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ABSTRACT
The theory of time-dependent quantum transport addresses the question: How do electrons flow
through a junction under the influence of an external perturbation as time goes by? In this article, we
invert this question and search for a time-dependent bias such that the system behaves in a desired
way.Our systemof choice consists of quantumdots coupled tonormal or superconducting leads.We
present results for junctionswithnormal leadswhere the current, thedensity or amolecular vibration
is optimised to follow a given target pattern. For junctions with two superconducting leads, where
the Josephsoneffect triggers the current tooscillate,we investigatewhat happens if the frequencyof
the Josephson oscillation comes close to the frequency of the molecular vibration. Furthermore we
show how to suppress the Josephson oscillations by suitably tailoring the bias. In a second example
involving superconductivity, we consider a Y-shaped junction with two quantum dots coupled to
one superconducting and two normal leads. This device is used as a Cooper pair splitter to create
entangled electrons on the two quantum dots. Wemaximise the splitting efficiency with the help of
an optimised bias.
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1. Introduction

Molecular quantum transport is a fast growing research
field. The ultimate goal is to produce electronic devices
using singlemolecules as their building blocks [1–4]. The
prospective improvements regarding operational speed
as well as storage capacity are expected to be enormous
if the miniaturisation of transistors can be taken to the
scale of single molecules.

CONTACT A. Zacarias zacarias@mpi-halle.mpg.de

In the past, the main objective was to measure and/or
calculate the current-voltage characteristics of themolec-
ular junction. On the theory side, calculations were usu-
ally done within the Landauer-Büttiker approach. In
recent years, interest has shifted more and more towards
time-resolved studies. Such studies allow one to address
questions like: How long does it take until the steady
state is reached? Can we shorten or lengthen this time
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span? Does a steady state always exist, and if so, is it
unique? To answer this kind of questions by calcula-
tions, explicitly time-dependent approaches are neces-
sary, such as time-dependent density functional theory
[5–12], the Kadanoff–Baym equations [13–16], multi-
configuration time-dependent Hartree–Fock [17–20],
QuantumMonte-Carlo [21], time-dependent tight bind-
ing [22–24], or the hierarchy equation of motion
approach [25–27].

In all those approaches the reaction of the molecu-
lar junction to a given external perturbation, i.e. a bias
or a gate voltage is calculated. In this article, we want to
take a step beyond this point and control the current or
other observables of the junction. This means we have to
address the inverse question:Which perturbation leads to
a desired reaction of the system? To answer this question,
optimal control theory provides a suitable framework.
This research field was pioneered by the work of Pontrya-
gin et al. [28] and Bellman [29] who paved the way for
numerous applications. Initially, optimal control theory
was mainly used to solve problems of classical mechan-
ics. Later, it found applications in many other research
fields including quantum mechanics [30–35].

A particularly interesting field goes under the head-
ing of ‘femto-chemistry’ where chemical reactions are
influenced with femto-second laser pulses such that a
specific reaction gets suppressed or enhanced [36–39]. A
successful experimental application is the selective bond
dissociation ofmolecules [40].Other applications of opti-
mal control theory in the quantum world include the
control of the electron flow in a quantum ring [34], the
accelerated cooling of molecular vibrations [41], the con-
trol of the entanglement of electrons in quantum wells
[42], the optimisation of quantum revival [43], the con-
trol of ionisation [44,45] or the selection of transitions
between molecular states [46].

Kleinekathöfer and coworkers combined optimal con-
trol theory with the master equation approach for quan-
tum transport and demonstrated the control of various
observables in junctions with normal leads [47–49]. We
take a different approach to the same problem by prop-
agating wave functions. For the time propagation, we
employ an algorithm proposed by Stefanucci et al. [50].
This allows us to treat not only normal (N) but also
superconducting (S) leads.

The paper is organised as follows: In Section 2,
we explain the model Hamiltonian that we employ to
describe the molecular junctions. In Section 3, we for-
mulate the optimisation problem for tailoring the bias
such that a chosen observable follows a predefined pat-
tern as best as possible. Various results are presented in
Section 4. Finally, in Section 5, we focus on a specific
example, a Y-shaped junction consisting of two quantum

dots coupled to one superconducting and two normal
leads. This device is used as a Cooper-pair splitter, for
which we maximise the splitting efficiency. In the final
Section 6, we draw our conclusions.

2. Model

2.1. Static quantum dot

Our model system consists of a quantum dot (QD) con-
nected to two semi-infinite, non-interacting one dimen-
sional leads (L and R), which are described by a tight
binding Hamiltonian. Later, in Section 5, we will add a
third lead (labelled S) and a second quantum dot. The
corresponding changes in the Hamiltonian will then be
stated in that section but the overall approach and the
structure of the equations stays the same.

The Hamiltonian for the junction with two leads and
a single quantum dot reads

Ĥ(t) = ĤQD +
∑

α∈{L,R}
Ĥα +

∑
α∈{L,R}

ĤT,α(t) (1)

with

ĤQD = εQD
∑

σ∈{↑,↓}
d̂†
σ d̂σ , (2)

Ĥα =
∞∑
k=0

∑
σ∈{↑,↓}

(
tα ĉ

†
αkσ ĉα(k+1)σ + H.c.

)
,

+
∞∑
k=0

(
�αeiχα ĉ

†
αk↑ĉ

†
αk↓ + H.c.

)
, (3)

ĤT,α(t) =
∑

σ∈{↑,↓}

(
tα,QDeiγα,QD(t)ĉ

†
α0σ d̂σ + H.c.

)
. (4)

Here γα,QD(t) = ∫ t
0 dt′Uα(t′) are the Peierls’ phases

with the bias Uα(t),α ∈ {L,R}. The operator ĉ†
αkσ (ĉαkσ )

creates (annihilates) an electron at site k ∈ N in the lead
α ∈ {L,R} with spin σ ∈ {↑,↓}. The operator d̂†

σ (d̂σ )
represents the creation (annihilation) of an electron on
the quantum dot.

The observables of prime interest, the density nQD(t)
and the current Iα,QD(t), are given by

nQD(t) =
∑

σ∈{↑,↓}
〈d̂†
σ (t)d̂σ (t)〉, (5)

Iα,QD(t) = 2	
∑

σ∈{↑,↓}

(
tα,QDeiγα,QD(t)〈ĉ†α0σ (t)d̂σ (t)〉

)
.

(6)
All parameters in Equations (1)–(4) are real and posi-

tive.We alwayswork at temperatureT=0 and in thewide
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band limit tα,QD 
 tα , where the coupling to the leads
is given by � = �L + �R,�α = 2t2α,QD/tα ,α ∈ {L,R}. In
this limit, the results only depend on the couplings �α
but not on the hopping elements individually. The super-
conducting pairing potentials�α can be written as�α =
ξα�̃, which allows a dimensionless representation of the
problem bymeasuring times in units of �̃−1 and energies
as well as currents in units of �̃. In the case of normal
leads, we set ξα = 0, and ξα = 1 otherwise. The pres-
ence of superconductivity requires the propagation of the
time-dependent Bogoliubov–de Gennes equation

i
d
dt

(
uq(k, t)
vq(k, t)

)
=

∑
l

Hkl(t)
(
uq(l, t)
vq(l, t)

)
, (7)

Hkl(t) =
(
hkl(t) �kl

�
†
kl −h†

kl(t)

)
. (8)

The non-vanishing elements of hkl(t) and �kl can be
grouped as follows:

(a) Central region

hQD,QD(t) = εQD (9)

(b) Leads

hαk,α(k+1)(t) = [
hα(k+1),αk(t)

]∗ = tα (10)

�αk,αk = �αeiχα (11)

for k ∈ lead α
(c) Coupling of quantum dot to lead α

hα0,QD(t) = tα,QDeiγα,QD(t). (12)

The single-particle wave functions

ψq(k, t) = [uq(k, t), vq(k, t)]t (13)

represent the time-dependent particle- and hole-ampli-
tudes at site k. The algorithm for the time propagation of
the single particle wave functions ψq(k, t) as well as the
initial state calculation is explained in the work of Ste-
fanucci et al. [50], which extends the method of Kurth
et al. [8] to superconducting leads.

2.2. Classical vibrations

In this paragraph, we extend the model to incorporate
a vibrational degree of freedom in the central region. In
the past, most theoretical work focussed on the electronic
system and neglected the nuclear motion. In experi-
ments, the nuclei are, of course, not fixed to a position
and their motion can have a significant influence on the

measured properties, for example on the current-voltage
characteristics [51–54].

The vibrational degree of freedom is described within
the Ehrenfest approximation following Verdozzi et al.
[55]. The modified central part of the electronic Hamil-
tonian reads

ĤQD(t) = (εQD + λx(t))
∑

σ∈{↑,↓}
d̂†
σ d̂σ . (14)

The parameter λ determines the interaction strength
between the electronic and the nuclear system. The
equation of motion for the vibrational coordinate x(t) is

m∂2t x(t) = − d
dx

(
1
2
mω2x2 + 〈�|ĤQD(t)|�〉

)
(15)

= −mω2x(t)− λnQD(t), (16)

x(0) = x0.

The abovemodel can be viewed as a classical version of
a polaronmodel [56]. The validity of this model has been
discussed [57] for the normal conducting case, revealing
that the description is not a mean field approximation
but exact in the static limitωvib/� 
 1. This limit corre-
sponds to a vibrational motion that is slow compared to
the electronic timescale. The same holds for ourmodel in
the static limit with large masses and slow changes of the
bias [57].

Recently, a comparative study of Ehrenfest dynamics
and exact results for the polaron model in a finite sys-
tem showed quantitatively similar behaviour, but the time
scales can be different [58]. This suggests quantitatively
good results even away from the static limit.

In all calculations, the coupling parameter λ is chosen
positive and the massmwill be set tom = 0.5ω−1

vib.� and
ωvib are chosen such that the condition ωvib/� 
 1 is
well-satisfied.

Equations (7) and (16) are propagated in time start-
ing from an initial position x0 and initial single particle
wave functionsψ0

q . The latter are chosen to represent the
ground state of the system, which is calculated using a
self-consistency cycle of electronic and vibrational part
[50,55].

2.3. Resonance of the Josephson frequency and the
vibration

In junctions with two superconducting leads, the Joseph-
son effect causes the current to oscillate. This offers a
unique way to drive the molecular vibration by tuning
the DC bias such that the Josephson frequency is in res-
onance with the vibrational degree of freedom. This is
shown in Figures 1 and 2.
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Figure 1. Top: Absolute value of the time average 〈x〉 of the posi-
tion x(t). Bottom: Amplitude of the oscillations of x(t). The ver-
tical line represents the pure vibrational frequency transformed
into a bias via the Josephson frequency relationωJ = 2eU/�. The
parameters are: �α = 0.5, εQD = 0, λ = 0.1 andωvib = 1.4.

Figure 2. The same simulation as Figure 1 but showing results for
the current. Top: Time averaged current-voltage characteristics for
an SQDS junction. Bottom: Amplitude of the oscillations of I(t) as
a function of the applied bias.

Wemake the following observations:

(a) As a function of the applied bias U = UL − UR
(and hence as a function of the Josephson frequency
ωJ = 2eU/�), the amplitude of the Josephson-effect-
driven vibration has the shape of a driven harmonic
oscillator (see Figure 1 lower panel).

(b) The peak of the amplitude is shifted compared to the
frequency of the pure vibration similar to a damped
driven harmonic oscillator.

(c) The absolute value |〈x〉| of the time average of
the classical coordinate, i.e. the average distance
between the vibrating nuclei, becomes slightly larger
at the resonance and has two different values above
and below the resonance. Note that this effect is by
2−3 orders of magnitude smaller than the enhance-
ment of the amplitude.

(d) The current as a function of the bias shows a reso-
nance effect as well: The DC part shows a down-up
variation near the resonance within the otherwise
linear behaviour.

(e) The amplitude of the oscillatory part has a relatively
sharp maximum at the resonance and has different

values above and below the resonance. The peak is
again slightly shifted towards smaller biases.

Since the amplitude of the current can easily be mea-
sured in experiments, the above effects provide a way of
accurately determining the vibrational frequency of the
molecule in the junction. The signatures in the current-
voltage characteristics are much sharper than those pro-
duced by photon assisted tunnelling, a fact which can
be exploited experimentally to determine vibrational fre-
quencies [59].

3. Optimisation problem

We start at t=0 in the ground state of the junction
with Uα(t ≤ 0) = 0. The goal is to tailor the bias Uα(t)
such that the observable of choice O(t) follows a prede-
fined target pattern as best as possible. The corresponding
optimisation problem reads

min
UL(t),UR(t)

‖O[�](t)− O(target)(t)‖22,[0,T], (17)

where

i∂tψq(t) = H[UL,UR](t)ψq(t), t ∈ [0,T],

ψq(0) = ψ0
q .

Here, ‖ · ‖2,[0,T] denotes the L2-norm on the time
interval [0,T], i.e. the objective function is the following
integral:

∫ T

0
dt|O[�](t)− O(target)(t)|2. (18)

The integral is well-defined since T and the integrand
are finite in all examples studied in this work.

Most common is a variational approach to this prob-
lem, like the Rabitz approach [60] or Krotov’s method
[61,62]. Such an approach incorporates the constraints
into the objective function using Lagrange multipliers
and searches for the roots of the variation of the new
objective function. An alternative approach, which we
shall adopt in this article, is the direct minimisation of
the objective function using derivative-free minimisa-
tion algorithms. This strategy was successfully used in
several works [44,63–65]. In this way, we avoid various
difficulties arising from the time propagation algorithm.
This approach can be viewed as the computational ana-
logue to the closed-loop learning algorithms employed in
experimental optimisation [66].

The basic idea of our numerical approach is to approx-
imateUα(t) by cubic splines withN+1 equidistant nodes
at τk = kT/N, k ∈ {0, . . . ,N}. We choose d/dt Uα(τ0) =
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Figure 3. Cubic spline interpolation using six nodes τk . The opti-
misation algorithm changes the values Uα(τk), k ∈ {1, . . . , 5}.
The value Uα(τ0) is fixed to zero. The derivatives at both ends
are set to zero. The spline does not necessarily take the maxi-
mum or minimum value at one of the nodes. In this example, the
maximum lies between τ1 and τ2.

d/dt Uα(τN) = 0 as the boundary conditions for the
splines. The dependence of the problem (17) on the bias
Uα(t) is replaced by

Uα(t) → [Uα(τ0), . . . ,Uα(τN)] ≡ �uα . (19)

In this way, the spline-interpolated bias Uα(�uα , t)
becomes a function of �uα . This then yields a normal non-
linear optimisation problem with the unknown variables
Uα(τk). We further impose the condition Uα(τ0) = 0
since the bias has to be continuous and we assume
Uα(t < 0) = 0. Figure 3 demonstrates this approach.

Additionally, we add the constraint UL(t) = −UR(t)
unless otherwise stated, since it reduces the dimensional-
ity of the optimisation problem in the numerical imple-
mentation by a factor of two. This implies the constraint
�uL = −�uR. The resulting nonlinear optimisation prob-
lem is

min
�uL,�uR∈RN+1

‖O[�](t)− O(target)(t)‖22,[0,T]
(20)

where

i∂tψq(t) = H(�uL, �uR, t)ψq(t), t ∈ [0,T],

ψq(0) = ψ0
q ,

�uL = −�uR,
Uα(�uα , τ0) = 0, α ∈ {L,R}.

The single particle wave functions ψq(t) in problem
(20) are only auxiliary variables. Hence, the time-
dependent Bogoliubov–de Gennes equation can be
removed from the constraint equations for the numerical
implementation. The objective function is thenwritten as
‖O[ψ0

q ,H(�uL, �uR, t)](t)− O(target)(t)‖22,[0,T], whose eval-
uation requires us to solve the time-dependent Bogoli-
ubov–de Gennes equation in order to calculate the
observable O(t).

Problem (20) can be solved using standard derivative-
free algorithms for nonlinear optimisation problems. We

use the algorithms BOBYQA [67] or COBYLA [68,69]
provided by the library NLopt [70]. The former one does
not support nonlinear constraints, but converges faster
compared to other tested methods. The latter algorithm
will be used for the calculations with nonlinear con-
straints.

We point out that the quality of the results depends on
the number of nodes τk for the splines. A larger numberN
is typically favourable for better results, i.e. yields a better
match of the observable O[�](t) with its target pattern
O(target)(t). But, the computational cost increases withN.
In simple test cases of a NQND junction, we observe that
the cost, i.e. the number of evaluation of the objective
function, scales approximatelly as N1.5 for the algorithm
BOBYQA. For the minimal value of the objective fun-
tion, we observe as scaling behaviour approximately of
N−5. Thus, the overall convergence rates of the proposed
procedure are good. Besides, it is not guaranteed that the
obtainedminimum is the globalminimum since the used
algorithms are local optimisation algorithms. Thus, the
results may depend on the initial choice for Uα(τk).

We now discuss how to control the nuclear motion
using the bias as before. Although the bias couples only
to the electronic part of the system, it induces changes in
the density which in turn influences the nuclear motion.
Hence, the electrons mediate between the bias and
the vibration. The feasibility of controlling the nuclear
motion in a quantum-classical system has already been
demonstrated [71].

The optimisation problem for controlling the vibra-
tional coordinate x(t) then reads

min
�uL,�uR∈RN+1

‖x(t)− x(target)(t)‖22,[0,T], (21)

where

i∂tψq(t) = H(�uL, �uR, x(t), t)ψq(t), t ∈ [0,T],

m∂2t x(t) = −mω2x(t)− λnQD(t), t ∈ [0,T],

ψq(0) = ψ0
q ,

x(0) = x0,

�uL = −�uR,
Uα(�uα , τ0) = 0, α ∈ {L,R}.

4. Results of optimisation

4.1. Current and density of a NQDN junction

As a first example, we show the optimisation of the cur-
rent IL,QD(t) from the left lead onto the quantum dot.
This is done for two different numbers of spline nodesN.
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Figure 4. NQDN junction with an optimised current for two dif-
ferent numbers of spline nodes N. The parameters are: �α =
0.2, εQD = 0.5, ξα = 0.

As shown in Figure 4 the case N=4 shows strong devia-
tions while N=20 already yields an excellent agreement
of the calculated current IL,QD(t) with its target pattern.

The optimisation of the density nQD(t) is very similar
to the optimisation of a current, one simply exchanges
the observable in the objective function. An example is
shown in Figure 5. The density follows perfectly the target
pattern.

Figure 6 shows an example of controlling the nuclear
motion, forcing the classical coordinate to follow a given
target function x(t).

Figure 5. NQDN junction with an optimised density. The param-
eters are: �α = 0.2, εQD = 0.5, ξα = 0.

Figure 6. NQDN junction with an optimised position x(t) of a
vibration coupled to the quantum dot. The parameters are:�α =
0.2, εQD = 0.5, ξα = 0, λ = 0.1,ω = 0.5,m = 1.

4.2. Imposing further constraints on the bias

In real-world control experiments, an arbitrary time-
dependence ofUα(t) is difficult to achieve. In this section,
we therefore impose further constraints to restrict the
bias Uα(t) or the derivative ∂tUα(t). The optimisation
problem including such additional constraints then reads

min
�uL,�uR∈RN+1

‖O[�](t)− O(target)(t)‖22,[0,T],
(22)

where

i∂tψq(t) = H(�uL, �uR, t)ψq(t), t ∈ [0,T],

ψq(0) = ψ0
q ,

Uα(�uα , τ0) = 0,

�uL = −�uR,
U(min)
α ≤ Uα(�uα , t) ≤ U(max)

α ,

Ũ(min)
α ≤ d

dt
Uα(�uα , t) ≤ Ũ(max)

α .

The conditions U(min)
α ≤ Uα(�uα , t) ≤ U(max)

α are in
general not equivalent to U(min)

α ≤ �uα ≤ U(max)
α , unless

one uses a monotonic cubic spline. This can be seen in
Figure 3, where the maximum value of the spline lies
between τ1 and τ2. The constraint for the time derivative
is not accessible in this way.

The cubic spline is a third degree polynomial between
two nodes τj and τj+1. Thus, the minimum and maxi-
mum values can be calculated analytically in every inter-
val [τj, τj+1]. The constraints are replaced by

max
t∈[τj,τj+1]

Uα(�uα , t) ≤ U(max)
α , (23)

min
t∈[τj,τj+1]

Uα(�uα , t) ≥ U(min)
α , (24)

max
t∈[τj,τj+1]

d
dt
Uα(�uα , t) ≤ Ũ(max)

α , (25)

min
t∈[τj,τj+1]

d
dt
Uα(�uα , t) ≥ Ũ(min)

α (26)

for j ∈ {0, . . .N − 1}. Figure 7 shows the influence of
the additional constraints. They are chosen such that the
steady-state value can still be reached, but the transient
time is lengthened.

4.3. Generating DC currents in Josephson junctions

Whenmaking the leads superconducting, a junctionwith
an appliedDC bias does not reach a steady state anymore,
but ends up in a time-periodic state. ADC current, on the
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Figure 7. NQDN junction with an optimised current IL,QD(t).
The black lines represent the additional constraints U(t) ≤ 1.1
and ∂tU(t) ≤ 1.5. The parameters are:�α = 0.2, εQD = 0.5, ξα =
0,N = 25.

other hand, can flow through the junction even without
applying a bias. These phenomena are known as the AC
and DC Josephson effects [72]. The underlying relation
is

U(t) = �

2e
dχ
dt

, (27)

χ(0) = χR − χL, (28)

I(t) = I0 + I1 sin(χ(t))+ I2 cos(χ(t)), (29)

where the variables χα describe the phase of the super-
conducting wave function in lead α. Thus, the current
oscillates with the frequency �ω = 2eU when applying a
constant bias U across the junction. The values of I0, I1
and I2 depend on the bias and only I1 is non-zero for
zero bias. Following these equations, the only solution
for a DC current flowing through the junction would be
χ(t) ≡ const and henceU(t) = 0. But these equations do
not take switching effects into account and only approxi-
mate the current after the transients. In order to force the
current to follow a predefined pattern, one can make use
of the reaction of the current to time-dependent changes
in the bias. These can be used, for example, to compensate
the Josephson oscillations.

We start again with optimising the current IL,QD(t)
from the left lead onto the quantum dot such that it fol-
lows the target pattern. In this way, we generate a DC
current IL,QD(t). But the current IQD,R(t) still shows the
typical oscillation as it is shown in Figure 8.

In order to obtain a real DC current flowing through
the Josephson junction, one has to modify the objective
function. The idea is to optimise IL,QD(t) and IQD,R(t)
simultaneously such that each of them follows a target
pattern. The targets have to be chosen carefully, since one
might end up in situations where the targets cannot be
reached simultaneously.

Suppose that the currents IL,QD(t) and IQD,R(t) fol-
low the predefined patterns perfectly. The density on the

Figure 8. SQDS junction with an optimised current for two dif-
ferent number of spline nodes N. The parameters are: �α =
0.2, εQD = 0.5, ξα = 1,χα = 0.

quantum dot can then be obtained by integrating the
continuity equation at the quantum dot:

nQD(t) = nQD(0)+
∫ t

0
dt′

∑
α∈{L,R}

I(target)α,QD (t′). (30)

As we see, this can easily lead to contradictions like
nQD(t) < 0 or nQD(t) > 2, if the targets are not chosen
carefully. Even situations with IL,QD(t) = −IR,QD(t) �= 0
for all times t are in general not possible, since the density
in such cases would be constant, but switching on a bias
normally changes the density.

We avoid these difficulties by using the norm
L2([t0, t1]), 0 ≤ t0 < t1 ≤ T in the objective function,
which is denoted by ‖ · ‖2,[t0,t1]. Furthermore, we remove
the constraint UL(t) = −UR(t) in order to make the
targets reachable. The modified optimisation problem
reads

min
�uL,�uR∈RN+1

(
‖IL,QD[�](t)− I(target)L,QD (t)‖22,[t0,t1]

+‖IQD,R[�](t)− I(target)QD,R (t)‖22,[t0,t1]
)
,

(31)

where

i∂tψq(t) = H(�uL, �uR, t)ψq(t), t ∈ [0,T],

ψq(0) = ψ0
q ,

Uα(�uα , τ0) = 0, α ∈ {L,R}.
The system has now the freedom to adjust the density

and currents from time 0 to t0 such that the target pat-
terns can be reached. There are two ways to achieve a DC
current flowing through a Josephson junction:

(1) Following Equations (28)–(29), only the case
U(t) = 0 produces a DC current, namely I(t) =
I1 sin(χ0). This is the DC Josephson effect. In gen-
eral, this relation is not true for our model, since the



2456 K. J. POTOTZKY ET AL.

Figure 9. SQDS junction with optimised currents IL,QD(t) and
IQD,R(t). We remove the constraint UL(t) = −UR(t) since the tar-
get can not be reached otherwise. The target is the same for
both currents and starts at t= 25. The solution exploits the DC
Josephson effect. The parameters are:�α = 0.2, εQD = 0.5, ξα =
1,χα = 0, t0 = 25, t1 = 50.

Figure 10. Same junction as in Figure 9, but a different solution
to the problem. This solution exploits the AC Josephson effect.

quantum dot always supports two Andreev bound
states for U=0 [50]. They lead to persistent oscil-
lations in the current and density [50,73,74]. The
oscillations in the current can be compensated by
small variations of the bias U(t) = UL(t)− UR(t)
around the origin. Figure 9 shows an example of such
a solution. This approach is limited by I1 and hence
does not work for arbitrary large DC currents.

(2) An alternative approach is to apply a DC bias across
the junction, leading to a linear increase in the phase
difference χ(t) and thus to oscillations in the cur-
rents. This is the AC Josephson effect. These oscilla-
tions can be compensated again by small variations
in the bias, the reaction to these changes cancels the
Josephson oscillations. Figure 10 shows an example
for this type of solutions.

5. Optimising the Cooper pair splitting
efficiency

In this section, we demonstrate how to optimise the
Cooper pair splitting efficiency in a two-quantum dot
Y-junction. The overall idea is to create entangled elec-
trons at two quantum dots.

The entanglement of quantum particles has fasci-
nated the scientific community since the proposition
of the Einstein-Podolsky–Rosen (EPR) Gedankenexper-
iment [75]. Entanglement means that two particles are
linked such that the measurement of one particle is suf-
ficient to completely determine the quantum state of the
other one.Aprominent example is a pair of electronswith
opposite spin. Suppose, you have a pair of entangled elec-
tron in a spin singlet. Then, one spin is up and the other
spin is always pointing downwards. Photons are a sec-
ond example which can be entangled with respect to the
polarisation.

TheEPRGedankenexperiment is directly linked to the
question of non-locality of quantum mechanics: Can a
measurement at position x have an influence on a simul-
taneous or later independent measurement at a different
position x′? This question can be cast into a mathemati-
cal formula known as Bell’s inequality [76]. A violation
of the latter would prove the non-locality of quantum
mechanics.

Great progress has been achieved with entangled pho-
tons, but the final experiment ruling out all possible loop-
holes has not yet been accomplished [77]. For example,
the twomeasurements at (x, t) and (x′, t′)have to be sepa-
rated such that c|t − t′| < ‖x − x′‖, i.e. no information of
the first measurement can be transmitted to the second.
Hence large distances are typically required to close this
loophole [78]. Another important loophole stems from
the detector efficiency, i.e. one has to take into account
that undetected particles might behave completely differ-
ent compared to the detected ones. Typically, one uses the
fair sampling assumption stating that the detected parti-
cles are selected randomly and behave statistically in the
same way as the undetected ones.

To do similar Bell test experiments with electrons is
much more difficult and remains an open challenge. In
recent years, a number of ingenious experiments to create
entangled electrons have been performed [79–82], going
alongwith several theoretical developments [83–88]. The
basic idea is to use a superconductor as a source of entan-
gled electrons. In the BCS ground state, electrons form
Cooper pairs due to the attractive interaction caused
by phonons. These pairs consist of two electrons with
opposite spin and momentum.

The idea is to create a splitted Cooper pair at the two
quantum dots, i.e. one electron is on the left quantum
dot and the other with opposite spin is on the right one
(see sketch in Figure 11). However, this process com-
petes with the case of both electrons moving onto the
same quantum dot. The latter can be suppressed by a
large charging energy of the quantum dots caused by the
Coulomb interaction. This make double occupancies less
likely.
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Figure 11. Sketch of the Y-junction and explanation of all rele-
vant parameters. Only the lead labelledwith S is superconducting.
The grey colour is used to indicate the superconducting part. The
aim is to create entangled electrons on the two quantum dots. All
three leads are semi infinite.

We propose a way to achieve splitting efficiencies of
99% and more, which we hope will help the eventual
experimental demonstration of the violation of Bell’s
inequality. In comparison to traditional approaches, our
method has two major differences. First, we do not rely
on a large Coulomb repulsion on the quantum dots but
rather use optimal control theory to tailor the bias in the
normal leads in such a way that the splitting probability
is maximised. Second, we look at the Cooper pair den-
sity on the quantum dots as opposed to the experimental
approaches working currents of entangled electrons in
the two normal conducting leads. Consequently, a direct
comparison of results is not easily possible as the efficien-
ciesmeasure different ratios. As a future work, it might be
worth doing an extensive comparative study answering
whether the here created pair eventually moves towards
the leads or stays on the quantum dots. In experiments,
splitting efficiencies for the current of 90% have been
realised in recent experiments [82] being significantly
higher than previous results. Despite this progress, the
experimental proof of the violation of Bell’s inequality is
still pending.

In contrast to all systems studied in the previous sec-
tions, we now work with three leads. The system is
sketched in Figure 11. It consists of two quantum dots
(QDL and QDR), one superconducting (S) and two nor-
mal leads (L and R).

The Hamiltonian of our modified model reads

Ĥ(t) =
∑

α∈{L,R,S}
Ĥα +

∑
α∈{L,R,S}

ĤT,α(t), (32)

Ĥα =
∞∑
k=0

∑
σ∈{↑,↓}

(
tα ĉ

†
αkσ ĉα(k+1)σ + H.c.

)

+
∞∑
k=0

(
�αeiχα ĉ

†
αk↑ĉ

†
αk↓ + H.c.

)
, (33)

ĤT,S(t) =
∑

α∈{L,R}

∑
σ∈{↑,↓}

(
tS,QDα ĉ

†
S0σ d̂QDασ + H.c.

)
,

(34)

ĤT,α(t) =
∑

σ∈{↑,↓}

(
tα,QDαe

iγα,QDα (t)ĉ†α0σ d̂QDασ + H.c.
)

(35)

forα ∈ {L,R}.

Note that there is only a bias in the left and right
lead. All parameters are again chosen real and posi-
tive. Furthermore, we work at temperature T=0 and
assume the wide band limit tα,QDβ 
 tα . Again, only
the coupling strengths �α,QDβ = 2t2α,QDβ /tα will be
stated.

In the following, we demonstrate how to optimise
the Cooper pair splitting efficiency in the above model
of a two-quantum dot Y-junction. The goal is to oper-
ate the device as a Cooper pair splitter that creates
entangled electrons on the two quantum dots. The split-
ting of a Cooper pair can be understood as a crossed
Andreev reflection. An incoming electron in one of
the normal leads gets reflected into the other lead as
a hole. This creates a Cooper pair in the supercon-
ductor. The process is sketched in Figure 12 (top left).
Similarly, the opposite process removes a Cooper pair
from the superconductor. Besides, there are three other
possible reflection processes: (a) normal reflection, (b)
Andreev reflection, and (c) elastic cotunnelling. The lat-
ter corresponds to a reflection of the incoming elec-
tron to the opposite lead. These three processes together
with the crossed Andreev reflection are all sketched in
Figure 12.

The central ingredient for the optimisation process
is the proper definition of a suitable objective func-
tion which is then to be maximised. It has to quan-
tify the Cooper pair splitting efficiency. To this end, we
first define the so-called pairing density or anomalous
density as

PQDα ,QDβ (t) = 〈d̂QDα↓(t)d̂QDβ↑(t)〉. (36)

We use its absolute value squared |PQDα ,QDβ (t)|2 as a
measure for the Cooper pair density with one electron at
QDα and the other at QDβ . We propose to maximise the
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Figure 12. Overview of the four possible reflection processes.
Black arrows indicate electrons, white arrows represent holes. The
grey block is the superconducting lead S of Figure 11. Top left:
Sketch of a crossed Andreev reflection. The incoming spin up elec-
tron in the left lead gets reflected as a spin down hole to the
right lead. Simultaneously, a Cooper pair is created in the super-
conducting lead. The opposite process, which removes a Cooper
pair from the superconductor, is also possible. Bottom left: The
reflected hole stays in the left lead. This corresponds to the nor-
mal Andreev reflection. Top right: Sketchof an elastic cotunnelling
process. Now, the incoming electron gets reflected into the right
lead. Bottom right: Alternatively, the electron can also be reflected
into the left lead corresponding to normal reflection.

following objective function:

1
t1 − t0

∫ t1

t0
dt

∑
α �=α′∈{L,R} |PQDα ,QDα′ (t)|2∑
α,α′∈{L,R} |PQDα ,QDα′ (t)|2

. (37)

The fraction represents the Cooper pair splitting effi-
ciency at time t, which is expressed as the amount of
Cooper pairs being split up divided by the total amount of
Cooper pairs on the quantum dots. We calculate its aver-
age over the time span from t0 to t1. The pairing densities
PQDα ,QDβ (t) are obtained from the single particle wave
functions ψq(t), i.e. the solutions of the time-dependent
Bogoliubov–de Gennes equation (7).

We want to tailor the bias such that we maximise
the time averaged Cooper pair splitting efficiency. The
corresponding optimisation problem then reads

max
�uL,�uR∈RN+1

1
t1 − t0

∫ t1

t0
dt

∑
α �=α′∈{L,R} |PQDα ,QDα′ (t)|2∑
α,α′∈{L,R} |PQDα ,QDα′ (t)|2

s.t. PQDα ,QDβ (t) =
∫

dqf (εq)uq(QDα , t)vq(QDβ , t)�,

i∂tψq(t) = H(�uL, �uR, t)ψq(t), t ∈ [0,T],

ψq(0) = ψ0
q ,

Uα(�uα , τ0) = 0, α ∈ {L,R}. (38)

The problem can be solved using again standard
derivative-free algorithms for nonlinear optimisation
problems, for example the ones provided by the library
NLopt [70].

To achieve high splitting efficiencies it is essential that
the junction is asymmetric, i.e. the couplings to the left
and to the right quantum dot must not be equal. This is
necessary sincewe observe anupper boundof 50% for the
Cooper pair splitting efficiency in symmetric junctions,
which is already achieved in the ground state by the usual
Cooper pair tunnelling leading to the proximity effect.
Hence any optimisation starting in the ground state will
not improve the results. The underlying cause for this
limitation is still unknown and under investigation. In
order to bypass this issue, we choose an asymmetric
coupling of the quantum dots to the normal leads.

The results of such an optimisation are depicted in
Figure 13. The bias is tailored such that the Cooper pair
splitting efficiency is maximised. It suppresses the non-
splitting processes. The efficiency is optimised in the
time interval from t0 = 10 to t1 = 40. This interval is
indicated by the underlying thick grey line in the plot
of the efficiency (second from top). In this interval, we

Figure 13. Simulation with an optimised bias. (a) Top:
|PQDα ,QDβ (t)|2 as a functionof time. (b) Second from top: Resulting
efficiency, grey line indicates time interval of optimisation. second
from bottom (c) Second from bottom: Resulting currents IQDL ,S(t)
and IS,QDR(t). (d) Bottom: Tailored bias UL(t) and UR(t) of the opti-
misation. The parameters are: �S,QDL = �S,QDR = �N,QDL = 0.2,
�N,QDR = 1, ξS = 1, ξL = ξR = 0, N= 200.
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achieve an average efficiency of more than 99%. The val-
ues of |PQDL,QDR(t)|2 and |PQDR,QDL(t)|2 are on top of
each other. The resulting currents flowing through the
junction indicate, that in the time average, there is a net
current flowing from the right normal conducting lead
(R) via the superconductor (S) to the left one (L). This is
deduced from the observation that IQDL,S(t) and IS,QDR(t)
are both negative in the time average. We point out, that
this does not say anything about the movement of the
entangled Cooper pairs.

This result clearly demonstrates that the Coulomb
interaction at the quantum dots is not necessary in order
to obtain high efficiencies. One can also succeed with
optimised biases.

6. Conclusion

Usually, in the field ofmolecular electronics, the goal is to
calculate the steady-state or time-dependent current that
is generated by a given bias and gate voltage. Sometimes,
however, one may be interested in taking a step beyond
this point and control the current or other observables of
the junction. To this end we have presented an algorithm
that allows us to calculate the time-dependent bias that
achieves a prescribed goal. In the examples presented,
we determine numerically the time-dependent bias that
forces the current, the density or the molecular vibration
to follow a given temporal pattern. The method is gen-
eral and not restricted to the observables listed above. In
the final section we apply our approach to optimise the
Cooper pair splitting efficiency in a Y-junction with two
quantum dots. We successfully create spatially separated
entangled electron pairs with an efficiency of nearly 100
%. We expect our approach to be useful in the control of
other – essentially arbitrary – observables in molecular
junctions.
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