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DISSERTATION ABSTRACT

Jun Yin

Doctor of Philosophy

Department of Physics

June 2011

Title: Practical Issues in Theoretical Descriptions of Experimental Quantum State
and Entanglement Estimation

Approved:
Steven J. van Enk

We study entanglement estimation and verification in realistic situations, taking

into account experimental imperfections and statistical fluctuations due to finite

data. We consider both photonic and spin-1/2 systems. We study how entanglement

created with mixed photon wave packets is degraded. We apply statistical analysis to

and propose criteria for reliable entanglement verification and estimation. Finally

we devote some effort to making quantum state estimation efficient by applying

information criteria.
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CHAPTER I

INTRODUCTION

A quantum computer is revolutionarily different from a classical computer by

exploiting some of the unique attributes of quantum mechanics, entanglement in

particular. That is why a quantum computer can be used to simulate the evolution

of quantum systems without experiencing a considerable slowdown like its classical

counterpart1,2. Several quantum algorithms are known now that show a significant

improvement in the use of time and other resources for solving particular tasks3–7.

Among them the most famous one, which brought the whole field of quantum

information processing (QIP) to the fore, is Shor’s algorithm for factoring large

integers7.

A second branch of QIP is quantum cryptography, which promises to provide

absolute security and privacy for communication, something which cannot be obtained

within classical information theory8.

Thus QIP is an intriguing modern subject of research due to its large potential,

and by now a great variety of systems have been proposed as candidates for

implementing quantum computing and/or quantum communication9–15. All those

systems have their own technical obstacles, but they also face one common problem in

realization, that of quantum decoherence. Decoherence turns quantum superpositions

into incoherent mixtures, and these incoherent mixtures are classical in the sense that

their information processing capabilities are no better than can be achieved classically.

In short, decoherence destroys entanglement.
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Decoherence tends to increase with the size of the system. Currently the largest

system shown to demonstrate the potential of QIP (by containing entanglement

between all systems) is a 14-partite ion-trap system16.

Much effort has been devoted to characterizing entanglement as a resource

in QIP, e.g., in quantum computation9–11, quantum cryptography17, quantum

teleportation18,19, etc. It is believed that entanglement is necessary for efficient

quantum computing, requiring much less resources than classical algorithms or any

quantum algorithm that does not utilize entanglement20,21. In this case, no rigorous

proof for this statement exists (there cannot be such a proof until one proves the holy

grail of complexity theory, that P 6=NP). On the other hand, in the case of quantum

cryptography there is a proof that entanglement is necessary (although not quite

sufficient) for absolute security22.

It is thus of interest to verify the existence of entanglement in a given

QIP experiment, to demonstrate the potential advantage over classical information

processing23. A detailed introduction of entanglement and entanglement verification

methods will be given in Chapter III.

Surprisingly, realistic entanglement quantification and verification have hardly

been discussed in the literature. Theoretical treatments tend to assume several

idealizations. We will take into account a few aspects left out of the discussion so

far, such as the noise in measurements and statistical fluctuations due to finite data

in entanglement verification.

The other important topic in this dissertation is quantum state estimation, which

is the crucial step in predicting the future measurement outcomes from the past

measurement outcomes. The problem can be formidable as the size of the system

grows and the number of variables that need to be determined grows exponentially.
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There are existing quantum state estimation schemes24,25 that effectively reduced the

exponential scaling while some prior knowledge is required. Following the same spirit

we propose a method that is well developed in statistics. The method works when

only very limited data is possible and allows in principle any degrees of freedom to

be tested therefore scaling is no longer a problem. The method can be extremely

convenient for the application of state estimation in quantum information processing.

This dissertation is organized as follows: in Chapter II we go over the concepts

and the brief history of development in quantum state estimation. In Chapter

III we introduce the concepts of entanglement and separability and elaborate their

definitions for different systems. We also talk about several entanglement verification

schemes.

In Chapter IV we study how entanglement created with mixed photon wave

packets is degraded (in this context, the spectral degrees of freedom had always been

implicitly assumed to be pure). We find in particular that the entanglement of a

delocalized single-photon state of the electromagnetic field is determined simply by

its purity. We also discuss entanglement for two-photon mixed states, as well as the

influence of a vacuum component.

Chapters V and VI are focused on the statistical properties in entanglement

verification/estimation with finite measurements. Since no experiment is able to

produce infinite sequence of data, it is necessary to use the proper statistical language.

In Chapter V we propose a reliable method to quantify the weight of evidence for (or

against) entanglement, based on a likelihood ratio test. Our method is universal in

that it can be applied to any sort of measurements. We demonstrate the method

by applying it to two simulated experiments on two qubits. The first measures

a so-called entanglement witness, while the second performs a tomographically
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complete measurement. In Chapter VI we propose criteria for determining how many

measurements are needed to quantify entanglement reliably. We base these criteria

on Bayesian analysis of measurement results and apply our methods to four-qubit

entanglement, but generalizations to more qubits are straightforward.

Since one popular method for entanglement verification is based on quantum

state reconstruction, we also study ways to make quantum state tomography efficient.

In Chapter VII we propose a method that allows us to tentatively use in principle

any model for the state, using any (small) number of parameters (which can, e.g., be

chosen to have a clear physical meaning), and the data are used to verify the model.

The proof that this method is valid is based on well-established statistical methods

that go under the name of “information criteria.” We exploit here, in particular, the

Akaike Information Criterion. We illustrate the method by simulating experiments

on (noisy) Dicke states of four qubits.

We summarize the results of this dissertation in Chapter VIII.

Chapter IV, VI and VII were published and co-authored with S. J. van Enk.

Chapter V was published and co-authored with R. Blume-Kohout and S. J. van Enk.
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CHAPTER II

QUANTUM STATE ESTIMATION

In quantum mechanics, states of systems are mathematically described by

density matrices. When each element of the density matrix is determined, the

future evolution of and the future measurement on the system can be precisely

predicted, which is a good feature for any implementation in the real world.

State estimation is the process where one infers, generally from past measurement

outcomes, as much information as possible about the density matrix. Due to the

fact that almost any arbitrary measurement (without prior knowledge) will disturb

the system, it is in principle impossible to recover the quantum state of a single

system26. Therefore an ensemble of independently and identically prepared systems

is necessary and repetitive measurements on the systems are required. This standard

procedure is called quantum state tomography. The first systematic approach to

implement quantum tomography was proposed by Fano27. In quantum optics, one

technique to recover each element of a density matrix is called optical homodyne

tomography proposed by Vogel and Risken28. This technique associates measurement

observations with the Wigner function29–31 through which the density matrix can be

reconstructed. The Wigner function is the quasi-probability distribution in the phase

space of position and momentum quadratures that connects to the density matrix

representation of quantum states. In one dimension, the Wigner function is defined

as

W (x, p) =
1

π~

∫ +∞

−∞
dx′e2ipx

′/~ 〈x− x′|ρ|x+ x′〉 , (2.1)
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where ρ is the density matrix representation (in the {|x〉} basis) of the quantum

state, and |x± x′〉 is the vector state corresponding to the eigenstates of the position

operator x̂ with eigenvalues x± x′. Given the Wigner function of a quantum state ρ,

the expectation value of any operator Ĝ in that state can be expressed as the overlap

between the Wigner transformation of Ĝ and the Wigner function. That is

〈
Ĝ
〉

= Tr
(
ρĜ
)

=

∫ +∞

−∞
dx

∫ +∞

−∞
dpW (x, p)G(x, p), (2.2)

where W (x, p) is the Wigner function of state ρ as in Eq. (2.1) and G(x, p) is the

Wigner transformation of operator Ĝ:

G(x, p) =

∫ +∞

−∞
dx′e2ipx

′/~
〈
x− x′|Ĝ|x+ x′

〉
. (2.3)

Thus the Wigner function plays an important role in quantum mechanics, analogous

to that of the Louiville density operator in classical statistical mechanics.

The first measurements of the Wigner function were soon realized in a series

of experiments by Raymer’s group at the University of Oregon32,33 using optical

homodyne tomography. Quantum state tomography has since been demonstrated in

a wide variety of systems34–46.

However, measurement observations contain inevitable statistical fluctuations

due to the finiteness of data. Therefore statistical inferences are to be applied for an

appropriate reconstruction of quantum states from measurement observations. These

methods seek to extract the maximum information about what the quantum state

is from the finite data based on different principles in statistics. Consider a generic

situation where measurements are denoted by Mj, j = 1, 2, ..., where the subscript

j denotes the different outcomes. A tomography, or a tomographically complete
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measurement, indicates that the reconstruction of state ρ is possible in terms of the

frequencies fj of measurement outcomes Mj. According to Born’s rule, the probability

of getting measurement outcome Mj in state ρ is

pj = Tr (ρMj) . (2.4)

Under any circumstance an inverted density matrix exists through the inversion of

Eq. (2.4) if the observed frequency fj is interpreted as the probability pj. Nevertheless

at this stage the inverted density matrix ρ is not necessarily a physical state, especially

when the number of measurements is small. Thus further steps are required. The

inverted density matrix is in fact the state that maximizes the likelihood functional

with respect to the observations. The likelihood functional of a state ρ with respect

to observation frequencies fj is defined as

 L(ρ|{fj}) =
∏

j

(TrρMj)
fj . (2.5)

The maximum likelihood principle47 assumes that the best estimated state ρMLE is

the physical state that maximizes the likelihood functional Eq. (2.5). That is, a

single estimate ρMLE that best describes the current observations fj. In contrast,

the Bayesian method takes on a slightly different perspective where it explicitly and

systematically emphasizes the existence of a prior distribution of states ρ and insists

that any measurement observations only produce a posterior distribution of states

( hence not a single estimate)48,49. In other words, the measurement observations

work in such a way that they transform the prior distribution Pprior(ρ) to a posterior

7



distribution Pposterior(ρ) through the likelihood functional:

Pposterior(ρ) ∼ Pprior(ρ) ×  L(ρ|{fj}). (2.6)

Chapter VI applies this method as an intermediate step in entanglement estimation.

In principle, the number of variables to be determined in quantum state estimation

scales exponentially with e.g. the number of qubits, which is a formidable task

when the number of qubits is large. In Chapter VII we discuss how quantum state

estimation can be made efficient using information criteria.
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CHAPTER III

QUANTUM ENTANGLEMENT

This chapter provides the preliminary knowledge for a smooth accessibility to

the contents of Chapters IV-VII, which are dedicated to a specific topic each. In

this chapter, we give a brief introduction to quantum entanglement. We will define

what separable states and entangled states are and touch upon the complications for

multipartite entanglement. We will also talk about the quantification of entanglement

and the verification of entanglement.

3.1 Introduction

Quantum entanglement was an interesting topic50,51 well before its employment

in QIP, for it challenges two fundamental principles, namely locality and realism,

held for granted in classical physics. Bell52,53 quantifies this, by showing that any

correlations within a classical model that includes both locality and realism at the

same time, must obey his famous inequalities. Quantum mechanics can violate these

inequalities, but only with the help of entanglement. Thus a violation of these

inequalities serves as a sufficiency proof for entanglement. More verification schemes

were proposed after entanglement became more appealing in QIP. Among these some

schemes involve a reconstruction of the whole density matrix, so that the amount

of entanglement can be fairly estimated through, e.g., the positive partial transpose

(PPT) criterion (explained below)54,55. Other schemes that do not require state

reconstruction are usually designed for a specified class of states so that the number of

different measurements needed is greatly reduced. The typical examples are so-called

entanglement witnesses (explained below)55. Yet other schemes claim to measure
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entanglement directly in the sense that a certain entanglement measure comes directly

from the measurement outcomes56. A review on entanglement verification can

be found in Ref.57. Especially a more thorough study of bipartite entanglement

can be found in Ref.58. Quantum teleportation using bipartite entanglement was

demonstrated using photons with post-selection59,60, with two-mode squeezed light

beams61, and ions62,63.

Bipartite entanglement is the simplest form of entanglement. Multipartite

entanglement refers to entanglement in a system that contains three or more

subsystems and it turns out to be much more complicated than bipartite

entanglement. It becomes of crucial importance for the future of QIP on large

scales. Interestingly in this case, even pure states can be categorized into different

entanglement classes in a way that states belonging to different classes cannot be

transformed into each other via local operation and classical communication (LOCC).

Such cases have been studied in three-64 and four-65 qubit systems. Multipartite

entanglement for mixed states are much more complicated and remains a heated topic.

One of the most challenging tasks is to identify genuine multipartite entanglement,

which means there is absolutely no way of writing a state as a convex sum of bipartite

pure states (bipartite refers to in general any bi-partition of a multipartite system).

Experimentally multipartite entanglement was demonstrated using photons (with

post-selection)66–70, and ions71–74.
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3.2 Separable and Entangled States

Given two systems A and B, the density matrices of all bipartite (n = 2)

separable states are defined as

ρ =
∑

j

pjρ
j
A ⊗ ρjB, (3.1)

where pj ≥ 0, ∀ j and
∑

j pj = 1. On the other hand, entangled states are defined as

states whose density matrices do not bear a form of Eq. (3.1). For example, it can

be shown that the density matrix of the singlet state

∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉) (3.2)

cannot be written as a separable state in the form of Eq. (3.1): tracing out one

system, leaves the other in a mixed state, which could not happen for a pure product

state. For n > 2 parties, the definition of separability is richer simply because there

are more ways of partitioning the overall system. The fully separable states are of

the form

ρ =
∑

j

(
pj

⊗n∏

k

ρjk

)
, (3.3)

where pj ≥ 0, ∀ j and
∑

j pj = 1. ρjk’s are all single party density matrices. At the

other extreme we have genuine multipartite entanglement, which only exists in the

states that do not have a decomposition of bi-separable form:

ρ =
∑

j

pjρnj
⊗ ρnj

, (3.4)

11



where pj ≥ 0, ∀ j and
∑

j pj = 1. nj|nj denote a certain bi-partition of the n parties

and ρnj
and ρnj

are the corresponding density matrices. Whereas the separability

problem is solved for 2 × 2 and 2 × 3 systems55, it remains a formidable task to

prove the existence of a state decomposition like Eq. (3.3) or even Eq. (3.4) for

larger systems. In this work, the multipartite entanglement verification is aimed at

identifying the states that are bi-separable, i.e.,

ρ =
∑

j

pjρ
j
m ⊗ ρjm, (3.5)

only corresponding to one single bi-partition m|m. Apparently bi-separability is

somewhere in between full separability and genuine multipartite entanglement. For

instance, a state like ρAB ⊗ ρC + ρBC ⊗ ρA + ρCA ⊗ ρB is not genuinely multipartite

entangled nor bi-separable generically. It is thus identified as a entangled state

without further specification. With the existing theory concerning multipartite

separability, however, we argue that the method in this work is good enough in most

situations.

3.3 Entanglement Monotones

Quantification of entanglement is one of the main issues concerning entanglement

detection. For a density matrix ρ, the quantity E(ρ), called entanglement

monotone, needs to satisfy the following conditions75:

1. E(ρ) = 0 when ρ is a separable state and E(ρ) > 0 when ρ is an entangled

state. As a convention, E(|Ψ−〉) = 1.

2. E does not increase on average, under any local operation and classical

communication (LOCC). It means that any individual manipulation of the

12



state that are connected with only classical communication can never induce

quantum correlation, if not reduce it.

3. Assume measurement is performed on the state ρ and the outcomes ρj are

obtained with probability pj, then E(ρ) ≥ ∑j pjE(ρj). Note that usually ρ 6=
∑

j pjρj.

4. E is convex, i.e.,
∑

j pjE(ρj) ≥ E(
∑

j pjρj). The process of
∑

j pjρj can be

regarded as discarding information.

For bipartite systems, a few outstanding candidates for entanglement monotones

based on the knowledge of the whole density matrix are entanglement of formation76,

geometric measure of entanglement77–79, concurrence80, distance measure81 and

negativity82. Among all these entanglement monotones, the negativity is most

straightforward to be generalized to higher dimensions and multiple parties, and is

always computable given the density matrices.

3.31 Concurrence and Beyond

Given a bipartite density matrix ρ, concurrence is define as

C(ρ) ≡ max
(

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (3.6)

where λ1,2,3,4 are the eigenvalues of

ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy)

13



in decreasing order and σy is the Pauli y-matrix. It is related with entanglement

of formation EF (ρ)76 as

EF (ρ) = H

(
1 +

√
1 − C(ρ)2

2

)
, (3.7)

where

H(x) = −x log2 x− (1 − x) log2(1 − x). (3.8)

Entanglement of formation is also an entanglement monotone and is defined as the

amount of the entanglement needed to form a state using LOCC. It is, however, not

directly computable for mixed states.

Multipartite concurrence were also proposed83. Developed from concurrence, 3-

tangle84 as an entanglement monotone of a pure state of three parties A,B and C is

defined as

τABC = C2
A(BC) − C2

AB − C2
AC . (3.9)

CA(BC) is the concurrence of state ρABC when treat as a bipartite state under the

partition of A and BC. CAB is the concurrence of the reduced density matrix ρAB =

TrCρABC . However it does not fully characterizes the genuine tripartite entangled

states like W -state

|W 〉 =
1√
3

(|001〉 + |010〉 + |100〉) , (3.10)

since τ(ρW ) = 0. It turns out that three-qubit pure states can be entangled in two

inequivalent ways in the sense of SLOCC85 and are thus categorized by two classes
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represented by W -state and GHZ-state

|GHZ〉 =
1√
2

(|000〉 + |111〉) . (3.11)

3.32 Negativity and Bound Entanglement

Given a bipartite density matrix ρ, the negativity is define as

N (ρ) =
∣∣∣∣ρΓ

∣∣∣∣
1
− 1, (3.12)

where ||·||1 stands for the sum of the absolute values of the eigenvalues. ρΓ is the

partial transpose54,86 of ρ, where the submatrices of one of the two systems are

transposed (since the operation is invariant under the switching of the systems it

does not matter which one we pick) , e.g.,

ρ =




0 0 0 0

0 1/2 −1/2 0

0 −1/2 1/2 0

0 0 0 0




−→

ρΓ =







0 0

0 1/2




T 


0 0

−1/2 0




T




0 −1/2

0 0




T 


1/2 0

0 0




T




=




0 0 0 −1/2

0 1/2 0 0

0 0 1/2 0

−1/2 0 0 0




.

||M ||1 is the sum of the absolute value of all the eigenvalues of matrix M . In this

case,
∣∣∣∣ρΓ

∣∣∣∣
1

= |1/2| + |1/2| + |1/2| + | − 1/2| = 1. Essentially if the positivity is

eliminated by the partial transpose, then N ends up with a positive value. Since all
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separable states can be written as Eq. (3.1), the partial transpose

ρΓ =
∑

j

pjρ
A
j ⊗

(
ρBj
)T
. (3.13)

It is still a physical state therefore still positive semi-definite. It turns out that for 2x2

and 2x3 systems, a positive partial transpose (PPT) is a necessary and sufficient

condition for separability55. For all other cases, there exist entangled states with

PPT, which are referred to as bound entangled states and their entanglement cannot

be distilled87.

Negativity for multipartite qubit system is a generalized idea of bipartite

negativity88,89. Given a n-qubit density matrix ρ and a bi-partition of the qubits

1, ..., k|k + 1, ..., n,

the negativity of ρ with respect to this partition is defined as

N1,...,k|k+1,...,n =
∣∣∣∣ρΓ1,...,k|k+1,...,n

∣∣∣∣
1
− 1.

To make things easier, we group together the negativities with the same number of

elements in the subgroups of the bi-partitions. For example, the negativity for a

three-qubit state is

N =
(
N1|23N2|31N3|12

)1/3
. (3.14)
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The negativities for a four-qubit state are

N1−3 =
(
N1|234N2|341N3|412N4|123

)1/4
,

N2−2 =
(
N12|34N13|24N14|23

)1/3
, (3.15)

etc. If any single negativity vanishes with respect to a bi-partition, then the two

subparts according to that bi-partition are separable thus the state itself must be

bi-separable. As mentioned in Section 3.2 a separable state such as ρ = ρAB ⊗ ρC +

ρBC ⊗ ρA + ρCA ⊗ ρB is generically not bi-separable thus identified as an “entangled

state” by this definition of generalized negativity. However with the existing theory

of multipartite entanglement verification, this entanglement monotone works most

conveniently with the density matrices and serves the verification purpose ideally in

the cases we are interested in (more in Chapter VI), although it does leave out bound

entangled states, which have positive partial transposes.

3.4 Entanglement Verification

As mentioned above, there are two main types of entanglement verification

schemes: one that requires state reconstruction and one that does not. In the

first type, everything about the state is determined after tomography and it is

thus straightforward to calculate any desired entanglement measure from the density

matrix. However, it becomes more and more demanding to perform a reliable

tomography as the number of qubits increases. On the other hand, entanglement

witnesses provide a highly efficient way of deciding the separability of a state. In

the case of linear witnesses only one observable needs to be measured, although

the observable has to be carefully designed beforehand to save the toil of reliable
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tomography. The expectation value of the witness does not correspond directly to

the amount of entanglement, which in most cases are not well-defined. However, the

expectation value of the witness does indicate the strength of the entanglement, in the

similar way the violation of the Bell’s inequalities works for entanglement verification,

which can be considered as a special class of entanglement witnesses. It is also ideally

possible to measure concurrence directly90, but it requires measurements carried out

on the tensor product of independent and identical copies91, an assumption too strong

to be realistic92.

3.41 Entanglement Witnesses

Witnesses are always a handy tool for entanglement verification, especially in

most cases when experimentalists have a fairly good idea of the states they produce,

like a GHZ-state16,73, a Dicke state93 or aW -state94, which are usually the most highly

entangled states (HES) for their own kinds. A large enough fidelity with respect to

these states indicates entanglement, regardless of the types of noises. Therefore a

straightforward linear witness can be expressed as

W = αI − |ΨHES〉 〈ΨHES| , (3.16)

where α is to be determined so that all the negative expectation of W infers an

entangled state in certainty:

Tr(ρW) < 0 =⇒ ρ is entangled.

Note that a linear witness always leaves some entangled states undetected, due to the

convexity of the set of separable states. However, for any entangled state there always
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exists a linear witness that detects it, as guaranteed by Hahn-Banach theorem.

An example of linear witness is shown in Chapter V for the likelihood ratio test. To

improve the performance of a linear witness, beside optimizing the witness itself95,

one can also construct nonlinear witness96,97 to accommodate the convexity of the set

of separable sets (FIG. 3.1). The fundamental idea is that any states to be detected

by a particular witness needs to be close enough to a highly entangled state, which is

aimed at by the witness. Other witnesses, not directly measuring the overlap with a

highly entangled state, are introduced in the consideration of the local decomposition

of measurements. In Chapter VI we will see for the Dicke state98

∣∣D2
4

〉
= (|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉) /

√
6, (3.17)

an effective witness is99

WJxy = 7/2 +
√

3 − J2
x − J2

y , (3.18)

where Jx,y =
∑

j σ
(j)
x,y/2, with σ

(j)
x,y the Pauli matrices for the j-th subsystem. ρ is

Dicke-like entangled if 〈ρWJxy〉 < 0.
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FIGURE 3.1 Entanglement witness

20



CHAPTER IV

ENTANGLEMENT AND PURITY OF SINGLE- AND TWO-PHOTON STATES

This work was published as Entanglement and purity of one- and two-photon

states, Phys. Rev. A 77, 062333 (2008). It was initiated by S. J. van Enk and

finished jointly by J. O. S. Yin and S. J. van Enk.

4.1 Introduction

Consider an entangled state containing one or more photons. By how much is

the entanglement degraded when the photon wave packets are described by mixed

rather than pure states? For example, suppose Alice and Bob are given a two-photon

polarization-entangled state100–104—say the singlet state—but they are not told what

the color of the photons is. All they know is the photons are either both blue or

both green. Does their ignorance reduce the amount of entanglement they possess?

The answer in this case is negative: the entanglement is still one ebit, even though

the overall state is mixed. After all, they could, in principle at least, apply a local

measurement on each photon that measures its color but not its polarization. That

way they are guaranteed to end up with a pure maximally entangled state. The fact

that polarization and color are independent degrees of freedom is crucial here.

Suppose now Alice and Bob are given a mode-entangled state105–107 containing

merely a single delocalized photon108–113

|ψ〉 :=
|0〉A |1〉B + |1〉A |0〉B√

2
, (4.1)
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where A and B denote specific modes in Alice’s and Bob’s labs and |0〉 and |1〉 denote

Fock states with zero and one photon, respectively. The notation used implies that

modes A and B are well-defined. But suppose that Alice and Bob actually do not

know what the color of the single delocalized photon is, green or blue (each with

50% probability). Or suppose they do not know the polarization of the photon, only

that it is either left-hand or right-hand circularly polarized. Then they really should

ascribe a mixed state to their field modes: an equal mixture of |ψ〉 and the similar

state

|ψ′〉 :=
|0〉A′ |1〉B′ + |1〉A′ |0〉B′√

2
, (4.2)

where the primed modes refer to modes of different color or different polarization.

In Section 4.3 we will find the logarithmic negativity82,114 of this mixed state to be

EN = log2

(
1 +

√
1/2
)
< 1, so that in this case Alice’s and Bob’s state does lose some

of its glamor [a pure state of the form (4.1) would contain one ebit of entanglement].

Note that, indeed, Alice and Bob cannot use the same local filtering measurement

of frequency to filter their state to a pure entangled state: as soon as a photon is

detected on, say, Bob’s side, the state collapses to either |0〉A |1〉B or |0〉A′ |1〉B′ , and

not to the desired pure entangled state |ψ〉 or |ψ′〉. Alternatively, a nonlocal filtering

measurement of color could upgrade Alice’s and Bob’s state to a pure entangled state,

but that nonlocal operation could and would increase the amount of entanglement.

The distinguishing feature of this example compared to the previous one is that color

or polarization and mode are dependent degrees of freedom. More precisely, color

and polarization are part of what defines a mode.

The purpose of this chapter is to continue investigating questions of this sort:

by how much is the entanglement of single- or two-photon states degraded when the
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photon wave packets are not pure but mixed? See Figs. 4.1–4.4 for typical examples

of questions considered in the present chapter. The motivation for this research is,

of course, the simple fact that typically any photon produced in an experiment is

represented by a mixed state104,115–117. For instance, even if one’s source produces

a Fourier-limited wave packet, in practice one will not know exactly the timing of

the wave packet, or the exact central frequency, or the exact width. For another

example, consider a single photon heralded by detection of the other photon of a

down-converted pair of photons. Whenever there is some entanglement between the

two photons, tracing out one photon necessarily leaves the remaining photon in a

mixed state.

In Section 4.2 we start out by collecting some useful results about the description

of single- and two-photon wave packets to be used in later sections. In Section 4.3

we focus our attention on entangled states that can be generated by splitting a single

photon on a 50/50 beam splitter. Ideally that leads to an output state with one ebit of

entanglement, but, as we will show, the entanglement resulting from splitting a mixed

single-photon input state is less than one ebit but turns out to be a simple function of

its purity. In the same Section we will also consider the more realistic case of a nonzero

vacuum component of the state of the field and its effect on entanglement. In Section

4.4 we consider typical mixed states of two orthogonally polarized photons arising

from type-II down conversion, and in that case too we consider the effects of the

presence of a (large) vacuum component. We also compare the mode entanglement

one obtains by splitting both photons on a 50/50 beam splitter with the entanglement

that may already be present in the input state between two orthogonally polarized

modes, and find one may increase the amount of entanglement that way. We conclude

23



the chapter with a summary that also discusses some possible extensions of the present

work.

4.2 Single- and Two-Photon Wave Packets: Preliminaries

4.21 Single Photons

Consider a single photon of a definite polarization propagating in a well-defined

direction. Then a pure state can be described in terms of continuous modes118 as

|1ψ〉 =

∫
dtψ̃(t)a†(t) |v〉 , (4.3)

where |v〉 is the vacuum state, a†(t) an operator that creates a photon at time t and

ψ̃(t) the temporal mode function of the wave packet. Often it is more useful to Fourier

transform this representation into frequency space, and describe the same state by

|1ψ〉 =

∫
dωψ(ω)a†(ω) |v〉 . (4.4)

Typically, the function ψ(ω) will be appreciable only in a small bandwidth σ around

a central frequency ω0, with σ ≪ ω0, and the wave packet (4.4) describes a quasi-

monochromatic photon. Since the creation operators bear the relation

a†(t) =
1√
2π

∫
dωa†(ω)e−iωt, (4.5)
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the spectral shape ψ(ω) is thus completely determined by the temporal mode ψ̃(t) in

the sense that

ψ(ω) =
1√
2π

∫
dtψ̃(t)e−iωt. (4.6)

The single-photon states displayed so far are pure. Mixed states of single photons

arise, e.g., when they are part of a multipartite system and we trace over the other

parties; or if one of the transverse degrees of freedom of the photon is traced out; or

if we are simply ignorant about one or more of the properties of the photon. In any

case the mixed state of a single photon is described in terms of the density matrix

ρ1 =

∫
dλP (λ) |1ψλ

〉 〈1ψλ
| . (4.7)

Here λ stands for any parameter or combination of parameters that can possibly be

involved in the mode function, although no concrete form is given yet. Some good

examples of what λ could stand for are arrival time (”time jitter”), central frequency

(”frequency jitter”), the width of the (Fourier-limited) wave packet, etcetera117.

When writing the mixed state in terms of parameters with such a clear physical

meaning, the states |1ψλ
〉’s will in general not be orthogonal. However, we can always

diagonalize the density matrix, and rewrite it as a discrete sum involving orthogonal

states,

ρ1 =
∑

k

pk |1k〉 〈1k| . (4.8)
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Here pk and |1k〉 are eigensolutions to

ρ1 |1k〉 = pk |1k〉 (4.9)

with

〈1j |1k〉 = δjk, (4.10)

and
∑

k pk = 1. For our purpose of calculating entanglement of single-photon states,

the latter representation is often more useful.

4.22 Two Photons

Now consider states of exactly two photons. Since we have in mind the two-

photon component of the state produced by type-II down conversion115,119,120, we

assume the photons have orthogonal polarizations. We will simply indicate the

ordinary and extraordinary polarizations by ”H” and ”V”. Pure and mixed states for

such photon pairs can then be expressed as

|2ψ〉 =

∫
dω

∫
dω′ψ(ω, ω′)a†H(ω)a†V (ω′) |v〉 , (4.11)

and

ρ2 =

∫
dλP (λ) |2ψλ

〉 〈2ψλ
| , (4.12)
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respectively. The commutators of the mode operators are

[ak(ω), a†k′(ω
′)] = δk,k′δ(ω − ω′), (4.13)

where {k, k′} = {H, V }.

It is well-known that for a pure state of a bipartite system there is always a

discrete Schmidt decomposition. In our case this allows us to rewrite

|2ψ〉 =
∑

k

√
λkh

†
kv

†
k |v〉 . (4.14)

For a state like Eq. (4.11) we can explicitly define the new creation operators as

h†k =

∫
dωϕk(ω)a†H(ω), (4.15a)

v†k =

∫
dωφk(ω)a†V (ω), (4.15b)

where λk, ϕk and φk can be obtained by solving the eigenvalue problems121,122

∫
dω′ρ̃A(ω, ω′)ϕk(ω

′) =λkϕk(ω), (4.16a)

∫
dω′ρ̃B(ω, ω′)φk(ω

′) =λkφk(ω), (4.16b)

with the “reduced density matrices” given by

ρ̃A(ω, ω′) =

∫
dω′′ψ(ω, ω′′)ψ∗(ω′, ω′′), (4.17a)

ρ̃B(ω, ω′) =

∫
dω′′ψ(ω′′, ω)ψ∗(ω′′, ω′). (4.17b)
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The mode operators h†k’s and v†k’s satisfy the standard commutation relations

[vj, h
†
k] = 0, [vj, v

†
k] = [hj, h

†
k] = δjk. (4.18)

4.23 Mode Entanglement

In the rest of the chapter we will calculate mode entanglement between field

modes105–107 that are spatially separated123. For that purpose we expand the density

matrix in an appropriate orthonormal basis of Fock states, including states with no

photons, single-photon states |1k〉 as defined above, etc.

We use two standard measures of entanglement in this chapter: one useful

entanglement measure, but only valid for pure bipartite states, is the entropy of

entanglement76. For example the mode entanglement between modes of orthogonal

polarization of the pure state |2ψ〉 of Eq. (4.11) is defined in terms of the Schmidt

coefficients appearing in Eq. (4.14) as

E(|2ψ〉) = −
∑

k

λk log2 λk. (4.19)

The other entanglement monotone we will make use of is the logarithmic

negativity82,114, defined in terms of the partial transpose (PT) of a matrix. For

example, for a two-photon system PT is easily defined if we expand its density matrix

in the basis spanned by |k〉1 |l〉21 〈m|2 〈n|, with |k〉1, |l〉2, |m〉1 and |n〉2 referring to

orthogonalized single-photon states respectively. Then we have

ρ
PT−→ ρΓ, ρΓklmn = ρknml,
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ρklmn being the matrix element. We then solve for the eigenvalues of ρΓ, ending

up with a series of real ek’s, since both ρ and ρΓ are Hermitian. The logarithmic

negativity82,114 is defined as

EN (ρ) = log2 ‖ρΓ‖1 = log2

∑

k

|ek|. (4.20)

It is worthwhile to notice that the absolute sum of all eigenvalues
∑

k |ek| equals 1

plus twice the absolute value of the sum of all negative eigenvalues of ρΓ.

4.3 Entanglement of Single-Photon States

4.31 No Vacuum Component

4.311 General Results

A pure single-photon state split on a 50/50 beam splitter looks like

1√
2

(|0〉 |1〉 + |1〉 |0〉) (4.21)

and possesses exactly one ebit of entanglement110,111,113. If the photon entering one

input port of the beam splitter is mixed, the calculation of entanglement in the output

state is a little more complicated, but the problem can still be solved analytically. We

consider single polarization only and start by an input state that is already expanded

in its diagonal form

ρin =
n∑

k=1

pk |1k〉 〈1k| . (4.22)
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We put it on a 50/50 beam splitter, which in the Heisenberg picture transforms

the mode operators for the input ports a†, b† into those for the output c†, d† in the

following way




a†

b†


 =

1√
2




1 1

1 −1







c†

d†


 . (4.23)

In this picture the state stays unchanged, but when expressed in terms of creation

operators at the output ports it looks different:

ρout = ρin =
n∑

k=1

pk |1k〉a ⊗a 〈1k|

=
1

2

n∑

k=1

pk(|1k〉c |0〉d + |0〉c |1k〉d) ⊗ (c〈1k|d 〈0| +c 〈0|d 〈1k|)

=
n∑

k=1

ρk, (4.24)

where each submatrix ρk can be written out as

ρk =




0 0 0 0

0 pk/2 pk/2 0

0 pk/2 pk/2 0

0 0 0 0




. (4.25)
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Here rows and columns correspond to states |0〉c |0〉d, |0〉c |1k〉d, |1k〉c |0〉d, |1k〉c |1k〉d
and their conjugates respectively. Naively, taking the PT simply gives

ρΓk =




0 0 0 pk/2

0 pk/2 0 0

0 0 pk/2 0

pk/2 0 0 0




. (4.26)

In the total density matrix context, the two pk/2 on the diagonal remain independent

of other ρk’s. These give rise to nonnegative eigenvalues of ρΓ. Care must be taken,

however, with the two off-diagonal elements. Those matrix elements share the vacuum

state |0〉c |0〉d with all other submatrices, and therefore beg an eigenvalue solution to

the matrix




0 p1/2 ... pn/2

p1/2 0 ... 0

... ... ...

pn/2 0 ... 0




. (4.27)

It can be shown, with a little effort, that the only two nonzero eigenvalues of this

matrix are

λ1,2 = ±1

2

√√√√
n∑

k=1

p2k. (4.28)

Notice from Eq. (4.8) that

n∑

k=1

p2k = Trρ2in, (4.29)
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FIGURE 4.1 A single photon impinges on a 50/50 beam splitter and one ebit of
entanglement is created between the two output ports. How does the entanglement
change when the input photon is in a mixed state?
Answer: When we use the logarithmic negativity82,114 as our entanglement monotone
of choice we find EN = log2

(
1 +

√
purity

)
, in terms of the purity Trρ2 of the input

state (see Section 4.3).

and that Trρ2in is an invariant quantity under basis transformations, or equivalently,

unitary operations. λ1,2 can thus be evaluated as

λ1,2 = ±1

2

(
Trρ2in

)1/2
. (4.30)

Since we learn from the definition that ‖ρΓ‖1 equals half of the absolute value of the

sum of all negative eigenvalues, we immediately get

EN (ρout) = log2

[
1 + (Trρ2in)1/2

]
, (4.31)

as announced in Fig. 4.1. (Of course, the purity of the output state equals that

of the input state, as we assumed the beam splitter to be describable by a unitary

operation.)
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FIGURE 4.2 Two identical photons impinge on a 50/50 beam splitter: what is the
entanglement at the output?
Answer: 1 ebit, similarly to the answer in Fig.4.1: the output is a delocalized photon
pair.

FIGURE 4.3 Two distinguishable photons (with, say, orthogonal polarizations or
different colors) impinge on a 50/50 beam splitter: what is the entanglement at
the output?
Answer: 2 ebits (2 equivalent versions of an entangled delocalized single-photon
state) .
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FIGURE 4.4 Two distinguishable photons with orthogonal polarizations impinge on
a 50/50 beam splitter. When there is already entanglement between the polarization
degrees of freedom in the input state, what is the entanglement at the output?
Answer: Eout = 2 + Ein/2 for the entropy of entanglement, generalizing the answer
illustrated in Fig. 4.1 (see Section 4.4).
How does this answer change when the input state is mixed?
Answer: it’s complicated . . . see Section 4.4 for details.

4.312 Example

With this conclusion, we attempt to calculate the logarithmic negativity for

single-photon mixed states for which all wave packet functions ψ(ω) are Gaussian-

shaped

ψ(ω) ∼ exp

(
−(ω − ω0)

2

σ2

)
, (4.32)

and which is mixed with respect to the arrival time τ of wave-packet peaks. Assuming

a Gaussian distribution for arrival times as well, we write

ψ(ω) → ψτ (ω) = ψ(ω)e−iωτ , (4.33)

P (τ) ∼ exp

(
− τ

2

σ2
τ

)
. (4.34)
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So, explicitly the density matrix is

ρin = A

∫
dτ exp

(
− τ

2

σ2
τ

)∫
dω

∫
dω′ exp

[
−(ω − ωo)

2

σ2
− (ω′ − ωo)

2

σ2
+ i(ω′ − ω0)τ

]

a†(ω) |v〉 〈v| a(ω′), (4.35)

with normalization coefficient A. Since the state is profiled in spectral space, we have

Trρ2in =

∫
dω 〈v| a(ω)ρ2ina

†(ω) |v〉 . (4.36)

By using the commutation relation

[a(ω), a†(ω′)] = δ(ω − ω′) (4.37)

and basic algebra we can show that

Trρ2in =
(
1 + 4σ2σ2

τ

)−1/2
. (4.38)

The logarithmic negativity after the beam splitter is then according to (4.31)

EN (ρout) = log2

[
1 + (1 + 4σ2σ2

τ )
−1/4

]
, (4.39)

which in either limit στ = 0 or σ = 0 reduces to unity. The first limit is just a pure

state, which is easily conceived, while the latter fact is a bit harder to reveal, but
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think of ψ(ω) as δ(ω − ωo) when σ → 0. Then according to Eq. (4.35),

ρin =A

∫
dτ exp

(
− τ

2

σ2
τ

)∫
dωδ(ω − ωo)e

−iωτ
∫

dω′δ(ω′ − ωo)e
iω′τa†(ω) |v〉 〈v| a(ω′)

=A

∫
dτ exp

(
− τ

2

σ2
τ

)
a†(ωo) |v〉 〈v| a(ωo), (4.40)

which is equivalently a pure state. Physically, δ(ω−ωo) corresponds to monochromatic

light whose wave function extends homogeneously along the time axis to both

infinities, so that the concept of wave-packet arrival time no longer applies.

In conclusion, the entanglement of the output state depends only on the ratio of

the “incoherent” width of the mixture in time, στ to the “coherent” width in time

of each wave packet 1/σ. For a large incoherent width the entanglement reduces to

zero, as expected.

4.32 Adding the Vacuum

Real experiments involving single photons typically are described by a state

involving a vacuum component in addition to the single-photon component. The

phase between the vacuum and a particular single-photon Fock state may or may not

be known or controlled. We may write a state containing the two Fock states as

ρvac1in =

∫
dϕf(ϕ)

(√
1 − p |v〉 +

√
peiϕ |1〉

)
⊗
(√

1 − p 〈v| +
√
pe−iϕ 〈1|

)
, (4.41)

with p the fixed a priori probability of detecting a photon. We consider two extreme

cases here:
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1. f(ϕ) ∼ δ(ϕ) when the state is pure and we simply represent it, instead of ρ, as

a pure state

|vac1in〉 = |
√

1 − p |v〉 +
√
p |1〉 ; (4.42)

2. f(ϕ) is a flat distribution so that the cross terms vanish after the integration.

The state is thus reduced to

ρvac1in = (1 − p) |v〉 〈v| + pρ1. (4.43)

We treat these two cases one by one. The output state of Eq. (4.42) after a 50/50

beam splitter is

|vac1out〉 =
√

1 − p |00〉 +

√
p

2
(|10〉 + |01〉). (4.44)

The entropy of entanglement and the logarithmic negativity are straightforwardly

calculated and the result is

EN (|vac1out〉) = log2(1 + p). (4.45)

The latter expression is particularly simple. Of course, both measures of entanglement

vary between 0 and 1 for p varying between 0 and 1. It can be shown that EN is

always larger that E when p ∈ [0, 1].
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For the mixture, we are at liberty to assume the diagonal expansion Eq. (4.8)

along with Eq. (4.9) and Eq. (4.10). Hence we have

ρvac1out = (1 − p) |00〉 〈00| +
p

2

∑

k

λk (|01k〉 + |1k0〉) (〈01k| + 〈1k0|) . (4.46)

The quantities we are interested in are now

Pur(ρvac1out) =(1 − p)2 + p2
∑

k

λ2k, (4.47)

EN (ρvac1out) = log2

(
p+ Pur1/2

)
, (4.48)

where Pur denotes the purity of the input state. We see that Eq. (4.48) generalizes

the expression Eq. (4.45) which is only a special case when Pur = 1. Of course,

it also generalizes Eq. (4.31). In conclusion, EN depends only on p and the purity,

which in turn is also affected by the value of p.

4.4 Entanglement of Two-Photon States

4.41 No Vacuum Component

A broadband-pumped down-conversion process produces a state whose two-

photon component can be written in the form (4.11), with the mode function in

the ideal (pure-state) case described as115

ψ(ωo, ωe) = α(ωo + ωe)Φ(ωo, ωe). (4.49)

Here ωo,e are the frequencies of the two photons with ordinary and extraordinary

polarization, respectively. α(ωo +ωe) is the pump spectrum envelope, and the phase-
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matching function Φ(ωo, ωe), after a great deal of simplification, is

Φ(ω̄o + νo, ω̄e + νe) = sinc
{[
νo(k

′
o − k′p) + νe(k

′
e − k′p)

]
L
}
, (4.50)

where νo,e are deviations from the perfect match frequencies ω̄o,e, and where L is the

length of the nonlinear medium. Moreover, k′p,o,e are the first derivatives of wave

vectors with respect to frequency for pump photon and outcoming o- and e- photons

respectively at the perfect phase-matching condition

ωp = ω̄o + ω̄e. (4.51)

We still restrict ourselves to Gaussian wave packets only, and so we assume

α(νo + νe) ∼ exp

[
−(νo + νe)

2

σ2

]
, (4.52)

so that ψ(ωo, ωe) is real everywhere. In general, due to our ignorance about the precise

timing of the pump pulse or about its precise central frequency, the state generated

will actually be a mixed state.

We are interested in the entanglement of such a (pure or mixed) state between

the two orthogonally polarized modes. Moreover, just like in the preceding section,

we wish to calculate the entanglement that results from splitting such a two-photon

state on a 50/50 beam splitter. The resulting entanglement after the beam splitter

is of a different sort, it’s entanglement between the two output modes of the beam

splitter, not between orthogonal polarizations. An interesting question is whether

that entanglement is larger or smaller than the initial polarization entanglement.
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Although we will have to resort to numerical methods to calculate both types

of entanglement, we can analytically determine the relation between pure-state

entanglement before the beam splitter and that after the beam splitter: Assume

that the Schmidt decomposition of a state [those coefficients can be obtained, in

some approximation, analytically124, but we won’t need them explicitly] described by

Eq. (4.49) is

|2in〉 =
∑

k

√
λkh

†
kv

†
k |v〉 , (4.53)

(Here we have associated o-photons with horizontal polarization and e-photons with

vertical polarization.) The entropy of entanglement and logarithmic negativity are

thus expressed in terms of Schmidt coefficients as82

E(|2in〉) = −
∑

k

λk log2 λk, (4.54)

EN (|2in〉) =2 log2

(
∑

k

√
λk

)
. (4.55)

It can be shown that the state after the beam splitter can be Schmidt-decomposed

similarly as

|2out〉 =
1

2

∣∣2̃
〉
c
|0〉d −

1

2
|0〉c

∣∣2̃
〉
d
−
∑

k

√
λk
2
h†ckv

†
dk |v〉 +

∑

k

√
λk
2
v†ckh

†
dk |v〉 , (4.56)

where h†ck, v
†
ck, h

†
dk and v†dk are associated with c†H(ω), c†V (ω), d†H(ω) and d†V (ω)

according to Eqs. (4.15).
∣∣2̃
〉
c,d

stands for a specific two photon state, take c e.g.,

∣∣2̃
〉
c

=
∑

k

√
λkh

†
ckv

†
ck |v〉 (4.57)
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which in frequency space is actually

∣∣2̃
〉
c

=

∫
dνo

∫
dνeα(νo + νe)Φ(νo, νe)c

†
H(νo)c

†
V (νe) |v〉 . (4.58)

The notation for the state is just a shorthand notation emphasizing its orthogonality

with respect to any single-photon state or vacuum state. Hence we may conclude

E(|2out〉) =2 +
1

2
E(|2in〉), (4.59)

EN (|2out〉) =2 log2

(
1 + 2EN (|2in〉)/2) . (4.60)

One obvious question is now whether these same relations will still hold for mixed

input and output states.

Since analytical solutions to the two-photon problem seem impossible without

further approximations, even for the pure-state case (but for an exception see

Ref.124), we therefore turn to numerical methods where we introduce some standard

approximations that were used before in121,122. Integrals over continuous frequency

are converted into sums over discrete frequencies, and infinity as the integral limit is

replaced by an artificial cutoff according to

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ → ∆ω∆ω′

n∑

j=1

n′∑

k=1

. (4.61)

For convenience we hence choose ∆ω = ∆ω′ and n = n′. The choice of ∆ω is

determined by requiring the integrals to converge numerically. Moreover, we have to

choose a scale for the many frequencies that occur in this problem. Quite arbitrarily,

we have chosen to rescale all quantities with a dimension of frequency to Ω, defined
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FIGURE 4.5 Entropy of entanglement of pure two-photon states described by
Eqs. (4.49)–(4.52) before and after a 50/50 beam splitter as a function of the
dimensionless pump width σ/Ω.

through the relation

(k′o − k′p)LΩ = 2.25.

We also use

(k′e − k′p)LΩ = 0.63.

These two relations are similar to those used in Ref.121.

In Figs. 4.5 and 4.6 we plot the numerically evaluated entanglement for pure

states, as a function of the width σ of the Gaussian pump pulse in units of Ω. We

verified the validity of Eq. (4.59) and Eq. (4.60). Both νo and νe (deviation from the

perfect-match frequencies) are cut off from −2Ω to 2Ω. This is not driven by questions

of numerical convergence, but by the freedom one has to consider only those photons

in a certain frequency interval. For instance, if one uses narrow-band detectors then

only the entanglement between photons of frequency within that bandwidth will be

relevant. We simply used cut-off values such that the central peak and two side peaks

of the sinc function (4.50) are taken into account.
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FIGURE 4.6 Logarithmic negativity of pure two-photon states described by
Eqs. (4.49)–(4.52) before and after a 50/50 beam splitter as a function of the
dimensionless pump width σ/Ω.

Next we consider mixed two-photon states in a way that is similar to what we did

for single photon states. We assume Gaussian wave packets with an uncertainty in

arrival time. That is, we introduce a time-displaced mode function for two frequencies

by

ψ(ω, ω′) → ψτ (ω, ω
′) = ψ(ω, ω′)e−i(ω+ω

′)τ , (4.62)

and we choose P (λ) in Eq. (4.12) to take exactly the same form as Eq. (4.34) only that

λ is replaced by τ . Since the Gaussian shape for τ falls off fairly quickly, we decided

to extend the integral in our numerical calculations over the interval (−2στ , 2στ ). To

be more explicit, after the 50/50 beam splitter the mixed state looks like

ρ2out =

∫
dτP (τ) |2out(τ)〉 〈2out(τ)| , (4.63)
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where P (τ) ∼ exp(−τ 2/σ2
τ ) and

|2out(τ)〉 =
1

2

∫
dνo

∫
dνeατ (νo + νe)Φ(νo, νe)e

−i(νo+νe)τ

×
(
c†H(νo)c

†
V (νe) + c†V (νe)d

†
H(νo) − c†H(νo)d

†
V (νe) − d†H(νo)d

†
V (νe)

)
|v〉 .

(4.64)

By realizing that the two-photon states can be expanded in their own space |2(τ)〉c,d
instead of single-photon combination space, the size of the density matrix is greatly

reduced from (N+1)4×(N+1)4 to (2N+T +1)2×(2N+T +1)2, N and T being the

number of discretization intervals along ω and τ axes respectively. Fig. 4.7 shows our

numerical results regarding mixed two-photon states. We display two kinds of curves

for three sets of parameters. The solid curves give the numerical results for EN (ρout),

whereas the dotted curves plot 2 log2

(
1 + 2EN (ρin)/2

)
. In the case of a pure state these

two quantities would be the same, according to (4.60), but for mixed states there is

a small difference, indicating the relation (4.60) is a fair approximation for mixed

states.

From the preceding section we know the precise relation between entanglement

generated by a beam splitter and purity for single-photon states. For comparison we

plot in Fig. 4.8 the logarithmic negativity as a function of the purity of the mixed

state for both single- and two- photon states. The almost linear behavior indicates

the close relation between the characteristic purity of the system and the amount of

entanglement that can be extracted under ideal conditions. Obviously, entanglement

increases with purity.
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FIGURE 4.7 Logarithmic negativity of mixed two-photon states (4.63) –(4.64) after a
50/50 beam splitter vs. the dimensionless mixed-state width στΩ. The dotted curves
are calculated by plugging the input state’s EN into Eq. (4.60) and the solid curves
are direct numerical results. Each set of dotted and solid curves has different wave
packet width σ. From top to bottom: σ/Ω = 0.5, 1, 2.
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FIGURE 4.8 Logarithmic negativities of various mixed output states of a 50/50 beam
splitter are plotted against purity. The single-photon result follows directly from
Eq. (4.31), while the two-photon case is calculated from state Eq. (4.63). We have
chosen σ = Ω for both two-photon states here and in all remaining figures.
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4.42 Adding the Vacuum

Type-II down conversion does not produce a two-photon state. Instead it

produces a superposition of a two-photon state and the vacuum. Thus, let us first

consider a pure state of the form

|vac2in〉 =
√

1 − p |v〉 +
√
p
∑

k

√
λkh

†
kv

†
k |v〉 , (4.65)

where p is the a priori probability to detect two photons, which typically will be

small. In terms of the Schmidt coefficients we can easily calculate the entanglement

present in the state (4.65),

E(|vac2in〉) = − (1 − p) log2(1 − p) − p log2 p− p
∑

k

λk log2 λk, (4.66)

EN (|vac2in〉) =2 log2

(
√

1 − p+
√
p
∑

k

√
λk

)
. (4.67)

Just as before we can express the entanglement of a state resulting from splitting this

state on a 50/50 beam splitter in terms of the entanglement of the input state. The

50/50 beam splitter accordingly converts the state into

|vac2out〉 =
√

1 − p |0〉c |0〉d +

√
p

2

(∣∣2̃
〉
c
|0〉d + |0〉c

∣∣2̃
〉
d

)

+

√
p

2

∑

k

√
λk

(
v†ckh

†
dk + h†ckv

†
dk

)
|v〉 , (4.68)

46



where
∣∣2̃
〉

is given by Eq. (4.57). The entanglement measures are calculated to be

E(|vac2out〉) = −
(

1 − p/2 +
√

1 − p

2

)
log2

(
1 − p/2 +

√
1 − p

2

)

−
(

1 − p/2 −√
1 − p

2

)
log2

(
1 − p/2 −√

1 − p

2

)

+ p− p

2
log2 p−

p

2

∑

k

λk log2 λk, (4.69)

EN (|vac2out〉) = 2 log2

(
1 +

√
p
∑

k

√
λk

)
. (4.70)

We observe that

Eout −
1

2
Ein = −

(
1 − p/2 +

√
1 − p

2

)
log2

(
1 − p/2 +

√
1 − p

2

)

−
(

1 − p/2 −√
1 − p

2
log2

1 − p/2 −√
1 − p

2

)

+
1 − p

2
log2

(
1 − p

2

)
+ 1, (4.71)

and

2ENout/2 − 2EN in/2 = 1 −
√

1 − p. (4.72)

These relations are the generalizations of Eq. (4.59) and Eq. (4.60) respectively when

vacuum is involved.

For mixed states involving the vacuum no analytical results seem to be possible,

so we reverted to numerical calculations. Fig. 4.9 plots some results from those

calculations as a function of the probability p.
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4.43 Local Filtering

The mixed two-photon state (4.63) is written as a mixture of pure two-photon

states (4.64). The latter states are superpositions of two types of states: those with

an odd number of photons in each output port of the beam splitter (namely, one),

and those with an even number (namely, zero or two). By imagining performing a

quantum nondemolition measurement of the parity of the photon number on (one of

the) output ports, we are applying a local filter. This filtering cannot increase the

entanglement and thus the entanglement after filtering gives a lower bound to the

total entanglement present in the mixed state (4.63).

In the pure-state case we can calculate the amount of entanglement resulting

from filtering by collapsing the output Eq. (4.68) into either even-number-photon

state

|φeven〉 =
1√

1 − p/2

(√
1 − p |0〉 |c |0〉d +

√
p

2

∣∣2̃
〉
c
|0〉d +

√
p

2
|0〉c

∣∣2̃
〉
d

)
(4.73)

with probability 1 − p/2 or the odd-number-photon state

|φodd〉 =
1√
2

∑

k

√
λk

(
v†ckh

†
dk + h†ckv

†
dk

)
|v〉 (4.74)

with probability p/2. Averaging the entanglement over the two possible measurement

outcomes yields

E
(even/odd)
N =(1 − p/2)EN (|φeven〉) + p/2EN (|φodd〉)

=p+ p log2

∑

k

√
λk −

(
1 − p

2

)
log2

(
1 − p

2

)
. (4.75)
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FIGURE 4.9 Logarithmic negativities for the output of a mixed two-photon state
accompanied by vacuum at a fixed pump width σ = Ω and a mixture width στΩ = 1.
p is the proportion of the two-photon state, as indicated in Eq. (4.65). The dotted
line is calculated from the relation Eq. (4.70), which is true for a pure state only. The
dash-dotted line is the entanglement after the beam splitter after the local filtering
operation discussed in the text (Section 4.43).

Figs. 4.10 and 4.9 illustrate this filtering effect for mixed states as a function of στΩ

for fixed σ = Ω, and as a function of p for fixed σ and στ , respectively. One sees that

about a third of the entanglement in the output state arises from coherence between

states like |1, 1〉 and |0, 2〉 + |2, 0〉, in symbolic notation.

4.5 Conclusions

We have quantified the entanglement of various mixed states containing exactly

one or exactly two photons, as well as states with a nonzero vacuum component, by

using the logarithmic negativity. For pure states we found simple relations between

the entanglement of single-photon and two-photon states before and after a 50/50

beam splitter. For mixed states such relations are still found to be approximately

true.

The simplest result arises for a mixed delocalized single photon. Its entanglement

depends only on its purity. The result illustrates that even a perfect deterministic
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FIGURE 4.10 Logarithmic negativities for the output of mixed two-photon states
(4.63)–(4.64). The dotted line is calculated from the relation Eq. (4.60), which is true
for a pure state only. The dash-dotted line is the entanglement that would result
after local filtering of the output state (see Section 4.43).

single-photon source (never producing more than a single photon) still may not be

sufficient for certain quantum-information processing purposes (quantum computing

based on dual-rail encoding, for example) if a large degree of entanglement is needed.

We considered fairly realistic cases by explicitly including a vacuum component of

photon states, as well as including the spectral and/or temporal shapes of photon wave

packets. But an obvious generalization of the present work would be to include full

three-dimensional mode structures. Moreover, in the case of two photons impinging

on a beam splitter we only treated the case of photons with orthogonal polarizations

(having in mind type-II down conversion), but the similar case of identically-polarized

photons is interesting as well, and, perhaps surprisingly, more complicated.
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CHAPTER V

ENTANGLEMENT VERIFICATION WITH FINITE DATA

This work was published as Entanglement verification with finite data, Phys.

Rev. Lett. 105, 170501 (2010). It was initiated and finished jointly by R. Blume-

Kohout, J. O. S. Yin and S. J. van Enk.

Entanglement is an essential resource for quantum information processing, and

producing and verifying entangled states is considered a benchmark for quantum

experiments (for a sample from the most recent experiments on a wide variety of

physical systems, see94,125–137). Several methods for verifying entanglement have been

developed (for overviews, see57,92). A bipartite state is entangled if it is not separable,

and data D demonstrate entanglement if there is no separable state that could have

generated them. As the number of data N → ∞, the data are unambiguous, but

for finite N , only probabilistic conclusions can be drawn. In this Letter, we quantify

exactly what can be concluded from finite or small data sets, using a simple and

efficient likelihood ratio test.

We demonstrate the method using two simulated experiments on two-qubit

systems 1. The first measures just one observable, an entanglement witness 55,138,139.

The other performs a tomographically complete measurement. In both cases, we

use likelihood ratios to draw direct conclusions about entanglement, rather than

estimating the quantum state as an intermediate step. A related technique for testing

1For larger systems, determining whether a given state is entangled is an NP-hard problem. In
multi-partite systems, different classes of entanglement exist, but their classification is still an open
problem. Our likelihood ratio method applies to any case where the decision is binary: do the data
demonstrate entanglement in a particular class or not? So in this paper, the word “separable” can
be generalized to “not in the desired entanglement class.”
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violation of local realism, and based on empirical relative entropy instead of the

likelihood ratio, was proposed by van Dam et al140 and applied by Zhang et al141.

5.1 Likelihood Ratios

Data D could have been generated by any one of many independently and

identically distributed (i.i.d.) states ρ⊗N . Each state ρ represents a theory about the

system, and the relative plausibility of different states is measured by their likelihood

L(ρ). A state’s likelihood is simply the probability of the observed data given that

state,

L(ρ) ≡ Pr(D|ρ), (5.1)

and states with higher likelihood are more plausible. If the most likely state is

separable, the data clearly do not support entanglement. If it is entangled, then

we need to ask how convincing the data are – specifically, whether some separable

state is almost as plausible. To judge whether there is (even just one) separable state

that fits the data, we compare the likelihoods of (i) the most likely separable state,

and (ii) the most likely of all states. Letting S be the set of separable states, we

define

Λ ≡ maxρ∈S L(ρ)

maxall ρ L(ρ)
. (5.2)

Λ is a likelihood ratio, and

λ = −2 log Λ (5.3)
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represents the weight of evidence in favor of entanglement 2. To demonstrate

entanglement convincingly, an experiment must yield a sufficiently large value for

λ.

A likelihood ratio does not assign a probability to “ρ is entangled”. Instead, it

yields a confidence level. We can determine what values of λ typically result from

measurements on ρ⊗N , and how their distribution depends on whether ρ is entangled

or separable. If we measure λ = λexp, and no separable state produces λ ≥ λexp

with probability higher than ǫ, then we have demonstrated entanglement at the 1− ǫ

confidence level. If an experimentalist plans (before taking data) to calculate λ and

report “ρ is entangled” only when the data imply 1−ǫ confidence, then the probability

that he erroneously reports entanglement 3 is at most ǫ.

So, ρ may be (i) entangled, (ii) separable, or (iii) on the boundary. Boundary

states are still separable, and they are the hardest separable states to rule out. To

demonstrate entanglement at the 1 − ǫ confidence level, we must show that there

is no boundary state for which Pr(λ ≥ λexp) ≥ ǫ. It is difficult to make rigorous

probabilistic statements about λ for small N . But as N → ∞, the following analysis

becomes exact, and is generally thought to be reliable for N & 30142.

5.2 The Distribution of λ

The set of quantum states ρ is a convex subset of the vector space of trace-

1 d × d Hermitian operators, R
d2−1. An entanglement-verification measurement is

2The factor of −2 may seem arbitrary. Statisticians use this convention because λ (as defined) is
in many circumstances a χ2 random variable (see text, below).

3Statisticians call this a “Type I error”. Erroneously rejecting entanglement, even though
the experiment is capable of demonstrating entanglement (which is not the same as reporting
separability), is a “Type II error”. In entanglement verification one tries to avoid Type I errors
and is merely mildly unenthusiastic about Type II errors.
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represented by a POVM (positive operator-valued measure) M = {Ei . . . Em}, in

which each operator Ek represents an event that occurs with probability pk = TrEkρ

(Born’s rule), and each ρ defines a probability distribution ~p = {p1 . . . pm}. Data

in which Ek appeared nk times define empirical frequencies ~f = {f1 . . . fm}, where

fk ≡ nk

N
. Both ~p and ~f can be represented as elements of an m-simplex embedded

in a vector space R
m−1. The probabilities in ~p may be linearly dependent (e.g., if

Ej+Ek = 1l, then pj+pk = 1 for all ρ), and at most d2−1 of them can be independent

(because ρ contains only d2 − 1 parameters). We define dim(M) as the number of

independent probabilities.

So Born’s rule defines a linear mapping from the operator space containing

quantum states into the probability space for measurement M. If dim(M) < d2 − 1,

then the mapping from states to ~p-vectors is many-to-one, and the experiment is

completely insensitive to some parameters of ρ. Ignoring these irrelevant parameters

makes ρ an (effectively) dim(M)-dimensional parameter. Separable states form a

convex subset of all states (see Fig. 5.1). These sets’ images in probability space are

also nested convex sets (although if dim(M) < d2 − 1, then some entangled states

will be indistinguishable from separable ones in this experiment).

Suppose that N copies of a state ρ0 are measured, yielding a likelihood function

L(ρ). L(ρ) has a unique global maximum ρ̂MLE. As N → ∞, the distribution of

ρ̂MLE approaches a Gaussian around ρ0 with covariance tensor ∆. L(ρ) itself is a

Gaussian function with the same covariance matrix ∆ (see note 4). This defines a

characteristic length scale δ = |∆|2 that scales as δ = O(1/
√
N). We can use ∆ to

4Technically, this Gaussian ansatz is true only when ρ0 is full rank – i.e., not on the boundary
of the state set. If ρ0 is rank-deficient, then both the distribution of ρ̂MLE and L(ρ) itself are
typically truncated by the boundary. However, the analysis remains valid (as N → ∞) except if ρ0
is simultaneously rank-deficient and on the boundary between separable and entangled states.
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FIGURE 5.1 General schema of a likelihood ratio test. The separable states S
(cyan) are a convex subset of all states, surrounded by entangled states (red). Data
from an experiment on a state ρ yield a quasiconvex likelihood function [(a)] with a
unique maximum (ρ̂MLE). ρ̂MLE is randomly distributed around ρ, at a typical length
scale δ = O(1/

√
N). If ρ̂MLE is separable then there is no evidence for entanglement,

but if it’s entangled (as shown), then the relative likelihoods of ρ̂MLE and the most
likely separable state determine the weight of evidence. Data are “convincing” if they
are very unlikely to have been produced by a borderline separable state. Typical
likelihood ratios for such states depend on the shape of S. In (b)-(d) we show three
possible cases: in (b) S is smaller than δ and behaves like a point; in (c) it is of size
δ and its behavior is hard to characterize; in (d) it is much bigger than δ and behaves
like a half-space.

define a stretched Euclidean metric

d(ρ1, ρ2) =
√

Tr [(ρ1 − ρ2)∆−1(ρ1 − ρ2)]. (5.4)

Using this metric, ρ̂MLE is univariate Gaussian distributed around ρ0, and

logL(ρ) = −d(ρ, ρ̂MLE)2

2
. (5.5)

Thus, λ is determined entirely by d(ρ̂MLE,S), the distance from ρ̂MLE to the separable

set S. If ρ0 is demonstrably entangled, then λ will grow proportional to N – but if it
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is indistinguishable from a separable state, then λ will converge almost certainly to

zero (see Figure 5.2).

When ρ0 is on the boundary, λ neither grows with N nor converges to zero, but

continues to fluctuate as N → ∞. Its distribution is controlled by the shape and

radius of S, e.g.:

1. If S is small w/r.t. δ, it behaves like a point (see Figure 5.1b). Then

d(ρ̂MLE,S) ≈ d(ρ̂MLE, ρ0), λ = −2 log (Lmax/L(ρ0)) = d(ρ, ρ̂MLE)2, and so λ

is a χ2 random variable with dim(M) degrees of freedom (a.k.a. a χ2
dim(M)

variable).

2. If S is much larger than δ, then it behaves like a half-space (see Figure 5.1d and

note 5). If S were a k-dimensional hyperplane, λ would be a χ2
dim(M)−k variable.

A halfspace behaves like a hyperplane of dimension (dim(M)− 1), except with

probability 1
2
, ρ̂MLE is separable. Thus, λ is what we will call a semi-χ2

1 variable:

it equals zero with probability 1
2
, and is χ2

1-distributed otherwise.

As N → ∞, case (2) applies. For small N , however, the real situation is somewhere

in between (see Figure 5.1c). S may be small, and its boundary may be sharply

curved, increasing λ. In the absence of a detailed understanding of S’s shape, case

(1) provides the best rigorous upper bound on λ. Its cumulative distribution is upper

bounded by that of a χ2
dim(M) variable – i.e., Pr(λ > x) is no greater than it would be

if λ was a χ2
dim(M) variable. As N → ∞, the more optimistic semi-χ2

1 ansatz is valid

– but only if we know that N is “large enough”.

A χ2
k variable has expected value k, and higher values are exponentially

suppressed. So λ ≫ dim(M) is sufficient to demonstrate entanglement at a high

5As long as the boundary of S is differentiable at ρ0.
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FIGURE 5.2 Loglikelihood ratios (λ) behave dramatically differently for
different states. 1000 independent simulated tomographically complete experiments
were performed, on four different Werner states – separable, barely separable, slightly
entangled, and highly entangled. λ is shown for each trial (points), and averaged over
all 1000 trials (solid lines). For small N the experiment cannot reliably distinguish
them. As N grows, it resolves shorter distances in the state space. For entangled
states, typical values of λ increase linearly with N , whereas the separable state almost
certainly yields λ = 0 [not visible in these plots; for ρq=0.25 (black), all trials with more
than N ∼ 103 measurements yielded λ = 0, and the average (dashed line)plunges off
the graph]. For barely separable states, λ behaves as a semi-χ2

k variable with k = 1
as N → ∞ (see Fig. 5.3).

confidence level. This implies a tradeoff between an experiment’s power (ability to

identify many entangled states) and its efficiency (ability to do so rapidly). Powerful

experiments have large dimension – e.g., a tomographically complete measurement

can identify any entangled state, but has dim(M) = d2 − 1. This comes at a price;

experiments with large dimension are potentially much more prone to spurious large

values of λ, so more data is required to achieve conclusive results [λ ≫ dim(M)].

Conversely, an entanglement witness (see below) is targeted at a particular state, but

it can rapidly and conclusively demonstrate entanglement.
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5.3 Implementation

Computing λ involves maximizing L(ρ) over two convex sets (the set of all states,

and the set S of separable states). L(ρ) is log-convex, so in principle this is a convex

program.

Testing separability is NP-hard, so efficient minimization over ρ ∈ S is impossible

in general. But for two qubits, the positive partial transpose (PPT) criterion perfectly

characterizes entanglement, and λ can be calculated easily (see examples below). For

larger systems, S can be bounded by simpler convex sets, as S− ⊂ S ⊂ S+, (e.g., S+ =

PPT states, and S− = convex combinations of specific product states). Maximizing

L(ρ) over S+ and S− yields bounds on maxρ∈S L(ρ), which may (depending on

how wisely the bounding sets were chosen) be tight enough to confirm or deny

entanglement.

5.4 Examples

To demonstrate the likelihood ratio test, we simulate two different experiments

on two qubits. We imagine an experimentalist trying to produce the singlet state |Ψ〉,

and producing instead a Werner state 143,

ρq = qΠsinglet + (1 − q)I/4, (5.6)

where Πsinglet = |Ψ〉〈Ψ|. Werner states are separable when q ≤ 1/3, and

entangled otherwise. The experimentalist’s repeated preparations are assumed to

be independently and identically distributed (i.i.d.)144.
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FIGURE 5.3 Distribution of λ for a SIC-POVM experiment. We show the
empirical complementary cumulative distribution function of λ, CCDF (λc) = Pr(λ >
λc), for the state ρq=1/3 and simulated datasets of size N = {10 . . . 106}. The CCDF is
used to compute confidence levels – e.g., to report entanglement at the 95% confidence
level, it is necessary to observe λ such that CCDF (λ) < 0.05. For this particular
state, the chance of a zero λ approaches 50% as N increases. For each N , CCDF (λc)
was based on roughly 104 data points from independent trials, each of which generated
a value of λ from N tomographically complete measurements on ρq=1/3. We also show
CCDFs for a semi-χ2

1 variable and a χ2
dim(M) = χ2

15 variable. The semi-χ2
1 ansatz is

good for large N , but unreliable for small N (yielding too many false positives), while
the χ2

15 ansatz is very conservative.

5.5 Witness Data

The simplest way to test for entanglement is to repeatedly measure a single

entanglement witness 55,57,138,139. An optimal witness for Werner states is W = I/2−

Πsinglet. Measuring W yields one of two outcomes – “yes” or “no” – corresponding

to POVM (positive-operator valued measure) elements {Πsinglet, I − Πsinglet}. The

probability of a “yes” outcome is given by Born’s rule as p = TrρΠsinglet, so p

completely characterizes a state ρ for the purposes of this experiment. The data from

N measurements is fully characterized by the frequency of “yes” results, f = n“yes′′/N .

As N → ∞, f > 1
2

represents definitive proof that 〈W 〉 < 0, and therefore that ρ is

entangled. For finite N , f ≤ 1
2

means that a separable state fits as well as any other,

so there is no case for entanglement. When f > 1
2
, our likelihood ratio quantifies the
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weight of the evidence for entanglement. The likelihood function depends only on p,

as

L(ρ) = L(p) = Pr(~f |p) = pNf (1 − p)N(1−f)

= e−N(−f log p−(1−f) log(1−p)), (5.7)

making this a single-parameter problem. The maximum likelihood, attained at p = f ,

is Lmax = e−NH(f), expressed in terms of the data’s empirical entropy,

H(f) = −f log f − (1 − f) log(1 − f). (5.8)

If f > 1
2
, the most likely separable state has p = 1

2
, so that Lsep = 2−N , which yields

λ = −2 log
Lsep

Lmax

= 2N [log(2) −H(f)] . (5.9)

Our numerical explorations (not shown here) confirm that for a barely-separable

Werner state, λ behaves as a semi-χ2
1 variable, even for N as low as 20.

5.6 Tomographically Complete Data

Many entanglement-verification experiments measure a tomographically complete

set of observables on a finite-dimensional system (with a heroic example being

tomography on 8 ions in an ion trap74). Such data identify ρ uniquely as N → ∞, so

one can determine with certainty whether ρ is entangled (modulo the computational

difficulties in determining whether a specified ρ is separable). Analyzing finite

data is more complicated than in the witness example, for the data constrain
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a multidimensional parameter space. Ad-hoc techniques are unreliable, and the

likelihood ratio test comes into its own.

We consider an apparatus that applies a SIC (symmetric informationally

complete)-POVM145 to each of our two qubits, independently. This measurement

(not to be confused with a 4-dimensional SIC-POVM) is tomographically complete,

has 4× 4 = 16 outcomes, and yields 15 independent frequencies. Unlike W , it has no

special relationship to Werner states, so any entangled ρ will yield overwhelmingly

convincing data as N → ∞.

We repeatedly simulated N = 10, . . . , 106 measurements on a barely-separable

Werner state (ρq=1/3), and compared the empirical distribution of λ to those of

semi-χ2
1 and χ2

15 random variables (see Figure 5.3). As N gets large, λ becomes

indistinguishable from a semi-χ2
1 variable. For smaller N , this ansatz is too

optimistic (and would produce excessive false positives), but the χ2
d2−1 ansatz is wildly

overcautious. We found that for small N , λ behaves like a semi-χ2
D variable, with D

a bit larger than 1 (e.g. D ≈ 1.6 for N = 100).

5.7 Conclusions

Entanglement verification is easy when N → ∞. In practice, N is finite and data

are never conclusive. Likelihood ratios provide a simple, reliable test of significance

that can be applied to any experimental data. Large values of λ are very unlikely

to be generated by any separable state, but the hardest separable states to rule out

are on the boundary. For such states, theory predicts (and our numerics confirm)

that λ behaves like a semi-χ2 random variable. If the underlying state is separable,

Pr(λ > x) can be upper bounded using a χ2
dim(M) distribution, scaling as e−x for
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large x. For entangled states, λ grows linearly with N , and will thus rapidly become

distinguishable from any separable state.
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CHAPTER VI

CRITERIA FOR RELIABLE ENTANGLEMENT QUANTIFICATION WITH

FINITE DATA

This work was published as Criteria for reliable entanglement quantification with

finite data, Phys. Rev. A 83, 022326 (2011). It was initiated and finished jointly by

J. O. S. Yin and S. J. van Enk.

6.1 Introduction

The study of quantum entanglement never ceases to intrigue researchers58, and

its verification has attracted just as much attention in the quantum information

community. Almost all entanglement verification methods57 are designed for the

situation where infinitely many data are (implicitly) assumed to exist. The finite-

data regime has not been given much attention until recently146. In that paper the

main question concerned the binary decision about whether one’s quantum systems

are entangled or not. In the present chapter we consider the task of quantifying

entanglement with finite data. One of the questions we consider here is: how

many measurements are needed to quantify entanglement reliably? Obviously, such

a question cannot be answered in its full generality, as it will depend on what

measurements are performed, on the number of qubits, and, possibly, on how accurate

an estimate one wishes to have. Nevertheless, we will develop general criteria for

determining a “sufficient” number of measurements based on a Bayesian analysis of

measurement data, which can be applied to any sorts of measurements and to any

number of qubits. Our criteria do not actually need an accuracy to be specified in

advance.
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The other goal of this chapter is to develop Bayesian estimation methods for

entanglement in nontrivial cases. In particular, we choose to simulate experiments

on (mixed, entangled) four-qubit states. Ref.147 discusses the virtues of Bayesian

methods for quantum state estimation, especially as compared to maximum likelihood

estimation (MLE), and here we consider that same comparison in the context of

entanglement estimation.

An advantage of Bayesian methods is that error bars on entanglement measures

are generated automatically. MLE can generate error bars by using a bootstrap

method, where ρMLE is used to numerically generate more data, but this does not

work when the number of data is small. In Sec. 6.2 we compare these two methods

of generating entanglement estimates and their error bars. The Bayesian methods

do require one to choose prior probability distributions over states. In Sec. 6.31 we

explicitly provide two inherently different standard prior distributions in our systems

both of which are numerically feasible and both of which can be applied to any number

of qubits. In Sec. 6.32 a convenient entanglement measure is introduced, that can be

computed directly from the multipartite density matrices, and which can, likewise, be

generalized to any number of qubits. We also briefly discuss the disadvantages of this

particular measure (no known multi-partite entanglement measure is without flaws,

although a very recent preprint does improve upon the situation148. In Sec. 6.33 we

derive the relations needed for tomographic state reconstruction that are associated

with a special kind of tomographically complete measurements, and in Sec. 6.34 we

discuss our implementation of the Metropolis-Hastings algorithm, which allows one

to sample from the posterior distribution efficiently. Finally, in Sec. 6.4 we give our

main results and attempt to answer the questions laid out in this Introduction.
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6.2 Comparisons Between Maximum Likelihood Estimation and Bayesian

Methods

In entanglement verification experiments where tomography is adopted,

maximum likelihood estimation is widely accepted as the state estimation method of

choice. Here the state that best fits the data, ρMLE, is accepted as the best estimate of

the quantum state. While this may sound almost tautological, what MLE fails to give

credit to is a large multitude of states that are almost as likely as ρMLE (see Ref.147).

Bayesian methods, on the other hand, take these states into account naturally. We

will briefly compare MLE and Bayesian methods for entanglement estimation, and in

later sections we will get into more details.

Bootstrap methods combined with MLE can be used to generate a distribution

of states (somewhat similar to the Bayesian posterior distribution of states). Here

one assumes ρMLE as the real state, from which new sets (of the same size and type as

the actual data set) of simulated measurement results are generated. Each such set

yields a new MLE state; and thus a distribution of states is generated, which can be

used to generate error bars. While this distribution does take into account to some

extent the statistical fluctuations, the final estimation of entanglement might still be

overly optimistic (see Ref.147 for a clear account).

The fundamental idea behind Bayesian inference follows from Bayes’ theorem.

Assume H is a hypothesis and D is the observation data. Bayes’ rule tells us that

the probability for hypothesis H to be true given observation data D, also known as

the posterior probability, is

P (H|D) =
P (D|H)

P (D)
P (H). (6.1)
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P (H) is the prior probability, the probability of H prior to the observations of D.

P (D|H) is the conditional probability for D to be observed if H is true; it is also

called the likelihood of the hypothesis given the data; and then it is denoted by

L(D). P (D) is the marginal probability for data D, which is usually considered as

a normalization factor, namely, as the sum of the conditional probabilities over all

mutually exclusive hypotheses

P (D) =
∑

j

P (D|Hj). (6.2)

In our quantum context, the role of hypotheses is played by density matrices ρ.

To be more specific now, we will look at a four-qubit system on which

we will perform the simulations presented in the chapter (generalizations are

straightforward). We assume some POVM is measured that can be written as a tensor

product of local measurements, {Πk}, (because that tends to be the easiest type of

measurement to perform in practice). The outcomes of the POVM measurement can

then, likewise, be denoted by {Πj ⊗ Πk ⊗ Πm ⊗ Πn}, and fjkmn is the frequency of

getting the outcome Πj ⊗ Πk ⊗ Πm ⊗ Πn. The likelihood functional for any state ρ is

then by definition

L(ρ) =
∏

jkmn

[Tr (ρΠj ⊗ Πk ⊗ Πm ⊗ Πn)]Mfjkmn =
∏

jkmn

(pjkmn)Mfjkmn , (6.3)

where M is the total number of measurements of the POVM, and

pjkmn = Tr (ρΠj ⊗ Πk ⊗ Πm ⊗ Πn) (6.4)

is the probability of the outcome Πj ⊗ Πk ⊗ Πm ⊗ Πn, given the state ρ.
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The (physical) state that saturates the upper bound of L is called ρMLE. Since the

estimation is a single state, which can be considered as a distribution with zero width,

it is equivalent to taking the limitM → ∞. That is, MLE by reporting a single density

matrix essentially assumes that the same data would repeat ad infinitum. Bayesian

estimation methods yield the same answer as MLE in that limit, and the influence

of the prior is eliminated. In the cases where ρMLE saturates the upper bound of L

in such a way that pjkmn 6= Tr (ρMLEΠj ⊗ Πk ⊗ Πm ⊗ Πn) 1, ρMLE tends to lie on the

boundary of the set of physical states147. That is, the state is of non-maximal rank

and some eigenvalues are zero. This usually happens when M is “small.”

The second step of MLE+bootstrap is to simulate a new dataset by using

Tr (ρMLEΠj ⊗ Πk ⊗ Πm ⊗ Πn) as probabilities of measurement outcomes. Repeating

this procedure many times (using the same ρMLE) will produce a distribution

of measurement outcomes and inferred quantities, and thus error bars on those

quantities. As the new data are generated by ρMLE, entanglement can be easily

overestimated if ρMLE lies on the boundary of the set of physical states, since

generically rank-deficient states are more entangled than full-rank states. On the

other hand, if ρMLE is away from the boundary, then the distribution produced this

way is expected to resemble the posterior distribution generated by Bayesian methods.

One interesting question is how fast the gap closes up between the two estimates,

MLE and Bayesian, as the number of measurements M increases. In fact, this

comparison will serve as a (half) criterion for determining how many measurements

is “sufficient,” provided we choose some “standard” prior distribution to be used in

Bayesian entanglement estimation.

1In this case there is an Hermitian trace-1 operator σ that does satisfy pjkmn =
Tr (σΠj ⊗Πk ⊗Πm ⊗Πn), but σ is not positive definite.
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6.3 Preliminaries

Before we can tackle the main questions of this chapter, we need to make several

choices, and we need several definitions. These are all collected in this Section.

6.31 Priors and Measures

Let S be the set of all physical states ρ and µ be a measure on the space of S.

Particularly in probability theory,
∫
S

dµ = 1. If f is any real function of ρ, then the

expectation value of f over the space of S is specified by the measure µ:

〈f〉 =

∫

S

f(ρ)dµ. (6.5)

If ρ is parameterized by a set of real parameters x: ρ = ρ(x), then µ becomes the

Lebesgue measure over the space of x: dµ = dx, where dx is the infinitesimal volume

in the corresponding real parameter space. The choice of the parametrization of state

ρ , which essentially implies the choice of measure in the space of all states S, induces

a prior, Pµ(ρ). Namely, a uniform random distribution over the parameter space

defines a particular prior distribution over the space of the physical states through

the relation

Pµ(ρ)dρ = ρ(x)dx. (6.6)

Thus we claim that we have, in this context, established the connection between the

prior and the measure. In numerical implementations where one samples from the
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random distribution over x the integral is replaced by the sum:

∫

S

f(ρ(x))dx →
∑

x

∆xf((ρ(x)). (6.7)

6.311 The GH and Z priors

To study a system consisting of four qubits we choose two inherently different

priors: Z and GH, which correspond to two distinct measures of the state space.

The measures are chosen for their numerical convenience and for their extendability

to arbitrary numbers of qubits. Moreover, they are both dense in the set of all states.

To define the Z measure (or prior) we first write the density matrix for a four-

qubit system as

ρ = V EV †, (6.8)

where E is a diagonal matrix that carries all the eigenvalues and V is a unitary matrix.

The measure of states can be chosen as a product of two particular independent

measures introduced in149,150

µ(ρ) = µ(E) × µ(V ). (6.9)

µ(E) constitutes a 15-dimensional simplex, which is a uniformly distributed manifold

defined by a unit sum of 16 nonnegative numbers, and µ(V ) is the Haar measure based

on the direct products of four matrices, any single one of which is to be chosen from

the set of three Pauli matrices and the identity. We name the prior corresponding to

this measure “Z prior”.
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Alternatively, we can parametrize a four-qubit state as

ρ = HH†/Tr
(
HH†) , (6.10)

where H is a random complex 16-by-16 matrix, with both the real and the imaginary

part of each entry uniformly distributed on (−1, 1). This is closely related to

Cholesky decomposition of the positive semidefinite matrices151, and similar to the

parametrization used in Ref.152, except that in that paper the unit trace condition is

imposed by Lagrangian multipliers while here the condition is satisfied automatically.

We name the prior correspond to this measure “GH prior”.

Each prior over states induces a prior over any quantity that can be calculated

as a function of the state. If we are interested in a quantity N(ρ), then we have a

prior P (N)dN = (P (ρ)dN/dρ)dρ. In particular, in the next subsection we will define

two measures of four-qubit entanglement, two “negativities”, N1 and N2, that both

can be calculated (easily) for given states. In FIG.6.1 we show the two induced prior

distributions over N1 (left) and the GH prior distributions for N1 and N2 (right).

From this point on we will stick to Z and GH priors for the demonstration of further

results. Note that these priors are not meant to represent anyone’s subjective prior

beliefs: rather they are two standard priors to be used for our specific purposes of

quantifying entanglement and determining how many measurement are needed for

that.

It is worth mentioning some observations on simple variations of the above priors.

In particular, both priors have the property that the weight of entangled states is

larger than that of unentangled states (more precisely, we compare zero negativity

states vs. nonzero negativity states, using our definition of multi-partite negativity,

see the following section for details). In order to achieve a prior distribution where
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FIGURE 6.1 (Color online) Left: Two different prior distributions of states, named
“Z” and “GH” (for details, see main text, Section 6.311 in particular), and the induced
prior distributions of the 4-party negativity N1 (defined in Section 6.32).
Right: GH prior distribution over the two negativities N1 and N2, showing the strong
correlation between the two measures for randomly drawn states. The “white” noise
is due to statistical fluctuations due to the finite sample size.

the ratio of the weight of separable states vs. entangled states is unity, we can

mix in an appropriate amount of the identity matrix into the pure Z and pure GH

measures. That is, after having picked a random state ρ′ from either measure, we take

ρ = λρ′+(1−λ)I/D, with I/D the maximally mixed state in the Hilbert space. λ can

be sampled from any distribution that leads to a equal weight between entangled and

non-entangled states. In our calculation we chose λ = uβZ,GH , where u is uniformly

(Lebesgue) random on [0, 1] and βZ,GH is an adjustable distortion parameter chosen

to ensure a 50% probability of entangled or non-entangled states, βZ = 0.66 and

βGH = 0.50.

How different are the pure and mixed priors as far as quantifying entanglement is

concerned? FIG.6.2 shows the posterior distributions after just a 1000 measurements

for three different states, with pure and mixed GH prior respectively (the plots for

the mixed and pure Z distributions are very similar). We find that in every case the

“mixed” curve gives results very close to the corresponding ”pure” curve, even when

the measurements are still far from sufficient for reliable entanglement quantification
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FIGURE 6.2 The posterior distributions resulting from a pure GH prior (w/o ID)
and a mixed GH prior (w/ ID, i.e., with the identity mixed in, see text for details).
From left to right, the curves describe single trials of just a 1000 measurements on
the state ρq (Eq. (6.23)) with q = 0.4, 0.6, 0.8 from left to right.

(as we will see in Section IV). This indicates that the choice of “pure” Z or GH

measures is at least somewhat robust against certain simple modifications.

6.32 Multipartite Entanglement Measures

As mentioned, the system we are particularly interested includes four qubits,

which is computationally affordable but sufficiently complicated as a step towards

scalable multipartite systems. Despite the intensive studies in the multipartite

entanglement65,85,153–162 over the years, almost all attempts at categorizing

multipartite entangled states consider first pure states, and the entanglement

measures for pure states can then be extended to mixed states through a convex roof

extension, but this involves an arduous minimization over all possible decompositions

of the mixed states. To illustrate our ideas without getting too involved in any

numerical optimizations, we choose to extend an easily calculable and thereby

desirable measure, namely, negativity82, to the four qubit system. The negativity

originated from the idea of the partial transpose54. As is well known by now, for 2×2
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and 2× 3 systems that negative partial transpose (NPT) is a necessary and sufficient

condition for entanglement55. The negativity has been shown to be closely associated

with the fidelity of quantum teleportation18 and its logarithm bounds the amount of

entanglement that can be distilled163. The major advantage of the negativity is that

it is directly computable for both pure states and mixed states regardless of the size

of the system, e.g., the number of qubits, as long as the density matrix is given.

Suppose we have a quantum system consisting of multiple subsystems. We can

partition the subsystems into two groups, say X and Y . The negativity of a state ρ

with respect to that partition X − Y , is defined as

NX−Y (ρ) =
∣∣∣∣ρΓY

∣∣∣∣
1
− 1, (6.11)

where ΓY stands for partial transpose with respect to subsystem Y and || · ||1 for the

trace norm of a matrix. For four-qubit systems there are two ways of partitioning

into groups of certain sizes: “2 − 2” (partitioning the four qubits into two groups of

two qubits) and “1 − 3” (partitioning them into one group of three and one single

qubit). Correspondingly we define two negativities as the geometric means:

N2−2 = (NAB−CDNAC−BDNAD−BC)1/3 , (6.12)

N1−3 = (NA−BCDNB−CDANC−DABND−ABC)1/4 , (6.13)

where

NAB−CD =
∣∣∣∣ρΓCD

∣∣∣∣
1
− 1, (6.14)
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and similar for all others. For simplicity we henceforth denote N2−2 by N1 and we

use N2 for N1−3.

Despite the fact that these negativities can be computed regardless of the system,

they do not necessarily make a distinction between all different types of four-party

entanglement. For instance, both measures may be nonzero for states that are not

genuinely four-party entangled (e.g., a state like [ρAB ⊗ ρCD + ρA ⊗ ρBCD]/2, where

ρAB, ρCD, and ρBCD are entangled); and it may be zero for certain entangled states,

namely those with the property that for at least one partition the entanglement is

bound.

On the other hand, both N1 and N2 are entanglement monotones since each single

NAB−CD or NA−BCD is an entanglement monotone, as shown in Ref.82. Moreover,

a vanishing N1 or N2, or equivalently a positive partial transpose (PPT) indicates

nondistillability with respect to the corresponding partition164.

Whereas for generic states N1 and N2 are correlated to a high degree (FIG.6.1),

an illuminating counter-example (showing the independence of the two measures) is

the Smolin state165, given by

ρ =
1

4

(∣∣Ψ+
〉
AB

〈
Ψ+
∣∣⊗
∣∣Ψ+

〉
CD

〈
Ψ+
∣∣+
∣∣Ψ−〉

AB

〈
Ψ−∣∣⊗

∣∣Ψ−〉
CD

〈
Ψ−∣∣

+
∣∣Φ+

〉
AB

〈
Φ+
∣∣⊗
∣∣Φ+

〉
CD

〈
Φ+
∣∣+
∣∣Φ−〉

AB

〈
Φ−∣∣⊗

∣∣Φ−〉
CD

〈
Φ−∣∣) , (6.15)

where

∣∣Ψ±〉 =
1√
2

(|01〉 ± |10〉) , (6.16a)

∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉) . (6.16b)
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For the Smolin state, N1 = 0 (it’s separable along any 2-2 cut) and N2 = 0.5 (it’s

entangled along any 1-3 cut). More specifically, NAB−CD = NAC−BD = NAD−BC

= 0, NA−BCD = NB−CDA = NC−DAB = ND−ABC = 0.5. The evaluations of the

entanglement reflect perfectly what is shown in Ref.165, that for the Smolin state,

entanglement can be distilled between any one of the four qubits and part of the rest

of the three qubits, while there is no entanglement between any two groups of two

qubits.

6.33 SIC-POVM and the Inverted State

For no particular reason we will assume we measure, on each single qubit, a class

of tomographic POVMs that is symmetric informationally-complete (the so-called

SIC-POVMs), where any pair of two outcome vectors has exactly the same overlap.

A single qubit SIC-POVM is formulated as145

Πα =
1

2
|α〉 〈α| , α = 1, 2, 3, 4. (6.17)

They are linearly independent, tomographically complete and satisfy the normalization

condition

4∑

α=1

Πα = I, (6.18)

and the symmetry condition

Tr(ΠαΠβ) =





1
4

α = β

1
12

α 6= β

. (6.19)
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The four-qubit POVM measurement we refer to is the tensor product of the SIC-

POVM on individual qubits so that only local measurements are performed. We

label the nonorthogonal compound basis as Mjkmn, j, k,m, n = 1, 2, 3, 4 and Mjkmn =

Πj⊗Πk⊗Πm⊗Πn. The linear independence and the completeness of Mjkmn’s can be

inferred from the same properties of the Πα’s for a single qubit system. This makes

it possible to expand arbitrary density matrices in terms of the Mjkmn:

ρ =
∑

jkmn

qjkmnΠj ⊗ Πk ⊗ Πm ⊗ Πn. (6.20)

Note that the coefficients qjkmn here can be negative without compromising the

positivity of ρ. In fact, in order for ρ to be an entangled state, at least one of

them must be negative (otherwise, Eq. (6.20) gives a separable form). With the

help of Eq. (6.4) we are able to tomographically reconstruct the state by setting

the probabilities equal to the measurement frequencies pjklm and then expressing the

coefficients qjkmn’s in terms of the probabilities pjkmn’s:

qjkmn =64pjkmn − 63

(
∑

α

pαkmn +
∑

β

pjβmn +
∑

γ

pjkγn +
∑

δ

pjkmδ

)

+ 62

(
∑

αβ

pαβmn +
∑

αγ

pαkγn +
∑

αδ

pαkmδ +
∑

βγ

pjβγn +
∑

βδ

pjβmδ +
∑

γδ

pjkγδ

)

− 6

(
∑

βγδ

pjβγδ +
∑

αγδ

pαkγδ +
∑

αβδ

pαβmδ +
∑

αβγ

pαβγn

)
+ 1. (6.21)

In an actual experiment where the readout frequencies fjkmn are considered as

pjkmn, the state reconstructed by Eq. (6.21) with pjkmn = fjkmn is called ρtomo, which

is equal to ρMLE if and only if ρtomo is physical (see147). For the case where it is not
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physical, ρMLE can be approximated by setting the negative eigenvalues of ρtomo equal

to zero, followed by a renormalization of the density matrix.

6.34 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (or MH), among many Monte Carlo methods,

is applied to generate a Markov chain of states to obtain directly the posterior

distribution over states (hence a “walk”). The MH walk is known for its fast

convergence even when the sampling space is too large for direct random sampling

to be efficient. Since the state space of mixed four-qubit states is already 255-

dimensional, it makes sense for us to use this method.

The algorithm starts at any random (physical) state and decides to take (or not

take) the following random step each time towards a new state depending on the

relative likelihood of the new and the old state. The process lasts until a converging

distribution is reached from the steps taken. The overall outcome is a path in the

state space towards the region with the most likely states and wandering about that

region. One then counts how often a certain state occurs; that is its weight in the

posterior distribution. More precisely, the probability of taking a step is determined

by the ratio of the likelihood of the next and the current state. For example, if the

likelihood of the next state is 0.7 times the likelihood of the current state, then there

is a chance of 70% the next state is accepted. On the other hand, if the next state

more likely than the current state, i.e. the ratio of the likelihood is larger than 1,

then the acceptance is definite. Since the MH walk spends most of its time on the

most likely states, it manages to outperform pure random sampling substantially.
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One of the concerns in MH walk is setting the appropriate step size, from one

state to the next. It can be defined in a certain chosen measure as

dstep = ||ρnext − ρcurrent|| . (6.22)

A small step size may costs a long time for the algorithm to converge, although

still faster than random sampling, while a large step size tends to identify less likely

states by getting stuck in a low likelihood region, which then produces a less accurate

distribution.

In standard practice the acceptance rate, which is defined as the overall

probability of accepting a step, is used as a quantitative reflection of a step size.

There is no rigid proof of what an optimal acceptance rate is, as the final distribution

converges to a smooth one. In our work we tested a wide range of possible step

sizes, balancing the stability and the efficiency of the program, and managed to

keep it between 35% and 40%, close to the ideal acceptance rate for Gaussian target

distribution166. As shown in FIG.6.3, the algorithm quickly navigates to the desired

area after about 1,000 steps and stays there “indefinitely” until we terminate the

procedure after 105 steps.

6.4 How Many Measurements?

In order to examine how many measurements suffice for a reliable report of

the amount of entanglement in terms of the negativities, it is enlightening to study

states that are unlikely to be mistaken as separable states. We choose a particular

class of four-qubit states, namely W states with white noise mixed in, which can be
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characterized by

ρ(q) = q |W 〉 〈W | + (1 − q)I/16, (6.23)

where |W 〉 = 1
2

(|0001〉 + |0010〉 + |0100〉 + |1000〉) and I is the 16-by-16 identity

matrix. |W 〉 is known to possess genuine multipartite entanglement65, and such

genuine entanglement can be detected and distinguished from 3-party and 2-party

entanglement, as demonstrated recently in an actual experiment94. According to

the entanglement monotones given earlier in the chapter, ρ becomes 2-2 separable

(i.e., N1 = 0) when q < 0.1112 and 1-3-separable (i.e., N2 = 0) when q < 0.1262.

When a sufficiently large q value is chosen, the state is less likely to be confused as

a separable one. Indeed, the similarities shared between our results for the states

ρ(q = 0.8, 0.6, 0.4) suggests that the conclusions from these three test states can be

validly applied to the class of states with a wide range of q values as long as the state

is safely entangled.

In the spirit of Bayesian estimation, the posterior distributions are determined

by both the observation data and the prior, with the former becoming more and more

important as data accumulates. When the posterior distributions resulting from the

two inherently distinct GH and Z priors are laid together, we expect that they will

overlap more and more as a function of the number of measurements. Indeed such

behavior is demonstrated in FIG. 6.4 and FIG. 6.5, and this behavior forms the

basis of our Criterion 1. In particular, FIG. 6.4 shows the evolution of the Bayesian

posterior distributions as the number of measurements M increases along 104, 105 to

106. The expectation values 〈N1,2〉 and the standard errors 〈2δN1,2〉 are computed and

shown in FIG.6.5 on a logarithmic scale for the two priors and different numbers of

measurements. Both 〈2δN1,2〉Z and 〈δN1,2〉GH are fitted with 1/M0.5 (see Appendix).
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On the other hand, in the Figure,
∣∣〈N1,2〉Z − 〈N1,2〉GH

∣∣ is fitted with M−α, where

α is approximately 0.81 for N1 and approximately 0.66 for N2. The behavior of
∣∣〈N1,2〉Z − 〈N1,2〉GH

∣∣ is analyzed analytically in the M → ∞ limit in the Appendix,

with several important simplifying assumptions made. It shows that for any not-too-

pathological prior, the average posterior value of a physical quantity N approaches

the true value Nr as

|〈N〉 −Nr| ∼ 1/
√
M, (6.24)

when M is large. When any two priors are considered with the same observation

data, the difference between the average posterior values of N behaves like

|〈N〉Z − 〈N〉GH | ∼ 1/M, (6.25)

which converges faster by a factor of order
√
M . This is because the uncertainty in

the data affects each value of 〈N〉 for each prior in the same linear fashion, and hence

this uncertainty is canceled out when the difference is taken. This observation leads

directly to our first Criterion.

For entanglement quantification to be reliable we require a number of

measurements M such that for M and larger number of measurements, we have

Criterion 1 : | 〈N〉Z − 〈N〉GH | < 〈δN〉Z + 〈δN〉GH . (6.26)

(Obviously, one can always substitute’s one favorite measure of entanglement instead

of N to create a new criterion. To repeat, our choice of the negativity is for numerical

convenience, as well as the fact our measure can be easily generalized to any number
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FIGURE 6.3 A Z-prior based Metropolis-Hastings walk towards ρ(q = 0.8)
(Eq. (6.23)), for which N1 = 0.3875, N2 = 0.3339. The number of measurements
is 104.

of qubits.) This means the peaks of the two distributions are closer to each other

than their mean standard error. When the two priors are well chosen to be sufficiently

distinct, the difference likewise is, presumably, sufficiently large to be spotted. As

the measurements accumulate, the distribution will converge towards the true value.

And when Eq. (6.26) is satisfied, we claim that the measurements suffice to be trusted

and the posterior distribution from either of the priors qualifies as the final result.

According to the Appendix we can write |〈N〉Z − 〈N〉GH | = A/M in the large

M limit, where A is a constant. We also write 〈δN〉Z,GH = BZ,GH/
√
M , where

BZ,GH are constants, as indicated by the fitting. Then Eq. (6.26) is satisfied for

∀M > A2/(BZ + BGH)2. This is observed when the number of measurements is

larger than about 105 (FIG. 6.5). Therefore 105 is the number of the SIC-POVM

measurements necessary, according to Criterion 1, for an honest assessment of the

amount of entanglement in terms of negativities in a four-qubit system.

Note that both of the two priors used in this chapter are easily generalized

to larger number of qubits or other higher dimensional systems. The inherent
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FIGURE 6.4 Estimated probability distribution P (N1) of MLE & bootstrap method
(dot-dashed red) against the posterior distributions with Z and GH priors (solid
blue and solid green respectively), after the same series of measurements. The
broadest, the medium and the sharpest distribution for each color correspond to
M = 104, 105, 106. The state being considered is ρ(q = 0.6) (Eq. (6.23)). The red
curves are obtained by assuming ρMLE is the real state, from which the corresponding
measurements are simulated and a ρMLE is found for each set of measurements, thus
not requiring any prior. Around M ≈ 105 measurements all three methods more or
less agree with each other.

difference between the two, which is observed in terms of the negativities for two

qubits and four qubits (FIG.6.1), is expected to persist in similar quantities for larger

systems. As a result, the proposed criterion can be extended to multi-qubit systems

straightforwardly.

Our next criterion compares estimates of entanglement based on MLE with a

Bayesian estimate, using a prior P (either GH or Z). For entanglement quantification

to be reliable we require a number of measurements M such that for M and larger
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FIGURE 6.5 The difference between the estimations of 〈N1,2〉 using the Z and GH
priors, compared with the standard error 〈δN1,2〉 for ρ(q = 0.6) (Eq. (6.23)). The
dash-dotted lines [connecting the sizes of the error bars] are fitted with c/M0.5, where
c is a number different for the left (N1) and right (N2) figures. The dashed lines
[connecting the differences between the two estimates] are fitted to guide the eye with
c/M0.81 (left) and c/M0.66 (right) respectively. (Figures for ρ(q = 0.8) and ρ(q = 0.4)
look very similar, except for the differences in the slopes of the fitting (dashed) lines.)
Our Criterion 1 is formulated in terms of the average of 〈2δN1〉 and 〈2δN2〉, such that
the location where the dashed and the dash-dotted lines cross indicates the number
of measurements needed for reliable entanglement estimation.

number of measurements, we have

Criterion 1.5 : | 〈N〉P −NMLE| < 〈δN〉P + δNMLE, (6.27)

where P stands for either Z or GH. It is, of course, safest (i.e., most conservative)

to employ both priors, and pick the larger value of M as sufficient. According to the

Appendix, 〈N〉P and NMLE approach each other at the rate of 1/M . The argument

that |NMLE−Nr| ∼ 1/
√
M can be used to imply that δNMLE ∼ 1/

√
M , since what ρr

is to ρMLE is exactly what ρMLE is to all ρ’s that constitute the bootstrap distribution.

Therefore, similar to Criterion 1, a number of measurements M can always be found

for Criterion 1.5 to be satisfied.
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In words, the criterion accepts an estimate of entanglement as reliable if the

Bayesian estimate, based on some prior P , and the MLE estimate (using the bootstrap

method) agree with each other. It’s only half a criterion, as a Bayesian should see no

reason to accept the MLE estimate as judge for his estimate; nor should a frequentist

accept the Bayesian estimate with some randomly picked prior for that purpose! It

is presumably a good criterion for agnostics (and in that case, not independent of

the first Criterion, as MLE will agree with both Bayesian estimates only if the latter

agree with each other).

As Fig.(6.4) shows, the bootstrap results [for our particular state tested] bear

a greater deal of similarities with the GH-based posterior distribution than with

the Z-based posterior. Thus the latter determines the critical value of M . For

this particular case, one finds once again that M ≈ 105 is necessary for reliable

entanglement quantification. Thus, here both Criteria agree with each other.

6.5 Conclusions

We formulated criteria to determine a sufficient number of measurements for

reliable entanglement quantification. The main criterion uses two different “standard”

prior distributions over states, used in a Bayesian analysis of the measurement data.

Namely, if the two posterior distributions resulting from two different priors agree on

the amount of entanglement (within error bars) then we can declare that our results

have converged and, therefore, that they are reliable. A second criterion, not quite

independent of the first, compares the results from maximum likelihood estimation

(MLE), without using any prior, to the two Bayesian results. If MLE agrees with the

two Bayesian estimates, then, again, we can declare the results sufficiently reliable.
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Obviously, in this case the two Bayesian estimates must also agree with each other,

and that is why the second criterion is not independent of the first.

We illustrated these criteria by applying them to a particular set of measurements

on four qubits [and then both criteria agreed with each other on what constitutes

a sufficient number of measurements], but all our results, including the prior

distributions, and the measurements considered, and the criteria themselves easily

generalize to more (or fewer) qubits.

In order to perform these calculations, we also proposed four-qubit entanglement

monotones (based on the negativity) that can be calculated for arbitrary mixed states.

Those monotones, too, generalize easily to different number of qubits.

In fact, the extendability of both entanglement measures and priors to arbitrary

numbers of qubits is the principal reason to choose these particular criteria (given

these ingredients, the criteria then take a standard form for distinguishing two

(peaked) probability distributions).

The next question to be answered is how the sufficient number of measurements

scales with the number of qubits. How one can analyze this question when the Hilbert

space is so large that even the Metropolis-Hastings algorithm fails to work reliably,

can be a future subject.
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CHAPTER VII

INFORMATION CRITERIA FOR EFFICIENT QUANTUM STATE

ESTIMATION

This work was published as Information criteria for efficient quantum state

estimation, accepted by Phys. Rev. A. It was initiated and finished jointly by J.

O. S. Yin and S. J. van Enk.

7.1 Introduction

Quantum state estimation47,147,167 remains one of the hot topics in the field of

quantum information processing. The hope to recover each element in the density

matrix from measurement data, however, is impeded by the exponential growth of

the number of matrix elements with the number of qubits, and the concomitant

exponential growth in time and memory required to compute and store the density

matrix. The task can become intimidating when 14 qubits are involved16, and so

efforts have been made to simplify quantum state tomography. One such effort focused

on states that have high purity24 so that the size of the state space shrinks significantly

(from O(D2) to O(D) for a system described by a D dimensional Hilbert space).

Given that the measurement record is used to verify the assumptions made initially,

this method avoids the trap of simplification through imposing a priori assumptions

merely by fiat. Another recent effort25 in the same spirit considered multi-qubit

states that are well represented by matrix product states168–170 (which require a

number of parameters growing only polynomially with the number of qubits). Many

states of interest, such as ground states of certain model Hamiltonians in condensed-

matter physics, are of that form. Crucially, the particular form of the state can be
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verified by the data. Somewhat similarly, a recent paper171 considered estimating the

permutationally invariant part of a density matrix. This, too, requires surprisingly

few measurements, and is relevant as many states of interest are permutationally

invariant. In fact, the states we will consider in this paper possess that property.

Here we go one step further, and we will allow, tentatively, any parametrized

form for the density matrix of the quantum system to be tested, possibly containing

just a few parameters. In fact, we may have several different tentative ideas of how

our quantum state is best parameterized. The questions are then, how the data reveal

which of those descriptions work sufficiently well, and which description is the best.

This idea corresponds to a well-developed field in statistics: model selection172–174.

All mathematical descriptions of reality are in fact models (and a quantum state,

pure or mixed, is an excellent example of a model), and they can be evaluated by

judging their performance relative to that of the true model (assuming it exists). In

order to quantify this relative performance, we will make use of the Kullback-Leibler

divergence (aka mutual information, aka cross entropy, aka relative entropy)175, which

has the interpretation of the amount of information lost when a specific model is

used rather than the true model. Based on the minimization of the Kullback-Leibler

divergence over different models, the Akaike Information Criterion (AIC)176 was

developed as a ranking system so that models are evaluated with respect to each

other, given measurement data. The only quantities appearing in the criterion are the

maximum likelihood obtainable with a given model (i.e., the probability the observed

data would occur according to the model, maximized over all model parameters), and

the number of independent parameters of the model.

The minimization does not require any knowledge of the true model, only that

the testing model is sufficiently close to the true model. The legitimate application
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of AIC should, therefore, in principle be limited to “good” models, ones that include

the true model (in our case, the exact quantum state that generated the data), at

least to a very good approximation. However this does not prevent one from resorting

to the AIC for model evaluation when there is no such guarantee. In fact, Takeuchi

studied the case where the true model does not belong to the model set and came

up with a more general criterion, named the Takeuchi Information Criterion, TIC177.

However the estimation of the term introduced by Takeuchi to counterbalance the

bias of the maximum likelihood estimator used in the AIC, requires estimation of a

K × K matrix (K being the number of independent parameters used by a model)

from the data, which, unfortunately, is prone to significant error. This reduces the

overall charm and practical use of the TIC. Since in most cases the AIC is still a

good approximation to the TIC173, especially in the case of many data, we stick to

the simpler and more robust criterion here.

Information criteria are designed to produce a relative (rather than absolute)

ranking of models, so that fixing a reference model is convenient. Throughout this

paper we choose the “full-parameter model” (FPM) as reference, that is, a model

with just enough independent variables to fully parameterize the measurement on our

quantum system. For tomographically complete measurements (discussed in detail

in Sec. 7.32) the number of independent variables is given by the number of free

parameters in the density matrix (D2 − 1 for a D-dimensional Hilbert space). For

tomographically incomplete measurements (see Sec. 7.34), the number of independent

variables of FPM is smaller, and equals the number of independent observables. We

will, in fact, not even need the explicit form of the FPM (which may be hard to

construct for tomographically incomplete measurements), as its maximum possible

likelihood can be easily upper-bounded.
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We should note an important distinction between maximum likelihood estimation

(MLE)152, a technique often used in quantum tomography, and the method of

information criteria and model selection. MLE produces the state that fits the data

best. Now the data inevitably contains (statistical) noise, and the MLE state predicts,

incorrectly, that same noise to appear in future data. Information criteria, on the

other hand, have been designed to find the model that best predicts future data, and

tries, in particular, to avoid overfitting to the data, by limiting the number of model

parameters. This is how a model with a few parameters can turn out to be the best

predictive model, even if, obviously, the MLE state will fit the (past) data better.

We also note that information criteria have been applied mostly in areas of

research outside of physics. This is simply due to the happy circumstance that

in physics we tend to know what the “true” model underlying our observations is

(or should be), whereas this is much less the case in other fields. Within physics,

information criteria have been applied to astrophysics178, where one indeed may not

know the “true” model (yet), but also to the problem of entanglement estimation179.

In the latter case (and in quantum information theory in general) the problem is not

that we do not know what the underlying model is, but that that model may contain

far too many parameters. Hence the potential usefulness of information criteria. And

as we recently discovered, the AIC has even been applied to quantum state estimation,

not for the purpose of making it more efficient, but making it more accurate, by

avoiding overfitting180.

7.2 The Akaike Information Criterion - A Schematic Derivation

Suppose we are interested in measuring certain variables, summarized as a

vector x, and their probability of occurrence as outcome of our measurement. We
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denote f(x) as the probabilistic model that truthfully reflects reality (assuming

for convenience that such a model exists) and g(x|~θ) as our (approximate) model

characterized by one or more parameters, summarized as a vector ~θ. The models

satisfy the normalization condition
∫

dxf(x) =
∫

dxg(x|~θ) = 1 for all ~θ. By

definition, we say there is no information lost when f(x) is used to describe reality.

The amount of information lost when g(x|~θ) is used instead of the true model is

defined to be the Kullback-Leibler divergence175 between the model g(x|~θ) and the

true model f(x):

I(f, g~θ) =

∫
dxf(x) log(f(x))

−
∫

dxf(x) log(g(x|~θ)). (7.1)

Eq. (7.1) can be conveniently rewritten as

I(f, g~θ) = E
x

[log(f(x))] − E
x

[
log(g(x|~θ))

]
, (7.2)

where E
x
[·] denotes an expected value with respect to the true distribution f(x). We

see that x is no longer a variable in the above estimator, as we integrated it out. The

only variable that affects I(f, g~θ) is ~θ. Since the first term in Eq. (7.1) is irrelevant to

the purpose of rank-ordering different models g (not to mention we cannot evaluate

it when f is not known), we only have to consider the second term. Suppose there

exists ~θ0 such that g(x|~θ0) = f(x) for every x, that is, the true model is included in

the model set. Note that for this to hold, ~θ does not necessarily contain the same

number of parameters as the dimension of the system. To use a simpler notation

without the integration over x we denote the second term in Eq. (7.1) (without the
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minus sign) as

S(~θ0 : ~θ) =

∫
dxg(x|~θ0) log(g(x|~θ)), (7.3)

where we have used g(x|~θ0) to represent the true model f(x). The advantage of this

estimator is that it can be approximated without knowing the true distribution f(x).

To do that we first consider the situation where ~θ is close to ~θ0. This assumption

can be justified in the limit of large N , N being the number of measurement records,

since the model ~θ ought to approach ~θ0 asymptotically (assuming, for simplicity, ~θ0

is unique). We know that S(~θ0 : ~θ) must have a maximum when ~θ = ~θ0, and we may

then symbolically expand S(~θ0 : ~θ) in the vicinity of ~θ0 by

S(~θ0 : ~θ) = S(~θ0 : ~θ0) −
1

2
||~θ − ~θ0||2~θ0

+ O
(
||~θ − ~θ0||3/2~θ0

)
, (7.4)

where

||~θ − ~θ0||2~θ0 =
(
~θ − ~θ0

)′
· ∂

2S(~θ0 : ~θ)

∂~θ2

∣∣∣∣∣
~θ=~θ0

·
(
~θ − ~θ0

)
(7.5)

denoting a squared length derived from a metric defined at ~θ0. It can be proved that

when N is sufficiently large ||~θ − ~θ0||2~θ0 can be approximated by the χ2
K distribution,

with K equal to the number of independent parameters used by the model ~θ. From

the properties of the χ2
K distribution, we know the average value of ||~θ − ~θ0||2~θ0 will

approach K.

The next step is to evaluate the estimator S(~θ0 : ~θ0), where ~θ0 is now considered a

variable. Suppose we find the maximum likelihood estimate ~θM from the measurement
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outcomes such that S(~θM : ~θM) is the maximum. Now ~θM should also be close to

the true model ~θ0, when N is sufficiently large. Therefore we can similarly expand

S(~θ0 : ~θ0) in the vicinity of ~θM as

S(~θ0 : ~θ0) = S(~θM : ~θM) − 1

2
||~θ0 − ~θM ||2~θM

+ O
(
||~θ − ~θ0||3/2~θM

)
, (7.6)

||.||~θM is a length similarly defined as in Eq. (7.4) and has the same statistical

attributes as ||~θ − ~θ0||2~θ0 since ~θ0 is related to ~θM the same way ~θ is related to ~θ0 and

~θM is very close to ~θ0. Its average value, therefore, approaches again K, according to

the χ2
K distribution. Thus we are able to rewrite Eq. (7.3) as

S(~θ0 : ~θ) ≈ S(~θM : ~θM) −K. (7.7)

We see that now our target estimator S(~θ0 : ~θ) is evaluated by the MLE solution ~θM

only (plus the number of parameters K of the model), with no knowledge of what

the true model f is. The assumption that underlies this convenience is constituted

by two parts: estimating S(~θ0 : ~θ) with its maximum ~θ0 and estimating S(~θ0 : ~θ0)

from the data by its optimum ~θM . The deviations from their respective maxima are

equal and result simply in the appearance of the constant K.

We now denote  LM = S(~θM : ~θM), which is the maximum likelihood obtainable

by our model, with respect to a given set of measurement records. The indicator of

the AIC is denoted by Ξ, which is defined by

Ξ = −2 LM + 2K. (7.8)
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Apart from the conventional factor 2, and a constant independent of the model ~θ,

Ξ is an estimator of the quantity in Eq. (7.1) we originally considered, that is, the

Kullback-Leibler divergence between a model that is used to describe the true model

and the true model itself. Therefore a given model is considered better than another

if it has a lower value of Ξ.

Finally, in the case that N is not so large yet that asymptotic relations hold to

a very good approximation, one can include a correction factor to the AIC taking

the deviation from asymptotic values into account. The corrected AIC gives rise to a

slightly different criterion181:

Ξc = −2 LM + 2K +
2K(K + 1)

N −K − 1
. (7.9)

7.3 Results

7.31 Dicke states

We will apply the AIC to measurements on a popular family of entangled states,

the Dicke states of four qubits74,93,94,98,182. We simulate two different experiments, one

tomographically complete experiment, another measuring an entanglement witness.

We include imperfections of a simple type, and we investigate how model selection,

according to the AIC, would work. We consider cases where we happen to guess the

correct model, as well as cases where our initial guess is, in fact, incorrect.
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We consider the four-qubit Dicke states with one or two excitations
∣∣D1,2

4

〉
(with

the state |1〉 representing an excitation):

∣∣D1
4

〉
= (|0001〉 + |0010〉 + |0100〉 + |1000〉) /2, (7.10a)

∣∣D2
4

〉
= (|0011〉 + |0101〉 + |0110〉 + |1001〉

+ |1010〉 + |1100〉)
√

6. (7.10b)

For simplicity, let us suppose that white noise is the only random noise in the

state generation, and that it corresponds to mixing of the ideal state with the

maximally mixed state of the entire space (instead of the subspace with exactly one

or two excitations, which could be a reasonable choice, too, depending on the actual

implementation of the Dicke states). We thus write the states under discussion as

ρ1,2(α) = (1 − α)
∣∣D1,2

4

〉 〈
D1,2

4

∣∣+ αI/D, (7.11)

where I/D is the maximally mixed state for dimension D = 24, and 0 ≤ α ≤ 1. We

will fix the actual states generating our data to be

ρ1,2actual = ρ1,2(α = 0.2). (7.12)

This choice is such that the mixed state is entangled (as measured by our multi-qubit

version of the negativity, see below), even though the entanglement witness whose

measurement we consider later in Sec. 7.34, just fails to detect it.

For our first model (to be tested by AIC) we wish to pick a one-parameter model

(so, K = 1) that also includes a wrong guess. A straightforward model choice, denoted
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by M1,2
1φ , is

M1,2
1φ : ρ1,2φ (q) = (1 − q)

∣∣Ψ1,2
target(φ)

〉

〈
Ψ1,2

target(φ)
∣∣+qI/D. (7.13)

We refer to the pure states appearing here as the target states
∣∣Ψ1,2

target(φ)
〉
, simulating

the case where we (possibly incorrectly) think we would be creating a pure state of

that form, if only the white noise were absent (q = 0). The phase φ is included not as

a (variable) parameter of the model but as an inadvertently mis-specified property.

In this case, it stands for us being wrong about a single relative phase in one of

the qubits in state |1〉. Without loss of generality we assume the first qubit in our

representation to carry the wrong phase, and we write

∣∣Ψ1
target(φ)

〉
=

1

2
(|0001〉 + |0010〉 + |0100〉

+ eiφ |1000〉
)
, (7.14a)

∣∣Ψ2
target(φ)

〉
=

1√
6

[|0011〉 + |0101〉 + |0110〉

+ eiφ (|1001〉 + |1010〉 + |1100〉)
]
. (7.14b)

Alternatively, if we do consider this a two-parameter model (changing K = 1 to

K = 2), then φ is variable, and we would optimize over φ. In our case, this optimum

value should always be close to φ = 0.

In order to avoid confusion, let us note that we consider model M1
1φ when we

simulate measurements on ρ1(α = 0.2), and we consider model M2
1φ when simulating

measurements on ρ2(α = 0.2).
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FIGURE 7.1 How AIC ranks the one- and two-parameter models vs. the full-
parameter model (FPM):
Plot of the difference between Ξ values of our models, the one-parameter model
M1

1φ (a) defined in (7.13) and the two-parameter model M1
2φ (b) defined in (7.18),

and the FPM, i.e., −∆Ξ = Ξ(FPM) − Ξ(M1
1φ) or −∆Ξ = Ξ(FPM) − Ξ(M1

2φ), for

various numbers of SIC-POVM measurements, N , with
∣∣Ψ1

target

〉
as the target state,

as functions of the angle φ (in units of π/8). The horizontal line demarcates ∆Ξ = 0:
points above (below) that line correspond to cases where the model with fewer (more)
parameters is preferred. The figures with

∣∣Ψ2
target

〉
as the target state look very similar

(see FIG. 7.2 for an example of this similarity).

7.32 Tomographically Complete Measurement

We first consider a tomographically complete measurement, in which a so-

called SIC-POVM (symmetric informationally complete positive operator values

measure145) with 4 outcomes is applied to each qubit individually. We first test

our one-parameter model, and compare it to the FPM, which contains 255 (= 44− 1)

parameters, which is the number of parameters needed to fully describe a general

96



state of 4 qubits. With definition Eq. (7.8) we have

Ξ(M1,2
1φ ) = −2 LM(M1,2

1φ ) + 2, (7.15)

since K = 1 for M1,2
1φ . For the FPM we have

Ξ(FPM) = −2 LM(FPM) + 2 × 255, (7.16)

where  LM(FPM) is the log of the maximum likelihood obtainable by the FPM. The

latter can be bounded from above by noting that the best possible FPM would

generate probabilities that exactly match the actual observed frequencies of all

measurement outcomes. In the following we will always use that upper bound, rather

than the actual maximum likelihood. Even though it is possible to find the maximum

likelihood state in principle (and even in practice for small enough Hilbert spaces),

we are only concerned with the FPM’s ranking according to the AIC, which does not

require its density matrix representation. For M1,2
1φ to beat the FPM we require

−∆Ξ := Ξ(FPM) − Ξ(M1,2
1φ ) > 0. (7.17)

This is a sufficient but not necessary requirement, as we use the above-mentioned

upper bound to the FPM likelihood.

We plot the difference ∆Ξ between the two rankings in FIG. 7.1(a) for various

values of the number of measurements, and for various values of the phase φ. We

observe the following: The simple model is, correctly, judged better than the FPM

when the phase φ is sufficiently small. The more measurements one performs, the
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FIGURE 7.2 Comparing single- and double-excitation Dicke states: The difference
between Ξ’s of M1,2

1φ and the FPM as functions of φ (in units of π/8) for N SIC-
POVM measurements. There are two different simulations here, one on a noisy Dicke
state with 1 excitation using model M1

1φ and another on a noisy Dicke state with two
excitations using model M2

1φ. Both simulations contain N = 10000 measurements.
The horizontal line demarcates ∆Ξ = 0.

smaller φ has to be for the AIC to still declare the model superior to the FPM (i.e.,

for the points to stay above the solid line, at ∆Ξ = 0).

Although the correction to the AIC mentioned in Eq. (7.9) is not very small for

the FPM for N = 1000, applying that correction still does not shift the second and

third point below zero: that is, N = 1000 measurements is still not sufficiently large

for the Ξc to recognize that φ = π/4 and φ = π/2 are incorrect guesses. One can

argue about what the cause of this is: it could be that N is just too small for the

derivation of the Ξ (or even the Ξc) to be correct. Or it could be that the AIC ranking

is unreliable because the assumption that the true model is included in the model, is

violated. Or it could be that, even with a perfectly valid criterion (perhaps the TIC),

the statistical noise present in the data would still be too large.

If we consider the phase φ as a second (variable) parameter (thus creating a two-

parameter model), then we can give FIG. 7.1 a different interpretation: we would pick

φ = 0 as the best choice, and we would increase K by 1. The latter correction is small

98



on the scale of the plots, and so we find the two-parameter model to be superior to

the one-parameter model for any nonzero plotted value of φ, and to the FPM. This is

a good illustration of the following rather obvious fact: even if one has the impression

that a particular property of one’s quantum source is (or ought to be) known, it still

might pay off to represent that property explicitly as a variable parameter (at the

small cost of increasing K by 1), and let the data determine its best value.

7.33 Cross Modeling

Suppose one picked a one-parameter model with a wrong (nonzero) value of φ,

and the AIC has declared the model to be worse than the FPM. How can one improve

the model in a systematic way when one lacks a good idea of which parameters to add

to the model (we assume we already incorporated all parameters deemed important

a priori). Apart from taking more and different measurements, one could use a

hint from the existing data. One method making use of the data is to apply “cross

modeling,” where half the data is used to construct a modification to the model,

and the remaining half is used for model validation, again by evaluating Ξ on just

that part of the data. So suppose N measurements generate a data sequence F =

{f1, f2, ..., fN}. One takes, e.g., the first N/2 data points, {f1, ..., fN/2}, as the training

set, and acquires the MLE state ρMLE, or a numerically feasible approximation thereof,

with respect to the training set. We then create a model with two parameters like so:

M1,2
2φ : ρφ(ǫ, q) = (1 − ǫ) [(1 − q)ρMLE

+q
∣∣Ψ1,2

target(φ)
〉 〈

Ψ1,2
target(φ)

∣∣]+ ǫI/D. (7.18)
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For practical reasons ρMLE does not need to be strictly the MLE state, in particular

when the dimension of the full parameter space is large. One would only require it

to explain {f1, ..., fN/2} well enough to make sure that part of the data is properly

incorporated in the model. Thus, one could, for example, use one of the numerical

shortcuts described in183. The rest of the data {fN/2+1, ..., fN} is used to evaluate

M1,2
2φ against the FPM.

We note the resemblance of this procedure with the method of “cross-

validation”184. In cross-validation one tries to find out how well a given predictive

model performs by partitioning the data set into training set and validation set

(exactly the same idea as given above). One uses multiple different partitions, and

the results are averaged and optimized over those partitions. It can be shown185 that

under certain conditions cross-validation and the AIC are asymptotically equivalent in

model selection. This virtually exempts one from having to check multiple partitions

of the data set, by applying the AIC to the whole data set.

It is worth emphasizing that what we do here is different in two ways. First,

our model is not fixed but modified, based on information obtained from one half

of the data. Second, we partition the data set only once, and the reason is, that it

would be cheating to calculate the (approximate) MLE state of the full set of data

(or, similarly, check many partitions and average), and then consider the resulting

MLE state a parameter-free model.

FIG. 7.1(b) shows results for M1
2φ and SIC-POVM measurements. When the

number of measurements is N = 1000, all M1
2φ models are considered better than

the FPM, regardless of the phase error φ assumed for the target state. The reason is

that around φ = π/2 the approximate MLE state obtained from the first half of the
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FIGURE 7.3 How the AIC ranks our one-parameter model vs. the FPM for
an entanglement witness measurement: The difference between Ξ’s of M2

1φ (with∣∣Ψ2
target(φ)

〉
) and the FPM, i.e., −∆Ξ = Ξ(FPM) − Ξ(M2

1φ), for different numbers of
witness measurements, as functions of φ. The horizontal line demarcates ∆Ξ = 0.
The left figure zooms in on the leftmost three sets of data points in the right figure.

data is able to “predict” the measurement outcomes (including their large amount of

noise!) on the second half better than the 1-parameter model with the wrong phase.

On the other hand, when N = 10000 the AIC recognizes only the simple models

with small phase errors (φ = 0, π/8, π/4) as better than the FPM. So, neither the

approximate MLE state, nor the 1-parameter model with wrong phase are performing

well. This indicates how many measurements are needed to predict a single phase to

a given precision.

7.34 Witness Measurement

For states that are close to symmetric Dicke states
∣∣∣DN/2

N

〉
, their entanglement

can be verified by using measurements that require only two different local settings,

e.g., spins (or polarizations) either all in the x-direction or all in the y-direction.

In particular, when N = 4, an efficient witness is WJxy = 7/2 +
√

3 − J2
x − J2

y
99,

where Jx,y =
∑

j σ
(j)
x,y/2, with σ

(j)
x,y the Pauli matrices for the j-th subsystem. This
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FIGURE 7.4 Does the witness WJxy detect entanglement if there is a phase error?:
Witness performance 〈WJxy〉 for different states (defined as in Eq. (7.20)) as a function
of φ. A negative expectation value detects entanglement.

witness detects (by having a negative expectation value) Dicke states with a white

noise background, i.e., ρ(α) = (1 − α) |D2
4〉 〈D2

4| + αI/D whenever 0 ≤ α < 0.1920.

So we suppose we perform N/2 measurements on all of the four spins in

the x-direction simultaneously, and another N/2 similar measurements in the y-

direction. Instead of calculating the witness WJxy and ending up with one single value

determining entanglement, we make use of the full record of all individual outcomes in

order to evaluate (and then maximize) likelihoods. For example, for the measurement

of all four spins in the x-direction simultaneously, we can count the number of times

they are projected onto the |x+ x+ x+ x+〉 state, the |x+ x+ x+ x−〉 state, etc.

In both x- or y-directions, the number of independent observables (i.e., the number

of independent joint expectation values) is 15, which can be seen as follows: Any

density matrix of M qubits can be expressed in terms of the expectation values of 4M

tensor products of the 3 Pauli operators and the identity I, but the expectation value

of the product of M identities equals 1 for any density matrix, thus leading to 4M −1

independent parameters encoded in a general density matrix. From having measured

just σx on all M qubits, we can evaluate all expectation values of all operators that are
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FIGURE 7.5 How one quantifies entanglement from a witness measurement: The
posterior probability distributions of N0 for different number of witness measurements
(N = 100 in (a), N = 1000 in (b)), from model M2

1φ (with target state
∣∣Ψ2

target

〉
),

where φ = 0, π/6, π/3. N0(ρactual) = 0.4770. The posterior distributions are obtained
by binning the results into 50 equal-sized bins from the minimum to the maximum
value of N0 for each distribution separately. The prior distribution is assumed to be
uniform on [0,1] for both ǫ and q. The distributions of N1 and N2 are similar (up to
a simple shift).

tensor products of σx and the identity. There are 2M such products, and subtracting

the trivial expectation value for I⊗M leaves 2M − 1 independent expectation values.

This means it only takes 2× 15 = 30 independent parameters to form the FPM,

and we have K = 30. Similar to the tomographically complete case, we do not need

the concrete form of the whole 255-30 dimensional manifold of MLE states, nor do

we need to explicitly parameterize the 30-parameter FPM states, as we can simply

upper bound the maximum likelihood for this model,  LM(FPM), by noting the best

one could possibly do is reproduce exactly the observed frequencies of all possible

measurement outcomes.

7.35 Estimating Entanglement

Our state ρactual = ρ(α = 0.2) is just not detected by the witness WJxy, but

still contains a considerable amount of entanglement. We choose to quantify this

entanglement by means of three entanglement monotones (of which only two are
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independent), simply constructed from all bipartite negativities. If the four parties

are denoted A, B, C and D, the generalized negativities82,88,89 are defined as

N1 = (NAB−CDNAC−BDNAD−BC)1/3 , (7.19a)

N2 = (NA−BCDNB−CDANC−DABND−ABC)1/4 , (7.19b)

N0 =
(
N 3

1N 4
2

)1/7
, (7.19c)

where NAB−CD denotes the negativity with respect to partition AB against CD, etc.

The main advantage of the generalized negativities is that they are all efficiently

computable directly from the density matrix. We have for our state N1 = 0.6293,

N2 = 0.3875, and N0 = 0.4770.

Similarly to the tomographically complete case, we first consider the following

one-parameter model:

M2
1φ : ρφ(q) = (1 − q)

∣∣Ψ2
target(φ)

〉

〈
Ψ2

target(φ)
∣∣+ qI/D, (7.20)

where
∣∣Ψ2

target(φ)
〉

is defined in Eg. (7.14b). Ξ’s for M2
1φ and FPM are

Ξ(M2
1φ) = − 2 LM(M2

1φ) + 2, (7.21)

Ξ(FPM) = − 2 LM(FPM) + 2 × 30. (7.22)

FIG. 7.3 shows that, as before, the marks above the horizontal solid line correspond

to models deemed better than FPM. Compared to the case of full tomography

(FIG. 7.1(a)), here the value of Ξ(M2
1φ) is larger than Ξ(FPM) by a much smaller

amount, even when the phase term is correct (φ = 0). The absolute value of the
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difference is not relevant, though, and what counts is its sign. The obvious reason for

the smaller difference is that the number of independent parameters for the FPM has

dropped from 255 to 30. In addition, the FPM in this case does not refer to a specific

30-parameter model. On the contrary, since the number of degrees of freedom of the

quantum system is still 255, there is a whole subspace of states, spanning a number

of degrees of freedom equal to 225 (=255-30), all satisfying the maximum likelihood

condition.

The witness measurement is very sensitive to the phase error, even when the

number of measurements is still small. When N = 1000, the estimation of φ is

within an error of π/6, as the second point plotted is already below the line ∆Ξ = 0.

Compared to FIG. 7.1(a), this precision is only reached when N = 10000.

An interesting comparison can be made between AIC and the entanglement-

detecting nature of witness WJxy . FIG. 7.4 shows the performance of 〈WJxy〉 for the

pure state
∣∣Ψ2

target(φ)
〉

(ρφ(q = 0), solid curve) and the mixed with 20% of identity

mixed in (ρφ(q = 0.2), dot-dashed curve). Even when the state is pure, 〈WJxy〉 will not

be able to witness any entanglement if the phase error is larger than π/3, just about

when AIC declares such a model deficient. Entanglement in the mixed ρφ(q = 0.2)

of course is never witnessed. This means 〈WJxy〉 is only an effective witness in the

vicinity of |D2
4〉, with limited tolerance of either white noise or phase noise in even

just one of the four qubits. (Of course, one would detect the entanglement in the

pure state by appropriately rotating the axes in the spin measurement on the first

qubit over an angle φ.)

To test whether a few-parameter model correctly quantifies entanglement if

that model is preferred over the FPM by AIC, we estimate a (posterior, Bayesian)

probability distribution over the generalized negativities (defined above). We see that
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the first three curves in FIG. 7.5(a) and the first two curves in FIG. 7.5(b), which

correspond to the data points above the horizontal line in FIG. 7.3, all give consistent

estimates of N0, compared to the actual value of N0 for the true state (and the same

holds for N1,2 (not shown)). Conversely, the estimate cannot be trusted when AIC

deems the simple model inferior to the FPM (of course, it may still happen to be a

correct estimate, but one could not be sure). This gives additional evidence for the

success of AIC.

7.36 Cross Modeling for a Witness Measurement

We now construct a two-parameter model M2
2φ similar in spirit to that discussed

for tomographically complete measurements: half the data [on which half the time

(σx)
⊗4 is measured, and half the time (σy)

⊗4] are used to generate a better model,

which is then tested on the other half of the data (also containing both types of

measurements equally). We write

ρ(ǫ, q) =(1 − ǫ) [(1 − q)ρobservation

+q
∣∣Ψ2

target(φ)
〉 〈

Ψ2
target(φ)

∣∣]+ ǫI/D. (7.23)

To find a ρobservation—there are many equivalent ones for predicting the outcomes of

the witness measurements—we recall that a generic four-qubit state can be expressed

as

ρ =
∑

jklm

cjklmσj ⊗ σk ⊗ σl ⊗ σm, (7.24)

where j, k, l,m = 1, 2, 3, 4 where σ1,2,3 denote the Pauli matrices σx,y,z and σ4 = I.

The witness measures the coefficients cjklm where j, k, l,m can be combinations of
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FIGURE 7.6 What fraction of the model Eq. (7.23) describes physical states?: The
lower left part separated by the curves is where ρ(ǫ, q) of Eq. (7.23) is unphysical
(and so is not actually included in the model), for different number of measurements
N .

only 1 and 4 or combinations of only 2 and 4 (e.g., c1441 or c4222). We label the cjklm’s

that can be recovered from witness measurement as cwjklm (w as in witness). We do

not include in cwjklm the coefficient c4444, which always equals 1/16, so that it does not

depend on measurement outcomes. We define

ρobservation =
∑

jklm

cwjklmσj ⊗ σk ⊗ σl ⊗ σm + I/16. (7.25)

Note that ρobservation can be considered as a trace-one pseudostate, since it is not

necessarily positive semi-definite. But the most attractive property of ρobservation is

that it preserves the measurement outcomes. It is in fact the unique pseudostate that

reproduces the exact frequencies of all measurement outcomes and that has vanishing

expectation values for all other unperformed collective Pauli measurements. As a

component of ρ(ǫ, q), we allow ρobservation to be unphysical, but we only keep those

ρ(ǫ, q) that are positive semi-definite. We checked numerically for what values of

ǫ and q the states end up being physical, and how this depends on the number
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FIGURE 7.7 How the AIC ranks our two-parameter model vs. the FPM, for a
witness measurement?: The difference between Ξ’s of M2

2φ and the FPM, i.e.,
−∆Ξ = Ξ(FPM) − Ξ(M2

2φ), for different numbers of witness measurements as a

function φ. The target state is
∣∣Ψ2

target

〉
. The horizontal line demarcates ∆Ξ = 0.

The left figure zooms in on the leftmost three sets of data points in the right figure.

of measurements performed. Physical states are located in the upper right part of

the square in FIG. 7.6. That is, only if ǫ and/or q are sufficiently large, so that

a sufficiently large amount of
∣∣Ψ2

target

〉
and/or I/16 has been mixed in, does ρ(ǫ, q)

become physical. Depending on the number of measurements, the area of the upper

right part is about 69%-77% of the whole square. The physical/unphysical boundary

shifts closer to the origin as the number of measurements increases.

We test the two-parameter model (the physical part of it), and show the results

in FIG. 7.7. We find that for N = 100 the AIC ranks ρ2φ(ǫ, q) better than the

FPM, even when the guess about φ is very imprecise: 100 witness measurements are,

unsurprisingly, not enough for a correct reconstruction of the state. When N = 1000,

AIC only prefers the models with a value for φ within π/6 of the correct value. And

when N = 10000, the accepted values of φ are even closer to the true value.

The corresponding posterior distributions of negativities N2 are plotted in

FIG. 7.8 for the three better guesses, φ = 0, π/6, π/3. When N = 100 all three

give decent predictions of N2 (and indeed, AIC ranks those models highly). For
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FIGURE 7.8 Quantifying entanglement from a witness measurement: The posterior
distributions for N2, for different numbers of measurements (N = 100 in (a), N =
1000 in (b), N = 10000 in (c)), using model M2

2φ with ρobservation and target state∣∣Ψ2
target

〉
, where φ = 0, π/6, π/3. N2(ρactual) = 0.3875. The posterior distributions

are obtained by binning the results into 50 equal-sized bins from the minimum to the
maximum value of N2 for each distribution separately. The same prior is used as in
FIG. 7.5. Whenever the AIC declares a model superior to the FPM, the estimated
entanglement agrees, within error bars, with the actual value, but may be wrong
otherwise.

N = 1000 and N = 10000, we would only trust the estimates arising from the lower

two values of φ, or just the correct value of φ, respectively. This trust is rewarded in

FIG. 7.7(b) and FIG. 7.7(c), as those estimates are indeed correct, within the error

bars. In addition, the untrusted estimate for φ = π/6 for N = 10000 still happens to

be correct, too.

7.37 Comparing One- and Two-Parameter Models Directly

Finally, the AIC can compare the one- and two-parameter models M1φ and M2φ

directly. For that purpose one needs to use the same validation set of data, which

implies that the two-parameter model needs additional data to generate ρobservation.
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FIGURE 7.9 Comparing one- and two-parameter models directly: The difference
between Ξ’s of M2

2φ and M2
1φ for 20 different sets of witness measurements (N = 50) as

functions of φ. The target state is
∣∣Ψ2

target

〉
. The horizontal line demarcates ∆Ξ = 0.

The dotted-dashed line is the average of all 20 points at each different φ.

Here we display results for just 50 witness measurements, and an additional set of 50

measurements for M2
2φ. FIG. 7.9 shows that even such a small number of additional

data is useful if the angle φ is wrong, and, similarly, it shows that the same small

number suffices to detect a wrong single-qubit phase when it is larger than π/3.

7.4 Conclusions

We applied information criteria, and the Akaike Information Criterion (AIC)

developed in Ref.176 in particular, to quantum state estimation. We showed it to

be a powerful method, provided one has a reasonably good idea of what state one’s

quantum source actually generates.

For each given model, which may include several parameters describing error and

noise, as well as some parameters—call them the ideal-state parameters— describing

the state one would like to generate in the ideal (noiseless and error-free) case, the AIC

determines a ranking from the observed data. One can construct multiple models, for

instance, models where some ideal-state parameters and some noise parameters are
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fixed (possibly determined by previous experiments in the same setup), with others

still considered variable. Crucially, the AIC also easily ranks the full-parameter model

(FPM), which uses in principle all exponentially many parameters in the full density

matrix, and which is, therefore, the model one would use in full-blown quantum state

tomography. This ranking of the FPM can be accomplished without actually having

to find the maximum-likelihood state (or its likelihood)—which quickly would run

into insurmountable problems for many-qubit systems—by using a straightforward

upper bound.

This way, observed data is used to justify a posteriori the use of the few-

parameter models—namely, if the AIC ranks that model above the FPM—and thus

our method is in the same spirit as several other recent proposals24,25 to simplify

quantum tomography, by tentatively introducing certain assumptions on the quantum

state generated, after which data is used to certify those assumptions (and if the

certification fails, one at least knows the initial assumptions were incorrect).

We illustrated the method on (noisy and mis-specified) four-qubit members of

the family of Dicke states, and demonstrated its effectiveness and efficiency. For

instance, we showed that one can detect mis-specified ideal-state parameters and

determine noise and error parameters. We also showed by example the successful

application of the method to a specific and useful subtask, that of quantifying multi-

qubit entanglement.
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CHAPTER VIII

CONCLUSIONS

Inspired by the importance of entanglement in quantum information processing,

we studied its quantification and verification in different realistic scenarios. For

example, as is well-known, a single photon in a pure state impinging on a 50/50

beamsplitter will lead to an output state that has one unit of entanglement. In

Chapter III we found analytically that a single photon in a mixed state (a case,

surprisingly, not analyzed so far) leads to an output state with less entanglement,

determined solely and simply by the purity of the input state. For more complicated

cases we performed numerical calculations finding the entanglement of mixed and

noisy multi-photon states, including the effects of inevitable vacuum components.

Though not an observable by itself, the presence of entanglement can be verified,

and the amount of entanglement can be estimated, by experimental data. While

all entanglement quantification and verification methods discussed so far in the

literature assumed implicitly an infinite amount of data, we took into account the

statistical fluctuations inevitably resulting from finite data. Moreover, whereas

almost all theoretical work considered idealized (von Neumann) measurements, our

methods easily and automatically take into account realistic noisy and imperfect

measurements.

We used several different statistical inference methods to analyze various (finite)

experiments. We used both frequentist and Bayesian methods, whichever we deemed

more appropriate. For example, an experimental test to verify that there is, in fact,

entanglement present, must, by the tough standards in use in this field92, present

evidence that there is no (not even a single) unentangled state fitting the data.

112



For this particular case, a likelihood ratio (a typical frequentist’s tool), is perfectly

suited to quantify the evidence in favor of entanglement, as we showed in Chapter

IV. One main advantage is that one always calculates the same quantity, no matter

what one measured. We applied our proposed likelihood ratio to two standard sorts

of entanglement verification measurement–quantum tomography and measurement

of an entanglement witness– and showed that our quantity behaves like a semi-χ2

distribution.

On the other hand, when trying to quantify entanglement from finite data, it

is appropriate and useful to calculate a probability distribution over the amount

of entanglement created in a given experiment. This requires use of the Bayesian

methodology, where a prior distribution (over states) is chosen, the data converts this

to a posterior distribution over states, which in turn automatically leads to a posterior

probability distribution over entanglement. This Bayesian method we demonstrated

in Chapter 5, where we used it to make precise how many measurements one needs to

reliably estimate the amount of entanglement (and their error bar) in an experiment:

simply said, data is sufficient when the estimates resulting from different priors agree

to within their error bars. We applied our method to different states of four qubits

that have been of recent experimental interest. This Bayesian method then competes

with a standard frequentist method used in, for example, quantum-state tomography,

namely the maximum likelihood method. The disadvantage of the latter is that it

tends to lead to state estimates that are too pure, especially when relatively little data

is available. Our Bayesian method, at the cost of requiring more analysis, corrects

for this and leads to more balanced estimates of entanglement and purity.

Finally, we also addressed the issue of analyzing data on systems of many qubits.

The Hilbert space grows exponentially with the number of qubits, and the current
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bottleneck in multi-qubit experiments on trapped ions (by far the most advanced

quantum information technology at the moment, in terms of number of qubits) is

determined by the computer power and time needed to analyze the data, not by the

experimental capabilities. We proposed and analyzed a known statistical method of

model selection, using so-called information criteria, to drastically reduce the amount

of computing needed, by tentatively limiting the number of parameters describing

one’s state. Crucially, that tentative model assumption is then verified by the data.

The particular information criterion we used is based on an estimate of the so-called

Kullback-Leibler divergence between the true probability distribution and the model.

So, provided one’s a priori idea of how one’s quantum source works turns out

to be good, calculations become much easier to handle, so that even experiments

with 14 qubits (the current record number of qubits16 can be analyzed. In Chapter

VI we checked that such calculations do lead to correct estimates of entanglement if

the data verify one’s model, whereas the data and information criteria will correctly

flag incorrect models and resulting incorrect estimates of entanglement as unreliable.

Moreover, the information criterion can identify which parameter values of the model

were incorrect.
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APPENDIX A

ENTANGLEMENT OF A COLOR-MIXED POLARIZATION-ENTANGLED

STATE

Here we calculate explicitly the logarithmic negativity for the first example (in

Chapter IV) to show that the entanglement of a color-mixed polarization-entangled

state is still one ebit, in spite of the mixed nature of the state. The two-photon

singlet state, maximally entangled in polarization – horizontal (H) or vertical (V ) –

but equally and classically mixed in color – green (G) or blue (B) – can be expressed

in modes as

ρ =
1

2
|φ1〉 〈φ1| +

1

2
|φ2〉 〈φ2| , (A.1)

where

|φ1〉 =
1√
2

(|GH〉A |GV 〉B − |GV 〉A |GH〉B) (A.2)

and

|φ2〉 =
1√
2

(|BH〉A |BV 〉B − |BV 〉A |BH〉B) . (A.3)
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Expanding ρ in the basis of (BH,BV,GH,GV )A ⊗ (BH,BV,GH,GV )B ⊕

(GH,GV )A ⊗ (GH,GV )B gives

ρ =




0 0 0 0

0 1
4

−1
4

0

0 −1
4

1
4

0

0 0 0 0

0

0

0 0 0 0

0 1
4

−1
4

0

0 −1
4

1
4

0

0 0 0 0




. (A.4)

The partial transpose of ρ in the same basis is then

ρΓ =




0 0 0 −1
4

0 1
4

0 0

0 0 1
4

0

−1
4

0 0 0

0

0

0 0 0 −1
4

0 1
4

0 0

0 0 1
4

0

−1
4

0 0 0




. (A.5)
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The eight eigenvalues are easily found to be these: six times the eigenvalue 1
4
, and

twice −1
4
. This yields the logarithmic negativity of the state:

EN = log2

(
6 × 1

4
+ 2 ×

∣∣∣∣−
1

4

∣∣∣∣
)

= 1, (A.6)

as we announced.
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APPENDIX B

ASYMPTOTIC BEHAVIOR OF THE EXPECTATION VALUE OF THE

POSTERIOR DISTRIBUTION

Suppose we are interested in a particular quantity N(ρ), where ρ is a physical

state. Suppose the number of measurements M is large and the posterior for N ,

P (N), can be approximated by a normal distribution. Then the estimated value of

N is where the maximum of P (N) is. We have

dP (N)

dN

∣∣∣∣
ρmax

=

(
dP (N(ρ))

dρ

/
dN(ρ)

dρ

)∣∣∣∣
ρmax

= 0 =⇒ d logP (ρ)

dρ

∣∣∣∣
ρmax

= 0, (B.1)

provided that dN/dρ is analytical in the range of ρ.

Recall that

P (ρ) =
Po(ρ)L(ρ)∫
dρ′Po(ρ′)L(ρ′)

, (B.2)

where

L(ρ) =
∏

j

pj(ρ)Fj , (B.3)

pj(ρ) is the probability of the j’th result to be observed if the tested state is ρ and

Fj is the number of times the j’th result is actually observed. We can approximate

Fj’s in terms of

Fj = Mpj(ρr) +
√
Mpj(ρr)[1 − pj(ρr)]Xj, (B.4)

118



where ρr is the real state and Xj is a normally distributed variable with variance 1.

It means

Xj = 0, X2
j = 1, for every j. (B.5)

The bar average Xj, instead of the bracket average as in 〈N〉, indicates that the

average is not taken over an ensemble of possible states. Instead, a random Xj value

is generated each time a measurement record is collected, as M varies. Whether or not

this average is to be taken depends on the specific questions and may be cleared up

later. Moreover, Xj and Xk are independent of each other except for one constraint:

∑

j

Xj = 1. (B.6)

We define

Q(ρ) =
∏

j

pj(ρ)pj(ρr) (B.7)

and

CM(ρ) =
∏

j

pj(ρ)
√
pj(ρr)[1−pj(ρr)]Xj . (B.8)

Then the likelihood function becomes

L(ρ) = QM(ρ)C
√
M

M (ρ). (B.9)

Note that the subscript in CM suggests the subtle dependence on M through variables

Xj’s. Hence CM(ρ) indeed corresponds to a single trial correction. However, note that
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the behavior we study are not limited to a single trial. In fact, as in FIG.6.5, the

red squares that correspond to
∣∣〈N1,2〉Z − 〈N1,2〉GH

∣∣ really come from multiple trials

that are affected by different noise profiles Xj’s. Eventually the average over multiple

trials is to be taken and the statistics of Xj’s will be applied.

Since the integral in the denominator is just a constant, the zero derivative

condition Eq. (B.1) gives

(
M

d logQ(ρ)

dρ
+
√
M

d logCM(ρ)

dρ
+

d logP0(ρ)

dρ

)∣∣∣∣
ρmax

= 0. (B.10)

Note that at large M , whichever ρ that satisfies Eq. (B.1) or Eq. (B.10) is going

to be very close to the actual state ρr, which is also the maximum of logQ(ρ), i.e.

logQ(ρr) = logQmax. We expand logQ(ρ) around ρr up to O ((ρ− ρr)
2):

logQ(ρ) ≃ logQ(ρr) −
1

2
(ρ− ρr)

T · d2 logQ(ρ)

dρ2

∣∣∣∣
ρr

· (ρ− ρr)

= LQ − 1

2
(ρ− ρr)

T α̃(ρ− ρr), (B.11)

where LQ = logQ(ρr) and α̃ = − d2 logQ(ρ)/dρ2|ρr . The first derivative term is

absent since ρr is the local maximum and therefore α̃ > 0. This implies

d logQ(ρ)

dρ
= −(ρ− ρr)

T α̃. (B.12)

Similar expansion is applied for logP0(ρ) and logCM(ρ) so that

d logP0(ρ)

dρ
= βT + (ρ− ρr)

T γ̃, (B.13)
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where βT = d logP0(ρ)/dρ|ρr and γ̃ = d2 logP0(ρ)/dρ2|ρr .

d logCM(ρ)

dρ
= ζT + (ρ− ρr)

T η̃, (B.14)

where ζT = d logCM(ρ)/dρ|ρr and η̃ = d2 logCM(ρ)/dρ2|ρr .

Therefore the zero derivative condition becomes

−M(ρ− ρr)
T α̃ +

√
M
(
ζT + (ρ− ρr)

T η̃
)

+ βT + (ρ− ρr)
T γ̃ = 0. (B.15)

Solving it for the maximum state:

ρmax = ρr + δρ,

where

δρ =
1√
M
α̃−1ζ +

1

M
α̃−1(β + η̃α̃−1ζ) +O

(
1

M3/2

)
. (B.16)

Now we suppose that N(ρmax) is also where the largest probability of N(ρ) is,

which is again assumed to be the expectation value, 〈N〉. Then

N(ρmax) ≃ N(ρr) +
dN

dρ

∣∣∣∣
ρr

· δρ

= Nr +
1√
M
λT α̃−1ζ +

1

M
λT α̃−1(β + η̃α̃−1ζ) +O

(
1

M3/2

)
, (B.17)
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where Nr = N(ρr) and λ = dN(ρ)/dρ|ρr . Since α̃, β, ζ, η̃ and λ are all fixed and

presumably nonzero, the behavior of 〈N〉 as it approaches its true value Nr goes

|〈N〉 −Nr| ∼ 1/
√
M, (B.18)

in large M limit.

Note that the first correction in Eq. (B.16), α̃−1ζ/
√
M is merely influenced by

the fluctuation of the data through ζ and the shape of the likelihood function through

α̃, which is determined by the measurement setup. It implies a consistent behavior

with no regard of the choice of the prior distribution. Yet the second correction does.

We label ρmax and β with subscript Z or GH to differentiate the priors. We have

ρZmax − ρGHmax =
α̃−1

M
(βZ − βGH). (B.19)

From the previous analysis we realise that the M -dependence in the difference in the

state ρ will carry on to the difference in the negativity N . Eq. (B.19) indicates

|〈N〉Z − 〈N〉GH | ∼ 1/M. (B.20)
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APPENDIX C

ASYMPTOTIC BEHAVIOR OF THE MAXIMUM LIKELIHOOD ESTIMATION

Since we are concerned with the large M region, we assume that ρMLE is not on

the boundary, so that it satisfies

d logL(ρ)

dρ

∣∣∣∣
ρMLE

= 0. (C.1)

Using the same expansion in the vicinity of the real state ρr as in the last section, we

obtain

ρMLE = ρr +
1√
M
α̃−1ζ +

1

M
α̃−1η̃α̃−1ζ +O

(
1

M3/2

)
. (C.2)

Compared to Eq. (B.16), the only difference in the higher-order terms is that the term

containing β is missing. When the negativity N(ρ) is considered, similar conclusions

can be reached:

|N(ρMLE) −Nr| ∼ 1/
√
M, (C.3)

and

∣∣∣N(ρMLE) − 〈N〉Z,GH
∣∣∣ ∼ 1/M. (C.4)
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