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comments on the Gibbs paradox
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Colloidal particles are distinguishable. Moreover, their thermodynamic properties are extensive. Statistical mechanics predicts
such behaviour if one accepts that the configurational integral of a system of N colloids must be divided by N!. In many
textbooks, it is argued that the factor N! corrects for the fact that identical particles (in the quantum mechanical sense) are
indistinguishable. Clearly, this argument does not apply to colloids. This article explains why, nevertheless, all is well. The
point has been made before, but has not yet sunk in. I also discuss the effect of polydispersity.
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1. Background

There should be no need to write this article about the Gibbs
paradox, but I am afraid that there is. The Gibbs paradox is
based on the observation that when two systems of identi-
cal particles in the same thermodynamic state are brought
into contact, the entropy of the combined system does not
change. However, the entropy does increase when we allow
mixing of two systems of ‘almost’ identical particles that
we have somehow managed to separate.

In Gibbs’s classical statistical mechanics, the entropy
of a system with a fixed constant number of particles (N),
volume (V) and energy (E) is related to the logarithm of
�(N, V, E), the volume in phase space accessible to this
system. In Boltzmann’s (posthumous) notation,

S = kB ln �(N,V,E). (1)

Gibbs (and, before him, Planck) realised that this ex-
pression only defines the entropy up to a constant that
does not depend on V or E, but can depend on N. In fact,
Boltzmann never wrote down Equation (1). Planck did [1],
acknowledging Boltzmann’s influence. However, Planck
wrote SN = k log W + const. Somehow, the constant
got lost in translation. Probably because, by the time the
famous text was written on Boltzmann’s grave,1 quantum
mechanics and the ‘quantum’ interpretation of Nernst third
Law of Thermodynamics2 were known. Hence, for pure
atomic or molecular systems, it is meaningful to speak
about an absolute entropy. As we shall see below, this is
not the case for colloidal systems.
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In the final pages of his book on the Principles of
Statistical Mechanics, Gibbs discusses the grand-canonical
partition function. In this context he comments that there
is no need to fix the constant as long as we do not
consider exchange of particles between systems. How-
ever as soon as we do, the partition function should
be divided by N!, because otherwise we do not ar-
rive at extensive thermodynamic quantities. Gibbs writes
[2]:

. . . the principle that the entropy of any body has an arbitrary
additive constant is subject to limitation, when different
quantities of the same substance are concerned. In this
case, the quantity being determined for one quantity of
substance, is thereby determined for all quantities of the
same substance.

Subsequently, with the advent of quantum mechanics,
the existence of the factor 1/N! was related to the fact that
the square of the quantum-mechanical wave function is in-
variant under permutation of identical particles, whereas
classically, the permutation of identical particles results
in a different configuration in phase space (be it with the
same observable properties). The quantum mechanical in-
distinguishability of identical particles is now the standard
‘explanation’ of the Gibbs paradox in most textbooks on
statistical mechanics. Some, such as Huang [3], even go
as far as stating that the factor N! only makes sense in the
context of quantum mechanics: It is not possible to under-
stand classically why we must divide by N! to obtain the
correct counting of states. The reason is inherently quantum
mechanical.
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This is not true and several articles have been written
that explain that there is no need to invoke quantum mechan-
ics to arrive at the factor 1/N!. Particularly clear papers have
been written on this subject by Jaynes [4] and van Kampen
[5]. The focus of the papers by Jaynes and van Kampen
has been on simple atomic or molecular systems where the
concept of identical particles (in the quantum-mechanical
sense), still is meaningful. Here I wish to consider the case
of systems of particles that, although similar, are all differ-
ent. This is the standard situation in colloid science: no two
colloids are identical. Even if they would consist of the same
number of atoms, their (amorphous) structure differs on a
microscopic scale. I should state at the outset that the role
of N! in that statistical mechanics of colloidal systems has
been discussed by Swendsen [6,7] and Warren [8]. Much
of what I say echoes their comments.

The key point is that it is perfectly legitimate to apply
statistical mechanics to colloidal systems – and all simu-
lations of the phase behaviour of colloidal systems rely on
this fact (see e.g. [9]). It is worth analysing why this is the
case.

2. Monodisperse colloids

Let us first consider a somewhat artificial situation where
we have a solvent-free colloidal system in zero gravity.
Moreover, we assume that the density of the system is so
low that we can describe it as an ideal gas. In that case,
we can use quantum mechanics to compute the partition
function of a system of N ‘very similar’ colloids3 in a
volume V at temperature T. We will consider temperatures
where the thermal de Broglie wavelength of the colloids is
much smaller than the size of the particles. Then we can
write the partition function of this system as

QQM(N,V, T ) = (V/�3)NqN
int(T ), (2)

where the subscript ‘QM’ indicates that this is a quantum
partition function. As the colloids are ‘very similar’, I have
assumed that they have the same thermal de Broglie wave-
length and the same internal partition function qint(T ). If
we take the logarithm of this purely quantum mechanical
partition function, we obtain

ln QQM(N,V, T ) = N ln(qint(T )/�3) + N ln V. (3)

Clearly, ln Q is not extensive4 because ln Q(2N, 2V, T) is
not equal to 2ln Q(N, V, T), but

ln QQM(2N, 2V, T ) = 2 ln QQM(N,V, T ) + 2N ln 2.

(4)

Note that quantum indistinguishability cannot fix this non-
extensivity because the particles are distinguishable in the

quantum sense: permuting particles is not a symmetry op-
eration on the wave function.

3. N! recovered

Let us next consider two systems, one containing N1 parti-
cles in volume V1 and the other with N2 particles in volume
V2. We prepare the systems at the same temperature and
pressure. This means that (away from a phase transition)
the systems have the same density and, hence N1/N2 =
V1/V2. If we make a small opening in the wall dividing the
two systems, mass exchange is possible. We should not ex-
pect a net flow of particles between two systems with the
same temperature and pressure. However, if we write the
total partition function of the combined system as

Qtot
?= Q(N1, V1, T ) × Q(N2, V2, T ), (5)

then this product is not at a maximum for N1/N2 = V1/V2.
The underlying problem is that Equation (5) is wrong. When
we consider the total partition function of the combined
systems 1 and 2, we must include all possible realisations
of the system that result in the same macroscopic state. That
means we must consider all possible ways in which we can
distribute the N colloids, such that there are N1 in volume
V1 and N2 in volume V2. That is

Qtot(N1, V1, N2, V2, T ) = N !

N1!N2!
Q(N1, V1, T )

×Q(N2, V2, T ). (6)

This point has been made explicitly by Swendsen [6,7] and
Warren [8]. If we now differentiate ln Qtot with respect to
N1 at fixed N, we get

(
∂ ln Qtot(N1, V1, N2, V2, T )

∂N1

)
N

=
⎛
⎝∂ ln

(
N!

N1!N2!Q(N1, V1, T ) × Q(N2, V2, T )
)

∂N1

⎞
⎠

N

.

(7)

Using dN2 = −dN1, it is clear that the condition for equi-
librium is

∂ ln
(

Q(N1,V1,T )
N1!

)
∂N1

=
∂ ln

(
Q(N2,V2,T )

N2!

)
∂N2

. (8)

Equation (8) must express the equality of chemical potential
between two phases that are in macroscopically identical
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states. That is

μ1 = −kBT
∂ ln

(
Q(N1,V1,T )

N1!

)
∂N1

= −kBT
∂ ln

(
Q(N2,V2,T )

N2!

)
∂N2

= μ2. (9)

In other words, we are forced to conclude that the Helmholtz
free energy of a system of ‘very similar’ but distinguishable
particles is given by

A(N,V, T ) = −kBT ln

(
Q(N,V, T )

N !

)
, (10)

although A(N, V, T) + αN, with α being an arbitrary con-
stant independent of N and V 5 would work just as well.
The factor N! is there, but it is not related to quantum-
mechanical indistinguishability but to the fact that permut-
ing very similar colloids does not change the observable
properties of the macroscopic systems. What is, and what
is not, an observable difference is, in the end, determined by
our ability to detect differences. This point was eloquently
made by Jaynes [4] who discussed the entropy of a mixed
system of hypothetical elements (Whifnium, Whafnium and
Whoofnium) that are so similar, initially they were consid-
ered as one, then as two and finally as three. The entropy de-
pends on what we know about the system or, more precisely,
about what we care to know. Jaynes writes: . . . an illustra-
tion of the ‘anthropomorphic’ nature of entropy, would not
be apparent to, and perhaps not believed by, someone who
thought that entropy was, like energy, a physical property of
the micro state. Of course, particles that are indistinguish-
able in the quantum sense, meaning that permuting them
is a symmetry operation on the wave function can never
be distinguished, no matter what we do, or do not care to
know. However, if we were to label every individual col-
loid, then the whole concept of equilibrium under particle
exchange becomes meaningless. If we gave every colloid a
name, then we would consider the situation where the col-
loid named ‘Julius Caesar’ is in volume one distinct from
the situation where this colloid had crossed the Rubicon
into volume two: equilibrium is never possible because ev-
ery permutation of particles creates a new situation. It is
a bit like stamp collectors exchanging stamps that, to the
uninitiated, look identical. The experts will consider every
distribution of stamps over collectors as a distinct state.

Although I have taken an ideal gas of colloids as an
example, Equation (10) also applies to systems of inter-
acting colloids or, for that matter to any system consisting
of large numbers of very similar particles. An immediate
consequence of Equation (10) is that we can write for the
entropy of our colloidal gas,

S = kB ln

(
�(N,V,E)

N !

)
, (11)

Figure 1. The observable properties of two glasses of milk
poured from the same bottle are the same. However, all the col-
loidal particles in the milk are different. Therefore the ‘quantum’
view (left) is that the two systems are not in the same state, whereas
the ‘thermodynamic’ view (right) would be that they are in the
same state. Disclaimer: neither Gibbs nor Nernst ever made the
statements above.

which is not quite the same as what is written on
Boltzmann’s grave (but it is perfectly compatible with what
Planck wrote in 1901).

Some readers may feel uncomfortable with the idea of
dividing � by N!, only to ensure that ln (�/N!) of a system
of very similar particles behaves like the entropy. However
that is precisely the procedure that has to be followed in
constructing statistical mechanics: we start with postulating
a correspondence between a computable quantity (�) and
a thermodynamic quantity that should be at a maximum
in a closed system in equilibrium. In the present case, we
find that S = kBln � does not do the job, but S = kBln [�(N,
V, E)/N!] does.

4. Polydisperse colloids

Up to this point, we have assumed that the colloids are so
similar that we cannot separate them. However, in prac-
tice, colloidal suspensions are usually polydisperse and we
can separate colloids of different sizes by fractionation.
The question is how polydispersity will affect the discus-
sion above. As I will show, it makes the absolute value
of the entropy meaningless, but the factor 1/N! remains.
I note that the role of the factor N! in the entropy of poly-
disperse systems was discussed in a paper by Warren [8] –
hence, what I say here is again not very original.

When discussing polydisperse mixtures, the ‘anthro-
pomorphic’ nature of entropy is even more obvious than
before. Basically, we have to specify what particles we
can separate. The value of the entropy will depend on this
choice, but of course, the macroscopic equilibrium will not.



2328 D. Frenkel

A clear discussion of this issue can be found in Jaynes paper
on Information Theory and Statistical Mechanics [10].

Let us consider an example where we have a colloidal
mixture of spherical particles with different sizes. We char-
acterise the size of colloid by its hard-core diameter σ , and
the probability to find a colloid with a size between σ and
σ + dσ is given by P(σ )dσ . The first step is to ‘bin’ the par-
ticle size distribution into fractions that can be separated.
Suppose that there are m such fractions and that the fraction
of all particle sizes in bin i that includes all particles with
diameters between σ i and σ i + 1 is denoted by Xi,

Xi =
∫ σi+1

σi

P (σ ) dσ. (12)

As we cannot separate particles within one bin, permuta-
tions of such particles leave the macroscopic state of the
system unaffected. As before, the total number of particles
in the combined system (1 + 2) is denoted by N, with N1

particles in system 1 and N2 in system 2. Then ωperm, the
number of ways in which particles can be permuted between
systems 1 and 2 is given by

ωperm =
∏m

i=1(N1(i) + N2(i))!∏m
i=1 N1(i)!

∏m
j=1 N2(i)!

, (13)

where N1, 2(i) = N1, 2Xi. As before, we require that, in equi-
librium, the total partition function of the combined system
must be at a maximum, and that its derivative with respect
to all N1(i) = Ni − N2(i) must vanish. The immediate conse-
quence is that the expression for the Helmholtz free energy
of a system with N particles in volume V at temperature T
must be of the form,

A(N,V, T ) = −kBT ln

(
Q(N,V, T )∏m

i=1 N (i)!

)
, (14)

where N(i) = NXi. We can now use the Stirling approxima-
tion to write

ln
m∏

i=1

N (i)! =
m∑

i=1

(NXi ln NXi − NXi) = ln N !

+N

m∑
i=1

Xi ln Xi. (15)

Let us define an ‘entropy of mixing’ as

Smix = −NkB

m∑
i=1

Xi ln Xi, (16)

then the expression for the Helmholtz free energy becomes

A(N,V, T ) = −kBT ln

(
Q(N,V, T )

N !

)
− T Smix. (17)

Importantly, Smix depends linearly on N: it only changes
the reference point for the chemical potential as long as the
composition of the mixture is kept constant. However, in
the case of coexistence between two polydisperse phases
with a different composition, the mixing term does become
important. It is useful to consider the limit where the number
of bins goes to infinity and the width of the individual bin
tends to zero. In that case, we could write6

Smix = −NkB

∫ ∞

0
dσ P (σ ) ln [P (σ ) dσ ]

= −NkB

[
ln dσ +

∫ ∞

0
dσ P (σ ) ln P (σ )

]
.

(18)

The first term on the right diverges in the limit dσ → 0.
However, it is a term that does not depend on composition
and is hence immaterial for phase coexistence. We can
ignore it. The physically meaningful part of Smix is

Smix = −NkB

∫ ∞

0
dσ P (σ ) ln P (σ ) , (19)

which is well defined.7

5. Conclusions

Of course, the expression S = kBln � is valid for a
system consisting of indistinguishable quantum particles:
�(E, V, N) counts the number of eigenstates with energy E
and permutations of particles will map a given eigenstate
onto itself (possibly with a minus sign). However, as soon
as we deal with distinguishable colloids, we need to divide
the partition function by N! in order to obtain an exten-
sive Helmholtz free energy. In that case, S = kBln (�/N!) =
kBln � + const., the very expression that Planck wrote
down in 1901.
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Notes
1. Apparently the text was proposed by Max Planck, around

1930.
2. Based on very limited statistics (2), it seems that three laws

do not have the same generality as first or second laws. This
holds not only for the Laws of Thermodynamics, but also for
Newton’s Laws.
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3. I use the word ‘very similar’ to indicate that all the observable
properties of the colloidal particles – e.g. mass, size, shape –
are the same, but the microscopic structures of the individual
colloids are different.

4. Free energies thus defined would not be extensive, but would
be additive.

5. α can depend linearly on temperature.
6. Of course, the mathematics here are very sloppy. The way

to ‘read’ this equation is to consider that
∫

dσ (...) stands for∑
δσ (...) with δσ very small, but sufficiently large that we

can apply Stirling’s approximation to ln (Nδ)!. After that, we
can take the thermodynamic limit...

7. Almost: if we change the integration variable from σ to a
monotonic function of σ , a Jacobian will enter into Equa-
tion (19), but not in any of the entropy differences that are
important for phase equilibria.
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