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ABSTRACT
We consider that a network is an observation, and a collection of observed networks forms a sample. In
this setting, we provide methods to test whether all observations in a network sample are drawn from a
specified model. We achieve this by deriving the joint asymptotic properties of average subgraph counts
as the number of observed networks increases but the number of nodes in each network remains finite. In
doing so, we do not require that each observed network contains the same number of nodes, or is drawn
from the same distribution. Our results yield joint confidence regions for subgraph counts, and therefore
methods for testing whether the observations in a network sample are drawn from: a specified distribution,
a specified model, or from the same model as another network sample. We present simulation experiments
and an illustrative example on a sample of brain networks where we find that highly creative individuals’
brains present significantly more short cycles than found in less creative people. Supplementary materials
for this article are available online.
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1. Introduction

We show that subgraph counts are flexible and powerful statis-
tics for testing distributional properties of networks, when more
than one network is observed. Specifically, we use subgraph
counts to test the hypotheses that all networks in a sample are
generated either from a specified distribution, from distribu-
tions in a specified model, or from the same model as that of
another sample.

Our results address the fundamental inference problem
raised by the following experiment (Gray et al. 2012): Networks
connecting brain regions of individuals of varying levels of
creativity are observed. However, while these observations can
be assumed to be independent, due to the variability of the brain
structure and the instability of the observation technique they
cannot be assumed to be identically distributed; for instance,
they need not contain the same number of nodes and edges.
This implies that if we identify each network realization with its
adjacency matrix, these matrices will be of different sizes. This
makes more difficult, for instance, estimating the distribution
the adjacency matrices are drawn from compared to the case of
a sample of independent and identically distributed realizations
on a fixed number of nodes. How, while allowing for such varia-
tions, can we test for significant differences between individuals
with different levels of creativity?

Formally, we consider that each network is an observation—
say Gi for each subject—and a collection of observed networks
form a sample—say G = (G1, . . . , GN). Our goal is to infer
distributional properties of the Gi’s as N grows. This parallels
more classical statistical settings, where an observation is a
vector—such as Xi ∈ R

k—and a sample is a matrix: X =
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(X1, . . . , XN) ∈ R
k×N . However, this parallel with the classical

setting stops there. Indeed, the Gi need not be of the same size, or
have nodes that are matched with a 1-1 correspondence between
graphs; that is, the Xi’s would not have the same dimension, and
the entries could be shuffled.

This setting strongly differs from the two settings that have
already seen extensive research. First, there is the setting that
focuses on the asymptotic properties of large random networks
(see Bickel, Chen, and Levina 2012; Ho, Parikh, and Xing
2012; Hoff, Raftery, and Handcock 2012; Sussman et al. 2012;
Tang, Sussman, and Priebe 2013; Olhede and Wolfe 2014; Bhat-
tacharyya and Bickel 2015; Fosdick and Hoff 2015; Coulson,
Gaunt, and Reinert 2016; Klopp, Tsybakov, and Verzelen 2016,
to cite but a few). Available statistical tests for network compar-
ison in that setting focus on the case where one or two large
networks are observed (Asta and Shalizi 2014; Banerjee and Ma
2017; Gao and Lafferty 2017; Ghoshdastidar et al. 2017; Tang,
Athreya, Sussman, Lyzinski, Priebe, et al. 2017), or where one
finite network is compared to a fixed model alone (Birmele
2012; Ali et al. 2014, 2016). The second setting addresses graph
samples, as we do here, but under additional assumptions: sam-
ples that are independent and identically distributed, where all
graphs have the same size, and where nodes across networks can
be matched one-to-one. Then, under these assumptions, it is
possible to compare network summaries using classical statis-
tical methods (Simpson, Moussa, and Laurienti 2012; Daianu et
al. 2013; Stoffers et al. 2013; Ginestet et al. 2017), or by fitting
a parametric or semiparametric model (Simpson, Moussa, and
Laurienti 2012; Durante and Dunson 2018; Wang, Zhang, and
Dunson 2019).
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We provide, in the graph sample setting described above, an
analog of the multivariate t-test for network samples: methods
to test whether a given network sample G presents averages
consistent with either a specified model, or with that of another
sample. The averages we use are subgraph counts; for example,
the number of or in the sample. The choice of subgraph
counts as statistics is motivated by their success in comparing
large networks (Milo et al. 2002; Ali et al. 2014), but also by
results in random graph theory and the study of large graphs. In
both fields, subgraph counts have proved to be among the most
powerful tools available to compare networks (Ali et al. 2014,
2016) and are known to have properties similar to moments
of random variables when studying large networks (Diaconis
and Janson 2008; Bickel, Chen, and Levina 2012; Lovász 2012;
Chatterjee and Diaconis 2013). Finally, because of these results,
many powerful algorithms exist to count subgraphs efficiently
(e.g., Ortmann and Brandes 2016; Talukder and Zaki 2016).

Formally, we are representing network samples in a space
defined by subgraph counts, and performing comparisons in
that space. While other network comparison techniques also
use embeddings (Asta and Shalizi 2014; Gao and Lafferty 2017;
Tang, Athreya, Sussman, Lyzinski, Priebe, et al. 2017; Wang,
Zhang, and Dunson 2019), using subgraph counts presents
three key advantages: first, if the Gi’s are generated by a block-
model (Hoff, Raftery, and Handcock 2012)—one of the most
popular random network models to date—and for some fam-
ilies of subgraphs, the embedding is one-to-one. This result is
known as the finite forcibility of a family of graphs (Lovász
2012, chap. 16). Second, very few assumptions on each Gi need
to be made as N grows to obtain consistency and asymptotic
normality of the image of G in the embedding space. This
enables us to work under a very flexible null model. Finally,
because it relies on direct summaries of the Gi’s —the number
of , , and so on—this embedding remains interpretable, part
of the appeal of using subgraph counts for inference.

The main risk in using subgraph counts for testing purposes
is that we cannot be sure that the subgraphs considered are
sufficient to distinguish the null and the data generating mech-
anism. We provide several experiments supporting our claim
that, while possible, this risk does not appear to be common.
Furthermore, this risk is balanced by the interpretability of
subgraph counts: if the null and the generating mechanism
have the same number of subgraphs, perhaps they should be
considered equivalent for the purpose of the study at hand.
Another shortcoming is that subgraph counts can be highly
correlated, especially in denser networks, making the estima-
tion of the inverse of their covariance matrix unstable. One of
our contributions is closed form formulas for these covariance
matrices under our null, which mitigates but does not fully
resolve this issue. Finally, because subgraph counting libraries
are not standard, implementing the proposed methods is not as
easy as for other methods, which tend to rely on more common,
linear algebra related, data transformation pipelines. To this end
we made available all the code to perform our analysis.1

1Code to perform all methods, as well as reproduce all figures and
tables reported in the article, can be found at: https://github.com/
PierreAndreMaugis/motifs-for-network-samples.

In the remainder of this article, we first introduce subgraph
counts and the kernel based random graph model. We then suc-
cessively present the case where all the networks in the sample
come from the same kernel model, and the case where each
observed network may come from different kernels. In both
cases, we prove asymptotic normality of our estimator, present a
plug-in estimator of its variance, describe the limit of the estima-
tor under the alternative hypothesis, and provide representative
examples showing the practical utility of the approach. Methods
to produce the figures, as well as supporting simulations, can
be found in the supplementary materials. We conclude with an
analysis of connectome data, and with a discussion.

2. Subgraph Counts in Kernel Based Random Graphs

We now define our statistics (subgraph counts) and our null
model (the kernel based random graph model). Subgraph
counts are natural statistics for comparing networks for two
reasons. First, subgraph counts intuitively summarize a net-
work through its fundamental building blocks. This has histor-
ically given them purchase in addressing hard fundamental and
empirical problems (Rucinski 1988; Milo et al. 2002; Ali et al.
2014). Second, subgraph counts possess very tractable analytical
properties. We will describe and leverage these properties below,
in a manner paralleling what is done in related literature (Rucin-
ski 1988; Bickel, Chen, and Levina 2012; Bhattacharyya and
Bickel 2015).

A subgraph count is the number of copies of a given graph
in another graph (see Figure 1). Throughout, we call the
subgraph—denoted F—the graph which is counted and G the
larger graph in which the counting takes place. All graphs will be
simple (unweighted, no self loops, or multiple edges). Subgraphs
are also termed motifs, pattern graphs, or shapes depending on
the field (Alon, Yuster, and Zwick 1997; Milo et al. 2002; Hočevar
and Demšar 2014; Benson, Gleich, and Leskovec 2016).

For clarity, we define subgraph counts formally as follows:

Definition 1 (Graph equivalence “≡”). Fix two graphs F and F′.
We say that F is equivalent to—or is a copy of—F′, and write
F ≡ F′, if there exists a bijective map φ from the vertex set of F
to the vertex set of F′ such that ij is an edge in F iff φ(i)φ(j) is
an edge in F′.

Definition 2 (Subgraph count XF(G)). Fix two graphs F and G.
We denote by XF(G) the number of subgraphs (not necessarily
induced) of G equivalent to F; that is,

XF(G) = #
{

F′ ⊂ G : F′ ≡ F
}

,

where F ⊂ G if the vertex and edge sets of F are subsets of those
of G.

With this notation, calling Ga, Gb, and Gc the graphs in
Figure 1, we have X (Ga) = 1, X (Gb) = 0, X (Gc) = 3. A
more complete definition is provided in Definition 2.

The power of subgraph counts in the study of networks
stems from their inherent linearity. Indeed, products of sub-
graph counts are but linear combinations of other subgraph
counts. Intuitively, first observe that a product of two subgraph
counts will involve counting pairs of copies. Thus, a product of

https://github.com/PierreAndreMaugis/motifs-for-network-samples
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Figure 1. Example of subgraph counts. There are 6 copies of the edge ( ) in all three graphs. There are 2 copies of the triangle ( ) in (a) and (b), but 0 in (c). There are
1, 0, and 3 copies of the square ( ) in (a), (b), and (c), respectively.

subgraph counts can be recovered by counting the number of
copies of all subgraphs that can be induced by a pair of copies.
More precisely, in the Appendix we show the following, which
is implicitly used in Rucinski (1988):

Lemma 1 (Linearity of subgraph counts (Rucinski 1988)). For
any two graphs F and F′, there are factors cH and a set HFF′
of subgraphs—the set of subgraphs that can be obtained using
one copy each of F and F′ as building blocks—such that for any
graph G

XF1(G)XF2(G) =
∑

H∈HFF′
cHXH(G).

For instance, as these will be used later on, we have that in
any graph G,

X (G)2 = 2X (G) + 2X (G) + 2X (G) + X (G),

X (G)2 = 2X (G) + 2X (G) + 6X (G) + 2X (G)

+ 2X (G) + 2X (G) + 6X (G) + 6X (G)

+ X (G).

This algebraic property of subgraph counts allows us to under-
stand the proofs of Rucinski (1988) and Bhattacharyya and
Bickel (2015). The property is also crucial to the subgraph
counting algorithms of Hočevar and Demšar (2014), and can
be found in many other examples. Crucially, as opposed to
cases where it is the model that enforces linearity—such as with
assumptions of Normality—it is the nature of the statistics (sub-
graph counts) and the system (graphs) that makes our problem
linear.

The linearity of subgraph counts allows us to use as null the
very flexible kernel based model (Lovász 2012). This framework
subsumes most models used in the statistical literature on net-
works; for example, blockmodel (Hoff, Raftery, and Handcock
2012) and dot-product models (Sussman et al. 2012). It has the
intuitive structure of affixing to each node i a latent feature (here
xi) and of connecting nodes i and j (conditionally indepen-
dently) with a probability determined by the node features (here
f (xi, xj)).

Definition 3 (Kernel f and random graph Gn(f )). Fix a sym-
metric measurable map f : [0, 1]2 → [0, 1], and call it a kernel.
We call Gn(f ) the random graph distribution over graphs with n
nodes such that: to each node is randomly and independently
assigned a feature xi ∈ [0, 1], with xi ∼ Unif([0, 1]); and
where edges form independently conditionally on {xi}i∈[n] with
conditional probability

P[ij ∈ G|xi, xj] = f (xi, xj).

To recover a blockmodel with K blocks, it suffices to consider
a partition of [0, 1] in K sets (i.e., (P1, . . . , PK) ∈ PK([0, 1]))
and set f as constant over each Pu × Pv. The dot-product model
is recovered with a kernel f of finite rank; that is, f (x, y) =∑

u≤K λufu(x)fu(y).
The model assumes that vertices’ locations in the latent space

are independent and identically distributed, so that the model
does not assume any structure or symmetry among the nodes
in the observed networks. However, it can accommodate any
such structure, which would be recovered through estimation.
Nonetheless, in some cases it may seem relevant to enforce such
structure; for example, in our brain example, assume that nodes
in different hemispheres are unlikely to connect. As always
in statistics, making such assumptions risks misspecifying the
model to gain faster convergence, which might be necessary in
some cases. We did not find it necessary to make such assump-
tions in our application.

In the kernel framework, subgraph counts have direct inter-
pretation as moments of f (Lovász 2012) (see Equation (1)).
Specifically, if G ∼ Gn(f ), then the moments of XF(G) are
moments of f . An infinite number of subgraph counts are suffi-
cient statistics to distinguish between any two kernels (Bollobás
and Riordan 2009; Lovász 2012), as the subgraph counts can
be used to define the subgraph metric. However, there are no
guarantees on which or how many subgraph counts are needed
to distinguish between two kernels. For block models and finite
rank models, we know only that a finite number is sufficient [a
concept known as finite forcibility, see Lovász (2012, chap. 16.7
and Appendix 4) for more details]. The cost in using subgraph
counts is that we compare the kernels, and therefore lose infor-
mation pertaining to the latent locations (the xi’s). For example,
consider comparing brain samples where in one sample all
connectomes have a fully connected left hemisphere, a fully
disconnected right hemisphere and no connections across the
two hemispheres, whereas in the other sample all connectomes
have fully disconnected left hemisphere, a fully connected right
hemisphere and no connections across the two hemispheres: in
this setting there is a clear difference in the brains between the
two samples, but the subgraph counts are the same.

This makes subgraph counts especially appropriate as statis-
tics in an hypothesis test. Indeed, for any finite set of subgraphs
F , we could have two kernels f and f ′ such that f 	= f ′, and
yet ∀F ∈ F ,EG∼Gn(f )XF(G) = EG∼Gn(f ′)XF(G). However, as
we prove below, if EG∼Gn(f )XF(G) 	= EG∼Gn(f ′)XF(G) for any
F, then f 	= f ′. Therefore, a difference in subgraph counts
is sufficient but not necessary to distinguish between kernels.
Conversely, not observing a difference in subgraph counts can
only imply that we do not observe a difference in the kernels, and
therefore that we fail to reject the hypotheses that the kernels are
equal. This has implications regarding the power of our test that
we explore below.
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Notably, all known results on subgraph counts under the
kernel model consider the setting where one very large graph
is observed. Here, we present the tools to address the problem
where a sample of graphs is observed.

3. The Simple Case: Samples From One Kernel

We now present a central limit theorem as well as practical
methods to build confidence regions for the subgraph counts
observed in a network sampleG = (G1, . . . , GN). In this section,
we assume that there is a kernel f such that each Gi is drawn
independently from Gni(f ) (with ni = |Gi|, where for any graph
F we write |F| for the number of nodes in F).

Fix F ∈ F and G ∈ G. In this setting, XF(G) is a random
variable, and the first parameter to consider is its mean. To
compute this mean, let F1, . . . FXF(KG) be all the copies of F in
KG (the complete graph over the nodes of G), so that using the
linearity of the expectation, we have that

EXF(G) = E

∑
j∈[XF(KG)]

1{Fj⊂G} =
∑

j∈[XF(KG)]
E1{Fj⊂G}.

Then, direct computations show that E1{Fj⊂G} does not depend
on j (see Proposition 1), and that

E1{Fj⊂G} = μF(f ) :=
∫

[0,1]|F|

∏
uv∈F

f (xu, xv)
∏
u∈F

dxu, (1)

so that EXF(G) = XF(KG)μF(f ). Observe that μF(f ) is a
moment of the kernel f , as discussed above.

Similar computations for higher moments, aided by
Lemma 1, enable us to use the Lindeberg–Feller central limit
theorem and the Cramer–Wold device to prove the following:

Theorem 1 (Statistical properties of subgraph counts). Fix a
set of graphs F , a kernel f and a sequence n = (ni)i∈N
such that 2 maxF∈F |F| ≤ mini∈N ni. Let G = (Gi)i∈[N]
be a network sample such that for all i, Gi ∼ Gni(f ). Set
μ̂F(G) = N−1 ∑

G∈G XF(G)/XF(KG), μ̂F (G) = (μ̂F(G))F∈F ,
and μF (f ) = (μF(f ))F∈F . Then, μ̂F (G) is an unbiased,

√
N-

consistent and asymptotically normal estimator of μF (f ); that
is, Eμ̂F (G) = μF (f ) and there exists a positive semidefinite
�F (n, f ) such that asymptotically in N:

√
N

(
μ̂F (G) − μF (f )

) → Normal
(
0, �F (n, f )

)
.

Furthermore, for each F, F′ ∈ F ,

cov(μ̂F(G), μ̂F′(G)) =∑
H∈HFF′ \{F�F′}

ωH(n; N)
(
μH(f ) − μF(f )μF′(f )

)
, (2)

with F � F′ the disjoint union of F, F′, ωH(n; N) =
1
N

∑N
i=1

cHXH(KGi )
XF(KGi )XF′ (KGi )

, and cH is defined in Lemma 1.

Crucial to the following is the covariance matrix �F (n, f )—
obtainable by taking the limit in N in (2) for each F, F′ ∈
F—which will enable the computation of confidence regions.
Interestingly, its elicitation is more involved than for the study of
large networks, where only a few terms dominate. We refer to the

Appendix for the proof. The Appendix’s proof relies on under-
standing the moments of single network counts, which have
been studied extensively in the Erdős–Rényi and the exchange-
able cases (see, e.g., Rucinski 1988; Coulson, Gaunt, and Reinert
2016).

Remark 1 (Nonrandom latent positions). Because our proof
builds on the foundation of Rucinski (1988), our results extend
to the case where the latent xi’s are not random; say fixed to
some values. The only modification would be that the sum in (2)
should be restricted to graphs H formed by copies of F and F′
overlapping over at least an edge (as opposed to overlapping
over one node in (2)). This also means that all our methods
apply to that case, with the caveat that the resulting test will be
conservative (as the variance is overestimated).

Theorem 1 enables testing against the null that all Gi are
drawn from a given kernel. Further, the SI contains a simulation
experiment exploring convergence in small samples. To make
this concrete, we consider an example in Figure 2. There, we
observe a graph sampleG = (G1, . . . , G100), and aim to compare
it to two kernels fa (in black) and fb (in gray) using Theorem 1;
that is, we assume that for i ∈ [N], Gi ∼ Gni(f ) and consider
the null hypothesis H0 : f = fa and the alternative H1 : f = fb.
We present as a white cross μ̂F (G). The sizes of the networks in
G, the ni, are nonrandom but not constant. We achieve this by
using the sequence of digits of π .

First, since we have specified fa and fb, we can evaluate both
μF (fa) and μF (fb) and include them in the figure (as white
dots). Then, since n = (ni)i≤N is observed, we can compute
�F (n, fa) and �F (n, fb) using Theorem 1, which allows us to
compute the confidence ellipse around μF (fa) and μF (fb) (in
shaded black and gray, respectively). Finally, since we know the
limit distribution and covariance under the null, we can use
�F (n, fa) and μF (fa) to compute a p-value using Mahalanobis
distance; for example, assuming �F (fa) is full rank, the p-value
is 1 − Fχ2|F |

(
(μ̂F (G) − μF (fa))′�F (fa)−1(μ̂F (G) − μF (fa))

)
,

with Fχ2|F | the cumulative distribution function of the χ2 distri-
bution with |F | degrees of freedom.

Figure 2 is useful to understand the power of the proposed
test. We see that since not all the confidence ellipses overlap,
the power is larger than 0.95. However, if we were to use only

, then the power would be less as these ellipses do overlap.
For larger sample sizes, the radii of both ellipses will be smaller,
so that eventually the power tends to 1 using any combination
of subgraphs. In the supplementary materials, we explore the
power of our test when the expected count is held fixed, but
the number of blocks in the null and true models differ.

3.1. Finding the Odd Connectome Out

Before proceeding to a more general sampling design, and there-
fore a less constrained null, we consider the following exper-
iment. In this experiment, we study a diffusion MRI dataset
consisting of 57 connectomes with between 750 and 1191 ver-
tices each. Indeed, because each brain has a slightly different
shape, the number of vertices that is captured will change for
each subject. Graphs were estimated using the NeuroData’s MR
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Figure 2. Testing for a kernel using F = {C2, C3, C4} = { , , }. The sample G is such that: N = 100, ni is the ith digit of π plus 30, Gi is drawn from a kernel f
(Gi ∼ Gni (f )). The estimate μ̂F (G) is denoted by a white cross. Overlaid are the expected densities (white dots) and the confidence ellipse (shaded area) for two alternative
kernels fa and fb .

Graphs pipeline (Kiar et al. 2018), with vertices representing
subregions defined via spatial proximity (we use parcellation
technique DS01216) and edges defined by tensor-based fiber
streamlines connecting these regions.

During the data collection of one of the connectomes, a
numerical error was reported by the system, however, the pro-
cess completed properly. While one could conservatively discard
the observation, securing a subject and performing the scan is
time consuming and expensive, so that it would be preferable to
keep the connectome unless it is proven to be too different to be
processed.

Testing whether this odd connectome is too different is some-
thing that can be done from Theorem 1 as follows: (i) count
in each of the connectomes the density of , , and and
compute �, the covariance matrix of these densities; (ii) split
the sample in two at random; (iii) compute the mean μi of the
counts in both samples, with i ∈ {1, 2}; (iv) then, under the null
that both samples are generated independently from the same
kernel, q = (57/2)

(
μ2 − μ1

)
(2�)−1(μ2 − μ1

) should be a
draw from the χ2

3 distribution.
Performing this exercise on our sample multiple times (1000

times) we find that we can reject the null of the odd connectome
being from the same kernel as the others. Indeed, the p-value
of observing a value at least as large as the observed q is 0.03
(after using Bonferroni correction). If we exclude the odd con-
nectome, we fail to reject the null with the same experimental
set-up. Closer examination shows that while the density of
in the odd connectome is similar to the other connectomes,
the densities of and are larger in the odd connectome
compared to the others.

Remark 2 (Uniform convergence and bootstrap). In Theo-
rem 1, we obtain uniform convergence (since in the proof we
verify the Lyapunov condition, which implies that the Berry–
Esseen inequality applies). This means that resampling boot-
strap can be applied, using standard arguments. In the applica-
tion above we could have leveraged a bootstrap method, and for
instance tested for the distribution of the bootstrapped p-values
being significantly different from the uniform distribution. This
was unnecessary here, but it can lead to a more powerful
test.

4. The General Case: Flexible Sampling Design

Here, we expand our results to cases where the observed net-
works may be generated from different kernels. Indeed, in many
settings, the sampling mechanism may distort the structure
of the underlying kernel; for example, although the network
connecting brain regions can be satisfactorily modeled by a
blockmodel (Koutra, Vogelstein, and Faloutsos 2013), the pro-
portion of nodes of each block may be different in different
experimental settings, so that each observation is drawn from
a different blockmodel.

In this practically important and conceptually challenging
new setting, the proof techniques developed for Theorem 1 yield
the following.

Theorem 2. Fix a set of graphs F , a sequence of kernels
f = (fi)i∈N and a sequence of integers n = (ni)i∈N such
that 2 maxF∈F |F| ≤ mini∈N ni. Let G = (Gi, . . . , GN)

be a network sample such that for all i, Gi ∼ Gni(fi). Set
μ̂F (G) = N−1 ∑

G∈G (XF(G)/XF(KG))F∈F and μF (f ; N) =
N−1 ∑N

i=1 μF (fi). Then, asymptotically in N, and for some
�∗

F (n, f ), we have
√

N
(
μ̂F (G) − μF (f ; N)

) → Normal
(
0, �∗

F (n, f )
)
.

Therefore, even in this much more flexible setting, we can
recover the barycenter of the μF (fi). However, the variance has
now a more complex structure (see Appendix for details).

Following the intuition of our example of brain networks, and
to make the usefulness of Theorem 2 concrete, we introduce the
flexible stochastic blockmodel (FSBM).

Definition 4 (FSBM and embedding shape). For a symmetric
matrix B ∈ [0, 1]K×K we call D(B) the set of all possible
kernels with the same block structure as B; that is, recalling that
PK([0, 1]) is the set of partitions of [0, 1] in K sets,

D(B) =
{

f : ∃(P1, . . . , PK) ∈ PK([0, 1]) s.t. ∀x ∈ Ps, y ∈ Pt ,

f (x, y) = Bst
}

.

For a set F of graphs, we call the set μF (B) = {
μF (f ) for

f ∈ D(B)
}

the embedding shape.
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Figure 3. Testing for a FSBM class. The sample G is such that: N = 200, ni is the ith digit of π plus 30, Gi is drawn from a kernel f (Gi ∼ Gni (f )). With F = {C2, C3, C4},
we estimate μ̂F (G), and plot it as a white cross. Then, we draw in solid color the embedding shapes μF (Ba) and μF (Bb). In shaded color we draw the associated
confidence regions; p-values can be obtained using the Mahalanobis distance associated with the closest point to μ̂F (G) in μF (Ba) and μF (Bb).

Figure 4. Testing for a full FSBM class. The sample G is such that: N = 103, ni is the ith digit of π plus 50, Gi is drawn from a kernel fi (Gi ∼ Gni (fi)). With F = {C2, C3, C4},
we estimate μ̂F (G), and plot it as a white cross. Then, we draw in solid color the convex hulls of the embedding shapes μF (Ba) and μF (Bb). In shaded color we draw
the associated confidence regions; approximate (and conservative) p-values can be obtained by determining the confidence level at which the observation ceases to be in
the confidence region.

For instance, with B ∈ [0, 1]2×2 and F = { , }, then:

μF (B) =
{(

π2B11 + 2π(1 − π)B12 + (1 − π)2B22,

π3B3
11 + 3π2(1 − π)B11B2

12 + 3π(1 − π)2B22B2
12

+ (1 − π)3B3
22

)
: π ∈ [0, 1]

}
.

The most direct way of using the FSBM is to test for all the fi
being equal to any blockmodel instance in a class; that is, assume
that all Gi’s are drawn from a kernel f and test for the null H0 :
f ∈ D(B). This is achieved by using a composite hypothesis test,
and our results allow us to produce confidence regions and p-
values using the same tools as before.

We present such an example in Figure 3. There, we observe
G = (G1, . . . , G200), and consider two FSBM classes generated
from Ba (in gray) and Bb (in black). Then, we assume that all
networks in the sample are drawn from a kernel f and test for the
null H0 : f ∈ D(Ba) and the alternative H1 : f ∈ D(Bb). We first
represent μ̂F (G) as a white cross. Using Definition 4, we plot
the embedding shapes μF (Ba) and μF (Bb) in solid gray and
black, respectively. The confidence regions (in shaded gray with
dotted contour and black with dashed contour) are the union of
the confidence ellipses at all points in μF (Ba) and μF (Bb).

A more general use of Theorem 2 is to test for all graphs
in a sample being drawn from elements of a FSBM class; that

is, assume that the Gi’s are drawn from the fi’s and test for the
null H0 : ∀i ∈ [N], fi ∈ D(B) for some B. As before, we face
a composite null, and we may compute the confidence region
and the p-value by scanning all possible sequences f . This,
however, is clearly computationally intractable. Nonetheless, the
form of the variance and the structure of the FSBM allows us
to propose conservative confidence regions and p-values that
can be efficiently computed (we fully describe the method in the
supplementary materials).

We present such an example in Figure 4. There we observe
G = (G1, . . . , G103) and consider two FSBM classes generated
by Ba and Bb. We first plot μ̂F (G) as a white cross. Then, using
Definition 4, we plot the convex hull of the embedding shapes
μF (Ba) and μF (Bb) (in solid gray and black, respectively)
wherein—by Theorem 2—μF (f ; N) must lie. Finally, we use a
method described in the SI to produce the confidence region
around each shape (in shaded hue).

5. Are Creative Brains Different From Less Creative
Ones?

We now consider a sample of brain networks G = (G1,
. . . , G113) (Koutra, Vogelstein, and Faloutsos 2013). This sample
was produced as follows: diffusion MRI (dMRI) and struc-
tural MRI (sMRI) scans from 113 individuals were collected
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over 2 sessions from Beijing Normal University (Zuo et al.
2014). Graphs were estimated using the ndmg (Kiar et al.
2018) pipeline. The dMRI scans were preprocessed for eddy
currents using FSL’s eddy-correct (Smith et al. 2004). FSL’s
“standard” linear registration pipeline was used to register the
sMRI and dMRI images to the MNI152 atlas (Mazziotta et al.
2001; Woolrich et al. 2009; Jenkinson et al. 2012). A tensor
model is fit using DiPy (Garyfallidis et al. 2014) to obtain an
estimated tensor at each voxel. A deterministic tractography
algorithm is applied using DiPy’s EuDX (Garyfallidis et al. 2012)
to obtain streamlines, which indicate the voxels connected by an
axonal fiber tract. Simple graphs are formed by first contracting
voxels into graph vertices according to the Desikan parcella-
tion (Desikan et al. 2006) and then by placing an edge between
two regions if a fiber tract is observed between any pair of voxels
from each of 70 regions. Further, we have available a network
covariate C = (c1, . . . , c113) measuring subject creativity, which
is related to the person’s performance on a series of creativity
tasks.

To study this network sample and use the covariate C, we
introduce a direct extension of our results for comparing two
network samples:

Corollary 1 (Two-sample test). Fix a set of subgraphs F and two
network samplesG andG′ generated, respectively, by the kernels
f and f ′ and the network size sequences n and n′. Then, as both
|G| and |G′| tend to infinity, and if min(n, n′) ≥ 2 maxF∈F |F|,
we have that if f = f ′, then

√|G||G′|√|G| + |G′|
(
μ̂F (G) − μ̂F (G′)

) → Normal
(
0, �F (n, n′, f )

)
,

and, as (2) applies, we can produce an unbiased
√|G| + |G′|-

consistent and asymptotically normal estimator of
vec

(
�F (n, n′, f )

)
, this without specifying or estimating f .

In the following we choose to work with F = { , , }.
We chose these for several reasons: in a simulation experiment
(see the supplementary materials) we find that using these
counts leads to power surpassing the best available alternative
in the literature (Tang, Athreya, Sussman, Lyzinski, Park, et al.
2017; Tang, Athreya, Sussman, Lyzinski, Priebe, et al. 2017); the
associated counts correspond to spectral moments of the under-
lying kernel (Maugis, Olhede, and Wolfe 2017b); and
are staples of graph analysis (related to conductance, clustering,
transitivity, etc.) and are key network summaries throughout the
literature; is one of the smallest graphs that is larger than
and but cannot be built from copies of and , which
reduces correlation between counts, and therefore improves
power of the tests; all three are small, and there is extensive and
available software to efficiently count them (e.g., Jha, Seshadhri,
and Pinar 2015; Pinar, Seshadhri, and Vishal 2016; Maugis,
Olhede, and Wolfe 2017a.)

We note that our estimator of �F (n, n′, f ) is entrywise Nor-
mal, not Wishart as in the classical setting. Thus, we have no
guarantee that �̂F (n, n′, f ) is positive definite, and cannot use
the Hotelling’s T-squared distribution to compute p-values. If
the estimate is positive definite, we recommend ignoring the
variations in �̂F (n, n′, f ) and using the χ2|F | distribution. If

the estimate is not positive definite, we recommend using the
marginals.

Before analyzing G using our results, we make the following
test: we subsample uniformly at random and without replace-
ment from G, yielding G1 and G2 such that G1 ∪ G2 = G, and
use Corollary 1 to test for G1 and G2 being drawn from the
same kernel f . Unless G presents characteristics that cannot be
explained by our results, G1 and G2 should be indistinguishable,
and we expect to see p-values that are uniformly distributed in
[0, 1].

We perform this experiment 100 times, and obtain a sample
of p-values for which we fail to reject the null of a uniform
distribution using the Kolmogorov–Smirnov test (D = 0.09,
p-value = 0.3). For this test we use F = { } because of the
small sample (|G1| + |G2| = 113) size and a very high level of
correlation; otherwise the correlation between the counts is so
high that the correlation matrix appears singular.

We now use the creativity scores to split G into two samples.
To do so, we build a first subsample G1 containing the less cre-
ative, and a second subsample G2 containing the more creative.
More precisely, for a quantile q and denoting QC the empirical
quantile function of C:

Gq
1 = {Gi ∈ G : ci ≤ QC(q)} and

Gq
2 = {Gi ∈ G : ci > QC(1 − q)}.

Interestingly, for q = 0.5 and q = 0.4, we fail to reject the null
that the networks in Gq

1 and Gq
2 come from the same kernel (see

Table 1 for the p-values). However, for q = 0.3 we can reject the
null of the same kernel at the 5% confidence level using or ,
but not .

Thus, we observe that individuals with a very high level of
creativity present significantly more and than those with a
very low level of creativity. To further confirm this discovery,
we undertake the following experiment: we estimate kernels
(through the random-dot-product framework; Athreya et al.
2018) over the samples G, G0.2

1 , and G0.2
2 , that we call f , f1,

and f2, respectively; then, for several γ ∈ [0, 1], we consider
the power of Corollary 1’s test when the samples compared are
of the same cardinality as G0.2

1 , and G0.2
2 , but drawn iid from

G70
(
γ f1 + (1 − γ )f

)
and G70

(
γ f2 + (1 − γ )f

)
, respectively;

we find that the proposed test is very powerful, as powerful as a
semiparametric test relying on the random-dot-product struc-
ture of the model (Tang, Athreya, Sussman, Lyzinski, Park, et al.
2017). This provides comfort for the claim that the difference in
samples is only observed for q ≥ 0.3, and not for more central
quantiles.

Table 1. Testing for differences between Gq
1 and Gq

2 .

p-value

Quantile (q)

0.5 0.126 0.110 0.115
0.4 0.077 0.051 0.050
0.3 0.062 0.042 0.040
0.2 0.014 0.011 0.012
0.1 0.046 0.047 0.061

NOTE: For each F ∈ { , , } and q ∈ {0.1, 0.2, . . . , 0.5} we produce the p-
value for the null H0 : μF(Gq

1 ) = μF(Gq
2 ). The p-values increase with q, except

for q = 0.1, in which case |Gq
1 | and |Gq

2 | are too small for the test to be significant.
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We now aim to understand whether the added and arise
from a few edges completing partially present shapes or from
fully new and . To do so, we first observe that if G ∼ Gn(f ),
then G ∼ Gn(1 − f ), where G is the complement graph of G.
Therefore, we may use our tests on G, which can be understood
as estimating μF (1 − f ) instead of μF (f ) to compare network
samples.

Then, using the Gq
i = {G : G ∈ Gq

i }, we can test
whether there are significantly more fully absent subgraphs in
Gq

1 compared to Gq
2 . There, we find we cannot reject this null;

that is, we cannot reject the null of the networks in Gq
1 and

Gq
2 coming from the same kernel for q ≥ 0.3. Therefore, we

conclude that the added and in the highly creative arise
from a few edges completing partially present and .

One key conclusion of our analysis is that we must use The-
orem 2 to study G. Indeed, we have just shown that all networks
generating G cannot come from the same kernel. This allows us
to write that using the full sample G, a centered and consistent
estimate of the average density of , , within human
brains in our modality is (0.41, 0.13, 0.06). To conclude, we
remark that since all the Gi’s in G have the same number of
nodes, one could produce a similar analysis using—instead of
our results—the μF (Gi) as if they formed an independent and
identically distributed sample. However, as we have just shown,
the Gi are not identically distributed, and therefore such an
analysis could lead to spurious conclusions.

6. Discussion

We provide the tools to perform statistical inference on a net-
work sample using subgraph counts. Our two main results pro-
vide consistency and asymptotic normality of subgraph counts
under very flexible conditions. Using these results, we show that
subgraph counts are powerful statistics to test whether network
samples come from a specified distribution, a specified model,
or from the same model.

The key insight we provide is that statistical inference meth-
ods paralleling classical ones for standard samples may be
obtained for network samples. From this perspective, our results
may be seen as providing an analogue of a multivariate t-test
for network samples. However, going beyond what our results
directly imply, we expect that parallels to ANOVA, model selec-
tion, model ranking, and goodness of fit may be obtained for
network samples using our proof techniques.

However, since our tests are analogous to the t-test, they rely
on global summaries. Therefore, while we can reject the null of
two network samples being drawn from the same model, our
approach is unable to locate where in the network the difference
is realized.

Appendix A. Properties of Subgraph Counts

In the following, we formalize certain notions we use loosely in the
main body (especially the notion of copy and the sets HFF′ , as well as
the constants cH), prove all our results, and provide more details on the
numerical examples we present.

We start by proving our first lemma, establishing the linearity of
subgraph counts. We first defineHF1F2 and cH , generalizing definitions
given in Rucinski (1988).

Definition 5 (Overlapping copies). For two graphs F1 and F2 we denote
by HF1F2 the set of unlabeled graphs that can be formed by two copies
of F1 and F2, and cH the number of ways a given H ∈ HF1F2 can be
built from copies of F1 and F2:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

HF1F2 =
⎧⎨⎩H ⊂ K|F1|+|F2| :

∃F′
1, F′

2 ⊂ K|F1|+|F2| s.t.,
F′

1 ≡ F1, F′
2 ≡ F2, and

H = F′
1 ∪ F′

2

⎫⎬⎭ / ≡

cH = #

⎧⎨⎩(
F′

1, F′
2
) ⊂ H :

F′
1 ≡ F1, F′

2 ≡
F2

and H = F′
1 ∪ F′

2

⎫⎬⎭ .

Finally, call H∗
F1F2

the set HF1F2 removed of F1 �F2, the vertex disjoint
union of F1 and F2.

Note that HF1F2 is defined as a quotient set, sometimes called
quotient space, through the equivalence relation ≡. In the following,
we identify the equivalence classes in HF1F2 with any of their element,
and therefore will treat the elements of HF1F2 as graphs.

Lemma 2 (Copies pairwise interaction). Fix three graphs F1, F2, and
G. Then,

XF1(G)XF2(G) =
∑

H∈HF1F2

cHXH(G).

Proof. We start by writing:

XF1(G)XF2(G) =
∑

F′
1⊂G

1{F′
1≡F1}

∑
F′

2⊂G
1{F′

2≡F2} (A.1)

=
∑

F′
1⊂G

F′
2⊂G

1{F′
1≡F1}1{F′

2≡F2}.

Now, from Definition 5, we first note that by construction of HF1F2 , for
each pair F′

1, F′
2 in the sum, 1{F′

1≡F1}1{F′
2≡F2} = 1 if and only if there

exists H ∈ HF1F2 such that F′
1 ∪ F′

2 ≡ H. Therefore, we can reindex
the sum in (A.1) as follows:

XF1(G)XF2(G) =
∑

F′
1,F′

2⊂G
1{∃H∈HF1F2 : F′

1∪F′
2≡H}

=
∑

H∈HF1F2

∑
F′

1,F′
2⊂G

1{F′
1∪F′

2≡H}.

We now note that by definition of cH , for each copy of H in G, there will
be cH pairs (F′

1, F′
2) of copies of F1 and F2 in G such that F′

1 ∪ F′
2 = H.

Therefore we can simplify the sum above to obtain:

XF1(G)XF2(G) =
∑

H∈HF1F2

cH
∑

H′⊂G
1{H′≡H} =

∑
H∈HF1F2

cHXH(G),

yielding the desired result.

With these tools in hand, we compute the first two moments of
XF(G) when G ∼ G(n, f ).

Proposition 1. Fix two graphs F and F′ and a random graph G ∼
G(|G|, f ) such that |F| + |F′| ≤ |G|. Then, we have that

EXF(G) = XF(KG)μF(f )

cov(XF(G), XF′(G)) =
∑

H∈H∗
FF′

cHXH(KG)
(
μH(f ) − μF(f )μF′ (f )

)
.
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Proof. The proof is relegated to the supplementary materials.

We now turn to the proofs of Theorems 1 and 2. As the second
generalizes the first, it is sufficient to prove the second.

Proof. We obtain the result by a joint application of the Lindeberg–
Feller central limit theorem and the Cramer–Wold device. To do so,
we fix a ∈ R

|F | and compute the variance of our estimator projected
along a.
Computing the variance: First recall that μ̂F (G) = N−1 ∑

i∈[N](
XF(Gi)

XF(KGi )

)
F∈F . Therefore, denoting by “·” the inner product and

taking the expectation over G, let

s2
N = var

(
a · μ̂F (G)

)
.

Then, using the independence of the Gi’s and the bi-linearity of the
covariance, we have

s2
N = N−2 ∑

i∈[N]
var

(
a ·

(
XF(Gi)

XF(KGi)

)
F∈F

)

= N−2 ∑
i∈[N]

∑
F,F′∈F

aFaF′cov
(
XF(Gi), XF′(Gi)

)
XF(KGi)XF′(KGi)

.

To proceed, recall that for each i ≤ N, Gi ∼ G(ni, fi). Then, we may
use Proposition 1 to obtain

n2s2
N =

∑
i∈[N]

∑
F,F′∈F

aFaF′
XF(KGi)XF′(KGi∑

H∈H∗
FF′

cHXH(KGi)
(
μH(fi) − μF(fi)μF′ (fi)

)
Because all sums are finite, we can reorder the summations, leading to

s2
N = N−1 ∑

F,F′∈F
aFaF′

∑
H∈H∗

FF′

(
N−1 ∑

i∈[N]

cHXH(KGi)

XF(KGi)XF′(KGi)

(
μH(fi) − μF(fi)μF′ (fi)

))
= N−1 ∑

F,F′∈F
aFaF′

∑
H∈H∗

FF′

ωH(n, f ; N), (A.2)

where ωH(n, f ; N) = N−1 ∑
i∈[N]

cHXH(KGi )
XF(KGi )XF′ (KGi )

(
μH(fi) −

μF(fi)μF′ (fi)
)
.

Convergence of ωH(n, f ; N): To proceed we must show that
ωH(n, f ; N) converges to a limit as N diverges. We will achieve
this by showing that ωH(n, f ; N) is Cauchy. To do so, observe that

|ωH(n, f ; N + 1) − ωH(n, f ; N)|
=

∣∣∣∣(N + 1)−1
(

NωH(n, f ; N) − (N + 1)ωH(n, f ; N)

+ cHXH(KGN+1)

XF(KGN+1)XF′(KGN+1)

(
μH(fN+1)−μF(fN+1)μF′(fN+1)

))∣∣∣∣
=

∣∣∣∣ (N + 1)−1cHXH(KGN+1)

XF(KGN+1)XF′(KGN+1)

(
μH(fN+1)

− μF(fN+1)μF′ (fN+1)
) − wH(n, f ; N)

N + 1

∣∣∣∣.
Then, we recall that XF(KG) = (|G|

|F|
)
aut(F) (see, e.g., Bollobás and

Riordan 2009), where aut(F) is the number of automorphisms of F

(the number of bijections from the vertex set of F to itself that preserve
adjacency). Then, as |H| < |F| + |F′|, we have

XH(KGN+1)

XF(KGN+1)XF′(KGN+1)
= aut(H)

aut(F)aut(F′)

(nN+1|H|
)(nN+1|F|

)(nN+1
|F′|

)
≤ aut(H)

aut(F)aut(F′) .

As furthermore fN+1 is bounded by 1, we have |(μH(fN+1) −
μF(fN+1)μF′ (fN+1)

)| ≤ 1, leading to |ωH(n, f ; N + 1) −
ωH(n, f , N)| ≤ 2C

N+1 for C = 1+ cHaut(H)/aut(F)aut(F′). Thus, the
sequence ωH(n, f ; N) is Cauchy, and we may call ωH(n, f ) its limit; that
is,

lim
N→∞ ωH(n, f ; N) = ωH(n, f ).

Then, resuming from (A.2), and writing �F the matrix indexed by
F such that

(�F (n, f ))FF′ =
∑

H∈H∗
FF′

ωH(n, f ),

we have limN→∞ Ns2
N = a�F (n, f )a.

Satisfying the Lindeberg–Feller condition: To invoke the Lindeberg–
Feller central limit theorem, we must show that our sequence verifies
the so called Lindeberg–Feller condition. Recall that the sequence
under study is

Yi := a · (XF(Gi)/XF(KGi))F∈F − a · μF (fi),

and that the variance of the partial sum is N2s2
N . Therefore, the

Lindeberg-Feller condition we need to satisfy is the following:

∀ε > 0 lim
N→∞

1
N2s2

N

∑
i∈[N]

E
[
Yi1{|Yi|>εNsN }

] = 0. (A.3)

To verify the condition we first fix ε > 0. Then, observe that since for
each i and F we have XF(Gi)/XF(KGi) ≤ 1 and μF(fi) ≤ 1, we have that
|Yi| ≤ 2‖a‖1 by the triangle inequality. Therefore, as NsN → ∞ as N
grows, we may fix an N such that for all N′ > N we have ‖a‖1 ≤ εNsN .
In this setting, the sum in (A.3) is equal to zero for all N′ > N, and the
condition is verified. Therefore, we have that

1
NsN

∑
i∈[N]

Yi → Normal(0, 1).

Reverting to the notation of the statement of the theorem, we have
that for any a

√
N

(
a · μ̂F (G) − a · μF (f )

) → Normal(0, a�F (n, f )a),

which is sufficient to obtain the claimed result for the limit in distribu-
tion.

We now turn to the proof of Corollary 1.

Proof. The result follows almost immediately from Theorem 1 and
Slutsky’s theorem.

First, since |G| and |G′| tend to infinity and both n and n′ are large
enough, we have{√|G|(μ̂F (G) − μF (f )

) → Normal
(
0, �F (n, f )

)
,√|G′|(μ̂F (G′) − μF (f )

) → Normal
(
0, �F (n′, f )

)
.

As both samples are independent, linear combinations are also
multivariate Gaussian. Therefore, multiplying the first line by√|G′|/√|G| + |G′|, the second by

√|G|/√|G| + |G′| (both
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ratios being in (0, 1), the limit in distribution is unaffected),
and taking the difference, we obtain, with �F (n, n′, f ) =
lim|G|,|G′|→∞

{ |G′|
|G|+|G′|�F (n, f )+ |G|

|G|+|G′|�F (n′, f )
}

√|G||G′|√|G| + |G′|
(
μ̂F (G) − μ̂F (G)

) → Normal
(
0, �F (n, n′, f )

)
,

which is the desired limit in distribution.
To obtain the consistent estimator of �F (n, n′, f ) we first recall that

for F, F′ ∈ F(
�F (n, f )

)
FF′ =

∑
H∈H∗

FF′

ωH(n)
(
μH(f ) − μF(f )μF′(f )

)
.

Then, with ωH(n, n′) = lim|G|,|G′|→∞
(

|G′|
|G|+|G′|ωH(n) + |G|

|G|+|G′|

ωH(n′)
)

, we have

(
�F (n, n′, f )

)
FF′ =

∑
H∈H∗

FF′

ωH(n, n′)
(
μH(f ) − μF(f )μF′ (f )

)
.

There observe that:

– As |G| and |G′| grow we have that

ωH(n, n′; |G|, |G′|) = |G′|
|G| + |G′|ωH(n; |G|)

+ |G|
|G| + |G′|ωH(n′, |G′|) → ωH(n, n′).

– All the μH(f ) in H ∈ HFF′ may be estimated by μ̂H(G ∪ G′) =
1

|G∪G′|
∑

G∈G∪G′ XH(G)
XH(KG)

. Furthermore, both μF(f ) and μF′ (f )
may be estimated in the same way.

Then, by a direct application of the Slutsky’s theorem, we have that(
�̂F (n, n′, f )

)
FF′ =

∑
H∈H∗

FF′

ωH(n, n′; |G|, |G′|)(μ̂H(G ∪ G′)

− μ̂F(G ∪ G′)μ̂F′ (G ∪ G′)
)

is an asymptotically normal estimator of
(
�F (n, n′, f )

)
FF′ converging

at rate
√|G| + |G′|, which yields the claimed result.

Supplementary Materials

The supplementary files contain figures summarizing computer experi-
ments in line with our mathematical derivations; two experiments explor-
ing the power of two of our proposed tests; detail of the procedures
used to generate the figures in the main body of the article; the proof of
Proposition 1.
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