(r//)"] with n = 4, as suggested in
Ref [14], or n = 6, as in one of the earlier versions of the present model, generate

wiggles in the deuteron waves at r ~ R {as well as mixing of power-counting orders).

3.3 DATA ANALYSIS

The NN potential discussed in Sce. 3.2 involves 34 unknown LEC’s associated
with the charge-independent contact interactions entering at LO (Cs and Cp),
NLO (G;, i = 1,....,7) and N3LO (D, i = 1,...,15), and the charge-dependent
contact interactions entering the LO (CAT and C}Y) and NLO (CIT and CI,
i = 1,...,4). One goal of this thesis is to determine these contact parameters by
fitting the 2013 Granada database [54], consisting of 2309 pp and 2982 np data in
the laboratory-energy range Fi,, = 0 — 300MeV, as well as the deuteron binding
energy. In the optimization procedure, as described in detail in Sec. 3.3.3, we fit
first phase shifts, then we refine the fit by minimizing the x? obtained from a direct
comparison with the database. To this end we need first to formulate the NN

scattering problem in coordinate-space.
3.3.1 NN SCATTERING PROBLEM: PHASE SHIFTS

In the following section, we discuss the solution of the Schriodinger equation
with the strong-component potential (vjs) discussed in Sec. 3.2, which contains
p?-dependent central and tensor terms. For simplicity, we ignore the electromagnetic
EM
12

and charge-dependent parts of v12-—the treatment in the presence of v3” is discussed

in Appendix D. In spin .S and isospin 7' channel, the potential v3 reads
vy = vis(r) +vp(r) S+ vh(r) L- 8 + v(r) L + vf(r) (L - 8)*
+ {vhs(r) + o5 (r) Siz. P*} (144)
with
P=F%-—-7—-735" (145)
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For single channels (/ = L, where L and J are the orbital and total angular momenta,

except for the *Py channel), the scattering total wave function can be written as

1 ;
¥ysr(r) = ;uLSJ,T{T)yLSJ(r) nr, (146)

where u{r) is the reduced radial wave function (the subscription LSJ, T is removed for
brevity) and 9 represent the total isospin state of the nucleon-nucleon system. The
“spin-angle” functions Yps5;(f) are convenient to use in order to express two-nucleon

partial waves. They are defined as

Viss(t) = [YLM,,(f') ® XSM,S] ar

= Y Yia, (B) xsar (DMo; SMs|JM) (147)
M Mg

where Yy, (F) are spherical harmeonics, and # represent the # and ¢ polar angles of
the relative position vector r = ry —rq and (LM; SMg|JM) are the Clebsch-Gordon
coefficients, xsar, represent the spin state of the nucleon-nucleon system. The
Schraodinger equation for the reduced radial function u(r) reads

biid
-1+ -7 + [1;—%—&2}1;:0 , (148)
where

- pt
vrsy = Qﬂ[v'f“s + 050 (20h — vh) + J(J + 1) (Ug's +2 ‘:Tb +0g,1 4 %)

JJ+1
+5s,1vg~°} LA (149)
Trs = 4p(vhs+ 851 20F) (150)

4 is the reduced mass, and the subscripts in Eq. (148) have been dropped for brevity.

The dependence on the first derivative @' is removed by setting
u=Aw, (151}
and by requiring that terms proportional to «’ vanish. One finds that ) must satisfy
204+ )N +7'A =0, (152)

which has the solution
A=(1+7)""2 . (153)
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The function w then satisfies

w'=fw, (1+F)f:v—(—1?_/+—2;—k2, (154)

with the boundary condition (reinstating the appropriate superscripts and subseripts

for the case under consideration)

wossr(r) 5 [P9 ) + ST P (k)] (155)

T

where the Hankel functions are defined as h}}’” (kr) = jr.(kr) £ inp{kr), j.(kr) and

ny{kr) being the regular and irregular spherical Bessel functions, respectively, and
gJIST JS,T

1. are S-mafrix elements. Denoting phase shifts as 47", the S-matrix in single
channels (I, = L' = J) is simply given by

SIST = T (156)

The differential equation above is solved with the standard Numerov method. In the
case of 3P (T = § = 1) the same equation above holds but

e e 2

Vilg = 2 I:v?l — 4} - 21){’ +2 (v“ +2—”— — 8 ) + 4v§’b] + 2 (157}

Ty o= 4dp(f 40, (158)

For the coupled channels (L = J+1 and S = 1), the wave function is represented

by

1 R 1 ;
VU yp(r) = [;U(J-1)1J,T(7')y(J—1)1J(1‘) + ;u(.r+1)11,7*(7’)3)(.14-1)11(1')] nr. (159)

It is convenient to introduce the vector U/ with components U(J_l)l‘]"r‘(r) = u._ and
ues41sr{r) = w4, and the 2 x 2 matrices V' and V with matrix elements given

respectively by

_— [ . J -1 v J—1 o
vm=2u_v5n 22J+1vT+(J Lk + J(J 1)(Tl+2 “~4mr_§)
-1

+(J - 1)2v§’5’] + J—("T—gm—) , (160)

] J+2 v,
U'Iti}’.f = 2#’ U%l_22J+1vT {J+2)UT J+1){J+2)(’U 1+2""‘*‘“

J+2 o aml  (JHINI+2)

T )”“2)%] —z (161)

r2

_ VI +1) JE+J+1 -
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and
w = (- 25 | (163
sl = An(dh 257 (164
Urly = p —Wu&‘, V1 = Upiy - (165)

where the script — or + specifies the orbital angular momentum L = J — 1 or
I, = J + 1. With these definitions, the coupled-channel Schrédinger equation can be

written as ;

—(1+V)r"*T/"’U’+[v-—‘%—ﬁ]U:o, (166)

where I is the 2 X 2 identity matrix. Introducing the 2 x 2 matrix A with
U=AW, (167)
and requiring that terms proportional to W’ vanish lead to
2I+V)N +V'A=0. (168)

The set of first order differential equations above is solved with the Runge-Kutta
method [55]. Note that in the limit 7 — o0, A reduces to the identity matrix (and
hence the asymptotic behavior of wz is the same as that of u5). Straightforward

manipulations allow one to cast the Schrodinger equation for W in the standard form
W'=FW, (1+V)AFA'=V- %V'(l +V)IV k2, (169)

with the boundary conditions (again, reinstating superscripts and subscripts)

TSJ 1
L 0. S (8 hP ) + SET AP )] (170)
where L, [/ = J £+ 1 are the orbital angular momenta of the incoming and outgoing

waves and the §;,, are Kronecker deltas, and the S—matrix is given by

e = .?’etfdi'Fé (171)

267 PCRT AP
QIST _ gf _ e“’- cos2¢; i€ +)sin 2e 5
- Jy . Pyes )
Vsin2e; ¥ cos2e;

where ¢; is the mixing angle.
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In particular the low-energy scattering can be cxpressed in terms of an effective

range function such that
1 1
F(k?) = k cotdy = —=+ 370 K+ Ok , (172)

where a is the scattering length and ry is the effective range and dx indicates
S-wave phase shifts without the electromagnetic interaction. In the presencc of
the electromagnetic interaction we have to use a more complicated cffective range
function (see Appendix D), where the phase shifts are with respect to the full
range-electromagnetic interaction. In the Sec. 3.4, we present the results of the nn,
pp and np scattering length and effective range calculated both with and without

electromagnetic interaction.
3.3.2 FROM PHASE SHIFTS TO OBSERVABLES

Sctting aside electromagnetic (EM) contributions (Coulomb and higher order
ones) for the time being, the invariant on-shell scattering amplitude A for the
NN system can be expressed in terms of five independent complex functions—the

Wolfenstein parametrization—as

M, p)=at+moynoyn+(¢g—h)o; - moy-m+{g+h) O’yid’z-i-l-(?(ﬂ'l +o9)-n,
(173)
where 1, m, 1 are three orthonormal vectors along the directions of p’+p, p’ —p, and
pxp, and p/, p are the final and initial relative momenta, respectively. The functions
a,m, ¢, h, and c are taken to depend on the energy in the laboratory (lab) frame and
the scattering angle ¢ in the center-of-mass frame. Any scattering observable can be
constructed out of these amplitudes [56, 57].
The NN amplitude is diagonal in pair spin 5, and pair isospin and isospin
projection T Mp, and is expanded in partial waves as

, 1 —{—1 L+S5+T
Mo (E,8) = Az i VaL+1 (=) (L'(Ms — Mg}, SM§ | JMs)
JLLS

\ JSTMr (N 5
(10, SMs | JMg) y"fb"MS(gjg) Syt (P) s, _
p

(174)

Hereafter, for notational simplicity we drop from the phase shifts unnecessary
subscripts as well as the superscripts TMp, with T = 1 and My = 1,0,—1 for

respectively pp, np, and nn. The S-matrix elements and phase shifts are obtained
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from solutions of the Schradinger equation with suitable boundary conditions, as
discussed in the previous section. In terms of the amplitudes M‘ff,s s> the functions

a,m, g, h, and ¢ then read

a = (M}, + Mg+ Mg+ ML) /4, (175)
¢ = i{Mjy~ My +Mg_ ~ Mly) /(4V2) (176)
m = (=M + Mg — My - M) /4, (177)
= (My+ML_ +M + M —2M5) /8, (178)
h = cos@ (M, — M{ , — ML + M| —2Mg) /8
+v2sinf (M + MY, — M}, — MY,;) /8, (179)
and this can be further simplified by noting that M] , = ~M}, ML, = ML,

Ml]ﬂ == —J'Mf'o, &nd ﬂ/‘f]{i] - AM}_]-_]-
When EM interactions are included, the full scattering amplitudes M are
conveniently separated into a part due to nuclear interactions and another one

stemming from EM interactions,
M( = x"/)fEM + JMN . (180)

The pp EM amplitudes contain Coulomb with leading relativistic corrections, vacuurn
polarization, and magnetic moments contributions, whereas the np ones contain
magnetic moment contributions only (see Ref. [54] for a compendium of formulas
for these EM contributions). For completeness, however, the determination of the
pp phase shifts relative to EM functions and of the pp effective range expansion
is summarized in Appendix D. Due to the finite range of the NN force, the
nuclear part of the scattering amplitudes, My, converges with a maximum total
angular momentum of J = 15 In contrast, EM scattering amplitudes, Mgy,
require a summation of about a thousand partial waves due to the long range and
tensor character of the dipolar magnetic interactions. While these corrections are
nurnerically tiny, they are nevertheless indispensable for an accurate description of
the data {58].

3.3.3 FITTING PROCEDURE

We use the database developed by the Granada group [54], where a selection of
the large collection of np and pp scattering data taken from 1950 till 2013 was made.
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References to these data are listed in Ref. [54]. The criterium adopted in this latter
work was to represent the NV interaction with a general and flexible parametrization,
based on a minimal set of theoretical assumptions so as to avoid any systematic
bias in the selection process. The aim of the method, first suggested by Gross and
Stadler [59], was to obtain a 3o-self-consistent database. This entails removing
3o outliers and re-fitting iteratively until convergence. The procedure results in a
database with important statistical features [60] and therefore amenable to statistical
analysis, and leads to the identification of a consistent subset among the large body
of 6713 np and pp experimental cross sections and polarization observables. In the
present study we are concerned with a subset of this 3 o-self-consistent database,
namely data below 300 MeV lab energy. This database is organized in the following
way: there are N sets of data, each one corresponding to a different experiment.
FEach data set contains measurements at fixed 7., and different scattering angles
#. However a few observables are measured at different Fy,;, and fixed 8, like, for
example, total cross sections since their measurement does not involve the scattering
angle. An experiment may have a specified systematic error (normalized data), no
systematic error (absolute data), or an arbitrarily large systematic error {floated
data}.
We briefly describe the fitiing procedure. The total figure of merit is defined as
the usual x? function .
=3x8, (181)
t=1
where x? refers to the corresponding contribution from each data set, which we

explain next. In all cases, the x? for a data set is given by

0i/Z 1 —1/Z)?
Z(/t _+(. /tl’ (182)
im1 ((503/23 (Osys/Zt)
where 0; and {; are the measured and calculated values of the observable at point i,
d0; and gy, are the statistical and systematic errors, respectively, and Z; is a scaling

factor chosen to minimize the x? {8x7/02; = 0),

- O,;t,; 1 = t2 i
Ly = — t+ 5 = t+—=—1. 183)
( s a5523’5*) / ( 00} 633'5) (

The last term in Eq. (182) is denoted x3,,. For absolute data Z, = 1 and x2,, = 0,
while for floated data use of Eq. (183) is made with dy = oo so that xZ, = 0.
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Normalized data have in most cases Z; # 1 such that x2, # 1 and the normalization
is counted as an cxtra data point. For some normalized data the systematic error
can give a rather large xgys due to an underestimation of dgys. In order to account for
this, we float data that have x5 > 9 and no extra normalization data is counted.
This is in line with the criterion used to build the pp and np database. Finally, the
total x? is the sum of all the x? for each pp and np data set.

The minimization of the objective function x? with respect to the LEC’s
in Egs. (104) and (105) is carried out with the “Practical Optimization Using
no Derivatives (for Squares)”’, POUNDerS [61]. This derivative-free algorithm
is designed for minimizing sums of squares and uses interpolation techniques to
construct residuals at each point. In the optimization procedure, we fit first phase
shifts and then refine the fit by minimizing the x? obtained from a direct comparison
with the database. In fact, sizable changes in the total x? are found when passing
from phase shifts to observables, so this refining is absolutely necessary to claim
reasonable fits to data. This is a general feature which is often found, and reflects the
different. weights in the x? contributions of the two diffcrent fitting schemes. Indeed,
the initial guiding fit to phase shifts chooses a prescribed energy grid arbitrarily,
which does not correspond directly to measured energies, nor necessarily samples
faithfully the original information provided by the experimental data. Moreover,
there are different partial-wave-analyses (PWA’s) which describe the same data but
yield different phase shifts with significantly larger discrepancies than reflected by
the inferred statistical uncertainties [54, 60, 62].

3.4 RESULTS

We report results for the potentials vy, + v corresponding to three different

choices of cutoffs (Ry, Rg): model a with (1.2,0.8) fm, model b with (1.0,0.7) fm,
and model ¢ with {0.8,0.6) fm. Models a, b, and ¢ were fitted to the Granada
database of pp and np cross sections, polarization observables, and normalizations
up to lab energies of 300 MeV, to the pp, np, and nn singlet scattering lengths, and
to the deuteron binding energy. We list the number of pp and np data (including
normalizations) and corresponding total x? for the three models in Table 3, where
we also report for comparison the x* corresponding to the AV18 [48] (of course,
without a refit of it) and the same database. The total number of data points

changes slightly for each of the various models because of fluctuations in the number
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TABLE 3: Total x* for model a with (Ry, Rs) = (1.2,0.8) fm, model b with (1.0,0.7)
fm, and model ¢ (0.8,0.6) fm, and the AV18; Ny, (Nyp) denotes the number of pp

{np) data, including observables and normalizations.

X*(pp)
Lsb Energy (MeV) N2, Np N5, NY v3, A v, V1s
0-300 2262 2260 2258 2269 | 3353 3345 3430 4191
x*(np)
Lab Energy (MeV) N2, =~ N©,  N&, N3 V8, LA S, Vig
0-300 2057 2954 2949 2961 | 3548 3523 3636 3391

of normalizations included in the database according to the criterion discussed at
the end of the previous section. In the range (0-300) MeV, the x?(pp)/datum and
x*(np)/datum are about 1.48, 1.48, 1.52 and 1.20, 1.19, 1.23 for models a, b, and c,
respectively; the corresponding global x*(pp + np)/datum are 1.33, 1.33, 1.37. For
the AV18, the x%(pp)/datum, x%{np)/datum, and global x*(pp+np)/datum are 1.84,
1.14, and 1.46, respectively. Note that the global x? values above have been evaluated
by taking into account the number of fitting parameters characterizing these models
(34 in the case of models a, b, and ¢}. Errors for pp data arc significantly smaller than
for np, thus explaining the consistently higher x?(pp)/datum. The quality of the fits
deteriorates slightly as the (R, Rg) cutoffs are reduced from the values {1.2,0.8) fm
of model a down to {0.8,0.6) fm of model c.

The fitted values of the LEC’s in Egs. (104) and (105) corresponding to models
a, b, and ¢ are listed in Table 4. The values for the 7N LEC’s in the OPE and TPE
terms of these models have already been given in Tables 1 and 2.

The S-wave, P-wave, and D-wave phase shits for np (in T = 0 and T = 1) and
pp are displayed in Figs. 5-7 up to 300 MeV lab energies. The phases calculated
with the full models a, b, and ¢ including strong and electromagnetic interactions
are represented by the band. The np phases are relative to spherical Bessel functions,
while the pp phases are with respect to electromagnetic functions {see Appendix D).
The cutoff sensitivity, as represented by the width of the shaded band, is very weak
for pp, and generally remains modest for np, except for the 7 = 0 3D3 phase and ¢;

mixing angle, particularly for energies larger than 150 MeV. The calculated phases
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arc compared to those obtained in PWA’s by the Nijmegen [63, 64|, Granada [54],
and Gross-Stadler [59} groups. Note that the recent Gross and Stadler’s PWA was
limited to np data only. We also should point out that, since the Nijmegen’s PWA
of the early nineties which was based on about 1780 pp and 2514 np data in the
lab energy range 0-350 MeV, the NV elastic scattering database has increased very
significantly. Indeed, in the same energy range the 2013 Granada database contains
a total of 2972 pp and 4737 np data. Especially for the higher partial waves in
the np sector and at the larger energies there are appreciable differences between
these various PWA’s. It is also interesting to observe that these differences are most
significant for the T = 0 3D, phase and ¢; mixing angle, and therefore correlate with

the cutoff sensitivity displaycd in these cases by models a, b, and c.
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FIG. 5: S-wave, P-wave, and D-wave phase shifts in the np T=0 channel, obtained
in the Nijmegen [63, 64], Gross and Stadler [59], and Navarro Pérez et al [54]
partial-wave analysis, are compared to those of models a, b, and c, indicated by
the band. For the mixing angle ¢; (phase shift *D3) the lower limit of the band

corresponds to model a (model b) and the upper limit to model ¢ (model c).

The low-energy scattering parameters are listed in Table 5, where they are

compared to experimental results. The singlet and triplet np, and singlet pp and nn,
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scattering lengths are calculated with and without the inclusion of electromagnetic
interactions. Without the latter, the effective range function is given in Eq. (172).
In the presence of electromagnetic interactions, a more complicated effective range
function must be used; it is reported in Appendix D, along with the relevant
references. The latest determinations of the empirical values for the singlet scattering
lengths and effective ranges, obtained by retaining only strong interactions {hence
the superscript N), are [65 68 (as reported in Ref. [6]):

1N . 1N _ ¢

ay, = —17.3£04fm, rop = 2.85 + 0.04 fm (184)
fal = -23.74+002fm, YW =2.77+0.05fm, (185)
gy, = —1895+040fm, N =27540.11 fm, (186)

which imply that charge symmetry (meaning that pp and nn interactions are identical
after removing all the electromagnetic contributions) and charge independence
{meaning that the three nucler forces pp, nn and np are identical after again removing

all the electromagnetic contributions) are broken respectively by (6]

Aacsg = a;'p - asn =1.65 +£0.60 fmn , (187)
Arcsg = Th, —7h, =0.10£0.12 fm | (188)
and
Aagis = (ap, + any}/2 — an, =56+0.6 fm , (189)
Arcs = (rh,+7h)/2 =75, =0.0340.13 fm . (190)

The more significant values for Aacgp and Aaggs can be compared to those inferred
from Table 5: (Aacsp, Aacs) = (2.13, 5.11) fm for model a, (2.34, 5.12) fm for
model b, and (1.90, 5.08) fm for model c.

In the left upper panel of Fig. 8 we show the !Sy phase shifts for pp, np and
nn calculated with and without the inclusion of electromagnetic interactions (only
model b is considered). There is excellent agreement between these phases and
those obtained in the the Granada, Gross and Stadler, and Nijmegen PWA’s, when
electromagnetic effects are fully accounted for. Particularly at low energies (see
Fig. 9}, the latter provide most of the splitting between the pp and np phases, with
remaining differences originating from isospin symmetry breaking due to the OPE

term in o% and the central terms in vy ", proportional to the LEC’s C'T and CIY
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with ¢ = 0-2. In the ahsence of electromagnetic interactions, the splitting between
the pp and nn 'S, phases is induced by the charge-symmetry breaking terms of UISQCD
proportional to the LEC’s C!V with 4 = 0-2; it is smaller than that between pp and
np 'Sy phases.

The effects of isospin symmetry breaking are also seen in the pp and np Py
phases with J = 0, 1,2 in the upper right and lower panels of Fig. 8, especially at the
higher energies. The calculated phases, which correspond again to model b, include
electromagnetic effects, but the latter are negligible beyond 100 MeV. The splitting
between the pp and np *P; phases is mostly due to the isotensor and isovector terms
of v P, in particular those proportional to the LEC’s CIV and C'T with i = 3 and
4 associated respectively with the tensor and spin-orbit components of v3°°. There
is no evidence on the basis of the Granada and Nijmegen PWA’s for such a large

splitting, and so the latter is likely to be an artifact of the parametrization adopted
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FIG. 6: Same as in Fig. 5, but for the S-wave, P-wave, and D-wave phase shifts in
the np T'=1 channel. For the mixing angle ¢5 the lower limit of the band corresponds

to model ¢ and the upper limit to model b.

The static deuteron properties are shown in Table 6 and compared to experimental
values [69-73]. The binding energy F; is fitted exactly and includes the contributions
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FIG. 7: S-wave, P-wave, and D-wave phase shifts in the pp T--1 channel, obtained
in the Nijmegen [63, 64} and Navarro Pérez et al. [54] partial-wave analysis, are
compared to those of models a, b, and c, indicated by the band.

(about 20 keV) of electromagnetic interactions, among which the largest is that due
to the magnetic moment term. The asymptotic S-state normalization, Ag, and the
D/S ratio, n, are both ~ 2 standard deviations from experiment for all models
considered. The deuteron {matter) radius, r4, is exactly reproduced with model b,
but is under-predicted (over-predicted} by about 1.4% (0.7%) with model a (mmodel ¢}.
It should be noted that this observable has negligible contributions due to two-body
electromagnetic operators as discussed in the next chapter. The magnetic moment,
ia, and quadrupole moment, Q4 experimental values are underestimated by all
three modeis, but these observables are known (o have significant corrections from
(isoscalar) two-body terms in nuclear electromagnetic charge and current (see next
chapter). Their inclusion would bring the calculated values considerably closer to,
if not in agreement with, experiment. Finally, the S- and D-wave components of
the deuteron wave function are displayed in Fig. 10, where they are compared to

those of the Argonne v;g (AV18) model. There is significant cutoff dependence as
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FIG. 8 The pp, np, and nn 'Sy and the pp and np 3Py, *Py, and 3P; phase shifts

obtained with potential model b, including the full electromagnetic component.

(R, Rg) are reduced from the values (1.2, 0.8) fm of model a down to (0.8, 0.6) fin
of model ¢. For r $ 1 fm, the S-wave becomes smaller (is pushed out), while the
D-wave becomes larger (is pushed in) in going from model a to model ¢. The D-state
percentage increases correspondingly (see Table 6).

We note in closing that in Appendix E we provide figures of the various
components of potential models a, b, and ¢ (their charge-independent parts only}
as well as tables of numerical values for the pp and np S, P, D, F, and G phase shifts

obtained with model b.
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and ignoring (panel right) the full electromagnetic component of potential model b.



49

TABLE 4: Fitted values of the LEC’s corresponding to potential models a, b, and c.

The notation (+n) means 10%".

LEC’s Model a Model b Model ¢
Cy (fm?) 0.2003672(+1) 0.8841864(+1) 0.2588776(+2)
Cy (fm?} -0.1660743(+1}  -0.4168038(+1)  -0.9160861(+1)
Cy (fm?) -0.1759574 -0.9367926(-1} -0.4455626(-3)
C, (fm*) -0.2029026 -0.2520756 -0.3082608

Cs (fm*) -0.1856897 -0.2589016 -0.3222661

Cy {fm?) -0.5745498(-1) -0.2453381(-1) 0.3773411(-1)
Cs (fm*) -(.8813877(-1) -0.4685034(-1) -0.5156581(-2)
Cs (fm?) -(.5857848(-1} -0.2804770(-1) -0.2762013{-1)
Cr (fm?) -0.1140623 0.7338611 0.7568732

D, {fn%) -0.9498379¢(-1) -0.6986704(-1) -0.2565252(-1)
Dy {fm®) -0.7149729(-2) 0.1681828(-3) 0.4909682(-2)
Dj (fm®%) -(.6502509(-2) -0.6355876(-2) -0.1721433(-1)
Dy {fm%) -0.3217370(-2) -0.1153354(-2) 0.2592172(-2)
Ds (fmf)  0.2692030(-2) 0.2258031(-2) 0.2101464(-2)
Dy (fm5) -0.6654712(-2) -0.2757790(-2) -0.4252508(-2)
D7 (fm®) -0.2318069(-1) 0.1451856(-1) 0.4247406(-1)
Dg (fm®)  -0.2899833(-1)  -0.2897869(-1)  -0.1122591(-1)

Dy (fm®)
Dy (fmf)
Dy (fm®)
Dy (fin®)
D3 (fnf)
Dy (fm®)
Dys (fm®)

0.2634392(-2)
-0.1787025
0.1758785(-1)
0.1126531
-0.1649902(-1)
0.1989863(-2)
0.4540768(-2)

0.3909073(-1)
-0.2061108
0.3667628(-2)
0.1023936
-0.9890485(-2)
0.3066270(-2)
0.2426771(-2)

0.4966263(-1)
-0.1628166

-0.2316157(-1)
0.5361795(-1)
0.1744601(-2)
0.7219031(-2)
0.2979197(-2)

CoV (fm?)
CoT (fm?)

-0.8730299(-1)
0.5804662(-1)

-0.1162192
0.6669167(-1)

0.6195324
0.7020630(-1)

cl ()
C3¥ (fm?)
C¥V (fm?)
CyY (fm?)
CIT (fm)
OFF (fm)
CIT (1)
oI (fm)

0.6961072(-1)
0.3507986(-1)
0.3862077(-1)
-0.7617836
-0.2382471(-1)
-0.1825513(-1)
-0.1399371(-1)
0.2582607

0.5088496(-1)
0.2288370(-1)
-0.7707131(-2)
-0.1581137(+1)
-0.2373048(-1)
-0.1013726(-1)
-0.1098114(-3)
0.5180368

0.2174468(-1)
-0.8112580(-2)
-0.6115902(-1)
0.1533212(+1)
0.7623486(-2)
0.1205547(-2)
0.2109716(-1)
0.4955952
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TABLE 5: The singlet and triplet np, and singlet pp and nn, scattering lengths and

effective ranges corresponding to the three potential models with (Ry,, Rg)=(1.2,0.8)
fm (model a), (1.0,0.7) fm (model b), and (0.8,0.6) fm {model c}.

Experiment  v%, w/ovEM b, wlouPM o5, wjoofM

la,, -7.8063(26) -7.766 -17.014 -7.766 -16.956 -7.763 -17.137
7.8016(29)

Irp  2794(14) 2742 2818 2743 2.820 2730 2.802
2.773(14)

Yaum  -18.90(40) -18.867  -19.148 -19.025 -19.301 -18.719  -19.039

Y 2.75(11) 2.831 2827 2799 2.795 2.738 2,732

la,, -23.740{20) -23.752 -23.196 -23.755 -23.248 -23.745  -23.167

Yrop 2.77(5) 2.665 2.670  2.672 2677 2638 2.644

34, 5419(7)  5.408 5391 5404 5389 5412 5396

37”,1}, 1.753(8) 1.741 1.740 1.737 1.734 1.740 1.745

TABLE 6: Same as in Table 5 but for the deuteron static properties; experimental
values are form Refs. [69-73].

Experiment vd vPy v,
Eq (MeV) 2.224575(9) 2.224575 2.224574 2.224575
Ag(fm~1/2) 0.8781(44) 0.8777 0.8904 0.8964
7 0.0256(4) 0.0245 0.0248 0.0246
ra (fm) 1.97535(85) 1.948 1.975 1.989
wa {p0) 0.857406(1) 0.852 0.850 0.848
Qq (fm?) 0.2859(3) 0.257 0.268 0.269
Ps (%) 4.94 5.29 5.55
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CHAPTER 4

ELECTROMAGNETIC STRUCTURE OF A=2 AND 3

NUCLEI IN xEFT

In this Chapter we provide a complete set of YEFT predictions for the structure
functions and tensor polarization of the deuteron {A = 2), for the charge and
magnetic form factors of the *He and 3H (A = 3) as well as for the static properties
of these few-nucleon systcms. Eleetromagnetic formn factors of these light nuclei
are among the observables of choice for testing models of nuclear interactions
and associated electromagnetic charge and current operators. Therefore the goal
of this study is to investigate the validity of the YEFT approach to describe
strong-interaction dynamics in these few-nucleon systems and their response to
electromagnetic probes. These calculations are carried out by utilizing nuclear wave
functions derived either from chiral or realistic potentials, in combination with the
charge and current operators discussed here. In particular, the wave functions for
A = 2 are obtained from solutions of the Schrodinger equation with the Argonne
vig {AV18) [48] or chiral Idaho N3LO {5, 6] two-nucleon potential. Both these
nuclear models deseribe the long-range component of the VN interaction via OPE.
In the case of the AV18 potential, the intermediate-range part is parametrized in
terms of TPE with intermediate nucleons and A isobars [74], while its short-range
part is represented by spin-isospin (and momentum-dependent) operators multiplied
by Woods-Saxon radial functions [48]. The AV18 potential is directly fit to the
Nijmegen NN scattering database [63], which contains 1787 pp and 2514 np data
up to laboratory-energy of 350 MeV. With 40 adjustable parameters it gives a
x2/datum of 1.09 relative to that database which was assembled in the early nineties.
The Idaho N3LO potentials are derived within a yEFT formulation with pions and
nucleons up to order Q* It involves 24 LEC’s, which are fixed so as to reproduce
the Nijmegen NN scattering database up to laboratory-energy of 290 MeV with a
x?/datum of 1.3. Wave functions for A = 3 nuclei are obtained from a Hamiltonian
including, in addition to the AV18 or N3LO two-nucleon, a three-nucleon potential,
the Urbana-IX (UIX) [49] or the chiral N2LO [16] model. The UIX model describes
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the three-nucleon potential in terms of a TPE three-nucleon term involving the
excitation of an intermediate A-resonance and a short-range term. Their strengths
are adjusted to reproduce the triton binding energy and the saturation density of
nuclear matter. The N2LO three-nucleon potential is derived in a YEFT approach
involving pions and nucleons up to leading order. It depends on two LEC’s, which
are constrained to reproduce the binding energy of A = 3 nuclei and the tritium
Gamow-Teller matrix elements.

The charge and current operators, discussed in Sec. 4.1, are obtained up to one
loop (e Q in the power counting) using the formulation based on TOPT as outlined in
Chapter 2. In Sec. 4.2 we discuss the methods used to carcy out the calculations, and
the analysis of the results is presented in Sec. 4.3. Details of loop integrals entering

the charge operators are relegated in Appendix F.

4.1 NUCLEAR CHARGE AND CURRENT OPERATORS UP TO
ONE LOOP

Nuclear electromagnetic charge {(p) and current (j) operators--that is the time
and vector component of the four-vector current J* = (p,j)—are expressed as an

expansion in many-body operators that act on the nucleonic degrees of freedom

pla) = Z{%’(Q) ‘*‘ZP:&;‘(Q)Jr-'-; (191)
i@ = D ok@+) s+, (192)
t i<y

where p; (j;) represents the one-body charge (current) operators in which the probing
photon, with associated momentum q, interacts with individual nucleons; p;; (j;;) are
the two-body charge (current) operators, and the ellipsis stands for higher many-body
operators.

In the present work we discuss one- and two-body charge and current operators
up to one loop (e @) which have been derived in Refs. [29] and [30], respectively. In

the following we define

k; P: - Pi, Ki=(p;+pi)/2, (193)
k = (ki—ks)/2, K=K +K;, (194)

fl

where p; (p}) is the initial {(final} momentum of nucleon i. We further define

+1 +1
p= Z plm j= Z i (195)

m=-3 m=-2
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FIG. 11: Diagrams illustrating one- and two-body charge operators entering at e @3
(LO), e Q' (N2LO), € @° {N3LO). Nucleons, pions, and photons are denoted by
solid, dashed, and wavy lines, respectively. The square in panel (b) represents the
(Q@/mn)? relativistic correction to the LO one-body charge operator, whereas the
solid circle in panel {e) is associated with a y# NN charge coupling of order ¢ Q.
Only one among the possible time orderings is shown for the N3LO.

The supersecript m in p™ and j(™, which include both one- and two-body operators,

specifies the order e @™ in the power counting. They follow from the interaction
Hamiltonians listed in Appendix A and the perturbative expansion for v»(,"’) discussed
in Chapter 2.

4.1.1 CHARGE OPERATORS UP TO ONE LOOP

Contributions to the charge operators up to N3LO (e @%) and N4LO (¢ Q) are
represented in Fig. 11 and Fig. 12, respectively. According to the power counting,
the LO (e @73} charge operator results from the coupling of the external photon to
the individual nucleons (panel (a) of Fig. 11) and reads:

P =eeni(@®) +(1=2), (196)

where

GE(@®) + GE(¢*) s
2 B

eni(g®) = (197)

and Gi/ Y denote the isoscalar/isovector combinations of the proton and neutron
clectric (E) form factors, normalized as G3(0) = G%(0) = 1. The power counting
e @~ follows from the product of a factor e Q° associated with the Hamiltonian H,xx
in Appendix A, and a factor @ due to the momentum-conserving d-function implicit

in this type of disconneted terms. Of course, this counting ignores the fact that the
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FIG. 12: Diagrams illustrating two-body charge operators entering at order ¢ Q

{N4LO). Nucleons, pions, and photons are denoted by the solid, dashed, and wavy
lines, respectively. Only one among the possible time orderings is shown.
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nucleon electric form factors (as well as the magnetic form factors below) themselves
also have a power series expansion in ¢. Here, they are taken from fits to elastic
electron scattering data off the proton and deuteron {75]—specifically, the Hohler
parametrization [76]—rather than derived consistently in chiral perturbation theory
{xPT) [77]. The calculations of the A = 2 and 3 nuclet elastic form factors that follow
are carried out in the Breit frame, in which the electron-energy transfer vanishes.
Hence, the hadronic electromagnetic form factors are evaluated at four-momentum
transfer Q% = —¢*q, = ¢*.

At NLO (e @72) there are no contributions to the charge operators, while at
N2LO {e Q1) we can distinguish three types of diagrams: i} a relativistic correction
to the LO charge operator (panel (b) of Fig. 11); ii) a pion-in-flight term (panel (c)
of Fig. 11); and iii) a one-pion-exchange (OPE) contribution (panel (d) of Fig. 11).
The relativistic correction of order {Q/my)? to the LO charge operators, coming

from the second order yN N Hamiltonian H,(je, N> 18 given by

[ .
P = “8m? [20n0(¢%) = ema(¢))] (¢ + 2iq- 01 x Ki) + (1= 2), (198)
AV

where pn(g?) is defined as

Gi{g) + GY@®) 7z
2 b

uni{g’) = (199)

and Gi{v denote the isoscalar/isovector combinations of the proton and neutron
magnetic (M) form factors, normalized as G5,(0) = x5, and G (0} = ¥ with p°
and 1Y denoting the isoscalar and isovector combinations of the proton and neutron
magnetic moments, #° = 0.88 and ;¥ = 4.706 in units of nuclear magnetons jiy.
The pion-in-flight term, panel (c) of Fig. 11, vanishes when all the six time-ordered
diagrams, evaluated in the static limit, are summed up. The OPE contribution,
panel (d) of Fig. 11, has reducible and irreducible diagrams. The reducible ones
are not considered since they are generated by iterations of the Lippman-Schwinger
equation as discussed in Chapter 2, while the static irreducible contributions are
exactly cancelled from the first non-static corrections to the reducible terms [30].
Note that, hereafter, momentum conserving d-functions {q = k;) for the p(~3 and
eV, and (k(+k2 = q) for the following expressions of the two-body operators, have
been dropped for brevity.

The N3LO (e Q") contribution illustrated in panel (e) of Fig. 11 is associated

with the Hamiltonian #.,,yy in Appendix A. The evalution of the corresponding
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amplitude gives rise to the following expression

© _ : Vi, 19902 ke o
Pe 2m£ F2 [G Ty + GE(q )TZ,Z] wgﬁ F (1 — 2) d (200)
with wf = &? + m2. In the present xEFT contest, A was first derived in Ref. [78].
At this order, there are also contributions originating from non-static terms in
the diagrams in panels (c¢) and {d) of Fig. 11, obtained by expanding the energy

denominators involving pions as in Eq. (5). They are given, respectively, by

. € g « o1 -kioy - Ky
PP = i— F; Gr(d") (1 x 7), m—kl Ki+(1=2), (20)
{0) _ € 9,; o) - koy - kg
) = e DR (1) [GH) 7ot G

+23G {qZ) (’Tl X T2) k2 [(1 + I/) K2 + (1 — V)K}_}] + (1 = 2) s
(202)

where G,(¢?) is the pion form factor, which we parametrize in vector-meson

dominance and consistently with experimental data at low momentum transfers as

1

AR
Gw(ﬂ)—mg,

(203)

where m, is the p-meson mass. The operator of panel (d} of Fig. 11 depends on
the off-energy-shell extrapolation, specified by the parameter v, adopted for the
non-static corrections of order m = 2 (Q?) to the OPE potential, retained in Eq. (11),
which is parametrized by [79]

2k} (k- K)?

Dk K:v)=1(1~-2 204
vy (kK v) = ( v) w? im3, (204)
where v )(k) is the static OPE potential
2
0 g% o, koy-k
U‘t(r)(k)" —'F‘—ETI'Tg—‘;‘:z‘"""‘" R (205)

As shown in Ref. [79] (and within the present approach in Refs. [30] and {31]), different
off-shell prescriptions for v#(v) and p(v) are unitarily equivalent:
P +P‘(i0)(”) = iU [p(_a) N pf,;o)(V — 0)] eHiU®)

~ gD = 0)+ [V, UOW)] (206)
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where the hermitian operator U/(v) admits the expansion
Uw)=U9w) +UDw) +..., (207)

and U®(v) and UM(v) have been constructed, respectively, in Refs. [79] and [30].
A common choice for this parametrization is given by v = 1/2 in Eq. (204), which
removes non-static corrections to the OPE potential {these corrections are typically
ignored in chiral and realistic potentials).

The two-body charge operators at one loop {N4LO, e Q) are illustrated in Fig. 12,
and have been discussed in Ref. [30]. In particular, the contribution arising from
diagram of type (a) in Fig, 12 vanishes due to an exact cancellation between the static
irreducible terms and the non-static corrections associated with the reducible ones,
while the pion-in-flight contributions, iflustrated in panel (b) of Fig. 12, vanishes (in
the static limit} when all the contributions of time-ordered diagrams are summed up.
The contributions of diagrams in panels {g)-{h) of Fig. 12 also vanish. After carrying
out the loop integrations {discussed in App. F), the contributions from diagrams of
type {¢)-(f) and (i)-(j) in Fig. 12 read

1y _ 1 g% GV /2 me R
P’ = —e5= 7 Gilg*) 12z /0 dz [4 L(z, ko) — I kz)] +(1=2), (208
RO €2i & Gela) e fo " i [4 Lz, k) — L(ml )] F(i=2), (209)
(o 1 g v 12 .
p(v) = — Té««}«,z(? (¢ /0 dz [[472',, +v (1 X 12),] [— 24 L(z, ky)
k2 1-8m2 ma

Ta k) T L3(3:,k2)] Hdne —v (X, L(z, ks)

+1l=2), (210

| (a2 x ky) - (o1 x kz)]
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(M 1 QA d 1{2 1
= —e—== - 271, | — 15 Xz, R
Pt Y F“ / v f 1/2 TL [ S Y)+ Mz, y)

x[sA-(B+C)+(A+B)-(A+C)+(alxA)-(azxA)

—(crlxA)-(ang)—-(alxB)-(argXA)+(a'1xB)-(ang)}

1
.+‘""m/\3($,y) [(A ‘B)(A-C)+o0,-(AxB)o;- (A x C)H
+/\(ml,y) (7 x T?)z|:"3ﬂ'2 (A xC)-B-(o3 x A)

AV = e-—?—ic rCE(A) 00 oam+(1=22), (212)

1/2 2 2
—%Ul-qaz‘q]ﬁ—(l#m, (213)

where

P(wp) = (1/4 - %) p 4, (214)
Mz, y)=2q*/4— [ryq - (1—:1:)k]2+(1—3:)k2+m,2r, (215)
A = -x{yq+Kk), (216)
B = (1-2zy}q/2+(1—2)k, (217)
C = -(1+2zy)q/2+(1-2) k. (218)

Note that, due to global charge conservation, contributions beyond the LO term
vanish at g = 0. The loop integrals entering the expressions of charge operators at
e @ are ultraviolet divergent. However the charge operator at N4LO is finite since
the divergencics associated with diagrams (c) and {d), (e} and (f), and (i) and {j} in
Fig. 12 cancel out [30]. This is in line with the fact that there are no counter terms
at this order. Finally, we note that the form of the operator (e) in Fig. 12 depends
on the off-the-energy-shell prescription adopted for the non-static corrections to the
TPE potential. As in the OPE case, however, these different forms for the TPE

non-static potential and accompanying charge operator are unitarily equivalent [30}.
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TS

(a) (b) (c) (d)

FIG. 13: Diagrams illustrating one- and two-body current operators entering at
e Q% (LO), e Q7! (NLO), e @ (N2LO). Nucleons, pions, and photons are denoted
by solid, dashed, and wavy lines, respectively. The square in panel {d) represents
the {Q/my)? rclativistic correction to the LO one-body current operator. Only one
among the possible time orderings is shown for the NLO.

4.1.2 CURRENTS OPERATORS UP TO ONE LOOP

The contributions to the electromagnetic current operator up to N2LO (e Q") and
N3LO (e Q) are illustrated diagrammatically in Fig. 13 and Fig. 14, respectively.

The lowest order e Q@2 (LO) consists of the single-nucleon convection and
spin-magnetization currents

- € y
7 = g Zem@Kitipn(@ e xa] +(1=2),  (219)

where eni(¢%) and gy i(¢%) have been defined in Egs. (197)-(199), respectively.
At order e @' (NLO) there are contributions arising from pamnels (b} and (c) of
Fig. 13. The evaluation of these diagrams in the static limit leads to

(oD 94 vy oy - ko R

s = —ieX Ggplg X m).00 ——+ (12 2), (220)
F‘n’ wkg
2

o= . g ki — ko

-]5' 1) = ch_iZ Cg(qz) (1"1 X Tg)zmz—‘ o - k; o9 k-z , (221)

where a d-function representing the overall momentum conservation has been
dropped.
The e @° (N2LO) current is represented by the one-body operator in panel (d) of
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‘ H><
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FIG. 14: Diagrams illustrating two-body current operators entering at order e @
(N3LO). Nucleons, pions, and photons are denoted by the solid, dashed, and wavy
lines, respectively. The solid circle in panel (b) is associated with the y# /N current
coupling of order e Q, involving the LEC’s d, dy, and d5,; the solid circle in panel
(a) denotes two-body contact terms of minimal and non-minimal nature, the latter
involving the LEC’s (|5 and Clg.
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Fig. 13, due to the relativistic correction of order {Q/my)? to the LO. It reads:

{0 e
i = g [2 (K 2/ (2K,

+ioy xq) +K;-qq+2ieo xKl)]

X
8m3 [“N,l(‘f) - €N,1(q2)] [K1 .q
N
x(4o1 x Ky —iq) — (21K, — oy x q) ¢°/2

+2 (K1 x q) oy - Kl} +(1=9). (222)

Finally, the currents at order ¢Q (N3LO) are illustrated diagrammatically
in Fig. 14, and consist of: (i) terms generated by minimal substitution in the
four-nucleon contact interactions involving two gradients of the nucleon fields as
well as by non-minimal couplings to the electromagnetic field (panel (a) of Fig. 14);
(it) OPE terms induced by yw NN interactions beyond leading order {panel {b) of
Fig. 14); and (iii) one-loop two-pion-exchange (TPE) terms (panels (c)-(k) of Fig. 14).
We discuss them below.

The contact minimal and non minimal currents, denoted by the subscripts “min”

and “nm” respectively, arc written as

.{1) ie

Jamin T 6 Gylg®) (1 X 72), [(02 +3Cs+ Cr) ki +{Cy - Cy = Cr)k, 01 - 09

+Cr01 - (ki - k) 02| — S eni(g?) Cs (a1 + a2) x ky + (1= 2) ,(223)
4

Bm = —ie|GEe) Cls o1+ GE(e) Clglne —ma)on | x a+ (1 =2) . (224)
The low-energy constants (LEC’s) Cj,...,Cy, which also enter the two-nucleon

contact potential, have been constrained by fitting np and pp elastic scattering data
and the deuteron binding energy. We take their values from the Machleidt and
Entem 2011 review paper [5], since the potential discussed in the previous section
was developed at a later time. The LEC’s Cf; and Clg (and di, dy, and d; below)
are determined by fitting photonuclear data of the A = 2 and 3 systems, as discussed
in Sec. 4.3.

The isovector (IV} OPE current at N3LO {panel (b) of Fig. 14} is given by

. . g4 Gonald®) o9 -k
JS}V = ﬂeﬁ LN\;(a ] f,ﬂ 2 dfg'rz,zkz - d’m(‘rl X ‘Tg)zdl X kg xXq-+ (1 - 2) s
T ¥4 ko

(225)
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and depends on the two (unknown) LEC’s di and di;. They can be related [28] to
the N-A transition axial coupling constant and magnetic moment {denoted as p,na)
in a resonance saturation picture, which justifies the use of the YN A electromagnetic

form factor for this term. It is parametrized as

Gonal?) = == , (226)
(1+¢?/A3 D%/ + ?/A%
where p,na is taken as 3uy from an analysis of yNV data in the A-resonance
region [80]. This analysis also gives A 1=0.84 GeV and A 2=1.2 GeV. The isoscalar
(IS) piece of the OPE current depends on the LEC df mentioned earlier,
o2k

» » A
.]l[;I,I)S =1ic % d;) G’r?rp(ff) T -T2 o ko x q-t+ (1 = 2) , (227)
P ks

and, again in a resonance saturation picture, this reduces to the well known ymp
current [29]. Accordingly, we have accounted for the ¢2 fall-off of the electromagnetic
vertex by including a ywp form factor, which in vector-meson dominance is

parametrized as
1

Corel ) = T2
w

(228)

m,, 18 the w-meson mass.

The one-toop TPE currents, diagrams (¢)-(g) in Fig. 14, arc written [29] as

jfé()}p = —1eGu{g®) (11 x 1), Vik F1(k) +ie G%(¢®) T,
ko, -k
X[Fu(k) o — Fy(k) 212 ] xq+(1=2), (229)
where the functions F;(k) are
coy _9h :, 8gamy . 2
f‘u(k) = m {1 - 29/{ + m +(1U€) 2— ng
A +gm? 16 g% m? (230)
k2 +4m2 (k% + 4m2)?
1 ;
Filk) = s 0 [4‘1’”3;(1 +4g% — 5g4)
‘ 48 gtmi
2 2 4 AT
+k%(1 4 10g% — 2343%) — m] ’ (231)
2 2 .02
9 2 8gamy 2
k) = - SZATR Lo
4(1+3g5)m? 16 g4 m? (232)
k2 + 4m? (K2 +4m2)2| |’
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and the loop function G(k) is defined as

Vam2 + k? | vaim2+ k2 +k

Gk)y=2 . n s

(233)

Finally, we note that the analysis, detailed in Appendix B in Ref. {31], of the
loop short-range currents corresponding to diagrams (h)- (k) in Fig. 14 shows that
they vanish. We also note that the electromagnetic current operator j up to one loop
(e Q) satisfies the continuity equation with the potential v;; at NLO (Q?) such that

pi_, P
2my  2my

q-j= [ + vz, P] ) (234)

where q is the momentum transfer by the external photon, p; is the initial momenturn
of nucleon i, and the charge operator p includes terms up to e Q(~". In the YEFT
formulation, the current is conserved order by order in the power counting. The
relations implied by matching powers in Eq. (234) have been verified explicitly in
Ref. [28]. Recall that a commutator brings in an additional @° factor in overall

power counting.
4.2 CALCULATION

This section is divided in two subsections. The first one deals with the definition
of the electromagnetic form factors for A = 2 and 3 nuclei, while in the second one we
outline the method used to evaluate the matrix elements of the charge and current

operator required in the calculation of those form factors.
4.2.1 FEW-NUCLEON FORM FACTORS

Deuterium is a spin-one nucleus and so has three independent form factors: G,
Gy, and Gp, respectively charge, magnetic and quadrupole form factors. They are

related to the electromagnetic operators in the following way [81]

1

Gela) = 3 D (M |plgs)|diM), (235)
M=+10
Cule) = J%_nlmud;my(qznd;o)], (236)

Golg) = 51;][(0!;0 | pq2) | 4;0)
—{d; 1] p(g2) | ;1] , (237)
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where | d; M} is the deuteron state with spin projection J, = M, p and j, denote,
respectively, the charge operator and y component of the current operator, the
momentum transfer q is taken along the z-axis (the spin quantization axis}, and

7 = (g/2my)? (mq is the deuteron mass). They are normalized as
Cel0) =1, Gu(0) = (ma/mn) pa , Gg(0) = m3Qu (238)

where pg and @ are the deuteron magnetic moment (in units of zx) and quadrupole
moment, respectively. Expressions relating the form factors to the measured

structure functions A and B, and tensor polarization Ty are given [81]:

. 2 3
Alg") = Gelg') +30Ga(a") + gn* Gold") (239)
4
B¢") = 3n{l+mGule), (240)
1|8 8
1§ ) Tolg®) = AR nGe(q®) Gole®) + 57?2 G3(q*)
-:% n [1+2(1 + n)tan®8/2] G3,(¢*) (241)

where 1(q%,8) = A(g*)+ B(g?) tan? #/2 with @ being the angle (in the center-of-mass)
between the initial and final electron momenta in the elastic scattering process.

The charge and magnetic form factors of the trinucleons are derived from

Fola) = 2 {+pla®)|4), (242)
Fulg) = —2':” Im[{~|j,(a2) [+)] . (243)

with the normalizations
Fc(()) =1 ) FM(O) =H, (244)

where g is the magnetic moment (in units of uy). Here | +) represent either the
3He state or °H state with total 1/2-spin and spin projections J, = £1/2. Below we
also consider the isoscalar and isovector combinations of the trinucleon charge and

magnetic form factors, defined as

fl

F&'¥(9) %[2 Fo(g;® He) + Fo(g H)] (245)
(g = %[ﬁmq;sﬂe)im(q;s H)] . (246)
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4.2.2 MATRIX ELEMENTS OF THE ELECTROMAGNETIC
OPERATORS

The method uscd to evaluate the matrix elements of the charge and current
operator for the A = 3 systems is outlined here; a similar prescription is used for
A = 2. In momentum space, the one-body electromagnetic operators in Sec. 4.1 have

the generic form

Ow(@) = D - q)(kn) 3(ks) Oniki, Ki) (247)

cyclici,;mn

where k; = p} — p; and K; = (p] + p;)/2 (p; and p; are respectively the initial and
final momenta of nucleon {}. The matrix elements of the operator in Eq. (247) can

be written as

(Olb(Q» = Z / M’ P+ CI/2 Pm; pn)

cyclici,m,n ¥ PLPm:Pn

xOm(q, p1) ¥ar(P: — 4/2, P, Pa) - (248)

where we have defined
dp; -
/ 2p)3 d 3(..)=@n%s..). (249)

For an assigned configuration (py, pm, Pn), the wave functions are expanded on a

basis of 8 x 3 spin-isospin states for the three nucleons as

24
@b(Ph P p‘u) = Z '.»ba (ph P pn) !a‘) ) (250)

am=]

where the components ¥, are complex functions and the basis states (for *H, for

exa’mple) | a) :| (P T)ls(n T)Zs (n T)3>1 | (n T)l: (p T)Q: (ﬂ T)3>s and so on. The
spin-isospin algebra for the overlaps

Yoy = Z Wa Oab ¥y (251)
ab=1

is carried out with the techniques developed in Ref. [82]. Monte Carlo (MC) methods

are used to evaluate the integrations in Eq. (248) by sampling momenta from a
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(normalized} probability density | ¥ar(pr, Pm,Pn) | according to the Metropolis
algorithrn.

The two-body operators in Sec. 4.1 have the momentum-space representation

OQ];(C]) = Z 3(I{I'm - Q) 3(1(?1]
cycliclmn
X O, (Kim /2 + Kim, Kin /2 — Kim) | (252)

where the momenta K, = k; + k,, and k;, = (ki — kn}/2. These operators
have power law behavior at large momenta, and need to be regularized. This is

accomplished by introducing a momentum cutoff function of the form
Calkpm) = e~ ®m/A (253)

with the parameter A in the range (500-600) MeV (see discussion in Sec. 4.3). The

matrix elements are expressed as

On@) = 3 [ [ Uhelort o/t K/ 2+ 6/ a2
im ¥ P Pm,Pn

cyclicl,m,n

xCp (klm) Oan{q. kim) wM(pt —q/4 — Kim/2,Pm — (1/4 + kfm./Qs Pn) .
(254)

The spin-isospin algebra is handled as above, while the multidimensional integrations
are efficiently done by a combination of MC and standard quadratures techniques.

We write

Pm,Pn )

where ¢ denotes configurations [k, Pl Pm, Pn) (total number N.) sampled with the

Om@)=[ak|  Flpppmpn) = =3 ik (255)
T8 N, —1 (e

Metropolis algorithm from the probability density W(c) =| ¥ (pt, Pm, Pn) [2/(47),
i.c., uniformly over the k directions. For each such configuration ¢, the function ¥ is
obtained by Gaussian integration over the magnitude k;,, (as well as the parameters

z and y for the case of the charge operators at one loop)

1 00 24 . .

eyclickmon’ | ab=1

PR

X Ot a(Q, ki k) (. . - Kk ... ) . (256)

Convergence in these Gaussian integrations requires of the order of 20-30 points, in

the case of &y, distributed over a non-uniform grid up to 2 A or so, while N, of the
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order of 100,000 is sufficient to reduce the statistical errors in the MC integrations,
which are of the order of a few % at the highest ¢ values {and considerably
smaller at lower q). These MC errors are further reduced by taking appropriate
linear combinations of the matrix elements of the electromagnetic operators using
different q directions and different spin projections for the initial and final states.
The trinucleons wave functions are obtained with the hyperspherical harmonics
(HH) expansion discussed in Refs. [83-86]. This method can be applied in either

coordinate- or momentum-space.
4.3 RESULTS

This section consists of three subsections. In the first one, we discuss various
strategies for the determination of the unknown LEC's df, df, di,, Cl5, and Cig
entering the current operator at N3LO (e @). In contrast, the charge operator up
to N4LO (e @) only depends on the nucleon axial coupling constant g4, pion decay
amplitude F,, and nucteon mass and magnetic moments. The two-body operators
are regularized via the cutoff function in Eq. (253), and A values of 500 MeV and
600 MeV are considered.

In the second and third subsections we present results, respectively, for the
deuteron A(g) and B(q) structure functions and tensor polarization To(g), and for
the charge and magnetic form factors of 3H and ®He, along with results for the static
properties of these few-nucleon systems including the deuteron quadrupole moment,
the deuteron and trinucieons charge and magnetic radii and magnetic moments.
The A = 2 calculations use either the Argonne v, (AV18) [48] or chiral potentials at
order @* with cutoff set at 500 MeV (N3LO) or 600 MeV (N3LO*) [5]. Of course, the
A = 3 calculations also include three-nucleon potentials—the Urbana-IX model [49]
in combination with the AV18, and the chiral N2LO potential [16] in combination
with either the N3LO or N3LO*.

The calculations are carried out in momentum space with the methods outlined in
Sec. 4.2. The hadronic clectromagnetic form factors entering the onc- and two-body
charge and current operators are those specified in Sec. 4.1. The matrix elements of
these operators are evaluated with Monte Cario methods. The number of sampled
configurations is of the order of 10® for the denteron and 10° for the A = 3 systems.
The statistical errors, which are not shown in the results that follow, are typically

< 1% over the whole momentum-transfer range, and in fact much less than 1% for
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TABLE 7: Dimecnsionless values of the isoscalar LEC’s correspouding to cutoffs
A = 500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO*/N2LO*
Hamiltonians; the values in parentheses are from the AVi8/UIX Hamiltonian.

A s d5 x 10

500 | 4.072 (2.522) 2.190 (-1.731)

600 | 11.38 {(5.238) 3.231 (~2.033)

g <2fm.
4.3.1 DETERMINATION OF THE LEC’S

As already remarked, the LEC’s C;, 7 = 1,...,7, in the minimal contact current,
corresponding to A cutoffs of 500 and 600 MeV, are taken from fits to NN scattering
data [5]. In reference to the LEC’s entering the OPE and non-minimal contact

currents at N3LO, it is convenient to introduce the dimensionless set d>" (in units
of the cutoff A) as

Cis=di /A", dy=d5/N?,
Cle =dV /A, di=dY/A%,  dy =dY/A?, (257)

where the superscript S or V on the rif’v characterizes the isospin of the associated
operator, i.e., whether it is isoscalar or isovector. The isoscalar @7, listed in Table 7,
have been fixed by reproducing the experimental deuteron magnetic moment ug
and isoscalar combination ug of the trinucleon magnetic moments. Invoking the
requirement of “naturalness” for the LEC's, we notice that LEC d{ multiplying the
contact current is rather large, but not unreasonably large, whilc the LEC d5 is quite
small.

The isovector LEC d} is taken as d /4 by assuming A dominance. The three
different sets of remaining LEC’s d} and d} reported in Table 8 have been determined
in the following way. In set I @V and 4¥ have heen constrained to reproduce the
experimental values of the np radiative capture cross section o, at thermal neutron
energies (n+p — d+y} and the isovector combination uy of the trinucleons magnetic
moments. This procedure, however, leads to large values for both LEC’s. This

pathology is especially severe in the case of the AV18/UIX Hamiltonian model. In
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TABLE 8: Dimensionless values of the isovector LEC’s corresponding to cutoffs
A = 500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO*/N2LO*
Hamiltonians; the values in parentheses are from the AV18/UIX Hamiltonian. Note
that d¥ == d¥ /4 in all cases; see text for further explanations.
A 4 (D) & (1) Y (1) dy (1) V() d QI
500 | 10.36 (45.10) 17.42 (35.57) | 13.30 (-9.339) 3.458 | —7.981 (-5.187) 3.458
600 | 41.84 (257.5) 33.14 (75.00) | -22.31 (-11.57) 4.080 | -11.60 (-1.025)  4.980

sets II and [II ) is assumed to be saturated by the A resonance, i.e.

&Y = 2t b A (258)
9 may (mA —m N)

where ma — my = 294 MV, h/F, = fona/mq with 2y, /{47) = 0.35 as obtained
by equating the first-order expression of the A-decay width to the experimental value,
and the transition magnetic moment y,ya = 3 1y, obtained from the analysis of YN
data in the A-resonace region [80]. A similar strategy has been implemented in a
number of calculations, based on the yEFT magnetic moment operator derived in
Ref. [27], of the n +p - v+ d, n+d = v+°H, and n+3He— v+*He radiative
captures, and magnetic moments of A = 2 and 3 nuclei [87]. On the other hand,
the LEC dY multiplying the contact current is fitted to reproduce cither Tnp 10 set
IT or uy in set III. Both alternatives still lead to somewhat large values for this
LEC, but we find the degree of “unnaturalness” tolerable in this case. There are no
three-body currents at N3LO [29], and therefore it is reasonable to fix the strength
of the two-nucleon contact operalors by fitting a three-nucleon observable such as p°

and pY.

4.3.2 STATIC PROPERTIES AND FORM FACTORS OF THE
DEUTERON

The deuteron root-mean-square charge radius and quadrupole moment, obtained
with the chiral and AV18 potentials and cutoff parameters A = 500 MeV and 600
MeV, are listed in Table 9. We denote the leading order (m = —3 in the notation of
Sec. 4.1) term of Eq. (196) with LO, the m = —1 relativistic correction of Eq. (198)
with N2LO, and the m = 0 terms of Egs. (200} and (201}-(202) with N3LO{OPE)
and N3LO(v), respectively. The remaining charge operators at NALO (m = 1),
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TABLE 9: Cumulative contributions to the deuteron root-mean-square charge radius
and quadrupole moment corresponding to cutoffs A = 500 and 600 MeV obtained
with the N3LO and N3LO* Hamiltonians; results in parentheses are from the AV18
Hamiltonian. The experimental values for ry and @Yy are 1.9734(44) fm [88] and
0.2859(3) fm? [73], respectively.

74 {fm) Qa (fm?)
A 200 600 500 600
LO 1.076 (1.969) 1.968 (1.969)  0.2750 (0.2697) 0.2711 (0.2697
N2LO 1.976 (1.969) 1968 (1.969)  0.2731 (0.2680) 0.2692 (0.2680

NSLO(OPE)  1.976 (1.969) 1.968 (1.969)  0.2863 (0.2818) 0.2831 (0.2814
N3LO(v = 1/2) 1.976 (1.969) 1.968 (1.969)  0.2851 (0.2806) 0.2820 (0.2802

R s N

being isovector, do not contribute to these observables {and corresponding form
factors). The N3LO/N3LO* and AV18 potentials neglect non-static corrections in
their OPE compouent, which corresponds to setting v = 1/2. The N2LO and N3LO
corrections to rq, which is well reproduced by theory, are negligible. The chiral
potential predictions for ()4 are within 1% of the experimental value, while the AV18
ones underestimate it by about 2%. Variation of the cutoff in the (500-600) MeV
range leads to about 1% (negligible) changes in the N3LO/N3LO* (AV18) results.
The LO and N2LO charge operators do not include the cutoff function and the AV18
results are independent of A. This is not the case for the results corresponding to
the N3LO and N3LO* potentials because of their intrinsic A dependence.

The deuteron A(q) structure function and tensor polarization T5(g), obtained at
LO and by including corrections up to N3LO in the charge operator, are compared
to data in Fig. 15, top panels. In this figure (as well as in those that follow) the

momentum-transfer range goes up to ¢ = 7.5 fm™!

, much beyond the ~ 3-4 m,
upper limit, where one would naively expect this comparison to be meaningful, given
that the present theory retains up to TPE mechanisms.

The A(g) structure function is well reproduced by theory up to ¢ ~ 3
fm~!. At higher momentum transfers, the N3LO results based on the AV1S
tend to overestimate the data—a feature also seen in calculations such those of
Ref. [81}—while those based on the chiral potentials still provide a good fit to the

data. The cutoff dependence is weak at low g, but becomes more pronounced as g
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FIG. 15: The deuteron structure function A(g) and tensor polarization Ty(g)
{top panels), and charge and quadrupole form factors G¢{gq) and Go(q) (bottom
panels), obtained at leading order (LO) and with inclusion of charge operators up to
N3LO (TOT), is compared with experimental data from Refs. [89-110]. Predictions
corresponding to ¥ = 1/2 and cutoffs A in the range 500-600 MeV are displayed by
the bands.

increases. Similar considerations hold for the Thy{q} observable, although in this case
the N3LO results derived from the chiral potentials overpredict the data for ¢ 2 3
fm~!, while those from the AV18 fit reasonably well the data up to ¢ ~ 4.5 fm~L.
The charge and quadrupole form factors, G(g) and Gg(g) respectively, extracted
from the unpolarized and tensor polarized deuteron data are compared to results
obtained in LLO and by including corrections up to N3LO in Fig. 15, bottom panels.
The deuteron magnetic moment is one of the two observables utilized to fix the LEC’s
entering the isoscalar current operators at N3LO. The structure function B{g} and
magnetic form factor Gp(q), obtained with the AV18 and chiral potentials, and

currents at LO and by including corrections up to N3LO, are compared to data
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FIG. 16: The deuteron structure function B(g) (top panel} and magnetic form factor
G (gq) (bottom panel), obtained at leading order (LO} and with inclusion of current
operators up to N3LO (TOT), is compared with the experimental data from Refs. [89,
95, 96, 111-113}. Predictions corresponding to cutoffs A in the range 500-600 MeV
are displayed by the bands.
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in Fig. 16. There is generally good agreement between theory and experiment for

~1 At higher ¢’s, the results corresponding to the chiral

g values up to ~ 2 fm
(AV18) potential under-predict (over-predict) the data significantly when the current
includes up to N3LO corrections. In particular, the diffraction seen in the data at
g ~ 6.5 fm ™! is absent in the AV18 calculations, and is shifted to lower ¢ values in the
N3LO/N3LO" ones. There are large differences between the N3LO/N3LO® and AV18
results with the LO current, which simply reflect differences in the S- and D-wave
components of the deuteron wave functions corresponding to these potentials. The
cutoff dependence is large for the chiral potentials, while it remains quite modest
for the AV18 over the whole momentuin transfer range. This is consistent with the
rather different sensitivity of the LEC’s df and d5 to variations of A in the (500-600)
MeV range obtained with either the chiral potential or AV18, see Table 7. There is
a mismatch in the chiral counting between the potentials of Ref. [5] at order Q@ and
the present current at order e @. This becomes obvious when considering current
conservation, which for these potentials would require accounting for terms up to

order ¢ Q* in the current, well beyond available derivations {29, 32, 33] at this time.

4.3.3 STATIC PROPERTIES AND FORM FACTORS OF THE
TRINUCLEONS

The notation for the various components of the charge operator is the same
as given at the beginning of Sec. 4.3.2, except that now the one-loop (isovector}
corrections at N4LO contribute too, since the *He and *H nuclei have predominantly
total isospin T = 1/2. As a matter of fact, the hyperspherical harmonics wave
functions utilized to represent their ground states also include small T = 3/2
admixtures due to isospin-symmetry breaking terms induced by the clectromagnetic
and strong interactions.

There are no unknown LEC’s entering the charge operator up to N4LO, and
the predicted root-mean-square charge radii of 3He and °H, obtained with the
N3LO/N2LO and AV18/UIX combinations of two- and three-nucleon potentials and
cutoffs in the (500-600) MeV range, are listed in Table 10. Corrections at N2LO,
N3LO, and N4LO are negligible-—the corresponding operators vanish at ¢ = 0. The
spread between the N3LO/N2LO (A = 500 MeV) and N3LO*/N2LO* (A = 600
MeV) results at LO is about 0.5%, which is much smaller, particularly for *H, than
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FIG. 17: The 3He and *H charge form factors (top panels), and their isoscalar and
isovector combinations {bottom panels), obtained at leading order (IO} and with
inclusion of charge operators up to NALO (TOT), is compared with experimental
data {114]. Predictions corresponding to v = 1/2 and cutoffs A in the range (500-600)
MeV are displayed by the bands.
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TABLE 10: Cumulative contributions in fin to the *He and *H root-mean-square
charge radii corresponding to v = 1/2 and cutoffs A = 500 MeV and 600
MeV, obtained with the N3LO/N2LO and N3LO*/N2LO* Hamiltonians; results in
parentheses are relative to the AV18/UIX Hamiltonian. The experimental values
for the *He and 3H charge radii are [113] {1.959 + 0.030) fm and {1.755 % 0.086) fm,

respectively.

3He *H
A 500 600 500 600
LO 1966 (1.950) 1.958 (1.950)  1.762 (1.743) 1.750 (1.743)
N2LO 1.966 (1.950) 1.958 {1.950) 1.762 (1.743) 1.750 (1.743)
N3LO  1.966 (1.950) 1.958 (1.950)  1.762 (1.743) 1.750 (1.743)
NALO  1.966 (1.950) 1.958 (1.950)  1.762 (1.743) 1.750 (1.743)

the experimental error. The predicted radii for both Hamiltonian models are within
0.5% of the current experimental central values.

The calculated charge form factors of *He and 3H, and their isoscalar and isovector
combinations F5{g) and FY (g), normalized, respectively, to 3/2 and 1/2 at ¢ = 0,
are compared to data in Fig. 17. The agreement between theory and experiment

is excellent for ¢ < 2.5 fm™!

. At larger values of the momentum transfer, there is
a significant sensitivity to cutoft variations in the results obtained with the chiral
potentials. This cutoff dependence is large at LO and is reduced, at least in ?He,
when corrections up to NALO are included. These corrections have opposite sign than
the LO, and tend to shift the zeros in the form factors to lower momentum transfers,
bringing theory closer to experiment in the diftraction region. As already remarked,
the chiral (and realistic) two-nucleon potentials utilized in the present study ignore
retardation corrections in their OPE and TPE components, which corresponds to
the choice » = 1/2 in the non-static pieces of the corresponding potentials and
accompanying charge operators in Eqgs. (202) and (210} {30].

Moving on to the magnetic structure of the trinucleons, we note that the isoscalar
combination pg of 3He and H magnetic moments is used to fix one of the two
(isoscalar) LEC’s entering the current at N3LO. Both the isovector combination uy

and the np radiative capture cross section oy, arc used to fix the isovector LEC’s in
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TABLE 11: Cumulative contributions in fm to the *He and *H root-mean-square
500 MeV and 600 MeV, obtained
with the N3LO/N2LO and N3LO*/N2LO* Hamiltonians; results in parentheses are
from the AV18/UIX Hamiltonian. Predictions corresponding to sets I, 11, and II
of isovector LEC’s d} and dY in Table 8 are listed. The experimental values for
the *He and *H magnetic radii are [113] {1.965 £ 0.153) fm and {1.840 + 0.181) fm,

respectively.

magnetic radii corresponding to cutoffs A =

*He

A 500 600 500 600
LO 2.008 (2.092) 2.000 (2.092)  1.924 (1.918) 1.914 (1.918)
NLO 1.990 (1.981) 1.983 (1.974)  1.854 (1.847) 1.845 (1.841)
N21.0 1998 (1.902) 1.980 (1.984) 1865 (1.850) 1.855 (1.854)
N3LO(I)  1.924 (1.931) 1910 (1.972)  1.808 (1800) 1.796 (1.819)
N3LO(I) 1901 (1890) 1883 (1.896)  1.789 (1.774) 1.773 (1.778)
N3LO(II)  1.927 (1.915) 1913 (1.924)  1.808 (1.792) 1.794 (1.797)

sot I of the N3LO currents, while in sets 1T and I one of these LEC’s is fixed by
A dominance, and the other is determined by reproducing oy, (ptv) in set IT (III}).
By construction, then, the *He and *H magnetic moments are exactly reproduced in
sets I and III, while in set II they are calculated to be, respectively, —2.186 {—2.196)
pn and 3.038 (3.048) un with the N3LO/N2LO (N3LO*/N2L0O*) Hamiltonian and
A = 500 (600) MeV, and similar results with the AV18/UIX Hamiltonian. These
should be compared to the experimental values of -2.127 px and 2.979 py.

The 3He and *H magnetic radii corresponding to sets I-II] are given in Table 11.
The predicted values are consistent with experiment, although the measurements
have rather large errors (10% for H}. Their spread as A varies in the (500-600) MeV
range is at the 1% level or less. A recent quantum Monte Carlo study {115], using
wave functions derived from realistic two- and three nucleon potentials (the AV18
and Illinois 7 model [116]) and set III of xEFT currents, has led to predictions for
magnetic moments and transitions in nuclei with A < 9 in excellent agreement with
the measured values. Therefore in the following, unless stated otherwise, we adopt

set III of isovector LEC’s. We disregard set I for the reasons already explained in
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— = LOAVISJIX

=== LO N3LO/N2LO

= TOT AViB/UIX
Q. TOT NILON2LO

107, | 2 3 50 i 2 3 s s
q(fm’) q(fm™)

FIG. 18: The *He and *H magnetic form factors (top panels), and their isoscalar
and isovector combinations (bottom panels), obtained at leading order (LO) and
with inclusion of current operators up to N3LO (TOT) corresponding to the LEC’s
d{ and d; in Table 7 and to set III of isovector LEC’s df and dj in Table 8, is
compared with experimental data [114!. Predictions relative to cutoffs A in the
range (500-600) MeV are displayed by the bands.
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Sec. 4.3.1.

The magnetic form factors of *He and *H and their isoscalar and isovector
combinations F§,(q) and FY;{(¢), normalized respectively as pg and uy at ¢ = 0, at LO
and with inclusion of corrections up to N3LO in the current, are displayed in Fig. 18.
Two-body currents are crucial for “filling in” the zeros obtained in the LO calculation.
For ¢ < 2 fm™! there is excellent agreement betwcen the present xEFT predictions
and experiment. However, as the momentum transfer increases, even after making
allowance for the significant cutoff dependence, theory tends to underestimate the
data, in particular it predicts the zeros in both form factors occurring at significantly

lower values of ¢ than observed.
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CHAPTER 5

CONCLUSIONS

The overarching goal of nuclear theory is to understand the structure and
reactions of nuclei and nuclear matter. Within this bread goal, the present work
investigates the extent to which YEFT correctly describes the strong-interaction
dynamics in the few-nucleon systems, and their response to electromagnetic probes.

In the first part of the present study, we have constructed a coordinate-space
nucleon-nucleon potential with an electromagnetic interaction component including
first and second order Coulomb, Darwin-Foldy, vacuum polarization, and magnetic
moment terms, and a strong interaction component characterized by long- and
short-range parts. The long-range part includes OPE and TPE terms up to
N2LO, derived in the static limit from leading and sub-leading 7N and # NA chiral
Lagrangians. Its strength is fully determined by the nucleon and nuclecon-to-A axial
coupling constants g4 and h4, the pion decay amplitude F,, and the sub-leading
LEC’s 1, co, €3, ¢4, and b3 + bg, constrained by reproducing 7N scattering data
(the values adopted for all these couplings are listed in Table 1}, In coordinate
space, this long-range part is represented by charge-independent central, spin,
and tensor components without and with the isospin dependence 7 - T {the
so-called vg operator structure), and by charge-dependence-breaking central and
tensor components induced by OPE and proportional to the isotensor operator 7,.

The short-range part is described by charge-independent contact interactions
specified by a total of 24 LEC’s (2 at LO, 7 at NLO, and 15 at N3LO) and by
charge-dependent ones characterized by 10 LEC’s (2 at LO and 8 at NLO), 5 of
which multiply charge-symmetry breaking terms proportional to 7, + 75, and the
remaining 5 muitiply charge-dependence breaking terms proportional to Ty5. In the
NLO and N3LO contact interactions, Fierz transformations have been used in order
to rearrange terms that in coordinate space would otherwise lead to powers of p-—the
relative momentum operator--higher than two. The resulting charge-independent
(coordinate-space) potential contains, in addition to the vg operator structure,
spin-orbit, L?, quadratic-spin-orbit, and p? components, while the charge-dependent

one retains central, tensor, and spin-orbit components.
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The 34 LEC’s in the short-range potential have been constrained by fitting 5291
pp and np scattering data (including normalizations) up to 300 MeV lab energies,
as assembled in the Granada database, and the pp, np, and nn scattering lengths,
and the deuteron binding energy. The global x*(pp + np)/datum is 1.3 for the three
different models we have investigated, each specified by a pair of (coordinate-space}
cutoffs, respectively, Ry, and Kg for the long- and short-range parts: (A, Hg) =
(1.2,0.8) fm for model a, (1.0,0.7) fm for model b, and {0.8,0.6) fm for model c.
These cutoffs are close to the 1/(2m,) ~ 0.7 fm TPE range. The values of the
LEC’s corresponding to the three models are given in Tabie 4.

In the second part of this study, we have provided predictions for the static
properties, including charge and magnetic radii and magnetic moments, and clastic
form factors of the deuteron and trinucleons, which are among the observables
of choice for testing models of nuclear interactions and associated electromagnetic
charge and current operators. The wave functions describing these nuclei were derived
from either YEFT or realistic two- and three-nucleon potentials. The matrix elements
of the YEFT charge and current operators were evaluated in momentum-space with
Monte Carlo methods.

The xEFT calculations (based on the chiral Idaho N3LO [5, 6] potential) and the
hybrid ones {based on the AV18) reproduce very well the observed electromagnetic
structure of the deuteron for momentum transfers ¢ up to 2 3 fm™1. In some cases, as
in the A{q) structure function, the agreement between the experimental and YEFT
calculated values extends up to ¢ £ 6 fm~!, a much higher momentum transfer than
one would naively expect the present expansion to be valid for. On the other hand,
the measured B(g) structure function is significantly under-predicted (over-predicted)
for ¢ 2 3 fm~! in the YEFT (hybrid) calculations. The YEFT results, in contrast
to the hybrid ones, have a rather large cutoff dependence. This cutoff dependence
originates, in the hybrid calculations, solely from that in the N3LO current, while in
the xEFT calculation it also reflects the A dependence intrinsic to the potential (the
N3LO for A = 500 MeV or N3LO" for A = 600 MeV).

The calculated *He and *H charge form factors arc in excellent agreement with
data up to ¢ £ 3 fm~!. However, the observed positions of the zeros are not generally
well reproduced by theory, and the measured He {*H) form factor in the region of
the secondary maximum at ¢ ~ 4 fm~! is underestimated {overestimated) in both

XEFT and hybrid calculations. A glauce at the F5(q) and FX(g) in Fig. 17 suggests
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that two-body isovector contributions to the charge operator should be considerably
larger (in magnitude) than presently calculated, in order to shift the zero in F¥(q)
to smaller ¢.

The isovector currents at N3LO depend on two LEC’s (dY and d}), which
have been fixed in one of three different ways: by reproducing the experimental
np radiative capture cross section o,, and isovector magnetic moment gy of the
trinucleons simultaneously {set I}; by using A dominance to constrain dj and by
determining dY so as to fit either o, (set II) or uy {(set III). Set I is not considered
because of the “unnatural” values of the LEC’s. The *He and *H magnetic form
factors calculated with N3LO currents corresponding to set III, while in excellent
agreement with data for ¢ < 3 fin™?}, under-predict them at higher momentum
transfers.

The NN potential developed in the first part of this work has not yet been utilized
in the calculation of the static properties and elastic form factors of A = 2 and 3
nuclei since the completion of this program requires one to construct the three-body
potential as well as the electromagnetic charge and current operators with explicit
inclusion of A-isobars degrec of freedom. This could be an interesting research project
for the future.

Another fascinating line of research would be the implementation of this
two-nucleon potential {and accompanying three-nucleon potential) in Quantum
Monte Carlo methods which have proved very valuable in computing properties of

light nuclei and nucleonic matter.
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APPENDIX A

INTERACTION HAMILTONIANS

In this appendix we define the notation and convention adopted in the present
work. We also list the muclear and electromagnetic interaction Hamiltonians
involved in the calculation of the nuclear potential discussed in Chapter 3 and the

electromaghetic charge and current operators examined in Chapter 4.
A.1 NOTATION AND CONVENTION

The expressions for the relativistic pion field in the isospin triplet, n,(r}, and
canonical conjugates, Il,(r), are represented in the Schrédinger picture [34], at

position r, as

[cpae®T +hel, {259)

1
ma{r) = Z 7};
p Vv
H,(r) = Z —i\/%[{:p,a ePT —hel, {260)
| 4

where @ = z,y, z denotes the Cartesian component in isospin space, ¢p, and c{m
are the annihilation and creation operators for a pion of momentum p satisfying the

standard commutation relations:

[cpr Chr /] = Oppr0aa - (261)

3/2 satisfying periodic boundary conditions in a cubic

Normalized plane waves P/
box of volume L3, are used in the above field operators. Since physical observables
do not depend upon the normalization volume, we have set L = 1. Note that in

Eqgs. (259)-(261) a limit L — oo is implicit; therefore:
dp
- = | 53 262
2 /,, [ (262)
bppr = (27P8(p-p)=d(p-p). (263)

The pion energy w, is defined as w, = /p? +m2, where in this context m, =

(2mq+ + mgo) /3 is the averaged pion mass over its states. The annihilation operators
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of the charged and neutral pions are related to the Cartesian ¢, ,’s introduced in
Eqgs. (259)—(260) by
1 .
Cpt = E(Cp,w Ticpy) . Cp,0 = Cpz » (264)

and the charged and neutral pton field operators are defined as

rir) = V%[frm(r):mmr)]=zpj\/%%[cp.iemf+c;,;e-ip*l, (265)

mo{r) = m,(r), (266)

* or annthilate 7", respectively.

such that 74 o _(r) create 7~
The nucleon and A-isobar fields, N{r) and A(r), with their corresponding

canonical conjugates i N(r) and i A'(r), are taken in the non-relativistic limit as

N(E) = Y bpore® xor, (267)
p,GT

AT = 3 dposra € Xoaras (268)
PIATA

where bp s, and dp,, -, are the annihilation operators for a nucleon of momentum
p and spin-isospin state .+ = Xofr and A-isobar of momentum p and spin-isospin
state Xoara = Xoaflra, Tespectively. In this case, the operators by, ;. and b;f),a,, and

similarly dp .7, and d;fw ara» Satisty the standard anticommutation relations for the

fermionic fields:
{bparrs bl o} = SppiBardrr - (269)

A.2 STRONG INTERACTION HAMILTONIANS

The interaction Hamiltonians involving pions, nucleons and A-isobars fields are
derived from the chiral Lagrangiangs £,n, Lina, and Lyy in Eq. (2) formulated in
Refs. [3, 4, 36-39]. In particular the interaction Hamiltonians implicd by 7N and
7 NA Lagrangians read as

Henn = %—“1 dr N(r) [or - Vo (r)] 7 N(z) | (270)
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Huww = 75 fdrwf(r) fm(e) x TI(x)] - 7 N(r) , (271)
Hoya = »?;: dr AY(r) [S - Vra(x)] T N(r) + hec. | (272)

m

i = [arno ! (~m2 + Sz wtn)) - 2P

T

4y 4 ¢y
Tz %(r) + E[Vﬂ(r) - Va(r))
+‘2}§§E.abc7'c [Vr.(r) x Vm(r)] - 6| N(r) , (273}
HY = 2 (ba + bs) /drm(r) S-VIL{r)] T, N(r)+ he. ,  (274)

where ¢, and 7, are spin and isospin Pauli matrices and S, and 7T, are transition

spin and isospin operators, converting a nucleon into a A-isobar and satisfying

2. i
Sl Sb = Edﬂb — geabcgc ; (275)

and similarly for T 7,. The “known” LEC’s g4, ¥, and h4 are the nucleon
axial coupling constant, pion decay amplitude, and N-to-A axial coupling constant,
respectively, while the LEC’s, ¢; (i = 1, ..., 4), are determined by fits to 7 NV scattering
data [11] as discussed in Chapter 3. The naive power counting of the interaction
Hamiltonians follows by noting that each derivative brings in a factor of Q, where
Q is the low-momentum scale. Thercfore, Fgs. (270) -(272) give rise to interactions
of order @ (panels (a), (b) and (¢} of Fig. 19, respectively), while Eqs. (273)-{274)
represent their sub-leading corrections of order Q2 (panels {d) and (e) of Fig. 19,
respectively).

The lowest order (LO or Q") NN Lagrangian, rcpresented by panel (f) of
Fig. (19}, has no derivatives of the nucleon fields and reads [1]

1
Hero = 3 / dr {CS [N1(r) N(£)] [NT(x) N(r)] + Cr [N'(x) o N(x)] - [N'(r) o N(r)]} ,
(276)
where the “unknown’ LEC'’s, (s and Cr, are determined by fit to the NN data.

The second order (Q?) NN contact interaction, denoted by a solid dot in panel
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(g) of Fig. 19, can be stated as follows [3, 4, 39]
Hors = €1 [ dr[¥1) VNP + [N () N (o
+C / dr[[Nf(r) VN()]- [VN{r) N(r)]}
+C} / dr[VH(r) N(r)] [N* (r) V2N (r) + V2N (r) N(r)}
1, / a[IN'(6) VN ()] - [VN'(2) x o N ()
HYN' (DN [N () o x V(]|
+C3 [ @V NOITN@) o x V)
+1C§ f dr[NT(r) o N{r)] - [VN'(r) x VN(r)]
(O 8y b0+ O B bs + Cly 83 61) / dr [N} () ox N (x)]
X[V (x) 02 05N ()] + [N (x) s N (0)][0; N () o N )
H(Clo bt 831 -+ Cla 83855 + Clhg 615 641) / dr[N'(r) o N (1))
x{@;NT(r) oy N(x)] + B C13(8ix 8t + 8t 615) + €14 635 54
y / Ar{aN(r) o N (x) + 8, NT(r) o BN ()N () o N (2] (277)

The Hamiltonian in Eq. {(277) leads (in the center-of-mass frame) to seven
independent operator structure in the potential each multiplied by a coefficient named
C; with 7 = 1,...7 that is a linear combinations of these LEC’s C]. The Hamiltonian
Horyg at order Q* {panel (h} of Fig. 19) is not given explicitly. We only list the

corresponding contact potential in the center-of-mass {(see Chapter 3).
A.3 ELECTROMAGNETIC INTERACTION HAMILTONIANS

In this section we list the electromagnetic interaction Hamiltonians obtained by
“minimal” and “non-minimal” substitutions as discussed in Sec. 2.3 of Chapter 2. In
the following we distinguish between interactions involved in the construction of the
charge operators and those involved in the derivation of the current operators. The
electromagnetic operators are obtained up to one loop, € @ in the power counting,

and A-isobars are not retained in their caleulation.
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(a) (b) (© (@ (e)

(H (9)

FIG. 19: Schematic representation of the strong interaction Hamiltonians. Pions

(h)

are represented by dashed lines, nucleons by solid lines and A-isobars by solid thick
lines. The open circle represents the sub-leading contribution to the corresponding
interactions. The solid dot and open square represent the contact interactions at Q2

and Q*, respectively.

A.3.1 ELECTROMAGNETIC INTERACTION HAMILTONIANS FOR
CHARGE OPERATORS

The relevant interaction Hamiltonians for the derivation of charge operators up

to one loop are give by

Hiny = een /dr Nix) A%(r) N(x) , (278)
Hyww = ¢ [dr A%) [n(e)  TL(5), (279)
Hyan = e 2FgAmN /dr Ni(r)o - VA () [v - w(r) + m,(r)] N(r), (280)

Hﬁ\)w = —e 2‘?—;” [dr Ni(r) [VZAU(r) + o x VA1) v

my
V.o x AN, (281)

where my is the nucleon mass. The isospin operators ey and gy are defined as

ey =(14+7)/2, kn={(rks+Ev7}/2, un =en+kn, (282)
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(a) (b) (c) (d)

FIG. 20: Schematic representation of the electromagnetic interaction Hamiltonians
involved in the derivation of charge operators. Notation is as in Fig. 19 but for
the wavy lines which denotes photons. The full dot in panel {c) represents the yz NV
interaction of order e @, and the square in panel (d) denotes the (Q/my)? relativistic

correction to the term in panel {a)}.

and s and sy are the isoscalar and isovector combinations of the anomalous
magnetic moments of the proton and neutron. The arrow over the gradient specifies
whether it acts on the left or right nuclcon field. The interaction Hamiltonians in
Eqs. (278)-(281) are schematically represented in Fig. 20. They behave, relative to
the low-momentum scale @, in the following way (ignoring the counting Q assumed
for the external field): H yy ~ e Q% {panel (a) of Fig. 20), H,,, and H,.xy ~ e Q
(panel (b) and (¢) of Fig. 20}, and H_{r,r‘j\}w ~ ¢ ©? (panel {d) of Fig. 20).

A.3.2 ELECTROMAGNETIC INTERACTION HAMILTONIANS FOR
CURRENT OPERATORS

Finally, the relevant interaction Hamiltonians involved in the derivation of current
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operators up to one loop read:

Hoyw = e /drN'(r)[i N -G AQ) + A() - 9]

2mpy
- 2,»::,\; oV x A(r)] N(r), (283)
Hyrw = ¢ [dreamn(® A®) [Vio)] (284)
Hyy = -%; far M@)o A [ x 7(e)). M) (285)
HO, = }:ejﬁr NY(r) [[dg Vi (r) + dy 7, V7a(r)
Vil s Ty @ X VTo(E)] - V X A(r)] N(r), (286)

where the parameters d] are the LEC’s discussed in Sec. 4.3. The above Hamiltonians
are schematically represented in Fig. 21 and they behave as: Hyyy and H,pp ~ e Q
(panels (a) and (b) of Fig. 21), H,.n ~ e Q° {panel (c) of Fig. 21), and Hﬁ’N ~ e Q?
(panel (d) of Fig. 21). Panel (e) of Fig. 21 represents the {Q/my)? relativistic
correction to the one-body operator in panel (a) and scales as ~ ¢ Q2.

Minimal substitution in Hore leads to a contact Hamiltonians which includes
the coupling to the EM field and implies a two-nucleon contact operators. These
contact interactions, represented by panel (f) of Fig. 21, are listed in [28] and will
not be reported here. They depend on the LEC’s involved in the strong interaction
Hamiltonians Here discussed in Sec. A.2.

However non-minimal couplings through the electromagnetic tensor F,, are also
allowed (represented also by panel (f) of Fig. 21). The only two independent operator
structure are

Hotomm = € / dr [CisNH () o N(x) ¥'(r) N(r) + Cle[N'(r) & 7, N () (1) N (x)
~N'(r)o N(r) N (x) 7, N(r)]] VXA, (287)

where the isoscalar Cf; and the isovector Cig LEC’s (as well as the d; in Eq. {286)

can be determined by fitting data in the few-nucleon systems as discussed in Sec. 4.3.
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% fri - A -
(b) (¢) (@) (

FIG. 21: Schematic representation of the electromagnetic interaction Hamiltonians

{a) e) (f)

involved in the derivation of current operators. Notation is as in Fig. 20. The solid
dot in panel (d) is associated with the ya N current coupling of order ¢ Q2, involving
the LEC’s dy, dy, and d;; the solid dot in panel (f) denote the two-body contact
terms of minimal and non-minimal nature, the latter involving the LEC’s C}; and
M6 The square in panel (e) denotes the (Q/my)? relativistic correction to the term

in panel {a).
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APPENDIX B

DIMENTIONAL REGULARIZATION: LOOP
CORRECTIONS TO THE NN POTENTIAL AT NLO

INCLUDING A’S

As discussed in Chapter 3, TPE contributions contain ultraviolet divergencies
which need to be removed by a proper regularization scheme. In order to remove
these divergencies, loop integrals have been regularized via dimensional regularization

(DR} [40, 41]. In practice we evaluate the three momentum loop integrals as follows

[ / d3l f d(3—€))3{ o (288)

where g is a renormalization scale mtroduced to preserve physical dimensions. As
d —» 3, this integral becomes singular; however its divergent parts are identified by
the parameter ¢ = 3 — d. Once the regularization is carried out, the divergencies are
absorbed, order by order, by the corresponding LEC’s, which are determined from
experimental data. In what follows, we discuss DR of the loop integrals involved in

the calculation of diagrams (g)-(i) of Fig. 3, given in Eqgs. (45) (47), respectively.

B.1 A COLLECTION OF USEFUL FORMULAE

(-] -

m
I:f(A,O.‘) = [ W , &, A > 0 3 7 even 2 0 ; {290)

where it is understood that the result of the integration is analytically continued to
d =3. We find:

In the following we define

and

[{(Aa) = (4;)&,2 F(O}{jm) AT (291)
19(A;0) = 1 _dle—d/2-1) ' (uap- D (292)

(4m)d/2 2 [(«)
1 d{d+2) Ia—d/2 - 2)A (o—df2-2)

li40) = (4n)i2 4 {a)

(293)
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where I'(z)} is the I'-function satisfying 2 I'(2) = ['(z + 1}, with asymptotic behavior
for z — 0 given by
2 2

T(z) = ——7+('*2+’;)z+0( 2) (204)

and v ~ 0.5772 is the Euler-Mascheroni constant. Note that a factor p3¢
understood to multiply the r.h.s. of Eqs. {291)-(293). The following Feynman’s
parametrizations will also be utilized below:
1 T{a+p) [ i z¢ (] — 2)f !
A« B7 Na)T(B) Jo  [2A+(1-2) B

l 1 1 E5Y .].
= 2 dz dz : 296
ABC A 1.,/()‘ 2[31A+228+(1-—Zl‘—22)c‘l]3 ( )

(205)

B.2 REGULARIZATION OF “TRIANGLE-LIKE” CONTRIBUTION
WITH ONE A

The “triangle-like” contribution with one A-isobar, given in Eq. (45), can be

simplified in the following way

ZhA
9F4

2N IA) = T [LE(kY K — LY (R)] (297)

where Li (k) and LY (k) are defined, rcspcctivcly, as

2

L5k = 2 :

A
/0 d ,\2+4A2 L wh) (O + o)

2y - 1)2k2+ 12
Ly = f dA——+ / / ( 5 299
z (k) A2+4A2 A2+ 124+ Cy, k) (209)

Using the Feynman'’s parametrization given in Eq. (295) and shifting the integration
variables, [I — (2y — 1) k] — |, the tertn L}'{k) can be written as

2 [ 22 1 1
LY (k =*/ d,\—] d::/ , 300
o () 7 Jo A2+ 4A2 [, y 1[,\2+£2+C'[y,k)]2 (300)

where the function C{y, k) has been defined as

(298)

Cly.k) =4 [m2+y(1-y] >0 yel01]. (301)

The iutegral over 1 is converging; therefore using Eq. (291) we find

tr — l ! 1
Lyk) = 2/0 dy/,\ (A2 +4A2) [\ + C(y, k)2 (302)
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f dAN? = 2”)3 /A (303)

The integral L (k) is logarithmically dlvergent Using one more time the Eq. (295),

where we have used

we express LIT(K) as

1 ! | 1
LNk = ~f dy[ dz—w—/ ; 304
o (%) 4o TJo T VZIN [N+ D(y, 2, k) (304)

where the function D(y, z, k) has been defined as

Diy, 2, k) =2C{y, k) + 402 (1~ 2) >0  y,z€[0,1]. (305)

The integral over A is carried out in dimensional regularization (€ = 3—d). Therefore,

collecting the results we find that

]_ 2 e aty .
trizy .
LO (k) = -8-? ("{“ -+ lIl’.’T) + LO (k] s (306)
where the finite part of the integral reads as
—tr { ! Yool D(y.zk)
Lylk)=-—— | d —= In——— .
o (k) 16n2/[, y[ﬁ dzﬁln v (307)

The integral in Eq. (307) is well defined in the limit z — 0. It can conveniently be
calculated numerically.

We now turn our attention to the integral L¥(k), which can be written as

(Qy 1y? k3+32 : t '
d)\ - = LY, (k)+LY,(K) , (308

and the term LY (k) proportional to (2y — 1)2 k? can be dealt with as above.

Therefore, it reads as

k72
LY (k) =5ia\z —’y+lnﬂ' +L20(k (309)
where 2 . ' . D( )
—tr ; ?;":27
Y (k) = — —1)? Sty e Ak :
20(K) 16??2/0 dy(2y—1) ./0 dz \/Eln 1,2 (310)

Instead, the integral LY, (k) can be written as

L“[k).—~3[1d /md,\ A / i (311)
2L Y CNT1A e R
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which can be expressed as the linear combination

LYy(k) = Lyo(k) — 4 A% Liy(k) (312)
where
LY (k) = f d / [ , 313
z(4) Y [/\2+£2+Cy,k)]2 (313)
LY(k) = / d; f dA / 314
zd( ) l)" /\2+4A2 [/\2—!‘{2-1—("5[,}6)] ( )
In the integral LY (k) one can first perform the integral in A obtaining
1 /1 £2
— | dy / , 315
2Jo h[2+Cly k) (315)
which leads to a quadratic divergent integral. Performing the usual regularization,
we find L /9 .
tr R It 2 2 —:"
Ly.(k) = 52 (e ¥+ Inz + 3) (6m2 + &%) + Ly (k) (316)
where the finite part of the integral is given by
Ttr _ 3 (y3 k) P
Ty k) = g / dy Cly, k) ln . (317)
The remaining integral L5, (k) is decomposed as
Ly (k) = L, (k) — L5 (k) + LY,(k) , (318)
wherc
br 2 ] /' 1 / 1
Ly(k) = dy dA A2 +4A2 i X412+ Cly, k)’ (319)
L8R = / d / ] , 320
/(%) Y [)\‘*+£‘+Cy,k)]2 (320)
2 1
tr _ 2
Ly (k) = W] dy [44% - C(y. & ]f dA 5 +4A2 f T CaRP
(321)

The integral LY (k) = ﬁﬂ;r‘q(k) is finite, and can be easily done. It is convenient to

parametrize it as

E;‘g(k) - /dy [4A% — Cly, k)] / dz\/_/ ,\?}D(y,k)]

- 8 e dy [4A% - Cly, k)] / dz\/_D(J,z R (322)
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where in the first line the integration in 1 has been perforined and the Feyman's
parametrization has been used. The integral LY (k has a logarithmic divergence;

performing first the integral in A and then using Eq. (291), we find

r 1 2 —ir
Ly (k) = g (E -y + ln:fr) + Lys(k) (323)
where
Lg}e k) / dyhl (324)
The integral LY, (k) is further decomposed as
Ly (kY = — LY, (k) + 4 A% L (k) + LY(k) {325)
where
L. (k) = Efld /m(uf L (326)
SR T R N NS e A
1
tr R :
i = 2o [ o5t [ e mmror O
LY (k) = g/ld /md,\ L / L (328)
2N Tl Yy CONTAAE P Clyk)
After integrating over A, LY, (k) can be regularized in d = 3 in the usual way as
1 2 r
L) = g (2 -rtinn) 4TG0 (320)
where . 5)
—tr . ya
I (k) = f dym= (330)
To calculate the (finite) integral ng.(k) = T,,(k), one can use the Feynman's

parametrization given in Eq. (296) with A = \24+4 A% B = I24C, and C' = X2+2+C

to obtain
—tr 1 7! L1—(1-2)"? 1
B = g | e O

where we have rescaled the A and | integrations as /1 — 2 A — Aand /1 —-2;1 = 1
Also, we have defined z = 1 — 2, and introduced the function D(y, z, k) of Eq. {305).

Finally, we have carried out the integrations over 23, A, and 1, respectively. Note that
the singularity at z = 0 is integrable. We are left with the linearly divergent integral
Ltr (k) er(k):

—tr 1 ! 1 I Cly, k) ‘
L"'j(k)_ﬁ/o dy/ﬂ%c‘(y,k) _"Hfo by =z - (3
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and the linear divergence does not show up in dimensional regularization. Therefore,
the integral LY, (k) in Eq. (325) becomes

LY (k) = —# (% o lmr) + T (k) (333)
where
LW = | [ D / iy S8
2 —(1-2)""
w8t [ fdz A o
The integral LE,(k) in Eq. (318) becomes
LE (k) = “$ (% ~ v+ lnﬂ') + T ak) (335)
where

I = 3%[3f i (,(J,r'c)_2 f /6;(3;2

fd”/dzTD(yzk){mgz_?(l_zz)mﬂ"c(y’k)ﬂ'

(336)

Finally we find that the integral LY, (k) in Eq. (312) is

T 1 2 2
L3y(k) 1642 {2 (; —7+1ﬂﬂ) (k* +6m2 —12A%) + 3 (K? +6m§)}
+E;rb(k) ) (337)
where
o 1 1 C(y, k)
Lyy(k) = ———=[3 [ dy [84% - C(y, k)] In—=
25(k) 1672 /0 y [ (y, k)] In v
' Cly, k) ! Lo 1
ot [ an /B gt [y [0t
" Wy AT T LY P ZDG, R
2-92(1-2)?
x[mz ( zz) +z _C(y,k)” : (338)

The integral L§ (k) in Eq. (308) is given by
1

k) = ———
[2( ) 487?2

2 . T
(339)
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where
-—tr —tr —=tr
L3 (k) = Lyu(k) + L5y (h) (340)

defined in Eq. (310) and Eq. (338), respectively. Combining the results above, we
find that the “triangle-like” contribution consists of a polynomial of order 2 in &

(with divergent coefficients) and a finite part Ton " {k; 1A), i.e
v MOk 1A) = 7 - 7 P (k; 1A) + 7N O (ks 14) (341)

where the polynomial term is given by

1 h2 m2
Pk 1A) = 5Te 03 Fﬁ !kl [10 (- -+ Innw — lu";—) + 3}

2 2
+18m2 [2 (— -+ Ilnm — lnm—;) + 1]
4 Iy
s {2 m2
~72A (— —v+1Inm — ln~§») . {342)
€ H
The finite part T;r Nlo(k; 1A} can be defined as

T Ok 1A) = 71 - T v2 (K 14) (343)

where

z 1 D k
sz,tr(k; ].A) — 181?1.2 ?4 !sz dyy Yy - l)f dz (y: 2z, )

+m’~’f dyln C(y’k)——/ dy Cly, k) In= 252 y’k)

[C 2—21/1—z+z
2 4
—4r A f 4&3 +8A / / TR

Note that we have re-expressed the p-dependent logs in the integrals above as, for

example

D 2
+ ln% , (345)

ln——Q— — In
4 y? 4m?2

T

and have incorporated the resulting polynomials of order two in & (with u-dependent
coefficients) into P3*(k; 1A).
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B.3 REGULARIZATION OF BOX CONTRIBUTION WITH ONE A

The “box-like” contribution with one A given in Eq. (46} can be written as
A

9AF2
47y -7 [HE™ (k) K — 2 HY™ (k) K + HY™ (k)]
+271 -1 (01 x k), (03 % k)ﬁ Lb°"( )

27r VLO(k 1A)

b()x

3 [Lg™(k) k' ~ 2 L3 (k) k* + Ly (k)]

+6 (o1 x k), (02 x k), Hf:}}"(k)] , (346)
where
In
Ly™(k) = / 7,2 ° (347)
box i Zﬁ

Log (k) = PR {348)

and HY™*(k) and H23*(k) are defined similarly, but with
21 R 2A +wy 4 wo | (349)

wl w? Wi (Wy +2A) {w_ +24A) (wy +w.)

Consider first the integrals L2 (k) which can be parametrized as

Lhox(k) — / / [+ (29' - 1)k]n (350)

2+ Cy, k)

Using the relevant integrals in Eqs.(291)—(293) we find the following (finite) integrals
in dimentional {d = 3} regularization

0 =T = o /O dyﬁ, (351)

box —box 1 1 2 ! 2 1

L™ (k) = L, (k) = —513/0@\/0(%»’6)“’9 /Ody(2y—1) Nl
(352}

L (k) = I (k) = 8—17;[5/ dy [C(y, k)]** - 10%? /0 dy 2y - 1)* VC(y, k)

(353)

+k4/dy(2J—1) m]
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The integral L5 (k) can be worked out in a similar way such that

f f ot {2y — Dka]lls + (2y — 1)k
12 + Cly, k)]*

/dy\/C y, k) — ko kﬁ/ dy 2y — 1)

b2 (k) = TR (k) =

87r

1

g VC{v. k)

and we observe that the tensor term proportional to kykg vanishes when contracted

(354)

with the spin-dependent structure in UQ" NLc’(k 1A)}. Therefore we have:

—box 1 ! -
L) = —gmb [y VEGR). (355)

The remaining H>**(k) integrals can be written as

box B g/m / ln )
R == ) Y vy erany e vy 890

and similarly for H3g*(k). The convergent integral HY™ (k) = Fgox(k) is given by

1

I k) = 4W2f dy/ dzfnyz R (357)

where we have used the Feynman’s parametrization in Eq. (295) and integrated over
A. The integral 172°*(k) can be parametrized as

4A 1 %0 1 24 (2y —1)%k?
— | dy dA — 2/ — x
7 Jo o AFAAT 424 Cly, k)

ko ool 1
. (k) + 2 1y / I S
24 [Lm(k)+8ﬂ2_/n ay 2y ~1)" | dzﬁ!)(y,z‘k)] (358)
where the integral LY (k) has been defined in Eq. (314) and solved in Eq. (335).

Therefore we have

i

HE™(k)

3A /2 2 —box
(k) = - gy (5 v+ o - ) TG (359)

where

2
k) = 24 [Z;;(kwgkﬂ / dy (2y — 1)° / dz fD(ylz 5 660
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with Z;rd(k) defined in Eq. (336) where we already have considered the substitution
in Eq. (345). Lastly, H}*(k) reads as

4A
box
HY™ (k) = /dy/ A\ 4A2

1k422—1 l2y2(-k
x/ Y2 2y - 1)7 +()].(361)
1 A2+ 12+ C(y, k)]
The integral /I?™(k) can be written as
HEY (k) = HPO(k) + HY(k) + HPZP (k) + HP¥(k), (362)

where

Mgy - 44 / dy / P / a (363)
4a : /\2+4A2 {)\2+32+C(y,k)]2 '

box(k) — _k4/dy(2y-l)/ d,\/\2+4A2
1
4
X/I,\z.g-l! + C{y, )]2 ’ .
) .
box. p’(k) = -—-—-k kﬁf dy4(23}_1 f d')‘,\2+4A2
lols
‘ 365
x/[f\2+12+0y,k)lz' )
H{T(k) = -——k2/ dy2 (2y “1)/ d’\,\2+4A2
l?
‘ 366
xf;[)\2+l2+C(y,k‘)]2 -

In order to proceed for the integral I729%(k), we need to use the decomposition

p4 B p2
(A2 +4A2) A2+ p? + C(y, b)) (A% + 4 A% [A% + p? + C(y, )]
2
P

T2 +pE+ Oy, k)
p* [4A? — Cly, k)]
A2+ 4A2] (N +p2+ Cly, k)

5 5 (367)

which is based on Eq. (318). Therefore the integral H#5*(k) can be written as

Hioi(k) = HyX(k) = HP (k) + HgX(k) | (368)
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where
HP™(k '
i (k) = / dyf Dy 4A2/[)\2 +2+Cy, k) 269
by — / d / ] 370
it (k) y A2 H?+C(u,k)] o
g2
HP (k) = / dy [44% - C(y, / dA ]
SO (k) y | (v & ,\2+4A2 B+ CRE

(371)

The integral Hyo*(k) is similar to the integral Ly";(k) defined in Eq. (314) and solved

in Eq. {335). Therefore, after performing dimensional regularization, we find that

o A (2 m> ~=box
HY™ (k) = 5T (; ~ v +Inw - 111;2-) (k% -+6m2 —6A%) + H,y, (k), (372)

where

k) = [ / dy [4A2 - C(y, k)] In C(i;f) 27 fg ldy[4A2
~Ct Rl G5+ [ oy 17 0b) [ ds s
x[4 ar2z20 - D7+ oo %) (373)

Instead, the intcgral HYP(k) is similar to LY, (k) defined in Eq. (313); therefore in
analogy to Eq. {316)

- A (2 1 m?
Hff (k) = i (E —v+Inm+ 3 “ln;-z—) (¥* +6m?2 )+H4_f (k) , (374)

where
c (y, k)

17

??‘Z‘}"(k): 34 [ dy C(y, k) In (375)

Finally, the integral H)%*(k) is considered and the following decomposition is used
p? . 1 1
A2 +4A2 A2+ 2+ Cy, k)] A2+4A% X +p2+Cly, k)
4% - Cly, k)
[\ +44% [N +p? + Cly, k)]

+ (376)

The integral £/2°*(k) can be written as

HEgM(k) = HR (k) — HyP (k) + HRT(k) (377)
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where
Hy (k) = f dy [ o 4 STRwYY / (378)
Hi (k) = %fold” (147~ Cly, ¥)] fomd’\ i /. [/\2+l2i0(y,k)]'

(380)

The first integral ZI2*(k) gives an infinite constant which we drop. Using the relevant
integrals in Eqs.(291)—{293), the integral H2?(k) is given by

boo A (2 mi\
Hi (k) = o { = =7+ 1+ 7 — ln—;—;— (k +6m)+H4z (),  (381)
where
—ybox At Cly, k)
H,, (k):--i dy Cly, k) In—=1= . (382)

The integral H2%(k) is similar to Lg‘e(k) defined in Eq. (319) and solved in Eq. (333).
Therefore we ﬁnd

A

2
HYX(E) = — (% — 4w —~ 1n1,':—) (K +6m2 —~6A?) +7i§‘}"(k) o (383)

37
where

C (y,

1
Hy(k) = «2«%[[ dy [4A% - C(y, k)] ln——= /d?/ [44% - Cly. k)]

C(ya 2/ 2. ' 1
“IAE +4A dq 4A - Cly, )]/0 dzD(y,z,k)

x 1_—_(}_3;;_)1/2] . (384)

Finally, the integral Hy(k) in Eq. (377) is given by

A 2 mfr 2 2 2 2 2
é—;:é- [3 ("f’""")“FiIl?!'—”ln—;Q—) (k +6mﬂ—4A)+k +6m,,

VHL (k) (385)

HZ (k) =
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where

1
—box ) Cly, ,
H,. (k) = ypes /dy [8A* —3C(y, k)] In 4(:3:& —2n /dy [4A - Cy, k)]

1—(1—2)?
The integral H2o*(k) in Eq. (368) is given by
A 2
box el —1 2 _ A?
*(k)z i [5 (é -+ lnr n'u )(k +6m2 — 4A?)
+(k +6m2)| + Ha (k) (387)

1
) = %[ [ v sar-scpnGly) - / dyl4 A7

~C(y, k)] \/Cfgfh / dy [44°-Cly.R)] | dzﬁ‘.o(y,z,k)

XPA”_4“_”w*z~2amM”. (385)

Z

Now we consider the finite integral HPP*(k) = ﬁ:obx(k) in Eq. (364) which is similar

to L§, (k) in Eq. (322). Therefore we have
—hox A 4 4 1 1
= 2y ~1 1 389
[14b(k) 411'2k Ldy(y ) (z\/—D(ka) ( )
Lastly, the integrals Hyo*(k) and H}3*(k) in Eqgs. (365)-(366) can be combined
together such that

4mﬁ)51ww®+ﬁim

4A10 ! £
y 2y~ 1)’ NAAA [N+ 12+ Cy k)
(390)

This integral [P e +d)(k) is similar to Hf;"(k) defined in Eq. (371) and solved in

Eq. (372). Therefore

A 2
HE, o (k) = —i—ﬁ(—~7+hm*hwr)+HmWMH (391)
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where

H4(c+d)(k) = 62 /d (2?)‘—1)1 4m — - 27 /dy y—l)

V(;(K? /dy (2y = 1" fdzv’_D(y,z k)

k?

_ ST
[4&2 2 z"‘) Y2 s, k)” . (392)
The integral H(k) therefore becomes:
HY™ (k) = A 10 g — 7+ Inw ~ InZx iy (k2 + 18m?2 — 12 Az) + (k% 4 6m?)
2477 22 " "
+I () (393)
with
~=box hox —ybox —sbox
Hy (k) = Hy, (k) + Hyp (k) + Hyoray(K) (394)

where the integrals .H_M (k}, Fﬁ‘(k) and H4(C+d)(k) have been defined in
Eqs. (388)-(389) and (392), respectively. Finally, we need to calculate H23*(k).
When you apply Feynman’s parametrization you need to substitute {, — I,

ko 2y —1). The term proportional to k, ks vanishes as in the case L%(k).

Therefore we have

A
Hog (k) = Boplioy(k)
A : ox
= =5 (3 — 5+ Int — ln—) +Hop k), (395)
where 2 A
b X
Hep (k) = 5= dapLog(k), (396)

with o (k) defined in Eq. {336} where the substitution in Eq. (345) has been

performed. Finally the “box-like” contribution with one A can be written

WO 1AY = N0 1A & 1y -1 PP 1A)
+{k* oy -0y — 0y -kag-k) PP (k; 1A) , (397)
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where

2
PE%(k;1A) = FﬁAglz (2 ~ ¥+ In7 ~ ln%%-) , (398)

ha 1 m>
PYX(k:1A) = _ﬂgA A1 [k [46 (- -~ +inr - ln—“) + 1]
€

FA4 216x2 12
2
+6m? [30 (— — ¥+ Inw —ln%) + 1]

2 2
~120 A? (— -5+ lnw — lnn—t’) ] \ (399)
€ T
and

’t_)ﬁz;(NLo(k; ].A) _ er NLO(k IA) ZH,NLO(k. lA) gy 09

rhox o‘box

+0 e O (k; 1A) Sia (k) + [2TNC(k; 14)

+02T O (k; 18) a1y - a3 + v (ks 1A) Sip(K)] T - Ty
(400)

with

QwNLO(k 1A) = — 9%”34
e 24AFir

-1
e 2k /EJ dy [3-5(2y - 1)?] VTl k)

Cly, k)

| ]

k4 /ldy [1-2(2y-1)*+(2y - 1)]
0

_%/}MQ%WW], (401)

27 NLO JA h,q 2 ! Cly, k) -/1 Cly, k)
k: 1A il VARME A
Vsbox (K 14) "R k |i3/0 dyln yp; 27 ; dy A7

1 1 2-2(1-2""*+2
+ [ d dz— 4 A?
j[; y‘/[, z\/ED(y,z?k][ z

~C(y, k)]] , (402)

2 1.2
p2NLO _m ga b (‘(1}1 J,
Uibox (K1) = 54F;¢»;r2[3/dl / YV aar 4A2
: 11 ,2-2(1—2)" 4,
{4 d*_ 4A?
+f0 y 0 z\/ZD(y,z,k)[ z

0y, k)}] , (403)
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2 12 1
p2PNLO L ga ha 4/ _ 2 _1V4
Vppox (K3 1A) = 316 Fir? 6k J: dy [1-2(2y— 1)*+ (2y — 1)
]dzi—l—_4k2[3fd 352y —1)7]
vz Dy, z,k) g Y

04(:;15) /dy[3—5 2y —1)7] C(sgz)

+/ dy [3~ 52y - 1)?] f dz“ﬁm

B a2 1
[4A2‘3 2(1-2)"+= —C(y,k)H +3 [5-/' dy
0

z

x [8A? = 3C(y, k)] In C(y k) f 1 dy [4 A2

k) &2 fd'r (442 - C(y, k)] f dz—

1 24“4(1"2)1'}24“2
"m{“ . —QC(y,k)] , (404)
Vorox (K 18) = -gi’*—}’i?i—kﬂ 1d VC(y, k) (405)
Yor,box 54AF#?T 0 Y Y, s
2 12 L
Tk oo N L .
BC18) =~ T [y /R 09

B.4 REGULARIZATION OF BOX CONTRIBUTION WITH TWO
INTERMEDIATE A’S

The “box-like” contribution with two intermediate A’s given in Eq. (47) can be

written in the following way

h
81 F4
+ (o1 xK), (02 % k); L (h)|
F(6 -7 m) [HE(k) K — 2 8 (k) K° + HE™(k)

21\' ‘\ILO(k ZA)

Vhox

(6471 72) [LE™(k) K* — 2 L5 (k) k° + L= (k)

— (o1 x k), (02 x k), Habg"(k)]] , (407)
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where
= 2+ w? twypw +4A (wp Hw_ + A)
Lbux kY = Wy ~ + + " 4
a (k) _/1w+w_ (wy +2A2(w_ +2A82 (wy+tw_ ) (408)
~ 24 w? tww {4A (wy +w_o + A)
me Yt — L s o 43
s (k) /1w+ wo (wy +2A)2 (w- +2A)% (wy +w_) bals (109)
and .
(k) = s H k), IRk = S g (k) (410)

with H2™(k) and H93(k) defined as in the previous section. Notc that

w3,+w_2_+w+w__+2a(w++w.,—i—a/?)_‘__EL a—+wy +w.
(wy +a)? (w.. + a)? (wy +w) da(wy +a) (w- +a) (wy +w.)’
(411)
with ¢ = 2 A, Thercfore the Eqs. (408)-(408) can be written as
T box d box
L™ (k) = —a-H™ (k) Loy (k) = ap (k) . (412)

~ —<box
The finite integral L)*(k) = L, (k) is given by

k) = Es_2f dy/ dzi [D "‘*Zg)(y’j‘i;(l_z)] . (413)

where we used the definitions of HE*(k) in Eq. (357) and D(y, 2,k) = 2C(y, z) +
a® (1 — z). Note that C(y, z) does not depend on a. The integral Eg‘”‘(k) reads as

follow
~hox 3 2 m2 =box
LY (k) = P (;m7+lnﬁ-ln?)+i)2 (k) , {414)
with
box 1 ! Cly, k) ! | 1
L, (k) = —W[S/O dyIn 1 —|~/0 dy./u dzm\/_“;ml)(y,z,kp

2-2(1-2)"% 4z

z

X [4&*‘ [3D(y, 2, k) —~ 8A% (1 - 2)]
—C(y,k) [D{y, 2, k) — 8 A% (1 - z)” + k? /0 dy (2y - 1)*

/d 1 D(y, 2, k) ~ 8A2(1—z)]1

D(y, 2, k)?
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where we used the definition of //2*(k) in Eq. (359). Finally the integral L2o*(k) is
given by

-~ 2
L) = ”*431 2 [10 (*2‘ =7+ 7~ 1“**“‘) (K + 18mz — 36 A%) + (k* + 6m7)
T i
—box
+Ly (k) (416)
with
o _ 1o, [ 4 fl 1 1 2
Ly (k) = -g5k /ﬂdy 2y -1) A dzﬁD% .. )2[D(y,z,k) 8A

[3-/; dy 2y - 1) ("'(y,k) fdy 2y - 1)

Lo 1 [4A22—2(1—z)1/2—|—z

dzHﬁD(y=z,k)2
1
x(1=2)] - Cly, k) [D{y, 2, k) - 852(1—2)]]} 161 [/ dy

x [24A% = 3C(y, k)] In (y ) e AZ/ 1/6}322

1 i A-a(1—2)" 42
.-*”./0. dyfo dzﬁﬂ’(y,z,fv)2 [SN z
X [ 202 —3C(y, k)] Dy, 2, k) — 8A? [4A2 — C(y, k)] (1 - z)]

—2C(y, k) [ (1242 — Cy, k)] D{y, 2, k) — 8A? [4A? ~ C(y, k)]

x (1 — z)ﬂ] : (417)

[3D(y, z,k) — 8A?

where we used the definition of H?**(k) in Eq. (393). The integral Lb""(k) reads as

T box 1 2 mgr =hox
L (L) = ﬁ Juﬁ ; — v+ lnw — lnF + Laﬂ (k) ' (418]

with

)+/1dyfdz 1 1
] 0 \/ED(y:zrk)z

[3D(y, z, k) — 8A? (1 - 2)]

=box 1 1 C(y
Loglk) = ———=0,13 dyl

2-2(1-2)"+2
z

X [4 A2

—C(y, k) [D(, 2, k) — 8A% (1 — 2)] }] , (419)
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where the definition of H23(k) in Eq. (395) has been used. Finally the “box-like”

contribution with two intermediate A’s can be written

WITNLO (e 9A) = TENEO(1 2A) - PIPOR(k; 24) 4 1 - o PPk 24)

box

+{k oy oy — 0y - ks - k) PP(k; 27) (420)

where the polymonial pieces are defined as

R4 10 2 m?2
5 box A 2 T
i _ _"a A2l 2 — In—r
By % (k; 2A) Fi 572 (E ~+ Inm — In ”2) ,
R 1 (2 m2
phox (. — A s _ 1 — ln—x
Py(k; 24) Fi 51 ({ v+ Inz — In #2) , (421)
~ R4 1 2 m2
yhox /3. __ A z - | —=
Py(k;24) = 741944 72 {k [46 ( ¥+ Inw ln’t ) + 1]
2
+6m [30 (- — v+ Inr — ln%) + 1]
i
2 {2 m2
—240A (— ~ 7+ - ln‘u—z) : (422}

—2m NLO

The finite part ©,.:  {k; 2A) can be written as

TNO( 0A) = POk 2A) + 7 N0k 2A) 04 - 0y
+opo Ok 28) Spa(k) + [Tt O (ks 24)

o (K 28) + v 0 (K; 2A) S (ko)) - 7, (423)

oT,box tr.box
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where
N0 an) = oM 24A2k4/1dy [1-2(@2y— 12+ 2y-1)"]
cbox 324F4 2 0
/d ! +4k2[ /ld [3-5{2y 1)
1 -9 -
\/_.D y,z k) 0 y y
Cly. k) 1

1
1
P ‘ —_— - 2 72 Dilu > k)2
X +/U dy [3-5(2y 1)]/0 Y DGz P
2-2(1-2)V 4

x [4 A? - [D(y, 2, k) — 1421 — 2)]
+AA2C(y, k) (1 ~ 2) ]] —3[ [ dy 8 A2r lc;(i;f)
2 . C(ys )

! | 1 M- (1-2)'"" 142
wfow | o g
x [ [BA% - C(y, k)] Dy, 2, k) — 482 [4A% — C(y, k)] (1 - z)}

b4

—-84* C(% k) [D(y, 2y k) - [4 A? ~ C(ys k)] (1 - z)]]]] (424)

2 NLO . h,q 2 (y, k) Cly, k)
Uhe (520) = ik 3/d1 / Az

11 ,2-2(1-2)"+2
+]n- dy]n dz ﬁ_mD(y,z,k)z [4A .
x [2D(y, z, k) — 4 AY(1 - )] — Cly, k) [D(y, 2, k)

4 A1 - z)]]j’ , (425)

3/ dy 1:0("”!“) / \/E

! S | 1 2-2(1-2)""+2
+\/0 dy 0 dzﬁD(ys Z, k)2 z
x [2D(y, z,k) — 4 A*(1 — z)] — Cly, k) [D{y, z, k)

___Ma
486 Fir?

viee (ks 28) =

[4 A?

_4AY1— z)]]] : (426)
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h4 1
1944—;14?1_2 6k4f dy[1—2(2y—-1)2+(2y—1)4}

1 1 D{y,z,k) —4A%(1 - 2 3 !
o 4 [

X [3—5(2y~1)2] lnw—ﬂfldy [3-5(2y - 1)

(,y
: d 2y — 1)
1A f y[3-5(@y )]/dz sz,zk)

B 12
x[ﬁlA?Z 2(lzz] +z

QNNLO(k ZA) —

'rhox

[2D(y, 2, k) ~ 4 A%(1 — 2)]

~Cy, k) [D(y, z, k) — 4A%(1 - z)]H +3 {5 /0l dy [16 A?

C(y,k) ! 2 C(y,k)
3C(y, k)|ln ypncale -1*:r/U dy [12A% - C(y, k)] LA?

w

| 1 A—1(1-2)" 12
+/0 dy/a dzﬁil?(sf,z,k)2 [SA z

X [ [124% - 2C(y. k)] D(y. 2,k) — 402 [4A2 — Cy. k)] (1 - z)]
~2C(y,k) [ [8A% — C(y, k)] D{y, z, k) —4 A% [4A% — C(y, k)]

x(l—z]”H , (427)

L2mNLO R / Cly, k) /1 /1 1 1
k; 2A — o
Vorbox (Ki28) = 1752 ik Wy =Zaz T W] EDGTE

N Mz
S R EVCt e,
+4A20(y,k)(1~2)” : (428)
2mNLO ;.. Cly.k
Virbox (K3 20) = 2916F41r2 by Az / / fﬂyzk)z

— —Zlfz 4 .
x[4A22 20—+ [D(y, 2, k) ~ 4 A%t — 2)]

z

+1A2Cly, k) (1 ~ z)]] . (429)
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APPENDIX C

RELEVANT EXPRESSIONS FOR THE
COORDINATE-SPACE REPRESENTATION OF TPE

AND CONTACT INTERACTIONS

In this appendix we list the relevant expressions for the coordinate-space
representation of TPE and contact interaction radial functions introduced in
Egs. {128)-(141), respectively.

C.1 TWO-PION-EXCHANGE

The coordinate-space representation of the TPE radial functions at NLG and
N2LO are summarized here. The NLO terms corresponding to diagrams (d) -(f) read

as
2N K)o Qﬂir4%mﬂ [3;,; Ko{2z) + (3 + 2;.92)&(29:)] , (430)
2FNLO G Ky “é?lﬁ% My [12::: Ko(2x) + (15 + 42?) K 1(%)] , {(431)
N0 A = &%TAT—; {3: [1+ 10g% — g24(23 + 42%)] Ko(2z)
I 2036207 - g3 + 120 K] L (43)

where £ = m,r (m, is the average pion mass) and K, are modified Bessel functions

of the second kind. The NLO terms corresponding to diagrams (e)—(f) with a single
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A intermediate state are given by

w20 1A) = ﬁqr:rs y g}}iA (6 + 122+ 100" +42° + 1) (433)
*uﬁ"’NLo('r; 1A) = ~-ﬁ;$g’;ﬁ’i 2 d;t m+ T \/m(ﬂz +42%)
_._] m _\m(,u + 4x?)
x (1? + 4y”) arctan %] , (434)

1 g4Rg

— 2 d
144737 F4[ N r?Izz
+u’ + 42 ——/

a \/;13—4—43:3

e" V3 4 3 /1 + dn?
e VI (P 4 4?)

vfr’mo(r; 1A) =

x(3 4 3+/p? + 422 + p* + 42%) arctan %J . (435)
2mNEOy .. _ 1 / e VHFHE(1o 12
v (r1a) = T 2167375 [ 4 \/W { 2? + 547 + 12¢%)

- —/ 15?2 -+4x? 2 B
12y cf,u\/w (20% + u® + 2y®) arctan 2%
- gA"ﬁ f (VT
216735 \/W
x (24x% + 1147 + 127) + —f d#_..____._e—\/p2+4zﬁ
Y Jo Vi + 4x?
x(2x% + p* + 2*)? arctan ?%] , (436)
Y2mNLO _ 1 gAhs o2
(r;14) = (1+z) (3+3z+3%) , (437)

hdm2rSy F3

x. 1 92 h? _ag )
v MO r 1A) = Bty ’;T;e 2 (14 z) (3+3x+22%) (438)

where y = Ar (A is the A-nucleon mass difference) and the parametric integral over

i is carried out numerically. The NLO terms corresponding to diagram (g) with 2A
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intermediate states are

1 kY /°° p 12
1083 F2 | fy /24 dm?

2:2 2 2 232 1 oo - 2
e it 2y ] o [ dpe Vi
(1? +4y?) y V1% + 4x?

x (222 + ¢ + 2y%)(22% + p* - 6y°) arctan %] : (439)

N0 gAY = o /iEra? [43;2

1

1296735 F“{ f ,/;,;2 + 422

o | g e VIR (2 4 4 02 4 19,
yfo e (4 )1 y')

X arctan gﬁ_:] . {440)

__Ufr?r,NLO(r;zA) — ...‘/;;2+41:2( 2 + 4$2)

Y
1 A4

2592?73?*5?[*6 o ./““—H T 422

1

d
J/ Nu‘p —I~4:I:2

+12 + 42%) (12 + 12y?) arctan %] , {441)

e VHT (3 1 3\ /12 + d?
\/.‘£2+4J32(3 3 /ﬂ +4$3

2?r I\LO(?’ QA) —

+1 + 42%)

]_ h’A

e
194435 FA f . fﬂz Az
(207 + 42+ 2)?

W+ 1) ] / m

x (2% + 4 + 2y%)(22° + p? + 10y°) arctan é;*] , (442)

1 )
2?7 NLO/, _ 24 402
2A) = - + }

emVuiHist (#2 + d2?)(—p? + 4y°)

UE”’NLO(T; 2A) =

e ——e L {(24»3 + 114
o~ Vit

+24y%) + 6

+—] d,uww
Y Jo Vit 4 dx?

{
t _—
X arctan Qy] ; (443)
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1

e~ V#itir? /.2 2

15552?1,3?_0 F4 1: / ,qug T 4$2 (3 + 3 .u' + 4:5

+p? +42?) + / dyp—— 2+4 ¢ Vit (3 4 3\ [12 | 42
.'L'

vEmNO( 9A) =

+p? + 42%)(—p® + 4y%) arctan 5’{;] . (444)

Moving on to the loop corrections at N2LO, the terms corresponding to diagrams

(j)-(m) are given by

3
p2mNAO (G Ay = 52,6 E‘i e 2,2 (1 + ) + c3(6 + 12z + 1022
+4z® + )] . (445)
- 1 G4 o
vINO > A) = 53 ﬁﬁce (1 +2)(3+3z+25%) | (446)
1 2
i Om ) = -5 G%c e (1+2) (3+3z +27) , (447)

while those corresponding to diagrams (1)—{o) arc given by

—V it [—24¢,2®

Uzﬂ'N‘ZLO(?‘; 1A)

1
18736 F”* [/ ,/2+4$2

+ep(5p? + 1257 + 12¢%) — 6e3(p” + 22°)]
+§ / d“___ff_____e— Vet (2 1902 4 0y
YJo  /pt+4x?
X [4(:1:1:2 — 2c01° + 63(;12 + 23:2)] arctan é%] , {448)

1 (b +bs)hA0Ay
18m3r6

-/ 24472

Ugﬁ"NzLO(T; Lﬁ)

.[ \/ +4£2
x (1 + 4a* ——/ du—ett o~ Vu a2 2 4 gg?
(w ) o R (u )

x(1? + 45*) arctan __,u_] : (149)

2y



2O 1 A)

U;Z_Tr,N‘ZLO(T,; IA)

‘Zw N2IO(T 1&)

Uf:— N2LO (’f‘, 1A)

122

1 (bg-l—bg)h,igiy 5 md,u #2
36738 FA 0 N ]
3+ 3/p? + 422 + P + 42° __] d
(B3+3Vi2+ 422+ p ) o Ay
e VITHE (3 1 30/ F dgt 4 41t + 4a?)

X (152 + 4?;2) arctan -é%:! , (450)

e' Vv F2+4I2

00 2
_ 13 (bB =+ st) ha Y + / dum*!-f——-ﬁ—eﬂ /124 4x?
54736 Fa o N

(502 + 1222 + 12%) - 12y | dp—bees o VA
0 Vit +4da?
2 4 95% 4 oy |1 (batbslhagiy
X (¢ + 2z° + 2y°) arctan Zy} Ts 7
/ Wit (llﬁ + 24x% + 124 )
\/,u +4J:2
+§ TR — —\/m(“ + 222 4 22)

Vi 2+4:¢

X arctan E,u_ , (451)

-/ i? +4z?
108??3?"5 F4 I: / \/_gm (1 + 42?)

1 2 2
__/ —\/,h‘- G4z (,U -|-4$ (,u +4y2)
¥Jo \/# "|"4J'

x arctan g—} , (452)

Yy
1 ahkly
2167x3r¢  F4

Vl-*'2+4:|:2(3+3 HH‘Z_!_ALTQ

2/ dt,u—
o /iRt a2

‘ 1 [ 21457
+ 2+4$2 "’—'—[ d{,_..._.-——-—-m—.—.- 8“m 3+3 2+4$2
e =35 1 YRy (3+ 32 + dz?

+1% 4 427 (1® + 4y*) arctan %l . (453)
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Lastly, the contributions corresponding to diagram (p} read

U?.‘.I'I‘ N2L O( 2&)

C

277 NZLO(T, 2A) —

UEN.N!ZLO (’f‘; ZA) _

Ugﬂ.NZLO(T; 2A) —

Il

Ugﬂ‘NzLO(’f‘; 2&)

B 2 (b:; + bg) hi Yy /oo d“ ,(1.2 . 12 4-4x2
81mw3rs F4 0 2+ 4x?
(#* + 22% + 2¢%)° 2 2 2
1t 24 1
x[6 ,u+4y2 + 11p® + 242° + 12y7)
Y / , p—miee VI (2 4 222 4 10y7)
w4 4
x(p® + 227 + 2¢*) arctan }E-] , (454)
¥

L (bstbsihiy —G/Mdp [ e
Q723¢6 I ' /#2 T 4z2

\/;13+4:1:‘(u + 42,2)

x (¢ + 42%) +

f \/p? + 4x2

x(p? + 12y%) arctan %] : (455)

1 (bs+ba) by

oc 2
_
324738 Fa [ 6 o d'u, /12 + 12
1 [ 2
X{3+ 3/ p? + 422 + p* + 42 + ;/ (J;LLS" et
0

% (3 + 3/ p? + 422 + 1 + 42*)(1® + 12y%) arctan %} ,  (456)

_ 1r (b':; -I“bg) hAy ,u2 - /u? {42
2437576 \/m
(,U + 227 + 229‘ 2y 2 2 2
X 11 - 24 12
(6 PR + 11p* + 24z° + 12y°]
o fud+dxs 2 2
- 2 22?7 + 10y
./ \,f ,u.2 + 42:2 ( )
x{p? + 22% + 2¢*) arctan 2—} , {(457)

_ 1 (b;; -+ bg) h‘i’l Y /
16273r® F4 1 /‘”2 Ty
]. oo )Ul 2 9 .
x(p® + 4z +~f dp—remee——e VI (2 4 40
(p ) T (p )

x (42 + 12y%) arctan 2&] , (158)
Y

— v/ 2 +4x?
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3 2
P2TNLO L gAY 1 (bs+bg)hyy [ 6 *° Iz o V/#2+4a

d
1944736 F3 W T+ a2

1 o0
x{3+ 312 + 4z + p? + 42%) + -/ du—ett e Viit1a?
¥ Jo Vv i+ 4a?

X(3+ 3/ 12 + 4z? + g + 42%){p? + 12¢%) arctan %] . {459)

The radial functions of the charge-independent part of the potential vk, in
Eq. (128) are defined as

UE(?_) — UE#NIO(?, 1&) _I_UQW\ILO(?, 2A) + U?n’N2LO( A) +UAWNZIO(T lA)

N0 9A) | (460)
vi(r) = 2NEO(r &) + o2 MO 1A) + 2 NEO (1 2A) 4+ 2 N0 (1 1A)
+2 N0 (i 24) | (461)
d(r) = o2NO(r K) + o2NO(r TA) 4 2NIO (s gA) 4 2T NEO( A
+vf“ NEO (15 24) (462)
vi(r) = vPNO>r A) + v NO(r 1A) + Uf“’NLO(r;.Zb) + PONIO L A
+o) N0 2A) | (463)
W) = o) 4 2 N0 1A) 4 12 NIO (gAY 4 2R NILO 1 K
F2TNO (A o 2EN2LO (gAY (464)
a (r) = v o) + vl 1A) + 0EPNO (1 2A) + P NO(r: A)
g O 1A)Y 4 2N O (20 (465)

Each is multiplied by the cutoff Cg (r} (see Sec. 3.2 of Chapter 3),

vi(-r) 3 Cr (1) vi(r) . (466)
withl = ¢, 1,0,07,t,tr,0T (T
C.2 CONTACT TERMS

Using the expressions in Eqs. (133)-(139), the functions v§(r) in Eq. (141} are
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obtained as

4
vi(r) = CgCp,lr)+C [—cﬁfg( ) — C(n(r)] + D, [0(4)@)4.;(}52(?)] ,

(467)
36) = G|-Cfo - (l)(‘f”]}+1)z CHOREC IR (465)
() = CrCalr)+Cy [ CR2lr) = ¢ + Do |ty + 2]
(469)
F0) = af-cn-teo)+oi o+ i) e

ry = -G [cﬁfg(r)— %c};q( )] + D5 [ O )+%C§2(r)~ CR(r)
+§c§;;(f) , (471)

hr) = ~Co [c}g(r) o (r)] + Ds [(;};‘;(r) +2C20) - 202
“’(r)] (472)

ben L) L 1 - ()

) = —cv—,;cns(r)w{ o +25000) - S0 . um
v(r) = Dg [%Cg(r)+2ic%)(r)_ “’(T)] : (474)
W) = —Dgg,-j [C};’(r)v— Ch( ] (475)
vi(r) = —Dm% [0}33(-)—--*0‘” )] (476)
) = =Duzz |cfln) - o] (a7
() = Du [—Cﬁ?;(r)——cr‘”(r) , (478)
F0) = D | -0 - 20| (479)
By = ~Du|ce )—%Cﬁégu , (450)
#0) = ~0is o) - 2ele)| | (481)




t'rz(? )
vg' ()

vg*(r)

2
S sl + OFF =€) - 26|

¥ M 2
o\ cﬂg(r)w{"[ Cra(r) = ;C}%S’(-r)} :

o [—G%‘j(r) 2o )

e [—0533 (r) - (”( )

2 R

. 1 ]
—c [C&?(r) ~Lepo

__CIT C(l)( ),

1 3l
~ClY - Chy(r) -

(1)

S

-
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(482)
(483)
(484)
(485)
(486)
(487)

(488)

(489)

Note that in Eqs. (138) and (139) only the terms proportional to L? and (L - S)? are

retained.
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APPENDIX D

PROTON-PROTON PHASE SHIFTS AND EFFECTIVE

RANGE EXPANSION

We discuss briefly the calculation of the pp phase shifts and effective range
expansion with inchision of the full electromagnetic potential v [48]. Radial wave

functions behave in the asymptotic region (v 2 30 fm) as

17— SEM —
M) o TR o) + B R k)] (190)

where L = J for single channels or L. = L' = J F 1 for coupled channels {the pair
isospin and spin subseripts 7' and S have been dropped for simplicity), E;’m(k'r; )
are defined in terms of regular, Fr(kr;7'), and irregular, Gp(kr;n'), electromagnetic
(EM) functions as

k k
(12)(k }_ L( & ”) (k": 7?) , (491)
r
65™M are the EM phase shifts shown in Sec. 3.4, and the Coulomb parameter 7 is

defined {117! as
. a}lzfp 14 2&2/1\/13

2k vy

The EM functions, gencrically denoted as Xy (kr;n'), are solutions of the radial

(492)

equation

Ll

L(L+1)
.2
e + k¢ —~ —_

= My [Vor(r) + Veao(r) + va(r)]} Xp(kr;n) =0, (493)
where Ve (Vo) and Vi p are respectively the first-order (second-order) Coulomb and
vacuum polarization terms. These terms include form factors to remove singularities
in the r = 0 limit [48]. Note that the Darwin-Foldy and magnetic moment corrections
are not included above, since at large r the former falls off exponentially and the latter
behaves as 1/r3.
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Following Ref. [118] and treating the Vio(r) and W p(r) corrections in first order
perturbation theory, one finds that Fy(kr;# and GL(kr;n’) can be expressed as

Filkr;y) = Fr(kr;n'} [1—/ dr' Gp(kr's %) V(r') FL(kr’;n’)]

#Gulhrin) [taniou + i)+ [ ' Rylles ) V) Fufhe |
(494)
GLlkr;) = Gilkr;n) [1 -+-/ dr’ Gp(kr'; 7)Y V(') Fr(kr', n’)]

—Frlkr; ) [tan(p;, + 1)+ f dr’ Gp(kr'; WYV (") Grlkr, f,o’)] .
{495)

where the Fi and G are standard Coulomb functions, the function V(r) is
proportional to Veo{r) and Vyp(r),

V(T’) - % [VCQ(T) + va(?")] , (496)

and the phase shifts gz and 7, corresponding, respectively, to Ve and Vi p are given

(in first order perturbation theory) by
tan{p, +7L) ~ pp + 7L = ——/ dr Fy (kY V(r) Fy(kr; 7'} . {497)
0

In the absence of Vg and Vi p, the solutions F; and G reduce to the regular and
irregular Coulomb functions. In the computer programs Eqs. (494)-(495) are used
to construct the EM functions and Eq. {497) to obtain the phase shifts p; and 7.
The effective range expansion in the 'Sy channel is obtained as [117-119)
2 1 ! 2
ijm(k ) =——F zTEME 4 ..., (498)
aEM 2
with
(1 + xp) cot 6EM — tan g
(1+ A )1 — xv)
+EA[CH ('Y - 1] + ko, (499)

Fem(k) = kCGi(y) +2kn h(n') (1 - As)
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where

2?1‘7]’ . 2

2 — ! _ . ! 7?
Co) = . M) =—y=lnp +;—n(n2+nm}, (500)

4 * I
Xo = —ﬁ Tf’/ dr ﬁ Fo(kr; 1) Golkr;n')

o= 4“ ,[ dr —2 c[,(n)c:?(km)—l] (501)
d=—, Ay=4dkny' InQdky)+h{n)+2v-1],

Mp
A2-2dkn(21no:+27—1)+%]- (502)

«v is Euler’s constant, and the function /(r) entering the vacuum polarization potential
Vyp(r) is defined as in Ref. {118],

* 2mere 1 x? —1 .
I(T‘) = dxe “ 1 + *2"""'2“ 2 . (503)
1 X T

0-}45- T T T ! 1 T T l T ) T I T 1 J I T T d
o ///’E
C - :
0.14;‘ ’/,/ —:
f— o - 3
n [ f,/ -
E - :
0135 //‘/ -
T b - ]
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3] Pl 3
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N - 2
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P 3
0.125: 1 1 1 ' L 1 1 I L i 1 I 1 1 L E 5

0 0.002 0.004 0.006 0.008 0.0!
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FIG. 22: The effective range function of Eq. (499) for the potential model b with
(Rr, Rs) = (1.0,0.7) fm. The dashed line is a straight line fit.

The effective range function Fgum(k*) corresponding to model b is shown in Fig. 22.
The numerical methods are stable down to lab energies of 1 keV.
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The pp and np phase shifts calculated with model b are listed in Tables 12--14,

while the various components of the long-range (vly) and short-range (v

8,CI

potentials corresponding to models a, b, and ¢ and projected out in pair spin and

isospin § = 0,1 and T =0, 1, are shown in Figs. 23 30.

TABLE 12: pp phase shifts in degrees for potential model b with (Ry,, Rs) = {1.0,0.7)

fm. The phases are relative to electromagnetic functions,

Ewn 'So 'D; Gy 3R o SO SO ° e K, R
1 3269 000 000 0.11 -0.08 -0.00 0.02 -0.00 -0.00 0.00

5 55.00 0.04 0.00 164 -090 -000 022 -005 -0.01 0.01
10 5549 0.17 0.00 3.90 -206 -003 064 -0.19 -0.01 002
25 4913 069 0.04 921 -495 -0.23 242 080 0.06 0.04
) 3952 168 0.16 1277 -838 -0.70 573 -1.71 027 0.14
100 2566 3.77 0.43 11.21 -1342 -1.58 11.02 -2.73 0.73 047
150 1544 575 0.71 6.21 -17.63 -2.28 1416 -3.05 1.10 0.97
200 720 738 1.01 0.50 -21.38 -290 1590 -297 130 1.55
250 022 859 133 -5.18 -24.68 -3.52 16.89 -2.65 127 216
300 -5.88 936 1.66 -10.62 -2755 -420 1745 -2.19 098 2.76
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TABLE 13: T = 1 np phase shifts in degrees for potential model b with (Ry, Bs) =
(1.0,0.7) fm. The phases are relative to spherical Bessel functions.

Ea 'So Dy Gy PR P %Ry %P e K CF
1 6210 000 0.00 018 -0.11 -000 002 -000 0.00 0.00
5 63.65 004 0.00 1.67 -082 -000 024 -005 001 0.00
10 60.00 0.16 0.00 380 -202 -0.03 068 -0.19 0.02 0.00
25 50.83 0.67 0.03 871 -472 -0.20 253 -0.76 0.11 0.01
50 40.22 169 0.14 1190 -788 -063 595 -1.63 033 0.08
100 2584 38 040 1006 -12.42 -1.46 11.35 -258 081 0.38
150 1546 5.90 0.69 497 -16.17 -2.12 1449 -2.81 120 0.84
200 7.13 7.58 1.00 -0.77 -19.50 -2.70 16.17 -264 144 141
250  0.09 881 133 -648 -2243 -327 17.00 -224 145 201
306 -6.04 959 167 -1193 -2496 -389 1749 -1.72 121 260

TABLE 14: Same as in Table 13 but for T = 0 np phase shifts.

P, P 'F3 3Dy 3Gy, 35 e 3Dy *Ds g 3G
1 -0.19 -0600 001 0.00 14781 010 -0.00 0.00 0.00 -0.00

5 -1.53 -0.01 022 000 11832 0863 -0.17 0.00 0.01 -0.00
10 -315 -0.07 0.8 0.01 1028 106 -0.65 0.00 0.08 -0.00
25 -6.55 -043 370 017 8086 1.53 -2.77 0.00 0.55 -0.04
50 -9.87 -116 889 073 6300 162 -642 0.18 162 -0.25
100 -14.05 -233 1721 220 4363 167 -1231 1.16 354 -0.97
150 -17.48 -3.12 2233 3.71 31.32 192 -1661 234 487 -1.88
200 -20.78 -3.69 25.02 5.10 2235 234 -19.83 3.17 572 -2.83
250 -2404 -4.14 26.09 6.36 15.26 2.84 -22.27 340 623 -3.76
300 -27.23 -4.56 26.10 7.46 940 339 -24.11 3.01 6.52 -4.62
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APPENDIX F

LOOP INTEGRATIONS

In this appendix, we outline the derivation of the two-body charge operators at
one loop, listed in Sec. 4.1.1. For the sake of illustration, we consider the contribution
in Fig. 14, given by [30]

T

1 294 7 =
== [ Ba - kBl - @ )
q9:,92,93
- 1
xd{q1 + a3 — q) W [2 T2 (G2 - Q1 G2 - g3

-0 Qo X Q1 T2- 03 X G2} — (71 ><T2),, qi - Q2

xo'z-quqg]Jrl:Z, (504)
which can conveniently be written as

2 V(q,k
AV = 294 / Nakp) s (505)
[ 44

A 3 3 T3
‘r?f “a/24+p Ya/z-p “p-k

with
N{a,k,p) = 27.[(p-k)-(a/2+p) (P-k)-(q/2-p)-0o, - (p—Kk)

x(q/2+p) o2-(q/2-p) x (p—k)]
— (T x 1), (a/2+p) (p—k) 02-(q/2 - p) x {p - k) ,(506)

and the momentum k defined as in Eq. (194). We now use standard techniques given

in Eq. (296) to express the product of energy denominators in the following way

1 1 ].—Z]_
w2 wz w2 =2 / dZ] / de
a/2+p “aq/2-p “p-k ¢ 0

x { [(a/2 +p)* +m2] 21 + [(a/2 — p)* + m2] 2

~3
+p -k +ml] (1-zn-m)| (507)
which, in terms of

pP=p+(zn—2)q/2-{1-2z —2)k, (508)
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FIG. 31: Example of two-body charge operators at one loop (e or N4LQ).
The labels “17, “2”, and “3” denotes the internal loop momenta q;, ¢, and qs,

respectively.

siply reads

_x
_2] dzI/ dzp [p’ +/\2(z1,32)] . (509)

q/2+P wqﬂ P p -k

where

)kz(zl,ZJ (Zl+22) 2/4—' [(zl —z2)q/2—(1 -2
—23) k] +(1—2 — ) K2+ m?. (510)

After these manipulations, the charge operator can finally be written as
L 49 1{'2
o) = —e—22 des N(q,kp)
1/2
X [p’2 +/\2(9:,y)] +1~—‘_-2, {511)

where the function N’ is obtained from N by expressing p in terms of p’ via Eq. {508).

We have also changed variables in the parametric integrals by introducing [41]

rT=2+2. zy = (21 — 2)/2, (512)
such that
1 -2 1 1/2
/ dz; dzg —> d:m:/ dy . (513)
0 0 0 ~1/2

The function N’ is a polynomial in p’, and the p'-integrations are carried out in
dimensional regularization as in Appendix B. They are finite and lead to the charge
operator given in Eq. (211).
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