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ABSTRACT
The electron density logarithm is closely connected to the Shannon information entropy character-
ising the spread of the electron density. It can be seen as the uncertainty to predict the position of an
electron. The position uncertainty curvature, defined as the negative of the Laplacian of the electron
density logarithm, describes regions of spacewhere the uncertainty of the electron position is higher,
respectively lower, than the average in the surrounding. The atomic shells can be located in regions
of high-position uncertainty curvature, thus resolving the atomic shell structure of the atoms Li to Xe.
The shell boundaries are given asminima of the uncertainty curvature. This indicator, based alone on
the electron density, is suitable to describe the bonding situation in molecules and solids.

1. Introduction

The spherically averaged electron density ρ(r) of an atom
displays a maximum at the atomic position followed
by monotonically exponential decay [1–5]. The idea of
atomic shells successively filled up by electrons, as antici-
pated from the Periodic Table of elements, is not directly
reflected by this simple distribution. To accomplish this,
specific functions derived from the electron density or
even functions based on the orbital representation of
wave function are needed. The analysis of such func-
tions revealed, at least partially, the atomic shell structure
[2,4,6–22]. However, only few functionals were able not
only to resolve the atomic shell structure, but also to yield
reasonable electron populations for the shell occupations,
for instance the average local electrostatic potential [18],
the electron localisation function (ELF) [14,17], as well
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as ELF modified by the incorporation of the electro-
static potential [19], respectively, the electron localisabil-
ity indicator (ELI) [23–25] and the one-electron potential
(OEP) [20]. The electron localisability indicator variant
ELI-D [26] yields at the Hartree–Fock (HF) level in prin-
ciple the same topology as ELF, but in contrast to ELF is
defined also at correlated level of theory [26,27].

The piecewise exponential decay of the electron den-
sity ρ(r) of an atom was investigated by Wang and Parr
[4] who showed that for the ground state of atoms, the
function log ρ(r) reflects shell structure by a significant
change of the log ρ(r) slope. This circumstance was used
later for the quantity −|∇ρ(r)|/ρ(r) displaying sepa-
rate plateaus for each atomic shell [16]. For the quan-
titative evaluation of the atomic shells, suitable separa-
tors were needed to determine the shell boundaries of
−|∇ρ(r)|/ρ(r). Bohórquez and Boyd, after connecting
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−∇ρ(r)/ρ(r) with the quantum spread, used the radial
inflection points as the shell delimiters [21]. Of course,
such definition based on spherical symmetry is in princi-
ple applicable only to shells of free atoms. In the present
study, a function derived from the electron density loga-
rithmwas used to visualise and analyse the shell structure
of atoms. The function can easily be applied also to the
analysis of bonding situation in molecules and solids.

2. Theory

For the quantity X of n discrete values xi measured with
the respective probabilities pi the expression:

Sp = −
n∑
i

pi log pi (1)

is the Boltzmann–Shannon information entropy of the
measurement [28]. The information entropy describes
the uncertainty to obtain one (further not specified) dis-
crete value of the quantityX. If specific event has the prob-
ability pk = 1 and the remaining ones equal zero, then
the information entropy Sp = 0. Of course, in this case,
the result of the measurement will be certainly xk. On
the other hand, if all n values occur with the same prob-
ability pi = 1/n the uncertainty about the outcome of the
measurement reaches its maximum and the information
entropy Sp = log n. The information entropy as given by
Equation (1) can also be seen as the average value of the
quantity Y of n discrete values yi = −log pi occurring
with the probabilities pi. Each single value −log pi can be
regarded as the uncertainty to obtain the value xi for the
quantity X.

The electron density ρ(r) is connected with the prob-
ability (multiplied by the number of electrons in the sys-
tem) of finding the coordinates of an electron between
r and dr, with the remaining electrons distributed any-
where in the space. Let us take for the measured quantity
the determination of the position r of an electron. The
information entropy Sρ for this measurements, describ-
ing the spread of the electron density, is given by:

Sρ = −
∫

ρ(r) log ρ(r) dr. (2)

In accordance with the discrete case, the function
− log ρ(r) can be interpreted as the uncertainty in the
prediction of the electron position and the information
entropy Sρ as the mean value of this uncertainty [29].
Often the terms local Shannon information for s(r) =
−ρ(r) log ρ(r) as well as Shannon information density
per particle for the function − log ρ(r) are used [30].
Shannon entropy was also connected with the correlation

strength [31] as well as utilised in the orbital-free density-
functional theory (DFT) [32]. The combined Shannon
entropies in position and momentum space are involved
in the derivation of the Heisenberg uncertainty relation
[33].

The investigation of Wang and Parr [4] and Kohout
et al. [16] corroborated the idea that the electron
position uncertainty − log ρ(r) as well as its gradient
−∇ρ(r)/ρ(r), also termed the local wave-vector, is able
to detect the shell structure of atoms. However, as Wang
and Parr stated ‘... the transitions from one exponential to
the next occur over certain intervals and cannot be associ-
ated with single points.’ Some years later, Bohórquez and
Boyd connected −∇ρ(r)/ρ(r) with the so-called quan-
tum spread P̃, which is a part of the local representation
of the momentum operator [21]:

P̃(r) = −�

2
∇ρ(r)
ρ(r)

. (3)

Analysing the representation of the atomic shell structure
with the magnitude of the quantum spread P̃, the above
authors defined the radial inflection points ∂2P̃/∂r2 = 0
located after each local maximum as the shell boundaries.
The application of this procedure for some closed shell
atoms yielded shell populations close to the one of ELF,
with somewhat lower populations of the first shell when
compared to the ELF results (which overestimate the
first shell population) [21]. This approach could easily be
applied also to atoms with spherically averaged electron
density. However, it would be more complex to employ
such definition of the shell boundaries for molecules due
to the los of the sphericity.

This obstacle can be simply circumvented by the util-
isation of the Laplacian of the electron position uncer-
tainty, instead of the radial curvature. Let us define the
position uncertainty curvature (PUC):

PUC = −∇2 log ρ(r) =
[∇ρ(r)

ρ(r)

]2
− ∇2ρ(r)

ρ(r)
. (4)

The PUC is given by two term – the scaled density gra-
dient and the scaled density Laplacian, respectively –
in ratio 1:1. Interestingly, there is another density func-
tion also composed of these two terms, namely the OEP
defined by 1/2 (∇2√ρ)/

√
ρ [12,34]. For OEP, the cor-

responding ratio of the two terms is 1:2. The OEP was
used to visualise the chemical bonding [12] and it nicely
resolves the atomic shell structure [20].

In case of spherical symmetry, the �2 operator is
replaced by �2/�r2 + (2/r)�/�r, i.e. the second right-
side term of Equation (4) will be split into two contribu-
tions. For large distances from the nucleus ρ(r)� krβe−αr
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Figure . Atomic shells represented by PUC using the wave functions of Clementi and Roetti. (a) Be atom. (b) Ag atom. The spurious
minimum at . bohr within the th shell is marked by the arrow.

(with k, α > 0 and β � 0) [35]. Applying this to Equa-
tion (4) yields 2α/r − β/r2, i.e. the PUC asymptotically
approaches zero from above for infinite distance r. At the
origin ,�2ρ(r) is negative infinite, whereas the first term
on the right hand side of Equation (4) approaches a con-
stant (see for instance Ref. [10]). Hence, a positive infinite
PUC is found at the atomic origin.

A positive curvature is found at such points, where the
position uncertainty is lower than the average value in
the closest neighbourhood. The uncertainty in the locali-
sation of an electron (compared to the average value in the
closest neighbourhood) decreases, i.e. the electron den-
sity is less spread, with increasing value of PUC. Thus,
it is an appealing idea to assign the (positive) peaks in a
−∇2 log ρ(r) vs. radius diagram to the atomic shells and
the positions of theminima between the peaks to the shell
radii. This definition of shell radii based on PUC is rea-
sonable also from another point of view. Namely, because
for the second row atoms, two shells are expected (and
two PUC maxima are indeed found, cf. Figure 1(a) for
the Be atom). Whereas the first shell has a finite radius
(correspondingly, there is a negative PUCminimum), the
second one extends to infinity. In contrast, choosing the
zeros of PUC as the shell delimiters would result in two
finite shell radii (otherwise one of the odd or even zeros
had to be chosen), cf. Figure 1(a). Because PUC is defined
independently of the symmetry of the systems, it can be
easily applied to molecules and crystals.

3. Results and discussion

Using the wave functions of Clementi and Roetti [36] for
the atoms Li to Xe, the spherically averaged electron den-
sities ρ(r) as well as the PUC = −�2log ρ were calcu-
lated with the DGrid program [37]. The minima of PUC
were detected and assigned to the atomic shell radii. The
electron density within the radial shells were integrated

yielding the corresponding shell populations. The results
are compiled in Table 1.

The shell radii, and thus also the shell populations, are
very close to the data obtained for ELF using the so-called
‘closed-shell’ formula [17] (at the single-determinantal
level this applies also to ELI-D). The shell populations
of the first three shells as given by PUC differ at most
by 0.1 electrons from the data determined by the ELF.
Correspondingly, this means that also for PUC the first
shell is slightly over-populated by 2.3 electrons, starting
already at the V atom. The same is true for the second
shell occupied up to 8.8 electrons in case of Cd to Xe. In
contrast, up to 1 electron is missing in the third shell (in
case of full occupation according to the PeriodicTable). In
case of PUC, the shell occupations of the fourth shell are
closer to 18 electrons (for full shell occupation) than are
the corresponding shell populations determined for the
ELF.

There are four exceptions where the valence shells are
not properly resolved. In case of the Pd atom, the fifth
shell is not occupied according to the Aufbau principle.
However, PUC shows an unexpected minimum for the
shell boundary with 0.7 electrons present in this spuri-
ous ‘valence’ shell. Indeed, this behaviour is similar to the
one for atomic shells determined from the OEP, in which
case even 2.3 electrons are found in such fifth shell for the
Pd atom [20]. The another exception is the Ag atom for
which the ‘ideal’ shell occupation [38] assumes 1 electron
in the valence shell. Similarly, ELF delivers 1.1 electron
for the fifth shell, whereas the OEP valence shell is over-
populated by 2.8 electrons [20]. Although there are 0.9
electrons outside the fourth PUC shell for the Ag atom,
cf. Table 1, the valence shell is split into two parts. As can
be seen from Figure 1(b), there is a shallow PUC mini-
mum at 4.43 bohr which formally splits the valence shell
of Ag into a part populated by 0.6 electrons and an outer
part populated by 0.3 electrons.
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Table . The shell radii and electron populations given by the minima of
−�log (ρ).

Atom qK rK qL rL qM rM qN rN qO

Li (S) . . . – – – – – –
Be (S) . . . – – – – – –
B (P) . . . – – – – – –
C (P) . . . – – – – – –
N (S) . . . – – – – – –
O (P) . . . – – – – – –
F (P) . . . – – – – – –
Ne (S) . . . – – – – – –
Na (S) . . . . . – – – –
Mg (S) . . . . . – – – –
Al (P) . . . . . – – – –
Si (P) . . . . . – – – –
P (S) . . . . . – – – –
S (P) . . . . . – – – –
Cl (P) . . . . . – – – –
Ar (S) . . . . . – – – –
K (S) . . . . . . . – –
Ca (S) . . . . . . . – –
Sc (D) . . . . . . . – –
Ti (F) . . . . . . . – –
V (F) . . . . . . . – –
Cr (S) . . . . . . . – –
Mn (S) . . . . . . . – –
Fe (D) . . . . . . . – –
Co (F) . . . . . . . – –
Ni (F) . . . . . . . – –
Cu (S) . . . . . . . – –
Zn (S) . . . . . . . – –
Ga (P) . . . . . . . – –
Ge (P) . . . . . . . – –
As (S) . . . . . . . – –
Se (P) . . . . . . . – –
Br (P) . . . . . . . – –
Kr (S) . . . . . . . – –
Rb (S) . . . . . . . . .
Sr (S) . . . . . . . . .
Y (S) . . . . . . . . .
Zr (S) . . . . . . . . .
Nb (S) . . . . . . . . .
Mo (S) . . . . . . . . .
Tc (S) . . . . . . . . .
Ru (S) . . . . . . . – –
Rh (S) . . . . . . . – –
Pd (S) . . . . . . . . .
Ag (S) . . . . . . . . .a
Cd (S) . . . . . . . . .
In (S) . . . . . . . . .
Sn (S) . . . . . . . . .
Sb (S) . . . . . . . . .
Te (S) . . . . . . . . .
I (S) . . . . . . . . .
Xe (S) . . . . . . . . .

Note:qK, electronic population in the K shell; rK, radius of the K shell (in a.u.).
aThe valence shell of Ag is split by shallowminimum at . bohr into two regions, pop-
ulated by .e and .e, respectively.

The two remaining exceptions concern a missing
valence shell. For the atoms Ru and Rh, the Aufbau prin-
ciple predicts valence shells occupied by 1 electron. The
ELF resolves the valence shells for both atoms, with rea-
sonable occupations of 1.3 and 1.2 electrons for Ru and
Rh, respectively. Even the OEP shows separate valence

shell for Ru and Rh, although heavily over-populated by
almost 3 electrons. In contrast, there are no populations
given in Table 1 for the fifth shell of Ru and Rh. The
inspection of Figure 2 helps to clarify this issue. Whereas
all four inner shells of Ru and Rh are well represented
by PUC maxima, there is in both cases only a shoulder



MOLECULAR PHYSICS 1301

Figure. Atomic shells representedbyPUCusing thewave functionsof Clementi andRoetti. The arrowsmark the shoulder present instead
of the th shell maximum. (a) Ru atom. (b) Rh atom.

indirectly suggesting the presence of the valence shell.
Not even the utilisation of a wave function from, for
instance, a relativistic density functional calculation will
amend this feature.

Proper representation of the atomic shell structure
is an essential prerequisite for plausible analysis of the
bonding situation in molecules and solids. Then, the core
regions which do not strongly participate on the bonding
can be reasonably separated in the position space from
the valence region that can be subsequently analysed in
detail. As an example, the bonding of the cyclopropane
C3H6 was analysed with PUC. The C3H6 was computed
with the program GAMESS [39] at the HF level using
the correlation consistent triplet zeta basis set CCT. The
optimised HF distances amount to d(CC) = 2.828 bohr
and d(CH) = 2.028 bohr, respectively. With the program
DGrid, the output of GAMESS was converted into a wave
function data file and the PUC distribution computed on
an equidistant grid of 0.025 bohr mesh size.

In Figure 3(a), the spherical isosurfaces of PUC= 4.25
marking the core regions of the carbon atoms can be
observed. The corresponding core PUC basins enclose
2.09 electrons. This is a situation closely resembling the
ELI-D results for the HF calculation of C3H6. The 4.25-
localisation domains include the almost spherical isosur-
faces around the hydrogen positions. Additionally, there
are also isosurfaces located between the C and H iso-
surfaces along the C–H line. Each hydrogen PUC basin
encloses 1.32 electrons, whereas the C–H basin is popu-
lated by 0.75 electrons. This is a situation very different
from the one for ELI-D (respectively, ELF), which typi-
cally shows only a single hydrogen localisation domain
with an ELI-D basin populated (in case of C3H6) by 2.03
electrons. A separate ELI-D domain between the C andH
atoms is not present. Similarly, there are two localisation
domains, displayed in Figure 3(a) as red coloured isosur-
faces of PUC = 3.0, between the carbon atoms. In case

of ELI-D, there is only single localisation domain (sin-
gle attractor) representing the C–C bond. This behaviour
can be easily explained by the inspection of the PUC and
ELI-D topology for the free atoms. Whereas the posi-
tions of the minima (the atomic shell boundaries) are
almost identical, the positions of the shell maxima for
PUC (1.028 bohr) and ELI-D (1.488 bohr) are very dif-
ferent for the C atom. Taking as a first approximation
for the C–C bond a simple overlap of the atomic PUC
and ELI-D distributions shows that the PUCmaxima are
much closer to the nuclei than the C–C midpoint (1.414
bohr), whereas the ELI-D maxima are located slightly
behind the C–C midpoint. This is a typical topological
feature of PUC showing separate shell maxima and cor-
responding saddle point as the signature of bond. Inter-
estingly, this allows in certain sense to define kind of bond
polarity, because the bond is represented by two PUC
basins related to separate participating atom. Of course,
in case of the C–C bond, each of the C atoms yields the
same contribution (0.88e) to the population of the bond
(super)basin. Similarly, considering the combined hydro-
gen andCHPUC-basin (together populated by 2.07e) as a
‘split’ ELI-D hydrogen basin would yield 64% of the com-
bined population to be located at the H atom and 36%
attributed to the C atom. This seems to be far too polar
for the C–H bond in the cyclopropane.

Figure 3(b) shows the PUC for the N2 molecule com-
puted with GAMESS at the HF level using the CCT basis
set at the optimised distance of 2.017 bohr and evalu-
ated on a grid of 0.025 bohr mesh size. Again, the core
region can be nicely recognised by the two spherical
4.4-localisation domains. The correspond core basins are
populated by 2.1 electrons. In the valence region, the two
lone pair regions are visible by separate outwards pointing
4.4-localisation domains with the corresponding basins
populated by 3.2 electrons. There is also a separate irre-
ducible 4.4-localisation domain for the bond. Thus, for
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Figure . PUC localisation domains for the CH andN molecules. (a) HF calculation of CH using the CCT basis. Red coloured: isosurfaces
of PUC = .. Yellow coloured: isosurfaces of PUC = .. (b) HF calculation of N using the CCT basis. Blue coloured: .-localisation
domain. Yellow coloured: isosurfaces of PUC=.. (c) CISD calculation of N using the CCT basis. Yellow coloured: .-localisation domains.
(d) DFT calculation of N using the TZP basis. Yellow coloured: .-localisation domains.

the HF wave function, there is only single PUC attrac-
tor at the bond line. The corresponding basin is pop-
ulated by 2.9 electrons. Additionally, the blue coloured
1.77-localisation domain located around a ring attrac-
tor describes a second bond feature, with the basin pop-
ulated by 0.4 electrons. Besides this ring attractor, the
description of the nitrogen bond is similar to the one with
ELI-D, also showing with 2.9e somewhat over-populated
lone pair basins.

For the N2 molecule, a configuration-interaction cal-
culation was performed with single and double excita-
tions (CISD) of 10 electrons (i.e. with inactive core elec-
trons) into 58 orbitals using the CCT basis set (the opti-
mised bond distance of 2.059 bohr was used). The PUC
distribution shown in Figure 3(c) displays at first glance
less features than the diagram for the HF calculation,
because of the absence of the bonding ring localisation
domain. Otherwise, the 4.4-localisation domains again
mark the core regions and lone pair regions as well as
the bonding region. The corresponding core, lone pair,
and (combined) bond basins are populated by 2.1e, 3.8e,
and 2.1e, respectively. This means that for the CISD wave
function, the lone pair as represented by the PUC basin
is even more over-populated than in case of the HF wave
function. In contrast to the HF PUC topology, as already
indicated above by the word ‘combined’, the bond basin
for the CISD calculation is split into two basins, i.e. the

4.4-localisation domain in Figure 3(c) is reducible due to
a shallow PUC saddle point at the bond midpoint.

For comparison, the DFT calculation of N2 was per-
formed with the ADF program [40–42] using the TZP
basis set and the BLYP functional at the bond distance of
2.060 bohr. The PUC was computed on a grid of 0.025
bohr mesh size. Figure 3(d) with the 4.2-localisation
domains shows the core and lone pair regions together
with clearly separated localisation domains representing
the bond. The populations of the corresponding basins is
almost the same as the for the CISD calculation. The pro-
nounced separation of the two bond PUCmaxima results
from changes in the electron density. The comparison
between the electron density for the DFT and CISD cal-
culation reveals slight decrease of the density in the bond
and lone pair region accompanied by a density increase
in the inter-shell regions. The density decrease around the
bondmidpoint changes the curvature of the electron den-
sity, thus, affecting the distribution of PUC.

4. Conclusion

The Shannon information entropy derived from the elec-
tron density describes the spread of the density. It can
be seen as the mean value of the Shannon information
density per particle − log ρ(r), which is connected with
the uncertainty in the prediction of the position of an
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electron. The position uncertainty can be inspected from
the topological viewpoint by the analysis of its Lapla-
cian. This defines the PUC = −∇2 log ρ(r), that indi-
cates whether the uncertainty is higher or lower than the
average in the surrounding. PUC is able to resolve the
atomic shell structure for almost all atoms from Li to Xe
not only qualitatively but also to yield reasonable shell
populations, similar to the one for ELI-D/ELF. The indi-
cator PUC is applicable to molecules and crystals. It was
demonstrated that localisation domains of PUC can be
used as bonding descriptors representing core region, as
well as lone pairs and bonds. Because the PUC atomic
shell maxima are located closer to the corresponding
nuclei, the bonds are usually characterised by two irre-
ducible localisation domains and a PUC saddle point. The
PUC is derived from the electron density and thus can be
evaluated also from the experimental densities.
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