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Protein folding can be described as a downhill process that brings the configuration of a chain of amino acids down to
the bottom of a smooth free-energy funnel. Here, we use a recently developed coarse-grained protein model to assess the
importance of frustration in the folding free-energy landscape. We compare the landscapes of natural proteins, computationally
designed sequences, and structure-based potentials that force the contacts between the amino acids to adopt the native
structure. Our results show that the structure-based potentials give a poor representation of the folding free-energy landscape,
and that frustration is not just a perturbation over an otherwise perfect downhill folding.
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The ‘minimal frustration principle’ (MFP) [1,2] describes
protein folding as a downhill sliding process in a low frus-
tration energy landscape (‘funnelled’ shaped) towards the
native state. While the validity of MFP has been confirmed
for lattice heteropolymers [3–10], in more realistic pro-
tein representations, a residual frustration is often observed,
which prevents the systematic prediction of the native struc-
ture of natural sequences. Following the MFP, many stud-
ies have shown a strong correlation between the topology
of the native structure and the folding dynamics. In par-
ticular, structure-based potentials (also known as Go-type
models [11–13]) have been used to shed light on the un-
derling mechanisms of folding and on the thermodynamic
of this process [14–29]. The degree of success of the Go-
type models strongly depends on the level of frustration
present in the real folding free-energy landscape and also
on the accuracy of the target structure used to build the
interaction potentials [26]. In this work, we consider a set
of protein structures and compute the folding free-energy
landscape for their natural sequence, for a designed se-
quence and for a suitably chosen Go-type potential. For the
systematic comparison between the folding of the differ-
ent systems, the chosen model would need to quantitatively
describe the equilibrium folded state of natural and arti-
ficial proteins. Unfortunately, protein design, even if only
in silico, is still a rather difficult task to be achieved with
coarse-grained models and, except few notable examples
[30–38], it has been extremely difficult to artificially con-
struct sequences capable of folding in vitro into given target
protein structures. This difficulty could explain why, to the
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best of our knowledge, the folding of Go and designed pro-
teins have not been so far compared. In this regard, we have
recently introduced the Caterpillar model [39], which we
extended to perform both quantitative protein design and
folding [40], making the perfect tool for this study. It is
important to stress that, regardless of the accuracy of the
model, the comparison between the designed and the Go-
like models is valid even if the natural folding landscape of
the tested proteins looks different from the one predicted
by the Caterpillar model. In fact, the MFP does not make
any assumptions on the details of the model used to de-
scribe the proteins. This universality suggests that, within
each model representation that satisfies the MFP, designed
proteins (i.e. that fold to their target structures) should still
fold along funnels that are more frustrated compared to the
one predicted by ideal structure-based potentials. Hence,
quantitatively comparing the folding free-energy landscape
of Go-like potentials to designed sequences, is an ideal test
to quantify the frustration brought about by a 20-letter al-
phabet. Moreover, within the scope of this study, the native
sequences should be regarded as more frustrated sequences,
compared to the computer-generated ones, obtained from
an unknown constrained design procedure. In the follow-
ing, we will show that there is an overlap between the Go
and the Caterpillar free energies, but only in a small region
of the configurational space and not for all tested proteins.
A Caterpillar protein has a backbone, represented by five-
atoms, free to rotate around the torsional angles φ1 and φ2,
while the side chains are represented as spheres centred on
the Cα atoms (see Figure 1); all other structural parameters
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Figure 1. Real-space representation of the five-atoms (N blue, O red, C and Cα light blue and H in white) backbone of the Caterpillar
model. The large blue spheres represent the self-avoidance volume that have a radius RHC = 2.0 Å of the Cα atoms, while the interaction
sphere radius of each residue is represented by the large dashed circle of radius 6 Å(see Equation (2) in Methods). The hydogen bond
betwen the H and O atoms interact through a generlised 10–12 Lennard-Jones potential tuned with a quadratic orientation term that selects
for the alignment of the C, H, O, and N atoms involved in a bond (see top right inset and Equation (1)). The backbone fluctuates only
around the torsional angles φ1 and φ2.

are kept fixed at values taken from the literature [41]. Note
that here and in the following, energies are given in units
of kBTRef, where TRef is a reference temperature that sets
the scale of the interactions, hence all simulation tempera-
tures are given in units of TRef. It is important to stress that
TRef is not necessarily the folding temperature or the envi-
ronment temperature, but all the energies can be rescaled
to have TRef matching the physical temperature. Backbone
hydrogen bonds are modelled with a 10–12 generalised
Lennard-Jones potential using the expression [42]

EH = −εH (cos θ1 cos θ2)ν

×
[

5

(
σ

rOH

)12

− 6

(
σ

rOH

)10
]

, (1)

where rOH is the distance between the hydrogen atom of
the amide group (NH) and the oxygen atom of the carboxyl
group (CO) of the main chain. The θ angles are defined as
the one under the arches COH and OHN (see Figure 1). We
set σ = 2.0 Å, εH = −3.1 kBTRef, and ν = 2 [42]. The side
chain interactions are represented by an effective Cα–Cα

sphere–sphere interaction energy given by

Eij

(
rij

) = εij�(rij ) = εij

1

1 + e−(rmax−rij )/W
, (2)

where W = 0.4 Å, rij is the distance between the Cα atoms
at the centres of spheres i and j, and rmax = 12 Å is the
distance at which Eij = εij/2. The εij are the elements of a
20 by 20 matrix, previously optimised under the condition
that a large number of sequences designed for 125 test pro-
teins are energetically equivalent (including the interactions
with the solvent) to the corresponding natural sequences
(see Table S1 in [40]). The residue–solvent interaction is
modelled as a simple energy penalty towards surfaces ex-
posure of hydrophobic amino acids; the expression has the
form

ESol(	 − 	i) =
{

εi
Sol [	 − 	i] 	i � 	 εi

Sol ≷ 0

0 	i ≷ 	 εi
Sol ≷ 0

,

(3)

where �(rij) is given in Equation (2), 	i = ∑
j�(rij) and

	 = 21.0 ± 0.5 is the threshold for the number of con-
tacts in the native structure above which the amino acid is
considered to be fully buried and the εi

Sol are taken from
the Dolittle hydrophobicity index [43] and are positive for
hydrophobic amino acids and negative of the hydrophilic
ones. The interaction penalises the exposure (burying) of
hydrophobic (hydrophilic) residues above 	. The forma-
tion of sulphur bridges as well as Proline rigid bonds is
not included. The total energy of a protein E is then given
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by

E = EH + αE(ε, EHOH,	)

E(ε, EHOH,	) =
N∑
kl

εkl�(rkl) + EHOH

N∑
k

ESol(	 − 	k),

(4)

where α = 0.10 ± 0.01 kBTRef and EHOH = 0.015 ± 0.001
are scaling factor necessary to balance the contributions to
the total energy.

Here we will show that the Go-type potential is equiv-
alent to the Caterpillar model when describing the folding
close to the native structure especially when compared to
purposely designed sequences. By contrast, the compari-
son rapidly and systematically worsens when moving in the
configurational space further away from the native state.
Hence, although the fluctuations around the native state are
reasonably represented, in most cases, the relative weights
of the unfolded structures are suppressed, thus overestimat-
ing the funnel nature of the landscape. In what follows,
we will refer to the Caterpillar model potential as ‘un-
constrained’, and to the Go-like potential as ‘constrained’
reflecting the nature of the Go-like potentials that favours
the folding towards the native state. In this framework, the
folding simulation of the designed and natural sequences
will be unconstrained and we will compare the results to
the simulation of the constrained scenario based on the Go
calculations.

We began our study by considering the list of 15 test
proteins used by Coluzza in Ref. [40] for which we already
calculated the folding free-energy profile of the native and
designed sequences (see Table S4 [40]) and we showed
that the native states correspond to the global free-energy
minimum. In what follows, we will refer to the test proteins
using their protein data bank identities (IDs) (PDB ID), a
complete list is in Table S1 in Ref. [40]. These 15 proteins
are used as benchmark to test proteins models (from Tsai
et al. [44] and from the 9th edition of the well-known Criti-
cal Assessment of Techniques for Protein Structure Predic-
tion [45]). Our aim is to compare, within the framework of
our model, the folding of these 15 proteins in the scenarios
where the interactions between the residues are either natu-
ral, optimised through a sequence design or imposed by the
native structure with a Go-like potential. Several methods
have been proposed to design the sequence of proteins, such
that they fold into a specific target conformation [7,46–48],
but in this work we are going to use a method recently
introduced by Coluzza [39,40], which was proven capable
of producing realistic protein sequences for the Caterpil-
lar model. For the constrained simulations, instead we re-
placed the residue–residue interactions of the Caterpillar
model with a structure-based potential taken from the elas-
tic network model [12,13]. Hence, we replaced the 20-letter
residue–residue interactions with a harmonic potential cen-

tred on the Cα atoms:

EGO =
{− [r − rNative]2 r ≤ Rint

0 r > Rint,
(5)

where r is the distance between each pair of residues, rNative

is the distance between the same residues in the native
structure, and Rint = 12 Å is the range of the Cα − Cα

interactions in the Caterpillar model. Interactions with an
effective solvent in Equation (3) are not included during the
constrained simulations.

Once we obtained the designed sequences we did
proceed to the folding free-energy calculations and we com-
pared the behaviour of unconstrained and constrained pro-
teins. All folding simulations were started from a stretched
configuration like in Figure 1. We then applied a sequence
of pivot and crankshaft moves [49], which are accepted or
rejected according to a Metropolis-like acceptance crite-
rion. During the simulation, for each protein, the sampled
configurations were organised according to two collective
variables, namely the distance root mean square displace-
ment (DRMSD) from the native structure, and the number
of backbone hydrogen bonds. The DRMSD is a standard
collective variable used in the field of protein folding to
measure the state of the folding transition. Given a target
structure, the DRMSD is defined as

DRMSD = 1

N

√√√√∑
ij

(∣∣
�rij

∣∣ −
∣∣∣
�r T

ij

∣∣∣)2
, (6)

where �rij is the distance between spheres i and j, while
�rT
ij is the same distance calculated over the target struc-

ture, and N is the chain length. According to Equation (6),
DRMSD =0 is possible only when the chain and the tar-
get structures are identical. Any structural difference will
correspond to larger values of DRMSD, and the larger the
value of DRMSD the larger is the number of structures that
share the same DRMSD from the target. In order to sample
the configurational space, we applied the virtual move par-
allel tempering biasing scheme to help the simulations to
exit local free-energy traps that are very frequent especially
in the unconstrained scenario [50].

In Figure 2, we show the free-energy profiles of the
1gab, 1pou, 2l09, and 3boh proteins. The plots show that
the degree of accordance between the constrained and un-
constrained simulations varies enormously. The striking
difference is the low weight of the constrained unfolded
configurations (DRMSD > 3 Å) compared to native and
designed sequences. In fact, whenever the constrained and
unconstrained simulations do match, they do so only in
a small region around the global minimum. Altogether,
these results suggest that the constrained protein models are
not generally capable of describing realistic folding free-
energy landscapes, mainly because the frustration inherent
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Figure 2. Folding free-energy landscape F(DRMSD)/kBTRef as a function of DRMSD of four trial proteins (PDB IDs chain A of (a)
1gab, (b) 1pou, (c) 2l09, (d) 3obh) at T = 0.6 for (a) and T = 0.8 for the others. All profiles have a global minimum around 1.5 and
2 Å DRMSD with a smooth funnelled shape. This figure represents a showcase of the typical differences observed among constrained
and unconstrained simulations. Qualitatively the unconstrained simulations behave similarly even if the designed sequences tend to
fold more precisely to the target structure. The constrained model on the other hand does not compare well with the designed unconstrained
proteins above DRMSD=2 Å, the only exceptions are 3obh and 3nmd (see Figure 4). The main reason for such discrepancy is the effect
of the frustration, which is unavoidable when proteins are designed with a 20-letter alphabet.

to the limited alphabet size is not a small perturbation and it
strongly affects the probability of observing a misfolded or
unfolded configuration with respect to the native one. This
aspect is also confirmed by the frequent agreement between
the designed and native profiles. Such an agreement is not
observed in all cases, but it is hardly surprising, consider-
ing the difference between an evolutionary selection and the
design algorithm employed here. However, it is interesting
to remark how the folding free-energy profiles correspond-
ing to the natural sequence tend to be always steeper than
the designed ones. This feature is, for instance, quite ev-
ident for the folding energy profile of 2109 (Figure 2(c))
and we believe it is due to the approximate interaction of

the residues with the solvent, which causes the natural se-
quences to adopt slightly more compact configurations and
overestimates the stability of the folded structures.

In Figure 3 instead, we compare the folding free en-
ergy of 2l09 upon increasing temperature, in reduced units,
from T = 0.8 to T = 1.8, at which the unconstrained pro-
teins are unfolded. The figure shows how the steep folded
profiles of the natural sequence starts to relax upon increas-
ing temperature, rapidly approaching the profile of the de-
signed 2l09. We did expand our study to include an analysis
at intermediate temperatures, mainly because these results
already demonstrate that the unconstrained simulations, al-
though quantitatively different, show a qualitatively similar
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Figure 3. Folding free-energy landscape F(DRMSD)/kBTRef as a function of DRMSD of 2l09 at (a) T = 0.8 (b) T = 1.0 (c) T = 1.4 and
(d) T = 1.8. In this figure, we compare the unfolding of the constrained and unconstrained models. At low temperature, the native sequence
has a steep profile with a sharp minimum around DRMSD=1.8 Å, caused by the tendency of the natural sequence to form more compact
configurations. This effect is probably due to the approximated solvent–residue interactions of the Caterpillar model. The profiles show
that upon increasing the temperature, the agreement between the native and designed sequences increase, while the constrained proteins
remain folded even at the highest temperature.

physical behaviour, while the constrained proteins do not
even unfold at the highest temperatures. One reason behind
such a difference is that the constrained potentials have a
lower average energy compared to the unconstrained ones.
However, the energy difference is not enough to account for
the mismatch, because the shape of the profiles is differ-
ent even when compared across the simulated temperature
range. In other words, even if the energy of the folded con-
strained proteins is on average 40% lower than the one of
the corresponding designed sequence, the Go free-energy
profiles are still way off even at more than twice the tem-
perature (results not shown).

Another important point that we took into account is
the effect of the sequence alterations on the landscape. A

different degree of frustration can be added to the design
procedure by additional conditions that reject sequences
with unwanted properties. We then considered the se-
quences produced in Ref. [40] with no amino acids repeats,
which we verified could still fold in the target structures.
The no-repeat condition for some proteins has a measurable
effect on the frustration of the folding process. For instance,
in the case of the non-repeating sequence designed for the
protein 3nmd (see Figure 4), upon increasing temperature,
the folding free-energy starts to behave differently com-
pared to the one corresponding to the sequences obtained
with the standard design procedure. The 3nmd is a special
case because of the particularly simple target structure made
of a single long α-helix. In this case, all scenarios show
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Figure 4. Folding free-energy landscape F(DRMSD)/kBTRef as a function of DRMSD of the designed protein leucine zipper (PDB ID
3nmd). at (a) T = 0.6 and (b) T = 0.8, both temperatures are below the folding one. All profiles have a global minimum very close to
the target structure at 0 Å DRMSD with a smooth funnel shape. This particular example was the only case in which we observed a good
agreement between the constrained and unconstrained landscapes. The constrained profile (blue triangles) corresponds to the folding of
a sequence designed without allowing for amino acids repeats (see Table S6[40]). It is interesting to notice that such sequences tend to
behave more like the natural ones upon the increase in temperature.

low frustration folding pathways, with folding free-energy
profiles of the constrained and unconstrained models over-
lapping at low temperature. However, even for this ideal
scenario, the native sequence, upon increasing temperature
at T = 0.8, starts to show a deviation that interestingly is
present also for the no-repeat sequence. The message is that
different sequences, including natural ones, might have a
very different folding landscape with large variations, even
if they have the same equilibrium folded configuration; such
a variability cannot be captured by constrained models.

The last observation we make concerns the coarse grain-
ing associated to the use of constrained interactions. Since
the interactions formalised in Equation (5) are only attrac-
tive, the lowest energy configurations will tend to be more
compact than natural proteins. In Figure 5, we show two
proteins where this defect of constrained models is partic-
ularly evident. The free-energy profiles of the constrained
simulations perform significantly worse than the designed
sequences, and this is surprising considering that the Go-
like systems should correspond to the ideal designed sce-
nario. However, this is true only for highly compact target
structures, but this condition is not satisfied by all proteins.

According to the MFP, the constrained model should
represent the perfect folding landscape and the natural frus-
tration induced by the evolutionary selection process is a
perturbation that should not influence the description of the
folding process itself. We did put to the test this hypoth-
esis comparing the Caterpillar model to a Go-like protein
model. The latter is based on the Caterpillar model itself,
where we only replaced the 20-letter alphabet with attrac-
tive interactions among the residue in contact with the native

structure and null otherwise. In this way, we could perform a
fair comparison between optimised and frustration free se-
quences, regardless of the capacity of the model to describe
the folding of real proteins. We compared the folding of
Go-like proteins potential and of both natural and designed
realistic protein sequences. The results indicated that the
un-frustrated folding of Go-like potentials is both quanti-
tatively and qualitatively different to the folding of more
natural sequences limited to a 20-letter alphabet. In par-
ticular, we observed that during the folding of constrained
proteins, the unfolded states are not well represented and
the range of agreement with the unconstrained Caterpillar
model is usually limited to a very small region of phase
space. A good agreement was found only for low temper-
atures (e.g. for protein 3nmd) and not for all sequences.
Finally, the purely attractive nature of Go models is effec-
tive only for highly compact target structures, while the
frustration inherent to a 20-letter alphabet allows to design
sequences even for proteins where the constrained models
refold poorly. In conclusion, the frustration present in natu-
ral sequences is probably not a perturbation. Hence, in order
to properly describe the folding process, a coarse grained
model should not rely on a structure-based potential, but
instead include a minimum set of molecular features that
reduces the frustration of the phase space to the point where
the folding of designed proteins is successful. In this way,
the MFP is satisfied without imposing artificial constraints
that are so strong that they completely distort the folding
process. The Caterpillar model is one possible solution and
is an ideal starting point to develop, following the same
design principles, of more detailed models.
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Figure 5. Folding free-energy landscape F(DRMSD)/kBTRef as a function of DRMSD of the designed 1leb at T = 0.6, and 2kyw at T =
0.8. As for the other simulations, also in this case, all profiles have a global minimum around 1.5 and 2 Å DRMSD with a smooth funnel
shape. The constrained simulations perform worse than the designed one and we identified the reason in the tendency of Go potentials
to form highly compact configurations that are not always compatible with the native structure. The heterogeneous potential used for the
design, thanks to the repulsive nature of some of the interactions, is capable of stabilising slightly more open structures.
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