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ABSTRACT 

THE ROLE OF LGR5+ EPITHELIAL STEM-LIKE CELLS IN 3D-

ORGANOID MODELING AND PATHOGENESIS OF 

AMELOBLASTOMA 

Ting-Han Chang  

Anh D. Le and Qunzhou Zhang 

 

Ameloblastoma (AM) is a benign yet locally aggressive tumor with high 

recurrences. Currently, the underlying pathophysiology remains elusive and 

radical surgery remains the most definitive treatment with severe morbidities. Our 

group first reported that AM harbors a subpopulation of tumor epithelial stem-like 

cells (AM-EpiSCs). Herein, this study further explored whether LGR5+ epithelial 

cells in AM possess unique stem-like cell properties and their potential 

contribution to the pathogenesis and recurrence of AM. Our findings 

demonstrated that LGR5 and stem cell-related genes were simultaneously 

expressed in a subpopulation of AM epithelial cells, both in vivo and in vitro, 

which were markedly enriched under the 3D-spheroid culture condition. As 

compared to LGR5- counterparts, LGR5+ AM epithelial cells showed increased 

expression of several critical genes involved in the regulation of epithelial-

mesenchymal transition (EMT) and stem cell pluripotency, and functionally, 

exhibited enhanced capacity to form 3D-spheroids and generate human tumor 

3D-organoids, which recapitulated characteristic histopathologic features of 
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distinct subtypes of solid AM. Interestingly, AM derived mesenchymal stromal 

cells (AM-MSCs) and their secretomes or extracellular vesicles (EVs) 

significantly promoted the generation of LGR5+ AM-EpiSCs both in vitro and in 

vivo. Furthermore, treatment with a selective BRAFV600E inhibitor, Vemurafenib, 

unexpectedly enriched the proportion of LGR5+ AM-EpiSCs in AM 3D-organoids, 

which may explain the therapeutic resistant and recurrent properties of AM 

conferred by this unique subpopulation of AM-EpiSCs. Therefore, the tumor 3D-

organoids generated by LGR5+ AM-EpiSCs provided a novel ex vivo platform for 

mechanistic studies of human AM and high throughput screening of targeted 

therapeutic drugs. These findings suggest that LGR5+ AM-EpiSCs play a pivotal 

role in pathogenesis and progression of AM and targeted inhibition of both BRAF 

and LGR5 potentially serves a novel non-surgical adjuvant therapeutic approach 

for this benign yet aggressively destructive jaw tumor. 

 

 

 

1 The part of this dissertation was reorganized from the article accepted by the 

journal of Cell Death & Disease. 

2 These materials are not contained in the Footnote 1. 

 
1 LGR5+ epithelial tumor stem-like cells generate a 3D-organoid model for ameloblastoma. Ting-
Han Chang, Rabie M. Shanti, Yanfang Liang, Jincheng Zeng, Shihong Shi, Faizan Alawi, Lee 
Carrasco, Qunzhou Zhang, and Anh D. Le. Accepted for publication in Cell Death & Disease. 

2 Chapter 1.4-1.6, 2.13, 2.15, 3.8-3.10, 4.3-4.4. Table 1, 2 and Figure 1.1-1.3,1.5, 2.1-2.2, 3.18-
23. 
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CHAPTER 1: INTRODUCTION 

1.1 Classification and epidemiology of ameloblastoma 

Ameloblastoma (AM), one of the most common odontogenic epithelial 

tumors, has an estimated global incidence of 0.5 cases per million, and most 

cases are diagnosed at 30-60 years of age. AM accounts for 1% of all oral 

tumors and 11.7 to 60.3% of all odontogenic tumors1. AM is a benign yet locally 

aggressive tumor with a high recurrent rate in comparison with other benign 

odontogenic cysts or tumors. The overall recurrent rate of AM is 31%, ranging 

from 65% for conservative surgery to 11% for radical surgery2, even though its 

malignant transformation and/or metastasis are less reported. The WHO has 

recently updated the classification of AM into three categories, AM 

(solid/multicystic type), unicystic type, and peripheral/extraosseous type, among 

which the solid/multicystic type accounts for about 71.3% of all AM cases and 

manifests a high recurrence rate (Figure 1.1)3,4. For large and aggressive lesions, 

a radical surgical approach is usually recommended with at least 1 cm margin to 

prevent recurrence5; however, incurs severe morbidities associated with large 

jaw defects, impaired oral functions and facial esthetics that require 

comprehensive tissue reconstruction and oral rehabilitation, compromise patient 

quality of life and raise the overall health care cost1,6. To date, the 

pathophysiology of AM remains poorly understood. Previous studies have found 

several genetic mutations in AM, including mitogen-activated protein kinase 



2 

 

(MAPK) and non-MAPK pathway, such as sonic hedgehog pathway, 

phosphatidylinositol 3-kinase (PI3K) pathway and Wnt signaling pathway (Figure 

1.2)7,8. Among these mutations, BRAFV600E is the most common one, accounting 

for 46-82%7-12, but has no significant correlation with tumor recurrence (Figure 

1.3 and Table 1). BRAF is the gene that encodes B-Raf protein, which is a 

member of the Raf kinase family involved in regulating the MAPK pathway. 

BRAFV600E is a point mutation at codon 600 where valine is replaced by glutamic 

acid. A specific BRAFV600E inhibitor, Vemurafenib, inhibits the activity of 

BRAFV600E kinase by binding to its ATP-binding site. Clinically, Vemurafenib has 

been utilized to treat melanoma, but a high drug resistance rate has been 

reported in melanoma patients13. Currently, an active clinical trial (NCT02367859) 

on AM therapy has been ongoing with the combinatory use of Dabrafenib (a 

BRAF inhibitor) and Trametinib (a MEK inhibitor), and only a partial response to 

the treatment with either a single BRAF inhibitor or combined a MEK inhibitor has 

been reported in AM patients (Table 2)14-17. Therefore, further studies are 

necessary to delineate the mechanisms underlying AM pathogenesis that may 

hold promises in the development of novel drugs as a non-surgical adjunctive 

treatment of this benign but aggressive odontogenic tumor. 
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Figure 1.1 Classification of ameloblastoma (AM). A The Diagram was organized 

according to 2017 WHO classification of head and neck tumors3. The classification of 

AM has been updated into three categories, including AM (solid/multicystic), unicystic 

and peripheral/extraosseous. B The pie chart was modified from the global incidence of 

AM by Hendra, F. N. et al.4, herein the most common type is solid AM with around 

71.3%. C Histopathology of different subtypes of solid AM. Left, the follicular type is the 

most common type, which consists of islands of odontogenic epithelium surrounding with 

columnar to cuboidal peripheral cells (ameloblast-like). The epithelium arranges in a 

palisading pattern with hyperchromatic nuclei and reverses polarity. The inner cells 

resemble stellate reticulum with loosely arranged angular cells that may undergo cystic 

changes. The stroma is moderate to highly collagenized. Middle, the second common 

type is the plexiform type which consists of anastomosing strands with an inconspicuous 

stellate reticulum, and the peripheral epithelial cells are less pronounced than the 

follicular type. The connective tissue is loose and often undergoes cystic changes. Right, 

The desmoplastic type consists of cuboidal to flat peripheral cells with central spindle 

cells and densely collagenous stroma. Scale bar: 50μm. 
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Figure 1.2 Mutations in signaling pathways of AM. The mutations in AM were marked 

with red color and these involved pathways are essential for cell proliferation and 

survival. A Somatic mutation of CTNNB1, a gene that encodes a protein called β-catenin 

in the canonical Wnt signaling pathway. B Mutation of FGFR2, a class V receptor 

tyrosine kinase (RTK), activates both MAPK (right) and PI3K signaling pathways (left). 

Right: both RAS and RAF in the downstream of MAPK pathway have mutations. Left: 

the mutation of PIK3CA, the gene that encodes p110 protein, a catalytic subunit of PI3K. 

C The smoothened (SMO) mutation in the hedgehog signaling pathway. The diagram 

was generated by using SMART SERVIER MEDICAL ART. 
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Figure 1.3 BRAFV600E mutation in AM. Data are pooled from four original articles, and 

the raw data are presented in Table 1. A Around 62% BRAFV600E mutation in 85 patients. 

B BRAFV600E mutation is significantly higher in the mandible (93%) than the maxilla. 

p<0.0001, Fisher’s exact test. C BRAFV600E was found in both unicystic and solid AM, 

including different histologic subtypes of solid AM, but had a lower preference in 

plexiform AM compared with the wild type BRAF group. Besides, this dataset showed no 

desmoplastic AM in the wild type BRAF group. p=0.0071 Chi-square test. D BRAFV600E 

had no significant different preference in sex distribution compared with the wild type 

BRAF group. NS= not significant. Fisher’s exact test. E BRAFV600E mutation occurred in 

younger diagnosis age. Data are mean ± SD, two-tailed unpaired Student’s t-tests, 

*p<0.05. F No significant difference in the recurrent rate between BRAFV600E mutation 

and wild type groups. NS=not significant. Fisher’s exact test. 
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Table 1. BRAFV600E mutation in AM. 

ID (Author_case number) Sex Age Location Histological type BRAFV600E Recurrence 

Diniz et al._0110 F 23 Mandible Unicystic WT NA 

Diniz et al._0710 M 48 Mandible Follicular WT NA 

Diniz et al._0810 M 8 Maxilla Follicular WT Primary 

Kurppa et al._039 M 61 Mandible Plexiform WT Primary 

Kurppa et al._079 M 36 Mandible Follicular WT Primary 

Kurppa et al._099 M 32 Mandible Plexiform WT Recurrence 

Kurppa et al._139 M 84 Mandible Follicular WT Primary 

Kurppa et al._169 F 61 Mandible Mix WT Primary 

Kurppa et al._179 M 69 Mandible Plexiform WT Primary 

Kurppa et al._189 M 77 Mandible Plexiform WT Recurrence 

Kurppa et al._199 M 69 Mandible Plexiform WT Primary 

Kurppa et al._249 M 31 Mandible Follicular WT Primary 

Soltani et al._1012 F 52 NA Plexiform WT NA 

Soltani et al._1512 F 16 NA Plexiform WT NA 

Soltani et al._2212 M 35 NA Follicular WT NA 

Soltani et al._2512 M 31 NA Follicular WT NA 

Soltani et al._2812 M 33 NA Follicular WT NA 

Sweeney et al._018 F 57 Maxilla Plexiform WT Primary 

Sweeney et al._028 M 73 Maxilla Mix WT Recurrence 

Sweeney et al._038 M 70 Mandible Follicular WT Primary 

Sweeney et al._048 M 66 Maxilla Plexiform WT Recurrence 

Sweeney et al._058 F 51 Maxilla Plexiform WT Recurrence 

Sweeney et al._068 F 29 Maxilla Plexiform WT Primary 

Sweeney et al._078 NA NA Maxilla Plexiform WT NA 

Sweeney et al._088 M 77 Maxilla Plexiform WT Recurrence 

Sweeney et al._098 M 62 Maxilla Plexiform WT Primary 

Sweeney et al._238 M 79 Mandible NA WT Primary 

Sweeney et al._248 M 61 Maxilla Follicular WT Primary 

Sweeney et al._258 M 65 Maxilla Follicular WT Primary 

Sweeney et al._268 NA NA Mandible Follicular WT NA 

Sweeney et al._278 F 91 Mandible Follicular WT Primary 

Sweeney et al._288 F 47 Mandible Plexiform WT Recurrence 

Diniz et al._0210 M NA Mandible Unicystic Mutant NA 
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ID (Author_case number) Sex Age Location Histological type BRAFV600E Recurrence 

Diniz et al._0310 F 10 Mandible Unicystic Mutant NA 

Diniz et al._0410 F 21 Mandible Unicystic Mutant Primary 

Diniz et al._0510 M 14 Mandible Unicystic Mutant Primary 

Diniz et al._0610 M 38 Maxilla Unicystic Mutant Primary 

Diniz et al._0910 M NA Mandible Granular Mutant NA 

Diniz et al._1010 F 41 Mandible Follicular Mutant NA 

Diniz et al._1110 M 46 Mandible Follicular Mutant Primary 

Diniz et al._1210 F 28 Mandible Follicular Mutant NA 

Diniz et al._1310 F 39 Mandible Follicular Mutant Primary 

Diniz et al._1410 F 9 Mandible Plexiform Mutant NA 

Diniz et al._1510 M 75 Maxilla Follicular Mutant Primary 

Diniz et al._1610 F 28 Maxilla Desmoplastic Mutant Primary 

Diniz et al._1710 M 25 Mandible Desmoplastic Mutant Primary 

Kurppa et al._019 M 66 Mandible Follicular Mutant Primary 

Kurppa et al._029 F 70 Mandible Follicular Mutant Primary 

Kurppa et al._049 F 27 Mandible Follicular Mutant Primary 

Kurppa et al._059 F 24 Mandible Plexiform Mutant Primary 

Kurppa et al._069 F 50 Mandible Plexiform Mutant Primary 

Kurppa et al._089 M 47 Mandible Follicular Mutant Primary 

Kurppa et al._109 M 46 Mandible Follicular Mutant Recurrence 

Kurppa et al._119 M 14 Mandible Plexiform Mutant Primary 

Kurppa et al._129 F 34 Mandible Follicular Mutant Recurrence 

Kurppa et al._149 F 18 Mandible Follicular Mutant Primary 

Kurppa et al._159 M 16 Mandible Plexiform Mutant Primary 

Kurppa et al._209 M 43 Mandible Follicular Mutant Primary 

Kurppa et al._219 F 44 Mandible Plexiform Mutant Primary 

Kurppa et al._229 M 33 Mandible Follicular Mutant Recurrence 

Kurppa et al._239 F 46 Mandible Plexiform Mutant Recurrence 

Soltani et al._0312 M 87 NA Follicular Mutant NA 

Soltani et al._0512 M 58 NA Follicular Mutant NA 

Soltani et al._0612 M 46 NA Plexiform Mutant NA 

Soltani et al._0912 M 51 NA Plexiform Mutant NA 

Soltani et al._1212 M 30 NA Plexiform Mutant NA 

Soltani et al._1612 M 30 NA Plexiform Mutant NA 
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ID (Author_case number) Sex Age Location Histological type BRAFV600E Recurrence 

Soltani et al._2012 M 78 NA Follicular Mutant NA 

Soltani et al._2312 F 50 NA Plexiform Mutant NA 

Soltani et al._2412 M 22 NA Follicular Mutant NA 

Soltani et al._2612 F 37 NA Follicular Mutant NA 

Soltani et al._2912 M 41 NA Follicular Mutant NA 

Soltani et al._3312 F 26 NA Plexiform Mutant NA 

Sweeney et al._118 NA NA Mandible Mix Mutant NA 

Sweeney et al._128 M 59 Mandible Follicular Mutant Recurrence 

Sweeney et al._138 NA NA Mandible Follicular Mutant NA 

Sweeney et al._148 M 45 Mandible Follicular Mutant Primary 

Sweeney et al._158 M 70 Mandible Mix Mutant Recurrence 

Sweeney et al._168 NA NA Mandible Mix Mutant NA 

Sweeney et al._178 NA NA 
Frontal 
bone 

Mix Mutant NA 

Sweeney et al._188 M 83 Mandible Plexiform Mutant Primary 

Sweeney et al._198 NA NA Mandible NA Mutant NA 

Sweeney et al._208 NA NA Mandible NA Mutant NA 

Sweeney et al._218 NA NA Mandible NA Mutant NA 

Sweeney et al._228 NA NA Mandible NA Mutant NA 

 

This table pools BRAFV600E and BRAFWT ameloblastoma cases from previous studies in 

the comparation of sex, age, location, histological type and recurrence. M, male; F, 

female; WT, wild type; NA, not available. 
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Table 2. Clinical reports of targeting BRAFV600E in AM. 

Author Sex  Age  Diagnosis  Mutation Treatment  Follow up/ 
tool 

Outcome  

Kaye et 
al.14  

M 40 Recurrent 
ameloblastom
a of left 
mandible, 
bilateral neck 
and bilateral 
lung 
metastasis  

BRAF 
V600E 

Dabrafenib
150 mg 
BID; 
trametinib 2 
mg QD 

20 weeks/ 
CT scan 

Partial 
response 

Tan et 
al.16 

M 85 Recurrent AM, 
left mandible 
with pathologic 

fracture 

BRAF 
V600E 

Dabrafenib 
150 mg BID 
for 73 days, 
1.5 months 
later under 
surgery 
treatment 

75 days/ 
CT scan 

Cystic change 
with same 
tumor size 

16 weeks/ 
surgical 
specimen 

> 90% tumor 

volume 
reduction in 
the specimen 

Faden 
et al.15 

F 83 Recurrent AM, 
right mandible 

BRAF 
V600E 

Dabrafenib 
75 mg BID 
(50% 
reduction of 
dose due to 
clinical 
comorbiditi
es) 

12 months/ 
MRI 

75% reduction 
in tumor 
volume 

Fernan
des et 
al.17 

F 29 Recurrent AM, 
left mandible 
status post 
operation 

Undiagnosed 
lesion of right 
cavernous 
sinus 

BRAF 
V600E 

Vemurafeni
b 960 mg 
BID 

11 months/ 
MRI 

Partial 
response 

Brunet 
et al.18  

F 26 Metastasis AM 
of bilateral 
lung 

BRAF 
V600E 

Dabrafenib 
150 mg 
BID; 
trametinib 2 
mg QD 

12 weeks/ 
PET/CT 
scan;30 
weeks/ NA 

Complete 
response 

This table is a summary of clinical case reports for advanced ameloblastoma cases 
treated with a BRAFV600E inhibitor (dabrafenib or vemurafenib) alone or combined with a 
MEK inhibitor (trametinib) orally. AM, ameloblastoma; M, male; F, female; QD, once 
daily, BID, twice daily; CT, computerized tomography; MRI, Magnetic resonance imaging; 
PET, positron emission tomography; NA, not available. 
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1.2 Plasticity of cancer stem cells— bidirectional EMT process, 

the hybrid EMT intermediate cells 

Cancer stem cells (CSCs), or tumor-initiating cells (TICs), have the 

capabilities of self-renewal and differentiation into non-CSCs to repopulate the 

cancer mass. CSCs have been demonstrated to contribute to tumorigenesis, 

progression, metastasis, therapeutic resistance, and recurrence19,20. Epithelial-

mesenchymal transition (EMT) is a dynamic process, during which epithelial cells 

undergo loss of cell junctions and spindle shape-like cell morphological changes 

and gain increased cell motility, all properties characteristic of mesenchymal 

cells21,22. EMT process plays a critical role in embryonic development, tissue 

remodeling/homeostasis, and wound healing, and a variety of pathological 

settings22,23. In tumor microenvironment, a portion of tumor epithelial cells 

undergo dynamic bidirectional EMT and mesenchymal-epithelial transition (MET) 

process, the determinant of cell plasticity that contributes to tumor initiation, CSC 

formation, and is closely associated with the development of several cancer 

hallmarks22. EMT intermediate cells, or hybrid cells, are endowed with both 

epithelial and mesenchymal cell features and contribute to tumor initiation, 

progression, metastasis, and drug resistance21-23. However, much less work has 

been done to explore the potential role of EMT and TICs in the development of 

benign epithelial tumors. Recently, our group has shown that AM tissues harbor 

a proportion of epithelial cells (AM epithelial cells) which simultaneously express 

EMT regulatory transcription factors (TFs) such as ZEB1, Slug, and Snail as well 

as stem cell-related markers such as ALDH1, BMI-1, and SOX2. These proteins 
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were up-regulated in AM epithelial cells when co-cultured with AM-derived 

mesenchymal stromal cells (AM-MSCs)24, thus supporting the notion that the 

subpopulation of AM epithelial cells are endowed with both EMT and stem-like 

cell properties (AM-EpiSCs). However, to date, there is still a lack of consistent 

cell surface markers to identify these EMT intermediate cells with stem-like cell 

properties (AM-EpiSCs) and their potential role in the pathogenesis and 

progression of AM remains largely unknown.  

1.3 LGR5+ stem cells in normal organs and tumors 

Leucine-rich repeat-containing G-protein coupled receptor (LGR) proteins are a 

unique class of evolutionarily conserved seven-transmembrane (7TM) receptors 

characterized by a large extracellular region (ectodomain) that harbors multiple 

imperfect copies of leucine-rich repeat protein interaction domain (Figure 1.4 A)25. 

LGR5, a family member of LGR proteins, can activate Wnt/β-catenin pathway 

through binding with its ligands, R-spondin family (R-spondin 1 to 4) (Figure 1.4 

B)25,26, and has been identified as an epithelial stem cell marker in multiple 

developmental organs, such as the root cervical loop, taste bud, intestine, and 

hair follicle25,27,28. Meanwhile, LGR5 has also been reported as a putative marker 

for cancer stem cells (CSCs) in several types of malignant cancers, e.g. basal 

cell carcinoma, glioma, and gastrointestinal (GI) cancers29-34. Functionally, LGR5 

has been shown to promote EMT process and metastasis in hepatocellular 

carcinoma, colon cancer, and glioma33-35 and to predict poor survival of glioma 

patients34. The development of odontogenic tumors, including ameloblastoma, 
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has been linked to the enamel organ, e.g. remnants of odontogenic epithelium, 

the migrating epithelium at the cervical loop, and lining of odontogenic cyst36,37. 

Several studies have also reported LGR5 expression in odontogenic epithelial 

stem cells38-41, suggesting that LGR5 may represent a putative epithelial stem 

cell surface marker in both normal and tumorous odontogenic tissues. 
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Figure 1.4 LGR5-mediated signaling pathways. A Leucine-rich repeat-containing G-

protein coupled receptor (LGR) proteins are a unique class of evolutionarily conserved 

seven-transmembrane (7TM) receptors characterized by a large extracellular region 

(ectodomain) that harbors multiple imperfect copies of leucine-rich repeat (LRR) protein 

interaction domain. B R-spondins bind to LGR5 ectodomain at the horseshoe-shaped 

LRR surface, but not C-terminal cap, leading to the activation of the Wnt/β-catenin 

signaling pathway. In addition, the extended loop of the C-terminal LRR cap can bind to 

the antibody and activate LGR5 signaling in a ligand-independent manner42. 
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1.4 Tumor microenvironment in the regulation of tumor 

progression  

In epithelial tumor microenvironment, abundant stromal cells, particularly, 

the cancer associated fibroblasts (CAFs), surround epithelial tumor islands and 

play an important role in tumorigenesis and progression of various types of 

malignancies43. Recently, our group showed that AM-MSCs are essential for the 

survival of AM epithelial cells in vivo and AM-MSCs derived interleukin (IL)-6 can 

promote the expression of stem cell- and EMT-related genes in AM epithelial 

cells24.  

Paracrine secretomes contain a large panel of biological soluble factors. 

Exosomes, a subtype of extracellular vesicles (EVs) released by all kinds of cells, 

have a size ranged from 30~200nm and contain a variety of biological 

components such as proteins, lipids, and nucleic acid that play an important role 

in intercellular communication44. Recently, an increasing body of evidence has 

revealed the important role of cancer-derived exosomes in tumorigenesis and 

these circulating exosomes can be employed as biomarkers for early diagnosis 

and prognosis45-47. However, the role of AM-MSCs-derived secretomes in the 

regulation of LGR5+ EpiSCs in AM is unknown.  

1.5 Organoid model in the study of tumor biology  

Two-dimensional (2D) monolayer cell culture is a popular and stable method 

to study tumor cell behavior in vitro. However, the 2D culture involves a single 

type of cells and fails to reflect in situ tumor structure and the heterogeneity of its 

tumor microenvironment48,49. To overcome the drawbacks of the conventional 2D 
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culture, researchers endeavored to develop 3D-spheroid culture, whereby cells in 

a suspension culture system aggregate into 3D-spheroid structures that can 

partially mimic certain properties, e.g. hypoxia and cell-cell interactions of in vivo 

tumor microenvironment50. In recent years, much progress has been made in the 

development of 3D-organoid culture, which is based on cell-cell and cell-

extracellular matrix (ECM) interactions to generate organ-like structures49. The 

3D-organoid model can recapitulate the major properties of the target tissues or 

organs, thus having provided a useful alternative ex vivo platform to replace 

animal models for mechanistic studies in stem cell biology, tissue homeostasis, 

and disease modeling48,50. Even though 3D-organoids have been extensively 

employed in the study of a variety of malignant tumors, much less is done in the 

field of benign tumor. Due to the lack of an established animal model for human 

ameloblastoma, herein, it is crucial to establish an AM-organoid model as an 

alternative for further mechanistic studies and therapeutic drug screening.  

1.6 Hypothesis 

LGR5 has been identified as an epithelial stem cell marker in multiple 

developmental organs and cancer stem cells (CSCs) 25,27-30. CSCs have been 

demonstrated to contribute to tumorigenesis, progression, metastasis, 

therapeutic resistance, and recurrence19,20. EMT intermediate cells, or hybrid 

cells, are endowed with both epithelial and mesenchymal cell features and 

contribute to CSC capabilities, such as tumor initiation, progression, metastasis, 

and drug resistance19-23. Our group previously showed that AM-MSCs are 
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essential for the survival of AM epithelial cells in vivo and AM-MSCs derived 

interleukin (IL)-6 can promote the expression of stem cell- and EMT-related 

genes in AM epithelial cells24. Based on these findings, I hypothesize that 

LGR5+ AM epithelial cells represent a subpopulation of EMT hybrid cells 

with unique stem-like cell properties driven by stromal cell-derived 

secretomes, which contribute to the pathogenesis and recurrence of AM 

(Figure 1.5). Studies in this thesis have demonstrated the potential role of LGR5+ 

intermediate stem-like AM epithelial cells in the pathogenesis and organoid 

formation in ameloblastoma, and the tumor 3D-organoids formed by LGR5+ AM-

EpiSCs provided a novel ex vivo platform for further mechanistic studies and 

screening of targeted therapeutic drugs for the treatment of this benign yet 

aggressively destructive jaw tumor.  
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Figure 1.5 Hypothesis and aims. The central hypothesis is that LGR5+ AM epithelial 

cells represent a subpopulation of tumor stem-like cells and confer EMT phenotypes. To 

confirm this hypothesis, this study proposed the following three specific aims. Aim 1: To 

explore whether LGR5+ epithelial cells represent a subpopulation of epithelial stem-like 

cells in AM and their potential roles in the pathogenesis and recurrence of AM. Aim 2: 

To establish 3D organoids by using LGR5+ AM epithelial cells, allowing for further 

mechanistic and therapeutic intervention studies. Aim 3: To uncover the role of AM-

MSCs in the regulation of EMT process and stem cell properties in LGR5+ AM epithelial 

cells. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Experimental design 

Aim 1: To explore whether LGR5+ epithelial cells represent a subpopulation 

of epithelial stem-like cells in AM and their potential roles in the pathogenesis 

and recurrence of AM (Figure 2.1). This study collected fifteen human AM 

samples (three fresh tissues and twelve formalin-fixed paraffin-embedded tissues) 

to evaluate histological features and culture epithelial cells (AM-EpiCs) and 

mesenchymal cells (AM-MSCs). To determine the stem cell and EMT properties 

of LGR5+ AM epithelial cells in vitro, Lg5+ epithelial cells were sorted out and 

compared their properties and functions with parental, LGR5- counterparts, 

including: (i) The expression of stem cell-related genes and EMT TFs; (ii) Self-

renewal capability via sphere-forming assay; (iii) Migration capacities. To 

determine whether LGR5 is a functional marker, the proliferation and stem cell 

and EMT properties of AM-EpiCs after stimulated with its ligands (R-spondin 1 

and 2) were evaluated. 

Aim 2: To establish 3D organoids using LGR5+ AM epithelial cells (Figure 

2.2). This study utilized both primary AM cells (follicular type) and one AM cell 

line (plexiform type) to create AM-organoids and optimized the culture conditions, 

e.g. culture media, cell density, and small molecules, for 3D organoid culture with 

LGR5+ AM epithelial cells alone or in combination with AM-MSCs. Then, I 

subcutaneously transplanted ex vivo cultured 3D AM-organoids into nude mice to 
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evaluate the stem cell properties of LGR5+ AM epithelial cells in vivo by 

comparison of the self-renewal, proliferation and propagation capabilities of 

parental, LGR5-, and LGR5+ AM epithelial cells. Finally, this study determined 

whether a specific BRAF inhibitor can extirpate ex vivo organoid formation. 

Aim 3: To uncover the role of AM-MSCs in the regulation of EMT process 

and stem cell properties in LGR5+ AM epithelial cells. The stromal effects on 

EMT and stem cell properties in LGR5+ AM epithelial cells were determined. 

Parental, sorted LGR5-, and LGR5+ AM epithelial cells were co-cultured with AM 

mesenchymal stromal cells (AM-MSCs) or stimulated with AM-MSC derived 

secretomes, and then the expression of LGR5, EMT TFs, and stem cell-related 

genes was determined. Finally, the 3D AM-organoids derived from AM-EpiCs 

and AM-MSCs ex vivo (Figure 2.2) were established to create a platform for 

future mechanistic studies. 
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Figure 2.1 To identify whether LGR5+ AM epithelial cells represent a subpopulation 

of stem-like cells in AM. This study collected fifteen human AM tissues and analyzed 

the expression of LGR5 in both tissue samples and isolated primary epithelial cells form 

fresh tissues. Then, the stem cell- and EMT-properties in sorted LGR5- and LGR5+ AM 

epithelial cells were compared both in vitro and in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

 

Figure 2.2 To generate AM-organoid models. The AM-organoid models were 

generated from either AM epithelial cells alone or combined AM epithelial cells and 

MSCs. Then, the ex vivo organoids were utilized to test the therapeutic effect of a 

specific BRAFV600E inhibitor and to evaluate the potential role of LGR5+ AM-EpiSCs in 

AM pathogenesis following subcutaneous transplantation into nude mice. 
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2.2 Tissue collection  

The study was conducted in accordance with human subject research 

guidelines and a protocol approved by the institutional review board (IRB) at 

University of Pennsylvania (UPenn) (IRB#817407) and focused on solid AM, the 

most common histopathological variant of this benign tumor with a high recurrent 

rate. Three fresh primary solid AM samples, including one follicular type, one 

follicular/plexiform mixed type, and one desmoplastic type, were obtained 

immediately post-surgical procedures from the Department of Oral and 

Maxillofacial Surgery of Penn Medicine Hospital of UPenn. Meanwhile, six 

dentigerous cysts were also collected as the control. In addition, a total of 12 

formalin-fixed paraffin-embedded blocks of solid AM samples were retrieved from 

the archives at Departments of Pathology of University of Pennsylvania School of 

Dental Medicine (IRB#817407), Dongguan Hospital Affiliated to Medical College 

of Jinan University, and the Fifth People's Hospital of Dongguan, which were also 

approved by the research and ethical committee of the two hospitals in China 

(Guangdong, China). Informed consent was obtained from all subjects. 

Diagnoses were made by two independent pathologists, including a board-

certified oral and maxillofacial pathologist, based on the WHO classification 

(2017) of odontogenic tumors.  

2.3 Cell culture 

An immortalized AM cell line (AM-1) was generously provided by Dr. 

Hidemitsu Harada at Iwate Medical University and cultured with defined serum-
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free keratinocyte growth medium (KGM-2 BulletKit, Lonza). Primary AM epithelial 

cells and AM-MSCs were isolated as previously described24. Briefly, at least 3-6 

mm3 of fresh human AM tissues were minced into 0.5-1 mm3 pieces followed by 

enzymatic digestion with 0.2% collagenase I (Gibco) for 1 hour in a 37C shaking 

incubator. For AM epithelial cells, the dissociated cells were seeded in gelatin-

coated tissue culture dishes (2x104/cm3) in defined KGM-2 culture medium 

(Lonza) at 37C in a humidified incubator with 5% CO2. For AM-MSCs, the 

dissociated cells were seeded in tissue culture dishes (2x104/cm3) in complete α-

MEM medium (α-MEM with 10% FBS and 1% penicillin/streptomycin) at 37C in 

a humidified incubator with 5% CO2 After 48 hours, the non-adherent cells were 

removed, and fresh media were replenished every three days. When cells were 

at 75%-95% confluence, AM epithelial cells were sub-cultured following cell 

dissociation with 1× Accutase solution (Sigma) and AM-MSCs were passaged 

using 0.05% Trypsin-EDTA solution (Fisher Scientific). The ex vivo expanded 

primary epithelial and mesenchymal stromal cells were characterized by 

immunocytochemical and flow cytometric analyses on the expression of epithelial 

markers, such as E-cadherin and Pan-cytokeratin and MSC markers, such as 

CD90 and CD105, respectively. In this study, the AM primary cells following≥ six 

passages appeared to become differentiated and lost their propagating ability. 

Primary cells at early passages were cryopreserved, and cells less than six 

passages were used for further experiments. Previous studies have shown the 

difference between primary cells and cell lines, and cell lines may undergo 
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chromosomal rearrangements/duplications or mutations, and epigenetic changes 

that make cell lines could not recapitulate the primary tumor behaviors51,52. 

Therefore, most experiments were performed by using primary AM cells. 

2.4 Immunohistochemical (IHC) and immunofluorescence (IF) 

studies 

The human tumor samples were fixed in 4% paraformaldehyde (Santa Cruz) 

for overnight at 4C and embedded in either paraffin or Optimal Cutting 

Temperature (OCT) Compound. For IHC staining, paraffin-embedded sections 

were deparaffinized, unmasked with Antigen Unmasking Solution, Citric Acid 

Based (Vector) for twenty minutes at 95C and followed by the protocol of avidin-

biotin complex (ABC) kit (VECTASTAIN ABC Kit, Vector). Briefly, sections were 

incubated at 4C overnight with primary antibodies for human LGR5 (Invitrogen, 

PA5-35304) or BRAF V600E (Invitrogen, MA5-24661). Next day, VECTASTAIN 

ABC Kit were applied to the sections, followed by color development using 

VECTOR NovaRED Peroxidase (HRP) Substrate Kit (Vector) and counterstained 

with hematoxylin. Isotype-matched control antibodies (BioLegend) were used as 

negative controls. Images were observed and photographed under a microscope 

(Olympus, IX73). Immunohistochemistry results were evaluated by a 

semiquantitative approach, H-score (“histo” score). Traditional H-score is based 

on the staining intensity (0=negative; 1=weak; 2=moderate; 3=intense) for each 

cell in a fixed field and calculated by the formula: [1 × (% cells of intensity 1) + 2 

× (% cells of intensity 2) + 3 × (% cells of intensity 3)] to get the final score, 
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ranging from 0 to 30053. In this study, a digital quantification of H-Score was 

analyzed by Color Deconvolution of ImageJ software54. Briefly, each staining was 

observed and captured at least 3 fields by a microscope. Then each image was 

processed by “color deconvolution” using the “vector HDAB”, where the staining 

of hematoxylin and diaminobenzidine (DAB) was separated into 3 different 

panels: hematoxylin, DAB and background. Next, the area of epithelium or 

stroma in the DAB image was randomly selected, and the selected area were 

analyzed by “histogram”, which calculated the mean intensity of DAB in area 

(mm2), ranging from 0 (black) to 255 (total white). Finally, the H-score was 

counted by subtracting the mean intensity of DAB from 255.  

For dual-color immunofluorescence (IF) study, frozen sections were 

permeabilized in 0.5% triton X-100 in PBS for 15min and then blocked in 2.5% 

goat serum in PBS at room temperature for 1h, followed by incubation at 4C 

overnight with a primary antibody for LGR5 (ORIGENE, TA503316, mouse IgG; 

or Invitrogen, PA5-35304, rabbit IgG) in combination with another primary 

antibody derived from a different host species, including Pan-Cytokeratin 

(BioLegend, 914204), ALDH1 (BD Biosciences, 611194), OCT4 (Abcam, 

ab18976), ZEB-1 (Santa Cruz, sc-25388), non-phospho (Active) β-catenin (Cell 

Signaling, 8814S), fibronectin (Sigma, F3648), human mitochondria (Novus, 113-

1) and PCNA (Santa Cruz, sc-7907). Afterwards, the sections were incubated at 

room temperature for 1 h with appropriate fluorochrome-conjugated secondary 

antibodies: DyLight™ 488 Donkey anti-rabbit IgG, Alexa Fluor 594 Donkey anti-
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rabbit IgG, DyLight™ 488 Goat anti-mouse IgG, and Alexa Fluor 594 Goat anti-

mouse IgG (BioLegend). Isotype-matched control antibodies (BioLegend) were 

used as negative controls. Nuclei were counterstained with 4, 6-diamidino-2-

phenylindole (DAPI) Staining Solution (Abcam) and images were captured with 

Olympus inverted fluorescence microscope (IX73). Correlation coefficient of dual-

color IF study was calculated by CellProfiler software (Appendix III)55. Briefly, a 

pixel-based method was used and all pixels in an image were determine between 

the channels. Then the linear Pearson correlation coefficient between the two 

channels was computed by the slope a of the line y=ax +b, where y and x are the 

two channel intensities, indicating the overall relative intensity of the two 

channels. 

2.5 Immunocytochemical studies 

Cultured cells in eight-well chamber slides (Millicell
 
EZ SLIDES) were fixed 

with cold methanol for 15 minutes at -20C. Then cells were incubated with the 

following primary antibodies at 4C overnight: β-catenin (Cell Signaling, 8480S), 

active β-catenin (Cell Signaling, 8814S), cyclin A (Sigma, C4710), cyclin B 

(Sigma, C8831), cyclin D1 (Cell Signaling, 2926), and cyclin E (Cell Signaling, 

4129). The cells were then incubated with appropriate fluorochrome-conjugated 

secondary antibodies as described above. Isotype-matched control antibodies 

were used as negative controls. Nuclei were counterstained with DAPI Staining 

Solution and then images were captured using Olympus inverted fluorescence 

microscope (IX73). For quantitative analysis of mean fluorescence intensity (MFI), 
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cells with positive signals in at least six random fields were measured by 

Olympus cellSens software. 

2.6 Flow cytometry 

AM epithelial cells were harvested and suspended in cell staining buffer 

(0.5% BSA in PBS with 2mM EDTA) followed by incubation with primary antibody 

for LGR5 at 4C for 30 min. After washing with PBS, the cells were incubated 

with appropriate fluorochrome-conjugated secondary antibody in the dark at 4C 

for 30 min. Following immunostaining of the cell surface LGR5, the cells were 

fixed and permeabilized using True-Nuclear™ Transcription Factor Buffer Set 

(BioLegend) and then immunostained with a specific antibody for OCT4 (Abcam, 

ab18976), followed by staining with a fluorescein-conjugated secondary antibody. 

Isotype-matched IgG control antibodies were used as negative controls. ALDH 

activity was identified by a non-immunological method (ALDEFLUOR Kit, 

STEMCELL) and the inhibitor of ALDH enzyme (ALDEFLUOR DEAB Reagent, 

STEMCELL) was used as negative controls. Samples were analyzed by BD 

LSRII flow cytometer. Data were processed and analyzed by FlowJo software. 

2.7 Cell proliferation assay 

AM epithelial cells were seeded into 96-well culture plates in a density of 

1x104 cells/well in 100 µl of defined KGM-2 medium with five independent 

replicates per treatment condition. 24 h later, the cells were washed once with 

PBS and starved in Keratinocyte basal Medium 2 (KBM2, Lonza) overnight. Then 

R-spondin 1 (Rspo1, PeproTech) and Rspo2 (PeproTech) were administrated to 



28 

 

the starved AM epithelial cells at concentrations of 0, 5, 10, and 20 ng/ml, 

respectively. After 72 h, 10 µl of CCK-8 reagent (Cell Counting Kit-8 assay, 

BioLegend) was added into each well and incubated at 37 °C for 2 h. The 

absorbance at 450 nm wavelength was detected using an OPSYS Mr microplate 

reader (Thermo Fisher).  

2.8 Cell cycle analysis 

AM epithelial cells were seeded into 35-mm culture dishes at a density of 

3x105 cells per dish containing 2ml of defined KGM-2 medium. 24h later, the 

cells were washed once with PBS and starved in basal KBM2 medium overnight. 

Then 20 ng/ml Rspo2 were administrated to the starved AM epithelial cells while 

nontreated cells were used as the control. Both control and Rspo2-stimulated 

cells were labelled with Bromodeoxyuridine (BrdU) Labeling Reagent (Invitrogen) 

overnight and then harvested after stimulation with Rspo2 for 48h. Cells were 

then fixed with 70% cold ethanol for 2h and permeabilized in 2 N HCl/0.5% Triton 

X-100 at room temperature for 30min. Then, the cell pallet was treated with 0.1 M 

sodium tetraborate (pH8.5) for 2 min followed by washing twice with PBS. 

Afterwards, cells were incubated with a specific mouse monoclonal IgG for BrdU 

(Sigma, B8434) at room temperature for 1h followed by incubation with DyLight™ 

488 Goat anti-mouse IgG at room temperature for 30 min. After washed cells 

with PBS, the pellet was resuspended in 0.5 ml PBS containing 10 μg/ml RNase 

A and 20 μg/ml propidium iodide (PI) solution and incubated at room temperature 

for 30 min in the dark. The samples were analyzed by BD LSRII flow cytometer 
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immediately. Data were processed and analyzed by FlowJo software. 

2.9 Western blot 

Cell lysates were prepared by incubation with radioimmunoprecipitation 

(RIPA) assay buffer (Santa Cruz) supplemented with a cocktail of protease 

inhibitors (Santa Cruz) and the total protein concentrations were determined 

using bicinchoninic acid (BCA) method (BioVision). Then 30µg of total proteins 

were subjected to SDS-polyacrylamide gel electrophoresis before being 

electroblotted onto a 0.2 μm nitrocellulose membrane (GE Healthcare). After 

blocking with 5% nonfat dry milk in TBST [25 mmol/L Tris (pH, 7.4), 137 mmol/L 

NaCl, 0.5% Tween20], membranes were incubated at 4°C overnight with 

following primary antibodies: LGR5 (Invitrogen, PA5-35304), ALDH1 (BD 

Biosciences, 611194), OCT4 (Abcam, ab18976), β-catenin (Cell Signaling, 

8480S), Active β-catenin (Cell Signaling, 8814S), cyclin A (Sigma, C4710), cyclin 

B (Sigma, C8831), cyclin D1 (Cell Signaling, 2926) and cyclin E (Cell Signaling, 

4129), ZEB-1 (Santa Cruz, sc-25388), fibronectin (Sigma, F3648) and E-

Cadherin (BD Biosciences, 562869). β-actin (Santa Cruz, sc-47778) was used as 

loading control. After extensively washing, membranes were incubated with 

horseradish peroxidase (HRP)–conjugated secondary antibodies (Santa Cruz) 

and blot signals were developed with ECLTM Western Blotting Detect Reagents 

(GE Health Care).  

2.10 Cell sorting 

LGR5+ AM epithelial cells were sorted by using magnetic Anti-LGR5 
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MicroBeads (Miltenyi Biotec) according to the manufacturer’s protocol. Briefly, 

cultured AM epithelial cells were labeled with Anti-LGR5 MicroBeads at 4°C for 

15 min. After washing, the cell suspension was applied to a LS Colum and 

separated with a magnetic MACS Manual Separator (Miltenyi Biotec). The purity 

of sorted LGR5- and LGR5+ AM epithelial cells was examined by flow cytometry 

and confirmed by Western blot with a LGR5 antibody (Invitrogen, PA5-35304).    

2.11 Spheroid formation assay 

3D-spheroid formation assay was performed as described previously56-58. 

Briefly, unsorted (parental), sorted LGR5- and LGR5+ AM epithelial cells were 

seeded at a density of 5×104 cells/well into Ultralow attached 6-well plates 

(Corning) with defined serum-free KGM-2 medium (n=3). For 3D-spheroid culture 

in Matrigel, parental, 5×105 of sorted LGR5- and LGR5+ AM epithelial cells were 

suspended in 10μl KGM-2 medium, mixed with 40μl Matrigel (Corning), and 

seeded in 24-well plates with defined serum-free KGM-2 medium (n=3). After 

culturing for 2 weeks, each sample was observed and captured randomly (n=8) 

by Olympus microscope (IX73). Then spheroids with a size larger than 20μm 

were counted, and the size and number of spheroids were measured with 

Olympus cellSens software. To prepare the spheroids in Matrigel for IF study, the 

whole Matrigel containing spheroids was fixed in 4% PFA for 15 min followed by 

washing twice with PBS for 15 min each time. The spheroids with Matrigel were 

detached from the dish by a fine flat spatula and transferred to the mold. The 

whole Matrigel contained spheroids were embedded in OCT and frozen sections 
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at 10µm were cut for IF study.  

2.12 Cell migration assay 

Migration assay was performed by using 8μm permeable cell culture inserts 

in 24-well plate (CELLTREAT 230633) according to the manufacturer’s protocol. 

The parental AM-1 cells were starved in KBM2 overnight and then sorted by 

magnetic Anti-LGR5 MicroBeads. The sorted LGR5 negative and positive AM-1 

cells were seeded into the upper chambers of trans-wells (7x104 cells/well) with 

200μl basal KBM2 medium and the lower chambers were filled with 600μl 

defined KGM-2 culture medium (n=3 for each group). After 16 hours, the trans-

wells were gently washed with PBS twice and non-migrated cells were removed 

with cotton rods. Then the migrated cells on trans-wells were fixed with 70% 

ethanol for 10 min and dried for 10-15 min. The migrated cells were stained by 

0.5% crystal violet in room temperature for 10 min and then gently washed with 

PBS. After air dry overnight, the migrated cells were photographed and counted 

under the microscope.  

2.13 Preparation of AM-MSC derived conditioned medium/ 

secretomes 

The AM-MSCs were culture in complete α-MEM. When cells reached 80% 

confluence, the cells were washed with PBS twice and then cultured in serum 

free α-MEM for 48 hours. After 48 hours, the culture medium of AM-MSC were 

collected and centrifuged at 4,400 rpm for 20 min to remove the cell debris. Then 

the supernatant was collected and concentrated by 30 kDa ultra centrifugal filter 
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unit (Millipore) at 4,400 rpm about 30 min twice with one wash with PBS between 

the two centrifuges to 100X concentrated medium. Then the protein 

concentration of AM-MSC derived conditioned medium was determined by 

bicinchoninic acid (BCA) assay (BioVision).  

2.14 3D-organoids derived from AM epithelial cells 

Single-cell suspensions of AM epithelial cells were directly dispersed into 

Growth Factor Reduced (GFR) Matrigel (Corning Life Sciences) at a density of 

2×104 cells/μl (~1x106 each group) and seeded in a drop shape. The dish was 

inverted during solidification of Matrigel to prevent the cells attaching to the 

culture dish. After solidified for 20 minutes, the mixture of the cells and Matrigel 

were cultured in AM-organoid culture medium: 50% KGM2 and 50% Dulbecco's 

Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12, Thermo Fisher). The 

organoid formation was observed under a microscope every 2-3 days and the 

whole Matrigel containing organoids was harvested on day 10. To prepare the 

Matrigel for frozen section, the gel was washed with PBS twice, and the whole 

Matrigel including organoids was fixed in 4% PFA for 15 minutes following by 

washing with PBS twice for 15 minutes each time. The organoids with Matrigel 

were detached from the dish by fine flat spatula and transferred to the mold. The 

whole Matrigel contained organoids was embedded in OCT for frozen section. 

Both H & E staining and immunofluorescence studies on the expression of Pan-

Cytokeratin, LGR5 and active β-catenin were performed. 
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2.15 3D-organoids derived from AM epithelial cells and AM-

MSCs 

Single-cell suspensions of AM epithelial cells and AM-MSCs (with or without 

green fluorescent protein, GFP, lentivirus transduction) (cell ratio: 2:1) were 

directly dispersed into Matrigel at a density of 4×104 cells/μl (~1.5 x 106 each 

group) and seeded in a drop shape. The dish was inverted during solidification of 

Matrigel to prevent the cells attaching to the culture dish. After solidified for 20 

minutes, the mixture of the cells and Matrigel were cultured in AM-organoid 

culture medium 2: 50% KGM2 and 50% Dulbecco's Modified Eagle 

Medium/Nutrient Mixture F-12 (DMEM/F12, Thermo Fisher), and supplemented 

with 10 ng/ml EGF, 20 ng/ml FGF and 0.5X Insulin-Transferrin-Selenium (Thermo 

Fisher). The organoid formation was observed under a microscope every day 

and the whole Matrigel containing organoids was passaged or cryopreserved on 

day 4. Briefly, after washing with PBS twice, the whole Matrigel containing 

organoids was broken down by 1000ul pipet tip and collected with 500ml iced 1% 

BSA in PBS to a 1.5 ml centrifuge tube. Then, spin down at 1,500 rpm for 5 min 

and carefully remove the supernatant. The pellet was dissociated with 400ml 1× 

Accutase solution in 37C for 20-30 min, and washed with 1% BSA twice. The 

dissociated cells were directly dispersed into Matrigel at a density of 4×104 

cells/μl or into the cryopreservation media followed by the normal 

cryopreservative procedure. The frozen organoid cells were thawed, washed and 

directly dispersed into Matrigel followed the same culture procedure. The 

preparation of the organoids in Matrigel for frozen section is same as AM-
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organoids derived from AM epithelial cells. Both H & E staining and 

immunofluorescence studies on the expression of E-cadherin (24E10, Cell 

Signaling Technology), CD90 (5E10, BioLegend), vimentin (sc-32322, Santa 

Cruz Biotechnology) and LGR5 (ORIGENE, TA503316, mouse IgG; or Invitrogen, 

PA5-35304, rabbit IgG) were performed. 

2.16 Subcutaneous transplantation of AM 3D-Organoids into 

nude mice 

Eight-week-old female and male athymic NU/J mice were purchased from 

Charles River Laboratory. All animal procedures were handled according to the 

guidelines of the Institutional Animal Care and Use Committee of (IACUC) at 

University of Pennsylvania. Mice were group-housed in polycarbonate cages 

(five animals per cage) in the animal facility with controlled temperature, 40%-

65% of humidity and a 12-hour light/dark cycle. Mice were acclimatized for at 

least 1 week before the study, fed with a standard laboratory diet and allowed ad 

libitum access to drinking water. For subcutaneous transplantation, nude mice 

were randomly assigned into six groups transplanted with 8×105 AM-EpiCs 

(parental, sorted LGR5- and LGR5+) and 8×105 AM-EpiCs + AM-MSCs with 1:1 

cell ratio (parental + MSCs, sorted LGR5- + MSCs and LGR5+ +MSCs), 

respectively. Cells were pre-cultured in Matrigel for three weeks and then 

subcutaneously implanted into the dorsal skin of nude mice (n=3-4 in each 

group). Two to four weeks after transplantation, xenografted tumors were 

harvested for histologic analysis and IF studies on the expression of LGR5, 
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human mitochondria, PCNA, EMT- and stem cell-related genes. No blinding was 

carried out for animal experiments. 

For cell-dilution assay, we sorted LGR5+ cells from parental primary AM 

epithelial cells and AM-1 cells and then cultured in Matrigel (50μl) for two weeks 

with different cell numbers: 103, 104, 105 and 106 (n=2 in each group). After two 

weeks, the organoids in Matrigel were transplanted subcutaneously into the 

dorsal skin of nude mice. 4-weeks post-transplantation, the volume of 

transplanted organoid xenografts was calculated; the histology was examined by 

H & E staining, and the expression of human LGR5 and PCNA was determined 

by IF studies. 

2.17 Statistical analysis 

All data are presented as mean ± SD and analyzed using unpaired Student’s 

t-test for comparing two groups when appropriate. In cases of multiple groups, 

statistical analysis was performed through one-way ANOVA analysis with Tukey 

post-test. Fisher’s exact test and Chi-square teat were used to compare 

proportions in one or more categories. All analyses were done using GraphPad 

Prism. A value of P<0.05 was considered to be statistically significant.  
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CHAPTER 3: RESULTS 

3.1 LGR5 is highly expressed in epithelial cells in AM tissues 

LGR5 has been reported as a stem cell marker in multiple normal and 

malignant tissues and recent studies revealed that LGR5+ CSCs promote EMT 

process and are essential for tumor metastasis34,35. Our recent studies have 

identified a subpopulation of AM epithelial cells with increased expression of both 

stemness- and EMT-related markers upon co-culture with AM-MSCs24. Herein, I 

further explored whether LGR5 represented a putative marker for epithelial stem-

like cells in AM. To this purpose, the expression of LGR5 in a total of fifteen 

human AM tissues (ten follicular type; two plexiform type; three desmoplastic 

type) versus corresponding normal adjacent tissues (NATs), and six benign 

odontogenic cysts (OC) was initially evaluated. The results from IHC studies 

showed that LGR5 expression was consistently higher in different histological 

variants of solid AM (follicular, plexiform, and desmoplastic AM), as compared to 

OCs, and the corresponding NATs (Figure 3.1 A-C). Of note, the overall H-score 

of LGR5 expression in AM tumor tissues was much higher, 4-fold, than that in 

normal control and OCs (Figure 3.1 C). The immunoreactive signals of LGR5 

expression are mainly localized in the AM epithelial islands, with an average 

70.45% of LGR5+ cells in epithelial islands versus an average 18.62% of LGR5+ 

cells in stroma of the total fifteen AM tissues (Figure 3.1 D and E). The 

expression of LGR5 in AM epithelial islands was slightly higher in the plexiform 

(85.98%) than that in the follicular type (66.50%) (p< 0.05). 
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Figure 3.1 LGR5 is highly expressed in epithelial cells in AM tissues. A The 

paraffin-embedded sections of odontogenic cyst (OC) were processed for IHC staining 

with a specific antibody for human LGR5 (n=6). Scale bars, 50μm. NAT: normal adjacent 
tissue (same patient). B Expression of LGR5 in different histopathological types of AM 

(n=15). Scale bars, 20μm. NAT: normal adjacent tissue (same patient). C The 

quantification of H-score of LGR5 expression in AM (n=15) and odontogenic cyst (OC) 

(n=6). H-Score of each sample was analyzed at least 9 different areas by Color 

Deconvolution of ImageJ software and data are mean ± SD. Two-tailed unpaired 

Student’s t-test. ****p<0.0001. D The quantification of H-score of LGR5 expression in 

stroma and epithelial islands of AM, respectively. Data are mean ± SD. Two-tailed paired 

Student’s t-test. ****p<0.0001. E Relative percentage was converted from the H-Score 

values in (D). The immunoreactive signals of LGR5 expression are mainly localized in 

the AM epithelial islands, with an average 70.45% of LGR5+ cells in epithelial islands 

versus an average 18.62% of LGR5+ cells in stroma of the total fifteen AM tissues. H-

Score of each sample was analyzed at least 5 different areas by Color Deconvolution of 

ImageJ software and data are mean ± SD. 
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3.2 Characterization of a subpopulation of LGR5+ stem-like 

epithelial cells in AM 

This study then determined whether LGR5 expression was associated with 

other stem cell-related genes in solid type of AM tissues. Dual-color 

immunofluorescence study showed that about 66.3% of LGR5 signal was co-

localized with the pan-cytokeratin (Pan-CK) in AM tissues, indicating that LGR5 

was mainly expressed by epithelial cells in AM (Figure 3.2). Since the solid type 

of AM accounts for about 80% of all AM cases and has a high recurrence rate1,59, 

this study focused on this major type of AM. Dual-color immunofluorescence 

studies showed that within the epithelial islands of all three subtypes of solid type 

of AMs, LGR5 was simultaneously expressed with aldehyde dehydrogenase 1 

(ALDH1) and octamer-binding transcription factor 4 (OCT4) (Figure 3.2 A, C and 

D), two well-recognized stem cell-regulatory genes identified in CSCs of multiple 

cancers60-63. Further analysis indicated that about 68.6% of LGR5+ epithelial cells 

simultaneously expressed ALDH1 and 74.1% LGR5+ epithelial cells 

simultaneously expressed OCT4 (Figure 3.2 B). These results suggest that solid 

type of AM tissues harbor a subpopulation of LGR5+ epithelial cells expressing 

stem cell-related genes. 

To characterize the stem cell properties of the subpopulation of LGR5+ 

epithelial cells in AM, primary epithelial cells derived from solid follicular AM 

tissues (AM epithelial cells), as previously described24 (Figure 3.3 A),  were 

cultured under 3D-spheroid forming condition, an approach utilized for self-

renewal and enrichment of stem cells64-67. The results showed that expression of 
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LGR5, ALDH1, and OCT4 was significantly increased in AM epithelial cells after 

5 days in 3D-spheroid culture, as compared to those under 2D culture condition 

(Figure 3.3 B and C). Flow cytometric analysis showed that LGR5+ cells grown in 

3D-spheroid condition were consistently enriched by three-fold (from 9.95 ± 3.43 

% to 27.1 ± 6.52 %) as compared to 2D culture (Figure 3.4 A). Meanwhile, 

LGR5+OCT4Low, LGR5+OCT4High, and total OCT4High cells in AM epithelial cells 

were further analyzed. The results showed that under 3D-culture versus 2D-

culture, both LGR5+OCT4Low and LGR5+OCT4High cells were significantly 

enriched, from 3.98% to 21.8% and 2.09% to 14.7%, respectively; and total 

OCT4High cells were increased from 10.11% to 23.64% (Figure 3.4 B). In addition, 

ALDH1 activity increased about three-fold in AM epithelial cells in 3D-spheroid 

versus 2D cultures by evaluating ALDH activity using ALDEFLUOR assay 

(Figure 3.4 C). Similarly, LGR5+ and LGR5+OCT4High cells were enriched while 

ALDH1 activity increased in immortalized AM-1 cells when cultured under 3D-

spheroid culture condition (Figure 3.5). Collectively, these results suggest that 

LGR5+ALDH1+OCT4High AM epithelial cells may have self-renewal capability and 

represent a subpopulation of tumor epithelial stem-like cells in solid AM (AM-

EpiSCs). 
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Figure 3.2 Simultaneous expression of LGR5 and certain stem cell-related markers 

in AM tissues. A Left: dual-color immunofluorescence study showed that simultaneous 

expression of LGR5 and Pan cytokeratin (PanCK), ALDH1 and OCT4 in the follicular 

tissue, respectively. Scale bars, 20μm. B The quantification of correlation coefficient of 

LGR5 and epithelial biomarker (PanCK) and stem cell-related markers (ALDH1 and 

OCT4) in the solid AMs (n=3). The results showed that about 66.3% of LGR5 signal was 

simultaneously expressed with the expression of PanCK in the solid AM tissues. About 

68.6% and 74.1% of LGR5+ cells simultaneously expressed ALDH1 and OCT4, 

respectively. Each group was calculated at least three different areas by CellProfiler 

software and data are mean ± SD. 
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Figure 3.2 Cont’d. C Dual-color immunofluorescence study showed that simultaneous 

expression of LGR5 and PanCK, ALDH1 and OCT4 in the plexiform tissue, respectively. 

Scale bars, 20μm. D Dual-color immunofluorescence study showed that simultaneous 

expression of LGR5 and PanCK, ALDH1 and OCT4 in the desmoplastic tissue, 

respectively. Scale bars, 20μm. 
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Figure 3.3 LGR5+ALDH1+OCT4High AM epithelial cells are enriched in 3D-spheroid 

culture. A Morphology of AM epithelial cells derived from primary human AM tissues 

and cultured under 2D-monolayer or 3D spheroid-forming conditions. Scale bars, 100μm. 
B AM epithelial cells were cultured under 2D-monolayer or 3D-spheroid culture 

conditions for 5 days. The simultaneous expression of LGR5, ALDH1, and OCT4 was 

observed by immunofluorescence studies. Scale bars, 20μm. C Augmented expression 

of LGR5, ALDH1, and OCT4 in AM epithelial cells under 3D-spheroid culture versus 2D-

monolayer culture as determined by Western blot analysis. All results are representative 

of at least three independent experiments. 
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Figure 3.4 LGR5+ALDH1+OCT4High AM epithelial cells are enriched in 3D-spheroid 

culture. A About three-fold enrichment of LGR5+ AM epithelial cells (from 6.79% to 

21.2%) under 3D-spheroid culture versus 2D-monolayer culture as determined by flow 

cytometric analysis. B The proportion of LGR5+OCT4Low, LGR5+OCT4High, and total 

OCT4High cells in AM epithelial cells cultured under 2D-monolayer culture and 3D-

spheroid conditions was determined by flow cytometry. C The activity of ALDH1 was 

increased by about three-fold (4.4% to 11.8%) in AM epithelial cells under 3D-spheroid 

culture versus 2D-monolayer culture as determined by flow cytometric analysis. All 

results are representative of at least three independent experiments. 
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Figure 3.5 LGR5+ALDH1+OCT4High are enriched in AM-1 cells under 3D spheroid-

forming culture conditions. A Flow cytometric analysis showed that LGR5+ cells were 

enriched by about two-fold (from 29.4% to 55.5%) in AM-1 cells under 3D-spheroid 

culture for 5 days. Red: LGR5. Gray: negative control. B The proportion of 

LGR5+OCT4Low, LGR5+OCT4High, and total OCT4High cells in AM-1 cells cultured under 

2D-monolayer culture and 3D-spheroid conditions was determined by flow cytometry. C 

The ALDH1 activity was increased by about three-fold (3.75% to 13.1%) in AM-1 cells 

under 3D-spheroid culture for 5 days. All results are representative of at least three 

independent experiments. 
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3.3 LGR5+ AM epithelial cells are endowed with intermediate 

EMT phenotype and stem cell properties in vitro 

The stem cell properties of LGR5+ AM epithelial cells were then further 

characterized. To this end, LGR5+ AM epithelial cells were sorted from parental 

primary AM epithelial cells using LGR5 antibody-conjugated with magnetic beads 

and confirmed by flow cytometry (Figure 3.8 A). 3D-spheroid forming assay 

under suspension culture conditions showed that LGR5+ AM epithelial cells 

formed more abundant and larger spheroids than LGR5- counterparts (Figure 3.6 

A and B). Meanwhile, sorted LGR5+ AM epithelial cells when cultured in 3D 

extracellular matrix (ECM) Matrigel for two weeks also readily formed larger 3D-

spheroids as compared to LGR5- counterparts (Figure 3.6 C and D). Similarly, 

LGR5+ cells sorted from AM-1 cells also exhibited increased 3D-spheroid forming 

capability as compared to the LGR5- counterparts (Figure 3.8 B and C). These 

results suggest that LGR5+ AM epithelial cells are more capable of self-renewal 

than their LGR5- counterparts.  

Since EMT contributes to cell plasticity and cancer stem cell (CSC) 

formation22, the expression profiles of stem cell-related and EMT-regulatory 

transcriptional factors (TFs) in sorted LGR5+ and LGR5- AM epithelial cells were 

then compared. Western blot analysis demonstrated an increase in the 

expression of stem cell-related markers, ALDH1 and OCT4, as well as EMT-

related markers, ZEB1, active β-catenin (ABC) and fibronectin, in LGR5+ cells 

sorted from both primary AM epithelial cells and AM-1 cell lines in comparison 

with their LGR5- counterparts, respectively (Figure 3.6 E and Figure 3.8 D). 
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Additionally, the simultaneous expression of LGR5 and ZEB1, ABC, and 

fibronectin was further confirmed in different subtypes of solid AM tissues as 

determined by immunofluorescence studies (Figure 3.6 F and Figure 3.7). 

Functionally, LGR5+ AM epithelial cells exhibited significantly increased migration 

ability as compared to their LGR5- counterparts (p<0.001) was found (Figure 3.8 

E and F). Taken together, these findings suggest that LGR5+ epithelial cells also 

possess features characteristic of an intermediate EMT phenotype. 
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Figure 3.6 LGR5+ AM epithelial cells exhibit self-renewal ability and EMT 

phenotypes. A and B LGR5+ AM epithelial cells were sorted out from parental primary 

AM epithelial cells using LGR5 antibody-conjugated magnetic beads, which showed 

increased 3D spheroid-forming ability than their LGR5- counterparts (n=3). Scale bars, 

50μm. Data are Mean ± SD (each group was measured 8 different random areas under 
the microscope), two-tailed unpaired Student’s t-test. *** p<0.001, **** p<0.0001. C 

Sorted LGR5+ AM epithelial cells formed more and larger 3D-spheroids as compared 

with LGR5- counterparts after culturing in 3D extracellular matrix (ECM) Matrigel for two 

weeks (n=3). Scale bars, 20μm. D The quantification of spheroid formation as shown in 

(C). Data are Mean ± SD (each group was measured 3 different random areas under the 

microscope), two-tailed unpaired Student’s t-test. *** p<0.001, **** p<0.0001. E 

Increased expression of stem cell-related markers, ALDH1 and OCT4, and EMT related 

markers, ZEB1, active β-catenin (ABC) and fibronectin (FN), in sorted LGR5+ AM 

epithelial cells as compared to that in LGR5- counterparts. F Simultaneous expression of 

LGR5 and specific EMT related markers, ZEB1, ABC and FN in the follicular AM tissue. 

Scale bars, 20μm. All results are representative of three independent experiments. 
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Figure 3.7 Simultaneous expression of LGR5 and certain EMT-related genes 

expressions in AM tissues. A and B Simultaneous expression of LGR5 and specific 

EMT related markers, ZEB1, ABC and fibronectin (FN) in the plexiform (A) and 

desmoplastic (B) AM tissues as determined by immunofluorescence studies. C The 

quantification of the results shown in (A and B), and Figure 3.6 F (follicular type). n=3, 

each group was calculated at least three different areas by CellProfiler software and 

data are mean ± SD. Scale bars, 20μm.  
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Figure 3.8 LGR5+ AM-1 cells exhibit self-renewal ability. A About 90% of sorted 

LGR5+ AM epithelial cells was positive for LGR5 as confirmed by flow cytometric 

analysis. B Sorted LGR5+ AM-1 formed larger 3D-spheroids than those by LGR5- 

counterparts following cultured in 3D Matrigel for two weeks. Scale bars, 100μm. C The 

quantification of the results shown in (B). Data are Mean ± SD (each group was 

measured 3 different random areas under the microscope), Two-tailed unpaired 

Student’s t-tests. ***p<0.001. D Increased expression of stem cell-related markers, 

ALDH1 and OCT4, and EMT related markers, ZEB1, active β-catenin (ABC) and 

fibronectin in sorted LGR5+ AM-1 cells in comparison to that in LGR5- counterparts as 

determined by Western blot analysis. E The sorted LGR5- and LGR5+ AM-1 (7x104 

cells/well in 200μl basal KBM2 medium) were seeded onto the upper chamber of 24-

transwells and the lower chambers were filled with 600μl defined KGM-2 culture medium 

(n=3 for each group). After culture overnight (16h), the migrated cells were stained with 

crystal violet and images were taken under a microscope.  Scale bars, 100μm. F The 

quantification of the results shown in (E). Data are Mean ± SD (each trans-well was 

measured 6 different random areas under the microscope with 100x magnification), 

Two-tailed unpaired Student’s t-tests. **p<0.01. All results are representative of at least 

two to three independent experiments. 
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3.4 LGR5/R-spondin stimulates proliferation and EMT/ stemness 

markers of AM epithelial cells  

R-spondin 1 to 4 (Rspo1-4), four secreted Wnt agonists, can activate the 

canonical Wnt pathway through binding with their endogenous LGR receptor 

family members, LGR4, LGR5 and LGR625,68. The biological function of LGR5 

was then determined by stimulating AM epithelial cells with its ligands, R-

spondin-1 or -2 (Rspo1 and Rspo2). To this purpose, primary AM epithelial cells 

were stimulated with Rspo1 and Rspo2 for 48h, respectively, and the proliferative 

activity was evaluated. The results showed that stimulation with either Rspo 1 or 

Rspo2 led to a dose-dependent increase in the proliferation in AM epithelial cells 

(Figure 3.9 A). Western blot analysis showed that treatment with Rspo1 and 

Rspo2 significantly increased the expression of active β-catenin (ABC), cyclin A, 

D1 and E in AM epithelial cells, while the stimulatory effect conferred by Rspo2 

was more robust than that by Rspo1 (Figure 3.9 B). The increased expression of 

ABC, cyclin A, D1 and E in nuclei of AM epithelial cells following treatment with 

Rspo2 for 48h was further confirmed by immunofluorescence (IF) studies (Figure 

3.9 C and D). Similarly, stimulation with Rspo2 increased the expression of ABC, 

cyclin A, D1 and E as well as the percentage of cells at S-phase (from 8.27% to 

12.4%) in AM-1 cells (Figure 3.10 A and B). Of note, Rspo2 upregulated the 

expression of OCT4 and fibronectin but decreased the expression of E-cadherin 

in AM-1 cells (Figure 3.10 C). Meanwhile, ameloblastoma epithelial cells showed 

significantly enhanced 3D-spheroid forming capacity upon exposure to Rspo 2 as 

compared to the control (vehicle) group (Figure 3.10 D). These findings suggest 
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that functional LGR5/R-spondin may contribute to AM tumor growth through 

promoting proliferation, EMT, and acquisition of stem cell properties in AM 

epithelial cells. 
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Figure 3.9 AM epithelial cells are responsive to R-spondin stimulation. A 

Stimulation with R-spondins (Rspo1 and Rspo2) for 72h increased proliferation in AM 

epithelial cells in a dose-dependent manner. Mean ± SD, n=5, one-way ANOVA and 

Dunnett’s post-test for comparing treatments to untreated control. Control=PBS. NS=not 

significant. *p<0.05, **p<0.01, ***p<0.001. B Stimulation with R-spondins (Rspo1 and 

Rspo2) for 48h increased the expression of active β-catenin (ABC), cyclin A, D1, and E 

in AM epithelial cells in a dose-dependent manner as determined by Western blot 

analysis. C Stimulation with 20ng/mL of Rspo2 for 48h increased the expression of 

active β-catenin (ABC), cyclin A, D1, and E in nuclei of AM epithelial cells as determined 

by immunofluorescence studies. Scale bars, 20µm. D The quantification of the results 

from immunofluorescence studies shown in (C). MFI: mean fluorescence intensity. Each 

group was measured 6 different random areas and data are mean ± SD. Two-tailed 

unpaired Student’s t-tests, NS=not significant, **p<0.01, ***p<0.001. All results are 

representative of three independent experiments. 
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Figure 3.10 R-spondin stimulation promotes proliferation, EMT-related markers 

and self-renewal ability of AM-1. A The stimulation with Rspo2 for 48 h increased the 

expression of active β-catenin (ABC), cyclin A, D1 and E in AM-1 cells in a dose-

dependent manner. B Flow cytometry showed increased proportion of AM-1 cells at S-

phase after stimulation with Rspo2 (20ng/ml) for 48 h. C Stimulation with of Rspo2 for 

48h led to a dose-dependent increase in the expression of OCT4 and fibronectin but 

decreased the expression of E-cadherin in AM-1 cells as determined by Western blot 

analysis. D Stimulation with of 20ng/mL of Rspo2 for 10 days significantly increased 3D-

spheroid formation in AM-1 cells as compared with the control group. Mean ± SD, two-

tailed unpaired Student’s t-test (n=3 in each group). ****p<0.0001.  
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3.5 Generation of ex vivo AM three-dimensional organoid model 

with AM epithelial cells 

In recent years, several progresses have been made in the development of 

novel 3D organoid models for a variety of cancers, to study tumorigenesis, 

cancer stem cell biology, tumor microenvironment, and drug screening, etc.49,69-71. 

Up to date, there are no experimental models to study benign tumor of jaw bone, 

especially ameloblastoma. Here, I explored feasibility to generate the human AM 

3D organoids as a preclinical model for this benign/aggressive tumor. To this 

purpose, primary AM epithelial cells derived from follicular AM tissues or AM-1 

cells (plexiform AM epithelial cell lines) were cultured in Matrigel and defined 

organoid culture medium. The formation of 3D organoid-like structure by both 

primary AM epithelial cells and AM-1 cells at day 2 following organoid culture 

were observed (Figure 3.11 A). At day 10, the organoids were harvested for 

further analysis. Histologically, the generated AM organoids recapitulated the 

distinct histopathologic features of follicular and plexiform subtypes of solid AM 

(Figure 3.11 B and C). Specifically, organoids generated from primary follicular 

AM epithelial cells displayed hyperchromic nuclei cuboidal (ameloblast-like) 

peripheral cells arranged in a palisading-like pattern and demonstrated reverse 

polarity (Figure 3.11 B); while organoids generated from AM-1 cells (plexiform 

type) exhibited irregular epithelial islands connected as anastomosing strands 

(Figure 3.11 C). Interestingly, highly co-expression of LGR5 and active β-catenin 

(ABC) was also observed in organoids generated from both primary follicular AM 

epithelial cells and plexiform AM-1 cell lines (Figure 3.11 B and C), similar to that 
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observed in both subtypes of solid AM tissues (Figure 3.6 F and 3.7). These 

findings have demonstrated for the first time the feasibility to generate ex vivo 

human AM 3D organoids, which recapitulated the histopathological features of 

AM subtypes, and to further confirm the potential role of LGR5+ epithelial cells in 

the pathogenesis of AM. 
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Figure 3.11 3D-organoids derived from AM epithelial cells recapitulate 

histopathological features of AM. A The diagram showing the generation of 3D-

organoids by AM epithelial cells. Ex vivo expanded primary AM epithelial cells or AM-1 

cells were transferred to 3D Matrigel and cultured for different days. Scale bars, 20μm. B 

3D-organoid culture of follicular AM epithelial cells for 10 days. Left, H&E staining 

showed AM epithelial cells arranged into follicular-type organoids. AM-organoids 

recapitulated certain histopathological features of AM, including hyperchromic nuclei 

cuboidal (ameloblast-like) peripheral cells arranged in a palisading-like pattern and 

showed reverse polarity. Right: LGR5 was simultaneously expressed with pan-

cytokeratin and activated β-catenin (ABC) in 3D organoids formed by AM epithelial cells 

as determined by immunofluorescence studies. Scale bars, 20μm. C 3D-organoid 

culture of AM-1 (plexiform type) for 10 days. Left, H&E staining showed generated 

organoids with irregular epithelial islands connected as anastomosing strands that were 

similar to the histopathological features of plexiform AM. Right, LGR5 was 

simultaneously expressed with pan-cytokeratin and activated β-catenin (ABC) in 3D 

organoids formed by AM epithelial cells as determined by immunofluorescence studies. 

Scale bars, left upper: 200μm; left lower and right: 20μm. All results are representative of 
three independent experiments. 

 



57 

 

3.6 Lg5+ AM epithelial cells possess self-renewal and 

propagating ability in vivo 

Next, the self-renewal capability of LGR5+ AM epithelial cells in vivo was 

evaluated. To this purpose, parental and sorted LGR5+ and LGR5- AM epithelial 

cells were cultured in Matrigel in vitro for three weeks and then subcutaneously 

transplanted into the flank of nude mice (Figure 3.12 A). At day 14 post-

transplantation, histological analysis showed that parental and LGR5+ AM 

epithelial cells could proliferate and generate tumor-like structures, but 

transplanted LGR5- cells could not survive and were almost completely resorbed 

(Figure 3.12 B), wherein the presence of human AM epithelial cells in vivo was 

confirmed by immunostaining with a specific antibody for human mitochondria 

(Figure 3.12 C). Meanwhile, in the tumor-like structures formed by transplanted 

parental and LGR5+ AM epithelial cells, about 60% of cells simultaneously 

expressed LGR5 and proliferating cell nuclear antigen (PCNA) (Figure 3.12 D). 

Further analysis showed that the percentage of cells co-expressing LGR5 and 

ALDH1, LGR5 and OCT4, LGR5 and ZEB1 in tumor-like structures formed by 

LGR5+ AM epithelial cells was significantly higher than that in those formed by 

parental AM epithelial cells (Fig. 3.13). To further evaluate the self-renewal 

capability of LGR5+ AM epithelial cells in vivo, sorted LGR5+ AM epithelial cells 

were cultured in Matrigel for two weeks and then performed cell-dilution assay by 

subcutaneously transplanting different number of cells (106, 105, 104 and 103) 

into nude mice. The results showed that one-month post-transplantation, the 

implanted LGR5+ AM epithelial cells in all groups survived and exhibited 
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proliferative capability (Figure 3.14). Taken together, these results suggest that 

LGR5+ AM epithelial cells possess self-renewal and propagating capability in vivo. 
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Figure 3.12 LGR5+ AM epithelial cells exhibit propagating ability in vivo. A The 

diagram showing the subcutaneous nude mice model using ex vivo organoids. Following 

culturing in 3D Matrigel for three weeks, the ex vivo organoids formed by parental, 

sorted LGR5+ or LGR5- AM epithelial cells were harvested and subcutaneously 

transplanted into the flank of nude mice. B Two weeks post-transplantation, the tumor-

like structures formed in nude mice were harvested for histological analysis by H & E 

staining. The LGR5- AM epithelial cells were mostly resorbed while the LGR5+ and 

parental groups could generate some tumor-like structure. Scale bars, 20μm. C 

Immunofluorescence study showed co-expression of human mitochondria and LGR5 in 

xenografted tumor-like structures formed by transplanted LGR5+ and parental AM 

epithelial cells, but not by LGR- counterparts. Scale bars, 50µm. D Co-expression of 

LGR5 and proliferating cell nuclear antigen (PCNA) in xenografted tumor-like structures 

formed by transplanted parental or LGR5+ AM epithelial cells as determined by 

immunofluorescence studies (Left panels). Scale bars, 100µm. Right panel: the 

quantification of relative expression of PCNA, LGR5 and PCNA/LGR5 (P/L) from the 

results shown in the left panels. Mean ± SD (n=4 in each group, xenografts of AM 

epithelial cells, each group was measured 5 different random areas under the 

microscope, two-tailed unpaired Student’s t-test. NS=not significant).  
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Figure 3.13 LGR5+ AM epithelial cells exhibit stemness and EMT markers in vivo. 

Following culturing in 3D Matrigel for three weeks, the ex vivo organoids formed by 

parental, sorted LGR5+ or LGR5- AM epithelial cells were harvested and subcutaneously 

transplanted into the flank of nude mice. Two weeks post-transplantation, the tumor-like 

structures formed in nude mice were harvested for immunofluorescence studies. A 

Xenografted tumor-like structures formed by transplanted LGR5+ cells showed elevated 

simultaneous expression of ALDH1 and LGR5 in comparison to those formed by 

transplanted parental cells. Scale bars, 20μm. Mean ± SD, n=4, two-tailed unpaired 

Student’s t-tests. *p<0.05. B Xenografted tumor-like structures formed by transplanted 

LGR5+ cells showed elevated co-expression of OCT4 and LGR5 in comparison to those 

formed by transplanted parental cells. Scale bars, 20μm. Mean ± SD, n=4, two-tailed 

unpaired Student’s t-tests. ***p<0.001. C Xenografted tumor-like structures formed by 

transplanted LGR5+ cells showed elevated simultaneous expression of ZEB1 and LGR5 

in comparison to those formed by transplanted parental cells. Scale bars, 20μm. Mean ± 
SD, n=4, two-tailed unpaired Student’s t-tests. *p<0.05. 
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Figure 3.14 LGR5+ AM-EpiSCs exhibit self-renewal capability in vivo. For cell 

dilution assay, LGR5+ cells were sorted from primary AM epithelial cells and then 

cultured in Matrigel (50μl) for two weeks at different cell numbers: 103, 104, 105 and 106 

(n=2 each group). After two weeks, the organoids in Matrigel were transplanted 

subcutaneously into the dorsal skin of nude mice for one month. A The organoids in 

Matrigel. B Organoid xenografts were harvested one-month post-transplantation. C 

Calculation of the mean volume of organoid xenografts from different groups of animals. 

D Histological analysis of organoid xenografts by H & E staining. Sale bars, 20μm. E The 

co-expression of human LGR5 and proliferating cell nuclear antigen (PCNA) in organoid 

xenografts were determined by immunofluorescence study. Scale bars, 20μm. All results 

are representative of two independent experiments. 
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3.7 LGR5+ AM-EpiSCs resistant to BRAFV600E inhibitor are 

capable of tumor formation ex vivo 

Previous studies have shown that about 46-82% of AM cases exhibit 

BRAFV600E mutation 7-12. BRAFV600E mutation in some solid type of AM tissues 

was also confirmed by IHC studies (Figure 3.16 A). I next determined whether 

treatment of AM-1 cells with a specific BRAFV600E inhibitor, Vemurafenib 

(PLX4032), could target the subpopulation of LGR5+ cells in AM epithelial cells. 

The results showed that treatment with PLX4032 reduced cell viability in a dose-

dependent manner (Figure 3.15 A). Interestingly, flow cytometric analysis 

revealed that exposure to PLX4032 resulted in a dose-dependent enrichment of 

the subpopulation of LGR5+ cells (Figure 3.15 B). Furthermore, PLX4032 

apparently interfered with organoid formation, with most of the residual cells 

positive for LGR5 (Figure 3.15 C and Figure 3.16 B). Western blot analysis 

further confirmed that treatment with PLX4032 not only enriched LGR5 

expression, but also enhanced the expression of ALDH1, OCT4, active β-catenin, 

and fibronectin, and decreased the expression of E-cadherin in both primary AM 

epithelial cells and AM-1 cell lines (Figure 3.17 A).  

LGR5+ and LGR5- cells were sorted out from AM-1 cells following treatment 

with PLX4032 and compared the expression of these stem cell- and EMT-related 

genes. The results showed markedly elevated expression of ALDH1, OCT4, 

active β-catenin, and fibronectin in sorted PLX4032-resistant LGR5+ cells as 

compared to their LGR5- counterparts (Figure 3.17 B). Additionally, the organoid-

forming capacity of PLX4032-resistant LGR5+ AM-1 cells was determined. To 
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this end, AM-1 cells were treated with 20 μM of PLX4032 under 2D culture 

condition for 48h. Afterwards, unsorted parental (PLX-parental), sorted LGR5+ 

(PLX- LGR5+) and LGR5- (PLX-LGR5-) cells were cultured in organoid culture 

condition, respectively, while AM-1 cells treated with vehicle (DMSO) were used 

as control (Figure 3.17 C). The results showed that PLX4032-treated AM-1 cells 

(PLX-parental cells) formed significantly more and larger organoids than AM-1 

cells treated with vehicle (Figure 3.17 D and E). More compellingly, LGR5+ cells 

sorted from PLX4032-treated AM-1 cells (PLX- LGR5+) displayed more abundant 

and larger organoids than both their LGR5- counterparts (PLX-LGR5-) and AM-1 

cells treated with vehicle (Figure 3.17 D and E). Taken together, these findings 

have demonstrated that LGR5+ AM epithelial cells can surmount resistance to the 

BRAFV600E inhibitor (PLX4032) and these PLX4032-resistant LGR5+ AM epithelial 

cells are endowed with stem cell properties and an intermediate EMT phenotype 

with enhanced capacity for tumor organoid formation. 
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Figure 3.15 LGR5+ AM-EpiSCs resist BRAFV600E inhibitor in AM-organoids. A Left: 

AM-1 cells were seeded on a 24 well plate in a cell density of 105/well and treated with 

different concentrations of a specific BRAFV600E inhibitor (Vemurafenib, PLX4032) for 48 

h (n=3). Residual cells arranged into irregular epithelial islands connected as 

anastomosing strands. Right: AM-1 cells were seeded into 96-well plates (5x104 

cells/well) followed by exposure to different concentrations of PLX4032 for 48 h and the 

cell viability was determined by cell count kit-8. Data are Mean ± SD, n=4, two-tailed 

unpaired Student’s t-test. ***p<0.001, ****p<0.0001. B Left: enriched expression of LGR5 

on AM-1 cells following treatment with different concentrations of PLX4032 for 48h as 

determined by flow cytometry. Right: graphs showing the results from flow cytometric 

analysis as shown in the left panels. Data are Mean ± SD, n=3, two-tailed unpaired 

Student’s t-test. **p<0.01. C 3D-organoids formed by AM-1 cells for 4 days were treated 

with PLX4032 (20μM) for 6 days. Upper: PLX4032 interfered with 3D-organoid formation 

as determined by H & E staining. Lower: the residual PLX4032-resistant AM-1 cells in 

3D-organoids were positive for LGR5 as determined by immunofluorescence study. 

Scale bars, 20μm. All results are representative of at least three independent 

experiments. 
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Figure 3.16 LGR5+ AM-EpiSCs resist to the BRAF inhibitor. A Immunohistochemistry 

study showed BRAFV600E mutation in primary AM tissues. B 3D-organoids formed by AM 

epithelial cells for 4 days were treated with PLX4032 (20μM) for 6 days. Upper: PLX4032 
interfered with 3D-organoid formation as determined by H & E staining. Lower: the 

residual PLX4032-resistant AM epithelial cells cells in 3D-organoids were positive for 

LGR5 as determined by immunofluorescence study. N=3. Scale bars, 20μm.  
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Figure 3.17 LGR5+ AM-EpiSCs resist BRAFV600E inhibitor and drug-resistant 

LGR5+ AM-EpiSCs possess propagating ability to generate AM organoids. A 

LGR5+ epithelial cells were enriched with a concomitant dose-dependent increase in the 

expression of ALDH1, active β-catenin (ABC) and fibronectin but decreased E-cadherin 

expression in either primary AM epithelial cells or AM-1 cells following treatment with 

different concentrations of PLX4032 under 2D-monolayer culture condition for 48h. B 

AM-1 cells were treated with PLX4032 (20μM) under 2D monolayer culture conditions for 
48h and then LGR5- and LGR5+ AM epithelial cells were sorted by anti-LGR5 

microbeads. The expression of stem cell- and EMT-related genes/markers was 

significantly increased in LGR5+ AM epithelial cells in comparison to that in LGR5- 

counterparts as determined by Western blot analysis. C and D AM-1 were treated with 

PLX4032 (20μM) or vehicle under 2D-monolayer culture condition for 48h and LGR5- 

and LGR5+ AM epithelial cells were sorted by anti-LGR5 microbeads. Unsorted 

PLX4032-treated parental cells (PLX-parental) and sorted PLX4032-treated LGR5+ 

(PLX-LGR5+) cells generated significantly larger and more organoids than the PLX-

LGR5- counterparts and even the vehicle-treated parental group. Vehicle: Dimethyl 

sulfoxide (DMSO). E Measurements of organoid number and size as shown in (D). Data 

are Mean ± SD, n=3, one-way ANOVA and Dunnett’s post-test. ****p<0.0001. All results 

are representative of at least two to three independent experiments. 
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3.8 AM-MSC-derived secretomes promote the formation of 

LGR5+ AM-EpiSC in vitro 

Our recent studies have shown that AM-MSCs promoted EMT and 

acquisition of stem cell properties in AM epithelial cells24. This study then aimed 

to explore whether AM-MSCs can promote the formation of LGR5+ AM-EpiSCs. 

To this purpose, AM-1 cells were co-cultured with AM-MSCs in a trans-well 

system or with the AM-MSC derived conditioned medium (CM) for 3 days. The 

results showed that co-culture with AM-MSCs or stimulation with AM-MSC 

derived CM significantly changed the morphology of AM-1 from epithelial islands 

to anastomosing strands (Figure 3.18 A). The Western blot study showed an 

increase in the expression of LGR5, ALDH1, active β-catenin and fibronectin, but 

decreased expression of E-cadherin in AM-1 cells following co-culture with AM-

MSCs or stimulation with AM-MSC derived CM (Figure 3.18 B), suggesting that 

AM-MSC derived secretomes can promote EMT process and the formation of 

LGR5+ AM-EpiSCs in AM epithelial cells. Then, AM-1 cells were further 

stimulated with concentrated AM-MSC derived CM for 72h. The results showed 

that stimulation with concentrated AM-MSC derived CM increased the expression 

of LGR5, active β-catenin (ABC), and fibronectin in AM-1 cells as determined by 

flow cytometry (Figure 3.18 C and D) and Western blot analysis (Figure 3.18 E), 

respectively. To further define whether AM-MSC derived EVs play a role in this 

process, AM-MSCs were pretreated with GW4869, a specific exosome secretory 

blocker, for 24 or 72h, and then the conditioned medium was harvested for 

functional studies. The results showed that pretreatment with GW4869 partially 
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abrogated the upregulation of active β-catenin (ABC) and fibronectin expression 

in AM-1 induced by AM-MSCs derived CM (Figure 3.18 F and G). These results 

implicate that AM-MSC derived secretomes containing EVs contribute an 

important role in promoting EMT process and formation of LGR5+ AM-EpiSCs in 

AM epithelial cells. 
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Figure 3.18 AM-MSC derived secretomes promote the subpopulation of LGR5+ AM-

EpiSC in vitro. A and B, AM-1 cells were seeded on a 6-well plate (3x105/well) 

overnight and then co-cultured with AM-MSCs (2x105 cells) in serum free α-MEM or 

treated with AM-MSC condition medium (CM) (collected from the AM-MSC cultured in 

serum free α-MEM for 48h) for 3 days. Control: normal epithelial culture medium (KGM2) 

and serum free α-MEM. A The morphology of AM-1 was changed by AM-MSC co-

culture or CM form multiple epithelial islands (KGM2 and α-MEM groups) to 

anastomosing strands (MSC and MSC-CM groups). B Western blots study showed 

increased expression of LGR5, stemness-related marker (ALDH1) and EMT- related 

markers (ABC and fibronectin) and decreased expression E-cadherin. C AM-1 cells 

treated with concentrated condition medium (C-CM) of AM-MSC for 3 days and the flow 

cytometric results showed significantly increased expression of LGR5. Red: LGR5. Gray: 

negative control. D The quantification of data shown in (C). Mean ± SD, two-tailed 

unpaired Student’s t-tests. ***p<0.001. E Western blot study showed increased 

expression of LGR5 and EMT-related makers (ABC and fibronectin) in AM-1 after 

stimulated with concentrated condition medium (C-CM) of AM-MSC for 3 days. F The 

diagram of AM-MSC treated with DMSO or GW4869 for 24h or 72h. The treated AM-

MSC CM were collected after 48h culturing. G AM-1 cells were stimulated with AM-MSC 

CM (the AM-MSCs were treated with DMSO or GW4869 as the diagram shown in F) 

showed either 24h or 72h treated AM-MSC derived CM reduced the expression of ABC 

and fibronectin. 
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3.9 Generation of 3D organoid model from AM epithelial cells 

and AM-MSCs  

To recapitulate the microenvironment of AM, AM epithelial cells and AM-

MSCs were combined to generate 3D organoid model. AM epithelial cells were 

mixed with AM-MSCs in different cell ratios (1:1, 1:2, 1:4 and 2:1) and different 

culture medium (data unshown), and defined an optimal cell ratio (2:1), cell 

density (4x104 cells/μl Matrigel) and the culture condition that could facilitate AM 

3D-organoid formation to recapitulate the histopathological properties and 

maintained a similar expression of biomarkers in AM tissues. The AM epithelial 

cells maintained the repropagating ability through several passages and 

cryopreservation/thaw procedures (Figure 3.19). The cryopreserved organoids 

were thawed into Matrigel to maintain in the organoid culture condition. The AM 

organoids derived from AM epithelial cells and AM-MSCs self-organized to cystic 

structures within 2 days under the microscopic examination (Figure 3.20 A). The 

H & E study of the organoids derived from AM-1 mixed with AM-MSCs showed 

plexiform-like anastomosing strands (Figure 3.20 B). To maintain a sufficient 

nutrition supply in the central part of organoids, the AM organoids were 

dissociated on day 4 and passaged to new Matrigel or cryopreserved. The 

immunofluorescence study of day 2 organoids showed the expression of E-

cadherin, CD90, vimentin and LGR5 in the AM organoids derived from AM-1 and 

AM-MSCs (Figure 3.20 C and 3.21), and the day 4 organoids showed higher 

expression of LGR5 than day 2 and day 8. Besides, the MSC marker (vimentin) 

was losing in the Matrigel-culture condition (Figure 3.22). These present results 
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have provided a short-term AM 3D-organoid platform to evaluate the potential 

role of stromal cells in pathogenesis of AM. 
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Figure 3.19 Long-term AM-organoid culture. A AM-organoids derived from AM-1 

mixed with AM-MSCs (without GFP). The AM-organoids were passaged and 

cryopreserved between P2 and P3. Each passage of AM-organoids maintained 

propagating ability and continuingly generated new AM-organoids. Scale bars, 100μm. B 

AM-organoids derived from AM-1 mixed with AM-MSCs-GFP were successfully 

passaged and both AM-1 and AM-MSCs had cell viability and capacity to aggregate 

together. Scale bars, 100μm. 
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Figure 3.20 AM 3D-organoids derived from AM epithelial cells and AM-MSCs. A 

Left: the diagram showing the generation of 3D-organoids by AM epithelial cells and AM-

MSCs. Ex vivo expanded primary AM epithelial cells/ AM-1 cells and primary AM-MSCs 

(with GFP). Then primary AM epithelial cells or AM-1 were mixed with AM-MSCs (cell 

ratio 2:1) and transferred to 3D Matrigel (4x104 cells/μl Matrigel). Right: Organoids 
derived from AM-1 mixed with AM-MSCs (with GFP) under microscopic study. On day 0, 

every single cell was suspended in Matrigel and then re-arranged into multicystic 

structures within 2 days. Scale bars, 100μm. B 3D-organoid culture of plexiform AM-1 

with AM-MSCs for 2 days. H&E staining showed generated organoids with irregular 

epithelial islands connected as anastomosing strands that recapitulated the 

histopathological features of plexiform AM. Scale bars, 20μm C 3D-organoid culture of 

AM-1 (plexiform type) mixed with AM-MSCs (with GFP) for 2 days. Both epithelial (E-

cadherin) and MSC (CD90 and vimentin) markers were showed in the organoids. Scale 

bars, 20μm. All results are representative of three independent experiments.  
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Figure 3.21 Expression of LGR5 in AM 3D-organoids derived from AM epithelial 

cells and AM-MSCs. A AM-1 cells were mixed with AM-MSCs (with GFP) in cell ratio 

2:1, and transferred to 3D Matrigel (4x104 cells/μl Matrigel) and the organoids were 

harvested on day 2, 4 and 8. The expression of LGR5 was higher on day 4 while 

compared with day 2 and day 8. Scale bars, 20μm. B Day 4 organoids derived from AM-

1 cells and AM-MSCs (without GFP). The immunofluorescence study showed the 

majority of LGR5 signal was colocalized with E-cadherin (ECAD). Scale bars, 20μm. C 

The quantification of the mean fluorescence intensity of the expression of LGR5 in the 

AM organoids on day2, day4 and day8. Mean ± SD, one-way ANOVA. ****p<0.0001. D 

The quantification of correlation coefficient of the expression of LGR5 and GFP; LGR5 

and ECAD in the day 4 AM organoids. Mean ± SD, two-tailed unpaired Student’s t-tests. 

****p<0.0001. All results are representative of two independent experiments. 
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Figure 3.22 Loss of MSC-related gene (vimentin) expression in long-term AM-

organoid culture. AM epithelial cells (follicular type) mixed with AM-MSCs in 3D 

organoid culture for 3 months. During the 3D-organoid culturing, the epithelial marker (E-

cadherin) was increased, but the EMT marker (vimentin) was decreased. Scale bars, 

20μm. This long-term observation was performed once. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

3.10 AM-MSC derived secretomes promote the formation of 

LGR5+ AM-EpiSC in vivo 

To identify whether the AM-MSCs promote the generation of LGR5+ AM-

EpiSCs in vivo, AM epithelial cells (parental, sorted LGR5- and sorted LGR5+) 

were mixed with AM-MSCs in 1:1 ratio, respectively, and cultured in Matrigel for 

three weeks. Then the organoids with Matrigel were implanted into the flank of 

nude mice (n=3 for each group) (Figure 3.23 A). After two weeks, the xenografts 

were harvested and embedded in OCT for frozen section. Interestingly, the 

organoid xenografts with LGR5- AM epithelial cells alone could not survive in vivo 

(Figure 3.12 B), but LGR5- AM epithelial cells mixed with AM-MSCs could form 

tumor-like structures (Figure 3.23 B) similar to those formed by parental AM 

epithelial cells or LGR5+ AM-EpiSCs mixed with AM-MSCs as shown by H & E 

staining. In addition, dual-color immunofluorescence studies showed colocalized 

expression of human LGR5 and proliferating cell nuclear antigen (PCNA) in 

tumor-like structures formed by all groups of AM epithelial cells mixed with AM-

MSCs (Figure 3.23 C and D). Collectively, these findings suggest that AM-MSCs 

can promote the formation of LGR5+ AM-EpiSCs both in vitro and in vivo through 

their secretomes. 
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Figure 3.23 AM-MSC promote the subpopulation of LGR5+ AM-EpiSC in vivo. A The 

diagram showing the subcutaneous nude mice model using ex vivo organoids derived 

from the mixture of AM epithelial cells and AM-MSCs. Following culturing in 3D Matrigel 

for three weeks, the ex vivo organoids formed by AM epithelial cells (parental, sorted 

LGR5+ or LGR5-) mixed with AM-MSCs were harvested and subcutaneously 

transplanted into the flank of nude mice. B Two weeks post-transplantation, the tumor-

like structures formed in nude mice were harvested for histological analysis by H & E 

staining. The group of LGR5- AM epithelial cells with AM-MSCs could generate some 

similar tumor-like structures as the groups of LGR5+/ parental with AM-MSCs. Scale 

bars, 20μm. C Co-expression of LGR5 and proliferating cell nuclear antigen (PCNA) in 

xenografted tumor-like structures formed by transplanted LGR5- AM epithelial cells with 

AM-MSCs and parental epithelial cells/ LGR5+ AM-EpiSCs with MSCs as determined by 

immunofluorescence studies. Scale bars, 100µm. D The quantification of relative 

expression of PCNA, LGR5 and PCNA/LGR5 (P/L) from the results shown in (C). Mean 

± SD (n=4 in each group, each group was measured 5 different random areas under the 

microscope, two-tailed unpaired Student’s t-test. NS=not significant). 
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CHAPTER 4: DISCUSSIONS AND CONCLUSIONS 

4.1 The intermediate EMT stem-like LGR5+ epithelial cells in 

ameloblastoma 

Most solid tumors are composed of heterogeneous populations of tumor 

cells with subpopulations endowed with increased self-renewal and tumor 

repropagating capabilities termed cancer stem cells (CSCs) or tumor initiating 

cells (TICs)19. To date, a panel of cell surface molecules such as CD133, CD44, 

epithelial cell-adhesion molecule (EpCAM), CD166, CD151, etc., has been 

utilized for identification of CSCs in distinct types of cancer19,72. LGR5, upon 

binding with R-spondins, triggers the activation of downstream Wnt/β-catenin 

signaling pathway25, and has also been used as a putative marker for CSCs in 

several types of cancers29-34. However, like other adult stem cells, no single 

molecule can serve as an exclusive marker for a specialized CSC compartment. 

Multiple markers alone or in combination with ALDH enzyme activity and/or the 

expression of stemness-regulatory genes, like OCT4, Nanog, and SOX2, have 

been utilized to identify a special CSC subpopulation in different tumors72. In the 

last decade, the critical role of CSCs or TICs in tumorigenesis, progression and 

therapeutic relapse has been extensively explored and CSC-targeting therapies 

are emerging as novel strategies in therapeutics of various cancers19,20. However, 

up to date, limited work has been done to explore the potential role of tumor stem 

cells in the pathogenesis and therapy of various benign tumors of jaw bones, 

including the most common type of odontogenic benign, yet most aggressive and 
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devastating tumor, ameloblastoma. Developmentally, ameloblastoma may have 

possibly derived from remnants of odontogenic epithelium, the migrating 

epithelium at the cervical loop, and lining of odontogenic cyst36,37, while LGR5 

has been well recognized as putative marker for odontogenic epithelial stem 

cells38-41. Herein, this study demonstrated that different subtypes of solid 

ameloblastoma (AM) tissues harbored a subpopulation of LGR5+ epithelial cells 

co-expressing stemness-related genes such as active β-catenin (ABC), OCT4 

and ALDH1 as well as EMT-related genes such as ZEB1 and fibronectin, all of 

which were significantly increased in isolated epithelial cells (AM-EpiSCs) when 

cultured under 3D spheroid-forming conditions (Figure 3.1-3.8). Meanwhile, 

purified LGR5+ AM epithelial cells displayed enhanced capacities to form 3D-

spheroid in vitro and to generate tumor-like structures in vivo (Figure 3.6, 3.8 and 

3.12-3-14). These findings support the hypothesis that LGR5+ epithelial cells in 

ameloblastoma (AM) represent a subpopulation of epithelial tumor stem-like cells 

(LGR5+ AM-EpiSCs) harboring an intermediate EMT phenotype, which may 

contribute to the pathogenesis and recurrence of this benign/yet aggressive 

odontogenic tumor.    

BRAFV600E mutation has been implicated in the progression of several types 

of carcinoma by RAS-independent activation of MEK/ERK signaling pathways73. 

This mutation has also been reported in about 46-82% of AM cases7-12, but it has 

no relation to the high recurrence of AM. To date, several small molecular 

inhibitors that specifically target BRAFV600E mutation have been developed as 

therapeutic drugs for cancers with this mutant, but the development of intrinsic 
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and acquired resistance to these drugs has become an ongoing challenge for the 

treatment of these cancer patients73. Currently, an active clinical trial 

(NCT02367859) is undergoing with the combinatory use of Dabrafenib and 

Trametinib in the treatment of AM, but the clinical outcome is still unknown. In the 

present study, the 3D-organoid platform generated by AM epithelial cells were 

utilized to evaluate their response to treatment with Vemurafenib (PLX4032), a 

selective inhibitor of BRAFV600E mutation. Even though PLX4032 interfered with 

the cell viability and organoid formation by AM epithelial cells, it simultaneously 

enriched the proportion of LGR5+ AM-EpiSCs with EMT phenotype and 

enhanced capacity for organoid formation (Figure 3.15-3.17). Previous study also 

showed increased LGR5 positive cells in colorectal xenograft after BRAF inhibitor 

treatment74. These findings suggest that LGR5+ AM-EpiSCs are resistant to a 

selective BRAFV600E inhibitor and the 3D-organoids derived from AM epithelial 

cells could be a helpful platform to further screen small molecules that can 

specifically target LGR5+ AM-EpiSCs and treat one of the most aggressive 

benign tumors of the jaw bones. 

4.2 Establishment of 3D-organoid culture for tumor study 

Traditional two-dimensional (2D) monolayer cell culture has long been a 

mainstay in the field of biomedical research. However, it is a great challenge to 

maintain the intrinsic cell properties and retain the molecular and epigenetic 

repertoire due to the lack of supporting niche factors. In recent years, 3D-

organoid culture is emerging as a novel approach in cell biology, particularly in 
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stem cell research and cancer cell biology, which enables modeling the tumor 

microenvironment and maintaining the major genetic and phenotypic features of 

individual tumors in an efficient and cost-effective manner49,69,71. Organoid and 

spheroid cultures allow for better modeling cell behaviors in a recapitulating in 

vivo-like natural tumor microenvironment such as cell-cell interactions, hypoxia, 

pH gradients, extracellular matrix, and different profile of bioactive molecules50. 

For instance, the cell-cell and cell-ECM interactions and cell geometry in 3D 

culture can increase self-renewal ability and the expression of stem cell-related 

genes, such as OCT4 and Nanog75-77, thus allowing for maintenance and 

expansion of normal and cancer stem cells50. Under most conditions, 3D 

organoid cultures require mouse-derived extracellular matrix (ECM) substitutes 

with variant stiffness or rigidity e.g. Matrigel or basement membrane extract, 

which may affect the outcome of experiments49. Most recently, mechanically and 

chemically defined hydrogel matrices with controllable substrate stiffness and 

rigidity have been developed for organoid culture of patient-derived colorectal 

tumors78. In the present study, mouse-derived ECM were utilized for AM 

organoid culture, which led to maintenance and expansion of LGR5+ AM-EpiSCs 

(Fig. 3.11). However, further studies are warranted to explore the mechanisms 

whereby mechanical properties of ECM and other factors enhance the self-

renewal and expansion of this subpopulation of AM-EpiSCs.  

In addition, organoids can be used, to certain degrees, as preclinical 

alternative models to animal models because they can reduce experimental 
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complexity, allow real-time imaging and high-throughput screening, and enable 

the study of diseases that are not easily and accurately modelled in animals48. To 

date, numerous organoids have been reported for various types of cancers for 

multiple purposes, e.g. disease modeling, mechanistic study, biobanking, drug 

screening, prediction of treatment response, and so on49,69,71. However, much 

less work has been done to develop an organoid platform to model a benign 

tumor even though it is usually challengeable to establish an appropriate animal 

model for most types of benign tumors. This study demonstrated for the first time 

the feasibility to generate 3D organoid structures of human ameloblastoma by 

using AM epithelial cells with or without AM-MSCs, which recapitulated the 

histopathological features and LGR5 expression profile of distinct subtypes of 

solid ameloblastoma and could be passaged and cryopreserved (Figure 3.11 and 

3.19-3.21). Interestingly, in the 3D-orgnoid model derived from both AM epithelial 

cell and AM-MSCs, the MSC markers were losing during long-term culture 

(Figure 3.22), and the similar finding was reported that only epithelial markers 

were detected in patient derived organoids from other tissues including head and 

neck cancers79. In the transplanted organoid xenograft model, the LGR5+ AM-

EpiSCs had propagating ability and could generated some tumor-like structures. 

However, it is noteworthy that, even though a short-term subcutaneous 

transplantation of AM 3D-organoids into nude mice led to xenograft formation 

(Fig. 3.12-3.14), demonstrating the self-renewal and propagating capabilities of 

LGR5+ EpiSCs in vivo, this study still cannot establish an appropriate animal 

model for long-term observation of the role of this unique subpopulation of 
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epithelial stem-like cells in the initiation and progression of AM, a common 

challenge for most types of benign tumors due to their intrinsically benign and 

slow progression properties. 

4.3 The reciprocal crosstalk of tumor microenvironment and 

tumor stem cells 

To date, several hypotheses have been proposed on different origins of 

CSCs in individual tumors, such as normal tissue stem and progenitor cells, the 

more differentiated somatic cells, and lineage infidelity switching triggered by 

microenvironmental stress signals19,80. Accumulating evidence support the notion 

that CSCs represent a dynamic or plastic status, whereby tumor cells can 

convert or reprogram between stem and non-stem cell state or phenotype due to 

the signals they encounter within the tumor microenvironment (TME), e.g. 

chronic inflammation and therapeutic insults19,22. The dynamic bidirectional 

phenotypic conversion between non-CSCs and CSCs may contribute to the 

development of heterogeneity of CSCs, e.g. distinct quiescence, therapeutic 

sensitivity, and capabilities for EMT, invasion, and metastasis19,22. EMT is a 

complex reprogramming process through which epithelial cells acquire a 

mesenchymal or epithelial/mesenchymal hybrid cell phenotype, which plays an 

important role in regulating plasticity of CSCs21-23. A large panel of growth factors, 

cytokines, chemokines and other stimuli within the tumor microenvironment can 

trigger epithelial tumor cells to undergo EMT and acquire stem cell properties72. 

In the present study, R-spondin 2 could stimulate the proliferation and induce 
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EMT in ameloblastoma epithelial cells (AM epithelial cells) was showed, 

suggesting that LGR5/R-spondin 2 may functionally contribute to the 

development and maintenance of the hybrid EMT phenotype of ameloblastoma 

epithelial stem-like cells (AM-EpiSCs). Most recently, this study have shown that 

ameloblastoma mesenchymal stromal cells (AM-MSCs) promote EMT and 

increase the expression of certain stemness-regulatory genes in AM epithelial 

cells through their secretion of interleukin (IL)-624. In this study, to elucidate the 

role of AM-MSCs in regulating the plasticity and homeostasis of LGR5+ AM-

EpiSCs, the AM-MSC derived conditioned medium was utilized to stimulate the 

AM epithelial cells. The results showed the AM-MSC derived secretomes/EVs 

enhanced the expression of EMT markers (active β-catenin and fibronectin) and 

contributed to the subpopulation of LGR5+ AM-EpiSCs (Figure 3.18). Of note, the 

AM-MSC derived EVs may play partial role to promote the EMT process of AM 

epithelial cells, and the EV dependent and independent effects on AM epithelial 

cells are warranted to define in future studies. Besides, the AM-MSCs promoted 

the LGR5- AM epithelial cells to form some tumor-like structures and increased 

the subpopulation of LGR5+ cells in nude mice as the parental and LGR5+ groups 

that implicated AM-MSCs could maintain the homeostasis of LGR5+ AM-EpiSCs 

in vivo (Figure 3.23). These results support the hypothesis that AM-MSCs 

contribute to the homeostasis of LGR5+ AM-EpiSCs, however, further studies are 

needed in an appropriate animal model for long-term observation to demonstrate 

the roles of stromal cells in the homeostasis of LGR5+ stem-like cells in AM. 
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 4.4 Limitations and future directions 

The major limitation of this study is limited resource of fresh samples. 

Therefore, AM cell lines were utilized to validate the results of the primary cells 

and for mechanism studies. However, cell lines may undergo chromosomal 

rearrangements/duplications or mutations, and epigenetic changes that make cell 

lines could not recapitulate the primary tumor behaviors51,52. In the future, we 

would like to collaborate with multicenter in the USA and worldwide, such as 

China and Taiwan, to establish a cell/tissue bank of ameloblastoma. After 

establishing the AM cell/tissue bank, we want to create a patient derived 

organoid platform and animal models for small molecular screenings and further 

mechanistic studies. 

This study demonstrated that AM-MSC derived secretomes maintain the 

homeostasis of LGR5+ AM-EpiSCs. In future non-surgical adjuvant therapeutic 

studies, directly targeted inhibition of LGR5 and blockage of the 

microenvironment factors that promote the homeostasis of LGR5+ AM-EpiSCs 

serve novel approaches for this aggressively benign jaw tumor. Hence, it is vital 

to dissect major factors of AM-MSC derived secretomes or EVs that govern the 

EMT process and stem cell properties in LGR5+ AM epithelial cells, and we will 

define stroma derived EV dependent and independent effects on AM epithelial 

cells. First, AM-MSC derived EVs and characterize its size, markers and 

interactions with AM epithelial cells will be isolated. Secondly, we will determine 

and compare the major components, such as R-spondin, IL-6 and PGE2, of AM-

MSC derived EVs and non-EVs by microarray analysis. We will identify whether 
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these defined major factors can promote the EMT process and stem cell 

properties in LGR5+ AM-EpiSCs and promote the formation of LGR5+ AM-

EpiSCs. Finally, elusive molecular mechanisms of these defined major factors 

from stroma derived EVs and non-EVs that govern the EMT process and stem 

cell properties in LGR5+ AM-EpiSCs will be determined.  

In addition, the ex vivo 3D organoid models are possible for quick drug 

screening, but limited in a short-term culturing, that obstructs further mechanistic 

studies. To supply consistent nutrition and mimic the physiological 

microenvironment, we will optimize the ex vivo culture condition and the in vivo 

subcutaneous organoid model and hope to develop an intraosseous organoid 

model in the jaw of nude mice for mechanistic and therapeutic intervention 

studies.   

4.5 Clinically relevant and conclusion 

In conclusion, this is the first study to identify a subpopulation of LGR5+ 

epithelial cells endowed with tumor stem-like cell properties and intermediate 

EMT phenotype in solid AM (LGR5+ AM-EpiSCs), which may play an important 

role in its pathogenesis and recurrence. In addition, this study established 

conditions for generation of 3D AM-organoids which recapitulate certain degree 

of different histological subtypes of AM, thus allowing us to generate 3D AM 

organoids by directly using both biopsy and final excisional tissues from AM in 

the future. In the short term, the human AM 3D-organoids may be utilized as a 

platform for further mechanistic studies and screening small molecules that can 
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specifically target LGR5+ AM-EpiSCs due to the lack of an animal model for AM. 

In the long run, further studies are warranted to optimize the conditions for 

generation and transplantation of 3D AM-organoids in order to generate a 

consistent animal model of AM for deep mechanistic and interventional studies in 

vivo.   
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APPENDIX I: Supplemental data of Western blots 
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APPENDIX II: Negative controls of 

Immunohistochemical and immunofluorescence studies 

 

*The negative control was representative of images whereby sections or cells were incubated at 4 degree overnight with 
the appropriate isotype-matched negative control IgG with an equal concentration of the match primary antibody, followed 
by incubation with the corresponding secondary antibody as described in Materials & Methods. 
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*The negative control was representative of images whereby sections or cells were incubated at 4 degree overnight with 
the appropriate isotype-matched negative control IgG with an equal concentration of the match primary antibody, followed 
by incubation with the corresponding secondary antibody as described in Materials & Methods. 
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*The negative control was representative of images whereby sections or cells were incubated at 4 degree overnight with 
the appropriate isotype-matched negative control IgG with an equal concentration of the match primary antibody, followed 
by incubation with the corresponding secondary antibody as described in Materials & Methods. 
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APPENDIX III: Measurement of coefficient 

In this study, the coefficient of two channels in the immunofluorescence 
study was processed by the CellProfiler software, and one demo is presented 
below.  
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