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ABSTRACT
Bayesian inference for coupled hidden Markov models frequently relies on data augmentation techniques
for imputation of the hidden state processes. Considerable progress has been made on developing such
techniques, mainly using Markov chain Monte Carlo (MCMC) methods. However, as the dimensionality and
complexity of the hidden processes increase some of these methods become inefficient, either because
they produce MCMC chains with high autocorrelation or because they become computationally intractable.
Motivated by this fact we developed a novel MCMC algorithm, which is a modification of the forward
filtering backward sampling algorithm, that achieves a good balance between computation and mixing
properties, and thus can be used to analyze models with large numbers of hidden chains. Even though our
approach is developed under the assumption of a Markovian model, we show how this assumption can be
relaxed leading to minor modifications in the algorithm. Our approach is particularly well suited to epidemic
models, where the hidden Markov chains represent the infection status of an individual through time. The
performance of our method is assessed on simulated data on epidemic models for the spread of Escherichia
coli O157:H7 in cattle. Supplementary materials for this article are available online.
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1. Introduction

Hidden Markov models (HMMs) are among the most widely
used approaches for modeling time series data, when it can be
assumed that the observed data are indicative of some underly-
ing hidden process. In the basic HMM, a single variable repre-
sents the state of the system at any time. However, many interest-
ing systems are composed of multiple interacting processes, and
various extended HMMs have been proposed to solve coupled,
multiple chain problems. These extensions typically factor the
HMM state into a collection of state variables. We focus on cou-
pled hidden Markov models (CHMMs; Brand 1997) to capture
the interactions, where the current state of a chain depends on
the previous state of all the chains. This structure implies that the
state space of the complete hidden process grows exponentially
with respect to the number of chains and thus exact inference
quickly becomes computationally intractable.

Epidemiological data from infectious disease studies are
often gathered longitudinally, where the same group of individ-
uals are sampled through time. Inferences for this type of data
are complicated by the fact that the data are usually incomplete,
in the sense that the times of acquiring and clearing infection are
not directly observed. CHMMs provide a natural way to model
the transmission dynamics of an infectious disease, where each
chain represents the hidden infection status of an individual and
the coupling between chains accounts for infections. Another
advantage of this approach is the ability to account for imperfect
diagnostic tests, by assuming that the observed data are noisy
measurements of a true hidden epidemic process.
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The inference problem for CHMMs usually includes both
hidden state and parameter estimation. Early literature on the
topic focused on maximum likelihood estimation, achieved
using an expectation-maximization (EM) algorithm. Several
variations of the CHMM were proposed (Brand, Oliver, and
Pentland 1997; Saul and Jordan 1999; Zhong and Ghosh 2002)
for which inference using this approach becomes more tractable.
The second class of methods consists of Markov chain Monte
Carlo (MCMC) approaches. One considerable challenge con-
cerns the imputation of the hidden states conditional on the
observed data and model parameters, and many techniques have
been proposed. The most popular approach to exact Monte
Carlo inference is achieved by converting the CHMM into an
equivalent single HMM and applying the standard forward
filtering backward sampling (FFBS) algorithm (Carter and Kohn
1994; Chib 1996). However, even though implementation of
FFBS is quite efficient for HMMs with a moderately large
number of states, it can be computationally prohibitive for
CHMMs with only a small number of chains. As a result, several
alternative methods have been suggested including conditional
single-site (Dong, Pentland, and Heller 2012) or block updates
designed specifically for epidemic models (Spencer et al. 2015).
While these methods are computationally less demanding than
the FFBS, they typically produce highly correlated samples.

In this article, we develop two novel algorithms for updating
the hidden chains within a MCMC algorithm. In particular, we
propose a Gibbs sampling algorithm for the CHMM which is
based on simulating from the full conditional distribution of a
single chain, and a Metropolis–Hastings (MH) algorithm where
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the proposal is an approximation of the full conditional distribu-
tion. Section 3 describes the new algorithms and compares them
with existing literature. In Section 4, we put CHMMs in the
context of modelling the spread of infectious diseases, illustrat-
ing the efficiency and computational requirements of each algo-
rithm using simulation studies. We subsequently describe how
the proposed method can be extended to coupled hidden semi-
Markov models (CHSMMs), where the hidden process persists
in the same state for some non-Markov duration. In Section 5,
we conclude with some discussion and possible extensions.

2. Coupled Hidden Markov Models and Notation

A CHMM is a collection of many HMMs, which are coupled
through some temporal dependency structure of the hidden
states. There are two conditional independence assumptions
made about the observations and states. As in HMMs, in the
CHMM each observation is independent of all other states and
observations given the value of the hidden state. The difference
with HMMs is that in the CHMM one hidden state is not only
dependent on its own previous state, but also on the previous
state of all other chains. The latter dependence constitutes the
interaction between the multiple chains.

The coupling structure of a CHMM is shown in Figure 1.
More formally, we use X[c]

t to denote the hidden state variable
of chain c ∈ {1, 2, . . . , C} at time t ∈ {1, 2, . . . , T} with a finite
set of possible states. For simplicity, we assume that all chains
share the same set of possible states, noting that the method can
be trivially extended to the more general case where chains do
not share the same state space. Therefore, we assume that X[c]

t ∈
� = {s1, s2, . . . , sN}, N ≥ 1. We consider nonhomogeneous
Markov chains in which the transition probabilities depend on

time given by

P

(
X[c]

t = j | X[c]
t−1 = i, X[−c]

t−1 , θ
)

, (1)

for all i, j ∈ �, where X[−c]
t−1 denotes

(
X[1]

t−1, X[2]
t−1, . . . , X[C]

t−1

)
with X[c]

t−1 removed and θ is the parameter vector of the CHMM
model. To fully define the distribution of the hidden states, an
initial distribution for X[1:C]

1 = (X[1]
1 , . . . , X[C]

1 ) must also be
specified.

The state of each chain is not directly observable. As in
HMMs, an observation Y[c]

t is associated with the unobserved
state X[c]

t . The relation between X[c]
t and Y[c]

t will differ depend-
ing on the application and Y[c]

t may be either discrete or con-
tinuous. Conditional on θ and X[c]

t = i denote the density or
probability mass function of Y[c]

t by

π
(

Y[c]
t = y[c]

t | X[c]
t = i, θ

)
= fi

(
y[c]

t | θ
)

, i ∈ �. (2)

If there is no observation at time t for chain c then y[c]
t is empty

due to missing data and we set fi
(

y[c]
t | θ

)
= 1.

3. Bayesian Analysis and MCMC Methods

3.1. Overview

One considerable challenge on estimating CHMMs is that the
likelihood function of the observed data given the model param-
eters is computationally intractable for even moderate numbers
of states or interacting chains. This is because the likelihood
involves summation over all possible configurations of the hid-
den state variables, where the dependencies within the state
process make this calculation highly involved. One of the most
popular methods adopted to overcome this issue is the use of
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Figure 1. An example of a coupled hidden Markov model represented as a dynamic Bayesian network, with three hidden chains (C = 3) and possibly several missing
observations (here at t − 1, t + 1, t + 2). Circle nodes denote hidden states, square nodes denote observations, and the arrows between nodes reflect the probabilistic
dependencies between random variables.
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data augmentation, in which the hidden states are treated as
additional parameters and are imputed from the data. In the
Bayesian framework this is facilitated by the use of MCMC
algorithms, which enable the imputation of the hidden states
and parameter estimation to be performed simultaneously.

For a prior π(θ), this approach yields a joint posterior density
for the unobserved states and the model parameters that is
known up to proportionality,

π
(
θ , X[1:C]

1:T | Y[1:C]
1:T

)
∝ π(θ)P

(
X[1:C]

1 | θ
)

×
( T∏

t=2

C∏
c=1

P

(
X[c]

t | X[c]
t−1, X[−c]

t−1 , θ
) )

×
( T∏

t=1

C∏
c=1

π
(

Y[c]
t | X[c]

t , θ
) )

, (3)

where we adopt the following conventions X[1:C]
t = (

X[1]
t ,

X[2]
t , . . . , X[C]

t
)

and X[1:C]
1:t = (

X[1:C]
1 , X[1:C]

2 , . . . , X[1:C]
t

)
with

similar notation applied to Y[1:C]
t and Y[1:C]

1:t .
Samples from the joint posterior of the model parameters

and the hidden states are generated by iteratively alternating
between updating θ , conditional on the current values of X[1:C]

1:T ,
and X[1:C]

1:T conditional on θ . The main interest in this article
lies in the update of the hidden process which is the most
computational demanding part. Before discussing the details of
our new approaches in Section 3.3, we first briefly describe the
standard algorithms for the CHMMs within this framework.

3.2. Existing Methods

The most popular approach to exact Monte Carlo inference
can be achieved by converting the CHMM into an equivalent
HMM with NC states, where X[1:C]

t =
(

X[1]
t , X[2]

t , . . . , X[C]
t

)
∈

�C = {s1, s2, . . . , sN}C denotes the state of the model at time
t, as shown in Figure 2(a). In this case, the whole hidden state

process can be updated from its full conditional, denoted by
π

(
X[1:C]

1:T | Y[1:C]
1:T , θ

)
, in a single block by applying the standard

FFBS algorithm (Carter and Kohn 1994; Chib 1996). This algo-
rithm is based upon a forward recursion which calculates the
filtered probabilities P

(
X[1:C]

t | Y[1:C]
1:t , θ

)
for t = 1, 2, . . . , T.

This is followed by a backward simulation step that first gen-
erates X[1:C]

T from P

(
X[1:C]

T | Y[1:C]
1:T , θ

)
and then simulates the

remaining X[1:C]
t ’s by progressing backward, simulating in turn

X[1:C]
t from P

(
X[1:C]

t | X[1:C]
t+1 , Y[1:C]

1:t , θ
)

, for t = T − 1, T −
2, . . . , 1. We refer to this method as the fullFFBS.

The computational complexity of the fullFFBS algorithm is
of the order O(TN2C). Thus, particularly for a reasonably large
number of chains or possible states, this method will be com-
putationally demanding. As a result, several alternative methods
have been proposed to solve the problem. The simplest approach
to update the hidden states is to draw each one of the C×T state
variables from its full conditional distribution. Such approach is
referred to as single-site updates (see, e.g., Dong, Pentland, and
Heller 2012). Thus we need to calculate C×T variables and each
one requiresO(N) time to compute giving an overall complexity
of O(TNC). Despite being easy to implement, it has been shown
by Scott (2002) that the single-site update algorithm can lead to
extremely slow mixing in the resulting MCMC chains, due the
high temporal dependence in the hidden state process.

An alternative method developed specifically for epidemic
models was proposed by Spencer et al. (2015), which changes
blocks of state components within a single chain, based on their
current values. This method is a modification of O’Neill and
Roberts (1999) and Gibson and Renshaw (1998), applied to
discrete time models, and builds on the fact that individuals
(represented by a single chain) remain in the same epidemic
state for long periods. Briefly, for each chain successively one
block of states r is chosen, and then one of three possible changes
is proposed: Add, Remove, or Move. In an “Add” step, a period
during which the individual does not change their state is identi-
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Figure 2. Strategies for simulating the hidden states in a coupled hidden Markov model: (a) standard FFBS algorithm where sampling is done for all chains jointly, (b)
proposed iFFBS algorithm where the hidden states are sampled individually per chain conditionally on the rest, and (c) proposed MHiFFBS algorithm where sampling is
also done individually per chain conditionally on the hidden states of the remaining chains; however, a MH acceptance step is introduced to correct for the fact that we
deleted some between-chain arrows.
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fied and a subset of this period is proposed to have an alternative
status. Likewise a “Remove” step proposes an alternative state for
an entire episode in which the status is unchanged, joining two
neighboring periods. A “Move” step moves an endpoint of such
a block. Each of these changes proposes a new vector r∗, and the
change is accepted with the usual MH acceptance probability.

The efficiency of the algorithm depends on the size of the
blocks that are proposed to be updated. The main advantage of
this method is that the computational requirement is very small
since most of the hidden states are not updated. However, the
downside is that this results in very slow mixing and requires
many iterations to obtain sufficiently independent samples.

Assuming a sparse transition matrix is one way to speed up
the FFBS algorithm, and such a method was proposed by Sher-
lock et al. (2013), where inference for each individual chain is
performed conditioning on the hidden state vectors in all other
chains. In this work, the authors imposed a structure on each
chain’s transition matrix with transition probabilities depend-
ing on covariates through logistic regression. These covariates
include the states of the other chains and other external factors.
The approach presented here is similar to the one in Sherlock
et al. (2013), however, their work requires the structure of
transition matrices to be estimated or known in advance. In
contrast, our approach explicitly takes into account the inter-
action between chains without imposing any structure on the
transition matrix.

3.3. Proposed Methods

3.3.1. Individual FFBS Gibbs Sampler
We propose a novel extension of the FFBS algorithm, where the
hidden states are sampled individually per chain conditionally
on the hidden states of the remaining chains, as opposed to the
standard FFBS algorithm where sampling is done for all chains
jointly. Under the conditional independence assumptions of our
model, the full conditional distribution of X[c]

1:T , for each c =
1, 2, . . . , C, can be factorized as

P

(
X[c]

1:T | X[−c]
1:T , Y[1:C]

1:T , θ
)

= P

(
X[c]

T | X[−c]
1:T , Y[1:C]

1:T , θ
)

×
T−1∏
t=1

P

(
X[c]

t | X[c]
t+1, X[−c]

1:t+1, Y[c]
1:t , θ

)
,

where Bayes Theorem implies

P

(
X[c]

t = x[c]
t | X[c]

t+1 = x[c]
t+1, X[−c]

1:t+1, Y[c]
1:t , θ

)

∝P

(
X[c]

t+1 = x[c]
t+1 | X[c]

t = x[c]
t , X[−c]

t , θ
)

×P

(
X[c]

t = x[c]
t | X[−c]

1:t+1, Y[c]
1:t , θ

)
, (4)

since the states of all chains at time t + 1 depend only on states
at time t.

The rest of the calculation is concerned with determining the
second mass function in Equation (4), which can be determined
recursively for all t starting with t = 1. We refer to this term
as the modified conditional filtered probability. The forward
recursion is initialized at t = 1 with

P

(
X[c]

1 =x[c]
1 |X[−c]

1:2 , Y[c]
1 , θ

)
∝P

(
X[c]

1 =x[c]
1 |θ

)
fx[c]

1

(
y[c]

1 |θ
)

×
[ ∏

c′ �=c
P

(
X[c′]

2 = x[c′]
2 | X[c′]

1 = x[c′]
1 , X[−c′]

1 , θ
) ]

︸ ︷︷ ︸
Transition probabilities of the
remaining chains at time t = 2

. (5)

Since � is finite, the normalizing constant is given by the sum
of the terms in the right-hand side of Equation (5). Then, for
t = 2, 3, . . . , T − 1, we repeat the following two steps:

Step 1. Compute the one-step ahead modified conditional pre-
dictive probabilities

P

(
X[c]

t = x[c]
t | X[−c]

1:t , Y[c]
1:t−1, θ

)

=
∑
i ∈�

P

(
X[c]

t = x[c]
t | X[c]

t−1 = i, X[−c]
t−1 , θ

)

× P

(
X[c]

t−1 = i | X[−c]
1:t , Y[c]

1:t−1, θ
)

. (6)

Step 2. Compute the modified conditional filtered probabilities

P

(
X[c]

t = x[c]
t | X[−c]

1:t+1 = x[−c]
1:t+1, Y[c]

1:t , θ
)

∝ P

(
X[c]

t = x[c]
t | X[−c]

1:t , Y[c]
1:t−1, θ

)
fx[c]

t

(
y[c]

t | θ
)

(7)

×
[ ∏

c′ �=c
P

(
X[c′]

t+1 = x[c′]
t+1 | X[c′]

t = x[c′]
t , X[−c′]

t = x[−c′]
t , θ

) ]

︸ ︷︷ ︸
Transition probabilities of the
remaining chains at time t + 1

,

where computing the normalizing constant π(Y[c]
t , X[−c]

t+1 |
X[−c]

1:t , Y[c]
1:t−1, θ) requires us to sum the right hand side of Equa-

tion (7) over the N possible values of X[c]
t . Note that the last term

in Equation (7) is calculated given X[c]
t and occurs due to X[c]

t
connecting to X[c′]

t+1 in the graph of Figure 2(b), for c′ �= c.
The forward recursion is terminated at t = T with

P

(
X[c]

T = x[c]
T | X[−c]

1:T , Y[c]
1:T , θ

)

=
P

(
X[c]

T = x[c]
T | X[−c]

1:T , Y[c]
1:T−1, θ

)
fx[c]

T

(
y[c]

T | θ
)

∑
i ∈�

P

(
X[c]

T = i | X[−c]
1:T , Y[c]

1:T−1, θ
)

fi
(

y[c]
T | θ

) . (8)

Once the filtered probabilities have been calculated and stored
in a forward sweep, the hidden states for a given chain c can
be simulated in a backward sweep, starting with X[c]

T from the
modified filtered probability in Equation (8). Then for t = T −
1, T − 2, . . . , 1 we iteratively sample a value for X[c]

t given our
simulated value for X[c]

t+1, from

P

(
X[c]

t = x[c]
t | X[c]

t+1 = x[c]
t+1, X[−c]

1:t+1, Y[c]
1:t , θ

)

=
P

(
X[c]

t+1 = x[c]
t+1 | X[c]

t = x[c]
t , X[−c]

t , θ
)
P

(
X[c]

t = x[c]
t | X[−c]

1:t+1, Y[c]
1:t , θ

)
∑
i ∈ �

P

(
X[c]

t+1 = x[c]
t+1 | X[c]

t = i, X[−c]
t , θ

)
P

(
X[c]

t = i | X[−c]
1:t+1, Y[c]

1:t , θ
) .
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This forward–backward procedure provides the full condi-
tional distribution of the hidden Markov chain c, denoted by
P

(
X[c]

1:T | Y[c]
1:T , X[−c]

1:T , θ
)

, in closed form. Therefore, we can use
a Gibbs sampler where each chain is updated conditional on the
current values of the remaining chains, the model parameters
and the observed data. The algorithm is presented in Algo-
rithm 1 and Figure 2(b) illustrates our proposed method, termed
as individual FFBS (iFFBS) when the hidden states of chain c are
updated.

In general, the scalability of the iFFBS algorithm is dictated
by Equations (6) and (7). In Equation (6), a sum of N terms
is calculated N times for each timepoint and individual, giving
a scaling of O(CN2T). In Equation (7), a product with C − 1
terms is evaluated N times. Once all C individuals have been
updated within the MCMC, this equation becomes quadratic in
C to evaluate and so the iFFBS algorithm scales like O(C2N2T).
However, in most epidemic examples the product in Equation
(7) can be rewritten as product over the N2 transition proba-
bilities (e.g., probability of infection, recovery, etc.), raised to
the power of the number of times the transition occurs. This
is evaluated for each of the N possibilities for x[c]

t . For such
models, that is, models with joint transition probabilities that
can be written as functions of sufficient statistics (which can be
calculated initially and updated in O(1) time as each individual
is updated), the iFFBS algorithm becomes linear in the number
of individuals C. In this case the iFFBS algorithm scales as
O(CN3T).

Algorithm 1: MCMC algorithm for the Markov model with
iFFBS method.

1 Initialize: Draw θ ∼ π(θ) and generate
X[1:C]

1:T ∼ P

(
X[1:C]

1:T | θ
)

;
2 for j = 1, 2, …, J do
3 for c = 1, 2, …, C do
4 Draw X[c]

1:T ∼ π
(

X[c]
1:T | Y[c]

1:T , X[−c]
1:T , θ

)
with iFFBS;

5 end
6 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T , X[1:C]
1:T

)
;

7 end

3.3.2. iFFBS Metropolis–Hastings Sampler
An important difference between the FFBS and iFFBS methods
is that evaluating the filtered probabilities of chain c at time
t < T for iFFBS involves the calculation of the transition
probabilities of the remaining chains calculated at the next time
point. Note that if these extra terms are omitted, then the iFFBS
reduces to the standard FFBS applied to a single chain. This
latter approximation was used by Sherlock et al. (2013) for
modelling interactions of different diseases and by Fintzi et al.
(2017) as part of an algorithm for updating the infection status
of individuals in a continuous time epidemic model. We call this
method the uncorrected-iFFBS because such an approximation
can be made exact by introducing an extra MH step to correct
for the fact that the hidden states are not sampled from their full

conditionals. Note that failing to include the MH step may lead
to poor behavior of the resulting MCMC chains; an example is
presented in Supplementary Section A.

Motivated by epidemic examples, where the within chain
dependence is much stronger than the between chain depen-
dence, we propose using the uncorrected-FFBS applied to a
single chain as a proposal distribution within a MH algorithm.
More precisely we assume in Equation (7) that for all c′ �= c,
P(X[c′]

t+1 | X[1:C]
t , θ) ≈ P(X[c′]

t+1 | X[−c]
t , θ). This assumption

implies the Bayesian network shown in Figure 2(c). Given the
assumption of independence, the product terms in Equations
(5) and (7) cancel out, and so the modified conditional filtered
probabilities in the proposal distribution reduce to

Q

(
X[c]

1 = x[c]
1 | X[−c]

1:2 , Y[c]
1 , θ

)

=
P

(
X[c]

1 = x[c]
1 | θ

)
fx[c]

1

(
y[c]

1 | θ
)

∑
i ∈�

P

(
X[c]

1 = i | θ
)

fi
(

y[c]
1 | θ

) ,

for the initial state and

Q

(
X[c]

t = x[c]
t | X[−c]

1:t+1, Y[c]
1:t , θ

)

=
P

(
X[c]

t = x[c]
t | X[−c]

1:t , Y[c]
1:t−1, θ

)
fx[c]

t

(
y[c]

t | θ
)

∑
i ∈�

P

(
X[c]

t = i | X[−c]
1:t , Y[c]

1:t−1, θ
)

fi
(

y[c]
t | θ

) .

However, since we overlooked some between-chain dependen-
cies our proposal Q is an approximation of the true full condi-
tional. Therefore, we need to correct for the error of the approx-
imation with a MH acceptance step. The detailed algorithm can
be found in Algorithm 2. We refer to this proposed algorithm as
MHiFFBS.

4. Analysis of Longitudinal Epidemic Data

4.1. Epidemic Model for Escherichia coli O157:H7

In this section, we demonstrate how CHMMs can be embed-
ded within an individual-based epidemic model for the spread
of infection among a population of individuals partitioned
into groups. The example is based on a longitudinal study of
Escherichia coli (E. coli) O157:H7 in cattle assigned into pens
of the same size (Cobbold et al. 2007). We employ a discrete-
time susceptible-infected-susceptible (SIS) model (Anderson
and May 1991) for the spread of infection in a pen, where each
individual in the population is assumed to belong to one of two
states, susceptible or infected, for each day in the study.

More precisely, let X[c, p]
t ∈ � = {0, 1} denote the true

infection status of individual c ∈ {1, 2, . . . , C} in pen p ∈
{1, 2, . . . , P} at day t ∈ T = {1, 2, . . . , T}, where X[c, p]

t = 0
represents the susceptible state, X[c, p]

t = 1 the infected state
and T is the last day of the study. The transition probabilities
for individual c in pen p are defined as

P

(
X[c, p]

t = x[c, p]
t | X[1:C, p]

t−1 = x[1:C, p]
t−1 , α, β , m

)
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Algorithm 2: MCMC algorithm for the Markov model with
MHiFFBS method.

1 Initialize: Draw θ ∼ π(θ) and generate
X[1:C]

1:T ∼ P

(
X[1:C]

1:T | θ
)

;
2 for j = 1, 2, …, J do
3 for c = 1, 2, …, C do
4 Propose X[c] ∗

1:T ∼ Q

(
· | Y[c]

1:T , X[−c]
1:T , θ

)
;

5 Compute a = min

⎛
⎝1,

Q

(
X[c]

1:T | Y[c]
1:T , X[−c]

1:T , θ
)

Q

(
X[c] ∗

1:T | Y[c]
1:T , X[−c]

1:T , θ
)

×
π

(
X[c] ∗

1:T , X[−c]
1:T , θ | Y[1:C]

1:T

)
π

(
X[c]

1:T , X[−c]
1:T , θ | Y[1:C]

1:T

)
⎞
⎠;

6 Draw u ∼ Uniform(0,1);
7 if u ≤ a then
8 Set X[c]

1:T = X[c] ∗
1:T ;

9 else
10 Set X[c]

1:T = X[c]
1:T ;

11 end
12 end
13 Perform suitable MCMC update to sample

θ ∼ π
(
θ | Y[1:C]

1:T , X[1:C]
1:T

)
;

14 end

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−exp
{
− α − β

C∑
c′=1

x[c′, p]
t−1

}
if x[c, p]

t−1 = 0 and x[c, p]
t = 1,

exp
{

− α − β

C∑
c′=1

x[c′, p]
t−1

}
if x[c, p]

t−1 = 0 and x[c, p]
t = 0,

m − 1
m

if x[c, p]
t−1 = 1 and x[c, p]

t = 1,

1
m

if x[c, p]
t−1 = 1 and x[c, p]

t = 0,
(9)

for t = 2, 3, . . . , T. The parameter m ≥ 1 denotes the mean
infectious period and parameters α > 0 and β > 0 denote the
external and within-pen infection rates, respectively, implying
that pens are independent of one another. A generalization of the
model that allows for transmission between pens is considered
in Touloupou (2016). The first and last case in Equation (9)
correspond to the infection (0 �→ 1) and clearance (1 �→
0) probabilities, respectively. This parameterization defines a
nonhomogeneous Markov model since it allows the probability
of infection to depend on a sufficient statistic of the previous
state of all individuals, namely the number of infected individu-
als. Finally, we assume that at the beginning of the study each
animal is infected independently with probability P

(
X[c, p]

1 =
1 | ν

) = ν.
The underlying infection process is not directly observed.

Instead, for each individual we obtain the results of two diagnos-
tic tests, taken at prespecified times. Let O ⊆ T denote the set

of prescheduled observations times. Let Y[c, p]
t =

(
R[c, p]

t , F[c, p]
t

)
be the observed results, possibly misclassified, of the diagnostic
tests, R[c, p]

t for recto-anal mucosal swab (RAMS) and F[c, p]
t

for fecal sample, where 1 denotes a positive and 0 a negative
test result. Following Spencer et al. (2015), we assume that the
observed test results are conditionally independent Bernoulli
variables, with the success probabilities θRX[c,p]

t and θFX[c,p]
t

given an individual with infection status X[c,p]
t . Here, θR =

P

(
R[c, p]

t = 1 | X[c, p]
t = 1

)
is the sensitivity of the RAMS test

and θF is the sensitivity of the fecal test. Both test specificities
are assumed to be 100%.

In the remainder of this section, we perform a series of
simulations to assess the efficiency of existing and proposed
methods for updating the hidden infection states. Particular
focus is given on how these methods are affected by dimen-
sionality that is, when the total number of individuals in the
population and the study period increase. In Section 4.2, we
apply the methods to data simulated from the Markov model
in Equation (9) with a Geometric distribution for the infection
period (see also Supplementary Section A). In Section 4.3, we
relax the Markovian assumption by allowing the duration to
have a negative binomial distribution. This leads to a semi-
Markov model in which the duration of infection depends on
how long an individual has been infected. Finally, in Section 4.4
the performance of our methods is assessed on the real E.
coli O157 dataset, considering both Markov and semi-Markov
models. The simulations, analyses, and graphics rely upon the
foreach (Microsoft Corporation and Weston 2017), doParallel
(Microsoft Corporation and Weston 2018), ggplot2 (Wickham
2016), and tools available in the standard R distribution (R Core
Team 2016).

4.2. Simulation Studies: Markov Model

The initial simulated dataset consists of observations from P =
20 pens, each containing C = 8 cattle and the study period is set
to T = 99 days as in the real E. coli O157:H7 dataset (Cobbold
et al. 2007). First, we generated the hidden infection states
according to the model defined in Equation (9), with an external
transmission rate α = 0.009, within-pen transmission rate β =
0.01, mean infectious period m = 9 days, and initial probability
of infection ν = 0.1. We then generate RAMS and fecal tests
from the population according to the actual sampling frame
employed in the real dataset; sampling on average twice per
week. Finally, the RAMS and fecal test sensitivities are assumed
to be θR = 0.8 and θF = 0.5, respectively. These parameter
values are motivated by the results obtained by Spencer et al.
(2015) who previously analyzed the same data.

We then estimated the parameters in the Markov model
using the following vague prior distributions: α, β ∼ Ga(1,1),
m − 1 ∼ Ga(0.01, 0.01), and ν, θR, θF ∼ Beta(1,1). We drew
samples from the joint posterior of the hidden states and model
parameters with the MCMC scheme described in Section 3.1,
using each method for updating the hidden states. The model
parameters ν, θR, and θF were updated using Gibbs steps and the
remaining parameters were updated jointly using Hamiltonian
Monte Carlo (HMC; Neal 2011), for details see Supplementary
Section B. For each method, we ran the algorithm for 11,000
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Figure 3. (a) Autocorrelation function of TIP and (b) CPU time per iteration for the Markov epidemic model. ACF plots in the left panel are the average across 200 replicates.
Quantiles in the right panel are obtained from the same 200 runs. These plots show that the fullFFBS, iFFBS, and MHiFFBS methods have very good mixing properties but
are more computationally expensive than the remaining methods.

iterations, removing the first 1000 as a burn-in. Each procedure
was repeated 200 times to provide an empirical Monte Carlo
estimate of the variation in each approach.

Figure C.1 in Supplementary Section C shows the estimated
total number of infected individuals over time, along with
95% credible intervals, as obtained from the 200 runs. The
five methods provide almost identical results and all of them
contain the true total number of infected individuals within
the credible intervals. Therefore, a comparison of the different
approaches can be based on the mixing properties and the
required computational effort of each. Mixing can be measured
in terms of autocorrelation of the Markov chains whereas the
computational effort is given by the total time required for one
iteration of the MCMC. In the following results we chose our
summary statistic to be the total infection pressure TIP =∑P

p=1
∑C

c=1
∑T

t=1 x[c, p]
t , in order capture the information over

all T periods of the study.
In Figure 3(a), we see the autocorrelation function (ACF)

for TIP, averaged across the 200 different runs in each method.
We see that the fullFFBS, iFFBS, and MHiFFBS methods have
very good mixing properties since the autocorrelation function
drops rapidly. In contrast, the block proposals and single-site
updates produced highly correlated samples with the ACF being
greater than zero even after 30 iterations of the MCMC. For
the block proposals, slow mixing was due to only a few states
being updated at each iteration of the MCMC; for the single-
site method slow mixing was caused by the strong correlation
between hidden states. However, the block proposal method was
the fastest, as can be seen in Figure 3(b). The computationally
most demanding method was fullFFBS due to the summation
over all of the 28 possible states.

Computation efficiency is a combination of mixing and com-
putation time. We use the relative speed which is defined as
follows. First, for each method we calculate the time normalized
effective sample size (tESS), taken as the ratio of effective sample
size (ESS) from 10,000 MCMC iterations and the CPU time
required per iteration. Then, we divide the tESS of each method
with the worst observed tESS to obtain the relative speed. Hence,

the relative speed has a minimum value of 1 which corresponds
to the computationally least efficient method, and any number
bigger than 1 reflects the gains using a particular method com-
pared to the worst. In Figure 4(a), we show the relative speed
of each method as obtained from the 200 different runs. We
observe that among competing methods, the iFFBS method best
combines the desired properties of mixing and computational
speed, followed by the fullFFBS and the MHiFFBS methods.
Using block proposals was the least efficient method as it had
the smallest relative speed in all 200 replicates. This finding is
confirmed in Figure 4(b) where we show the ACF per second.

In the next set of simulations, we study how computation
time is affected as we vary the total population size by increasing
the cattle size per pen. We use our initial simulation settings and
generate one dataset for different numbers of Markov chains,
C = 3, 4, . . . , 11. Figure 5 illustrates the time taken per iteration
of the five different methods as the number of animals in a
pen varies. We see that for the fullFFBS the computational time
grows exponentially with C. The other methods are only affected
linearly when C increases. As before, we assess computational
efficiency with the relative speed. Results are summarized in
Table C.1(a) in Supplementary Section C. Note that despite
being the computationally most efficient for small C, the per-
formance of fullFFBS drops with C and eventually for C = 11
it has the lowest relative speed. For C > 6, the iFFBS method
outperforms the remaining methods. To study the influence of
the study length on the performance of each method, we repeat
our simulation study for different values of T. Results are given
in Table C.1(b). Again, the iFFBS method is the one that scores
higher in terms of relative speed, followed in order by fullFFBS,
MHiFFBS, single-site, and block proposals.

In our simulations so far we have evaluated the perfor-
mance of the five methods for data of moderate dimensionality;
however, many applications involve datasets with substantially
more individuals. Application of the fullFFBS method quickly
becomes computationally prohibitive and cannot be included.
Figure 6 considers simulations with population sizes between
100 and 1000. As before, the iFFBS outperforms the other
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Figure 4. (a) Relative speed and (b) ACF per second for TIP for the Markov epidemic model, based on 200 replications. We observe that the iFFBS method outperforms the
remaining methods when we consider the relative speed as a measure of performance.
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Figure 5. CPU time per iteration as a function of the total number of cattle per pen C, for the Markov epidemic model. The subpanel provides an enlargement for 3–9
animals in pen, illustrating more clearly that the fullFFBS algorithm scales poorly.
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Figure 6. Median relative speed comparison of four methods in the Markov model for large datasets with values for C = 100, 200, . . . , 1000, based on 200 simulations. As
observed before, iFFBS outperforms the other methods considered.
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methods whereas the least efficient is the block update method
with a relative speed equal to 1 in all scenarios. The gains of
using the iFFBS algorithm are higher in the first scenario with
100 animals per pen, where the method has a relative speed of
28.09. However, the differences in the computational efficiency
among methods become less profound as the total number of
individuals per pen increases. For example, in the last scenario
(C = 1000) the relative speed of iFFBS algorithm drops to
10.71. Finally, we investigate the performance of the MHiFFBS
method subject to varying the number of individuals in pen. The
results are summarized in Figure C.2 in Supplementary Section
C, where we report the variability in the median acceptance
rate (over all individuals) as obtained from the 200 replications.
We observe a small decline in the acceptance rate as the total
number of individuals increases. In particular, we see that the
rates are bigger than 0.84 for all values of C considered.

4.3. Simulation Studies: Semi-Markov Model

In a departure from the previous Markov model, we assume that
the time an individual remains infected has a two-parameter
Negative Binomial distribution and hence

P

(
X[c, p]

(t+1):(t+s) = 1s, X[c, p]
t+s+1 = 0 | X[c, p]

t = 0, X[c, p]
t+1 = 1

)

=
(

κ

κ + m − 1

)κ
	(κ + s − 1)

(s − 1)! 	(κ)

(
m − 1

κ + m − 1

)s−1
,

where κ > 0 is the shape parameter, m ≥ 1 is the mean
duration of infection and 1s is a vector of s ones. In this semi-
Markov model the time remaining until recovery depends on
how long an individual has been infected. The infection proba-
bility remains unchanged.

Bayesian inference for the semi-Markov model can proceed
as follows. Regarding the update of the hidden states, the block
proposals and the single-site methods can be applied without
any modification. For the fullFFBS and iFFBS methods the
necessary Markov property is not valid, and the two algorithms
cannot be applied directly. Therefore, we extend the method-
ology for updating the hidden states by considering an inde-
pendence sampler within the MCMC algorithm. Our approach
takes advantage of the availability of the full conditionals in

the CHMM, by using them as a proposal in the update. More
specifically, proposals are made assuming κ = 1, corresponding
to the Geometric distribution as considered before, and intro-
ducing an MH acceptance step to correct for the discrepancy.
The efficiency of the algorithm therefore depends on how close
the real value of κ is to 1. The extended algorithms for fullFFBS
(called SM-fullFFBS) and iFFBS (called SM-iFFBS) are shown in
Algorithms D.1 and D.2, respectively and are further detailed in
Supplementary Section D.1. The MHiFFBS method can also be
applied with proposals using κ = 1 and since it already includes
a MH step, no further corrections are needed. The mixing of
these algorithms for semi-Markov models may be improved
through the introduction of auxiliary states, for example, via
Erlang’s method of stages (Barbour 1976) or, more generally,
phase-type distributions (Neuts 1975), but at the price of greater
computation time. For example, if κ = 4 the negative binomial
distribution can be represented as a sum of 4 independent and
identically distributed geometric distributions, each represented
by a state, and the iFFBS algorithm provides a Gibbs step.
However, since the computational time of iFFBS is quadratic in
the number of states the best relative speed may be obtained by
using the SM-iFFBS with a smaller number of states.

In this section, we repeat the simulation analyses of Sec-
tion 4.2 assuming the semi-Markov model. The shape parameter
κ is set to 1.6 as estimated from the real data by Spencer et
al. (2015). We used a Ga(0.01,0.01) prior for κ and estimate it
alongside the remaining parameters in the MCMC. In particular
α, β , m, and κ are updated jointly with HMC; see Supplementary
Section D.2 for details. As before, we found little difference in the
estimated number of infected individuals across the methods
and these estimates were again close to the real values (Figure
E.1 in Supplementary Section E). Figure 7 compares CPU tim-
ings and relative speeds. In this semi-Markov model, both block
updates and MHiFFBS methods could be applied without mod-
ification and therefore required approximately the same time
per iteration; the remaining methods were slowed down due to
the modifications explained above (see Figure 7(a)). In terms of
relative speed, MHiFFBS had a slightly higher median compared
to SM-iFFBS which was second best, followed by SM-fullFFBS,
block proposals, and single-site methods, Figure 7(b). However,
the best two had overlapping credible intervals depending on
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Figure 7. (a) CPU time per iteration and (b) relative speed for the semi-Markov epidemic model. Quantiles in both left and right panels are obtained from 200 different
replicates. In these scenarios, the least efficient method is the one based on single-site updates.
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how important the missing arrows were; if the arrows were very
important then it is better to use SM-iFFBS and if unimpor-
tant then MHiFFBS may be best. Furthermore, the single-site
method appeared to be the least efficient because in the semi-
Markov model the history of each individual must be repre-
sented explicitly in the full conditionals leading to a significant
increase in computational effort. Comparing Figure 7(b) with
Figure 4(a) we conclude that the gains of using the proposed
algorithms drop when we move from the Markov to the more
complex semi-Markov model. For SM-iFFBS this fact is due to
the extra MH step introduced within the sampler.

Results of relative speed for several values of C and T are
shown in Table E.1(a) and (b), respectively, in Supplementary
Section E. For the semi-Markov model the SM-iFFBS approach
has similar performance to the MHiFFBS. MHiFFBS had the
highest relative speed in 15 out of the 18 simulated datasets
whereas SM-iFFBS was the most efficient in 2 out of 18 occa-
sions; nevertheless the differences were small on most occa-
sions. Another interesting observation is that the block update
method now produces a better relative speed than the single-
site method in 17 out of 18 simulations. For large datasets, we
observe superiority of the two proposed methods in relative
speed (Figure E.2 in Supplementary Section E), resulting in a
different pattern compared to the Markov case (Figure 6). This
difference occurs because the relative speed is compared to the
slowest method and the single-site update requires considerably
more computational effort in the semi-Markov model.

Finally, we carried out a sensitivity analysis to assess the effect
that the additional parameter κ has on the relative speed values,
by simulating datasets with values for κ from 0.5 through to 10,
increasing by 0.5 each time. For each value of κ we obtained an
estimate of the relative speed, based on 200 simulated datasets.
Results are shown in Figure 8. Comparing the five methods,
we see that our two proposed novel methods outperform the
remaining methods and that they give similar estimates of the
relative speed for all scenarios considered. Moreover, for values
of κ close to 1 the SM-iFFBS, SM-fullFFBS, and MHiFFBS
provided much higher values of relative speed. Additionally,
the performance of SM-fullFFBS drops as κ increases and

eventually for κ > 6 it was found to have the lowest relative
speed. This poor performance is due to the fact that the SM-
fullFFBS proposes all of the periods of infection simultaneously,
and so deviations from the true infectious period distribution
are noticeable and the acceptance rate is low, as we can see in
Figure E.4 of the Supplementary Section E. However, the SM-
iFFBS and MHiFFBS propose only a small number of infectious
periods before each accept/reject step, and so deviations from
the true infectious period distribution are not as important and
the acceptance rate remains high, with a value of roughly 60%
for both methods.

4.4. Summary of E. coli O157:H7 Data Analysis

In this section, we use the existing and proposed methods
for the analysis of the real E. coli O157:H7 dataset presented
in Section 4.1. We consider both Markov and semi-Markov
models. A full description of the analysis summarized here can
be found at Supplementary Section F. In terms of parameter
estimation, the five methods provide almost identical estimates
(Table F.1 in Supplementary Section F) and in close agreement
with results presented by Spencer et al. (2015) who previously
analyzed the same data. Overall, our analyses suggest that the
proposed methods outperform the other methods in terms of
computational efficiency as indicated by the median relative
speed shown in Figure F.1 in Supplementary Section F. The same
conclusions were reached in the simulation studies.

5. Discussion

In this article, we have considered the problem of Bayesian esti-
mation of the hidden states in CHMMs, an extension of classical
HMMs that allow for interactions between the hidden states of
each chain. In particular, we have compared existing methods
in a real application and introduced two new approaches, the
iFFBS and MHiFFBS algorithms. We have extended the meth-
ods to a CHSMM in which the hidden process can remain in a
given state for a non-memoryless duration. The computational
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Figure 8. Median relative speed comparison of the five methods for different values of κ = 0.5, 1, 1.5, . . . , 10 for the semi-Markov model with 8 individuals. The relative
speed curves for SM-fullFFBS, SM-iFFBS, and MHiFFBS are peaked at κ = 1.
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efficiency was compared in the context of modelling the dynam-
ics of an infectious disease using both a Markov and a semi-
Markov model for the duration of infection.

In our simulation studies, we found the iFFBS algorithm
outperformed the existing methods. It balances the desired
properties of good mixing and low CPU time and thus proved to
be computationally most efficient. This is achieved by exploiting
the dependence structure in the model, where the within chain
dependence is much stronger than the between chain depen-
dence. The findings were stronger for the Markov model but
also held in the semi-Markov case. Additionally, we have also
demonstrated that the proposed iFFBS method can scale well for
big datasets with order CN3T for epidemic models and at worst
order C2N2T; as opposed to the standard FFBS algorithm which
scales like O(N2CT) and cannot be applied when the number of
chains in the CHMM is growing.

The importance of the proposed approaches is further
demonstrated in Touloupou (2016), where we have illustrated
how iFFBS can be used for inference in epidemic models with
more complex dynamics, for example, a model allowing for
interactions between neighboring pens; some additional terms
appear in the full conditional distribution to account for inter-
actions between animals in different pens. More specifically, the
updates for a chain c are done conditionally not only on the
chains of the remaining subjects in the pen but also condition-
ally on the chains of individuals in the neighboring pens. As
a result, the modified filtered probabilities additionally include
the transition probabilities of subjects in neighboring pens.

There are several ways in which the proposed methodologies
can be extended. In the current approach, we update the states
of a single chain given the rest. One alternative is to apply a
block update scheme, where small subsets of chains are jointly
sampled from their full conditionals. This approach would be
particularly effective when there is some underlying structure
between the chains that increases the dependence within the
blocks, such as individuals grouped into households in an epi-
demic context. Furthermore, in this article we have limited our
discussion on the deterministic Gibbs sampler, in which indi-
vidual chains are sampled iteratively. However, the iFFBS algo-
rithm unlocks the possibility of an adaptive random scan Gibbs
sampler (Łatuszyński et al. 2013), that learns the individuals that
need to be updated more frequently. Recent work by Chimisov,
Łatuszyński, and Roberts (2018) develops such an approach and
demonstrates substantial improvements in computational effi-
ciency for a Markov switching model, which is similar in spirit
to the CHMMs discussed here. For small epidemics within large
populations, an adaptive iFFBS sampler for the missing data
has the potential for immense improvements in computational
efficiency, due to the fact that most individuals do not take
part in the epidemic and therefore need their infection status
updated only rarely.
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Supplement: Additional plots/results for the simulations covered in the
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