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ABSTRACT

STUDIES OF TWO-NUCLEON INTERACTIONS AND 
FEW-BODY ELECTROMAGNETIC STRUCTURE IN CHIRAL 

EFFECTIVE FIELD THEORY

Maria Piarulli 
Old Dominion University, 2015 
Director: Dr. Rocco Schiavilla

A coordinate-space nucleon-nucleon potential is constructed in chiral effective 

field theory (yEFT) retaining pions, nucleons and A-isobars as explicit degrees 

of freedom. The calculation of the potential is carried out by including one- 

and two-pion-exchange contributions up to next-to-next-to-leading order (N2LO) 

and contact interactions up to next-to-next-to-next-to-leading order (N3LO). The 

low-energy constants multiplying these contact interactions are fitted to  the 2013 

G ranada database in the laboratory-energy range 0-300 MeV. Three versions of this 

chiral potential, corresponding to three different cutoffs, have been developed. The 
cutoff regularizes the one- and two-pion exchange as well as the contact part of 

the potential. A study of the electromagnetic structure of A = 2 and 3 nuclei is 

also presented in this thesis. The calculation of the static properties and elastic 

form factors of the deuteron and trinucleons (3He and 3H) is implemented in 

momentum-space, by utilizing nuclear wave functions obtained either from chiral or 

realistic potentials, in combination with chiral electromagnetic operators derived up 

to one loop. Predictions for these physical observables are in a  satisfactory agreement 

with the experimental data.
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CHAPTER 1 

INTRODUCTION

The force responsible for binding protons and neutrons (nucleons) in atomic 

nuclei, also known as the nuclear interaction, has been the subject of intense study 

since the beginning of the twentieth century. Although the existence of nuclei and 

their constituents has been known for a century, nuclear forces are not understood 

very well a t a fundamental level. The nuclear force is now understood as a residual 

effect of the even more powerful force, or strong interaction, tha t binds particles 

called quarks together, to form the nucleons themselves. This more powerful force is 

mediated by particles called gluons. Quantum chromodynamics (QCD), established 

to be the theory describing the interactions between these fundamental degrees of 

freedom, i.e. quarks and gluons, does not have a  simple solution in the low-energy 

regime characteristic of nuclear physics. At these energies the strong coupling 

constant becomes too large and perturbative techniques cannot be applied to solve 

low-energy QCD. Therefore a direct derivation of nuclear forces from QCD is not yet 

available. It is for this reason tha t the relevant degrees of freedom in which nuclei 

are described are bound states of QCD, called hadrons, such as nucleons, pions and 

A-isobars.

The recent history of nuclear physics has witnessed the tremendous development 

of nuclear chiral effective field theory (yEFT), originally proposed by Weinberg in a 

series of papers in the early 1990’s [1]. The (approximate) chiral symmetry exhibited 

by the underlying theory of QCD in the low-energy regime severely restricts the form 

of the interactions of pions among themselves and with other particles. In particular, 

pions couple to baryons, such as nucleons and A-isobars, by powers of their momenta 

Q, and the Lagrangian describing these interactions can be expanded in powers of 

Q / Ax, where Ax ~  1 GeV specifies the chiral-symmetry breaking scale. As a result, 

classes of Lagrangians emerge, each characterized by a given power of Q / Ax and each 

involving a certain number of unknown coefficients, so called low-energy constants 

(LEC’s), which are then determined by fits to experimental data. Thus, yEFT 

provides, on the one hand, a direct connection between QCD and its symmetries, in 

particular chiral symmetry, and the strong (and electroweak) interactions in nuclei,
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and, on the other hand, a practical calculational scheme amenable, in principle, to 

systematic improvement. In this sense, it can be justifiably argued to have put 

low-energy few-nucleon physics on a more fundamental basis.

W ithin the nuclear yE FT  approach, a variety of studies have been carried out 

in the strong-interaction sector dealing with the derivation of not only two-nucleon 

potentials (2N or N N )  [2-15] but also three-nucleon potentials (3N or N N N )  [16-19] 

and accompanying isospin symmetry-breaking corrections [20-26]. Current chiral 2N 

(3N) potentials commonly used in calculations include up to next-to-next-to-next-to 

leading order, N3LO or Q4 for 2N (next-to-next-to leading order, N2LO or Q3 for 

3N) corrections in the chiral expansions.

In parallel to these developments in the strong interaction sector, much effort has 

been devoted to electroweak interactions. Among the great advantages of the yE FT  

framework is the possibility of deriving nuclear electroweak currents consistently with 

the nuclear interactions. In the present thesis, the focus is on nuclear electromagnetic 

(EM) charge and current operators. These were originally derived up to one loop 

level in the heavy baryon formulation of covariant perturbation theory by Park et 
al. [27], where the baryons are treated as heavy static sources, and the perturbative 

expansion is performed in terms of the involved momenta over the baryon mass. 

More recently, yE FT  EM charge and current operators up to one loop have been 

derived within two different implementations of time ordered perturbation theory 

(TOPT): one is by the Jlab-Pisa group (see [28-31]) and the other one is by the 

Bochum-Bonn group (see [32, 33]). In this study we adopt the formalism developed in 

Refs. [28-31] in which the N N  potential and the electromagnetic charge and current 

operators are derived by considering suitable transition amplitudes for the processes 

N N  — > N N  and N N y  — > N N  based on TO PT  [34, 35]. These amplitudes are 

conveniently represented by time-ordered diagrams scaling as a power of Q / A x. The 

power of Q / A x associated with each diagram in the perturbative expansion follow the 

rule of the so-called power counting. The Hamiltonians employed in the calculation 

are derived from the chiral Lagrangians formulated in Refs. [4, 36-39], describing 

the interaction between pions, nucleons and A-isobars. Only terms entering the 

two-nucleon potential and electromagnetic charge and current operators up to one 

loop are considered here. In particular, integrals entering the loop contributions are 

ultraviolet divergent and are regularized via dimensional regularization [40, 41]. The 

divergent part of these loop integrals are absorbed in the redefinition of the relevant
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LEC’s, which are then fixed by fits to experimental data. However, the resulting 

renormalized operators have power-law behavior for large momenta, and must be 

further regularized before they can be used for solving the Schrodinger equation 

and for the calculation of the current matrix elements. This is accomplished by the 

inclusion of a cutoff function.

Following the formalism described above, two calculations are presented in this 

thesis. The first one deals with the construction of a coordinate-space N N  potential 

derived up to next-to-next-to-next-to leading order (N3LO or Q4) in the chiral 

expansion, including pions, nucleons and A-isobars degrees of freedom. At this 

order, it consists of the venerable one-pion exchange (OPE) potential a t leading 

order (LO or Q°), the two pion-exchange (TPE) potential a t next-to leading (NLO 

or Q2) and next-to-next-to-leading order (N2LO or Q3), derived from leading and 

sub-leading pion-nucleon (nN)  and pion-nucleon-delta (n N  A)  couplings, and also 

contact interactions entering a t LO, NLO, and N3LO. While the O PE and T PE  

potentials represent the long-range part of the N N  interaction, the contact terms, 

instead, encode the short-range physics, and their strength are specified by unknown 
LEC’s. The inclusion of A-isobars in the T PE  component of the N N  interaction is 

dictated from phenomenological considerations which explain the im portant role of A 

isobars in nuclear structure and reactions. An illustration of this are the im portant 

role tha t the A plays in n N  scattering and the relevance of electroweak A-to-A 

transition currents in radiative and weak capture processes involving few-nucleon 

systems [42], specifically the radiative captures of therm al neutrons on deuteron and 

3He [43, 44] or the weak capture of protons on 3He (the so-called hep process) [45].

The necessity to derive a coordinate-space chiral potential, whose natural 

formulation is in momentum-space, is related to the fact tha t many computational 

techniques utilized to calculate properties of nuclei and nuclear m atter such as 

Quantum  Monte Carlo (QMC) methods [46] require a local coordinate-space 

representation of the nuclear interactions. However, available momentum-space chiral 

potentials have the feature of being strongly non-local meaning that, upon Fourier 

transformation, they lead to non-local interactions (or p-dependent interactions, 

where p  — > —zV is the relative momentum operator) in coordinate-space. The 

sources of non-localities in xEFT are mostly due to contact interactions th a t depend 

not only on the momentum transfer k  =  p ' — p  but also on K  =  (p ' +  p ) /2  (p 

and p ' are the initial and final relative momenta of the two nucleons), and also to
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specific choices of cutoff functions. It is for this reason th a t we construct a chiral 

potential as local as possible by minimizing the number of non-localities due to 

contact interactions and removing those due to the choice of regulator functions. In 

order to make the short-range part as local as possible, we use Fierz identities [47] 

to remove terms which in coordinate-space would lead to powers higher than  two in 

the relative momentum operator p. However, while this chiral potential is local at 

N2LO, terms proportional to p2 still persist at N3LO. To avoid non-localities due 

to regulators, we choose cutoff functions tha t depend only on the relative distance 

between the two nucleons.

The second calculation, presented in this thesis, deals with the study of the 

electromagnetic structure of A  =  2 and A  =  3 nuclei based on yE FT  approach. 

Electromagnetic form factors as well as static properties (such as the deuteron 

quadrupole moment and charge and magnetic radii for A  =  2 and 3 ) of these 

few-nucleon systems are interesting observables, since they are known to be sensitive 

to both the nuclear potentials used to generate the wave functions and the nuclear 

electromagnetic charge and current operators. The goal of this study is to investigate 
the validity of the yEFT approach to describe the strong interaction dynamics in 

these few-nucleon systems, and their response to electromagnetic probes.

The calculation of the electromagnetic observables is carried out in 

momentum-space by utilizing nuclear wave functions derived from both chiral and 

phenomenological two- and three-body potentials, in combination with the charge 

and current operators obtained up to one loop within the yE FT  formalism. In 

particular, the A — 2 calculations use either the Argonne u18 (AV18) [48] or the 

chiral N3LO potentials [5, 6]. Of course, the A  =  3 calculations also include 

three nucleon potentials—the Urbana IX model [49] in combination with the AV18 

and the chiral local N2LO potential [16] in combination with the chiral N3LO 

two-nucleon potentials. One could ask why the calculation of these observables has 

not been performed with nuclear wave functions obtained from the N N  potential 

developed in this thesis. This would require a program of its momentum-space 

representation, which has yet to be implemented, and also the inclusion of A-isobars 

in the three-body potential and in the electromagnetic charge and current operators, 

respectively discussed in Refs. [50] and [28], but not yet revised and implemented.

The thesis is organized into five chapters and six appendices. In Chapter 2, we 

discuss the formalism used to derive the chiral N N  potential and the electromagnetic
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charge and current operators, and define the power counting rule adopted here. 

In Chapter 3, we present the momentum- and coordinate-space representation of 

the renormalized N N  potential up to order Q4 (N3LO) in the chiral expansion, 

including A-isobar degree of freedom in its T PE  component. In th a t chapter 

particular attention is given to the solution of the Schrodinger equation and also 

to fits of the nuclear potential to the pp, np phase shifts, deuteron binding energy, 

as well as to the N N  scattering data. In Chapter 4 the discussion of the chiral 

charge and current operators up to the order e Q is carried out. We present the 

calculation of the electromagnetic form factors of A = 2 and 3 nuclei as well 

as their static properties. Finally, in Chapter 5 we summarize our conclusions. 

A number of details are relegated to the Appendices, including: notation and 

conventions adopted in this work as well as a list of the strong and electromagnetic 

interaction Hamiltonians required in our calculations (Appendix A); dimensional 

regularization of loop integrals at order Q2 (NLO) involving A-isobar intermediate 

states (Appendix B); a list of the relevant expressions for the coordinate-space 

representation of T PE  and contact interaction entering the present N N  potential 
(Appendix C); the calculation of the pp phase shifts and effective range expansion 

with inclusion of the full electromagnetic potential (Appendix D); the pp and np 

phase shifts and the various components of the long-range and short-range potentials 

corresponding to three different cutoff functions (Appendix E); and finally details on 

the evaluations of the loop contributions to the charge operators (Appendix F).
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CHAPTER 2

FORMALISM

This introductory Chapter is devoted to describing the formalism and the scheme 

adopted to  construct the nuclear two-body ( NN)  potential up to  Q4 in the power 

counting, discussed in detail in Chapter 3, and the electromagnetic (EM) charge and 

current operators up to e Q needed for the calculation of the EM form factors of 

A = 2 and 3 nuclei, presented in Chapter 4.

The N N  potential and the EM charge and current operators are derived by 

considering suitable transition amplitude, T  and T7, for the processes N N  — > N N  
and N N y  — > N N  based on time-ordered perturbation theory (TO PT) [34, 35]. In 

Sec. 2.1, we start off our discussion by introducing the conventional perturbative 

expansion for the N N  scattering amplitude, and we specify the power counting 
adopted in this work. In Sec. 2.2 we introduce the prescription used to derive the 

nuclear two-body potential v from the quantum  field theory transition amplitude T. 

Finally, in Sec. 2.3, we generalize the scheme to the inclusion of the EM interaction 

in the perturbative series, defining in this way the transition amplitude T1 and the 

corresponding EM potential vy.

2.1 N N  SCATTERING AM PLITUDE IN TIM E ORDERED  
PERTURBATIO N THEORY

In the present work the nuclear two-body potential is obtained by considering 

pions, nucleons and also A-isobar degrees of freedom. In particular, pions are treated 

relativistically while nucleons and A ’s are considered in the non-relativistic limit. 

The conventional perturbative expansion of the N N  scattering amplitude T  reads

as
°° 1 -1 

r / , M / r e  _  " , ) ! ■ > ■  a )
n= l

where |i) and | / )  are the initial and final two-nucleon states of energies Ei = Ef,  

respectively, and rj is a positive infinitesimal quantity, inserted to give meaning to 

the reciprocal of Ei — / / ().
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In Eq. (1) the Hamiltonian Ho describes free pions, nucleons, and A-isobars, 

while Hi represents the interactions. The interaction Hamiltonians are derived, in 

the canonical formalism, from the effective chiral Lagrangian £ eff of type

where Cn7r [3, 36, 38] deals with the dynamics of pions, and C^n  [3, 36, 38] and 

C-nN& [3, 37, 38] describe the interactions between pions and nucleons and between 

pions, nucleons and A-isobars, respectively. The two-nucleon contact Lagrangian 

Cn n  [3, 4, 39] involves only nucleons. This type of Lagrangian features contact

specified by the unknown LEC’s of the theory which are determined by a fit to the 

N N  data. This point will be more extensively discussed in Chapter 3. In principle, 

the Lagrangians in Eq. (2) contain an infinite number of interactions compatible 

with the QCD symmetries. However, they can be organized in powers of Q /N x, 

where Q -C Ax is not only the momentum of the pion, but also the generic value of 

the momentum of other particles, and Ax ~  1 GeV is the chiral symmetry breaking 

scale. As a result, the transition amplitude defined in Eq. (1) can be arranged in 

powers of (Q /A x )m, where m  is determined by power counting. The evaluation of 

the scattering amplitude in Eq. (1) is performed by introducing complete sets of Hq 

eigenstates |/„) between successive terms of Hi,  such tha t

where E\, E 2 ,-...,En are the energies of the intermediate states |/ j) ,  | / 2),...,|/n), 

respectively. Terms in this expansion are conveniently represented by time-ordered 

diagrams. In particular, we can distinguish between reducible and irreducible 

diagrams. The reducible ones have a t least in one of their intermediate states only 

nucleons (see panel (a) of Fig. 1), while the irreducible ones have a t least one pion or 

A-isobar in each intermediate state (see panels (b), (c), (d), (e), and (f) of Fig. 1). A 

generic (reducible and irreducible) contribution is characterized by a  certain number, 

say n, of vertices represented by (Ij\H\\Ik),  each one scaling as Qa<~&/2 (i = 1, n), 

where a l is the Q-power implied by the relevant interaction Hamiltonian and Pi is 

the number of pions in and/or out of this vertex (this is related to  the normalization

£ e fF  E - n r r  T  £ 7 ^  T  £ 7 rjV A  T  £ iV iV  5 (2)

terms tha t encode the short-range dynamics of the nuclear force. Their strengths are

(Ii\Hi\i)  +  ...., (3)
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x)
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\ h )  
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' y

H-itNA

(d) (e) (/)

FIG. 1: Examples of time-ordered contributions to the N N  transition amplitude 

involving pions, nucleons and A-isobars: panel (a) represents a reducible diagram 

while panels (b)-(f) represent irreducible diagrams. Pions are denoted by dashed 
lines, nucleons by solid lines, and A-isobars by thick solid lines.

factor in the definition of pion fields as discussed in Appendix A), the corresponding 

n — 1 energy denominators (Ei — with k = 1, . . . ,  (n — 1), and possibly

L loops. Out of those n — 1 energy denominators, tik will involve only nucleonic 

kinetic energies (these enter only the reducible diagrams), which scale as Q 2. and 

the remaining n — — 1 will involve, in addition, pion energies t a n d / o r  the N  — A

mass splitting, considered as being of order Q. From now on, we define the N  -  A 

mass splitting as A =  m& — m ^  = 293 MeV where m,v and tua  are the nucleon and 

A-isobar masses, respectively. Loops, on the other hand, contribute a factor Q3 each, 

since they imply integrations over the intermediate three momenta. Hence, the power 

counting which determines the chiral index m  associated with each contribution in 

the perturbative series is given by

n

m  =  n Qai~0i/2 X x Q3L . (4)
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Clearly, each of the n — ri{( — 1 denominators can be further expanded as

Ei -  Ej + irj Ei -  E Ij -  Q + irj
1 1

where, depending on the topology of the diagram under consideration, Ej  denotes 

the kinetic energy of the intermediate two-nucleon, or one-nucleon and one-A, or 

two-A states with corresponding 0  =  (if one or more than one pion are involved), 

=  Un + A (if one or more than one pion and a A-isobar are involved) or 0  =  A 

(if only a A-isobar is involved), Q, =  +  2 A (if one or more than one pion and

two A-isobars are involved) or fi =  2 A (if only two A-isobars are involved). The 

ratio (Ei — E i ^ / f l  is of order of Q. The first order of the Eq. (5) is called the 

static limit, which means th a t the nucleon and A-isobar masses -->• oo,

while the subsequent terms represent corrections to the static limit, named non-static 

corrections. In particular, the first non-static correction is suppressed by a factor Q 

with respect to the static limit. As an example of power counting, consider panel (a) 

of Fig. 1. Each of the n  =  4 vertices, implied from the interaction Hamiltonian 

listed in Appendix A, scales as Q, i.e. a , =  1, and there is only one pion in and /or out 

of each vertex, i.e. /?* =  1. The intermediate state |/2) has only nucleons (nK =  1) 

while the remaining (n — tik — 1 =  2) intermediate states, |/i)  and I/3), include also 

one pion. Obviously L — 1 since there is only one loop. Using Eq. (4) we find tha t 

diagram (a), in the static limit, scales as Q. All the other diagrams in Fig. 1 scale 

as Q2 since =  0. Note tha t the vertices, as implied from the Hamiltonian

given in Appendix A, also scale as Q.

Finally, the Q-scaling of the interaction vertices and the considerations above 

show tha t the N N  transition amplitude T  admits the following expansion

At this point it is worthwhile making a few considerations. Reducible diagrams 

are enhanced compared to the irreducible ones by a factor Q for each purely 

nucleonic intermediate states. In addition, in the static limit, these contributions 

are infrared-divergent (since reducible diagrams involve nucleonic kinetic energy 

denominators which lead to infinities for m ^  —> 00). According to the prescription 

proposed by Weinberg [1] the nuclear potentials (and current operators) are given by 

the irreducible contributions only. Reducible contributions, instead, are generated

(6)

where T ~  Qm.
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by solving the Lippmann-Schwinger (or Schrddinger) equation iteratively with the 

nuclear potential (and currents) arising from the irreducible amplitudes. However, 

the omission of reducible contributions from the definition of nuclear operators needs 

to be dealt with carefulness when the irreducible amplitudes are evaluated under 

an approximation. For example, if the irreducible amplitude is evaluated under 

the static limit approximation then the iterative process will generate only part of 

the reducible amplitude (i.e. the one which includes the approximate static nuclear 

operators). The reducible part of the amplitude which is not generated by iteration 

(i.e. the one tha t is obtained going beyond the static limit) needs to be incorporated 

order by order—along with the irreducible amplitude— in the definition of the nuclear 

operators.

2.2 FROM THE AM PLITUDE TO THE POTENTIAL

The perturbative series discussed in Eq. (3) is not very useful to describe nuclei 

and nuclear properties. For example, it cannot treat bound states. Thus, in nuclear 

physics a potential v is introduced, and the bound state and continuum two-nucleon 

states are derived from solutions of the Lippmann-Schwinger (LS) equation (or 

Schrodinger equation). We then face the problem of how to obtain the potential 

v entering the LS equation from the field theory amplitude (T-matrix). We solve 

this problem by requiring tha t this v, when iterated in the LS equation,

v -f- vGqv 4- vGqvGqv -!-••• , (7)

leads to the on-the-energy-shell (Ei = Ej )  T-m atrix in Eq. (6) order by order in the 

power counting. Here Go =  l / (E i  + E/+ir}) denotes the free two-nucleon propagator. 

We assume th a t the potential v has an expansion like

v = +  ...., (8)

where v ^  is of order Qrn. By matching the iterated v in Eq. (7) with the field theory
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amplitude T  order by order in the power counting, we find tha t

u(°) =  

t,*1) =

t / 2> =

«(3) =

T (0), (9)

T (1) -  [v(0)G0u(0)] , (10)

T(2)_  v(0)G > (0)G0w(0)] -  [v ^ G o t/0* +  u(0)Gou(1)] , (11)

T (3) — v ^ G o v ^ G o v ^ G o v ^  — v ^ G o v ^ G o v ^  +  permutations

v ^ G o ^ 1*] -  \ v ^ G ov {0) + t/°>G0t;<2>] , (12)

( 13)

where terms like v^ G qv^  are of order <2(+Tl+1, since Go is of order Q 2 and the 

implicit loop integration brings in a factor Q3. The relations above allow us to 

construct v (-m'> from the field theory amplitude T (m^.

The leading-order (LO or Q°) term  consists of the (static) one-pion-exchange 

(OPE) potential and two (non-derivative) contact terms arising from the interaction 

Hamiltonians given in Appendix A in Eq. (276). The term i / 1) vanishes [30], since 

the leading non-static corrections (of order Q) in to the (static) O PE amplitude 

add up to zero on-the-energy-shell, while the remaining diagrams in represent 

iterations of whose contributions are exactly canceled by [i>^ Go u®] terms. The 

next-to-leading order (NLO or Q2) and non-vanishing term  follows from Eq. (11), 

and contains two-pion-exchange (TPE) and contact terms. These latter contributions 

involve two gradients of the nucleon fields and arise from the interaction Hamiltonians 

listed in Appendix A in Eq. (277). The next-to-next-to leading order (N2LO or Q3) 

will include sub-leading contributions to the T PE  potential obtained from higher 

order interaction Hamiltonians (see Chapter 3).

2.3 NN'y  SCATTERING AM PLITUDE

Because of the smallness of the coupling y/a, where a  is the fine structure 

constant, electromagnetic interactions are treated in first order in the perturbative 

expansion of Eq. (1). The electromagnetic transition amplitude includes disconnected 

and connected contributions schematically represented by panels (a) and (b) of 

Fig. 2, respectively. Disconnected contributions involve a (5-function in the initial 

and final three-momenta of one of the two particles, for example the contribution 

of panel (a) is oc (5(pj — P2) and will be enhanced by a factor Q3 relative to 

the connected diagram in panel (b). The power counting is not affected by the



12

p'l P2 Pi

/ Sq
^  Pi P2 Pi

(a) (b)

FIG. 2: Schematic representation of the contributions to the NN'y  transition 

amplitude: panels (a) and (b) represent the disconnected and connected diagrams, 

respectively. Solid and wavy lines denote nucleons and photons, respectively.

introduction of the electromagnetic field and follows Eq. (4). The photon’s energy 

denoted as uiq is considered to be of order Q2. This scaling follows from the 

conservation of energy between final and initial states where E f  — Ei — A E + u q — 0, 

A E  is the difference between the final and initial nucleonic kinetic energies. The 

electromagnetic interaction Hamiltonians are derived from the nn,  N n  and N N  

chiral Lagrangians in Eq. (2) by gauging the derivative of nucleon and pion fields, 

such tha t

dnN {r) [dtL + i e e N A^{t) \N{t) , 0„7r±(r) -> [0„ ±  *eA M(r)]7r±(r) , (14)

where e(>  0) is the electric charge, N (r) and 7r±(r) are the nucleon and charged 

pion fields, respectively, defined in Appendix A, A'1 = (A0, A) is the external 

electromagnetic field and eN —  (1 + t z) /2  is the isospin project operator. We refer 

to these Hamiltonians obtained by gauging the derivative couplings as “minimal” 

Hamiltonians. The LEC’s involved here are the same as those entering the strong 

interaction.

However, gauging the derivatives is not sufficient to generate all the 

electromagnetic interactions compatible with the symmetries of the underlying 

theory. In addition, one has to account interactions involving the gauge invariant 

electromagnetic field tensor Ffiv — dflA u — dvA^. The interactions obtained in this 

way are called “non-minimal” and involve additional LEC’s which are not constrained 

from the strong-interaction sector. In Appendix A we list the electromagnetic 

interactions involved in the calculation of the charge and current operators up to 

one loop presented in Chapter 4.
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The vertices associated with the electromagnetic interactions scale as e Q“‘ and 

inspection of Q scaling of the various interaction terms shows tha t field theory 

electromagnetic amplitude has the expansion [30]

(15)

where is of order e Qm. In the context of the LS equation, we assume tha t 

the potential v7 has the same expansion as in Eq. (15), and then determine the 

potential by matching the field theory amplitude order by order in the 

power counting obtaining the following relations

; ( - 3 )  _  j H - 3 )

T ( - V - [ v\ - V G 0 vM + vM G 0 v(-V} ,

^7 ^ — [w7_3) Gov^  Go +  permutations] 

~ [ v ^ G 0v ^  + v ^ G o v ^ }  , 

v {~3) Go v®  Go Go +  permutations 

r<T2> Go Go v(0> +  permutations]

[«(-0 GoW(°) +  «(0)Go< i ) ]

(16)

(17)

(18)
r p (  0 ) 

7

[ v ^ G o v ^  + v ^ G o v . ( -3 )1

, ( 1)
7

<y U v I v U J )

G0 v(°) G0 G0 G0 +  permutations

(19)

Go v (0) Go v (0) Go t '(0) +  permutations

)\ 0 Go Go u(0) +  permutations

— [t^0) G01>(0) +  i / 0) G0 u ^ ]

— [w7 G0 Go +  permutations] 

- [ v ^ G o v ^  + v ^ G o v ^ ]  

- [ u ( - 3)G 0i;(3> W 3)G0t;(-3>] , (20)

where v ^ A°p(m) -  A  • (p and j  are the charge and current operators,

respectively) and v ^  are the N N  potentials constructed in Eq. (9)-(12). In 

Eqs. (16)-(20) the use of the fact th a t t / 1) vanishes has been made. Finally, in the 

propagator Go the intermediate energy Ei  may include, in addition to the kinetic 

energies of the intermediate nucleons, also the photon energy, depending on the 

specific time ordering being considered.
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CHAPTER 3 

MINIMALLY NON-LOCAL NUCLEON-NUCLEON 

POTENTIAL WITH CHIRAL TWO-PION EXCHANGE 

INCLUDING A-ISOBAR

The objectives of the present chapter are twofold. The first is to construct a 

minimally non-local chiral N N  potential up to N3LO (or Q4) in the power counting 

including A-isobars in its T PE  component. The second objective is to determine 

the LEC’s entering the strong Hamiltonians, in particular the contact interactions. 

These LEC’s are determined by fits to the N N  scattering data  and deuteron binding 

energy.
In our formalism, where nucleons are treated in a non-relativistic approach, the 

Hamiltonian describing the two-nucleon system in the center-of-mass (COM) is given

b y  2

H = ~ ^ +Vf fN ’ (21) 

where the first term  represents the non-relativistic kinetic energy of the two nucleons,

H is the reduced mass and v^ n  is the two-body potential. Natural units h — c = 1

are used throughout the present work. The N N  potential is written as a sum of

a  strong interaction component derived with the formalism described in Chapter 2

and denoted as U12, and an electromagnetic interaction component vf2M, including

up to terms quadratic in the fine structure constant a  (first and second order

Coulomb, Darwin-Foldy, vacuum polarization, and magnetic moment interactions).

The uf2M component is the same as tha t adopted in the AV18 potential [48] and

will not be discussed further in the present work. The component induced by the

strong interaction is conveniently separated into long- and short-range parts, labeled,

respectively, v\2 and vf2- The v\2 part includes the one pion-exchange (OPE) and two

pion-exchange (TPE) contributions up to  N2LO (or Q3), illustrated in Fig. 3: panel

(b) represents the static OPE contribution a t leading order (LO or Q°); panels (d)-(i)

represent the T PE  contributions a t NLO (or Q2) without and with A-isobars in the
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FIG. 3: Diagrams illustrating contributions to the N N  potential entering LO (Q°), 

panels (a) and (b), NLO (Q2), panels (c)-(i), N2LO (Q3), panels (j)-(o), and N3LO 

(Q4), panel (p). Nucleons, A isobars, and pions are denoted by the solid, thick-solid, 

and dashed lines, respectively. The filled circle in panel (c) represent the vertex from 

the contact Hamiltonian containing two gradients of the nucleons’ fields. The open 

circles in panels (j)-(o) denote the m r N N  and n N A couplings from the sub-leading

Hamiltonians H ^ NN and / / ^ A, respectively. The open square in panel (p) represent 

the vertex from the contact Hamiltonian involving four gradients of the nucleons’ 

fields.

T (  2 )
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intermediate states; lastly, panels (j)-(o) represent sub-leading T PE  contributions at 

N2LO. The open circles denote the rnrNN  and n N A  couplings from the sub-leading 

interaction Hamiltonians H ^ NN and / / ^ A, respectively, given in Appendix A. Note 

th a t in Fig. 3 only one among all possible time-ordered diagrams is displayed. The 

short-range part, Uj2, consists of nucleon contact interactions up to N3LO. At LO the 

contact interactions (panel (a) of Fig. 3) have no derivatives of the nucleons’ field, 

while the contact terms a t NLO (panel (c) of Fig. 3) and N3LO (panel (p) of Fig. 3), 

denoted with a  solid dot and open square, involve two and four gradients acting on 

the nucleons’ fields, respectively.

The momentum-space representation of the OPE and T PE  components as well 

as the contact interactions is discussed in Sec. 3.1. The evaluation of transition 

amplitudes associated with those contributions are obtained using the approach 

outlined in Chapter 2. In Sec. 3.2 we construct the coordinate-space potential 

V\2  starting from its momentum-space representation, while in Sec. 3.3 the fitting 

procedure is laid out. Special attention is given to the discussion of the Schrodinger 

equation for single and coupled-channels in order to  obtain phase shifts. In Sec. 3.4 
we report the x 2 values obtained in the fits as well as the values for the low-energy 

constants tha t characterize the potential, and show the calculated phase shifts for 

the lower partial waves (S', P , and D  waves) and compare them to  those from recent 

partial-wave-analyses (PWA’s). There, we also provide tables of the pp, np  and nn  

effective range parameters and deuteron properties, including a figure of the deuteron 

S  and D  waves. A number of details are relegated to Appendices B-E.

3.1 M O M E N T U M -S P A C E  R E P R E S E N T A T IO N  O F  T H E  N N  

P O T E N T IA L

In following section, the momentum-space potential is derived in the COM frame 

where the initial and final relative momenta of the two nucleons are p  and p', 

respectively. We also define k =  p ' -  p  and K  =  (p ' +  p )/2 .

3.1.1 O N E -P IO N -E X C H A N G E

The well-known static one-pion-exchange (OPE) potential illustrated in panel (b)
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of Fig. 3 can be written in the form

?/r,LO(k) =  < ;LO(fc) <ti ■ <r2 +  vl;h0 {k) Si2(k)] n  • r2

+  [< r° (* 0  • ^2 +  v ^ ° { k )  S12(k)] T12 , (22)

where we include the isospin-symmetry breaking induced by the mass difference

between charged and neutral pions. The operator Si2(k) is defined as

Si2(k) =  3 cti • k er2 • k -  £2 a x • <r2 , (23)

and

r 12 =  3 tu t2z -  Ti • r 2 , (24)

is the isotensor operator. The at (r,) are the usual spin (isospin) Pauli matrices. The 

O PE functions, v*^°(k) ,  v[rLO(k), v ^ ° ( k ) ,  and v ^ LO(k) are defined as

= M , (25)

v^ ° m  = n ( k }  +32 7 V W . (26)

* L° W  =  , (27)

tt.lO/.n T0( k ) - T +(k)
tr \k ) ~  g i (28)

with Ya(k) and Ta(k) given by

K .W  =  2 ■ <29)3 F% k 2 + m l a

T*(k ) = ~ 4 , 2 /  2 > (30)3F2A;2 +  m 2a

where 34 and are respectively the nucleon axial coupling constant and the pion 

decay amplitude (see Table 1) and m na denotes the neutral (mno) and charged (mn i) 

pion masses. The charged and neutral pion masses as well as other masses and 

physical constants adopted in this study are given in Table 2.

3 .1 .2  L O O P  C O R R E C T IO N S  T O  T H E  N N  P O T E N T IA L

The two-pion-exchange (TPE) loop diagrams entering the NLO and N2LO N N  

potential can be separated into three categories: i) contributions without A-isobar 

intermediate state (panels (d)-(f) and (j)-(k) of Fig. 3), denoted with the symbol
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TABLE 1: Values of (fixed) low energy constants (LEC’s): gA and h ,4 =  3 9  a /

are dimensionless, Fv =  2 is in MeV, and the remaining LEC’s are in GeV "1.

9 a  hA Fn ci c 2 c3 c4 63 +  b8

1.29 2.74 184.80 -0 .5 7  -0 .2 5  -0 .7 9  1.33 1.40

TABLE 2: Values of neutral (mWo) and charged (m7r±) pion masses, neutron (A/n) 

and proton (Mp) masses, A-nucleon (A) mass difference, and electron (m e) mass (all 

in MeV), and of the (dimensionless) fine structure constant a. Note tha t he is taken 

as 197.32697 MeVfm._____________________________________________________

m TT0 m n± M n Mp A m e a  1

134.9766 139.5702 939.56524 938.27192 293.1 0.510999 137.03599

ii) contributions with one A-isobar intermediate states (panels (g)—(h) and (1)—(n) of 

Fig. 3), labeled as 1A, and iii) contributions involving two intermediate A ’s (panels 

(i) and (o) of Fig. 3), denoted as 2A.

3.1.2.1 A -LESS L O O P  C O R R E C T IO N S

We start the discussion considering diagrams tha t do not include isobars in the 

intermediate states. The TPE potential at NLO, given by the sum of diagrams 

(d)-(f) in Fig. (3), reads as [29]

9 a  f  I2 - k 2 1 f  (u+ -  to-)2v 2tt,NLO /I 9 a  f  I — k  1 f
(k ; A )  =  T ^  Tj • T2 /  --------     r  -  — T1 • r 2 -

F* JiL0+uj-(u)+ + u - )  8 F* JiLLO+OJ-(lJ+ +  00-)

g \  fool  + oolool + u o l ^  r ^ 2 _ k2)2
2 F *  J y  l o I l o * ( l o +  + C 0 - )

+6 0 1 ■ (k x 1) er2 • (k x 1)] , (31)

where 00± =  >/(l ±  k )2 +  4 m^. The first and second term  in Eq. (31) represent 

the irreducible diagrams in panels (d) and (e) of Fig. 3, respectively, denoted 

as “triangle-like” and “football-like” diagrams. The last term  in Eq. (31) is the 

contribution arising from the T PE  “box-like” diagrams in panel (f) of Fig. 3.

The sub-leading (N2LO) T PE  potential, given by panels (j)-(k) of Fig. 3, reads
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as [9]

„,2ir,N2LO/i... / i \  [ l 2 — k 2 ro 2 , „ /j2 ;„2\l
V (k ;£ )  =  /  . .2, .2 [8 c im 7r +  c3 (< - & ) ]

* 7T 4/1 —

Tl ‘ T2 / ^ 2 7 7 ' ^  • (k  x !) ^2 • (k X 1)] , (32)
7T A ~

where here the whole contribution is due to diagram (j) in Fig. 3. Note th a t the 

“football-like” diagrams in panel (k) of Fig. 3 vanishes because the loop integrals 

involve odd powers of the loop momentum. The parameters c* are the LEC’s entering 

the second order httN N  Hamiltonian H ^ NN specified in Appendix A. Their values, 

as determined by fits to n N  scattering data  [11], are given in Table 1. Before

investigating all the other contributions to the N N  potential, a couple of comments

are in order. The first is tha t loop diagrams contain ultraviolet divergencies (/ —> oo) 

which need to be removed by using a proper renormalization scheme. Consider as an 

example the first term  in Eq. (31): it has a quadratic divergence for I —> oo. In order 

to isolate these divergencies, loop integrals have been regularized with dimensional 

regularization (DR) [40, 41] as outlined in Appendix B. In DR a generic T PE  

contribution, ?/27r(k), can be decomposed as

u2,r(k) =  u2,r(k) -I- u2,r(k)pol , (33)

where v2,r( k ) represents the renormalized (finite) part and u2rr(k)poi polynomial terms 

in powers of k  which include the removed divergencies. In the present chapter we 

only give the relevant expressions for the renormalized loop integrals. However, in 

Appendix B we sketch the renormalization procedure using as examples diagrams 

(g)-(i) which are presented in the next section.

The renormalized (finite) part of T PE  a t NLO, given in Eq. (31), reads:

^,NLO(k; f t  =  ^,NLO(fc; f t  a i  . ^  +  ^ ,N U )(t; f t  5u (k )

_I_v27t,nl o (£; f t T l . T2 , (34)

where the funtions, t>27r,NLO(A;; £ ) ,  v ^ ' NLG(k; &). and v2n'NLO(k] &), are defined as
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follow
„4

V

2 7 T ,N L O /,. d \  _  ^ 9 aV

^ ’ •NL0 (*;A ) =  7 ^ h = I G (fc)
7T

rt4

8tt2 F i 

1
4 8 ^ X 4 

48 g \ m \

4m* (1 +  4g \  -  5g\)  +  &2(1 +  W g \  -  2 3 ^ )

(37)
4 m l  +  k2

and the logarithmic loop function G(k) is given by

G(k)  =  2 V/fe2 +  4 m ^ in V/fe2 +  4 m ^ +  fc 
 ̂ '  k  2 m ,

(38)

The finite part of the T PE  at N2LO, represented by Eq. (32), reads:

C2W,N2LO(k; f a  =  V? ' N2L0(h, &) +  [v2̂ ’N2L°(fc; &) <Xi ■ Ol

+ V % 'm h ° { k -  A )  S12(k)] t~i ■ t~2 i (39)

where

v27r,N2LO(k; f a  = [2m l  (2d  -  c3) -  c3k 2] (2m2 +  k2) i4 (A:) , (40)

^ - N2LO(A:; * )  =  (4m2 +  k>) A (k ) , (41)

^ ; ’N2LO(*; £ )  =  - g | ^ I c4 (4™2 +  *2) ^(*0 » (42)

and the loop function A(k)  is defined as

1 k
A(k)  =  —  arc tan -—  . (43)

r̂C

3 .1 .2 .2  A -FU L L  L O O P  C O R R E C T IO N S

In what follows, we focus our attention on contributions involving A-isobar 

intermediate states. The T PE  loop diagrams involving one and two A ’s intermediate 

states (panels (g) (i) of Fig. 3), entering the NLO N N  potential, can be written as

v 2jt,NLO (k; A) = 4 ’ 'NL0(k; 1A) +  » £ f LO(k; 1A) +  <& NLO(k; 2A) . (44)
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where t»^r,NLO(/!;; 1A) refers to contributions associate with “triangle-like” diagrams 

(panel (g) in Fig. 3) while t>^NLO(k; 1A) and r>j^NL0 (k; 2A) represent the “box-like” 

contributions with 1A and 2A ’s in the intermediate states (panels (h)-(i) in Fig. 3), 

respectively. The evaluation of the corresponding amplitudes lead to the following 

expressions

f  k2 - l 2
v.2jt,NLO

t r ( M  A) = 2^  
9 F*

n ■ t2

V ,
2jt,NLO 
box (k; 1A) 9AhA

9 A Ft

x (<x2 x k) * 1

4~ 2 A)(u/_ 4~ 2 A )(cj_̂. 4"

3 (A;2 -  I2) 2 + 2 t i  ■ r 2 (<xi x k) • 1

2 A 4- W-j- 4~
LO— (w_j_ 4~ 2 A ) (cj_ 4” 2 A ) 4" W—)

(45)

2\26 (ffi x k) • 1 (er2 x k) • 1 +  Ti ■ t 2 (k2 -  I2) (46)

2ir,NLO 
box (k; 2A) hA [

81 F* Ji81 F i
uj2̂ -j- uî _ -)- uj+oj— 4 A (oj-j. -f- uj- A) 

u + uj- (oj+ -I- 2 A )2 (w_ +  2 A )2 (u+ +  w_)

X (6 +  Ti • r2) (k 2 -  I2) 2 +  (<Ti x k) • 1 (<x2 x k) • 1

2 A 4- u)-\- 4”
2 A to.j_ cj_ “I- 2 A) 4  2 A) 4~ dj—)

x (6 Tj r2) (ik 2 -  I2) 2 -  (<Tj x k) • 1 (er2 x k) • 1 ,(47)

where A is the A-nucleon mass difference and Ha is the N - to-A axial coupling 

constant taken as h a = 3(ja/ \ / 2  (this value for Ha is take from strong-coupling 

model [51], and is in good agreement with the value inferred from the empirical 

A-width [52]). The value for A is given in Table 2 while the value for Ha is 

give in Table 1. The DR procedure of these loop diagrams and the relevant 

integration formulas are discussed in Appendix B. In particular, the finite parts of 

Eqs. (45) (46) (47) are summarized in Eqs. (343)-(400)-(423), respectively. Their 

expressions involve parametric integrals th a t one can evaluate numerically.

The inclusion of A-isobar degree of freedom in the T PE  amplitude has also 

been derived by Kaiser et al. [7, 8, 11]. These authors use covariant perturbation 

theory (Feynman diagrams) combined with dimensional regularization to evaluate 

diagrams (g)-(i) as well as those in panels (1) (o) of Fig. 3. The authors derive 

compact expressions for the corresponding non-polynomial pieces. The expressions, 

particularly for diagrams (g)- (i) in Fig. 3, obtained in the two formalisms have been
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compared numerically observing an agreement between the results. We list these 

expressions in what follows. At NLO the T PE  potential corresponding to diagrams 

(g)-(h) in Fig. 3 reads

v,27r,NLO(k; 1A) v.,271-,NLO(fc; 1A) +  v ? ' NLO(k; 1A) <tx • cr2 

+ v ? 'Nlo(h, 1A) S12(k) +  [v f 'NLO(fc; 1A)

+ r £ ’NLO(fc; 1A) • &2 T  v ^ ' Nh0(k] 1A) S 12(k)] r x ■ r 2 ,(48)

where the functions depending on the momentum k are given by 

^ ,N L ° ( A.; 1A ) =

,.27T, NLO(fc; 1A)

2tt,NLO(k; 1A) 

^ ’NL°(ifc; 1A)

fc2 [~2L{k)  +  (a,2 -  4A2) /J(fc)] ,
l o  7r r ^

- j | ^ H ^ )  +  ( ^ - 4 A 2)D(A;)] ’

(49)

(50)

(51)

54 7r2 F 4 
,2  1,2

[(6E -  u j 2 )  L(k) + 12A 2E D(k)]

~ 54^ F ^  [(12A 2 — 20m2 — 11A;2) L(k) + 6E2D(fc)] , (52)

v:,27t,NLO(k - lA )  = ^  k2L02A(k)

2tt,NLO/ i i a \'JtT (M A )  =

54 7r F 4A 

oW a -uo2A(k) .
108ttF 4A

The quantities E, L(k), A(k),  D(k),  and H ( k ) are defined as

E =  2m 2 +  k2 — 2A2 , u j  =  \ / k 2 +  4 m2 ,

v ! k  2 m»
. . . .  1 A;

A(A:) =  — arctan

D(k)

H(k)

2k
1 fJ'2n

2m7T

^  ^ a rc ta n ^ -2 “  4m-
2AA J2m„ F2 + k2

9Y  r
L(fc) -  L { 2 \ /A 2 -  m 2)

(53)

(54)

(55)

(56)

(57)

(58)

(59)
w2 -  4A2

The T PE  “box-like” contribution corresponding to diagram (i) in Fig. 3 reads as

v2n’NLO(k- 2 A) =  u f ’NLO(fc; 2 A) +  v2J'™h°{k] 2 A)  <n • <r2

-fzj27r,NLO(A:; 2A) S 12(k) +  [u2*'NLO(fc; 2A)

_f v 2 7 r ,N L °(fc; 2A) c r x • <t2 +  v £ ,NLO(A:; 2A) 5 X2(k)] r x • r 2 ,(60)
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where

,.27r,NLO

V,2tt,N L 0

(Jfc; 2A) 

(Jk; 2A)

2 tt,N L 0
V* (*; 2A) 

2'-NLO(ifc;2A)

27 7r2 F* 
h i  , 2

324 7r2 F *

h i

4 A 2 L(k)  +  E [//(fc) +  (E +  8A2) D(ifc)] ,(61)

648tt2 F4
h i

486 7r2 F i

6L(fc) +  (12A 2 -  w2) D(fc) 

6L(k) + (12A2 -  u j 2 )  D(k)

(12E -  u j 2 )  L(k)  +  3E[tf (Jfc)

^ • NL0 (fe; 2A)

+  (8A2 -  E) £>(£)]] ,

I 9 J W 2K ) + (4A2 + “2) DW
2;r,NLO 
tr (fc;2A) = [2L(Jfc) + (4A2 +  w2) D (t)

(62)

(63)

(64)

(65)

(66)
3888 Jr2 F 2

Moving on to the loop corrections at N2LO, the contribution corresponding to 

diagrams (l)-(n) in Fig. 3 is

v2ir,N2LO (k; 1A) v2n'N2LO(k; 1A) +  vl*'mLO{k; 1A) crx • <r2 
+ v 2«,mLO^k . 1A) 5i2(k) +  ^ , N 2LO(fc; 1A)

+ v h 'mL0(k; 1A) tr1 ■ <r2 4- v2?'mLO(h, 1A) S i2(k)] r x • r 2 ,

(67)

where

27r,N 2 LO (fcilA)
2h2, A
9tr2F*

6E [4Clm 2 -  2c2A 2 -  c3 (2A2 +  E)] D{k) 

+ [-2 4 cxm 2 -f c2(w2 -  6E) +  6c3(2A2 +  S)] L(k) 

1A) = [(u4 _  W ) m  _  2L{k)] _

f * “ (‘ ; i a )  =  J h .± h M hj f A  [(^  _ 4t f )D(k) _ 2L(k)] t

(68)

(69)

(70)

^ ' MLO« ;lA ! = - 2(tC i t ) ' ' A [l2A2SZJ(fc) + (~^2 + 6S)£(*)]

6E 2£>(&) +  [uj2 -  12(A 2 +  E)] 1 , (71)

27tr2F*
2 (fe3 +  bs)gAhAA

27n2F i

v.2 jt,N2LO

V,
2w,N2LO 
tr

(k; 1A) =  

(fc; lA)  =

c^ti^A
27n2F*

k2 [ ( u j 2 -  4A2)D(k) -  2L(k)\ ,

c\k?AA
547r2F i

[ ( u j 2 -  AA2)D(k) - 2 L ( k ) }  .

(72)

(73)
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The expressions above depend also on the new combination of LEC’s (63 +  63) arising
( 2 )from the second order Hamiltonian given in Appendix A. The value of this

combination of LEC’s is also taken by fits to irN scattering data  [11], and is given 

in Table 1.

Finally, the T PE  contribution corresponding to diagram (o) in Fig. 3 reads

v2 tt,N2LO (k; 2A) =  v2ir'm h 0 {k; 2A) +  v2,r’N2LO(fc; 2A) ■ <r2

+vfn'mLO (k; 2A) Si2(k) +  [v2*'mL0( k  2A)

W ; T'mh° { k  2A) <T\ • <t2 +  Vt*'mLO(k] 2A) S12(k)] n  ■ r 2 ,

(74)

where

v:2ir,N2LO (k; 2A)

,2tt,N2LO

V2tt,N2LO  
t

V.
27T.N2LO

2tt,N 2LO  
var

2tt,N2LO  
v tr

8(63 +  b8) h \ A
3 (8A 2 -  E) E D(k)  +

( k  2A)

81tr2F«

3E H(k) + ( - u 2 + 12E) L{k)] ,

( -w 2 +  12A2)D(k)  +  6L(Jfc)]

(—a;2 +  12A2)D(k)  +  6L(/c)j ,

(M A )  =  - ^ l g r r [3(8A 2 - S ) S g ( f c )  +

( k  2A)

2(63 +  bg)h\A  2 
81tr2F*

(63 +  b8) h \ A
8I7r2F^

4(63 +  b8)h3AA
243tr2F*

3E H  (k) +  ( - u j 2 + 12S) L(k)

(k; 2A) 

(k; 2A)

(63 +  68)6^A  2 
243tt2F4 
(63 +  b8) h \ A

486tr2F i

( - a ;2 +  12A2)D(k)  +  6L(k)  

( - u 2 + 12 A 2) D(k) + QL(k)

(75)

(76)

(77)

(78)

(79)

(80)

In conclusion, the long-range part of the N N  potential is defined as the sum of 

the O PE and renormalized T PE  without and with A-isobars:

i^2(k) =  uw-LO(k) +  v2,r’NLO(k; +  v27r’N2LO(k; Us) + 7}2,r’NLO(k; 1A) 

+ ^ ’NLO(k; 2A) + -02,r'N2LO(k; 1A) +  D27r’N2LO(k; 2A) , (81)

which can be written, in a  compact way, as

+2(k) =  X X W O u C O  + v ' + ° ( k ) 0 $  + v ; + ( k ) 0 ‘T(k)  , (82)
1 = 1
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where

O ^ 1’ ' ’6(k) =  [1, <7j • <t2 , S’12(k)] ® [1, n  • r 2] , (83)

O 12 = <T\ (T2 T12 , (84)

0 £ ( k )  =  S12(k )T 12, (85)

and the functions vlL(k) are given by

vcL(k) =  v2cn’mLO{h, 4 )  +  v2c*’NL0(k; 1A) +  v2”’NLO(k; 2A) +  v2*'mLO{h, 1A)

+vl*'mh°{k- 2A) , (86)

vl(k)  = v2/ ' NL0{h, 4 )  +  v2/ ’NLO(k; 1A) +  v^>n lo (A:; 2A) +  v f ' mh°(k-  1A)

W j ' mL0 (fc; 2A) , (87)

t£(jfc) =  v2n'NL0(t ,  A)  + v2*'NLO(k; 1A) +  v27C'NLO(k\ 2A) +  u27r'N2LO(fc; 1A)

+ u27r’N2LO(fc; 2A) , (88)

vl(k )  = v2Tn'NLO(k- 4 )  +  v2*'NLO(k-, 1A) +  v2Tn’NLO(k-, 2A) +  u f  ’N2LO(ifc; 1A)

+ v f ' mh°{k- 2A) , (89)

=  varL°(^ ) +  w2t ’N2LO(^; 4 )  +  v2r ’NLO(^; 1A) +  i>2*’n lo (A;; 2 A)

+ ^ ’N2LO(A:; 1A) + ^ ’N2L0 (A:; 2A) , (90)

vlT(k) = VfrL°(k)  +  Vfr’N2LO(k; 4 )  +  v2*’NLO(k; 1A) +  v2*'NLO(k] 2A)

+i>f*’N2LO(fc; 1A) +  u2;-N2LO(ifc;2A) . (91)

It is worthwhile noting tha t terms proportional to T\2 (retained in the O PE potential 

a t LO) are ignored in the NLO and N2LO loop corrections which are evaluated 

with the average pion mass m , =  (2m ,+ +  m ,0) /3 . Additional loop contributions, 

such as those represented in Fig. 4, are not considered here, since they only lead to 

renormalization of OPE (and also contact interactions) [4, 53]. In other words, these 

contributions do not affect the renormalized potential since they are absorbed in the 

definition of the LEC’s g&, Cs and CT (the constants Cs and CT will be introduced 

in the next subsection). Furthermore additional one-loop as well as two-loop T PE  

and three-pion exchange contributions at order Q4 are not considered in the present 

work. These contributions have been neglected, since they are known to be small 

(see, for example, Ref. [6]) and are not crucial for obtaining a good x 2 fit to N N  

data.



FIG. 4: Loop corrections to OPE, panel (a), and to contact interactions, panels (b) 

and (c). Notation is as in Fig. 3

3.1.3 CONTACT INTERACTIONS

In this section we focus our attention on the short-range part of the N N  

interaction, denoted vf2(k, K ). The potential i.f2(k, K ) includes charge-independent 

(Cl) contact interactions a t LO, NLO and N3LO, and charge-dependent (CD) ones 

at LO and NLO such tha t

t/f2(k, K ) =  w ^ ( k ,  K ) +  4 ° D(k, K ) . (92)

These contributions are represented in panels (a), (c) and (p) of Fig. 3, respectively. 

We start off from the charge-independent contribution. The amplitude resulting from 

the contact interaction Hamiltonians Hero of Eq. (276) gives rise to the LO contact 

potential uCT0 which is expressed in terms of two LEC’s, Cs  and GY, as

uCT0 =  Cs +  GY oh ■ (93)

Next we consider the contribution implied by the contact Hamiltonian involving two 

gradients acting on the nucleons’ field given in Eq. (277). The corresponding potential 

uCT2(k, K) in the COM is expressed in terms of seven independent operatorial 

structures [3, 4, 39]:

vCT2(k, K ) =  C1k2 + C2 K 2 + (C3 k2 + C4 K 2)(rl -(r2 + i C 5S - { K x k )

+C6S u ( k ) + C 7S u (K) , (94)

where S =  (<Ti +  <r2) / 2 is the total spin of the two nucleons and S i2(K ) =  3cri • 

K  <x2 • K  — K 2 (Ti ■ <t2. The coefficients Ci used here are related, of course, to the 

coefficients C ' th a t occur in the Hamiltonian / / c t 2 in Eq. (277). These relations, 

which are irrelevant for the purpose of this work, can be found in [4, 39]. Finally the
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contact potential a t order N3LO, fiCT4(k, K ), which involves four gradients acting on 

the nucleons’ field is epressed in terms of 15 independent operators [6] as

DCT4(k, K ) =  Di k4 +  D2 K 4 +  Dz k2 K 2 +  D4 (K x  k )2 + D5 k4 +  £>6 K 4

+D 7 k K  +  D8 (K  x k )2 a x • <r2 + i (D9 k +  Dw K 2) S • (K  x k)

+(DU k2 + D n  K 2) S 12(k) +  (D l3 k2 + D u  K 2) 5 12(K)

+ D \5  [ai • (K  x k) <T2 • (K  x k)] . (95)

Available versions of N N  potentials derived up to N3L0 in the chiral expansion,

such those in Refs. [5, 6, 10], implement the parametrizations of contact interactions

at NLO and N3LO given in Eqs. (94) and (95), respectively. However terms

proportional to K 2 and K 4 in those expressions, upon Fourier transformation, would

lead to p2 and p4 operators in coordinate-space (p  — > — i V  is the relative momentum 

operator), making the N N  potential strongly non-local. It is for this reason tha t it 

is desirable to replace the non-local contact interactions by local ones. In particular, 

these non-local terms can be partially removed by using Fierz identities [47]. These 
identities are obtained by considering tha t a generic operator (O ) in Eqs. (94) and 

(95) needs to be evaluated between initial and final two-nucleon states th a t are 

antisymmetric

P ““ |*) =  - | i > > P exc \ f )  = — \ f )  ■ (96)

The space-spin-isospin exchange operator, P exc, is given by

pexc _  1 ~t" Ti • 7*2 1 4~ 0*1 p space pexc* _  pexc (97)

where P space is the exchange operator for the momenta (or coordinates) variables so 

th a t k  —► — 2 K  and K  —» — l /2 k .  It follows tha t the matrix element for an operator 

O  satisfies

( f \0 \ i )  = - { f \ P ™ 0 \ i )  . (98)

Consider, for example, terms proportional to K 2 and K 4 in Eqs. (94) and (95),

respectively. Applying Eq. (98) to these operators, we find tha t they can be

completely removed by using the following Fierz relation

K m - 1 +  ^ ' T2 ^  (99)

with m  =  2 or 4. Mixed terms of the type k2 K 2 or K  x k  cannot be Fierz-transformed
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away since
is2 v 1 +  Ti • T2 1 +  (Tj • 0-2 2 2

k 2 K 2 — > -  '...... ..-?■ / f 2A;2 , (100)
z z

K x k  - >  - 1 +  ^ ? - l  +  50 ---?»k x K . (101)
z z

The use of these identities leads to  the following choices of contact interactions at 

NLO

vCT2(k, K) =  C\ k2 +  C2 A;2 r x ■ r 2 +  C3 A;2 o-j ■ tr2 +  C4 k2 <xx ■ <t2 t x • r 2

+ C 5 S12(k) +  C6 5 12(k) n  • r 2 +  i C7 S • (K  x k) , (102)

and at N3LO

vCT2(k, K ) =  D x k 4 + D2 k4 n  • r 2 +  D3 k4 trx ■ a 2 +  D4 k4 crx • <r2 r x • r 2 

+D 5 k2 S i2(k) +  D6 k 2 5 i2(k) T\ • r 2 +  iD 7 k 2 S ■ (K  x k)

+* D8 k2 S • (K  x k) n  • r 2 +  £>9 [S • (K  x k )]2 +  £>10 (K  x k )2

+£>u  (K  x k )2 <n • <r2 +  D u  k2K 2 +  Dia k2K 2crx • tr2

+ D U K 2 S 12(k) +  D 15 K 2 S 12(k) n  • r 2 , (103)

The coefficients Ci=x<i„j and £>j=ir.Mi5 are related to Ci=iv..7 and A=i,...,i5i

respectivelly, via Fierz identities. Therefore, the charge-independent contact 

interaction, including terms a t LO, NLO and N3LO, can be w ritten as

^ f ( k , K )  =  t;CT0 +  i;CT2(k ,K ) +  t;CT4(k ,K )

=  {Cs + C xk 2 + D x k 4) +  (C2 k2 + D2 k4) r x • r 2

+  (Ct  + C3k 2 + D3 k4) crx ■ ar2 +  (C4 k2 +  D4 k 4) erx ■ <r2 r x • r 2

+  (O5 +  £>5 A:2) S i2(k) +  (C6 +  £>e A;2) Si2(k) t x ■ r 2 

+i (C7 +  £>7 A:2) S • (K  x k) +  * £>8 k2 S • (K  x k) r x • r 2 

+Dg [S ■ (K  x k )]2 +  £>10 (K  x k )2 +  D xx (K  x k )2 crx • <r2 

+£>i2 k2K 2 +  D x3 k2K 2a x • <x2 +  £>14 K 2 5 12(k) 

+ D X5K 2S 12{ k ) r x -T2 . (104)

Finally, we also consider a charge-dependent component of the short-range N N  

parametrized as

i 4 CD(k, K ) =  [C™ + OjT k2 +  C f  k2 (TX-(t2 + C f  S 12(k) +  i C f  S • (K  x k)] Tx2

+[64V +  Cjv k 2 +  Clv  k2 crx ■ a 2 + C f  S 12(k)

+ t C f  S - ( K x k ) ]  (t1z + t2z) . (105)
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In the potential wf2CD(k, K) only terms up to NLO, involving charge-independence 

breaking (proportional to T12) and charge-symmetry breaking (proportional to 

T\z + t 2z), are accounted for. The associated LEC’s, labeled with the superscript 

IT and IV, while providing some additional flexibility in the data fitting discussed 

in Sec. 3.4 (especially CqV in reproducing the singlet nn  scattering length), are not 

well constrained.

3.2 C O O R D IN A T E -S P A C E  R E P R E S E N T A T IO N  O F  T H E  N N  

P O T E N T IA L

In this section we derive the coordinate-space N N  potential starting from 

its momentum-space representation discussed in Sec. 3.1. In particular the 

coordinate-space of the OPE potential as well as contact interactions is carried out via 

Fourier transformation, while the coordinate-space expressions for the T P E  potential 

are obtained via spectral function representation [9], In what follows we define r  as 

the relative separation between the two nucleons and r  the unit vector r  jr.

3.2.1 O P E  A N D  T P E  IN  C O O R D IN A T E -S P A C E

After Fourier transforming the expressions in Eq. (22), the O PE potential reads:

v*:L0(t) =  r * “ (r)<T1 .,T2 +  < : LO(r  )S 12 Ti • r2

+ VaT°(r ) ^1 ' +  vtTL° ( r ) 'S'l2 T12, (106)

where the tensor operator S u  is defined as S u  = 3<ti • r  <r2 • r  — oq • <r2. The OPE 

functions are given by

„ ; « (r) =  W  + 2 Y M  , (107)

=  r °W  +  2 ^ W  , (108)

=  YoW , (109)

* L0M  =  r o W 3 n ( r ) , (n o )

where the dimensionless functions Ya(r) and Ta (r) are defined as

™  (111) 

U r )  = Y„(r) ( l  +  A  + l - \  . (U2)
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V c r(r ) =  d p p e  ,trpc{p) , (113)

and x a — m„ar, with m 1,a denoting the neutral (mWo) and charged (m 7T j ) pion masses. 

Note tha t Eq. (106) only holds in the case r >  0, and a ^-function singularity a t the 

origin has been dropped, since it can be reabsorbed in the contact terms a t LO.

Coordinate-space expressions for the T PE  terms a t NLO and N2LO are obtained 

by using the spectral function representation [9] (with no spectral cutoff) since the 

T PE  potential satisfies a dispersion relation based on N N  —> 2 7r amplitude. For 

r  > 0, one has the representations

,,27T I _

' ' 1 2tt2r Jo
1 f°°

wt2Tr(r ) =  “ ^ 2^3 J  d p p e ^ ^  + Zpr + p 2r2)pt{p) , (114)

1 f°°
vl*(r ) = J  d p p e~ ^ r [p2pt(p) ~ 3 p a{p)\ , (115)

and similarly for v**{r), v'^(r),  and Vtr(r )- The spectral functions pi(p) are given [9]

pt(p) =  lm[u^7r(0+ -  ip)] , (116)

in terms of the left-cut discontinuity a t k =  0+ -  ip ,  and the functions vf*{k) are 

the momentum-space T PE  components of the potential a t NLO and N2LO written 

using the following basis

5ll2’ (k) =  E ' ? 'W O i ,2 . ( 117)
1=1

with O ^ 1’" ’6 = [1, <Ti • 0 2 , &\ • k  02 • k] <g> [1, T\ ■ 72] instead of the basis =

[1, tT\ ■ <r2 , (k)] 09 [1, T\ ■ T2], adopted in the previous section. Consider the T PE

at NLO given in Eq. (34). We can rewrite this expression in the following way:

^ ’NLO( k ;^ )  =  ^ • NLO(fc ;^ )<r 1 . <r2 +  t;ta,r’NLO(fc ;^ )<T1 . k <r 1 -k

+ v ? ’NLO( k ; & ) n - T 2 , (118)

where now the TPE functions, in the new basis, read as

.>2' ' NLO(fc; A) = G ( k ) k \  (119)

G ( k ) ,  (120)

4894Am l
4 m \  +  k2

4mJ(l +  i g \  -  5j1) +  *:2(1 + 10g2 -  23SJ)

(121)
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and the loop function G(k) is defined in Eq. (38). In order to calculate the 

coordinate-space representation of n^7r’NLO(A:; &), for example, we first evaluate the 

spectral functions pt(p) and pa(p),

The integral in Eq. (115) is then carried out by using the substitution p  -4 p / ( 2 m 7r) 

obtaining the final analytical expression

where x  — m nr {m,7I is the average pion mass) and K n are modified Bessel functions 

of the second kind. We provide in Appendix C a  list of all the coordinate-space 

T PE  components. In particular those corresponding to diagrams (d) -(f) and (j) -(k) 

in Fig. 3 are expressed in closed form and are given in Eqs. (430)-(432) and 

Eqs. (445)-(447), respectively; the remaning ones corresponding to diagrams (g) (i) 

and (l)-(o) are obtained in terms of a parametric integral, and they are given in 

Eqs. (433)-(444) and Eqs. (448)-(459).

The radial functions vlL(r) are singular a t the origin (they behave as l / r n with n 

taking on values up to  n =  6); therefore they need a  further regularization. Indeed, 

each T PE  component in Appendix C is regularized by a cutoff of the form

where in the present work three values for the radius R l are considered R l = 

(0.8,1.0,1.2) fm with the diffuseness al fixed at a/, =  R l / 2 in each case. This 

ensures tha t the short-distance part of the long-range potential a t r  smaller tha t R L 

is smoothly cut off and tha t the singularities at the origin are removed since

p M  =  ’NLO(0+ -  i ) ]  =  n  v V 2 -  4 m* , (122)

(123)

where we used

Im[G(0+ — ip,)] = —— \ J p 2 — A m i  ■ 
/■*

(124)

?; f ’NL0(r; $ )  = m , 3* K 0(2x) +  (3 +  2x2) K l {2x) , (125)

C r l ^  1 ( r //? L)6e(r^ ) / ^  +  l  ’
(126)

(127)
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The potential ”12, including the well known OPE components a t LO regularized also 

by the cutoff in Eq. (126), then reads in coordinate space

'  6

= * \  ■ <*2 T12 and 0^2 — ^12 l i 2' The radial functions ^ ( r )  are summarized in 

Eqs. (460) (465) while the charge-dependent functions v ( f  (r) and r;(T(r) are given 

in Eqs. (109)—(110), respectively.

3 .2 .2  C O N T A C T  IN T E R A C T IO N S  IN  C O O R D IN A T E -S P A C E

In this section we perform the coordinate-space representation of the short-range 

part of the potential, Vj2(k, K ), defined in Eq. (92). The Fourier transformation 

of the single contact terms in Eqs. (104) and (105) is carried out with a Gaussian 

regulator, depending only on the momentum transfer k , such tha t

which leads to  a  coordinate-space representation only mildly non-local, containing at 

most terms quadratic in the relative momentum operator as will become clear below. 

The coordinate-space representation of a (regularized) term  0 (K , k) in Eqs. (104) 

and (105) follows from

operator. For the momentum-space operator structures present in Eqs. (104)

where

0 [ 21 6 =  [ 1 , <7-, • < r2 , S12] ®  [ 1 , T, ■ r 2] (129)

g % ( * ) = e - ^ 4 - >  C s ,(r)  = 1 r-lr/fe )1
n W R f (130)

where r  is the relative position and K  — > p  =  — i V '$ ( r '- r ) ,  the relative momentum
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and (105) one finds the following relations:

+ C k ( r ) ,1

k2 

k 4

5 12(k)

i S - ( K x k )

K 2

(K x k )2 

[S • (K  x k)]2

- C S ( r ) - ; C g ( r ) ,

c S M  +  ; 4 > ) .

1

{p2 ,CRs(r)j ,

S 12

c £ V )  ~ ( < V ) ]  L2 '  { p ^ C « ( r ) }

(? S W  -  f  C £ ( r )(0 /
yRs (L • S)2

2(1 +  ct\ ■ <r2) 1 { \ ) ( .
—  -----------<t i  P <t 2 p  , - C ^ i r )

where

P

C j^ \ r )  — (̂ n^'Rs^r ^
drn

Finally in coordinate-space reads as

'12

19

+ { vs(r ) + « r  (r ) *1 ■ °2y i vs(r) @12
. 1=1

+ vs ( r ) S 12 +  vgT(r) S 12 Ti • r2 , P2 } ,

1 j  g
where O ^  have been defined in the previous section,

O if - - 11 =  L • S , L • S n  • r2 , (L • S)2 , L2 , L2 o-! • 0-2 

referred to as 6, 6r, 66, q, qa, and

O!.1=12,. ..,19 
12 [1, 0-1 • <72 , S i2 , L • S] <g> [T12 , r f  +  r |]  ,

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

referred to as T, t z ,  aT, arz ,  tT, tr z ,  bT, brz. The four additional terms, denoted as 

p, pa, pt, and ptr,  in the anti-commutator of Eq. (141) are p 2-dependent. The radial 

functions vls (r) as well as those multiplying the p 2-terms are listed in Appendix C. 

We consider, in combination with R l =  (0.8,1.0,1.2) fm, Rs =  (0.6,0.7,0.8) fm,
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corresponding to typical momentum-space cutoffs As =  2/R s  from about 660 MeV 

down to 500 MeV. While the use of a Gaussian cutoff mixes up orders in the power 

counting—for example, the LO contact interactions proportional to Cs  and Ct  in 

Eq. (104) generate contributions a t NLO and N3LO—such a choice nevertheless leads 

to smooth functions for the potential components vls (r) and the resulting deuteron 

waves. Sharper cutoffs, like those a  exp [— ( r /R )n] with n  =  4, as suggested in 

Ref [14], or n = 6, as in one of the earlier versions of the present model, generate 

wiggles in the deuteron waves a t r  ~  R  (as well as mixing of power-counting orders).

3.3 DA TA  A N A L Y SIS

The N N  potential discussed in Sec. 3.2 involves 34 unknown LEC’s associated 

with the charge-independent contact interactions entering a t LO (Cs and GY), 

NLO (C{, i = 1, — ,7) and N3LO (Dit i =  1 , 1 5 ) ,  and the charge-dependent 

contact interactions entering the LO (CgT and CqV) and NLO (C[r and C?v , 

i = 1, . . . ,  4). One goal of this thesis is to determine these contact parameters by 

fitting the 2013 Granada database [54], consisting of 2309 pp and 2982 np  data  in 

the laboratory-energy range £jab =  0 -  300 MeV, as well as the deuteron binding 

energy. In the optimization procedure, as described in detail in Sec. 3.3.3, we fit 

first phase shifts, then we refine the fit by minimizing the y 2 obtained from a direct 

comparison with the database. To this end we need first to formulate the N N  

scattering problem in coordinate-space.

3.3.1 N N  S C A T T E R IN G  P R O B L E M : P H A S E  S H IF T S

In the following section, we discuss the solution of the Schrodinger equation 

with the strong-component potential (u12) discussed in Sec. 3.2, which contains 

p 2-dependent central and tensor terms. For simplicity, we ignore the electromagnetic 

and charge-dependent parts of v \2—the treatm ent in the presence of is discussed 

in Appendix D. In spin S  and isospin T  channel, the potential v\2 reads

vf2s = ^ s (r) +  ^ ( r ) 5 12 +  4 ( r ) L - S  +  4 s ( r )L 2 +  ^ ( r ) ( L - S ) 2

+  {vrs(.r ) +  vt  (r ) S 12 , P 2} , (144)

with
2 _ L 2 2 d  d2

P r2 r dr dr2 '  ̂ *
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For single channels (J  =  L, where L and J  are the orbital and total angular momenta, 

except for the 3Pq channel), the scattering total wave function can be written as

^ j s t (r) =  - u i s j , T( r ) y Lsj(r)r}T , (146)

where u(r) is the reduced radial wave function (the subscription LSJ,  T  is removed for 

brevity) and t]t  represent the total isospin state of the nucleon-nucleon system. The 

“spin-angle” functions T lsj(?) are convenient to use in order to  express two-nucleon 

partial waves. They are defined as

T?r,sjr(r) Y l m l (r) ® X s m s
J M

= X  YLMl( t ) XSMS (LMl ]S M s \ JM)  ,
MiMs

(147)

where YLMl (r) are spherical harmonics, and r  represent the 9 and <j> polar angles of 

the relative position vector r  =  r i  — t? and { L M i \ S M s \ J M )  are the Clebsch-Gordon 

coefficients, X s m s  represent the spin state of the nucleon-nucleon system. The 

Schrodinger equation for the reduced radial function u(r) reads

(1 +  v) u" — v'v! + V ---------------k 2
2

it  =  0  , (148)

where

v t s j  — 2  / i
( V

VT S  ^  ^  ^

J ( J + 1 )+

v t s  — 4  /x 4 “ ^s , i  2  V j . )  ,

(149)

(150)

H is the reduced mass, and the subscripts in Eq. (148) have been dropped for brevity.

The dependence on the first derivative u' is removed by setting

u =  Xw  , (151)

and by requiring tha t terms proportional to w'  vanish. One finds tha t A must satisfy

2 (1 +  t>) A' +  v ' \  — 0 , (152)

which has the solution

A =  (1 +  v) - 1 /2 (153)
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The function w then satisfies

tt £w = f w  , (154)

with the boundary condition (reinstating the appropriate superscripts and subscripts 

for the case under consideration)

~  i  +  sfyT(k) h<l\kr)] , (155)

where the Hankel functions are defined as h^l'2\ k r )  = j i i k r )  ±  i n i (kr ) ,  j i { k r )  and 

n i { k r ) being the regular and irregular spherical Bessel functions, respectively, and
J Q T T c rr

5 /(/’ are 5-m atrix elements. Denoting phase shifts as 5L,'L , the 5-m atrix in single 

channels (L =  V  =  J)  is simply given by

q JS, T  _  2iSJS’T
s j j  ~ e (156)

The differential equation above is solved with the standard Numerov method. In the 

case of 3Pq (T =  5  =  1) the same equation above holds but

vcn - 4 v \ - 2 v b1 + 2 ( v qn  + 2 ^ bb
+  15 - (157)vno =  2 (i

«n  =  4 / x ( v ? - 4 u f )  , (158)

For the coupled channels (L =  Jdb 1 and 5  =  1), the wave function is represented

by

1 , 1
-« (j- i) ij,T (^ )T (j-i) ij(r)  +  -U (j+i)ij')7'(r’)3^(j+i)u (f) f } T  ■ (159)

It is convenient to introduce the vector U with components U ( j - i ) i , / , t ( ? ~ )  =  and 

u ( j + \ ) i j , t ( t ) = u +i  ancl the 2 x 2  matrices V  and V  with matrix elements given 
respectively by

T1J JT \ 2 i j T i  vt + (j -  1)wr + J ( J  - l}
J -  1 VPT

+ ( J  - l fv** + (160)

M + +
T1J VTI  _  2 2 j  + i  VT ~  {J +  2 ) v t  + (J + 1 ){J + 2) ^x4i +  2 -pz

(J  +  1 )(J +  2)
-4 2 J T T ^ ) + ^  +  2« +

l,T \ J  — 12 ny j ( j + 1)
2 J  -(-1

„■ + 2 J l  + i ± 1-v!i JT I J V■T1J  ’

(161)

(162)
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and

T U

T I J

V T I J

4/X I UJT1 2  —  L  y P t

Z 2J + 1 Vt

J + 2 pt■i y4/i ( w£i  ̂2J +  l V‘T

24/* 2J + 1
!/Pt I 'T  > ^TIJ VT1J

(163)

(164)

(165)

where the script — or 4- specifies the orbital angular momentum L — J  — 1 or 

L = J + 1. W ith these definitions, the coupled-channel Schrodinger equation can be 

written as

- ( I  + V)U" - v ' u '  +
V

v ~ \ ~ U = 0 ,

where I is the 2 x 2 identity matrix. Introducing the 2 x 2 m atrix A with

U = A W  ,

and requiring tha t terms proportional to  W'  vanish lead to

2 (I  +  F ) A ' + F ' A  =  0 .

(166)

(167)

(168)

The set of first order differential equations above is solved with the Runge-Kutta 

method [55]. Note tha t in the limit r —» oo, A reduces to the identity m atrix (and 

hence the asymptotic behavior of wT is the same as tha t of uT). Straightforward 

manipulations allow one to cast the Schrodinger equation for W  in the standard form

W" = F W  , (1 +  V) A F A 1 =  V -  ^ V \ l  +  V y 1 v '  -  k 2 ,

with the boundary conditions (again, reinstating superscripts and subscripts)

* l SLJ(r) 1
S l ' L  f l L ' ( k r )  +  S JV L  h L > ( k r )

J S T  , (1 )/

(169)

(170)

where L, V  — J  ±  1 are the orbital angular momenta of the incoming and outgoing 

waves and the 5fj i  are Kronecker deltas, and the S’—m atrix is given by

Q J iJST — s J = e2tS- cos 2ej i ei(s-L+t+) sin2ej 

i e%f-s- +s+) sin 2t j  e2tS+ cos 2ej
(171)

where t j  is the mixing angle.
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In particular the low-energy scattering can be expressed in terms of an effective 

range function such tha t

F{k2) = k cot SN = - -  + I  r0k2 + O(k4) , (172)
a £

where a is the scattering length and ro is the effective range and 8^  indicates 

5-wave phase shifts without the electromagnetic interaction. In the presence of 

the electromagnetic interaction we have to use a more complicated effective range 

function (see Appendix D), where the phase shifts are with respect to the full 

range-electromagnetic interaction. In the Sec. 3.4, we present the results of the nn, 

pp and np  scattering length and effective range calculated both with and without 

electromagnetic interaction.

3 .3 .2  F R O M  P H A S E  S H IF T S  T O  O B SE R V A B L E S

Setting aside electromagnetic (EM) contributions (Coulomb and higher order 

ones) for the time being, the invariant on-shell scattering amplitude M  for the 

N N  system can be expressed in terms of five independent complex functions—the 

Wolfenstein parametrization—as

M ( p', p) = a+mcr\  •n 0 2 -A+ (</-//.) crj •m<72-ih+(<7 +  /i) cri •lcr2-l+c(<x1 +  cr2)-n ,

(173)
where 1, m, n are three orthonormal vectors along the directions of p '+ p , p ' - p ,  and 

pxp', and p', p are the final and initial relative momenta, respectively. The functions 

a, vn, g, h, and c are taken to depend on the energy in the laboratory (lab) frame and 

the scattering angle 0 in the center-of-mass frame. Any scattering observable can be 

constructed out of these amplitudes [56, 57].

The N N  amplitude is diagonal in pair spin 5 , and pair isospin and isospin 

projection T M t , and is expanded in partial waves as

m m™ ts (e ^ )  = v/4 ^ X y - L' V /2Z T T  L _ J  ( L ' ( M s - M ' s ) ,SM's \ J M s )
J L U

qJS^TMt / \ r
(LO, S M s  | J M S) Y™s~M's (Q, 0) ^ . (174)

i p

Hereafter, for notational simplicity we drop from the phase shifts unnecessary 

subscripts as well as the superscripts T M t , with T  = 1 and MT =  1 , 0 , —1 for 

respectively pp, np, and nn.  The 5-m atrix elements and phase shifts are obtained
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from solutions of the Schrodinger equation with suitable boundary conditions, as 

discussed in the previous section. In terms of the amplitudes A f |^ Mg, the functions 

a, m, g , h, and c then read

a =  (M>, +  Jg j, +  <  + M i 1_ , ) /4 ,

c =  i ( AZ/q — Mqj f  M l  j — M l 10) /(4 \/2 ) ,

m  = + Mo1,  -  M0°0 -  M in )  /4 ,
9 =  (M 111 +  M11„ 1 +  M l11 +  M l1_1 - 2 M0°0) / 8 ,

h =  cose { M \ x -  M \_x -  M l_n  +  -  2 M ^) /8

+ \/2 s in 0  (M/o 4- Af0\  -  A /J^ -  A/1,,,) /8  ,

and this can be further simplified by noting th a t , =  -Afoi, A/,_, — i« _ n , 

M l10 =  - M lw , and M \x =

When EM interactions are included, the full scattering amplitudes M  are 

conveniently separated into a  part due to nuclear interactions and another one 

stemming from EM interactions,

M  = A M n . (180)

The pp EM amplitudes contain Coulomb with leading relativistic corrections, vacuum 

polarization, and magnetic moments contributions, whereas the np  ones contain 

magnetic moment contributions only (see Ref. [54] for a compendium of formulas 

for these EM contributions). For completeness, however, the determination of the 

pp phase shifts relative to EM functions and of the pp effective range expansion 

is summarized in Appendix D. Due to the finite range of the N N  force, the 

nuclear part of the scattering amplitudes, A/n, converges with a maximum total 

angular momentum of J  =  15. In contrast, EM scattering amplitudes, M em , 

require a summation of about a  thousand partial waves due to the long range and 

tensor character of the dipolar magnetic interactions. While these corrections are 

numerically tiny, they are nevertheless indispensable for an accurate description of 

the da ta  [58].

3.3.3 FITTING  PRO CEDURE

We use the database developed by the G ranada group [54], where a  selection of 

the large collection of np  and pp scattering data  taken from 1950 till 2013 was made.

(175)

(176)

(177)

(178)

(179) 

i — A/A
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References to these data  are listed in Ref. [54]. The criteriura adopted in this latter 

work was to represent the N N  interaction with a general and flexible parametrization, 

based on a minimal set of theoretical assumptions so as to  avoid any systematic 

bias in the selection process. The aim of the method, first suggested by Gross and 

Stadler [59], was to obtain a 3 a-self-consistent database. This entails removing 

3 a  outliers and re-fitting iteratively until convergence. The procedure results in a 

database with im portant statistical features [60] and therefore amenable to statistical 

analysis, and leads to the identification of a consistent subset among the large body 

of 6713 np and pp experimental cross sections and polarization observables. In the 

present study we are concerned with a subset of this 3 cr-self-consistent database, 

namely data  below 300 MeV lab energy. This database is organized in the following 

way: there are N  sets of data, each one corresponding to a different experiment. 

Each data set contains measurements a t fixed I?iab and different scattering angles 

6. However a few observables are measured at different and fixed 0, like, for 

example, total cross sections since their measurement does not involve the scattering 

angle. An experiment may have a specified systematic error (normalized data), no 
systematic error (absolute data), or an arbitrarily large systematic error (floated 

data).

We briefly describe the fitting procedure. The total figure of merit is defined as 

the usual y 2 function

x2 =  £ x ? >  <181)
t=i

where y 2 refers to the corresponding contribution from each data  set, which we

explain next. In all cases, the y 2 f°r & data  set is given by

2 =  v -  {Oj/Zt ~  k f  (1 -  1 /Zt)2
X t /  ,  l y \ 2  ' ( £  / 7 \ 2 ’ ( r o z j

“  (dOi/Zt) ( < w  z t)

where ot and U are the measured and calculated values of the observable at point i,

5oi and Ssys are the statistical and systematic errors, respectively, and Zt is a  scaling 

factor chosen to minimize the y 2 (<9yt / d Z t =  0),

The last term in Eq. (182) is denoted y 2ys. For absolute data  Z t = 1 and y 2ys — 0,

Isy swhile for floated data  use of Eq. (183) is made with Ssys =  oo so tha t y 2 =  0.
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Normalized data have in most cases Zt ^  1 such tha t x 2ys /  1 and the normalization 

is counted as an extra data  point. For some normalized data the systematic error 

can give a  rather large x 2ys due to an underestimation of Jsys. In order to account for 

this, we float data  tha t have x 2ys > 9 and no extra normalization data  is counted. 

This is in line with the criterion used to build the pp and np database. Finally, the 

total x 2 is the sum of all the x 2 for each pp and np  da ta  set.

The minimization of the objective function x 2 with respect to the LEC’s 

in Eqs. (104) and (105) is carried out with the “Practical Optimization Using 

no Derivatives (for Squares)” , POUNDerS [61]. This derivative-free algorithm 

is designed for minimizing sums of squares and uses interpolation techniques to 

construct residuals a t each point. In the optimization procedure, we fit first phase 

shifts and then refine the fit by minimizing the x 2 obtained from a direct comparison 

with the database. In fact, sizable changes in the total x 2 are found when passing 

from phase shifts to  observables, so this refining is absolutely necessary to claim 

reasonable fits to data. This is a general feature which is often found, and reflects the 

different weights in the x 2 contributions of the two different fitting schemes. Indeed, 
the initial guiding fit to phase shifts chooses a prescribed energy grid arbitrarily, 

which does not correspond directly to measured energies, nor necessarily samples 

faithfully the original information provided by the experimental data. Moreover, 

there are different partial-wave-analyses (PWA’s) which describe the same data  but 

yield different phase shifts with significantly larger discrepancies than reflected by 

the inferred statistical uncertainties [54, 60, 62],

3.4 RESULTS

We report results for the potentials v u  +  f f2M corresponding to three different 

choices of cutoffs ( / ? l , 7?s): model a with (1.2,0.8) fm, model b with (1.0,0.7) fm, 

and model c with (0.8,0.6) fm. Models a, b, and c were fitted to the Granada 

database of pp and np cross sections, polarization observables, and normalizations 

up to lab energies of 300 MeV, to the pp, np, and nn  singlet scattering lengths, and 

to the deuteron binding energy. We list the number of pp and np d a ta  (including 

normalizations) and corresponding total x 2 for the three models in Table 3, where 

we also report for comparison the x 2 corresponding to the AV18 [48] (of course, 

without a refit of it) and the same database. The total number of data  points 

changes slightly for each of the various models because of fluctuations in the number
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TABLE 3: Total x 2 for model a with (Rl , R s) =  (1-2,0.8) fm, model b with (1.0,0.7) 

fm, and model c (0.8,0.6) fm, and the AV18; Npp (Nnp) denotes the number of pp 

(np) data, including observables and normalizations.____________________________

Lab Energy (MeV) V app N hpp N cpp N 18pp

x 2(pp)

V12 v 12 V V2 Vl8

0-300 2262 2260 2258 2269 3353 3345 3430 4191

Lab Energy (MeV) 7Vanp N hnp N cx np N 181 ynp

X 2 ( n p )

V 12 V 12 u12 V l8

0-300 2957 2954 2949 2961 3548 3523 3636 3391

of normalizations included in the database according to  the criterion discussed at 

the end of the previous section. In the range (0-300) MeV, the x 2(pp)/datum  and 

X2(np)/datum  are about 1.48, 1.48, 1.52 and 1.20, 1.19, 1.23 for models a, b, and c, 

respectively; the corresponding global x 2(PP +  np)/datum  are 1.33, 1.33, 1.37. For 
the AV18, the x 2(pp)/datum , x 2(nP) /datum, and global (pp+np )/datum  are 1.84,

1.14, and 1.46, respectively. Note tha t the global x 2 values above have been evaluated 
by taking into account the number of fitting parameters characterizing these models 

(34 in the case of models a, b, and c). Errors for pp data are significantly smaller than 

for np , thus explaining the consistently higher x 2(pp)/datum . The quality of the fits 

deteriorates slightly as the (hT, Rs) cutoffs are reduced from the values (1.2,0.8) fm 

of model a down to (0.8,0.6) fm of model c.

The fitted values of the LEC’s in Eqs. (104) and (105) corresponding to models 

a, b, and c are listed in Table 4. The values for the ivN LEC’s in the O PE and T PE  

terms of these models have already been given in Tables 1 and 2.

The S-wave, P-wave, and D-wave phase shits for np (in T  =  0 and T  =  1) and 

pp are displayed in Figs. 5-7 up to 300 MeV lab energies. The phases calculated 

with the full models a, b, and c including strong and electromagnetic interactions 

are represented by the band. The np phases are relative to spherical Bessel functions, 

while the pp phases are with respect to electromagnetic functions (see Appendix D). 

The cutoff sensitivity, as represented by the width of the shaded band, is very weak 

for pp, and generally remains modest for np, except for the T  = 0 3D3 phase and c\ 

mixing angle, particularly for energies larger than 150 MeV. The calculated phases
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are compared to those obtained in PWA’s by the Nijmegen [63, 64], G ranada [54], 

and Gross-Stadler [59] groups. Note th a t the recent Gross and Stadler’s PWA was 

limited to np data  only. We also should point out that, since the Nijmegen’s PWA 

of the early nineties which was based on about 1780 pp and 2514 np  d a ta  in the 

lab energy range 0-350 MeV, the N N  elastic scattering database has increased very 

significantly. Indeed, in the same energy range the 2013 Granada database contains 

a total of 2972 pp and 4737 np  data. Especially for the higher partial waves in 

the np sector and a t the larger energies there are appreciable differences between 

these various PWA’s. It is also interesting to observe tha t these differences are most 

significant for the T  = 0 3D3 phase and t\ mixing angle, and therefore correlate with 

the cutoff sensitivity displayed in these cases by models a, b, and c.

Lab. Energy [M d/] Lab. Energy [M ^/] Lab. Energy [M d/]

FIG. 5: S-wave, P-wave, and D-wave phase shifts in the np T = 0 channel, obtained 

in the Nijmegen [63, 64], Gross and Stadler [59], and Navarro Perez et al. [54] 

partial-wave analysis, are compared to those of models a, b, and c, indicated by 

the band. For the mixing angle ei (phase shift 3D3) the lower limit of the band 

corresponds to model a  (model b) and the upper limit to model c (model c).

The low-energy scattering parameters are listed in Table 5, where they are 

compared to experimental results. The singlet and triplet np, and singlet pp and nn,
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scattering lengths are calculated with and without the inclusion of electromagnetic 

interactions. W ithout the latter, the effective range function is given in Eq. (172). 

In the presence of electromagnetic interactions, a more complicated effective range 

function must be used; it is reported in Appendix D, along with the relevant 

references. The latest determinations of the empirical values for the singlet scattering 

lengths and effective ranges, obtained by retaining only strong interactions (hence

the superscript N), are [65-68] (as reported in Ref. [6]):

^  =  -17 .3  ± 0 .4  f in , V ” =  2.85 ±  0.04 fin , (184)

^  -  -23.74 ±  0.02 fm , VJJ, -  2.77 ±  0.05 fm , (185)

^  =  -18.95 ±  0.40 fm , =  2.75 ±  0.11 fm , (186)

which imply tha t charge symmetry (meaning tha t pp and nn  interactions are identical 

after removing all the electromagnetic contributions) and charge independence 

(meaning tha t the three nucler forces pp, nn  and np  are identical after again removing 

all the electromagnetic contributions) are broken respectively by [6]

AacsB =  -  a^n =  1.65 ±  0.60 fm , (187)

A rcse =  r j , - r ^  =  0.10 ± 0 .12  f in , (188)

and

AaciB =  (aJJ, +  Ann)/2 -  anp = 5 6  ±  0.6 fm , (189)

A rcm  =  ( r£  +  r l ) / 2  -  r j ,  =  0.03 ±  0.13 fm . (190)

The more significant values for AacsB and AaciB can be compared to  those inferred 

from Table 5: (AacsB> A ocib) =  (213, 5.11) fm for model a, (2.34, 5.12) fm for 

model b, and (1.90, 5.08) fm for model c.

In the left upper panel of Fig. 8 we show the JSo phase shifts for pp, np and 

nn  calculated with and without the inclusion of electromagnetic interactions (only 

model b is considered). There is excellent agreement between these phases and 

those obtained in the the Granada, Gross and Stadler, and Nijmegen PWA’s, when 

electromagnetic effects are fully accounted for. Particularly a t low energies (see 

Fig. 9), the latter provide most of the splitting between the pp and np  phases, with 

remaining differences originating from isospin symmetry breaking due to the OPE 

term in v\2 and the central terms in , proportional to the LEC’s CjT and C'JV
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with i =  0-2. In the absence of electromagnetic interactions, the splitting between 

the pp and nn  phases is induced by the charge-symmetry breaking terms of v ^ D 

proportional to the LEC’s C-v  with i =  0-2; it is smaller than tha t between pp and 

np  %  phases.

The effects of isospin symmetry breaking are also seen in the pp and np 3P j  

phases with J  =  0 ,1 ,2  in the upper right and lower panels of Fig. 8, especially a t the 

higher energies. The calculated phases, which correspond again to model b, include 

electromagnetic effects, but the latter are negligible beyond 100 MeV. The splitting 

between the pp and np  3P j  phases is mostly due to the isotensor and isovector terms 

of Uj2CD, in particular those proportional to the LEC’s C-v  and C-T with i = 3 and 

4 associated respectively with the tensor and spin-orbit components of There 

is no evidence on the basis of the G ranada and Nijmegen PWA’s for such a large 

splitting, and so the latter is likely to be an artifact of the param etrization adopted
C  S.CDfor v £  .

•  Granada 
■ Nijm
♦ Gross^ 40

-10CL

- 20'

« - 1 0

-20

-30.
100 200 

Lab. Energy [M d/]
100 200 

Lab. Energy [M ^/]
100 200 300

Lab Energy [M d/]

FIG. 6: Same as in Fig. 5, but for the S-wave, P-wave, and D-wave phase shifts in 

the np T = 1 channel. For the mixing angle c2 the lower limit of the band corresponds 

to model c and the upper limit to model b.

The static deuteron properties are shown in Table 6 and compared to  experimental 

values [69-73]. The binding energy Ed is fitted exactly and includes the contributions
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•  Granada -

-10

- 20'

-20

-30. 100 200 
Labi Energy [MeV]

100 200
Lab. Energy [M d/]

300 0 100 200
Labi Energy [M ^/]

300

FIG. 7: S-wave, P-wave, and D-wave phase shifts in the pp T —1 channel, obtained 

in the Nijmegen [63, 64] and Navarro Perez et al. [54] partial-wave analysis, are 

compared to those of models a, b, and c, indicated by the band.

(about 20 keV) of electromagnetic interactions, among which the largest is tha t due 

to the magnetic moment term. The asymptotic S-state normalization, As, and the 

D /S ratio, 77, are both ~  2 standard deviations from experiment for all models 

considered. The deuteron (m atter) radius, r,/, is exactly reproduced with model b, 

bu t is under-predicted (over-predicted) by about 1.4% (0.7%) with model a  (model c). 

It should be noted tha t this observable has negligible contributions due to  two-body 

electromagnetic operators as discussed in the next chapter. The magnetic moment, 

Pd, and quadrupole moment, Qd, experimental values are underestimated by all 

three models, but these observables are known to have significant corrections from 

(isoscalar) two-body terms in nuclear electromagnetic charge and current (see next 

chapter). Their inclusion would bring the calculated values considerably closer to, 

if not in agreement with, experiment. Finally, the S- and D-wave components of 

the deuteron wave function are displayed in Fig. 10, where they are compared to 

those of the Argonne Vis (AV18) model. There is significant cutoff dependence as
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• np Granada ;
■ np Nijm
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FIG. 8: The pp, np, and nn  and the pp and np 3Po, 3P i, and 3P 2 phase shifts 

obtained with potential model b, including the full electromagnetic component.

(Ri ,  Rs)  are reduced from the values (1.2, 0.8) fm of model a down to (0.8, 0.6) fm 

of model c. For r  <  1 fm, the S-wave becomes smaller (is pushed out), while the 

D-wave becomes larger (is pushed in) in going from model a to model c. The D-state 

percentage increases correspondingly (see Table 6).

We note in closing tha t in Appendix E we provide figures of the various 

components of potential models a, b, and c (their charge-independent parts only) 

as well as tables of numerical values for the pp and np S, P, D, F, and G phase shifts 

obtained with model b.
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70

— nn
•  np Granada
■ np Nijm
♦ np Gross
* pp Granada
< pp Nijm

60

50

40

300 10 20 30 40 0 10 20 30 40 50
Lab. Energy [MeV] Lab. Energy [MeV]

FIG. 9: The pp, np, and nn  up to lab energy of 50 MeV including (panel left) 

and ignoring (panel right) the full electromagnetic component of potential model b.
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TABLE 4: F itted values of the LEC’s corresponding to potential models a, b, and c. 

The notation (±  n) means 10±n.

LEC’s Model a Model b Model c

Cs  (fm2) 0.2003672(4-1) 0.8841864(4-1) 0.2588776(4-2)

Ct  (fm2) -0.1660743(4-1) -0.4168038(4-1) -0.9160861(4-1)

Ci (fm4) -0.1759574 -0.9367926(-l) -0.4455626(-3)

C2 (fm4) -0.2029026 -0.2520756 -0.3082608

C3  (fm4) -0.1856897 -0.2589016 -0.3222661

6 4  (fm4) -0.5745498(-l) -0.2453381 (-1) 0.3773411 (-1)

C\ (fm4) -0.8813877(-1) -0.4685034(-l) -0.5156581(-2)

C6 (fm4) -0.5857848(-l) -0.2804770(-l) -0.2762013(-1)
C-j (fm4) -0.1140923 0.7338611 0.7568732

Dl (fm6) -0.9498379(-l) -0.6986704(-l) -0.2565252(-l)

D2 (fm6) -0.7149729(-2) 0.1681828(-3) 0.4909682(-2)

D3 (fm6) -0.6502509(-2) -0.6355876(-2) -0.1721433(-1)

IXi (fm6) -0.3217370(-2) -0.1153354(-2) 0.2592172(-2)
Ds (fm6) 0.2692050(-2) 0.2258031(-2) 0.2101464(-2)

A  (fm6) -0.6654712(-2) -0.2757790(-2) -0.4252508(-2)

D7 (fm6) -0.2318069(-1) 0.1451856(-1) 0.4247406(4)

Da (fm6) -0.2899833(-l) -0.2897869(-l) -0.1122591(4)

A> (fm6) 0.2634392(-2) 0.3909073(-l) 0.4966263(4)

D w (fm6) -0.1787025 -0.2061108 -0.1628166

D n  (fm6) 0.1758785(-1) 0.3667628(-2) -0.2316157(4)

D\2 (fm6) 0.1126531 0.1023936 0.5361795(4)
D 1 3  (fm6) -0.1649902(-1) -0.9890485(-2) 0.1744601 (-2)

D u  (fm6) 0.1989863(-2) 0.3066270(-2) 0.7219031(-2)

Dm (fm6) 0.4540768(-2) 0.2426771(-2) 0.2979197(-2)

C ?  (fm2) -0.8730299(-l) -0.1162192 0.6195324

C ?  (fm2) 0.5804662(-l) 0.6669167(-1) 0.7020630(4)

C f  (fm4) 0.6961072(-1) 0.5088496(-l) 0.2174468(4)

C ‘v (fm4) 0.3507986(-l) 0.2288370(-l) -0.8112580(-2)

Clv (fm4) 0.3862077(-l) -0.7707131(-2) -0.6115902(-1)

C ‘v (fm4) -0.7617836 -0.1581137(4-1) -0.1533212(4-1)
C |T (fm4) -0.2382471(-1) -0.2373048(-l) 0.7623486(-2)

C ?  (fm4) -0.1325513(-1) -0.1013726(4) 0.1205547(-2)

C ?  (fm4) -0.1399371(-1) -0.1098114(-3) 0.2109716(-1)
C f  (fm4) 0.2582607 0.5180368 0.4955952
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TABLE 5: The singlet and triplet np , and singlet pp and nn, scattering lengths and 

effective ranges corresponding to the three potential models with (Ri ,, /?$)=( 1-2,0.8) 

fm (model a), (1.0,0.7) fm (model b), and (0.8,0.6) fm (model c).

Experiment Vl2 w /o vf2M v bV12 w /o t’f2M vn w /o vf2M

dpp -7.8063(26)

-7.8016(29)

-7.766 -17.014 -7.766 -16.956 -7.763 -17.137

lr
'pp 2.794(14)

2.773(14)

2.742 2.818 2.743 2.820 2.730 2.802

a nn -18.90(40) -18.867 -19.148 -19.025 -19.301 -18.719 -19.039

An 2.75(11) 2.831 2.827 2.799 2.795 2.738 2.732

iiiip -23.740(20) -23.752 -23.196 -23.755 -23.248 -23.745 -23.167

f  np 2.77(5) 2.665 2.670 2.672 2.677 2.638 2.644

3aunp 5.419(7) 5.408 5.391 5.404 5.389 5.412 5.396
3„' rap 1.753(8) 1.741 1.740 1.737 1.734 1.740 1.745

TABLE 6: Same as in Table 5 but for the deuteron static properties; experimental

values are form Refs. [69-73].

Experiment <2 v12 Vh
Ed (MeV) 2.224575(9) 2.224575 2.224574 2.224575
As (fm -1/2) 0.8781(44) 0.8777 0.8904 0.8964

n 0.0256(4) 0.0245 0.0248 0.0246

rd (fm) 1.97535(85) 1.948 1.975 1.989

^d, (po) 0.857406(1) 0.852 0.850 0.848

Qd (fm2) 0.2859(3) 0.257 0.268 0.269

Pd (%) 4.94 5.29 5.55
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FIG. 10: The S -wave and D-wave components of the deuteron wave function 

corresponding to models a (dashed lines), b (dotted-dashed lines) and c 

(dotted-dashed-dotted lines) are compared with those corresponding to the AV18 

(solid lines).
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CHAPTER 4 

ELECTROMAGNETIC STRUCTURE OF A = 2 AND 3 

NUCLEI IN xEFT

In this Chapter we provide a complete set of xE FT  predictions for the structure 

functions and tensor polarization of the deuteron (A = 2), for the charge and 

magnetic form factors of the 3He and 3H ( A  =  3) as well as for the static properties 

of these few-nucleon systems. Electromagnetic form factors of these light nuclei 

are among the observables of choice for testing models of nuclear interactions 

and associated electromagnetic charge and current operators. Therefore the goal 

of this study is to investigate the validity of the xE FT  approach to describe 

strong-interaction dynamics in these few-nucleon systems and their response to 

electromagnetic probes. These calculations are carried out by utilizing nuclear wave 

functions derived either from chiral or realistic potentials, in combination with the 

charge and current operators discussed here. In particular, the wave functions for 

A = 2 are obtained from solutions of the Schrodinger equation with the Argonne 

Vis (AV18) [48] or chiral Idaho N3LO [5, 6] two-nucleon potential. Both these 

nuclear models describe the long-range component of the N N  interaction via OPE. 

In the case of the AV18 potential, the intermediate-range part is parametrized in 

terms of T PE  with intermediate nucleons and A isobars [74], while its short-range 

part is represented by spin-isospin (and momentum-dependent) operators multiplied 

by Woods-Saxon radial functions [48]. The AV18 potential is directly fit to the 

Nijmegen N N  scattering database [63], which contains 1787 pp and 2514 np data 

up to laboratory-energy of 350 MeV. W ith 40 adjustable parameters it gives a 

X2/da tum  of 1.09 relative to tha t database which was assembled in the early nineties. 

The Idaho N3LO potentials are derived within a  xE FT  formulation with pions and 

nucleons up to order Q4. It involves 24 LEC’s, which are fixed so as to reproduce 

the Nijmegen N N  scattering database up to laboratory-energy of 290 MeV with a 

X2/da tum  of 1.3. Wave functions for A  =  3 nuclei are obtained from a  Hamiltonian 

including, in addition to the AV18 or N3LO two-nucleon, a three-nucleon potential, 

the Urbana-IX (UIX) [49] or the chiral N2LO [16] model. The UIX model describes
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the three-nucleon potential in terms of a  T P E  three-nucleon term  involving the 

excitation of an intermediate A-resonance and a short-range term. Their strengths 

are adjusted to reproduce the triton binding energy and the saturation density of 

nuclear matter. The N2LO three-nucleon potential is derived in a xF F T  approach 

involving pions and nucleons up to leading order. It depends on two LEC’s, which 

are constrained to reproduce the binding energy of A =  3 nuclei and the tritium  

Gamow-Teller m atrix elements.

The charge and current operators, discussed in Sec. 4.1, are obtained up to one 

loop (e Q in the power counting) using the formulation based on T O PT as outlined in 

Chapter 2. In Sec. 4.2 we discuss the methods used to carry out the calculations, and 

the analysis of the results is presented in Sec. 4.3. Details of loop integrals entering 

the charge operators are relegated in Appendix F.

4.1 N U C L E A R  C H A R G E  A N D  C U R R E N T  O P E R A T O R S  U P  T O  

O N E  L O O P

Nuclear electromagnetic charge (p) and current (j) operators—tha t is the time 
and vector component of the four-vector current J^  =  (p ,j)—are expressed as an 

expansion in many-body operators tha t act on the nucleonic degrees of freedom

=  +  +  -  ’ ( 1 9 1 )
i i < j

j(q ) =  J ^ j <(q ) +  I Z j « ( t*) +  -  ’ (192)
i i < j

where p i  (jj) represents the one-body charge (current) operators in which the probing 

photon, with associated momentum q, interacts with individual nucleons; p i j  (j^) are 

the two-body charge (current) operators, and the ellipsis stands for higher many-body 

operators.

In the present work we discuss one- and two-body charge and current operators

up to one loop (e Q) which have been derived in Refs. [29] and [30], respectively. In

the following we define

k* =  Pi -  Pi i K i =  (p' +  Pi) /2  , (193)

k =  (kj -  k2) /2  , K  =  K i +  K 2 , (194)

where p* (p ') is the initial (final) momentum of nucleon i. We further define
+i +i

P = ' E pM , j = £ j <” ) , (195)
m=—3 m=-2
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(a)

J f

(b) (c) (d) (e)

FIG. 11: Diagrams illustrating one- and two-body charge operators entering at e Q~z 

(LO), e Q~l (N2LO), eQ°  (N3LO). Nucleons, pions, and photons are denoted by 

solid, dashed, and wavy lines, respectively. The square in panel (b) represents the 

(Q / m N)2 relativistic correction to the LO one-body charge operator, whereas the 

solid circle in panel (e) is associated with a 77tN N  charge coupling of order e Q. 

Only one among the possible time orderings is shown for the N3LO.

The superscript m  in p ^  and which include both one- and two-body operators, 

specifies the order e Qm in the power counting. They follow from the interaction 
Hamiltonians listed in Appendix A and the perturbative expansion for v ^  discussed 

in Chapter 2.

4.1 .1  C H A R G E  O P E R A T O R S  U P  T O  O N E  L O O P

Contributions to the charge operators up to N3LO (e Q°) and N4LO (e Q) are 

represented in Fig. 11 and Fig. 12, respectively. According to  the power counting, 

the LO (e Q "3) charge operator results from the coupling of the external photon to 

the individual nucleons (panel (a) of Fig. 11) and reads:

p(~3) =  e e Nti{q2) + (1 ^  2) , (196)

where

eNjiql) = CM  +  f f W l T k  , (197)

and G g V denote the isoscalar/isovector combinations of the proton and neutron 

electric (E ) form factors, normalized as G f(0) — G'g(O) =  1. The power counting 

e Q~3 follows from the product of a factor e Q° associated with the Hamiltonian H7nn  

in Appendix A, and a factor Q 3 due to the momentum-conserving <Lfunction implicit 

in this type of disconneted terms. Of course, this counting ignores the fact tha t the
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(a)
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(b)

4 1

(c) (d)

(/) (9 )

r^

(®) O’)

FIG. 12: Diagrams illustrating two-body charge operators entering a t order e Q 

(N4LO). Nucleons, pions, and photons are denoted by the solid, dashed, and wavy 

lines, respectively. Only one among the possible time orderings is shown.
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nucleon electric form factors (as well as the magnetic form factors below) themselves

also have a power series expansion in Q. Here, they are taken from fits to elastic 

electron scattering data off the proton and deuteron [75]—specifically, the Hohler

(yPT) [77]. The calculations of the A = 2 and 3 nuclei elastic form factors th a t follow 

are carried out in the Breit frame, in which the electron-energy transfer vanishes. 

Hence, the hadronic electromagnetic form factors are evaluated at four-momentum 

transfer Q* =  -q^q^  = q2.

At NLO (e Q~2) there are no contributions to the charge operators, while at 

N2LO (e Q-1) we can distinguish three types of diagrams: i) a relativistic correction 

to the LO charge operator (panel (b) of Fig. 11); ii) a pion-in-flight term  (panel (c) 

of Fig. 11); and iii) a one-pion-exchange (OPE) contribution (panel (d) of Fig. 11). 

The relativistic correction of order (Q / m ^ ) 2 to the LO charge operators, coming 

from the second order 7 A  AT Hamiltonian H ^ N, is given by

magnetic (M ) form factors, normalized as G f f(0) =  p,s , and 6^ ( 0) =  p v  with p s

magnetic moments, fis  = 0.88 and p v  =  4.706 in units of nuclear magnetons //,/*/• 

The pion-in-flight term, panel (c) of Fig. 11, vanishes when all the six time-ordered 

diagrams, evaluated in the static limit, are summed up. The O PE contribution, 

panel (d) of Fig. 11, has reducible and irreducible diagrams. The reducible ones 

are not considered since they are generated by iterations of the Lippman-Schwinger 

equation as discussed in Chapter 2, while the static irreducible contributions are 

exactly cancelled from the first non-static corrections to the reducible terms [30]. 

Note tha t, hereafter, momentum conserving ^-functions (q  =  k,) for the pGV and 

and (kj +  k 2 =  q) for the following expressions of the two-body operators, have 

been dropped for brevity.

The N3LO (e Q°) contribution illustrated in panel (e) of Fig. 11 is associated 

with the Hamiltonian H ^ n n  in Appendix A. The evalution of the corresponding

parametrization [76]—rather than derived consistently in chiral perturbation theory

P [2pN,i(q2) -  ejv.i(g2)] (q2 + 2 i q - c r l x K x) +  (1 ^ 2) ,  (198)O m^y

where HN,i(q2) is defined as

(199)

and GSfjjV denote the isoscalar/isovector combinations of the proton and neutron

and pLV denoting the isoscalar and isovector combinations of the proton and neutron
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amplitude gives rise to the following expression

~2 cti • q  <T2 • k 2
+ (1 =  2) (200)

with u>l. =  k2 +  m2. In the present xE FT  contest, p ^  was first derived in Ref. [78]. 

At this order, there are also contributions originating from non-static terms in 

the diagrams in panels (c) and (d) of Fig. 11, obtained by expanding the energy 

denominators involving pions as in Eq. (5). They are given, respectively, by

,(") =  —  A  G ,( g 2) (t , x r 2) . ^ k , . K , +  (1 ^  2) , (201)p y  = *

P d \ v ) =  -

m N F%
e g \ ( T y  k2er2 • k2

2 2

(1 -  u) [GSE{q2) Ti • r 2 +  G^(q2)rz<1} q  • k 2V ( J i \

4 m N F 2 u>i2

+2 * GvE(q2) ( n  x r 2)z k 2 . [ ( l  +  i/)K 2 +  ( l -  i/JKj +  (1 '— 2) ,

(202)

where Gn(q2) is the pion form factor, which we parametrize in vector-meson 
dominance and consistently with experimental da ta  at low momentum transfers as

1
G M ) (203)

1 +  q2/ m 2

where m p is the />-meson mass. The operator of panel (d) of Fig. 11 depends on 

the off-energy-shell extrapolation, specified by the param eter u, adopted for the 

non-static corrections of order m  = 2 (Q2) to the OPE potential, retained in Eq. (11), 

which is parametrized by [79]

,(0 )^  M. T \̂2
■;(2)(k K  v) =  (1 -  2 v)   —  — - — .\  \ , V )  (L I V)  ^  , (204)

where ui°^(k) is the static OPE potential

(oi/ n  9 a  <ti ■ k<r2 • k4 J(k) = u t
(205)

As shown in Ref. [79] (and within the present approach in Refs. [30] and [31]), different 

off-shell prescriptions for v ^ ( v )  and p ^ ( v )  are unitarily equivalent:

P (- 3)+ p 2 V )  =  [,<-»> + ^ >  =  0)

,(-3) 4- =

,(-3) -I- U{y)

^  p(- Z)+ p f { v  =  Q ) F [ p ^ \ i U ^ \ v ) \ , (206)
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where the hermitian operator U(v)  admits the expansion

U{y) = U{0\ v )  + Uw {v) + . . .  , (207)

and U ^ { v )  and U^l\ v )  have been constructed, respectively, in Refs. [79] and [30]. 

A common choice for this parametrization is given by v  =  1/2 in Eq. (204), which 

removes non-static corrections to the OPE potential (these corrections are typically 

ignored in chiral and realistic potentials).

The two-body charge operators a t one loop (N4LO, e Q ) are illustrated in Fig. 12, 

and have been discussed in Ref. [30]. In particular, the contribution arising from 

diagram of type (a) in Fig. 12 vanishes due to an exact cancellation between the static 

irreducible terms and the non-static corrections associated with the reducible ones, 

while the pion-in-flight contributions, illustrated in panel (b) of Fig. 12, vanishes (in 

the static limit) when all the contributions of time-ordered diagrams are summed up. 

The contributions of diagrams in panels (g)-(h) of Fig. 12 also vanish. After carrying 

out the loop integrations (discussed in App. F), the contributions from diagrams of 

type (c)-(f) and (i)-(j) in Fig. 12 read

Gn(q2) r 2<z /  d.r 4 L(x, k\)
r V2 r ft?

4 Z ( £ * o .  +  ( 1 5=8 *>• (209)

k^ + S m l  m \
+  L(x, k2) +  L3(x, k2)

+ ( 1  ^  2 ) ,

+  [4ri,2 -  1/ (n  x r2)J
(<r2 x k 2) • (<Ti x k2) 

L(x, k2)

(210)
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1 a\ f l Z-1/2
d x x  dy0 7T 7̂T Jo J - 1/2

2 r l„ 15A(x,y) +
1

x

A(x,y)

3 A  • (B +  C) +  (A -j- B) • (A  +  C) +  (<ri x A) • icr2 x  A)

(oq x A) • (o-2 x C) — (o-! x B) • (cr2 x A) +  {cr\ x B) • (o-2 x C)

1

+

\ 3(x,y)  
1

(A • B )(A  • C) +  o-i • (A  x B) o’,  • (A  x C)

( n  x t 2) z
A(x, y)

+ (A  +  B) ■ (<t2 x C)

3 0̂ 2 • (A  x C) — B • (02 x A) 

1
A 2(x,y)

A  • B  0-2 • (A  x C) +  (1 ^ 2) ,  (211)

where

(!)Pi e - ^ C ' T Gv(g2) r 1̂ or1 ■ cr2m n +  ( 1 ^ 2 ) ,
7T

(212)

1 a2 f 1!2
- e - % C T Gn(q2)Thz \

* F 2 J0
dx

3 L2( x , q ) - m l
L(x, q)

<T\ - a 2

1/4 — x2 
L(x,q)

cri q 0 2  q +  ( 1 - 2) ,

/,2(x)P) =  ( l / 4 - x 2) p 2 +  m 2 ,

A2(x ,y)  =  x q 2/ 4 — [ x y q -  (1 - x ) k ] 2 +  (l  - x ) k 2 +  m2 ,

A =  - x  (y q  +  k) ,

B  =  (1 -  2xy)  q/2  +  (1 -  x) k  ,

C  -  -  (1 +  2 x y )  q /2  +  (1 -  x) k  .

(213)

(214)

(215)

(216)

(217)

(218)

Note that, due to global charge conservation, contributions beyond the LO term 

vanish at q  =  0. The loop integrals entering the expressions of charge operators at 

e Q are ultraviolet divergent. However the charge operator a t N4L0 is finite since 

the divergencies associated with diagrams (c) and (d), (e) and (f), and (i) and (j) in 

Fig. 12 cancel out [30]. This is in line with the fact tha t there are no counter terms 

at this order. Finally, we note tha t the form of the operator (e) in Fig. 12 depends 

on the off-the-energy-shell prescription adopted for the non-static corrections to  the 

T PE  potential. As in the OPE case, however, these different forms for the T PE  

non-static potential and accompanying charge operator are unitarily equivalent [30].
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r j 4
(a) (b) (c) ( d )

FIG. 13: Diagrams illustrating one- and two-body current operators entering at 

e Q ~ 2 (LO), e Q ~ l (NLO), e Q° (N2LO). Nucleons, pions, and photons are denoted 

by solid, dashed, and wavy lines, respectively. The square in panel (d) represents 

the ( Q / m ^ ) 2 relativistic correction to the LO one-body current operator. Only one 

among the possible time orderings is shown for the NLO.

4 .1 .2  C U R R E N T S  O P E R A T O R S  U P  T O  O N E  L O O P

The contributions to the electromagnetic current operator up to N2LO (e Q°) and 

N3LO (e Q) are illustrated diagrammatically in Fig. 13 and Fig. 14, respectively.

The lowest order e Q~2 (LO) consists of the single-nucleon convection and 

spin-magnetization currents

j i _2) =  ^  [ 2 eWil(?2)K i  + i ^ , i ( < / V i  x q ]  +  (1 ^  2) , (219)

where e ^ ti(q2) and fiN,i{q2) have been defined in Eqs. (197)-(199), respectively.

At order e Q~1 (NLO) there are contributions arising from panels (b) and (c) of 

Fig. 13. The evaluation of these diagrams in the static limit leads to

j l -1) =  -*  g e (q2) (T1 x Tt)x<ri °~2 2k2 +  (1 — 2) , (220)
« Uk2

j^_1) =  i GvE(q2) ( n  x T2)zkl2 ■ kx <r2 ■ k 2 , (221)
7T WfclWik2

where a  (5-function representing the overall momentum conservation has been 

dropped.

The e Q° (N2LO) current is represented by the one-body operator in panel (d) of
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A
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FIG. 14: Diagrams illustrating two-body current operators entering a t order e Q 

(N3LO). Nucleons, pions, and photons are denoted by the solid, dashed, and wavy 

lines, respectively. The solid circle in panel (b) is associated with the 77tN  current 

coupling of order e Q, involving the LEC’s d'8, d'9, and ^21 > the solid circle in panel 

(a) denotes two-body contact terms of minimal and non-minimal nature, the latter 

involving the LEC’s C{5 and C[6.



62

Fig. 13, due to the relativistic correction of order ( Q / t t i n ) 2 to the LO. It reads:

8 m 3N
eNA(q2) [2 { K 2 + q2/4)  (2 IQ

+i(Ti x q) +  K i • q  (q +  2 i 07 x K i)

K r q
% e

0 ^ 3  [v n A q2) ~  eN,i{q2)]
N

x (4 <7i x K i — i q) — (2 z K x — <Ti x q) q2/ 2 

+2 (Kx x q) o-x • K i] +  (1 ^ 2) . (222)

Finally, the currents a t order e Q (N3L0) are illustrated diagrammatically 

in Fig. 14, and consist of: (i) terms generated by minimal substitution in the 

four-nucleon contact interactions involving two gradients of the nucleon fields as 

well as by non-minimal couplings to the electromagnetic field (panel (a) of Fig. 14); 

(ii) OPE terms induced by 77rNN interactions beyond leading order (panel (b) of 

Fig. 14); and (iii) one-loop two-pion-exchange (TPE) terms (panels (c)-(k) of Fig. 14). 

We discuss them below.

The contact minimal and non minimal currents, denoted by the subscripts “min” 

and “nm” respectively, are written as

d 1)

Ja.nm

% e
^  Ge(Q2) (t 1 X t2)z (C2 +  3 C4 +  Ct)  ki +  (Cl — C4 — Cl) ki <Tx • (72

-\-Cj (Ti  • (kx — k2) <r2
i e

e N , i ( q 2) C5 (trx +  o<i) x kx +  (1 t— 2) , (223)

- te G E iQ )C 'u (ri + G E{ q ) C ,16{Th z ~T2,z)(rl x q + ( l ^ ±  2 ) .  (224)

The low-energy constants (LEC’s) C x , . . . , C 7, which also enter the two-nucleon 

contact potential, have been constrained by fitting np and pp elastic scattering data  

and the deuteron binding energy. We take their values from the Machleidt and 

Entem 2011 review paper [5], since the potential discussed in the previous section 

was developed at a later time. The LEC’s C'lf) and C[6 (and d's , d’9, and ^21 below) 

are determined by fitting photonuclear data of the A = 2 and 3 systems, as discussed 

in Sec. 4.3.

The isovector (IV) O PE current a t N3LO (panel (b) of Fig. 14) is given by

. ( i )  . 9 a  G^NA(q2) cr2 • k2
Jb.IV — 1 e F 2 P - y N A  wk2

4 T2,*k2 -  4 l ( r l X T 2 ) z< Tl  X  k2 x q  +  ( l - 2 ) ,  

(225)
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and depends on the two (unknown) LEC’s d'g and d!21- They can be related [28] to 

the N -A transition axial coupling constant and magnetic moment (denoted as ^ n a ) 

in a resonance saturation picture, which justifies the use of the j N A  electromagnetic 

form factor for this term. It is parametrized as

C 7n a (</2)
9 y N A (226)

(1 +  <zVAi,t) V 1 + '
where fxjNa  is taken as 3 fiN from an analysis of 7 N  data in the A-resonance 

region [8 0 ]. This analysis also gives A a ,i = 0 . 8 4  GeV and Aa,2= 1.2 GeV. The isoscalar 

(IS) piece of the O PE current depends 011 the LEC dg mentioned earlier,

.(i) _  • 9 a  
Jb,IS ~ lG p 2 dg Glljp(q2) 7 7  • r 2 ~ p  2 k 2 x q  +  (1 ^  2 )  ,

u
(227)

k 2
and, again in a resonance saturation picture, this reduces to the well known 77179 

current [29]. Accordingly, we have accounted for the q2 fall-off of the electromagnetic 

vertex by including a  ynp  form factor, which in vector-meson dominance is 

parametrized as

G^ ( q2} =  1 +  92/m 2 ’ (228)

mu is the cj-meson mass.

The one-loop TPE currents, diagrams (c)-(g) in Fig. 14, are written [29] as

- i e G vE(q2) (17 x t 2) z V fc Fi(k)  +  i e G vE(q2) r2,z 
kcrj  • k

i(1) =Jloop

x F0(k) 07 -  F2(k) 

where the functions Fi(k) are

k2
x q + ( 1 ^ 2 )  , (229)

F0(k) 9 a

8 7r2F i
1 2 ~ 2 <£

4 (1 +  flft) m l  16 gA m*
k 2 +  4 m 2

+

Fi(k)
1

96;r2 F i G(k)

+k2( 1 +  W A -  23g \)

(k2 +  4 m 2)2 

Am l( l  + 4g2A - 5 g 4A) 

48 9 a K  '

(230)

4 m 2 +  k 2
( 2 3 1 )

F2(k ) = 9 a

87T2Fi 6 ^  +  ^ j  +  C W
fir +  4 m i 4  9 2a

4(1 +  3 g \ ) m l  16 g \ m *
k2 + 4

+
m t (k2 +  4 m 2)2

(232)
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and the loop function G(k)  is defined as

G ( i ) = 2 v l 5 H i n y H H ± i .  (233)
k  2 m ,

Finally, we note th a t the analysis, detailed in Appendix B in Ref. [31], of the 

loop short-range currents corresponding to diagrams (h)-(k) in Fig. 14 shows tha t 

they vanish. We also note tha t the electromagnetic current operator j  up to  one loop 

(e Q) satisfies the continuity equation with the potential vl2 a t NLO (Q2) such tha t

“ ' H 5 £ L  +  5£ L + ’M -  (234)L2mjv 2mtf

where q  is the momentum transfer by the external photon, p i is the initial momentum 

of nucleon i , and the charge operator p includes terms up to e In the yE FT

formulation, the current is conserved order by order in the power counting. The 

relations implied by matching powers in Eq. (234) have been verified explicitly in 

Ref. [28]. Recall tha t a commutator brings in an additional Q3 factor in overall 

power counting.

4.2 C A L C U L A T IO N

This section is divided in two subsections. The first one deals with the definition 

of the electromagnetic form factors for A = 2 and 3 nuclei, while in the second one we 

outline the method used to evaluate the m atrix elements of the charge and current 

operator required in the calculation of those form factors.

4.2.1 F E W -N U C L E O N  F O R M  F A C T O R S

Deuterium is a spin-one nucleus and so has three independent form factors: Gc,  

G m , and Gq, respectively charge, magnetic and quadrupole form factors. They are 

related to the electromagnetic operators in the following way [81]

Gc {q) =  ^  (d',M \ p ( q z ) \ d ; M )  , (235)
M = ±  1,0

GM{q) =  Im [ (cf; 1 | j y(q z) | d- 0) ] , (236)

Ggiq) = 7-[(<*;0 I p(<?z) | d-0)Z T]
- { d - l \ p { q z ) \ d ] l)} , (237)
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where | d; M)  is the deuteron state with spin projection Jz = M, p and j y denote, 

respectively, the charge operator and y component of the current operator, the 

momentum transfer q is taken along the z-axis (the spin quantization axis), and 

rj = (q/2md)2 (m(i is the deuteron mass). They are normalized as

Gc{0) =  1 , Gju(O) =  {rrid/mN) fid , G q (0) =  m 2dQd , (238)

where fid and Qd are the deuteron magnetic moment (in units of p,v) and quadrupole

moment, respectively. Expressions relating the form factors to  the measured 

structure functions A and B, and tensor polarization T2q are given [81]:

A(q2) =  G2c (q2) +  -  r] G2M(q2) +  -  rj2 G2(q2) , (239)

B{q2) = 1 1/(1 + v)G 2M(q2) ,  (240)

I(q2,9 )T 20(q2) = |  V Gc (q2) GQ(q2) + ^r}2 G2q(q2)

+  ̂  *7 [l +  2 (1 +  »?) tan2 6/2] G2M{q2) (241)

where I(q2, 6) =  A(q2) + B(q2) tan2 9/2  with 9 being the angle (in the center-of-mass) 

between the initial and final electron momenta in the elastic scattering process.

The charge and magnetic form factors of the trinucleons are derived from

Fcfa) =  ^ ( + 1  p (qv ) 1+) . (242)

Fm (q) =  - ^ ^ I m [ ( - |  j y(qz)  |+ ) ]  , (243)

with the normalizations

Fc {0) =  1 , Fm (0) -  p , (244)

where p  is the magnetic moment (in units of h n )- Here | ± ) represent either the 

3He state  or 3H state with total 1/2-spin and spin projections Jz = ± 1 /2 . Below we 

also consider the isoscalar and isovector combinations of the trinucleon charge and 

magnetic form factors, defined as

F c V{<l) = l [ 2 F c ( q ; 3E e ) ± F c (q-31l)] , (245)
2

FZlV(q) =  ^ [ F M( q ? R e ) ± F M(q-3E)] . (246)
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4.2 .2  M A T R IX  E L E M E N T S  O F  T H E  E L E C T R O M A G N E T IC  

O P E R A T O R S

The method used to evaluate the m atrix elements of the charge and current 

operator for the A  =  3 systems is outlined here; a  similar prescription is used for 

A  =  2. In momentum space, the one-body electromagnetic operators in Sec. 4.1 have 

the generic form

Oib(q) =  "  q ) ^ kn) Oib(kj,Kj) . (247)
cyclic/,m,n

where k; =  p[ -  p; and K; =  (pj +  p ;)/2  (p; and p[ are respectively the initial and 

final momenta of nucleon I). The m atrix elements of the operator in Eq. (247) can 

be written as

(Oib(q)) =  2̂ ^M'(Pi +  q/2,Pm,Pn)
cyclic/,m ,n ' PoPm ,Pn

x Oib(q, Pi) iPm (Pi -  q /2 , p m, p„) , (248)

where we have defined

[ = 1 0 ) I  <“*d J ( . . . )  =  (2>r)3S(. ■ ■) ■ (249)

For an assigned configuration (p i,p m,Pn), the wave functions are expanded on a 

basis of 8 x 3 spin-isospin states for the three nucleons as

24

^(P i.Pm .Pn) =  $ ^ a ( P i 5Pm,Pn) I a) , (250)
a—1

where the components xpa are complex functions and the basis states (for 3H, for 

example) | a) = | (p t ) i . ( n  D 2, (n t)s ) , I (n t ) i . ( p  t ) 2, (« Da), and so on. The 
spin-isospin algebra for the overlaps

24

xjA O i/} =  E C  0*6^6 , (251)
a,6—1

is carried out with the techniques developed in Ref. [82]. Monte Carlo (MC) methods 

are used to evaluate the integrations in Eq. (248) by sampling momenta from a
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(normalized) probability density | iI>m (p i , p m, p n) |2 according to the Metropolis 

algorithm.

The two-body operators in Sec. 4.1 have the momentum-space representation

0 2b(q) =  £  8(Klm - q ) S ( K )
cyclic l,m,n

xC)2b(Kirn/2  +  k im, Kim/2  -  kjm) , (252)

where the momenta K;m =  k; +  k m and k/m =  (k; -  km)/2 . These operators 

have power law behavior a t large momenta, and need to be regularized. This is 

accomplished by introducing a momentum cutoff function of the form

CA(klm) =  e ^ ' " ^ 4 , (253)

with the param eter A in the range (500-600) MeV (see discussion in Sec. 4.3). The 

m atrix elements are expressed as

(02b(q)) =  5 Z  I  I  (P( +  q /4  +  k;m/2 , p m +  q /4  — k/m/2 , p n)
cyclic/,m ,n Pf»Pm>Pn

x C A(klm) 0 2b(q, k/m) ^ M(pi -  q /4  -  k /m/2, p m -  q /4  +  k<m/2, p n) .

(254)

The spin-isospin algebra is handled as above, while the multidimensional integrations 

are efficiently done by a combination of MC and standard quadratures techniques. 

We write

(02b(q)}= f d k  [  F (k , pi, p m, p„) ~  -J- , (255)
J  J p i , P m , P n  ^VC C =1 W  \ C)

where c denotes configurations (k, p*, p m, p n) (total number N c) sampled with the 

Metropolis algorithm from the probability density W{c) = | Fm {Pu Pm, Pn) |2/ (4 7r), 

i.e., uniformly over the k directions. For each such configuration c, the function F  is 

obtained by Gaussian integration over the magnitude kim (as well as the parameters 

x  and y  for the case of the charge operators at one loop)

-j r o c ***

F (C) =  Xrf (27r)3 J X p a{-■-klrnk.  . ■)
cyclic (,ro,n 3 a,6=1

x02b,a6(q, kimk) ijjbi,- ■ ■ kimk . . . )  . (256)

Convergence in these Gaussian integrations requires of the order of 20-30 points, in 

the case of distributed over a non-uniform grid up to 2 A or so, while Nc of the
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order of 100,000 is sufficient to reduce the statistical errors in the MC integrations, 

which are of the order of a few % at the highest q values (and considerably 

smaller a t lower q). These MC errors are further reduced by taking appropriate 

linear combinations of the m atrix elements of the electromagnetic operators using 

different q  directions and different spin projections for the initial and final states. 

The trinucleons wave functions are obtained with the hyperspherical harmonics 

(HH) expansion discussed in Refs. [83-86]. This method can be applied in either 

coordinate- or momentum-space.

4.3 R E SU L T S

This section consists of three subsections. In the first one, we discuss various 

strategies for the determination of the unknown LEC’s d'8, d'9, d'21, C'15, and (J'm 

entering the current operator a t N3LO (e Q). In contrast, the charge operator up 

to N4LO (e Q) only depends on the nucleon axial coupling constant gA, pion decay 

amplitude Fn, and nucleon mass and magnetic moments. The two-body operators 

are regularized via the cutoff function in Eq. (253), and A values of 500 MeV and 

600 MeV are considered.

In the second and third subsections we present results, respectively, for the 

deuteron A(q) and B(q) structure functions and tensor polarization 720(7), and for 

the charge and magnetic form factors of 3H and 3He, along with results for the static 

properties of these few-nucleon systems including the deuteron quadrupole moment, 

the deuteron and trinucleons charge and magnetic radii and magnetic moments. 

The A = 2 calculations use either the Argonne iqg (AV18) [48] or chiral potentials at 

order Q 4 with cutoff set at 500 MeV (N3LO) or 600 MeV (N3LO*) [5]. Of course, the 

A — 3 calculations also include three-nucleon potentials—the Urbana-IX model [49] 

in combination with the AV18, and the chiral N2LO potential [16] in combination 

with either the N3LO or N3LO*.

The calculations are carried out in momentum space with the methods outlined in 

Sec. 4.2. The hadronic electromagnetic form factors entering the one- and two-body 

charge and current operators are those specified in Sec. 4.1. The matrix elements of 

these operators are evaluated with Monte Carlo methods. The number of sampled 

configurations is of the order of 106 for the deuteron and 105 for the A — 3 systems. 

The statistical errors, which are not shown in the results tha t follow, are typically 

<  1% over the whole momentum-transfer range, and in fact much less than 1% for
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TABLE 7: Dimensionless values of the isoscalar LEC’s corresponding to cutoffs 

A =  500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO*/N2LO* 

Hamiltonians; the values in parentheses are from the AV18/UIX Hamiltonian.

A df df x 10

500 4.072 (2.522) 2.190 (-1.731)

600 11.38 (5.238) 3.231 (-2.033)

q <  2 fm \

4.3.1 D E T E R M IN A T IO N  O F  T H E  L E C ’S

As already remarked, the LEC’s C*, i =  1 , . . . ,  7, in the minimal contact current, 

corresponding to A cutoffs of 500 and 600 MeV, are taken from fits to N N  scattering 

d a ta  [5]. In reference to the LEC’s entering the OPE and non-minimal contact 

currents at N3LO, it is convenient to introduce the dimensionless set d f ’v  (in units 
of the cutoff A) as

C'15 = df/A4 , d' = df/A2,

c m = 4 /  a 4 , 4  = 4 / a 2 , 4  = 4 / a 2 , (257)

n 1/
where the superscript S  or V  on the 4  ’ characterizes the isospin of the associated 

operator, i.e., whether it is isoscalar or isovector. The isoscalar df, listed in Table 7, 

have been fixed by reproducing the experimental deuteron magnetic moment //<* 

and isoscalar combination p s  of the trinucleon magnetic moments. Invoking the 

requirement of “naturalness” for the LEC’s, we notice tha t LEC d f  multiplying the 

contact current is rather large, but not unreasonably large, while the LEC df is quite 

small.

The isovector LEC d f  is taken as d f /4  by assuming A dominance. The three 

different sets of remaining LEC’s d f  and d f  reported in Table 8 have been determined 

in the following way. In set I d f  and d f  have been constrained to reproduce the 

experimental values of the np radiative capture cross section anp a t therm al neutron 

energies (n+p  —> d + 7 ) and the isovector combination p,y of the trinucleons magnetic 

moments. This procedure, however, leads to large values for both LEC’s. This 

pathology is especially severe in the case of the AV18/UIX Hamiltonian model. In
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TABLE 8: Dimensionless values of the isovector LEC’s corresponding to cutoffs 

A =  500 MeV and 600 MeV obtained for the N3LO/N2LO and N3LO*/N2LO* 

Hamiltonians; the values in parentheses are from the AV18/UIX Hamiltonian. Note 

tha t d \  = d\ / 4  in all cases; see text for further explanations.

A d\{  I) 4(i) 4(H) 4(H) 4(111) 4(111)
500 10.36 (45.10) 17.42 (35.57) -13.30 (-9.339) 3.458 -7.981 (-5.187) 3.458
600 41.84 (257.5) 33.14 (75.00) -22.31 (-11.57) 4.980 -11.69 (-1.025) 4.980

sets II and III 4  is assumed to be saturated by the A resonance, i.e.

4  =  4 f^jNA hA (2 5 g )

9mjv(mA — ttin)

where m & - m N =  294 MeV, hAj F n =  / ^ a / ^  with /^ /VA/ ( 47r) — 0.35 as obtained 

by equating the first-order expression of the A-decay width to the experimental value, 

and the transition magnetic moment /j^na =  3 /j,n , obtained from the analysis of 7 A  
data in the A-resonace region [80]. A similar strategy has been implemented in a 

number of calculations, based on the yE FT  magnetic moment operator derived in 

Ref. [27], of the n +  p - 4 7  +  d, n + d —> 7 + 3H, and n + 3He—>• 7 + 4He radiative 

captures, and magnetic moments of A =  2 and 3 nuclei [87]. On the other hand, 

the LEC d \  multiplying the contact current is fitted to reproduce either anp in set 

II or f iy  in set III. Both alternatives still lead to somewhat large values for this 

LEC, but we find the degree of “unnaturalness” tolerable in this case. There are no 

three-body currents at N3LO [29], and therefore it is reasonable to fix the strength 

of the two-nucleon contact operators by fitting a three-nucleon observable such as /is  

and fiv .

4.3 .2  ST A T IC  P R O P E R T IE S  A N D  F O R M  F A C T O R S  O F  T H E  

D E U T E R O N

The deuteron root-mean-square charge radius and quadrupole moment, obtained 

with the chiral and AV18 potentials and cutoff parameters A =  500 MeV and 600 

MeV, are listed in Table 9. We denote the leading order (m =  —3 in the notation of 

Sec. 4.1) term of Eq. (196) with LO, the m =  —1 relativistic correction of Eq. (198) 

with N2LO, and the m, =  0 terms of Eqs. (200) and (201) (202) with N3LO(OPE) 

and N3LO(^), respectively. The remaining charge operators a t N4LO (m =  1),
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TABLE 9: Cumulative contributions to the deuteron root-mean-square charge radius 

and quadrupole moment corresponding to cutoffs A =  500 and 600 MeV obtained 

with the N3LO and N3LO* Hamiltonians; results in parentheses are from the AV18 

Hamiltonian. The experimental values for rd and Qrf are 1-9734(44) fm [88] and 

0.2859(3) fm2 [73], respectively.______________________________________________

rd (fm) Qd (fm2)
A 500 600 500 600

LO 

N2LO 
N3LO(OPE) 

N3LO(n =  1/2)

1.976 (1.969)

1.976 (1.969)
1.976 (1.969)

1.976 (1.969)

1.968 (1.969)

1.968 (1.969)
1.968 (1.969)

1.968 (1.969)

0.2750 (0.2697) 

0.2731 (0.2680) 
0.2863 (0.2818) 

0.2851 (0.2806)

0.2711 (0.2697) 

0.2692 (0.2680) 
0.2831 (0.2814) 

0.2820 (0.2802)

being isovector, do not contribute to these observables (and corresponding form 

factors). The N3LO/N3LO* and AV18 potentials neglect non-static corrections in 

their OPE component, which corresponds to setting u =  1/2. The N2LO and N3LO 

corrections to rd, which is well reproduced by theory, are negligible. The chiral 

potential predictions for Qd are within 1% of the experimental value, while the AV18 

ones underestimate it by about 2%. Variation of the cutoff in the (500-600) MeV 

range leads to about 1% (negligible) changes in the N3LO/N3LO* (AV18) results. 

The LO and N2LO charge operators do not include the cutoff function and the AV18 

results are independent of A. This is not the case for the results corresponding to 

the N3LO and N3LO* potentials because of their intrinsic A dependence.

The deuteron A(q) structure function and tensor polarization T20(r/), obtained at 

LO and by including corrections up to N3LO in the charge operator, are compared 

to data in Fig. 15, top panels. In this figure (as well as in those tha t follow) the 

momentum-transfer range goes up to q =  7.5 fm-1, much beyond the ~  3-4 m v 

upper limit, where one would naively expect this comparison to be meaningful, given 

tha t the present theory retains up to T PE  mechanisms.

The A(q) structure function is well reproduced by theory up to q ~  3 

fm-1. At higher momentum transfers, the N3LO results based on the AV18 

tend to overestimate the data—a feature also seen in calculations such those of 

Ref. [81]—while those based on the chiral potentials still provide a good fit to the 

data. The cutoff dependence is weak at low q, but becomes more pronounced as q



FIG. 15: The deuteron structure function A(q) and tensor polarization T2Q(q) 
(top panels), and charge and quadrupole form factors Gc(q) and Gq(q) (bottom 

panels), obtained a t leading order (LO) and with inclusion of charge operators up to 

N3LO (TOT), is compared with experimental data  from Refs. [89-110]. Predictions 

corresponding to v =  1/2 and cutoffs A in the range 500-600 MeV are displayed by 

the bands.

increases. Similar considerations hold for the T20(q) observable, although in this case 

the N3LO results derived from the chiral potentials overpredict the data  for q >  3 

fin-1 , while those from the AV18 fit reasonably well the data up to q ~  4.5 fm-1 .

The charge and quadrupole form factors, Gc(q) and Gq(q) respectively, extracted 

from the unpolarized and tensor polarized deuteron data are compared to results 

obtained in LO and by including corrections up to N3LO in Fig. 15, bottom  panels. 

The deuteron magnetic moment is one of the two observables utilized to fix the LEC’s 

entering the isoscalar current operators at N3LO. The structure function B(q) and 

magnetic form factor Gm (q), obtained with the AV18 and chiral potentials, and 

currents a t LO and by including corrections up to N3LO, are compared to data
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TO T  A V I8 
LO  N 3LO  
TO T  N 3LO  
L O A V 18

10

■310

q (fm"1)

FIG. 16: The deuteron structure function B(q) (top panel) and magnetic form factor 

G m {q) (bottom panel), obtained a t leading order (LO) and with inclusion of current 

operators up to  N3LO (TOT), is compared with the experimental data  from Refs. [89, 

95, 96, 111-113]. Predictions corresponding to cutoffs A in the range 500-600 MeV 

are displayed by the bands.
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in Fig. 16. There is generally good agreement between theory and experiment for 

q values up to ~  2 fm-1 . At higher g’s, the results corresponding to the chiral 

(AV18) potential under-predict (over-predict) the data significantly when the current 

includes up to N3LO corrections. In particular, the diffraction seen in the da ta  at 

q ~  6.5 fm-1 is absent in the AV18 calculations, and is shifted to lower q values in the 

N3LO/N3LO* ones. There are large differences between the N3LO/N3LO* and AV18 

results with the LO current, which simply reflect differences in the S- and D-wave 

components of the deuteron wave functions corresponding to these potentials. The 

cutoff dependence is large for the chiral potentials, while it remains quite modest 

for the AV18 over the whole momentum transfer range. This is consistent with the 

rather different sensitivity of the LEC’s d f  and df  to variations of A in the (500-600) 

MeV range obtained with either the chiral potential or AV18, see Table 7. There is 

a  mismatch in the chiral counting between the potentials of Ref. [5] at order Q4 and 

the present current a t order e Q. This becomes obvious when considering current 

conservation, which for these potentials would require accounting for term s up to 

order e Q3 in the current, well beyond available derivations [29, 32, 33] a t this time.

4 .3 .3  ST A T IC  P R O P E R T IE S  A N D  F O R M  F A C T O R S  O F  T H E  

T R IN U C L E O N S

The notation for the various components of the charge operator is the same 

as given a t the beginning of Sec. 4.3.2, except th a t now the one-loop (isovector) 

corrections a t N4LO contribute too, since the 3He and 3H nuclei have predominantly 

total isospin T  = 1/2. As a m atter of fact, the hyperspherical harmonics wave 

functions utilized to represent their ground states also include small T  =  3/2 

admixtures due to isospin-symmetry breaking terms induced by the electromagnetic 

and strong interactions.

There are no unknown LEC’s entering the charge operator up to N4LO, and 

the predicted root-mean-square charge radii of 3He and 3H, obtained with the 

N3LO/N2LO and AV18/UIX combinations of two- and three-nucleon potentials and 

cutoffs in the (500-600) MeV range, are listed in Table 10. Corrections a t N2LO, 

N3LO, and N4LO are negligible—the corresponding operators vanish a t q =  0. The 

spread between the N3LO/N2LO (A =  500 MeV) and N3LO*/N2LO* (A =  600 

MeV) results a t LO is about 0.5%, which is much smaller, particularly for 3H, than
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LO AV18/UIX 
LO N3LO/N2LO 
TOT AV18/UIX 
TOT N3LO/N2LO

q (fm'1) q (fm'1)

FIG. 17: The 3He and 3H charge form factors (top panels), and their isoscalar and 

isovector combinations (bottom panels), obtained at leading order (LO) and with 

inclusion of charge operators up to N4LO (TOT), is compared with experimental 

data  [114]. Predictions corresponding to v  =  1/2 and cutoffs A in the range (500-600) 

MeV are displayed by the bands.
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TABLE 10: Cumulative contributions in fm to the 3He and 3H root-mean-square 

charge radii corresponding to  v  =  1/2 and cutoffs A =  500 MeV and 600 

MeV, obtained with the N3LO/N2LO and N3LO*/N2LO* Hamiltonians; results in 

parentheses are relative to the AV18/UIX Hamiltonian. The experimental values 

for the 3He and 3H charge radii are [113] (1.959 ±  0.030) fm and (1.755 ±  0.086) fm, 

respectively._____________________________________________________________

3He 3H

A 500 600 500 600

LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N2LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N3LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N4LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

the experimental error. The predicted radii for both Hamiltonian models are within 

0.5% of the current experimental central values.

The calculated charge form factors of 3He and 3H, and their isoscalar and isovector 

combinations F^(q) and Fq (q), normalized, respectively, to 3/2 and 1/2 a t q — 0, 

are compared to data in Fig. 17. The agreement between theory and experiment 

is excellent for q <  2.5 fm-1. At larger values of the momentum transfer, there is 

a significant sensitivity to cutoff variations in the results obtained with the chiral 

potentials. This cutoff dependence is large at LO and is reduced, a t least in 3He, 

when corrections up to N4LO are included. These corrections have opposite sign than 

the LO, and tend to shift the zeros in the form factors to lower momentum transfers, 

bringing theory closer to experiment in the diffraction region. As already remarked, 

the chiral (and realistic) two-nucleon potentials utilized in the present study ignore 

retardation corrections in their O PE and T PE  components, which corresponds to 

the choice u =  1/2 in the non-static pieces of the corresponding potentials and 

accompanying charge operators in Eqs. (202) and (210) [30].

Moving on to  the magnetic structure of the trinucleons, we note tha t the isoscalar 

combination of 3He and 3H magnetic moments is used to fix one of the two 

(isoscalar) LEC’s entering the current a t N3LO. Both the isovector combination p v  

and the np radiative capture cross section anp are used to fix the isovector LEC’s in
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TABLE 11: Cumulative contributions in fm to the 3He and 3H root-mean-square 

magnetic radii corresponding to cutoffs A =  500 MeV and 600 MeV, obtained 

with the N3LO/N2LO and N3LO*/N2LO* Hamiltonians; results in parentheses are 

from the AV18/UIX Hamiltonian. Predictions corresponding to sets I, II, and II 

of isovector LEC’s d \  and d \  in Table 8 are listed. The experimental values for 

the 3He and 3H magnetic radii are [113] (1.965 ±  0.153) fm and (1.840 ±  0.181) fm, 

respectively._______________________________________________________________

3He 3H

A 500 600 500 600

LO

NLO

N2LO

2.098 (2.092) 

1.990 (1.981) 

1.998 (1.992)

2.090 (2.092) 

1.983 (1.974) 

1.989 (1.984)

1.924 (1.918) 

1.854 (1.847) 

1.865 (1.859)

1.914 (1.918) 

1.845 (1.841) 

1.855 (1.854)

N3LO(I) 1.924 (1.931) 1.910 (1.972) 1.808 (1.800) 1.796 (1.819)

N3LO(II) 1.901 (1.890) 1.883 (1.896) 1.789 (1.774) 1.773 (1.778)

N3LO(III) 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)

set I of the N3LO currents, while in sets II and III one of these LEC’s is fixed by 

A dominance, and the other is determined by reproducing anp (nv)  in set II (III). 

By construction, then, the 3He and 3H magnetic moments are exactly reproduced in 

sets I and III, while in set II they are calculated to be, respectively, -2.186 (-2.196) 

/ijv and 3.038 (3.048) with the N3LO/N2LO (N3LO*/N2LO*) Hamiltonian and 

A =  500 (600) MeV, and similar results with the AV18/UIX Hamiltonian. These 

should be compared to the experimental values of -2.127 /qv and 2.979 /i/v-

The 3He and 3H magnetic radii corresponding to sets I-III are given in Table 11. 

The predicted values are consistent with experiment, although the measurements 

have rather large errors (10% for 3H). Their spread as A varies in the (500-600) MeV 

range is a t the 1% level or less. A recent quantum Monte Carlo study [115], using 

wave functions derived from realistic two- and three nucleon potentials (the AV18 

and Illinois 7 model [116]) and set III of yEFT currents, has led to predictions for 

magnetic moments and transitions in nuclei with A  <  9 in excellent agreement with 

the measured values. Therefore in the following, unless stated otherwise, we adopt 

set III of isovector LEC’s. We disregard set I for the reasons already explained in
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I i i i i I i i i i1
-  LO AV18/UIX
-  LO N3LO/N2LO
-  TOT AV18/UIX
-  TOT N3LO/N2LO

q (fm ')  q (fm '1)

FIG. 18: The 3He and 3H magnetic form factors (top panels), and their isoscalar 

and isovector combinations (bottom panels), obtained a t leading order (LO) and 

with inclusion of current operators up to N3LO (TOT) corresponding to the LEC’s 

d f  and d f  in Table 7 and to set III of isovector LEC’s d \  and d f  in Table 8, is 

compared with experimental data  [114]. Predictions relative to cutoffs A in the 

range (500-600) MeV are displayed by the bands.
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See. 4.3.1.

The magnetic form factors of 3He and 3H and their isoscalar and isovector 

combinations F§j(q) and F^f (q), normalized respectively as //$ and [iy &tq — 0, a t LO 

and with inclusion of corrections up to N3LO in the current, are displayed in Fig. 18. 

Two-body currents are crucial for “filling in” the zeros obtained in the LO calculation. 

For q < 2 fm-1 there is excellent agreement between the present xE FT  predictions 

and experiment. However, as the momentum transfer increases, even after making 

allowance for the significant cutoff dependence, theory tends to underestimate the 

data, in particular it predicts the zeros in both form factors occurring a t significantly 

lower values of q than observed.



80

CHAPTER 5 

CONCLUSIONS

The overarching goal of nuclear theory is to understand the structure and 

reactions of nuclei and nuclear matter. W ithin this broad goal, the present work 

investigates the extent to which yE FT  correctly describes the strong-interaction 

dynamics in the few-nucleon systems, and their response to electromagnetic probes.

In the first part of the present study, we have constructed a coordinate-space 

nucleon-nucleon potential with an electromagnetic interaction component including 

first and second order Coulomb, Darwin-Foldy, vacuum polarization, and magnetic 

moment terms, and a strong interaction component characterized by long- and 

short-range parts. The long-range part includes O PE and T PE  terms up to 

N2LO, derived in the static limit from leading and sub-leading t t N  and irN A  chiral 
Lagrangians. Its strength is fully determined by the nucleon and nucleon-to-A axial 

coupling constants gA and Ha) the pion decay amplitude F*, and the sub-leading 

LEC’s ci, c2, c3, c4, and b3 +  68, constrained by reproducing t t N  scattering data 

(the values adopted for all these couplings are listed in Table 1). In coordinate 

space, this long-range part is represented by charge-independent central, spin, 

and tensor components without and with the isospin dependence Ti ■ t 2 (the 

so-called ve operator structure), and by charge-dependence-breaking central and 

tensor components induced by OPE and proportional to  the isotensor operator Ti2.

The short-range part is described by charge-independent contact interactions 

specified by a total of 24 LEC’s (2 at LO, 7 a t NLO, and 15 a t N3LO) and by 

charge-dependent ones characterized by 10 LEC’s (2 a t LO and 8 a t NLO), 5 of 

which multiply charge-symmetry breaking terms proportional to t \ z  +  t 2 z  and the 

remaining 5 multiply charge-dependence breaking terms proportional to T 12■ In the 

NLO and N3LO contact interactions, Fierz transformations have been used in order 

to rearrange terms tha t in coordinate space would otherwise lead to powers of p—the 

relative momentum operator—higher than two. The resulting charge-independent 

(coordinate-space) potential contains, in addition to  the vq operator structure, 

spin-orbit, L2, quadratic-spin-orbit, and p 2 components, while the charge-dependent 

one retains central, tensor, and spin-orbit components.
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The 34 LEC’s in the short-range potential have been constrained by fitting 5291 

pp and np scattering data  (including normalizations) up to 300 MeV lab energies, 

as assembled in the Granada database, and the pp, np, and nn  scattering lengths, 

and the deuteron binding energy. The global x 2(pp +  nP)/datum  is 1.3 for the three 

different models we have investigated, each specified by a pair of (coordinate-space) 

cutoffs, respectively, 11̂  and Its for the long- and short-range parts: (Ii\,, Rs) =  

(1.2,0.8) fm for model a, (1.0,0.7) fm for model b, and (0.8,0.6) fm for model c. 

These cutoffs are close to the 1/(2 m n) ~  0.7 fm T PE  range. The values of the 

LEC’s corresponding to  the three models are given in Table 4.

In the second part of this study, we have provided predictions for the static 

properties, including charge and magnetic radii and magnetic moments, and elastic 

form factors of the deuteron and trinucleons, which are among the observables 

of choice for testing models of nuclear interactions and associated electromagnetic 

charge and current operators. The wave functions describing these nuclei were derived 

from either yEFT or realistic two- and three-nucleon potentials. The m atrix elements 

of the xE FT  charge and current operators were evaluated in momentum-space with 
Monte Carlo methods.

The yE FT  calculations (based on the chiral Idaho N3LO [5, 6] potential) and the 

hybrid ones (based on the AV18) reproduce very well the observed electromagnetic 

structure of the deuteron for momentum transfers q up to 2-3 fm-1. In some cases, as 

in the A(q) structure function, the agreement between the experimental and yEFT 

calculated values extends up to q <  6 fm-1, a much higher momentum transfer than 

one would naively expect the present expansion to be valid for. On the other hand, 

the measured B(q) structure function is significantly under-predicted (over-predicted) 

for q > 3 fm-1 in the yE FT  (hybrid) calculations. The yE FT  results, in contrast 

to the hybrid ones, have a rather large cutoff dependence. This cutoff dependence 

originates, in the hybrid calculations, solely from tha t in the N3LO current, while in 

the yE FT  calculation it also reflects the A dependence intrinsic to the potential (the 

N3LO for A =  500 MeV or N3LO* for A =  600 MeV).

The calculated 3He and 3H charge form factors are in excellent agreement with 

d a ta  up to q <  3 fm-1 . However, the observed positions of the zeros are not generally 

well reproduced by theory, and the measured 3He (3H) form factor in the region of 

the secondary maximum at q ~  4 fm-1 is underestimated (overestimated) in both 

yE F T  and hybrid calculations. A glance a t the F^(q) and FrV (q) in Fig. 17 suggests
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tha t two-body isovector contributions to the charge operator should be considerably 

larger (in magnitude) than presently calculated, in order to shift the zero in *£(«) 

to smaller q.

The isovector currents a t N3LO depend on two LEC’s (d \  and d%), which 

have been fixed in one of three different ways: by reproducing the experimental 

np radiative capture cross section anp and isovector magnetic moment p v  of the 

trinucleons simultaneously (set I); by using A dominance to constrain d% and by 

determining d \  so as to  fit either anp (set II) or pv  (set III). Set I is not considered 

because of the “unnatural” values of the LEC’s. The 3He and 3H magnetic form 

factors calculated with N3LO currents corresponding to set III, while in excellent 

agreement with data  for q <  3 fm-1, under-predict them at higher momentum 

transfers.

The N N  potential developed in the first part of this work has not yet been utilized 

in the calculation of the static properties and elastic form factors of A  =  2 and 3 

nuclei since the completion of this program requires one to construct the three-body 

potential as well as the electromagnetic charge and current operators with explicit 
inclusion of A-isobars degree of freedom. This could be an interesting research project 

for the future.

Another fascinating line of research would be the implementation of this 

two-nucleon potential (and accompanying three-nucleon potential) in Quantum 

Monte Carlo methods which have proved very valuable in computing properties of 

light nuclei and nucleonic matter.
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APPENDIX A

INTERACTION HAMILTONIANS

In this appendix we define the notation and convention adopted in the present 

work. We also list the nuclear and electromagnetic interaction Hamiltonians 

involved in the calculation of the nuclear potential discussed in Chapter 3 and the 

electromagnetic charge and current operators examined in Chapter 4.

A .l  N O T A T IO N  A N D  C O N V E N T IO N

The expressions for the relativistic pion field in the isospin triplet, 7ra(r), and 

canonical conjugates, n a(r), are represented in the Schrodinger picture [34], at 

position r, as

n*(T) =  ] C ^ r = [cP’“ eip'r +  h -c-] ’ (259)
p V 2 u p

n«(r) =  p.aei p r - h . c . ] , (260)

where a = x , y , z  denotes the Cartesian component in isospin space, cPia and cj,

are the annihilation and creation operators for a pion of momentum p  satisfying the

standard commutation relations:

[c p,a> Cp',a'] =  ^P,p'^a,a' • (261)

Normalized plane waves e*p r/L 3//2, satisfying periodic boundary conditions in a cubic 

box of volume L3, are used in the above field operators. Since physical observables 

do not depend upon the normalization volume, we have set L =  1. Note tha t in 

Eqs. (259)-(261) a limit L oo is implicit; therefore:

E - /  = / < & •  <»>
5P>P/ -> (2 7 r)3 < 5(p  — p ' )  =  <5(p  — p ' )  . (263)

The pion energy u p is defined as u>p =  \Jp'2 + , where in this context —

(2 m,r+ +  m no) /3  is the averaged pion mass over its states. The annihilation operators
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of the charged and neutral pions are related to the Cartesian cPiQ’s introduced in 

Eqs. (259)-(260) by

Cp,± — "f"  ̂cp,y) • Cp 0 =  CptZ , (264)

and the charged and neutral pion field operators are defined as

± eip r +  Cp T e^ip'r] , (265)*±00 =  -^[7rx(r)T*7ry(r)] =  ^ —^ [ c p>:
v 2 ^

*o(r) =  **00 , (266)

such th a t 7r+io , - ( r )  create n “,0’+ or annihilate 7r+ ’° ’_ , respectively.

The nucleon and A-isobar fields, N ( r) and A (r), with their corresponding 

canonical conjugates iN ^(r )  and i A^(r), are taken in the non-relativistic limit as

iV(r) =  X l V - e iprx . r ,  (267)
p , ( T T

* 0 0  =  E  d p ^ e ^ x * ^ ,  (268)
P.ctata

where bpaT and dpaATA are the annihilation operators for a nucleon of momentum 

p  and spin-isospin state Xot — XaVr and A-isobar of momentum p  and spin-isospin 

state  Xo&ta = XnA , respectively. In this case, the operators bp rJT and b̂paT, and 

similarly dptaATA and d)p , satisfy the standard anticommutation relations for the 

fermionic fields:

{bPt(TTi ^p^ct't'} dppi5a<(Ji8T<T' • (269)

A .2 S T R O N G  IN T E R A C T IO N  H A M IL T O N IA N S

The interaction Hamiltonians involving pions, nucleons and A-isobars fields are 

derived from the chiral Lagrangiangs £„yv, £?r/vA, and Cn n  in Eq. (2) formulated in 

Refs. [3, 4, 36-39]. In particular the interaction Hamiltonians implied by ixN and 

n N A  Lagrangians read as

Hknn = y*dr A f(r) [<r ■ V7ra(r)] ra iV(r) , (270)
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H-rrnNN

HnNA

= J *  / * * ( r )  [*(*) x n (r )] ‘ t N ( t) , (271)

=  ^  J dr A*(r) [S • V7ra(r)] Ta N ( r) +  h.c. , (272)

h ™n n  = f d r N ' ( r )  cx ^ -4 r o J  +  ^  7r2(r)^  -  ^  I I2(r)

TT n2(r) + ^ [ V7r(r ) ’ V7r(r)]
7T

2 c4
F 27T

eafccT-c [V7Ta(r) x V7T(,(r)] ■ a N(r)  , (273)

=  2 t ^ ^ i y d r A t ( r ) [ S - V n 0(r)]T 0 ^ ( r )  +  h.c. , (274)

where cra and r a are spin and isospin Pauli matrices and Sa and Ta are transition 

spin and isospin operators, converting a nucleon into a A-isobar and satisfying

s l  s b =  !<*o6 -  i^abcOc , (275)

and similarly for T* TJ,. The “known” LEC’s g^,  F ,  and Ha are the nucleon

axial coupling constant, pion decay amplitude, and iV -toA  axial coupling constant, 

respectively, while the LEC’s, C{ (i =  1,..., 4), are determined by fits to n N  scattering 

data  [11] as discussed in Chapter 3. The naive power counting of the interaction 

Hamiltonians follows by noting tha t each derivative brings in a factor of Q,  where 

Q is the low-momentum scale. Therefore, Eqs. (270) (272) give rise to interactions 

of order Q (panels (a), (b) and (c) of Fig. 19, respectively), while Eqs. (273)-(274) 

represent their sub-leading corrections of order Q2 (panels (d) and (e) of Fig. 19, 

respectively).

The lowest order (LO or Q°) N N  Lagrangian, represented by panel (f) of 

Fig. (19), has no derivatives of the nucleon fields and reads [1]

HCto = \  f  dr \Cs[N*(r)N(r) ][Nt ( r)N{r)]  + CT [ N \ r ) t r N( r ) ] - [ N ' { r ) t r N( r ) ] \  ,

(276)

where the “unknown’ LEC’s, Cs  and Ct , are determined by fit to the N N  data.

The second order (Q2) N N  contact interaction, denoted by a solid dot in panel
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(g) of Fig. 19, can be stated as follows [3, 4, 39]

H o n  =  C [ j d r \ [ N \ r ) V N ( r ) } 2 + [ VN' ( r ) N{ r ) }

+C'2 j  d r ^ r )  ViV(r)] • [V iV ^r) N{r)}

+C'3 J  dr[N*(r) N ( t)] N*(r)  V 2iV(r) +  V 2iV+(r) N ( r)

+iC'4 J  dr[[iVf(r) VyV(r)] • [V A f(r) x trW (r)]

+ [V A +(r) N { r)] • [Af(r) o  x VJV(r)]]

+iC'5 f M K ' U m V y N ' i r )  ■ cr x N (  r)]

+iC'G J m n ' W . N W ]  • [V iV ^r) x VAf(r)]

+(Cj  Sik Sjt + C8 Su Skj +  C9 Sv 6kl) J  d r []A+(r) ak ^TV(r)] 

x [N^(r) CT; 9j./V(r)] +  [diN*(r) ak N ( r ) ] [ d j ( r )  ct; A(r)]

+(Cio <hfc 5ji +  C'n  5U Skj + C ]2 Sij 5kl) J  dr[iVf(r) ak d; A(r)]

x [9,-JVt(r) ct; JV(r)] 4- \  C[,(Slk Sjt +  Sa Skj) + C[4 ^  Skl

x j  dr[diN^(r)ak djN(r)  + d j N \ r )  (7k diN(r) ][N\r )  at N(r)} .(277)

The Hamiltonian in Eq. (277) leads (in the center-of-mass frame) to seven 

independent operator structure in the potential each multiplied by a coefficient named 

C; with i = 1, ...7 tha t is a linear combinations of these LEC’s C\. The Hamiltonian 

/ / c t 4 at order Q4 (panel (h) of Fig. 19) is not given explicitly. We only list the 

corresponding contact potential in the center-of-mass (see Chapter 3).

A .3 E L E C T R O M A G N E T IC  IN T E R A C T IO N  H A M IL T O N IA N S

In this section we list the electromagnetic interaction Hamiltonians obtained by 

“minimal” and “non-minimal” substitutions as discussed in Sec. 2.3 of Chapter 2. In 

the following we distinguish between interactions involved in the construction of the 

charge operators and those involved in the derivation of the current operators. The 

electromagnetic operators are obtained up to one loop, e Q in the power counting, 

and A-isobars are not retained in their calculation.
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FIG. 19: Schematic representation of the strong interaction Hamiltonians. Pions 

are represented by dashed lines, nucleons by solid lines and A-isobars by solid thick 

lines. The open circle represents the sub-leading contribution to the corresponding 

interactions. The solid dot and open square represent the contact interactions a t Q2 

and Q4, respectively.

A .3.1 E L E C T R O M A G N E T IC  IN T E R A C T IO N  H A M IL T O N IA N S  F O R  

C H A R G E  O P E R A T O R S

The relevant interaction Hamiltonians for the derivation of charge operators up 

to one loop are give by

B 7nn  = e e N Jdr N^(r) A°(r) N(r )  , (278)

# 7** = e Jdr A°(r) [7r(r) x n(r)]2 , (279)

B-ynN =  e —  [ dr N \ r )  a  ■ Vv4°(r) [ r  • 7r(r) +  7rz(r)] N (r) , (280)
2. m  n  J

B %  =  - e  y ~ ? -.~2e s  f d r N \ T ) \ v 2A 0(r) + ( T x V A 0( v ) - ^
°  m N  J

- ^ • < r x V d ° ( r ) ] i V ( r ) ,  (281)

where m n  is the nucleon mass. The isospin operators e# and are defined as

eN = (1 +  T z ) f  2 , kn  = (ks  +  KV Tz ) / 2 , fxN =  eN +  kn  , (282)
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\  /  /  \ ✓ /

(a) (b) (c) (d)

FIG. 20: Schematic representation of the electromagnetic interaction Hamiltonians 

involved in the derivation of charge operators. Notation is as in Fig. 19 but for 

the wavy lines which denotes photons. The full dot in panel (c) represents the jttN  

interaction of order e Q, and the square in panel (d) denotes the (Q /m jv)2 relativistic 

correction to the term in panel (a).

and Ks and Ky are the isoscalar and isovector combinations of the anomalous 

magnetic moments of the proton and neutron. The arrow over the gradient specifies 
whether it acts on the left or right nucleon field. The interaction Hamiltonians in 

Eqs. (278)-(281) are schematically represented in Fig. 20. They behave, relative to 

the low-momentum scale Q, in the following way (ignoring the counting Q assumed 

for the external field): N 7jv,v ~  e Q° (panel (a) of Fig. 20), Hynw and I fy7r/v ~  e Q 

(panel (b) and (c) of Fig. 20), and H ^ N ~  e Q2 (panel (d) of Fig. 20).

A .3 .2  E L E C T R O M A G N E T IC  IN T E R A C T IO N  H A M IL T O N IA N S  F O R  

C U R R E N T  O P E R A T O R S

Finally, the relevant interaction Hamiltonians involved in the derivation of current
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operators up to one loop read:

HlNN = e f d r N ^ r ) \ i ^ - { - ^ - A ( r )  + A ( r ) ^ ]  
J  1 1  TJIm

77T7T

(283)

(284)

H-yvN = y*dr N^(t) a  ■ A (r) [ r  x 7r(r)]z iV(r) ,

Jdr N^(r)  [[dg 'Virz(r) +  d'9 ra V7ra(r)

(285)

+ 4 1  tzabTb<T x V7Ta(r)] • V  x A (r) N ( r) , (286)

where the parameters d[ are the LEC’s discussed in Sec. 4.3. The above Hamiltonians

are schematically represented in Fig. 21 and they behave as: H-f^N and / / 77r7f ~  e Q

(panels (a) and (b) of Fig. 21), / f77rN ~  e Q° (panel (c) of Fig. 21), and H ^ N ~  e Q2 

(panel (d) of Fig. 21). Panel (e) of Fig. 21 represents the (Q/mAr)2 relativistic

the coupling to the EM field and implies a two-nucleon contact operators. These 

contact interactions, represented by panel (f) of Fig. 21, are listed in [28] and will 

not be reported here. They depend on the LEC’s involved in the strong interaction 

Hamiltonians H c t2 discussed in Sec. A.2.

However non-minimal couplings through the electromagnetic tensor FM„ are also 

allowed (represented also by panel (f) of Fig. 21). The only two independent operator 

structure are

correction to the one-body operator in panel (a) and scales as ~ e Q 2.

Minimal substitution in H q t2 leads to a contact Hamiltonians which includes

H  CT,7nm — ^ J d r  [c jsW ^r) c t N(r)  N \ r )  JV(r) +  C ^ iV ^ r )  o  tz N ( t) N \ t) N ( r)

- N ' ( T ) t r N ( r ) N \ r ) T g N ( r ) \  - V x A (287)

where the isoscalar C[5 and the isovector C [6 LEC’s (as well as the ri' in Eq. (286) 

can be determined by fitting data  in the few-nucleon systems as discussed in Sec. 4.3.



FIG. 21: Schematic representation of the electromagnetic interaction Hamiltonians 

involved in the derivation of current operators. Notation is as in Fig. 20. The solid 

dot in panel (d) is associated with the y n N  current coupling of order e Q2, involving 

the LEC’s d'8, d'9, and 4 i ;  the solid dot in panel (f) denote the two-body contact 

terms of minimal and non-minimal nature, the latter involving the LEC’s C[5 and 

C [6. The square in panel (e) denotes the (Q / tun)2 relativistic correction to the term 

in panel (a).
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APPENDIX B

DIMENTIONAL REGULARIZATION: LOOP 

CORRECTIONS TO THE N N  POTENTIAL AT NLO 

INCLUDING A’S

As discussed in Chapter 3, T PE  contributions contain ultraviolet divergencies 

which need to be removed by a  proper regularization scheme. In order to remove 

these divergencies, loop integrals have been regularized via dimensional regularization 

(DR) [40, 41]. In practice we evaluate the three momentum loop integrals as follows

JrJ  (2r)» v  ’ (288)
where n  is a renormalization scale introduced to preserve physical dimensions. As 
d —» 3, this integral becomes singular; however its divergent parts are identified by 

the param eter e =  3 — d. Once the regularization is carried out, the divergencies are 

absorbed, order by order, by the corresponding LEC’s, which are determined from 

experimental data. In what follows, we discuss DR of the loop integrals involved in 

the calculation of diagrams (g)-(i) of Fig. 3, given in Eqs. (45)-(47), respectively.

B . l  A  C O L L E C T IO N  O F  U S E F U L  F O R M U L A E

In the following we define H (289)
d dl 

{2^)d 
and

In ( N  a)  = A y  , a , A > 0 , n even >  0 , (290)

where it is understood tha t the result of the integration is analytically continued to 

d =  3. We find:

In(A-a)  =  - U a  ~  d/2) A _(a_d/2)
oi ’ j (47^/2 r (a) ’

In ( A ' a )  =  ___ - ____ -  r ( Q ~  ~  ^  ^ - ( a - d / 2 - i )  ( 2 9 2 )
2{ , ) (47r)d/2 2 T(a)  ’ 1 j

t f ( A - a )  = __ -___ ^  +- ^  ~ d/ 2 ~  ^  A - (a~d/2~2) (293)
41 ’ ; (47r)d/2 4 T(a) ’ K
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where T(z) is the T-function satisfying zT( z )  — T{z +  1), with asymptotic behavior 

for z —)■ 0 given by

r (z) =  -  -  7 +  0 { z 2) , (294)
z V 2 12,

and 7 «  0.5772 is the Euler-Mascheroni constant. Note tha t a  factor ni d is 

understood to multiply the r.h.s. of Eqs. (291) (293). The following Feynman’s 

parametrizations will also be utilized below:

1 _  r ( “ + / » j f V  ( » )
A* BP Fla)  FMj J„ \z A +  { I -  z) R \ - s

1 f 1 [ l~Zl 1
=  2 I dzi /  dz2  o . (296)

A B C  Jo Jo [z1A + z2 B  + ( l - z 1 - z 2) C f

B.2 REGULARIZATION OF “TRIANGLE-LIKE” CO NTRIBUTIO N  

W ITH  ONE A

The “triangle-like” contribution with one A-isobar, given in Eq. (45), can be 
simplified in the following way

„,2; ’nlo ( M A )  =  n  • 75 M W  fc2 - £ £ ( * ) ]  , (297)

where ^o(k)  and L2 (k) are defined, respectively, as

n j 0 dA A2 +  4 A2 /  (A2 +  ) (A2 +  u i )  (298)

(*) -  -  f * y  . (299)Wo a 2 +  4 A 2 Jo y Ji [\* + P + C(y,k)]2 { }

Using the Feynman’s parametrization given in Eq. (295) and shifting the integration

variables, [1 — (2 y — 1) k] —> 1, the term Lg(k)  can be written as

2  p o o  X 2  f 1 f  1
U r(fc) = -  dA— — /  dy / ------------------------ * , (300)

W o A2 + 4 A 2 Jo y  J, [A2 +  I2 +  C(y,  k)}2

where the function C(y,  k) has been defined as

C(y, k)  =  4 [ml + y (1 -  y) k2) >  0 y € [0,1] . (301)

The integral over 1 is converging; therefore using Eq. (291) we find

i J W  =  I  f  Ay f  . (3 0 2 )
2 Jo (A2 +  4 A2) [A2 +  C(y,  k)]l/2
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where we have used
\3

r d A A 2 = M ! / .
Jo 47r J x

(303)

The integral f ^ ( k )  is logarithmically divergent. Using one more time the Eq. (295), 

we express L ^ k )  as

Lo(k) =  7  /  dy f dz ~  [  ------------ --------- ttt , (304)
4 Jo  Jo  yfz J x  [A2 -f D(y,  z, k)]  ̂ V

where the function D(y,  z, k ) has been defined as

D(y,  z, k) = z C(y,  k) + 4 A 2 (1 — z) >  0 y, z  €  [0,1] . (305)

The integral over A is carried out in dimensional regularization (e =  3 —d). Therefore, 

collecting the results we find tha t

i J rW  =  ̂ j ( 7 - 7  +  1̂ ) + ^ ' W ,  (306)

where the finite part of the integral reads as

*?(* ) =  - n r i r  [ '  f  d* 4 =  . (307)

The integral in Eq. (307) is well defined in the limit z 0. It can conveniently be 

calculated numerically.

We now turn  our attention to the integral L^ik) ,  which can be written as

™  ■ «
and the term  /^ ( fc )  proportional to (2 y — l ) 2 k2 can be dealt with as above. 

Therefore, it reads as

L *a^  = 2 I ^ 2 ( ~  -  T +  InTr'j +  I ? a(fc) , (309)

where

t L { k )  = - J h L  A y{2 y ~ 1)2 f a d z T z l n £ ^ 4 ^ -  (310)

Instead, the integral L ^ k )  can be written as

2 f 1 A2 f  I2
-  - 1  i y  I  dA I  k ) f  • (»11)
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we find

which can be expressed as the linear combination

L l\(k ) = L t ( k )  -  4 A 2 Lt2rd(fc), (312)

where

* < * >  -  (313)

^  - I  J ! 'i y T ‘iX  ̂  ' (314)
In the integral I-^dk) one can first perform the integral in A obtaining

L "A k)  -  i j M p r i r 1 (315)
which leads to a quadratic divergent integral. Performing the usual regularization,

L2c(k ) = - ( "  “  7 +  ln7r +  5 )  (6 +  +  ^ 2c(fc) > (316)

where the finite part of the integral is given by

t L ( k )  = ih [ i y  c { y ’ k) ■ (317)
The remaining integral L 2(i ( k )  is decomposed as

L U k )  = L&ik)  -  I>2f(k) +  L%(k)  , (318)

where

L * e ^  =  * L d y L  dAA2 + 4A2 l \ *  +  P  +  C ( y , k )  ’ (319)

L*f (k) = -  f  dy f  dA f ---------------------- j  • (32°)
2 /W  W o  y J 0 J i ^  + P + C f a k ) ] 2

2 f 1 f°° 1 f  1
L2 a{k) =  -  /  dy \ 4 A 2 - C ( y , k ) ]  /  dA —— — - /  ------------------------- -3 .

2sV  ̂ vr J0 y L ^  J0 A2 +  4 A2 7, [A2 +  P +  (7(2,, fc)]2

(S21)

The integral L2g(k) = L2g(k) is finite, and can be easily done. It is convenient to 

parametrize it as
I pi /-I 1 POO I

I*2»  =  ^ l A v [ ^ - c M ] f ^ T z l

(322)
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where in the first line the integration in 1 has been performed and the Feyman’s 

param etrization has been used. The integral L y ( k )  has a  logarithmic divergence; 

performing first the integral in A and then using Eq. (291), we find

Li f  m  = 5^2 0  -  1 +  t o )  +  *?/(* ) , (323)

where
1 „ C M )

The integral L ^ k )  is further decomposed as

I  J i /1"  4 ; a ■ (324)

4 . M  =  - 4 h ( t )  + 4 A 2 k U k ) +  L “# )  ■ (325)

where

L"k(k) =  n l i V l  i X  i { V  + ‘2 + C(y,k)}  [P +  C(i/,*)1 ’ (326)

A2 +  4 A 2 J x [A2 +  P +  C(y, k)] [P +  C(y, A:)]
fl /*oo

(327)

w  = v /  *  f  "  ™  l  ■ <328>
After integrating over A, L ^ ^ k )  can be regularized in d =  3 in the usual way as

( 2 - 7  +  l n * ) + ! ? „ ( * ) ,  (329)

where

=  (330)

To calculate the (finite) integral L ^ k )  = L2i(k), one can use the Feynman’s 

parametrization given in Eq. (296) with A = A2+4 A 2, B  =  P+ C, and C ' =  A2+ /2+C r 

to obtain
jl/2

4 7T2 70 2:3/2 0 (y , *0 ’

where we have rescaled the A and 1 integrations as y/1 — z<i A —> A and y/1 — z\ 1 —> 1. 

Also, we have defined z =  1 — z x and introduced the function D(y,  z, k) of Eq. (305). 

Finally, we have carried out the integrations over Z2 , A, and 1, respectively. Note tha t 

the singularity a t z =  0 is integrable. We are left with the linearly divergent integral
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and the linear divergence does not show up in dimensional regularization. Therefore, 

the integral L ^ k )  in Eq. (325) becomes

where

L U k )

< ( * )  =  ~

4 n 2 V 7 ~ 7 +  ln n ) + L 2e(k), (333)

C ( y , k ) [ l A j  C(y,  k)
d y

4 A2

1 2)1/2
Jo Jo D(y,  z , k) z3/2

The integral L 2 d(k) in Eq. (318) becomes

L U k ) 3 /2 - d +zr8tr2 \ e  7 +  kl7T) + L 2 d(k) ,

(334)

(335)

where

rtr
L2 d(k) = 7 3  3 dy  In

C(y,k)
87T2 | ,/n 4 fi2

2 7T/VC(y , k)  
4 A 2

[  dy f  dz —j=. —  |~4 A
Jo  ' Jo  \[z  D(y,  z, k ) [

2 - 2  (1 - z ) 1/2 +  z
C ( y , k )

(336)

Finally we find tha t the integral L ^ k )  in Eq. (312) is 

1
L ^ ( k )

16 7T2
2 ( j  -  7 +  ln7r j  (k2 + 6 m 2 -  12 A 2) +  ^  (A;2 +  6 m 2)

where

+ * £ ( * ) ,

1

(337)

16 7T2 

■ 16 7T A 2

3 /  dl/ [8 A 2 -  C(y,  fc)]

f ' d y j £ k £ + S A > [ \
Jo V  4 A 2 J 0 Jo y / z  D(y,  z ,  k)

1/2
4 A :

2 -  2 (1 -  z ) 1/z + ^
C ( y , k )

The integral L^ i k )  in Eq. (308) is given by

48 7T2
4 ( ------ 7  4 - ln7r j (A;2 +  9 m 2 -  18 A 2) + 2  (A:2 +  6  m 2)

(338)

+  , 

(339)
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where

L2 (k) = L 'l ( k )  +  l ‘2r„(k) , (340)

defined in Eq. (310) and Eq. (338), respectively. Combining the results above, we 

find tha t the “triangle-like” contribution consists of a polynomial of order 2 in k 

(with divergent coefficients) and a  finite part v ^ ' NLO(k; 1A), i.e.

2tt,N L O /'
vtr (k; 1A) =  Tl ■ t2 P?(k; 1A) +  v2t: 'Nh0(k ; 1A) , (341)

where the polynomial term is given by

P2tr( *; 1A)
1 h \

216tr2 F i
10 ( ----- 7 +  ln7r — In—y  ) +  3

+18 m i 2 ( j  -  7  +  ln7r -  l n ^  ) +  1

mt
72 A  7 +  ln?r — In—£

H2

The finite part v ^ ’NLO(k; 1A) can be defined as

(342)

v* ',NLO(fc; 1A) =  n  • r 2 1A),27r , t r / (343)

where 

v2Tn'tl{k- 1A) 1 h \
187r2 F i

k2 f  d y y ( y  -  1) [  dz -^= ln  
Jo J  0 V z

2 I A . . ^ C (V>k ) 3 r d y C (y,k)  In
Jo+*A’ / d»,"4»4 4

1 i „ D (y , z ,k)  
A m 2

C ( y , k )
4 m 2

4 A 2 WJo Jo
dz

2 — 2 \J\  — z  +  2:

D(y
- 2 A 2 f  d y C ( y , k )  f  d z -^ = — —  

, z , k )  Jo Jo

2 3 /2

k)
(344)

Note tha t we have re-expressed the //-dependent logs in the integrals above as, for 

example

hi-—j  — > ln--— -  +  In—y  , (345)
An2 4 m 2 //2

and have incorporated the resulting polynomials of order two in k  (with //-dependent

coefficients) into Prfik] 1A).
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B .3  R E G U L A R IZ A T IO N  O F  B O X  C O N T R IB U T IO N  W IT H  O N E  A

The “box-like” contribution with one A given in Eq. (46) can be written as

2tt,NLO 
box (k; 1A) 9 a  h A 

9 A F i
3 [Lqox(A:) k4 -  2 L \ox{k) k 2 +  Lbox(*0]

+ r i  • r 2 [Ho°x(k) k4 -  2 U2box(fc) k2 4- / / 4box(lc)]

+ 2 n  • r 2 (<ri x k )Q (<r2 x k)^ La£x(/c) 

+6 (<ri x k )a (cr2 x k)^ / / b)f (A;) (346)

where

2 2  ’

ia ip
2 2"  >

W -

(347)

(348)

and H„ox(k) and II)™(k) are defined similarly, but with

1 2 A 4- w_|_ 4" w_
/ 12  / 12tu_|_ w+ (w+ 4- 2 A) (oj_ 4- 2 A) (cj+ 4- w_)

(349)

Consider first the integrals Lbox(/c) which can be parametrized as

-1 ' [ l  +  ( 2 » - l ) k ] n
(350)

[P + C(y,k)}2

Using the relevant integrals in Eqs.(291)-(293) we find the following (finite) integrals 

in dimentional (d = 3) regularization

-rb o x ,L*°x(k) = L T ( *) -  /8 t t  J 0 dy
1

L>2°x(k) — 1*2 (k) =  -  —
07T

y / C M '

3 dy y/C{y,k)  -  k2 jT dy (2y -  l ) 2

(351)

V c M
(352)

Lbox(£) =  Lh4°x(k) = [5 f  dy [C(y, k)}3/2 -  10k2 f  dy (2y -  l ) 2
o n  I Jo Jo

+ k ‘ f  d y ( 2 y - l ) 4 
J o V C M

(353)
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The integral L ^ ( k )  can be worked out in a similar way such tha t

L l f ( k )  = L DJ ( k )
—box . f l d  / [k + (2y-l)fcq]fo + (2y- l ) fy ]

Jo y  Ji [P + C(y,k)}2

<W f  dy y / C(y , k )  -  ka kp f  d y ( 2 y -  l)2 
Jo Jo

_ 1 _ 

8  7T

X
i / w

(354)

and we observe tha t the tensor term proportional to kakp vanishes when contracted 

with the spin-dependent structure in < x NL°(k ; 1A). Therefore we have:

OTT J0
(355)

The remaining //k°x(/c) integrals can be written as

4 A f°° .. f  ln
7T (A2 +  4 A2) (A2 +  ) (A2 +  w2 ) ’

(356)

and similarly for H ^ x(k). The convergent integral //qox(/c) =  H 0°x(k) is given by

=  (357)

where we have used the Feynman’s parametrization in Eq. (295) and integrated over 

A. The integral //£ox(/c) can be parametrized as

/2 +  (2y — l) 2 k2

1
A2 4- /2 +  C(y,  k ) f

l
2A [ i M  + r - 5  f  d y ( 2 y - l fL 8 7T2 JQ Jo yfz D{y, z, k ) .

,(358)

where the integral L^JJk) has been defined in Eq. (314) and solved in Eq. (335). 

Therefore we have

,2
box /  / \  S A f 2  \  — b o x , . .DOX/'-N ' -  -  7 +  ln7T -  In—f  ) +  H 2 (k ) (359)

where

H h2°X(k) =  2 A L * d ( k ) + A j  f  dy (2y -  l)2 f  dz - ^ =  —
Jo Jo v z u { y , z , k) j

,(360)
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with L2 d(k) defined in Eq. (336) where we already have considered the substitution

in Eq. (345). Lastly, H box(k) reads as

4 A f 1 f°° 1

=  ~ l A a l  d A v To j o   ̂ t 4 A 2 
f  P +  (2 y -  l ) 4 fc4 +  2 (2 y  -  l )2 [A;2 I2 +  2 ( I . k )2]

X l  [A2 +  /2 + C(y,k)}2 ' ( }

The integral H box(k) can be written as

//{“ (*) -  //* ? (* ) +  H fH * ) +  +  « < ? (* ) .  (362)

where

4 A f°° 1 r  l4
=  ----  dy  dA —— —  /  -= , (363)

4 a W  W o  Jo  V  +  4 & 2 J x [ \ 2 d - P  + C(y,k)}2 K ’
d a  r 1 r°° 1

X /  [A2 +  P +  C(y, A;)]2 ’ (364)
4 A  7 1 700

/  d y 4 ( 2 t , - l ) 2 /  dA.
^  Vo Vo A2 +  4 A2

x f  , (36 5)
/ ,  [A2 +  /2 +  <?(?/, A;) 2A, [A2 +  /2 +  <7(t/,A0

4 A  f 1 1
H b4T ( k ) =  —  jf  d y 2 ( 2 y - l ) 2 j  dA —

i!
[A2 + 12 +  C(y, k)}

In order to proceed for the integral H b°x(k), we need to use the decomposition

f  Px / ------------------------- , (366)
Jx X^ + P + C(y,k)}2

4 2P P
[A2 +  4 A2] [A2 +  p2 +  C(y, A;)]2 [A2 +  4 A2] [A2 +  p2 +  C(y,  A;)]

P2
[A2 +  p2 +  C(y,  k)}2

p2 [4 A 2 -  C(y,k) \
, (367)

[A2 +  4 A2] [A2 + p2 + C(y,  A;)]2 

which is based on Eq. (318). Therefore the integral H blx(k) can be written as

H b:x(k) =  H b°x(k) -  H bf ( k )  +  H b°x(k) , (368)
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where

4 A
7T

11"3d53 4 A 
7r

f f f J W  = 1 ^
 

 ̂
1 >

/ ' * /Jo Jo
dA

i i

I2

dy

A2 +  4 A 2 J x [A* + l2 + C(y,k) \  ’

f dA /' ^io Ji I~ ' J i  [A2 +  /2 +  C(p, A:)]2

(369)

(370)

/2

[A2 +  /2 +  C(j/, A;)]2 ' 
(371)

The integral H\™{k) is similar to the integral L^d{k) defined in Eq. (314) and solved 

in Eq. (335). Therefore, after performing dimensional regularization, we find tha t

( f  -  1  + ln* -  )  (** +  6 -  6 a 2 ) +  « !7 (* 0  . (372)

where

• a 2 2 - 2 ( 1  - z ) l , 2  +  z
4 A 2 i ------------- C{y,k)

k)

(373)

Instead, the integral H ^ ( k )  is similar to defined in Eq. (313); therefore in

analogy to Eq. (316)

=  - 4^2 ( 7  -  t + l m r + 1 - ln^ )  (*2 + 6 m i)  +  • (374)

where
-v rb o x , . 3 A
» 4 / W  =  g ^ f d y C ( y , k )

Jo
In

4 m 2
(375)

Finally, the integral Hd°x(k) is considered and the following decomposition is used

P 1
[A2 +  4 A2] [A2 + p2 + C(y,  k)} A2 +  4 A 2 A2 +  p2 +  C(y,  k)

4 A 2 -  C(y,  k)
[A2 +  4 A2] [A2 + p2 + C(y,  A:)]

The integral H%°x(k) can be w ritten as

H \ ? { k )  =  H f t ( k )  -  H * ? ( k )  +  H }™( k )  ,

(376)

(377)
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where

H f r w  =
4 A

7T

f f j r m  =
4 A

7T

«<?■(*) =
4 A

7T

r 1 roo r 1

Jo  y  J o  J x [X2 + l2 + C ( y , k ) ] ’

f d A

(378)

(379)

+  C(y,  *)] ' 
(380)

The first integral H ^ ( k )  gives an infinite constant which we drop. Using the relevant 

integrals in Eqs.(291)-(293), the integral H%°x(k) is given by

H f f W  =  ~ 2 ( ;  -  7 +  1 +  In* -  l n ^ )  (k ! +  6 m \)  + H ^ ( k )  , (381)

where

f  dy C( y , k )  
Jo

In
C(y, k)

(382)
4 m2

The integral H^°x(k) is similar to L ^ ^ k )  defined in Eq. (319) and solved in Eq. (333). 
Therefore we find

H»f { k )

where

A /  2
O 2 I 7 +  6TT1 \  e

ln7r — ln^-y 'j (k2 + 6 m J  — 6 A2) +  H^°*(k) , (383)
ft )

Hh™{k) = [ f  dy [4 A 2 -  C(y, fc)j ln ^ y’^  -  tt f  dy  [4 A 2 -  C(t/, Ar)]
■̂'7r I JO '±m ir Jo

C(y,  k)
4 A2

z 3 /2

Finally, the integral H^°x(k) in Eq. (377) is given by 

A

k)

(384)

m ? { k )
6  7T2

3 | ?  _  ^  +  jn7r _  ln ^ y  ) (A;2 +  6 m 2 -  4 A 2) +  k 2 +  6 m 2

+ < » , (385)
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where

7 C ( * 0 = 4 ^ 2  d y  [ 8 A 2 - 3 C ( y , k ) \ \ n ^ ^ - - 2 n  J  d y  [4 A2 -  C ( y ,  A;)]

(386)

J  A  9  '4 A2

1 -  ( 1  -  z f 2
z 3/2

The integral H ^ x(k) in Eq. (368) is given by

A
5 — 7 +  hur -  ln ^ y ^  (fc2 +  6 m 2 — 4 A2)

47T2 

+ ( k 2 + 6  m2) Tbox ,

+  H Z ( k )  , (387)

where

^ 5 f  d y  [8  A2 -  3 C ( y ,  fc)] ln- -—^  -  8  n  f  dy [4 A2 
J o  4  m7r J o

-C fo*)] V t I ?  + j f 1 «•» [ 4 -  C ( * *)] £ i z  j . - f l j j '

8  A:
, 4 - 4  (1 - z ) l/2 +  z

2 C ( y , k )

k )

(388)

Now we consider the finite integral l l ^ x(k) =  H ^ ( k )  in Eq. (364) which is similar 

to L,2 g{k) in Eq. (322). Therefore we have

H 4b(k ) = k4 Jo dy (2 v -  !)4 J q d z ^
1

(389)
4tt2 "' J q v“* J q ~~ y f z  D ( y ,  z ,  k )  '

Lastly, the integrals H^°x'a^(k) and H ^ x(k) in Eqs. (365)-(366) can be combined 

together such tha t

+  n i r w
4 A 10 , ,  f 1

r f e l A v { 2 y ~ l f L  " a t t s z s /
I2

A2 + 4 A2 J l [.\2 +  p  +  C ( y , k ) } 2 '
(390)

This integral H \ ° * + d ) ( k )  is similar to l l \ ° x { k )  defined in Eq. (371) and solved in 

Eq. (372). Therefore

£,2=  — k2 Q - T  +  l m - l n ^ J  +  < ^ o ( * )  , (391)
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where

< W * )
5 A
67T2

f  dy (2?/ — 1) 
Jo

2 . C(y,  k )
2 In -  2 tr

4 m2
f  dy (2y — l ) 2 
Jo

C{y,k)  , f ,  „ 2 f 1 ,  1 1
+  /  dy (2y — 1) /  d z - p — ------ —

Jo Jo v*  ^(y» 2.

4 A'

4 A2

, 2 — 2 (1 — z f 2 + z
2C(y , k ) (392)

The integral H4ox(k) therefore becomes: 

A
H ^ ( k )

with

24 7T2

+ H h4°x(k) ,

10 0  -  7 +  ln-7r -  (^2 +  18 m l ~  12 A2) +  (A:2 +  6 m 2)

(393)

H h; x(k) = H h; : ( k ) + H h4? ( k ) + H h4°;+d)( k ) , (394)

where the integrals H^°*(k), I I ^ ( k )  and H ^ . +d̂ (k) have been defined in 
Eqs. (388) (389) and (392), respectively. Finally, we need to calculate H^0x(k). 

When you apply Feynman’s parametrization you need to substitute la - f  la — 

ka (2y — 1). The term proportional to ka k0 vanishes as in the case L ^ x(k). 

Therefore we have

f / s r w  =
m

7 +  ln7r — In—y  +  H a0 (k) ,

where

. 9 aP I 1 ' “ * 24 TT1 \  6
Trbox,

(395)

(396)

with I^JJk) defined in Eq. (336) where the substitution in Eq. (345) has been 

performed. Finally the “box-like” contribution with one A can be written

& NL0(k; 1A) ^b^NL°(k ; 1 A) + T, • r 2 P2box(fc; 1 A)

+(A;2 <7-1 • <7-2 -  tT! • kcr2 • fe) P o ° x {k] 1A) , (397)
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where

P0box( M  A) = 9 a  h  a  1 /  2 m i
F* 6 7r2 \  e 

9 a  h A  1

F* 216 7T2

7 + lrnr -  In—̂
H2

(398)

0 772'
46 ( -  -  7 +  InTr -  ln -^ f ) +  1

+ 6  m . 3 0  ( -  — 7  +  l n 7 r  -  \ v i ~  ) +  1

-120 A2 — 7 +  ln7r - (399)

and

-2?r,N L O
Wbox (k; 1A)

+ v ^ xLO(k, 1A) S 12( k) +  [ i & T t y ;  1A)

+^r,'box0 (A:; 1A) a x • <t2 +  < br ( F  1A) S12(k)] n  • r2

(400)

with

, 27T.NLO/, .
c.box (k; 1A) 9  a h A  

24 A F i  7r
A:4 / ' d y  [l — 2 (2 y — l ) 2 4- (2 y — l ) 4] 

Jo

l= =  + 2 k 2 j \ y  [3 —5 ( 2 y —l)2] y/ C(y , k )
s / C M

v2jr,NLO
(T,box (k; 1A) 9 A h A  , 2  

27FiTT2

2tt,NLO
t,box (fcjlA) -

+5 y [ C ( y , k ) f 2 
Jo

J0 4 m2

+  I* dy 1 14 A
Jo Jo V z D{y , z , k )  L

-CXy, fc)] ,

o Z1 ,  , < % ,* ) o J 1 J l C( y , k )
3 l dy l n^ f ~ 2 i r J o d y y ^

(401)

3

22 — 2 (1 - z ) 1/2 + z

(402)

54 F 4 7r2

+ f  dy f  d * 4 = ^ p -
Jo Jo v* £>(y, 2,

C ( y , k

k)
4 A:

22 — 2 ( l - 2 ) 1/2 +  2

(403)
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v.. 27r,NLO 
V,box (fc;i A) =

^r,box°(*; 1A) 

2 tt,N L 0 /
£r,box '(* ;1A )

9 A hA 
216 F^7r2

fc4 f  dy  [l -  2 (2y  -  l ) 2 +  (2y -  l ) 4] 
Jo

x l i z 7 i D ( ^ T ) ~ i k i 3 l d y [ i - 5 { 2 v - i r ]

Xln^ r _ 2 , r /  dj/ [ 3 - 5 ( 2 3 ,  ~  I )2] \ /
!C(y,k)  

4 A 2

+

x 4 A :
, 2 - 2  (1 - z ) 1/2 +  2

x [8 A 2 -  3 C(y, A;)] -  8 7r

(7(y,A;)| | + 3  |5 /  dy 

i
H

A m 2n
f  dy  [41 

Jo

~C{y , k ) }  \ J ^ ^ -  + f Q dy [4 A2 -  C(y,  A;)] J  dz-^=

x
1 8 A 2^ ~  4 (1 -  2)1/'2 +  2 _  2 C { y , k

D{y, z, k) 

n n Jo54 A F* 

9a h a
io

0 V*

, (404)

(405)

(406)

B .4  R E G U L A R IZ A T IO N  O F  B O X  C O N T R IB U T IO N  W IT H  T W O  

IN T E R M E D IA T E  A ’S

The “box-like” contribution with two intermediate A ’s given in Eq. (47) can be 

written in the following way

vboxNL°(k ; 2A) J A _
81 F*

(6 +  n  • r 2) [Lh0°*(k) k4 -  2 L \ox{k) k2 +  Lbox(A;)

+  (<r\ x k )a (<r2 x k)^ Lhaf ( k )

+  (6 -  n  • r 2) [/70box(A-) A:4 -  2 /7box(A) k2 +  / / box(A:)

(*n X k)a (<t 2 x k)fl / / b2x(fc) (407)
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where

7 boxm  =  f  < 4  +  ^ - + ^ - + 4 A ( o ; + +  u;_ +  A)
n J l w+ a;_ (u>+ 4- 2 A )2 (w_ 4- 2 A )2 (w+ +w_)

~bOX/i \ f  w+ ”1” T + 4 A (w+ +  4- A)
^a/3 W  =  J^ u + lo-  (u+ +  2 A )2 (w_ +  2 A )2 (a>+ 4- u;_) ^  ’

and

« r w  =  , j f t j w  =  .

(408)

(409)

(410)

with H^°x(k) and //^™(/c) defined as in the previous section. Note tha t

4- -I- uj-i-CJ— 4" 2 a  (b2_f_ 4“ 4~ d j 2)
(w+ +  a)2 (w_ +  a)2 (a>+ +  w_)

(2 +  UJ-1_ "}* CJ_
da (w+ +  a) (w_ 4- a) (cj+ +  u/_)

(411)

with a =  2 A. Therefore the Eqs. (408)-(409) can be written as

(412)

—box
The finite integral Lqox(A:) =  L 0 (k ) is given by

- b o x  1 /■! / - I  l

L« {k) = I Ay I dz T z
D(y,  z, k) -  8 A2 (1 -  z) 

D ( y , z , k )2
(413)

where we used the definitions of HQOX(k) in Eq. (357) and D( y , z , k )  = zC(y ,  z) 4- 

a2 (1 -  z).  Note tha t C{y, z)  does not depend on a. The integral /^ “ (/c) reads as 

follow

_  q /  o
L*ox(k)

-box
_4_  ( | _ T +  w _ ln^ ) +  t2  w , (414)

with

—box
L2 (k )

1
87T2 3  f  i y ]n^ r 1r - +  f  Av fJo ^ m , ,/0 J  o

dz

1± 2 2 - 2 ( 1 - z )1/2 +  Z

i /z  D(y,  z, k )2 

3 D( y , z , k )  — 8 A2 (1 — z)]

-C(y,A;) [£ (y ,z , fc) - 8  A 2 (1 - z ) ]  4- k 2 [  d y ( 2 y - l )
J 4o

- fJo

1 D(y, z, k) — 8 A 2 (1 — z) 
v/£ D ( y , z , k )2

(415)
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where we used the definition of f /2ox(A;) in Eq. (359). Finally the integral L4ox(k) is 

given by

i ^ i k )  =
48 7T2
—box

+L4 (k)

10 ( -  — 7 +  ln7r — ln ^ y  J  (k2 +  18 m 2 -  36 A 2) +  (k2 + 6 m 2)

(416)

with

— box

L,  (k)
■box 1 /"I 1 1

x ( l - z ) ]

;[D{y,z,k)  -  8 A2

12 7T2

[  dz ~ ~ ~  *.
Jo \Jz D(y,  z,

y/z D(y,  z, k)2 

dy ( 2 y -  l )2 ln ^ ’̂  +  j f  dy (2 y -  l )2

A:)2
4 A‘

2 -  2 (1 -  z ) 1/2 +  2

x (1 -  z)] -  C{y , A;) [D(y, z , k ) - 8  A2( l -  z)]

[3 D( y , z , k )  -  8 A 2 

1
16 7T2

5 f d y  
Jo

x  [24 A 2 -  3 C(y,  A:)] -  64 ttA2 j f  dy y

24 — 4 (1 - 2)1/2 +  2
f 1 dy f 1 dz  

Jo Jo V 2
+ 8 A2

D ( y , z , k ) 2

x [ [20 A2 -  3 C(y, A;)] D(y, z , k )  - 8  A 2 [4 A 2 -  C(y, *)] (1 -  z) 

- 2  C(y,  k ) [ [12 A2 -  <7(y, A;)] D(y, z , k )  - 8  A 2 [4 A 2 -  C(y, A:)]

x ( l - z ) (417)

where we used the definition of H4ox(k) in Eq. (393). The integral L ^ ( k )  reads as

i2  \  — box

C M (418)

with

—box 1

£«/»(*) =  " — A 3/ dsln^ r + / d!,/ d27i7%7:24tt2 ^ l 

1a 2 2 - 2 (1 - z )1/2 +  z

A:)2

[ 3 % z , A )  -  8 A 2 (1 -  2)]

—C( y ,  k) [D(y,  2 , A;) — 8 A2 (1 -  2 )] (419)
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where the definition of F bJf(&) in Eq. (395) has been used. Finally the “box-like” 

contribution with two intermediate A ’s can be written

wboxNL°(k ; 2A) =  u2b̂ LO(k;2A ) +  ^ box(A :;2 A )+ r1 - r 2 P2box(A;;2A)

+(A;2 <Tx • <r2 -  (J\ ■ k<r2 • k)  F0box(A;; 2A) , (420)

where the polymonial pieces are defined as

y box (k; 2A) iT T T T  A2 -  7 +  Invr -  l n ^  F ;  277r \ e  n 1

Po°X(k\ 2A) =  -

h \  i
F i 54 7r“ \ e

2 , 7  +  ln7r — In —r-
/F

F box(A;; 2 A)
1

F i 1944 7T2

+6m_ 30

46
ml

7 +  ln7r -  In— f  +  1

mi
7  +  ln7r -  ) +  1

-240 A2 ( -  — 7 +  ln7r — ln^-%
/F

The finite part i;2̂ NL0(k; 2A) can be written as

—27T,NLO/'i q  a \  27T,NLO/j n  A \  | 27TtN L O / i  n  A \
v b o x  ( k ; 2 A )  =  V o x  ( * ; 2 A )  +  V o x  ( k ; 2 A )  0 1 - * 2

+ i £ £ U)(fc; 2A) S 12(k) +  [v2r^ LO(k; 2A) 

+ < ’box°(fc;2 A ) +  < bNoxLO(fc;2 A ) sa(k)]n • r 2

(421)

(422)

(423)
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where

v.. 27r,NLO 
c,box (A; 2A) = h \

324 F£ 7r2/./o
24 A 2 A;4 f  dy [1 -  2 (2 y -  I )2 +  (2 y -  l ) 4] 

Jo

f  dy  [3 — 5 (2 2/ — l ) 2] 
Jo

4  1 ( 1 - 2 )  a 12x I d z —  t t ;  F ^  +  4A
>/z D ( y , z , k )2

C(y,A)
+ f \ tJ [Z -  H 2 y - I f ]

4 A 2

2 — 2 ( 1  — z)I/2 +  2

A)2

4 A

+4 A 2C(y, A) ( 1 - 2 )

[D(y,z,A) -  4 A 2( l -  z)]

dy 8 A 2ln
C(y, k)  

4 m2

+

An  dy [4 A2 +  C(y,  A)]

24 — 4 ( l - z ) 1/2 +  z/VJo Jo
dz

1 1
8 A 2

y / z D ( y , z , k )2

[ [8 A 2 -  C(y, A:)] D(y, z, A) -  4 A 2 [4 A2 -  C(y,  k ) } ( l -  z) 

8 A 2 C( y , k) [D(y, z, k ) -  [4 A 2 -  C(y,  A)] (1 -  z)\ (424)

v2?r,NLO .̂ 
.box (A; 2A) k 2

243 F > 2
»i /-l

C(y,  A)

+ l  d s l  A z T * m T kk)2
4 A 2

4 A 2

2 -  2 (1 -  z)1/2 +  z

x [2 £>(y, z, A) -  4 A 2(l  -  z)] -  C(y,  k ) [£)(y, z, A)

-4 A 2(l — z)] (425)

v,27r,NLÔ  j,. 
t,box (A; 2A) =

486 F^tt2

f l  />!

C(y ,A)

+  [  dy f  d z - L ——
7o v 2 D \y, 2>A)2

4 A

4 A2

2 2 -  2 (1 -  z)1/2 +  z

x [2 £>(y, 2, A) -  4 A 2(l  -  z)] -  C(y,  A) [£>(y, z, A)

- 4  A 2(l — z)] (426)
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v.2tt,NLO
V,box (A:; 2 A) h \

1944 FiTr2
6 A4 /  dy [l — 2 (2 y — l ) 2 +  (2 y — l) 4] 

Jo

I ■ I
3 /  d y

v^z D ( y , z , k )2 

[3 -  5 (2 y -  l ) 2] l n ^ ^ - 7 d y  [ 3 - 5 ( 2 y - l ) 2]

3 * 2  +  d» [3 -  5 (2 ,  -  I)3] <k

4 A 2 2 ~ 2 (1 ~ Z>1/2 +  " [2 g (y ,  2,fc) -  4 A 3(1 -  z)]

-C(y, A) [D(y, 2, A) -  4 A 2( l -  z)] +  3 5 /  dy [16 A 2

^ C ( y , k ) \ \ n ^ - i n J \ y  [12 A 3 -  C(y,k)]  y /3 p

+ f  A» f  a ^ d T - w [ ^Jo Jo v 2 D(y, z, A)2 L
4 -  4 (1 -  z)1/2 +

x [12 A2 -  2 C(y, A)] D(y, 2, A) -  4 A2 [4 A 2 -  C (y, A)] (1 -  z) 

- 2  C(y, A) [ [8 A 2 -  C(y,  A)] D(y, 2 , A) -  4 A 2 [4 A 2 -  C (y, A)]

x ( l - z ) ] l  , (427)

v27r,NLO .̂ 
or,box (A; 2A)

1458 F > 2
7T dz ■

1

x
1 ± 2 2 - 2 ( 1 - z) ^  +  z

+ 4 A 2 C(y,/c)( l -  2

4 A2 y0 y0 y / z D ( y , z , k ) 2 

[D(y, z, A) — 4 A 2(l — z)]

(428)

, 27r,NLO .̂ 
”tr,box (A; 2A) =  - h i

2916 F i  7T2 J 0 V 4 A 2 70 J o y / zD (y , z

4 A :
2 -  2 (1 -  z)1/2 +

[D(y,z, A) — 4 A2(l -  z)]

+4 A C ( y J A) (1 — z)

z, A)2

(429)
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APPENDIX C

RELEVANT EXPRESSIONS FOR THE

COORDINATE-SPACE REPRESENTATION OF TPE

AND CONTACT INTERACTIONS

In this appendix we list the relevant expressions for the coordinate-space 

representation of T PE  and contact interaction radial functions introduced in 

Eqs. (128)—(141), respectively.

C . l  T W O -P IO N -E X C H A N G E

The coordinate-space representation of the T PE  radial functions a t NLO and 
N2LO are summarized here. The NLO terms corresponding to diagrams (d) (f) read 

as

i  A
V,

2tt,NLO
2 ttV  F}

2*-,NLO/ 1 9 A

,2ir,NLO (r; fa) =
1

87r3r 4 F i

3 x K 0 ( 2 x ) +  ( 3  +  2 x 2) K 1{2x )

12x K 0(2x) + (15 +  I x ^ K ^ x )  

x  [1 +  10g \  -  g \ ( 23 +  4x2)] K 0{2x)

+  [1 +  2 ^ (5  +  2x2) -  g \ { 23 +  12x2)] K i { 2 x )

(430) 

. (431)

(432)

where x  =  m ^r  (m* is the average pion mass) and K n are modified Bessel functions 

of the second kind. The NLO terms corresponding to diagrams (e)-(f) with a single
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A intermediate state are given by 

nc27r’NLO(r ;lA )  =

2*’NLO(r ;lA )  =

}  gÂ . A e 2x (6 4  12x 4  10x2 +  4x3 4  x4) , 
67r r  y F  ’

(433)

2?r,NLO( r ;  1A )

.2tt,NLO (r; 1A)

u,t2 7 r,N L O
tr (r; 1A)

1 9 W a
72tr3r 5 p4

roc 2 ------------

/  d/x . -— re~ ^ 2+tea (/x2 -f 4x2)
7o v/m2 +  ^ 2

-  H d f x  . M — e V ^ + 4 z 2 ( / i 2 f  4 x 2 ) 
y J o  v/m2 +  4x2

x (/x2 4  Ay2) arctan ^
22/  ’

(434)

dfi- V m2+4*2(3 +  3 ^ 2  +  4/;2
1447r3r 5 f i  | “ y 0 +  4 X2

4/x2 +  4x2) -  i  d / x - ^ = ^ = e - v ^ W (/x2 +  4y2) 
V Jo y /x  +  4x2

x (3 4  3v /At2~4~4x2 4  /x2 4  4x2) arctan
22/

(435)

1 h \  
2167r3r 5 F i

/■°° i/2 /-------
/  dfJl . = rr~.e ~ +4x2 (12x2 4  5/x2 4  12y2) 

Jo  y /x 2 4  4x2

- 12j/ [  d/x —   e v / 'i2+4 i 2 ( 2 x 2 4  /x2 4  2y2) arctan
jo  v /x 2 +  4x2 2 y

1
2167r3r 5 F 4 fJo

dy,- /x
\//x2 4  4x2

x(24x2 4  11/x2 4  12y2) 4  -  [  d/x ^
y Jo

F

-yfp+4x^

\ / /x2 4  4x2
-  \Z li2+4x2

x (2x 4  /x 4  2y ) arctan
22/

x £ ’NLO(r; 1A) = 5 ^ ^ e - 2* ( l  +  I ) (3  +  3x +  I 2) ,

1 e 21 (1 4  x) (3 4  3x 4  2x2) ,

(436)

(437)

(438)
547r2r5 y F*

where y = A r (A is the A-nucleon mass difference) and the parametric integral over 

/x is carried out numerically. The NLO terms corresponding to diagram (g) with 2 A
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intermediate states are 

v2*’Nlo(r; 2A) =
1 h \

1087r3r 5 F t
r  d n , / r  ,ev**2+4*2

Jo y /  fJL2 +  4x2
4y

i n (2ar +  /a +  2y ) ] , 1 ' *
4-z-----/ n — -------  +(/a2 +  Ay2) fJo

I*da-  ------------
V Jo y / /a2 + Ax2

x (2a;2 4- /a2 4- 2i/2)(2a;2 4- /a2 — 6a/2) arctan JL
2 V

(439)

v27r’NLO(r;2A ) =  - i  K
12967r3r 5 Ft ' fJo

poo

6 I dfi
y/fd2 +  4x2

e- ^2+4*2 ̂ 2  +  4a;2)

1 /*00 ~——.
+ i  /  f r - y - g - y - V S S y  +  4x2)(/x2 +  12y2)

y Jo v  n 2 +  4a;2

x arctan i i
2j/

(440)

v2ll'NLO(r-, 2A) 1 ^  
25927r3r 5 F t

- 6  r  du , /|2- = e-V/^ +4x2(3 +  3v//x2 +  4x2 
io  v/ //2 +  4x2

+/a2 +  4a:2) 4- i  dfj, . J 1 = e ^ ‘2+4̂ (3  +  3 ^ 2 +  4x2 
2/ io  vA4 +  4a:2

(441)+/a2 +  4a;2) (/a2 +  12a/2) arctan

v f ’NLO(r;2A ) = 1 /it
19447r3r 5 F i

/»00   ..
/  d n ‘“, J =  - e-yV 2+4*2

Jofo y /n2 +  4.x2
(24a;2 +  ll/a2

4-24a/2) +  6
(2a;2 4- fi2 4- 2a/2)2 

(/a2 +  4 a/2)
_ ?  r rf/. ^

2/ io  v V 2 +  4x2

x (2a;2 +  /a2 4- 2a/2) (2a;2 4- /a2 4- 10a/2) arctan i i
2y

(442)

1v2ir,NLO(r . 2A) =  - 77767T3r 5 F 4

4- i  r ^ — ■/:■■■; +  4 t J) ( V  +  4j,2)
y JoV Jo \//a2 4- 4x2

x arctan
2y

(443)
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v2fr,N L 0 
1tr (r;2A ) =

1 h‘A
155527r3r 5 F i

f°° h22 /  dfjL . ^
Jo \J /i2 +  4x2

roc
+H2 +  4x2

e- V ^ W (3 +  3x/ M2 +4a;2

) +  -  / ° °  d n  ; /  = = e ~ ^ +4x2{3 +  3 y V 2 +  4x2
y Jo

+  4x2) ( - / r 2 +  4j/2) arctan
2 y

(444)

Moving on to the loop corrections at N2LO, the terms corresponding to diagrams 

(j)-(m ) are given by

v.,2tt,N 2 L O / .(r\&) = 2x[2cix2(l +  x)2 +  c3(6 + 1 2 x + 1 0 x 2
' 7T

+4x3 +  x4)] , 
„2

* N2LO(r;A ) =  ^ f | c , e- 2* ( l  +  * )(3  +  3* +  2*2) ,

u.2 tt,N2LO  
hr ( r ;$ ) - ^ g ^ c 4e - 2x(1 +  x ) ( 3 +  3x +  x2) ,

(445)

(446)

(447)

while those corresponding to diagrams (l)-(o) are given by

v27r,N2LO/(r; 1A) =
1 h\a V

18-7r3r 6 F i r *  / i LVo v  +  4x2

+ c2 ( 5 / x2 +  1 2 x 2 +  1 2 j /2 ) -  6 c 3 ( / i 2 +  2 x 2 )] 

6 r00+ -  H d f i  - y - J 1-  . - - - e -V /'i2+4x2 (p.2 + 2x 2 +  2y2)
./oy Jo \ / ( i2 +  4x2

x [4cix2 — 2c2?/2 +  c3(/i2 +  2x2)] arctan
2 y

(448)

„2ir,N 2L O /'_ .(r; 1A) 1 (&3 +  fes) hA g \  y
187r3r 6 F i

x (fj,2 +  4x
1 f c

* ) - -
y Jo

H
dfi

\ / / i 2 +  4x2
-yV2+4:r2

djJL I*
\Jfi2 I- 4x2

s-v/^+4x2(^2 +  4a;2)

x (//2 +  4</2) arctan j~~ 
2 y

(449)
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v,2tt,N2LO
t (r ; 1A) 1 (63  +  M  h A g \  y

36;r3r 6 F 47T ■ fJo
dy A4

v/V2 +  4a;2
_______  1 /•<»

(3 +  3 \/^ 2 + 4a:2 + /a2 +  4a;2) ------ /  dy—=
V Jo y 'V

" \/A*2+4x2

A4
+  4a;2

e V ^ 2+4x2(3 +  3 ^ 2  +  4x2 +  ^2 +  ^ 2)

V.
2vr,N2LO (r; 1A)

x (y2 +  4?y2) arctan

1 (̂ 3 + 6s) y
547r3r 6 F i

(450)

I
+ dy, A4

•y///2 +  4 a;2
p oo

x ( 5 y 2 +  12a;2 +  12y2) -  12 y dy
J o

A4 ■\Jy2+‘ix2

x (ju2 +  2x2 +  2y2) arctan ~~~

00
x | -  I dy-  ----------- -

/o y//x2 +  4x2
r*oo

v V  +  4a;2 

1 ( b3 +  b $ ) h A g 2A y

547r3r 6 F i

>//«a+4*a(11/u2 +  24x2 +  12y2)

6 f c
+ y l

d y A4
\ J y 2 +  4x2

(/;2 +  2:/;2 +  2;(/2y

x arctan A4

„2jr,N2LO (r; 1A) =

2y

1 Q  h \  y  

1087r3r6 F 4

(451)

- -  r  dy  /._fl.._==e~v//i2+4x2(y2 +  4a;2)(/i2 +  4?y2) 
y Jo \J y2 + 4 a;2

2tt,N2LO (r; 1A)

y
x arctan — 

2y

1 C 4fc iyL  ^

(452)

2167r3r 6 F i
d y - ------------

0 \ / y 2 + Ax2
V m2+4,2(3 +  3 ^ /2 f  47;2

+A4' + 4a;2) -  -  /°°  dy—= M = e - ' /* + ^ ( 3  +  3>/m2 + 4*2 
2/ io vA*2 +  4a;2

+ y 2 +  4a;2) (y2 +  Ay2) arctan E. 
2 y

(453)
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Lastly, the contributions corresponding to diagram (p) read

.27T .N 2LO ( r ;  2 A )

x[6

8l7r3r 6 F 4 

(fi2 4- 2x2 +  2y2)2

fJo
dfi- F

//2 +  4y2

V T F + iz 2 

+  l l / / 2 +  24x2 4- 12y2]

- \ / m2+4i 2

f  dfi-- .  M e~ \ / "2+4x2(//2 +  2a:2 +  10y2)
Jo \/M2 +  4x2 7

x (/X2 +  2a:2 4- 2 a/2) arctan JL 
2 y

(454)

„ 2 7 r ,N 2 L O (r;2A)
9727r3r 6 F i

1 Z-00
x (/a2 +  4a:2) +  -  I da 

V Jo

6 /  d /x - ------------
Jo \ /  n 2 + 4a:2

/x2 - yZ/A+4̂ 2

 ^ ........ e - ^ 2+4a2(/x2 +  4x2)
x//x2 +  4a:2

x (/x2 +  12a/2) arctan
2  2/

1 (b3 +  68)/i3 x/
3247r3r 6iy2,r’N2LO(r; 2A) =

(455)

• fJo

poo 

6 I dpi F fi \//'2+4x2
a/ / x2 +  4a:2

_______  1 /oo
: (3 H- 3 \//x2 +  4a;2 +  /x2 t 4a:2) +  -  /  dp

V Jo
■ F  ; t 2 + 4 . r 2

i//x2 +  4a:2

x(3  4- 3 \//x2 +  4x2 4- /x2 4- 4x2)(/x2 4- 12j/2) arctan -jJ- (456)

2 tr ,N 2 L O (r;2A) 1 (^3 4- bs) y
2437r3r6 F i fJo

dpi F
x Z /F + ix 2

-y/n^+ix2

x [6(/i2 + 22x2 + 22y2)2 +  11/x2 4- 24x2 +  12a/2]
1 /x2 +  4y2

- -  f  ° °  d f i  ,  /  ^ e"V^2+4xV  + 2 x2 + 1 0 y2) 
2/ io

v.2tt,N2LO (r;2A)

x/ f 2 +  4 x 2

x (/x2 4- 2.x2 4- 2y2) arctan 

1 (&3 +  bs) h \  y

Ul  
2 y

( 4 5 7 )

1627r3r 6 F i i
6 I dpi F

x//x2 4- 4x2
1 /»00 _____

x(/x2 4- 4x2) +  i  /  d f i - 7J L = = e - ' / ^ + ^ { f i 2 4- 4x2)
2/ ao v /x 2 4- 4x2

x (/x2 4- 12y2) arctan JJ-
2 y

(458)
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fcr.MLO^.. 2A  ̂ _  1 ( h  + b8) h \ y
1944^3r 6 F 4 6 f ° °  dfi /- . ^ 2 —  e - ' / 112+4x2 

Jo u2 +  4x2

x(3 +  3 \/V 2 +  4x2 + n 2 + Ax2) +  -  f  V ^ * * 2
yJo  \ /  tt2 + 4x2\ /  H2 + 4x2

(459)x (3 +  3 \ / / i2 +  Ax2 + fi2 + 4 x 2 ) ( F 2  +  12y2) arctan —
2 y

The radial functions of the charge-independent part of the potential v\2 in 

Eq. (128) are defined as

vt(r)  = t ; f ’NLO(r; 1A) +  v f 'NLO(r; 2A) +  v f ’N2LO(r; £ )  + v2̂ mLO{r; 1A)

+ u 2,,N2LO r̂; 2A) ? (460)

vl (r)  =  n27r'NLO( r ;^ )  +  «2,r'NLO(r ;lA )  +  J;27r-NLO(r;2A ) +  t;2’r’N2LO(r ;lA )

+ u2*'N2LO(r;2A ) , (461)

v l  (r ) = v ? ' NLO(r; £ )  +  v2w'NL0(r; 1A) +  v ? ' NLO{r] 2A) +  u f ’N2LO(r; 1A)

+  ̂ ’N2LO(r;2A ) , (462)

vl(r) = u f 'NLO( r ;^ )  +  v2"’NLO(r ;lA )  +  n27r’NLO(r;2A ) +  t;2"’N2LO(r ;lA )

+ u2,r’N2LO(r; 2A) , (463)

u " ( r )  =  < ;LO(r) +  u2̂ NLO(r; 1A) +  < £ ’NLO(r; 2A) +  ^ N2LO(r; &)

+t>2*’N2LO(r; 1A) +  ^ ' N2LO(r; 2A) , (464)

< i j )  = VfrLO(r) +  vf^’NLO(r; 1A) +  vf*’NLO(r; 2A) +  vf*’N2LO(r; /&)

+V2*’mLO(r\ 1A) +  v2”'mL0(r; 2A) , (465)

Each is multiplied by the cutoff CfiL(r) (see Sec. 3.2 of Chapter 3),

v l ( r ) — ► C*L(r)t>L(r) > (466)

with I = c , t , a, <JT, t, t r , aT, tT.

C.2  C O N T A C T  T E R M S

Using the expressions in Eqs. (133)-(139), the functions vls (r) in Eq. (141) are
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obtained as 

vcs {r) =

vTs (r) =  

vas (r) =

vasT(r) = 

4  (r) =

4 4 4  =

vbs {r) =  

t£(r) =

vf(r)  =

vqs  (r) =  

v f ( r )  =  

u£(r) =

« T ( r )  =

«s(r ) =

=

C'sCfl8(r) + C71 - C g ( r ) - ? C g W +  £>i c S M  +  f c S M(3 ) ,

Co - c S W - ; C « W +  d 2 C ^ W  +  r C g W

< h C RJ r ) + C :, - c S w - ? c S W

r

+  Da < ’W  +  i c « ( r )

C«

-ay5

(1)/
As1

c S V )  -  - c S w

c S ( r )  +  ; C g ( r )

4 £ V )  +  ;C S ’M  -  ^ 4 2»V)

(467)

( 4 6 8 )

) ,

( 4 6 9 )

( 4 7 0 )

( 4 7 1 )

- c t'6 cS w  -  C S w +  Dq 4 : V )  +

(472)

(473)C g ( r )  +  2 i ( 7 | ' M - i c g ( r )

D .

— D a

) c g ( r ) + 2 i c g ( r ) - l c < g ( r )  

c& ’M - i c k ’M

- D 10 '

— D n  — 

D\2

D 13

— D u  

—D u

1
r
1

4 2» V ) - ; c £ m

C S W - ; C “ (r) 

- C g M - ; C g ( r )

-C&’M  —  C & tr)

c t ’M  -  f  CS W  

4 ’W - ; C S W

(474)

(475)

(476)

(477)

(478)

(479)

(480)

(481)
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vTs(r)  =  C ? C Rs(r) + C ?  

vTsz(r) C  <?«,(>■)+  < T

'R s '

■7(2),
'R s '■ C S W  -  ; C g W

„ f(r )  = C f

- r M c;v

- c ! S W - ; C « ( r )

- c S w - k S w

" f w  = -CJT CgM - icgW
WV
U3

'Rs

7 (2 )
vs (r )

4TW -  - 4 T)c"M ,
»s'M  = -C |V;Cg>(r) .

4 s ’W - ; C g ( r )

'R s '

r
2
r

(482)

(483)

(484)

(485)

(486)

(487)

(488)

(489)

Note tha t in Eqs. (138) and (139) only the terms proportional to  L2 and (L • S )2 are 

retained.
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APPENDIX D

PROTON-PROTON PHASE SHIFTS AND EFFECTIVE 

RANGE EXPANSION

We discuss briefly the calculation of the pp phase shifts and effective range 

expansion with inclusion of the full electromagnetic potential uf2M [48]. Radial wave 

functions behave in the asymptotic region (r >  30 fm) as

-  \  h i \ k r\ v') +  e2,<5̂ M h {̂ ( k r ,  p') , (490)

where L = J  for single channels or L — LI — J  ^  1 for coupled channels (the pair
 M 2)

isospin and spin subscripts T  and S  have been dropped for simplicity), hL ’ (k r ; p') 
are defined in terms of regular, F L(kr\ r/), and irregular, Gi,(kr; rf), electromagnetic 

(EM) functions as

E M>(jfcr) =  M n V )  T ( c j x i p r t  ' (491)
kt kt

JEM are the EM phase shifts shown in Sec. 3.4, and the Coulomb param eter p' is 

defined [117] as

i  = (492)
2 k  y  1 +  k 2/M%

The EM functions, generically denoted as X i ( k r \  p'), are solutions of the radial 

equation

^  +  fc2 -  -  Mp [VCi (r) +  Vfc,(r) +  VVP(r)] X L(kr-,p') = 0 , (493)

where Vci {Vc2 ) and Vyp are respectively the first-order (second-order) Coulomb and 

vacuum polarization terms. These terms include form factors to remove singularities 

in the r =  0 limit [48]. Note tha t the Darwin-Foldy and magnetic moment corrections 

are not included above, since at large r  the former falls off exponentially and the latter 

behaves as 1 /r3.
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Following Ref. [118] and treating the V c 2 { r )  and V v p { r ) corrections in first order 

perturbation theory, one finds tha t FL(kr\r)' and Gi(kr-,rf) can be expressed as

F L{kr\rf)  =  FL{kr\rf) 

+ G L(kr-rf)

GL(kr; rf) = GL{kr\rf)

/OO

d r 'G L(fcr';J/ ) F ( r ' ) F L(Ax';7/)

p o o
ta n (pL +  tl ) +  /  d r' FL(kr'; rf) V (r ') FL{kr'\ rf) 

J r
p o o

1 +  /  dr 'G L(kr'-,rf)V(rf) F L(kr'-,ri') 
J r

(494)

FL{kr; rf) Jtan(pL +  t l )  +  J  d r ' G L(kr'; rf) V  ( / )  GL( k r r f )

(495)

where the Fp and G l  are standard Coulomb functions, the function V(r)  is 

proportional to Vc2 (r) and Vyp(r),

V(r) [Vc2 (r) + VVP(r)\ , (496)

and the phase shifts p i  and t l  corresponding, respectively, to Vc2 and Vyp are given 

(in first order perturbation theory) by

p o o
tan(pL +  t l )  ~  pL +  t l  =  -  /  d r FL{kr\ rf) V (r) FL(kr ; rf) . (497)

Jo

In the absence of Vc2 and V y p ,  the solutions Fp  and Gl, reduce to the regular and 

irregular Coulomb functions. In the computer programs Eqs. (494)-(495) are used 

to construct the EM functions and Eq. (497) to obtain the phase shifts p i  and t l .  

The effective range expansion in the channel is obtained as [117-119]

Fem(&2) 1  1 , 2T  ~ r^M k  +  . . .  ,

« E M  2
(498)

with

Fem(*2) =  *C ?(i/)  (1 +  Xo>cotlS° M ~ tanTo
(1 + i4j)(l -  xo)

+ k 2 d [Gq(t?') — l] F  klo ,

+  2 k rf h{rf) (1 -  A 2)

(499)
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where

C20(rt/)
2lTT]'

' g2nr)' _ 1 ’

4a  , /■*
------n /

1
dr

I(r)

CO 0 r
4 a  , r

- - — n / dr
I(r)

OfcCO r

h{rj) =  - 7 - l n r / '  +  5 Z
J2

n (n 2 +  r/2) ’n=l ' ’

(500)

C \ U )  G\{kr\rf)  -  1

a
d =  —  , Ai = 4 d k rf [In (2 d k rf) +  h{rf) +  2 7 -  1] ,

lvlp

A 2 =  2 d k r f  (2 In a  +  27  — 1) +
2 ’

(501)

(502)

7 is Euler’s constant, and the function I(r) entering the vacuum polarization potential 

Vvp{r ) is defined as in Ref. [118],

1 \  s /x1 — 1f c/ w  =  J( dxe 2 m erx 1 +
2 x 2

(503)

0.145

0.14

i
0.135

.tr

0.13

0.125
0.002 0.004 0.006 0.008 0.01

2 ■2

FIG. 22: The effective range function of Eq. (499) for the potential model b with 

(f?L , Rs) — (1.0,0.7) fm. The dashed line is a straight line fit.

The effective range function FEM(fc2) corresponding to model b is shown in Fig. 22. 

The numerical methods are stable down to lab energies of 1 keV.
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APPENDIX E 

TABLES OF PHASE SHIFTS AND FIGURES OF 

POTENTIAL COMPONENTS

The pp and np  phase shifts calculated with model b are listed in Tables 12-14, 

while the various components of the long-range (w}J2) and short-range (uf^01) 

potentials corresponding to models a, b, and c and projected out in pair spin and 

isospin S  =  0,1 and T  =  0,1, are shown in Figs. 23-30.

TABLE 12: pp phase shifts in degrees for potential model b with (R^, R s ) =  (1-0,0.7)

fm. The phases are relative to  electromagnetic functions.

Flab % ' d 2 lG, 3 p  M) 3Pi 3f 3 3p 2 e2 3f 2 3f 4

1 32.69 0.00 0.00 0.14 -0.08 -0.00 0.02 -0.00 -0.00 0.00

5 55.00 0.04 0.00 1.64 -0.90 -0.00 0.22 -0.05 -0.01 0.01

10 55.49 0.17 0.00 3.90 -2.06 -0.03 0.64 -0.19 -0.01 0.02

25 49.13 0.69 0.04 9.21 -4.95 -0.23 2.42 -0.80 0.06 0.04

50 39.52 1.68 0.16 12.77 -8.38 -0.70 5.73 -1.71 0.27 0.14

100 25.66 3.77 0.43 11.21 -13.42 -1.58 11.02 -2.73 0.73 0.47

150 15.44 5.75 0.71 6.21 -17.63 -2.28 14.16 -3.05 1.10 0.97

200 7.20 7.38 1.01 0.50 -21.38 -2.90 15.90 -2.97 1.30 1.55

250 0.22 8.59 1.33 -5.18 -24.68 -3.52 16.89 -2.65 1.27 2.16

300 -5.88 9.36 1.66 -10.62 -27.55 -4.20 17.45 -2.19 0.98 2.76
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TABLE 13: T  = 1 np phase shifts in degrees for potential model b with (/?L, R s) =  

(1.0,0.7) fm. The phases are relative to spherical Bessel functions.______________

Elab 'So 1 d 2 1 g a 3 P o 3Pi 3f 3 3f 2 e2 3f 2 3F4

1 62.10 0.00 0.00 0.18 -0.11 -0.00 0.02 -0.00 0.00 0.00

5 63.65 0.04 0.00 1.67 -0.92 -0.00 0.24 -0.05 0.01 0.00

10 60.00 0.16 0.00 3.80 -2.02 -0.03 0.68 -0.19 0.02 0.00

25 50.83 0.67 0.03 8.71 -4.72 -0.20 2.53 -0.76 0.11 0.01

50 40.22 1.69 0.14 11.90 -7.88 -0.63 5.95 -1.63 0.33 0.08

100 25.84 3.86 0.40 10.06 -12.42 -1.46 11.35 -2.58 0.81 0.38

150 15.46 5.90 0.69 4.97 -16.17 -2.12 14.49 -2.81 1.20 0.84

200 7.13 7.58 1.00 -0.77 -19.50 -2.70 16.17 -2.64 1.44 1.41

250 0.09 8.81 1.33 -6.48 -22.43 -3.27 17.05 -2.24 1.45 2.01

300 -6.04 9.59 1.67 -11.93 -24.96 -3.89 17.49 -1.72 1.21 2.60

TABLE 14: Same as in Table 13 but for T =  0 np  phase shifts.

Flab l P\ xf 3 3d 2 3g 4 3Si <4 3A 3f 3 e 3 3c 3
1 -0.19 -0.00 0.01 0.00 147.81 0.10 -0.00 0.00 0.00 -0.00

5 -1.53 -0.01 0.22 0.00 118.32 0.63 -0.17 0.00 0.01 -0.00

10 -3.15 -0.07 0.85 0.01 102.80 1.06 -0.65 0.00 0.08 -0.00

25 -6.55 -0.43 3.70 0.17 80.86 1.53 -2.77 0.00 0.55 -0.04

50 -9.87 -1.16 8.89 0.73 63.00 1.62 -6.42 0.18 1.62 -0.25

100 -14.05 -2.33 17.21 2.20 43.53 1.67 -12.31 1.16 3.54 -0.97

150 -17.48 -3.12 22.33 3.71 31.32 1.92 -16.61 2.34 4.87 -1.88

200 -20.78 -3.69 25.02 5.10 22.35 2.34 -19.83 3.17 5.72 -2.83

250 -24.04 -4.14 26.09 6.36 15.26 2.84 -22.27 3.40 6.23 -3.76

300 -27.23 -4.56 26.10 7.46 9.40 3.39 -24.11 3.01 6.52 -4.62
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FIG. 23: Central components of the long-range potential v\2 (top panels) and for the
S C lshort-range charge-independent potential v l2 (bottom panels) in pair spin-isospin 

channels S T  =  00 and 11.
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FIG. 24: Same as in Fig. 23 but in pair spin-isospin channels S T  = 01 and 10.
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FIG. 25: Tensor components of the long-range potential vjj (top pannels) and 

the short-range charge-independent potential fj’j0'1 (bottom pannels) in pair isospin 

channels T  — 0 and 1.
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FIG. 26: Spin-orbit components of the short-range charge-independent potential -i/fj01 

in pair isospin channels T  =  0 and 1.
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FIG. 27: Spin and isospin independent quadratic spin-orbit components of the
q n j

short-range charge-independent potential tqj ■
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FIG. 28: Quadratic orbital angular momentum components of the short-range
q  p j

charge-independent potential v^  in pair spin channels 5  =  0 and 1.
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FIG. 29: Quadratic relative momentum components of the short-range

charge-independent potential r)yfA in pair spin channels 5  =  0 and 1.
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charge-independent potential in pair isospin channels T  =  0 and 1.



138

APPENDIX F

LOOP INTEGRATIONS

In this appendix, we outline the derivation of the two-body charge operators at 

one loop, listed in Sec. 4.1.1. For the sake of illustration, we consider the contribution 

in Fig. 14, given by [30]

Pf1} =  - e  yf- j  % 2  +  q3 -  k2)£(qi -  q2 -
it ^qi,q2,q3

x^(qi +  qa -  q) - 2 \  2 [2 rM (q2 • qi q2 • q3
U) 1 W2 L

- o x ■ q 2 x q x 0-2 • q3 x q 2) -  ( n  x t 2) z  q i • q2

X (T 2  • q3 x q 2

which can conveniently be w ritten as

+  1 ^  2 ,  (504)

= + 1 ^ 2 .  (505)
F« ^ P Wq/2+p Wq/2-p^p-k

with

W(q,k,p) =  2rM [ ( p - k ) - ( q / 2  + p) (p -  k )  • ( q / 2  -  p) -  oq • (p -  k )  

x ( q / 2  +  p) <r2 • ( q / 2  -  p) x (p -  k )  ]

-  { n  x t 2 ) z  ( q / 2  +  p) • (p -  k )  <j2  ( q / 2  -  p) x (p  -  k )  , ( 5 0 6 )

and the momentum k  defined as in Eq. (194). We now use standard techniques given 

in Eq. ( 2 9 6 )  to express the product of energy denominators in the following way

I f l  / • ! -* !

, .2 , ,2 , .2 
q/2+p q/2—P p -k

=  2 / V / ‘
Jo Jo

dzo

x [ [(q/2 +  p )2 +  ml] Zi +  [(q/2 -  p )2 +  ml] z2 

+  [ ( p  -  k ) 2 +  m*] ( 1 - z i  - z 2)\ , (507)

which, in terms of

p ' =  P +  {z\ ~  z2) q /2  -  (1 -  zi -  z2) k  , (508)
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FIG. 31: Example of two-body charge operators a t one loop (e Q or N4LO). 

The labels “1” , “2” , and “3” denotes the internal loop momenta q i, q 2, and q 3, 

respectively.

simply reads

—2------ --------- - —  =  2 /  dzx f  dz2 [p'2 + A2(2i ,z 2)] '"3 , (509)
q/2+p q/2—p Wp-k JO J 0

where

X2(z1, z2) =  (2:1 +  z2) q 2/4  -  [ (zj -  z2) q /2  -  (1 -  zx

- 2 2 ) k ] 2 +  (1 -  zi -  22) k 2 +  m 2 . (510)

After these manipulations, the charge operator can finally be written as

p ?  = t d x x  f ' 2* y  f  ^'(q.k.po
TT J 0 J — 1/2 Jp '

x [p ,2 + X2( x , y ) ] - 3 + 1 ^ 2  , (511)

where the function TV' is obtained from TV by expressing p in terms of p' via Eq. (508). 

We have also changed variables in the parametric integrals by introducing [41]

x = zi + z2 , x y  = ( z i -  z2) / 2 , (512)

such tha t
/•l /•l-zi /*1 r 1/2

/  dzi /  dz2 — > d x x  f  dy . (513)
Jo Jo Jo 7-1/2

The function TV' is a polynomial in p', and the p '-integrations are carried out in

dimensional regularization as in Appendix B. They are finite and lead to the charge

operator given in Eq. (211).
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