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ABSTRACT
Liquid-crystal phase equilibria of Lennard-Jones chain fluids and the solubility of a Lennard-Jones gas
in the coexisting phases are calculated from Monte Carlo simulations. Direct phase equilibria calcu-
lations are performed using an expanded formulation of the Gibbs ensemble. Monomer densities,
order parameters, and equilibrium pressures are reported for the coexisting isotropic and nematic
phases of: (1) linear Lennard-Jones chains, (2) a partially-flexible Lennard-Jones chain, and (3) a binary
mixture of linear Lennard-Jones chains. The effect of chain length is determined by calculating the
isotropic-nematic coexistence of linear Lennard-Jones chain fluids made of 8, 10, and 12 segments
(8-, 10-, 12-mer). The effect of molecular flexibility on the isotropic-nematic equilibrium is studied
for a Lennard-Jones 10-mer chain fluid with one freely-jointed segment at the end of the chain. An
isotropic-nematic phase split and fractionation are reported for a binary mixture of linear 7-mer and
12-mer chains. Simulation results are compared with theoretical results as obtained from a recently
developed analytical equation of state based on perturbation theory. Excellent agreement between
theory and simulations is observed. The solubility of amonomer Lennard-Jones gas in the coexisting
isotropic and nematic phases is estimated using the Widom test-particle insertion method. A linear
relationship between solubility difference and density difference at isotropic-nematic coexistence is
observed. It is shown that gas solubility is independent of the nematic ordering of the fluid, at con-
stant temperature and density conditions.

1. Introduction

Liquid crystals are elongated molecules that form fluid
phases with a certain degree of molecular order. In
the isotropic phase, molecules are arranged without any
long-ranged orientational nor positional ordering, while
in liquid-crystalline phases both orientational ordering

CONTACT Thijs J. H. Vlugt t.j.h.vlugt@tudelft.nl

(nematic phase) as well as positional ordering (smec-
tic phases) are possible. In general, a certain degree of
molecular anisotropy is required for the appearance of
liquid-crystal phases [1,2]. Early theoretical work on the
subject, i.e. the work of Onsager [3], Born [4,5], and
Maier and Saupe [6–8], respectively, has shown that both
repulsive and attractive interactions between molecules
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can drive the transition to a liquid-crystal phase. Nowa-
days, it is well understood that anisotropic repulsive
molecular interactions are a necessary condition for the
appearance of ordered phases [9–11], while both repul-
sive and attractive interactions determine the rich phase
behaviour observed in liquid-crystal fluids [1,2].

Simulation and theoretical studies of complex flu-
ids are often based on a coarse-grained description of
molecules. Coarse-grained models are used to reduce
the information of molecular structure into main molec-
ular properties, summarised by a small set of model
parameters. Simulations based on coarse-grained mod-
els can access longer time and length scales than their
atomistic counterparts, allowing a bulk description of
fluids. Coarse-grainedmodels are commonly used to rep-
resent a simplified picture of large molecules, such as
biomolecules [12–16], polymers [17–22], or liquid crys-
tals [23–28]. Moreover, simulation results obtained from
coarse-grained models can be directly compared with
theoretical predictions that are based on a well-defined
Hamiltonian, such as the family of perturbation theo-
ries developed from the statistical association fluid the-
ory (SAFT) [29–36]. While, traditionally, this relation
between fluid theories and molecular simulations was
primarily used for the development of improved theories,
more recent developments show that this is not a one-way
street, as accurate SAFT-type theories also provide a very
efficient means to derive coarse-grained force fields for
use in molecular simulations [20,22,37–42] (see Ref. [21]
for a recent review).

Typically, coarse-grained models use simple expres-
sions for the interaction energies. Pair-interaction
potentials as hard-sphere [43–49], hard-ellipsoid
[50–52], hard-spherocylinders [53–55], and the Gay-
Berne potential [56–61] are popular for studying liquid
crystals. Other more elaborated interaction models
have been proposed, e.g. hard-spherocylinder with an
attractive square-well potential [28,62–64], hard-disc
with an anisotropic square-well attractive potential [27],
hard-spherocylinder with an attractive Lennard-Jones
potential [65], anisotropic soft-core spherocylinder
potential [66,67], and copolymers [68–70]. In this work,
we focus our study on the isotropic-nematic phase
behaviour of linear and partially-flexible Lennard-Jones
chain fluids. To the best of our knowledge, apart from our
recent work [71], there is no other study showing simu-
lation results for the isotropic-nematic phase transition
of Lennard-Jones chains. Galindo et al. [72] studied the
phase behaviour of linear Lennard-Jones chains of 3 and
5 segments; however, in that study, no liquid-crystalline
phases were observed due to the short length of the
chains. The importance of this study is twofold, first to
determine the effect of main molecular characteristics

(such as chain length, flexibility, attractive interactions,
and composition of mixtures) on the isotropic-nematic
behaviour of long Lennard-Jones chains, and second to
validate the analytical equation of state presented by van
Westen et al. [71] for Lennard-Jones chain fluids with
variable degree of flexibility.

The equation of state of van Westen et al. [71] was
developed using a perturbation theory based on a ref-
erence fluid of hard-chain molecules. An important
assumption in the development of the equation of state
was that of orientation-independent attractive interac-
tions. As shown in Ref. [71], this assumption leads to
an excellent description of the isotropic-nematic phase
behaviour of a linear Lennard-Jones 10-mer fluid. We
here provide a more elaborate evaluation of the equation
of state comparing it to simulation data, allowing further
analysis on the effect of molecular orientation on attrac-
tive dispersion interactions.

An important property of liquid crystals, relevant for
technological applications, is the solubility of gases in
them. Recently, liquid crystals have been proposed as new
solvents for CO2 capture [73–77]. The principle behind
this application is the drop in the solubility of gases
observed at the fluid–fluid transition from the isotropic to
the nematic phase [74,78,79]. This phase change is asso-
ciated with a very low enthalpy of transition �HN-I ∼
1–10 kJ/mol, taking place at a broad range of tempera-
ture and pressure conditions [80]. In this work, we use
molecular simulations to analyse the effect of density,
temperature, and composition of mixtures, on the solu-
bility difference of gases between the coexisting isotropic
and nematic phases.

This paper is organised as follows. In Section 2, we
describe briefly the expanded Gibbs ensemble simu-
lation method for the direct calculation of the phase
equilibrium between two phases. In Section 3, results are
presented for the isotropic-nematic phase equilibria of
linear Lennard-Jones chain fluids (Section 3.1), partially-
flexible Lennard-Jones chain fluids (Section 3.2), and
a binary mixture of linear Lennard-Jones chains
(Section 3.3). Solubility results for a Lennard-Jones
gas in the coexisting isotropic and nematic phases of the
studied systems are presented in Section 3.4. Our results
are summarised in Section 4.

2. Molecular model and simulationmethods

In this work, we study the isotropic-nematic phase
equilibria of linear and partially-flexible Lennard-Jones
chains. A chain molecule is defined as a molecule made
of spherical segments connected by a rigid segment-to-
segment bond length equal to the segment diameter σ .
A linear chain is defined as a chain molecule with all
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segments on the same axis. Linear chains with m seg-
ments are identified as a linear m-mer. Partially-flexible
chain molecules are made of a linear part and a freely-
jointed flexible part. The partially-flexible model is pro-
posed in similarity with real liquid-crystal molecules,
formed by a rigid core and a flexible tail. The freely-
jointed part is not governed by any bond-bending or tor-
sional potential, therefore, it is free to adopt any pos-
sible molecular configuration subject to the constraints
of a rigid bond length and the pair potential interaction
between segments. A partially-flexible chain molecule of
m segments in total andmR segments in the rigid block is
denoted as a partially-flexiblem-mR-mer [81].

The pair potential between two segments i and j sep-
arated by a distance rij is defined by the Lennard-Jones
potential,

ui j(r) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (1)

where ε is the depth of the potential well and σ is the
segment diameter identified as the zero-potential dis-
tance between two segments. ε and σ are constant for
all segment pair-interactions considered in this work.
Intermolecular pair interactions are evaluated for seg-
ments of different molecules and for segments of the
same molecule that are separated by two or more bonds.
All magnitudes reported in this study are dimension-
less with ε as the basis for energy and σ as the basis
for length. Some of these magnitudes are: reduced tem-
perature T∗ = kBT/ε, where T is the temperature and
kB is the Boltzmann constant; reduced monomer density
ρ∗
m = mNσ 3/V , whereN is the number ofmolecules; and

reduced pressure P∗ = Pσ 3/kBT, where P is the pressure
of the system. In a binary mixture, the reduced monomer
density is defined as ρ∗

m = (m1x1 + m2x2)Nσ 3/V , where
x1 and x2 are themole fraction of the short and long chain,
respectively.

Phase equilibria calculations are performed in an
expanded version of the Gibbs ensemble [49,82,83]. A
brief explanation of the method is given here, while
a detailed description can be found in our previous
work [49]. Two forms of the method are distinguished:
a constant volume ensemble in which the total volume of
the system (the volume of both simulation boxes) remains
unchanged, and a constant pressure ensemble in which
the pressure of the system is defined and the volume
of each simulation box is varied independently. In both
cases, the partition function is defined for a constant total
number of molecules and temperature. Constant volume
simulations are used for the calculation of single com-
ponent systems, while constant pressure simulations are

used in the case of mixtures. In an expanded formulation
of the Gibbs ensemble, molecular transfer is performed
by a gradual exchange of molecules between phases.
Different methods have been proposed for this gradual
transfer: configurational-bias insertions/deletions of seg-
ments of a tagged molecule [82,84,85], continuous cou-
pling of the intermolecular interactions of a fractional
molecule [83,86,87], and discrete coupling of the seg-
ments of a fractional molecule [49]. Here, we use the
discrete-coupling method for the gradual transfer of a
fractional chain molecule. A fractional chain molecule
is defined as a molecule that has a varying number of
interacting segments (pair interactions). The number
of interacting segments is determined by the coupling
state λ, ranging from λ = 0 for a fractional molecule
that experiences only bonded interactions, to λ = mi
(the total number of segments of a chain molecule
of type i) for a fractional molecule that fully inter-
acts with itself and the other molecules. We distinguish
between fractional molecules, where changes in the cou-
pling state takes place, and whole molecules, which are
not subject to changes in their coupling state. There
is one fractional molecule in each phase per compo-
nent type i. It is important to note that a fractional
molecule in the coupling state mi is identical to a whole
molecule, but it is only considered as a whole molecule
after molecular transfer takes place. Molecular transfer
is defined as the state change in the coupling param-
eter from mi of an old fractional molecule to 0 of a
new fractional molecule. When molecular transfer takes
place, the fractional molecule becomes a new whole
molecule and a new fractional molecule without any pair
interactions (but with bonded interactions) is randomly
inserted in the system. In the case of partially-flexible
molecules, a new molecule with random molecular con-
figuration is inserted. In the phase where the molecule
is transferred from, a new fractional molecule is cho-
sen randomly from all other whole molecules of the
same species. Fractional molecules are subjected to all
Monte Carlo trial moves irrespectively of their coupling
state.

In the standard Boltzmann sampling, intermediate
coupling states are rarely visited, limiting the efficiency
of the method. Therefore, weight functions for each cou-
pling state are introduced to bias the Boltzmann statis-
tics of the system. The weight functions are not known
a priori and an iterative method is required for their cal-
culation. The Wang–Landau sampling method is used
for shifting the density of states in the coupling param-
eter space towards uniform sampling [88,89]. Equilib-
rium properties of the unweighted system are recovered
by accumulating weighted averages over the Markovian
process.
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The pair potential of Equation (1) is truncated at a
cut-off radius rc = 2.5σ and the usual long-range tail
corrections are applied [90,91]. The contribution of the
fractional molecules to the tail corrections is neglected,
as this energy contribution is very small. The pressure
of the system is calculated by the molecular virial for
chain molecules in a system with periodic boundaries as
described by Theodorou et al. [92].

At every Monte Carlo step, one of the following
trial moves is attempted: displacement, rotation, repta-
tion, configurational-bias partial regrowth (only for par-
tially flexible molecules) [91], volume change, identity
exchanges [93] (only for mixtures of linear chains), and
coupling parameter change. Trial moves are selected ran-
domly with a fixed probability proportional to the ratio
100:100:10:100:1:100:1000, respectively. Volume changes
are performed isotropically in the logarithm of the vol-
ume. Initial isotropic configurations are placed in a cubic
box, while initial nematic configurations are placed in
a rectangular box with an edge length ratio of 1:1.1:1.2.
Periodic boundary conditions are used in all systems. The
maximum displacement, rotation, volume, and coupling
parameter changes are adjusted for a maximum accep-
tance ratio of 20%.AMonteCarlo cycle consists of a num-
ber of trial moves equal to the total number of molecules
in the system (∼1× 103). Equilibration requires typically
3× 106 cycles and averages were collected in 2× 106 pro-
duction cycles.

Nematic phases are characterised by the order param-
eter S2, defined as the average of the second-order Legen-
dre polynomial P2(cos θ) [1,2],

S2 =
〈
1
N

N∑
i=1

P2(cos θi)

〉
= 3

2

〈
1
N

N∑
i=1

(
cos2 θi − 1

3

)〉
,

(2)

where θ i is the angle between the molecular axis of
molecule i and the nematic director. This definition of
the order parameter requires two iterations over the total
number of molecules, a first for determining the nematic
director and second for calculating the order parameter
itself. Alternatively, the order parameter can be calculated
from the largest eigenvalue of the de GennesQ-tensor [1],
which represents the maximum difference of the second-
order tensor between the ordered phase and a perfect
isotropic phase [48,94]:Q = 1

N
∑N

i=1(qiqi − 1
3 I), whereq

is a unit vector that identifies the direction of the molec-
ular axis with respect to the laboratory frame. The order
parameter S2 is proportional to the ensemble average
of the largest eigenvalue of the Q-tensor, S2 = 3

2 〈λ+〉. A
value of S2 close to 0 indicates the presence of an isotropic

phase and a value close to 1 indicates nematic order-
ing. The molecular axis of partially-flexible molecules is
defined as the eigenvector corresponding to the smallest
eigenvalue of the moment of inertia tensor [46].

Positional ordering is detected by the smectic order
parameter, which is defined by the magnitude of the first
Fourier component of the normalised density wave along
the nematic director [95,96],

τ = 1
N

∣∣∣∣∣∣
N∑
j=1

eikzz j

∣∣∣∣∣∣ . (3)

In this equation, kz = 2π /λz, where λz is the periodic-
ity of the smectic layers, and zj is the coordinate of the
centre of mass of the jth molecule in the direction of the
nematic director. Values of the smectic order parameter,
which differ significantly from zero, indicate the presence
of smectic layers.

Infinite dilution solubility of gases is expressed
as a dimensionless Henry coefficient defined by
H∗

k (T, ρ, x) = Hk(T, ρ, x)/ρkBT , where Hk is the
Henry coefficient of component k in a fluid with number
density of molecules ρ and mole fraction x. Dimension-
less Henry coefficients are related to the infinite dilution
residual chemical potential μres

k (T, ρ, x) of a gas in a
solvent [97], and are calculated in constant pressure
Monte Carlo simulations using the Widom test-particle
insertion method [98,99],

lnH∗
k (T, ρ ′, x)=μres

k (T, ρ ′, x)
kBT

=− ln
〈V exp[−βU ins]〉

〈V 〉 .

(4)

It has to be noticed that, in this equation ρ ′ = 〈N/V〉
is the average density of the fluid at constant tempera-
ture and pressure conditions. The insertion energy Uins

is equal to the energy change when a Lennard-Jones seg-
ment is temporary placed at a random position in the
fluid. The infinite dilution solubility of a Lennard-Jones
segment is measured in both the coexisting isotropic
and nematic phase at equilibrium. Equilibrium configu-
rations are sampled every 1 × 103 Monte Carlo cycles in
which a total of 100 test-particle insertions are attempted.

3. Results

The simulation results presented in this section are exten-
sively compared to a recently developed analytical equa-
tion of state of van Westen et al. [71]. The equation of
state was developed from a perturbation theory based on
a hard-chain reference fluid. The Helmholtz energy as
obtained from the equation of state can, thus, be written
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Table . Isotropic (I) and nematic (N) phase equilibria of linear Lennard-Jonesm-mer chain fluids as a function of reduced temperatures
T∗. For each phase, reduced monomer densities ρ∗

m, order parameters S, and reduced pressures P∗, are reported. Reported statistical
uncertainties are equivalent to one standard deviation.

T∗ ρ∗,I
m SI2 P∗,I ρ∗,N

m SN2 P∗,N

m= 

 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .

m= 

 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .

m= 

 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .

as a sum of different contributions, according to

A
NkBT

= Aid

NkBT
+ Ahc

NkBT
+ Adisp

NkBT
. (5)

Here, Aid is an ideal gas contribution, Ahc is a Helmholtz
energy due to chain formation, and Adisp is a contribu-
tion due to attractive dispersion interactions. The hard-
chain term was obtained from a rescaled Onsager the-
ory, based on theOnsager trial function for describing the
orientational distribution function of the molecules. The
dispersion term was developed using a second-order
Barker-Henderson theory [100,101], based on the radial
distribution function of hard-chain molecules in the
isotropic phase. The dispersion contribution is, there-
fore, independent on the orientation of the molecules.
For details on the equations for calculating the different
contributions, the reader is referred to the work of van
Westen et al. [71]. Details on the development of the dif-
ferent contributions to the equation of state can be found
elsewhere [81,102–105].

Previously, the equation of state was applied to
pure fluids only. Here, it is also applied to mix-
tures. The extension of the equation of state to mix-
tures is straightforward, and can be obtained from
Ref. [104] (chain contribution) and Ref. [105] (dispersion
contribution).

3.1. Linear Lennard-Jones chains

The liquid-crystal phase equilibria of linear Lennard-
Jones 8-, 10- and 12-mers were calculated from con-
stant volume expanded Gibbs ensemble simulations.
Initial estimates of densities in the coexisting isotropic
and nematic phases were obtained from the equation
of state of van Westen et al. [71]. Results for the lin-
ear 10-mer fluid were already shown in our previous
work [71], and results reported here were obtained from
longer simulation runs. Reduced monomer densities,
order parameters, and reduced pressures at the isotropic-
nematic coexistence are shown in Table 1 as a function
of reduced temperature. Temperature–density phase dia-
grams are shown in Figure 1 together with theoretical
results obtained from the equation of state. It can be
observed that for longer chains, the isotropic-nematic
equilibrium is shifted towards lower densities while the
density difference between both coexisting phases is
increased. Lower equilibrium densities and larger density
differences are a consequence of larger excluded volume
differences between the isotropic and the nematic phase
as the chain length increases [106]. For longer chains,
the pair-excluded volume is more anisotropic than for
shorter chains, resulting in a larger driving force for the
isotropic-nematic transition. Values for the order param-
eter in the isotropic phase deviate systematically from 0
due to the finite size of the system. Eppenga et al. [94]
derived a relation between the size of the system and
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Figure . Isotropic-nematic phase equilibria of linear Lennard-Jones chain fluids: (a) -mer, (b) -mer, and (c) -mer. Reduced temper-
ature T∗ vs. reduced monomer density ρ∗

m. Filled (•) and open (◦) symbols are simulation results for the isotropic and nematic phase,
respectively. Solid lines are theoretical results obtained from the analytical equation of state of van Westen et al. [].

values of the order parameter in the isotropic phase,
showing that the offset from zero is equal to 1/

√
N. In our

previous work [48], we showed the validity of this relation
for a system of hard-sphere chain molecules. In the sys-
tems studied here, the average number ofmolecules in the
isotropic phases was typically: 500 for the 12-mer system,
200 for the 10-mer, and 300 for the 8-mer.

As it is shown in Figure 1, the theoretical
results as obtained from the perturbation theory of
van Westen et al. provide an overall excellent description
of the isotropic-nematic phase diagram. Nevertheless,
some minor deviations can be observed. The small
but systematic overestimation of nematic equilibrium
densities is expected, since densities in the nematic
phase are already overestimated in the description of
the hard-chain reference fluid [103]. These small over-
estimations are a result of the approximations made for
describing higher (third, fourth, etc.) virial coefficients
in the rescaled Onsager approach for hard-chain fluids.
Equilibrium densities of the isotropic phase are slightly
different from simulation results, with an increasing
deviation for longer chain lengths. Albeit the deviations
are small, the increasing deviation with chain length
cannot be explained from the behaviour of the refer-
ence fluid [103], since the description of the hard-chain
reference system improves for longer chain lengths.
Figure 2 shows the reduced pressure vs. reduced tem-
perature diagram at isotropic-nematic coexistence for
linear Lennard-Jones chain fluids. In this figure, it can
be clearly identified that the theoretical description of
the isotropic-nematic phase equilibria is less accurate
as the chain length increases. Figures 1 and 2 suggest
that the theoretical description misses a small (positive)
contribution to the driving force for the isotropic to
nematic phase transition. van Westen et al. assumed that

 0
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Figure . Reduced temperature T∗ vs. reduced pressure P∗ at the
isotropic-nematic coexistence for linear Lennard-Jones -mer (+),
-mer (�), and -mer (×) chain fluids. Solid lines are theo-
retical results obtained from the analytical equation of state of
van Westen et al. [].

no explicit orientation dependent contribution in the
dispersive Helmholtz energy was required for a reliable
description of the isotropic-nematic phase equilibria of
Lennard-Jones chain fluids [71]. The results shown here
indicate that this assumption may be less justified for
longer chains, wherefore, a stronger effect of anisotropic
interactions is expected. Another theoretical assump-
tion that could explain the observed deviations is the
use of a fixed temperature-independent aspect ratio of
the molecules. This assumption is typically needed in
a perturbed-chain approach [105]; however, it reduces
the driving force for the isotropic to nematic phase
transition as the aspect ratio should slightly increase
with temperature (see e.g. Ref. [67]). An increased aspect
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Figure . Typical snapshots of ordered phases for a linear Lennard-Jones -mer chain fluid at coexistence between an isotropic phase
and: (a) a nematic phase at T∗ = , (b) a smectic-C phase at T∗ = , and (c) a crystal phase at T∗ = . The top row shows parallel views and
the bottom row shows perpendicular views to the largest axis of the simulation box.

ratio would lead to a more anisotropic molecule and,
therefore, a higher driving force for the phase transition.
In summary, we find systematic but small deviations
between theory and simulations that could be caused by
the assumption of orientation-independent attractions
or a fixed aspect ratio of the molecules. We conclude that
this assumption do not diminish an accurate description
of the phase equilibrium.

Figure 2 shows a linear relationship between pres-
sure and temperature at the isotropic-nematic coexis-
tence for linear Lennard-Jones chain fluids. Further anal-
ysis is obtained considering the Clapeyron equation,
dP/dT = �hI-N/(T�vI-N), where �hI-N is the enthalpy
change at the isotropic-nematic phase transition, and
�vI-N is themolar volume change between both phases at
coexistence. A constant slope dP∗/dT∗ indicates a propor-
tional relationship between enthalpy change and volume
change. It is remarkable that energetic and density effects
at the isotropic-nematic phase transition are directly cou-
pled, suggesting that any energetic change at the phase
transition can be described from the isotropic-nematic
density change and vice versa.

At temperatures lower than the ones reported in Fig-
ure 1 and Table 1, isotropic-smectic and isotropic-solid
phase coexistence is found. Figure 3 shows typical snap-
shots for a sequence of nematic, smectic-C, and crystal
phases for a linear 10-mer fluid as temperature decreases.
A similar picture of crystal and smectic-C phases of a
10-mer fluid at a constant monomer density of ρ∗

m = 0.8
was reported by Affouard et al. [107]. In the smectic-C
phase, molecules are positioned in layers and oriented
with the nematic director tilted with respect to the nor-
mal of the layers. Smectic phases were detected by the
smectic order parameter (Equation (3)) and identified as
smectic-C phases by inspecting snapshots of final config-
urations. Table 2 shows the results for the observed coex-
istence between isotropic and smectic-C phases. These
data should be considered only as preliminary due to
small differences (∼5%) in the calculated pressure of
both coexisting phases. This difference is a consequence
of the difficulties in arranging the tilted oriented lay-
ers in the periodically repeating rectangular box. In the
crystal phases, molecules are arranged in layers with the
molecular axis pointing in the direction of the normal of

Table . Isotropic (I) and smectic-C (SmC) phase equilibria of linear Lennard-Jonesm-mer chain fluids.

m T∗ ρ∗,I
m SI2 P∗,I ρ∗,SmC

m SSmC
2 P∗,SmC

  . ± . . ± . . ± . . ± . . ± . . ± .
  . ± . . ± . . ± . . ± . . ± . . ± .
  . ± . . ± . . ± . . ± . . ± . . ± .
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Table . Isotropic (I) and nematic (N) phase equilibria of the partially-flexible Lennard-Jones --mer chain fluid.

T∗ ρ∗,I
m SI2 P∗ , I ρ∗,N

m SN2 P∗ , N

 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .

the layers. Vega et al. [108] described the possible crys-
tal phases of hard-sphere dumbbells from closest pack-
ing considerations. These authors identified that dumb-
bells should be arranged in layers with their axis paral-
lel but tilted from the normal layer by approximately 35°.
In that study, the stacking of layers was considered in
three different ways, forming an ABAB (hexagonal close
packed), or an ABC (face-centred cubic) sequence, or a
sequence where layers are stacked alternating the tilted
angles between successive layers. Galindo et al. [72] con-
sidered the ABC sequence in the solid phases of lin-
ear Lennard-Jones chains, while Polson et al. [109] sug-
gested that an AAA (body-centred cubic) stacking with
a tilt angle of approximately 33° is the stable configura-
tion for the crystal phase of a 6-mer Lennard-Jones fluid
with finite bending potential. Simulations showing crys-
tal phases are considered only as an indication of the
formation of solid phases. This is because of large pres-
sure differences observed between both coexisting phases
and the known difficulties in performing direct phase
equilibrium calculations of systems including solids
[91,109–111].

3.2. Partially-flexible Lennard-Jones chains

The effect of molecular flexibility on the isotropic-
nematic phase equilibria of Lennard-Jones chain fluids
is studied for a partially-flexible 10-9-mer fluid. Table 3
reports the simulation data and Figure 4 compares the
isotropic-nematic coexistence densities of the partially-
flexible 10-9-mer to those of the linear 10-mer fluid. It
can be observed that the effect of flexibility is twofold:
(1) it increments the densities at which the phase tran-
sition takes place, and (2) it reduces the density differ-
ence between both phases. These observations can be
explained from the fact that the pair-excluded volume
of partially-flexible chains is less anisotropic than that of
linear chains [81], thereby constituting a smaller driving
force for the isotropic to nematic phase transition. The
average number of molecules in the isotropic phases was
around 200 for all the temperature conditions considered
here.

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

T*

ρ∗
m 

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

T*

ρ∗
m 

Figure . Isotropic-nematic phase equilibria of the partially-
flexible Lennard-Jones --mer compared to the linear Lennard-
Jones -mer chain fluid. Reduced temperature T∗ vs. reduced
monomer density ρ∗

m. Symbols and solid lines for the partially-
flexible --mer fluid as in Figure . Dashed lines are theoretical
results for the linear -mer fluid.

Another effect of flexibility is the appearance of smec-
tic phases at a temperature lower than the one observed
for the linear chain fluid. At T∗ = 5, isotropic-nematic
equilibrium is observed for the 10-9-mer fluid while
isotropic-smectic coexistence was found for the lin-
ear 10-mer fluid at the same temperature. Our obser-
vations suggest that the temperature of the isotropic-
nematic-smectic triple point of Lennard-Jones chain flu-
ids decreases with increasing flexibility, i.e. decreasing
molecular anisotropy. A similar behaviour was observed
in the case of Gay-Berne fluids with different shape
anisotropy [112–114]. At reduced temperatures, lower
than the ones reported in Figure 4 and Table 3, smectic
and crystal phases were observed, similarly as described
in the previous section.

3.3. Binarymixture of linear Lennard-Jones chains

Constant pressure expandedGibbs-ensemble simulations
are performed for determining the isotropic-nematic
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Table . Isotropic (I) and nematic (N) phase equilibria of the binarymixture of linear Lennard-Jones -mer and -mer chains at P∗ = ..
x is the mole fraction of the long chain (-mer).

T∗ xI2 ρ∗,I
m SI2 xN2 ρ∗,N

m SN2

 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
 . ± . . ± . . ± . . ± . . ± . . ± .
. . ± . . ± . . ± . . ± . . ± . . ± .

phase equilibria of a binary mixture of linear Lennard-
Jones 7-mer and 12-mer chains (7-mer+12-mer). Table 4
reports numerical results and Figure 5 shows a compar-
ison between simulation results and theoretical predic-
tions obtained from the analytical equation of state of
vanWesten et al. [71]. As before, an offset of 0 is observed
in the values for the order parameter for the isotropic
phase. The average number of molecules in the isotropic
phase ranges from approximately 70 at the highest tem-
perature to around 600 at T∗ = 9.

Phase split between an isotropic and a nematic phase
and fractionation of the fluid between both phases is
observed. Fractionation of the mixture into an isotropic
phase richer in the short chains and a nematic phase
richer in the long chains is a consequence of the more
anisotropic pair-excluded volume interactions of the long
chains. Figure 5(a) shows the mole fraction of the long
chain x2 in the isotropic and nematic phases at dif-
ferent equilibrium temperatures. An accurate descrip-
tion of fractionation between both phases is obtained

from theoretical calculations. Figure 5(b) compares sim-
ulation results for the isotropic and nematic coexis-
tencemonomer densities with theoretical results from the
equation of state. At constant mole fraction, a maximum
in the density of the nematic phase and a maximum in
the isotropic-nematic density difference is observed in the
range x2 = 0.4 − 0.6 from simulation results and at x2
= 0.5 from the theoretical results. Previously, a similar
behaviour was found for binary mixtures of linear hard-
sphere chains [49,104]. With increasing mole fraction of
the long component, the driving force for the phase tran-
sition increases, which leads to lower coexistence densi-
ties. However, the addition of a small amount of the long
component to a pure fluid of the short component leads
to a dramatic increase in the orientational order of the
system (due to induced order [104]). As a result, the den-
sity of the nematic phase increases. These two competing
effects lead to the observed maximum. Overall, compar-
ison between theory and simulations is accurate. A slight
overestimation of the isotropic and nematic monomer
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Figure . Isotropic-nematic phase equilibria for a binary mixture of linear Lennard-Jones -mer and -mer chains at a reduced pressure
of P∗ = .. (a) Reduced temperature T∗ and (b) reduced monomer density ρ∗

m vs. mole fraction of the largest component x. Symbols
and solid lines as in Figure . Dashed lines are constant temperature tie-lines as reported in Table . Pure component simulation data
for the -mer fluid are calculated from constant volume expanded Gibbs-ensemble simulations at temperatures close to the equilibrium
temperature. Equilibrium temperature and isotropic-nematic coexisting densities at the specified pressure of themixture are determined
by interpolation from the closest calculated equilibrium pressures.
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Figure . Infinite dilution solubility of a Lennard-Jones gas in the
coexisting isotropic and nematic phases of a linear Lennard-Jones
-mer chain fluid. Symbols and solid lines as in Figure . Dashed
lines are constant temperature tie-lines as reported in Table .

densities is observed, with larger deviations at lower tem-
peratures corresponding to a larger concentration of the
short chains. This effect is expected since the description
of the hard-chain reference fluid that underlies the per-
turbation theory becomes less accurate for shorter chain
lengths [104].

3.4. Solubility of gases in Lennard-Jones chains

In this section, we study the infinite dilution solubility
of a Lennard-Jones gas in the coexisting isotropic and
nematic phases of Lennard-Jones chain fluids. Solubil-
ity is described by the dimensionless Henry coefficient as
defined by Equation (4).

In Figure 6, simulation results for the solubility of a
Lennard-Jones gas in the coexisting isotropic andnematic
phases of a linear Lennard-Jones 12-mer chain fluid are
reported as a function of monomer density. A decrease
in solubility with density is observed in the isotropic
phase, while first an increasing and then a decreasing sol-
ubility is identified in the nematic phase. As tempera-
ture increases (see Figure 1(c)), decreasing solubilities in
the isotropic phase are caused by both larger equilibrium
temperatures and higher equilibrium densities, while the
increasing/decreasing behaviour in the nematic phase is
the consequence of a balance between larger tempera-
tures accompanied by lower equilibrium densities. Larger
solubility differences between both coexisting phases are
observed at lower equilibrium temperatures.

Figure 7 shows the infinite dilution solubility of a
Lennard-Jones gas in the coexisting isotropic andnematic
phases of a binary mixture of linear 7- and 12-mer at
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Figure . Infinite dilution solubility of a Lennard-Jones gas in the
coexisting isotropic and nematic phases of a binary mixture of lin-
ear Lennard-Jones -mer and -mer chains. Logarithm of dimen-
sionless Henry coefficient lnH∗

k vs. mole fraction of the long chain
x. Symbols and solid lines as in Figure . Dashed lines are constant
temperature tie-lines as reported in Table .
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Figure . Solubility difference � lnH∗
k as a function of reduced

monomer density difference�ρ∗
m at the isotropic-nematic phase

transition for linear Lennard-Jones -mer (+), -mer (�), and -
mer (×) chain fluids. Solid lines are theoretical results obtained
from the analytical equation of state of van Westen et al. [].

constant pressure. It can be identified that the solubil-
ity difference between both phases is always larger in the
mixture than in the pure components. A maximum in
the isotropic-nematic solubility difference is observed at
a mole fraction in the range x2 = 0.4 − 0.6 from simu-
lations and x2 = 0.5 from theoretical results. This max-
imum is directly related to the maximum density differ-
ence shown in the previous section (see Figure 5(b)).

Figure 8 shows the isotropic-nematic solubility
difference as a function of the density difference at coex-
istence for the linear Lennard-Jones chain fluids. A linear
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Figure . Infinite dilution solubility of a Lennard-Jones gas in a lin-
ear -mer fluid at the isotropic-nematic phase transition as a func-
tionofnematic ordering. LogarithmofdimensionlessHenry coeffi-
cient lnH∗

k vs. order parameter S. Results are obtained at constant
temperature T∗ =  and monomer density ρ∗

m = 0.42. Error bars
represent one standard deviation.

relationship between solubility difference and density
difference is identified in all cases. This result indicates
the central role that density has in solubility, which seems
to be independent of the nematic ordering of the fluid.
To confirm this supposition, we performed simulations
at constant number of molecules, volume, and temper-
ature, in the NVT ensemble, but restricting the nematic
ordering of the system, similarly as in our previous work,
Ref. [48]. Figure 9 shows the solubility of gases in a
12-mer for different values of the order parameter at
constant temperature and density. From these results, it
can be concluded that the solubility of a Lennard-Jones
gas molecule is independent of the nematic order-
ing of the fluid at constant density and temperature
conditions.

Figures 6 and 7 include theoretical results obtained
from the equation of state of vanWesten et al. for the same
temperature range considered in the simulations (see
Tables 1 and 4). These results indicate that the theory sys-
tematically underestimates the Henry coefficient. In Fig-
ure 8, we show the isotropic-nematic solubility difference
as a function of density difference. It can be observed, that
theory and simulations follow the same linear relation-
ship. This underlines the fact that the differences between
simulations and theory are systematic. Unfortunately, we
have not found the underlying reason for these system-
atic differences. In Figure 8, it can be observed that den-
sity differences are overestimated by the theory, with the
consequence of a higher solubility difference between
the isotropic and nematic phase. The overestimation of
the density difference at the isotropic-nematic transition
is a common flaw of rescaled Onsager theories of the

type examined in the work of van Westen et al., and is
expected to become less pronounced for longer chain
lengths.

4. Conclusions

The isotropic-nematic phase equilibria of Lennard-Jones
chain fluids were determined from direct phase equilib-
ria calculations using an expanded version of the Gibbs
ensemble.

Results for linear Lennard-Jones chain fluids showed
that increasing chain length leads to a decrease of the
isotropic-nematic coexistence densities and an increase
of the isotropic-nematic density difference. These results
are explained by a more anisotropic pair-excluded vol-
ume of longer chains, which constitutes a larger driv-
ing force for the isotropic to nematic transition. A linear
relationship between coexistence pressure and temper-
ature was found, indicating a proportional relationship
between energetic and volume effects at the isotropic-
nematic phase transition. We found evidence of the for-
mation of smectic-C and crystal phases. However, these
results are not conclusive due to the difficulties of the
current simulation technique in representing the bulk
behaviour of highly structured phases.

Simulation results were extensively compared to theo-
retical results as obtained froma recently developed equa-
tion of state of van Westen et al. [71]. It was found that
the equation of state provides an excellent description
of phase equilibria. The equation of state was developed
based on the assumption that attractive dispersive inter-
actions between Lennard-Jones chains do not depend
on their relative orientations. The good comparison to
simulation results, therefore, suggests that the effect of
anisotropic dispersion interactions is small, and that a
faithful description of real nematic liquid crystals could
well be developed without it.

The effect of flexibility was studied by means of
partially-flexible chains, consisting of a rigid linear part,
and a freely-jointed part. It was found that flexibility
shifts the isotropic-nematic equilibrium to larger den-
sities and pressures. This can be explained by the fact
that flexibility reduces the anisotropy of molecules, and
thereby lowers the driving force for the isotropic-nematic
transition.

Results for the isotropic-nematic coexistence of a
binary mixture showed fractionation of the fluid into an
isotropic phase richer in the short chains and a nematic
phase richer in the long chains. For this mixture, a
maximum in the density of the nematic phase and amax-
imum in the isotropic-nematic density difference at coex-
istence were identified. This maximum appears as a bal-
ance between a larger potential for the phase transition
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as the mole fraction of the long component increases
(reducing the coexisting isotropic density), and the order
induced in the nematic phase by a larger presence of
the long component (increasing the coexisting nematic
density).

The infinite dilution solubility of a Lennard-Jones
gas in Lennard-Jones chain fluids was estimated by the
Widom test-particle insertion method. Results for pure
components showed an increasing solubility difference
between coexisting isotropic and nematic phases as tem-
perature decreases. A linear relationship between solubil-
ity difference and density difference at coexistence was
identified for all linear Lennard-Jones systems. Results for
a binary mixture, at constant pressure, showed a max-
imum in the isotropic-nematic solubility difference as
a function of mole fraction. This maximum is directly
related to a maximum in the density difference between
both phases. Simulations at constant temperature and
density but with restricted values of the order parameter
showed that the solubility of a Lennard-Jones gas is inde-
pendent of the nematic ordering of the fluid.
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