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ABSTRACT
Proper mapping and classification of Forest cover types are inte-
gral in understanding the processes governing the interaction
mechanism of the surface with the atmosphere. In the presence
of massive satellite and aerial measurements, a proper manual
categorization has become a tedious job. In this study, we imple-
ment three different modest machine learning classifiers along
with three statistical feature selectors to classify different cover
types from cartographic variables. Our results showed that,
among the chosen classifiers, the standard Random Forest
Classifier together with Principal Components performs excep-
tionally well, not only in overall assessment but across all seven
categories. Our results are found to be significantly better than
existing studies involving more complex Deep Learning models.
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Introduction

Classifying non-urban or nature’s environment has always been in the inter-
est of many, whether they are landowners, foresters, environmental scientists,
governments, or land management agencies. The scientific importance of
classifying forest cover types involves maintaining or reconstructing pre-
settlement vegetation, documenting the change in vegetation, observe the
impact of climate on nature, mapping of usable fuel and note the water
viability in the soil, among others.

Methods involving land-cover classification requires field studies or land-
based remote sensing and are therefore costly, time-consuming, and prone to
errors. The advancement of satellite and aerial imagery together with recent
developments in the field of machine learning has broadened the scope of
research. It has also allowed for fast and reliable ways of classifying large
territories (Mahesh 2008; Okori and Obua 2011).

The purpose of this study is to calibrate, analyze, and compare the
accuracy of selected machine learning methods for classification of forest
cover types, but at the same time comparing the results of this study to other
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articles targeting the same data. The methods chosen for this purpose are
Support Vector Machine (SVM), Naive Bayes’ Classifier (NBC), and the
Classification Trees’ (CT) extension Random Forest (RF). We further aim to
compare and evaluate these methods while also giving an insight to the
differences between them.

Related Work

The problem of classifying forest cover type is not new in agricultural data
analysis. It has been previously discussed in various studies and through
various domains. However, within the scope of machine learning-based meth-
ods, the first study of this sort was done by Blackard and Dean (Blackard and
Dean 1999) where the authors compared two techniques (Artificial Neural
Network (ANN) and Gaussian Driven Discriminant Analysis (DA)) for pre-
dicting forest cover types from cartographic variables. In this study, the
predictions produced by the ANN model were evaluated based on how well
they corresponded with true cover types (absolute accuracy), and on their
relative accuracy compared to predictions made by DA, which is a more
conventional statistical model. It has been observed that the overall prediction
accuracy for the ANN was obtained at 70.51%, with a 95% confidence interval
of 70.26–70.80% while the Linear DA (LDA) model was capable of correctly
predicting the cover types with almost 58.38% predictive accuracy.

In several articles, this data has been used as a case study where the idea
remained to test the proposed algorithm against the existing ones. In one such
study, the authors implement their proposed mixture of Linear SVM (LSVM)
algorithm to classify forest cover types (Sug 2010). Here, the whole classification
problem was converted into a binary classification problem with emphasis on
cover type 2 (spruce/fir), which is the largest cover type, containing 283,301
instances, and covers approximately half the dataset. The algorithm was able to
correctly predict 80.0% whether each instance belongs to cover type 2. In
another study, the author implemented the bagged CART algorithm for classi-
fication and obtained 74.0% predictive accuracy of correct classification
(Ridgeway 2002).

More recent attempts for land-cover classification of remote sensing data
are methods within the field of deep learning (Chen et al., 2014; Karalas et al.
2015; Längkvist et al. 2016). These methods often involve a complex hier-
archical structure that requires a large amount of labeled data to be properly
trained and also have many hyperparameters that need to be tuned in order
to achieve good results.

Our work deviates from the existing literature in a number of ways. First,
we aim to apply well-known classification algorithms that are easy to imple-
ment and does not require extensive hyperparameter-tuning. We demon-
strate the possibility to achieve an effective prediction accuracy with the use
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of various variable selection methods. Second, we not only focus on getting
the overall classification accuracy of the cover types but also analyze the
predictive capabilities for each of the individual cover type to show and
discuss how our approaches are capable (or not capable) of dealing with an
unbalanced data set.

Material and Methods

This section presents a brief summary of the data and the methods that are
used in this work.

Data

The Cover type dataset is used in this work and was obtained from the
University of California, Irvine, School of Information and Computer
Sciences database.1 It contains 581,012 observations of cover types from
four wilderness areas (Rawah: 29,628 hectares; Comanche Peak: 27,389 hec-
tares; Neota: 3,904 hectares; and Cache la Poudre: 3,817 hectares) located in
the Roosevelt National Forest of northern Colorado, with no missing values.
The data includes 7 categories of different cover types, which is followed by
12 attributes defined below (Blackard and Dean 1999):

(1) The elevation (in meters),
(2) The aspect (in degrees azimuth),
(3) The slope (in degrees),
(4) The horizontal distance to the nearest surface of a water feature in

meters (HDTH),
(5) The vertical distance to nearest surface water feature in meters

(VDTR),
(6) The horizontal distance to nearest roadway in meters (HDTR),
(7) A relative measure of incident sunlight at 09:00 h on the summer

solstice (from a 0-255 index),
(8) A relative measure of incident sunlight at noon on the summer

solstice (from a 0-255 index),
(9) A relative measure of incident sunlight at 15:00 h on the summer

solstice (from a 0-255 index),
(10) The horizontal distance to nearest historic wildfire ignition point in

meters (HDTFP),
(11) The soil type designation (40 binary values, one for each soil type)

and
(12) The wilderness area designation (four binary values, one for each

wilderness area).
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Using Digital Elevation Model (DEM) data from USGS, elevation could be
obtained by 30 × 30 m raster cells (in a 1:24,000 scale) Elevation (1) was
recorded. By standardizing the DEM data within their 30 × 30 cells, one also
obtained Aspect (2), Slope (3) and the three relative measures of sunlight
(7–9). Applying the Euclidean distance analyses to the USGS hydrologic and
transportation data, one was able to measure the horizontal distance to the
nearest water source (4) and roadway (6). The Euclidean analysis was also
used on the USFS data, to find the nearest historical wildfire ignition point
distance (10), since the last 20 years. To find the nearest vertical distance to
a water feature (5), a mix between the DEM, hydrologic data, and a spatial
analysis program was used. The USFS database obtained the soil type (11),
and the wilderness area designation (12).

As summarized in Table 1, the different forest cover types presented in the
data are; 1 lodgepole pine (Pinus contorta), 2 spruce/fir (Picea engelmannii
and Abies lasiocarpa), 3 ponderosa pine (Pinus ponderosa), 4 Douglas-fir
(Pseudotsuga menziesii), 5 aspen (Populus tremuloides), 6 cottonwood/willow
(Populus angustifolia, Populus deltoides, Salix bebbiana and Salix amygda-
loides), and 7 krummholz. The krummholz forest cover type class is com-
posed primarily of Engelmann spruce (Picea engelmannii), subalpine fir
(Abies lasiocarpa), and Rocky Mountain bristlecone pine (Pinus aristata).
Other, minor cover types existed in the areas but were ignored due to their
insignificance in regards to their size (Blackard and Dean 1999).

Having 10 continuous variables, 4 wilderness areas and 40 binary soil
types, it produced in total 54 different variables available for the used models.

It can be seen from Table 1 that there exists quite a bit of imbalance
between the categorical outcomes. This will be kept in consideration when
analyzing the results since different methods perform differently depending
on how balanced the dataset is. The correlation matrix between the contin-
uous variables is reported in Table 2. Some of the variables are found to be
correlated, most notably the variables associated with the relative measure of
incident sunlight recorded at different time points shows levels of associa-
tions among one another.

Methods

The evaluation of the different classification models is going to be based not
only on the overall prediction accuracy but also on the accuracy of correctly
predicting each of the cover types’ classes. To avoid overfitting to the training

Table 1. Number of observations in each cover type category.
Cover type Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Overall

Observations 211,840 283,301 35,754 2,747 9,493 17,367 20,510 581,012
Percentage 36.5 48.9 6.15 0.47 1.63 2.99 3.53 100.0
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data we use k-fold cross-validation technique, which is generally used when
estimating how accurate results a method can be assumed to achieve when
evaluated on data that is independent of the training data. The overall
accuracy was calculated by taking the average of each correctly predicted
type divided by the total number of observations of all fivefold cross-
validation sets. There are approximately 464,800 observations in the training
sets and 116,200 in the test sets.

Learning Algorithms
The most common and relatively simpler machine learning algorithms are
used in this article. The goal remains at observing predictive accuracy of
these algorithms compared to the more complicated ones, such as deep
learning which is computationally expensive and involve huge number of
parameters to be estimated and tuned. For our purpose, we rely on known
sets of algorithms, which include, the Support Vector Machine (SVM), Naive
Bayes’ Classifier (NBC), and Decision Trees (DT). A brief account on the
working mechanism of these methods is given in Appendix.

Feature Selection
Besides the choice of algorithms, an equally important aspect is the dimen-
sion of the model. The term parsimony refers to when maximum informa-
tion can be obtained with minimum use of resources. In statistical modeling,
it can be translated as finding a simple model with fewer variables that have
a high explanatory power. A general aim is to not use more variables in the
model than necessary without losing too much information. Most data sets
contain a notable amount of variables or attributes and it is therefore
essential to find a right combination of variables contributing to better
describe the overall structure of the data. Feature selection methods have
been developed to extract such useful variables which are necessary to be
included in the model. In this work we implemented a number of known
feature selection methods, namely, the Random Forest selection, Lasso, and

Table 2. Table of correlation for the continuous variables. Notable correlations are marked bold.
Variables 1 2 3 4 5 6 7 8 9 10

(1) elevation 1.00
(2) aspect 0.02 1.00
(3) slope −0.24 0.08 1.00
(4) HDTH 0.31 0.02 −0.01 1.00
(5) VDTR 0.09 0.07 0.28 0.61 1.00
(6) HDTR 0.37 0.03 −0.22 0.07 −0.05 1.00
(7) hillshade9am 0.11 −0.58 −0.33 −0.03 −0.17 0.03 1.00
(8) hillshadenoon 0.21 0.33 −0.53 0.05 −0.11 0.19 0.01 1.00
(9) hillshade3pm 0.06 0.65 −0.18 0.05 0.04 0.11 −0.78 0.59 1.00
(10) HDTFP 0.15 −0.11 −0.19 0.05 −0.07 0.33 0.13 0.06 −0.05 1.00

APPLIED ARTIFICIAL INTELLIGENCE 695



Principal Component Analysis, to find the right combination of the total 54
attributes to be then used in the model, and compared their performances
with the respect to prediction accuracy.

Results

Evaluation of Variable Selection

This section summarizes the findings when the variable selection methods
are implemented to the data. To assess the performance of Random Forest
for variable selection, we obtain the Variable Importance (VI) factor pre-
sented in Figure 1. A general criterion is to exclude variables which are
deemed to have the lowest VI. The rule of thumb, however, is to remove
variables having an importance proportion under 5%, but since we only have
12 variables (or 54 attributes, due to categorical variables), excluding 5 (VI
below 5%) out of 12 variables might not be a good choice. Therefore, we set
our own criterion to exclude the variables that has the smallest VI value out
of all the variables, which in our case is the slope variable. Therefore, we build
a model without incorporating the slope variable as per suggested by the RF.

Figure 1. A bar plot over the proportional variable importances for Random Forest Variable
selection in the same order as Section 2.1.
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The Lasso proposed a different set of variables against each of the seven
categorical outcomes. The result yielded the exclusion of the variables HDTR
and HDTFP while keeping the rest.

While using a Principal Component Analysis as a method for feature
selection, there is no clear answer to where the cutoff of the variance
proportion should be made. However, taking into consideration the number
of principal components (PC) being 54, where quite a bit of them contribute
insignificantly to the proportional variance (see Figure 2). We decide to put
the threshold at 80% of the proportional variance, which led us to select the
first 33 principal components.

A sensitivity analysis for the PCA accuracy can be seen in Figure 3, it shows
evidence of supporting the theory of the NB classifier depends too much on
independence to perform well with the PCA for this data. The SVM seems to get
approximately a 5% accuracy increase going from 80% of the variance to 100%,
but it still does not come close to its full model’s accuracy. However, for the RF
based model, the classifier managed to get almost 85% accuracy with only 5
PCAs, which further increased almost upto 95% with 25 PCAs and remained
more or less constant when additional components are added to the model.

Here it should be mentioned that a basic Stepwise forward-backward
variable selection for multinomial logistic regression is also performed with
the Akaike information criterion (AIC) as a decisive criterion (Menard 2002).

Figure 2. A cumulative plot of the proportion of the variance for the variables each PCA
component explain.
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However, the most optimal AIC value is obtained for the full model. Since we
already include the full model with all the variables in our analysis, the
Stepwise variable selection model will not be in focus, but rather indirectly
referred to when referring to the full model.

Prediction Accuracy

The accuracy for type i is calculated as acci ¼ Ci=Ti where Ci is the correct
number of predictions for type i and Ti is the total number of predictions for
type i. The average overall classification accuracy and the per-class accuracy
from a 5-fold cross-validation for the three models and different methods for
variable selection can be seen in Table 3.

Support Vector Machine
Classification accuracies produced by each model as calculated from the test
data set are reported in this section. As shown in the first panel of Table 3,
when the full model is involved in the learning mechanism, the SVM

Figure 3. A plot of the overall accuracy based on the number of principal components included
for the Naive Bayes, Random Forest and SVM classifiers (best seen in color).
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produced an overall classification accuracy of 89%. When assessing the
model strength at predicting individual cover type, the accuracies remained
more than or at around 80% for all the cover types except for cover type 5.

When the variables are selected via various methods and then implemented
under the SVM, the results show a slightly different picture. For example, with the
Lasso variable selection method and SVM model, the overall prediction accuracy
decreased a bit from 89% to about 82% for the full model. Here, the prediction
accuracy of individual cover type deteriorated to a reasonable amount, most
notable for cover type 5, where the model only managed to provide 10% accuracy.

However, when the slope variable is excluded as suggested by the Random
Forest variable importance measure, the overall accuracy remained much
closer to the case when the full model is used in the learning mechanism
(89.1%). similar is the case for the individual cover type prediction, for cover
type 7, the model performed much better than the full model with 92.7%.

In the end of the first panel, the results are reported when the PCs are
implemented with the SVM. It can be seen that this model managed to get the
overall prediction accuracy quite close to the other model (82.1%). However, the
accuracies while predicting individual cover types are not very satisfactory.

Naive Bayes
In the second panel of Table 3, we present the predictive accuracies of the Naive
Bayes classifier. From a computational perspective, NB is the fastest of these
three methods, however, the prediction accuracies are far from being satisfac-
tory. Involving all the variables in the model, the classifier managed to correctly
classify the overall cover type for only 66% of the instances (on average). For
individual cover types, the performance is not much different which has even
deteriorated further for some of the cover types (e.g., 21.3% for type 5). With the
model involving variables via the Lasso and the RF, the results are not much
different than the Full model case. However, when themodel involving principal
components, the NB classifier performed the worst inmost of the instances, only
exceptions are Types 1,4 and 7. The classifier showed evidence of performing
worse when classifying the Types 4, 5, 6, and 7 compared to the other 3 cover
types. Indicating its limitation on imbalanced data.

Random Forest Classifier
In the last panel of Table 3, we present the results for the Random Forest
classifier (RFC). For the full model case, when all the original variables are
incorporated, the classifier managed to correctly predict the overall cover
type with an accuracy of 84.6%. For the individual case, the results are mixed,
where the predictive ability for Types 5, 6, and 7 are not very satisfactory.
With Lasso and RF selector suggested variables, the pattern of results is
mostly the same. However, using the first 33 PCs in the model, the classifier
managed to correctly predict the overall prediction with 94.7%2 accuracy, the
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highest overall accuracy among all combinations. It is noteworthy that, not
only for the overall classification, the same model is found to predict
individual cover types with highest accuracies. If we recall from Table 2,
the association between some of the variables are taken care of when princi-
pal components are called upon – this could be one of the reasons as to why
the model with PCs is found to be the best.

To further assess the performance of this model, we construct the classification
distribution in terms of a confusion matrix and summarized these findings in
Table 4. In general, the predictive accuracy is satisfying, even though at some
occasions couldn’t correctly classify some instances. The most notable misclassi-
fications are observed when the instances belonging to Type 5 andmisclassified as
Type 2 (almost 20%of the instances) andType 4 gotmisclassified asType 3 (almost
16.5% of the instances). The next such occurrence appears when the model
misclassified almost 6% of the instances with Type 1 where it truly belonged to
Type 1. Even though the model misjudged some of the instances wrongly, the
overall performance is worth considering and is found to be significantly better
than both the models used in this article and existing literature.

Discussion

The PCA variable selection method together with the Random Forest classifier
gave the highest overall accuracy on this data set. The Naive Bayes Classifier
performed worse than the Support Vector Machine and Random Forest
Classifier. With this data it might be hesitant to use it, due to the NB’s naive
assumption of the predictors being independent, which is doubtful when e.g. three
of the variables are the shade index of different times of the day on the same spot.

Table 4. Confusion matrix for the true (T) and predicted (P) observations from the RFC model
with PCA (33), row percentage in the parenthesis and the correct predictions are diagonally in
the table.
T\P 1 2 3 4 5 6 7 Sum

1 198,501 12,554 14 0 89 43 639 211,840
(93.7) (5.9) (0.0) (0.0) (0.0) (0.0) (0.3) (100.0)

2 7,735 273,905 678 1 437 456 89 283,301
(2.7) (96.7) (0.2) (0.0) (0.2) (0.2) (0.0) (100.0)

3 6 596 33,969 166 34 983 0 35,754
(0.0) (1.7) (95.0) (0.5) (0.1) (2.7) (0.0) (100.0)

4 0 1 454 2,140 0 152 0 2,747
(0.0) (0.0) (16.5) (77.9) (0.0) (5.5) (0.0) (100.0)

5 159 1,858 117 0 7,309 50 0 9,493
(1.7) (19.6) (1.2) (0.0) (77.0) (0.5) (0.0) (100.0)

6 18 676 1,621 87 21 14,944 0 17,367
(0.1) (3.9) (9.3) (0.5) (0.1) (86.0) (0.0) (100.0)

7 970 147 0 0 2 0 19,391 20,510
(4.7) (0.7) (0.0) (0.0) (0.0) (0.0) (94.5) (100.0)

Sum 207,389 289,737 36,853 2,394 7,892 16,628 20,119 581,012
(35.7) (49.9) (6.3) (0.4) (1.4) (2.9) (3.5) (100.0)
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Even though the NBmodel was trained significantly faster than both the RFC and
SVM, it did not make up for its low prediction accuracy.

For this data, the recommended model is the Random Forest Classifier
with Principal Component Analysis, since it had a higher accuracy in every
way compared to all other tested methods and feature selections and also
trained its models notably faster than the SVM’s. On the second place is the
SVM Classifier – with a significant increase in time compared to the RFC.

Since one focus was to achieve as high accuracy as possible, a Random Forest
classifier with the full PCA selection from a fivefold cross-validation was applied
and yielded an accuracy of 94:7%. Of the previously mentioned studies using this
dataset, this is now the highest achieved accuracy. Evenusing as few components as
10 for the RFC gave still an overall accuracy of 93:6%, which is still notably higher
than the previously mentioned studies where some used the more complex Deep
Learning algorithms. Reducing the variance of the PCA from 100% to less than
40% made the RFC loses only 1:8% in overall accuracy.

The Lasso variable selection method did perform worse in both the
Random Forest classifier and Support Vector Machine models, the Naive
Bayes model performed slightly better with the Lasso selection model. An
explanation might be the correlation or dependence between the variables,
see Table 2. The Lasso selection forces itself to select between a group of
independent variables that has a high correlation between each other, even if
both of those variables might be needed to explain different variations in the
data. This might also explain why the NB method did not get as heavily
affected by the Lasso method as the RFC and SVM, due to that the NB has
the assumption of independence between the predictors.

The Random Forest variable selection performed well with the purpose of
a variable (feature) selection. For all three of the methods, it had a rather
unchanged accuracy while managing to exclude a predictor, making the time it
took to train the model slightly decline. The attractive attribute of Random
Forest selection that makes it less sensitive to extreme values was not particu-
larly important here since this data lacked of such values – although, the other
attribute of the Random Forest being hard to overfit likely played a big part.

The PCA differed a bit from the Lasso and RF selection. The Lasso and RF
selection gave a recommendation of which variables to exclude based on their
criteria, but the PCA reworks the variables to principal components by weights
(loadings) on each of them, depending on their importance. It then allows one
to exclude the components based of their proportion of the explained variance
(as could be seen in Figure 2). While one might think that the NB classifier
would perform better due to the PCA making the used attributes uncorrelated,
it does not necessarily mean that they are independent, rather the PCA method
in this case distorted the accuracy for the NB method.

The SVM classifier did not seem to go well with the PCA, either. One reason
might be that the SVM kernel computation is not feature wise. PCA reduces the
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dimensional space, but the SVM does not necessarily need its dimensional space
reduced, it is also a risk of the PCAmissing out important attributes by transferring
the variables into components.

Conclusion

This study assesses the useful of three common machine learning algorithms
together with different variable selection methods in accurately classifying the
forest cover types. The SVM, NB, and Random forest algorithms are used for
classification accompanied by various feature selection methods. It has been
observed that the RandomForest classifier provides better accuracy compared to
the other set of choices both for the overall assessment and for individual cover
types. It highlights the strength of RF algorithm even in accounting for un-
balanced data. We noticed that how the prediction accuracy for the random
forest classifier together with the PCA managed to achieve a higher accuracy
compared to earlier studies where more complex deep learning algorithms like
the ANN, only managed to achieve an overall classification accuracy of 70.58%.
This shows more support for the theory that feature selection methods should
not only be used to reduce the dimensionality of the data but can also to
drastically improve the prediction accuracy.

Interesting insight has been noticed when these algorithms are implemented
with various feature selection methods. Most particularly, the increase in overall
accuracy was not considerable for the SVM (89.0%) or the NB (66:1%)
classifiers when a feature selection method was used compared to the case
when all the attributes are used in model fitting. However, when a dimension
reduction method, PCA (with 33 components), is coupled with the Random
Forest classifier, the overall accuracy jumped from 85% to 95%, which, to our
knowledge, is the highest achieved accuracy for the chosen data set.

The classification accuracy achieved with the Random Forest classifier
together with the full principal components obtained in this study supersedes
other results obtained from previous studies. These findings suggest that the
algorithm can be a viable alternative to traditional approaches for classifying
forests. With constant changing environment, vegetation, forest fire hazards,
and other relevant areas importance, such an algorithm can be a valuable tool
in understanding our forests and therefore, assist us in better decision-
making and documentation of our nature.

Notes

1. https://archive.ics.uci.edu/ml/index.php.
2. 95.4% when using all PCs – although no significant increase, results can be provided

upon request.
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7. Appendix; Theory & models

In this section, we summarize the theoretical details of the chosen methods, namely the
Support Vector Machine, Naive Bayes’ Classifier, and Decision Trees – Random Forest.

7.1. Support Vector Machine

The Support Vector Machine (SVM) is a supervised machine learning algorithm which is
used on a training set and then evaluated with a held-out prediction (or test) set. The input
data consist of a set of input vectors (xðkÞi ) with different features (or attributes) i for every
observation (or input vector) k. Each observation is marked with a label/category that is

denoted as yðkÞ. For simplicity, the remaining text denotes the input vector as xi and the label
as yi for observation i. The SVM is primarily a binary learning algorithm with two classes but
can be extended for multi-class problems.

7.1.1. Binary Support Vector Model

The SVM learning mechanism aims at finding a directed hyperplane, oriented in such a way
that the yi ¼ þ1 and yi ¼ �1 are graphically divided by a line into two categories on the
hyperplane. The hyperplane (H) that is maximally the most distant from the two input classes
is the directed hyperplane and the points closest to the separating hyperplane set up the so-
called support vectors. The W � xþ b ¼ 0 denotes the separating hyperplane, where � is the
inner or scalar product, b is the offset or bias from the origin in the input space to the
hyperplane, and x are the points located within the hyperplane. The weights (W) which are
normal to the hyperplane determines its orientation.

Binary SVM classification is popular due to its ability in handling the upper bound of the
generalization error instead of local training error, that is standard method in another
machine of habitual learning methodologies (Vapnik and Vapnik, 1998). The two important
features of such an error are the following:

Feature 1 The bound is minimized by maximizing the margin, where by margin we mean
the minimal distance between the hyperplane which separates the two classes and the data-
points closest to the hyperplane.

Feature 2 An extra flexibility is added by the fact that, the bound does not depend on the
dimensionality of the space.

For binary classifier with data points xi with corresponding labels yi ¼ �1, the decision
function is:

f ðxÞ ¼ signðW � xþ bÞ (1)

More explicitly, the hyperplanes passing through W � xþ b ¼ 1 and W � xþ b ¼ �1 are
called canonical hyperplanes (CH) - we define margin band as the region between these
canonical hyperplanes.

Maximizing the margin is equivalent to minimizing:

1
2
jjWjj22; with constraints : yiðW � xi þ bÞ � 1; "i (2)

which can be reduced to minimizing the Lagrange function consisting of the sum of the
objective function and the m constraints multiplied by their respective Lagrange multiplier as,
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LðW; bÞ ¼ 1
2
ðW �WÞ �

Xm

i¼1

αiðyiðW � xi þ bÞ � 1Þ (3)

with αi � 0 are the Lagrange multipliers. Taking the derivatives with respect to b and W and
setting them to zero, lead us to obtain the dual formulation (a.k.a. the Wolfe dual wolfe,
1961). After some simple algebra, we get:

WdðαÞ ¼
Xm

i¼1

αi � 1
2

Xm

i;j¼1

αiαjyiyjðxi � xjÞ; (4)

withαi � 0;
Xm

i¼1

αiyi ¼ 0

In equation (4), we notice that data points xi only appear inside an inner product. Since we
know that the generalized error bound does not depend of dimensionality (see Feature 2), we
define an alternative representation of data by mapping into a space with a different dimen-
sionality, the feature space, by replacing

xi � xj ! ΦðxiÞ � ΦðxjÞ (5)

Here Φð�Þ is defined as the mapping function. With the mapping function one is now able to
control for both linearly separable and non-linearly separable data. The functional form of
Φð�Þ is implicitly defined by the choice of kernel: Kðxi; xjÞ ¼ ΦðxiÞ � ΦðxjÞ.

In this study, we use the RBF kernel function, which is expressed as

Kðxi; xjÞ ¼ e�ðxi�xjÞ2=2σ2 (6)

where σ2 is the Gaussian kernel parameter. Knowing the choice of kernel, the learning task
for binary classification now involves the maximization of:

WdðαÞ ¼
Xm

i¼1

αi � 1
2

Xm

i;j¼1

αiαjyiyjKðxi; xjÞ (7)

with αi � 0;
Xm

i¼1

αiyi ¼ 0

The bias b would now look like, considering the cases with yi ¼ þ1 and yi ¼ �1,

b ¼ � 1
2
½ max
½ijyi¼�1�

ð
Xm

j¼1

αjyjKðxi; xjÞÞ þ min
½ijyi¼þ1�

ð
Xm

j¼1

αjyjKðxi; xjÞÞ� (8)

Finally to construct an SVM binary classifier, we place the data points ðxi; yiÞ into equation
(7) and maximize, subject to the given constraints. The bias term presented in equation (8)
can then be calculated from the optimal values of αi.
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7.1.2. Multi-class Support Vector Model

There are a few ways to extend the binary classification theory to a multi-class SVM. The
idea is to decomposes the multi-class problem into a predefined set of binary problems. One
such method is the One-Versus-Rest (1VR, a.k.a. One-Versus-All) approach, in which one
constructs k separate binary classifiers for a response variable of k categories. Following the
notation presented in the previous subsection, define the m-th classifier as a positive and the
rest k-1 as negative outcomes. During test, the class label is determined by the binary
classifier that gives maximum output value (Ma and Guo 2014). A major problem, however,
with the 1VR approach is the imbalanced training set. For equally sized training examples,
one classifies one category at a time to be positive, means that the ratio of positive to
negative examples is 1

k�1 , with an additional cost of loosing symmetry in the original
structure.

Another approach referred to as the One-Versus-One approach (1V1) or the pairwise
decomposition (Kreßel 1999). It evaluates all possible pair classifiers against each observation
and thus, yields kðk� 1Þ=2 individual binary classifiers. Note that, the size of classifiers in
1V1 approach is much larger than that of the 1VR approach. However, the size of lagrange
function in each classifier is smaller, which makes it possible to train fast. It can be deduced
that the 1V1 approach is considerably more symmetric than the 1VR approach, taking the
1VR’s imbalance weakness into consideration. However, a negative aspect of the 1V1
approach is that it is computationally expensive compared to the 1VR. In this study, since
the accuracy has given a higher priority than computational speed, therefore, the the One-
Versus-One approach is for Multi-class SVM prediction.

7.2. Naive Bayes’ Classifier

The peculiar name of Naive Bayes’ Classifier origins from the fact that the method assumes
the attributes, given their category value, to be independent from each other. This might
seems a rather restrictive assumption but saves considerable computational time.

Consider the class CLk with k ¼ 1; 2; :::;K number of categories - the vector x is the same
as considered in the earlier subsection. The joint probability distribution pðx;CLkÞ with the
prior probability pðCLkÞ and the class probability pðCLkjxÞ, can now be obtained through
that.

Recalling Bayes’ theorem, we get;

pðCLkjxÞ ¼ pðxjCLkÞpðCLkÞ
pðxÞ (9)

Considering the fact of independence among attributes, equation (9) can be written as,

pðCLkjxÞ / pðCLkÞ
Yn

i¼1

pðxijCLkÞ (10)

The likelihood pðxijCLkÞ is usually modeled by using the same class of probability distribu-
tion, i.e., binomial or Gaussian. The chosen likelihood distribution in this study is the
Gaussian distribution with the class proportions of the training sets as the prior probabil-
ities/distributions.

The choice of output category itself is fairly simple. Assume two different categories CLa
and CLb, with CLa be the chosen category if:
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pðCLaÞ
Yn

i¼1

pðxijCLaÞ> pðCLbÞ
Yn

i¼1

pðxijCLbÞ ! pðCLajxÞ> pðCLbjxÞ (11)

The general notation for the chosen category CLk for (k ¼ 1; 2; :::;K) number of categories
can be summarized as:

ĈL ¼ argmax
k2f1;:::;Kg

pðCLkÞ
Yn

i¼1

pðxijCLkÞ (12)

Where ĈL is the estimated output category for the vectors/features x.

7.3. Decision Trees

Decision Trees are used both for regression and classification problems. The choice between
these two entities is driven by the type of data used to construct such trees. Our focus remains
on the Classification trees, since the response variables in the considered data are of
qualitative nature.

The basic principle of the CT is to “predict that each observation belongs to the most
commonly occurring class of training observation in the region to which it belongs” (James et al.
2014). To make a Classification Tree grow, one uses recursive binary splitting by selecting the
predictor Xj and the cutpoint s and then splits the tree so that the classification error rate
(CER) is given the most possible reduction in the regions fXjXj < sg and fXjXj � sg. The
CER is just the part of the training observations in that region that do not belong to the most
common/predicted class.

Consider all predictors X1; :::;Xp and all possible values for s such that the lower tree has
the smallest possible CER. Further, assume that the predictor space (i.e. X1; :::;Xp) are divided
into R1; :::;Rj distinct and non-overlapping regions. So, for the case of only R1 and R2

regions, the pair of half-planes for any j and s are defined as;

R1ðj; sÞ ¼ fXjXj < sg R2ðj; sÞ ¼ fXjXj � sg (13)

The CER is:

CER ¼ 1�max
k

ðp̂mkÞ (14)

where p̂mk is the proportion of the training data in the mth region that are from the kth class.
Since the CER is not very sensitive for tree-growing, another preferred measure is the Gini
index (GI), defined as;

GI ¼
Xk

k¼1

p̂mkð1� p̂mkÞ (15)

The Gini index (GI) is a measurement of the total variance across the K classes. From the
equation ((15)), it is rather obvious that the GI takes on a small value if all the
proportion, pmk, are close to zero or one. Due to this fact, the GI is referred to as
a measurement of node purity, a value which indicates that a node holds most observa-
tions from a single class.

In order to improve the prediction accuracy of Decision Trees, several extensions are
usually preferred to apply. One such extension, dominated in the existing literatures, is the
Random forest based classification (James et al. 2014).
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The random forest builds a number of decision trees on bootstrapped training samples.
While building such decision trees, each time a split in a tree is considered, a random sample
of m predictors from the full set of p predictors is chosen as split candidates. This split is
further restricted to use only one of those m predictors. After each split a new sample of m
predictors are taken, however, the method is not allowed to consider majority of available
predictors. One roughly chooses, m � ffiffiffi

p
p

predictors among the set of all.
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