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ABSTRACT 

The function of the adaptor molecule MyD88 is thought to be independent of 

toll-like receptor 3 (TLR3) signaling. This study aimed to identify certain previously 

unknown roles of MyD88 in TLR3 signaling during the promotion of pro-

inflammatory cytokine production. Upon conducting an analysis of all the TLR 

ligands, it was found that the TLR3-specific ligand polyinosinic: polycytidylic acid 

(Poly I:C) significantly induced the production of TNF proteins and up-regulation of 

other TLR transcripts, particularly TLR2. Accordingly, TLR3 stimulation also led to 

a significant up-regulation of the endogenous TLR2 ligands HMGB1 and Hsp60. 

In contrast, TLR3 silencing significantly down-regulated MyD88 and TLR2 

expression, and pro-inflammatory IL-1β, TNF, and IL-8 cytokine secretion. The 

silencing of MyD88 similarly led to the down-regulation of TLR2, IL1β, TNF, and 

IL-8, which suggests that MyD88 was active downstream of TLR3. The animal 

model, i.e., the MyD88 knockout mouse presented with lower TNF, NF-κB , and 

IRF-3 levels, as compared to those in the control wild type mouse treated with Poly 

I:C. Taken together, our results demonstrate a previously unknown role of MyD88 

in the TLR3 signaling pathway; this finding highlights the importance of TLRs and 

adapter protein interplay for the modulation of the endogenous TLR ligands 

involved in pro-inflammatory cytokine regulation. 
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Chapter 1: Introduction  

The molecular adaptor Myd88 participates in the inflammatory pathways of most Toll-like 

receptors (TLRs) (McNutt 1974, Benakanakere, Li et al. 2009, Zhao, Benakanakere et al. 

2010, Kennedy, Najdovska et al. 2014). However, the roles of Myd88 in the TLR3 pathway 

and the synergistic interactions between TLR3 and TLR2 have never been investigated 

(Teixeira, Zhao et al. 2019). Epithelial cells are known to be the first line of host defense 

against invading pathogens. TLRs play a key role in the recognition of either bacterial or 

viral pathogens and the subsequent activation of innate immune responses, for 

establishing homeostasis during an infection (Brown, Wang et al. 2011, Xia, Winkelmann 

et al. 2013, Qin, Li et al. 2016). Under homoeostasis, an array of these pattern-recognition 

receptors (PRRs) in the immune system detect pathogen-associated molecular patterns 

(PAMPs) and trigger an effective immune response (Koticha 1969, Du, Liu et al. 2018). 

In individuals with dysbiosis, the overactivation of these TLRs will lead to chronic 

inflammation. The TLRs are classified based on their localization (intracellular or 

extracellular) and corresponding ligands. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11 

recognize microbial membrane components, such as lipoproteins, and are normally 

expressed on cell surfaces. Conversely, TLR3, TLR7, TLR8, and TLR9 detect pathogenic 

nucleic acids and are found intracellularly in vesicles, including endosomes, those of the 

endoplasmic reticulum (ER), endolysosomes, and lysosomes (Koticha 1969, Akira, 

Yamamoto et al. 2003). 

Due to the large variety of microorganisms in biofilms, the oral mucosal surface is 

continuously exposed to commensals and pathogens. In chronic oral infections, certain 

types of pathogens might induce an unrestrained immune response that affects oral 
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immune homeostasis. In individuals with periodontal infections, human gingival epithelial 

cells (HGECs) play a crucial role in maintaining the homeostasis of the oral innate immune 

system, by protecting against bacterial insult via TLR activation. The event is 

characterized by an increase in pro-inflammatory cytokine and antimicrobial peptide 

production in response to bacterial disruption (Barton and Medzhitov 2002, Getz 2005, 

Kawai and Akira 2010). Various types of TLRs are expressed by HGECs, which 

specifically recognize TLR2 and TLR4 of Porphyromonas gingivalis, a well-known gram 

negative bacterial pathogen. Hence, TLR2 is considered an important receptor for P. 

gingivalis-related changes in sensation and innate immune response mediation. TLR2 

can detect a wide range of pathogens, such as fungi, bacteria, viruses, and parasites. 

TLR2 is involved in the recognition of Gram positive bacterial peptidoglycans, lipoteichoic 

acid, fungal zymosan, mycobacterial lipoarabinomannan, viral hemagglutinin protein, 

Trypanosoma cruzi tGPI-mucin, and bacterial lipopeptides. To detect triacylated 

lipopeptides in mycoplasma and Gram negative bacteria, TLR2 forms heterodimers with 

TLR1; for the detection of diacylated lipopeptides in Gram positive bacteria and 

mycoplasma, TLR2 forms a heterodimer with TLR6. Moreover, TLR2 works in 

collaboration with other cell surface co-receptors (Ding, Liu et al. 2015). It was believed 

that the production of inflammatory cytokines, and not type I interferons, can be induced 

by TLR2 agonists in macrophages and dendritic cells. On the other hand, studies have 

shown that TLR2 agonists enable the generation of type I interferons by inflammatory 

monocytes in response to vaccinia virual infections (Akira and Takeda 2004, Latorre, 

Mendoza et al. 2014). 
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While TLR2 plays an important role in HGECs, we and others have shown that epithelial 

cells also express high levels of TLR3, as compared to the expression levels of other 

TLRs. We have shown that in HEGECs, TLR3 can induce robust inflammatory cytokine 

generation through the activation of the mTOR signaling pathway. TLR3 recognizes a 

synthetic double-stranded RNA (dsRNA) analog, polyinosinic-polycytidylic acid 

(Poly(I:C)), and promotes the production of both inflammatory cytokines and type I 

interferons as an antiviral response, thus serving an important role in preventing virual 

infections (Zhao, Benakanakere et al. 2010).  

Toll/interleukin-1 (TIR) is an intracellular domain found on an adaptor molecule named 

myeloid differentiation primary response 88 (MyD88) (Gray, Dunne et al. 2006). Its 

discovery led to intense studies of TLR signaling pathways. The importance of the TIR 

domain in the selective recruitment of distinct adaptor molecules by TLRs was 

emphasized by the identification of additional TIR domain-containing adaptors. This 

selective recruitment results in more specific immunological responses being directed 

against the infecting pathogen. The activation of the transcription factor NF-κB and 

mitogen-activated protein kinases (MAPKs), which stimulate the generation of 

inflammatory cytokines in all TLRs except for TLR3, is mediated by MyD88, the first 

identified member of this TIR family. In contrast, the activation of transcription factors 

such as IRF3 and NF-κB and the subsequent activation of type I interferons and 

inflammatory cytokines is mediated by TIR-domain-containing adapter-inducing 

interferon-β (TRIF) via TLR3 and TLR4 stimulation (Thorburn, Tseng et al. 2016). Studies 

have shown that MyD88 plays no role in the activation of TLR3 pathways; however, the 
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expression of MyD88 with regard to the interaction of TLR2 and TLR3 has never been 

illustrated. After identifying TLR3 as one of the important receptors in the HGEC 

inflammatory cytokine network (Zhao, Benakanakere et al. 2010, Teixeira, Zhao et al. 

2019), we hypothesized that it might control the expression of other TLRs and might 

participate in Myd88-dependent pro-inflammatory cytokine secretion via the expression 

of endogenous TLR ligands, as observed in other systems, via downstream signaling.  

Innate Immune System: 

The host defense system is composed of adaptive and innate immune responses. The 

innate immune system is responsible for providing the first line of defense against 

infections; on the other hand, the adaptive immune system causes the generation of more 

specific responses at a later period, as a defense mechanism, to eliminate these 

infections. The innate immune responses lack specificity and are encountered in healthy 

hosts, and serve o rapidly eliminate invading pathogens. Adaptive immune responses 

can be either specific or acquired immune responses. Adaptive immune responses 

represent a more specific type of immune defense, which is triggered in response to 

invading microbes (McNutt 1974, Melvold and Sticca 2007, Kennedy 2010). 

Epithelial cells are considered as barriers, and represent the first line of defense in innate 

immunity. These cells are specialized and produce the natural antibiotics encountered in 

the epithelia; as they block the entry of all microbes, they are considered to be the first 

line of defense for the inhibition of further contact and penetration in the host. Micro-

organisms that are able to enter the epithelial barrier and penetrate the tissues or blood 
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system are eliminated by other innate immune defense mechanisms such as phagocytes 

or nets formed by neutrophils (Jillson 1982, Parham 2006). Natural killer (NK) cells and 

plasma proteins, such as the proteins of the complement system also participate in the 

elimination of the micro-organisms that attempt to enter the host environment. Usually, 

different components of the innate immune system react only to harmful foreign products 

and specific molecules produced by different types of microbes, viruses, or bacteria. 

Despite this, innate immune responses contribute to the enhancement of adaptive 

immune responses against microbes. Innate immunity is responsible for providing a 

preliminary defense against infections (Parham 2006). This preliminary defense 

mechanism prevents the occurrence of infections via the use of epithelial barriers or by 

the killing of microbes (e.g., phagocytes, NK cells, the complement system). Adaptive 

immunity is partially controlled by lymphocytes and their products. An antibody response 

leads to the prevention of infections and eradication of microbes, while T lymphocytes 

can eliminate intracellular microbes (Jillson 1982, Parham 2006).  
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Figure 1 : Innate immune system and the initial defense against infections:  

Initial responses prevent penetration by invaders (e.g., epithelial barriers) and eliminate microbes (e.g., 

phagocytes, natural killer [NK] cells, and the complement system). Adaptive immune responses develop 

later and are controlled by lymphocytes and their products. Antibodies block infections and T lymphocytes 

eliminate pathogenic microorganisms (McNutt 1974).  

 

The principal barriers between the host and the environment include the epithelia of the 

skin, and the gastrointestinal and respiratory tracts. Epithelia create physical and 

functional barriers against harmful microbes that attempt to cross over beyond the 

epithelial cells and colonize the host (McNutt 1974, Jillson 1982, Parham 2006). The 

epithelia not only provide the physical and functional barriers, but are also responsible for 

the production of antimicrobial agents that reduce the grown of certain microbes. 
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Neutrophils and macrophages are able to ingest microbes into phagosomes, which are 

vesicles filled with enzymes that are able to destroy the microbes. Microbicidal 

substances are produced in these phagosomes. Neutrophils also have a secondary host 

mechanism of defense called net formation. Neutrophils form a net in which microbes are 

trapped and engulfed. Macrophages and dendritic cells have the ability to produce 

cytokines; these soluble proteins can potentially induce inflammation and trigger 

lymphocyte responses. NK cells are able to produce the macrophage-activating cytokine 

interferon-γ (IFN-γ), which can kill cells infected with viruses (McNutt 1974). The 

compliment system and plasma proteins can be triggered by bacteria and viruses. The 

activation of the compliment system or cytokines leads to the formation of products that 

would eliminate microbes and cause signal generation by coating their surfaces, to enable 

their phagocytosis by neutrophils and macrophages. The most fascinating function of the 

innate immune system is not only the eradication of some infections, but the identification 

of other microbes that need to be destroyed by the adaptive immune system (McNutt 

1974, Jillson 1982). 

Innate Immune System: TLRs 

The most significant problem in immunology is to clarify how a host organism can become 

aware of and identify the presence of infectious bacteria, viruses, and other microbes, 

and eradicate the foreign body without destroying its own tissues (McNutt 1974, Akira 

and Takeda 2004). This is a significant problem, because of the huge molecular diversity 

of microbes and their high replication and mutation rates. Due to this challenge to their 
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immune system, multicellular organisms have developed various distinct immune-

recognition mechanisms. In animals classified as vertebrates, these mechanisms or 

systems can be simplified and classified as ‘innate’ and ‘adaptive’. Adaptive immune 

recognition is performed by a diverse array of antigen receptors, such as the T- and B-

cell receptors (TCR and BCR), followed by the clonal selection and expansion of 

receptors with relevant specificities. This system is attributable for generating a memory 

in organisms, called the immunological memory, which enables a significant adaptive 

layout to exist in vertebrate animals (Akira and Takeda 2004). The adaptive immune 

response has two significant restrictions. First, the random creation of antigen receptors 

is unable to determine the origin, source, and biological context of the antigen for which 

they are specific. Second, a clonal distribution of antigen receptors requires specific 

clones to expand and differentiate into effector cells, before they can participate in host 

defense (Akira and Takeda 2004). This is the reason why the primary adaptive immune 

response is delayed, usually for 4–7 days, which is a huge delay with regard to the 

elimination of rapidly replicating microbes. However, the adaptive immune system does 

not function alone. The adaptive immune response is mediated by a combination of 

physiological signals that are provided by the innate immune system. The innate immune 

system identifies the presence and the nature of an infection, provides the first line of host 

defense, and mediates the determination and generation of molecules belonging to the 

effector class of the adaptive immune response. The innate immune system is fascinating 

with regard to its intricate pathways; new reports have continued to reveal new 

information about the innate immune system. Studies and new discoveries regarding 
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antimicrobial peptides, dendritic cells (DCs), and the complement system have all 

significantly contributed to the current knowledge regarding the innate immune system.  

Efficient immune responses depend upon how close a connection and an orchestrate 

interaction are between the innate and adaptive immune system. γδ T cells and toll like 

receptors (TLR) serve as an important link between the innate and adaptive immune 

responses. γδ T cells play important roles in host defense against microbial infections, 

tumorigenesis, immunoregulation and development of autoimmunity. γδ T cells also have 

several innate cell-like characters that allow their early and rapid activation following 

recognition of cellular stress and infection. In order to accomplish these functions, γδ T 

cells use both the T cell receptor (TCR) and additional activating receptors (notably 

NKG2D, NOTCH, and TLR) to respond to stress-induced ligands and infection. γδ T cells 

express TLRs and modulate early immune responses against different pathogens (Akira 

and Takeda 2004).   

The recent extraordinary discovery of pattern recognition receptors, including the TLRs, 

has renewed interest in the field of innate immunity. It is already known that these 

receptors have an important role in the recognition of a pathogen and stimulation of 

antimicrobial gene expression, and were able to mediate the functioning of the adaptive 

immune system. Current studies have shown that TLRs were also able to recognize 

certain ‘molecular signatures’ of microbial infection, trigger distinct signaling pathways, 

and mediate DC maturation and T helper cell differentiation (Akira and Takeda 2004).  
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Recognition by TLRs is based on the identification and recognition of byproducts released 

after microbial metabolism. Several metabolic pathways and gene products are unique to 

certain microbes and pathogens that are not encountered in host cells. Some of these 

pathways are responsible for housekeeping functions; their products are stored in a 

certain class of microorganisms and are crucial for their survival. For example, 

lipopolysaccharides (LPS), lipoproteins, peptidoglycans, and lipoteichoic acids (LTAs) are 

products released by bacteria, but are not produced by eukaryotic cells. These products 

are identified as molecular signatures of pathogens, and their recognition by the innate 

immune system produces signals regarding the presence of an infection. One peculiar 

aspect of innate immune recognition is that its targets are not completely identical 

between different species of microorganisms. There are various strain- and species-

specific variations in the fine chemical structure; however, these are encountered in a 

common molecular pattern, which is conserved and invariant among microbes of a given 

class. For instance, the lipid-A sequence of LPS represents a consistent pattern observed 

in all gram-negative bacteria and triggers the pro-inflammatory response of LPS; counter 

intuitively, the O-antigen sequence of LPS is variable in different species of bacteria and 

cannot be identified by the innate immune system (Akira and Takeda 2004, Rakoff-

Nahoum and Medzhitov 2009). Because the innate immune system can only recognize 

consistent and conserved molecular patterns, they are classified and named as PAMPs. 

The receptors of the innate immune system that are responsible for the recognition of 

PAMPs are named as PRRs. PAMPs have three similar aspects that make them ideal 

targets for identification by an innate immune system (Barton and Medzhitov 2002). First, 
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PAMPs are released only by microbes, and are not produced by host cells. Consequently, 

the recognition of PAMPs by the innate immune system allows a partial and initial 

distinction between ‘self’ and ‘microbial non-self’. Second, PAMPs are consistent and 

invariant among microbes of a given class. This allows a certain number of germ-line-

encoded PRRs to perceive the presence of microbial infections. For example, the 

recognition of the conserved and consistent lipid-A pattern in LPS permits a single TLR 

to detect almost any gram-negative bacterial invader (Barton and Medzhitov 2002). Third, 

microbes cannot survive without their PAMPs. The loss of PAMPs or a mutation in their 

genes is either lethal for that class of microorganisms, or significantly reduces their 

number. Consequently, ‘escape mutants’ are not created. These unique characteristics 

of PAMPs show that they were recognized since the early period, during the evolution of 

host-defense immunological systems. In addition, several PAMPs are identified by the 

innate immune systems of mammals, invertebrates, and plants. It is necessary to highlight 

that PAMPs are not uniquely produced by pathogenic organisms; they can be produced 

by both pathogenic and non-pathogenic microorganisms (Barton and Medzhitov 2002). 

Notably, PRRs are not able to distinguish between pathogenic and commensal 

microorganisms. However, is vitally important to be able to distinguish between 

pathogenic and commensal microbes (Uematsu and Akira 2007). Humans are constantly 

exposed to commensal microflora, and the frequent activation and stimulation of 

inflammatory responses by commensals could potentially have lethal consequences for 

the host organism. However, this condition is not observed under homeostatic 

physiological conditions. The sophisticated mechanism that enables the host to tolerate 
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on-pathogenic microbes is largely unknown. Several hypotheses regarding the 

functioning of these hosts involve compartmentalization (confinement of microflora to the 

luminal side of the intestinal epithelium) and the use of anti-inflammatory cytokines 

(transforming growth factor-β (TGF-β) and interleukin (IL)-10 have an important role in 

the process) (Akira and Takeda 2004). The innate immune system uses several PRRs 

that are expressed on the cell surface, in intracellular compartments, or secreted into the 

blood stream and tissue fluids. The most important functions of PRRs include 

opsonization, complement and coagulation cascade activation, phagocytosis, pro-

inflammatory signaling pathway activation, and apoptosis induction (Akira and Takeda 

2004).  

TLRs are PRRs that have a peculiar and very important function in animal immunity. TLRs 

belong to the type I transmembrane receptor family, which is composed of an extracellular 

leucine-rich repeat (LRR) domain and intracellular toll/IL-1 receptor (TIR) domain. LRRs 

are found in several sets of proteins, and recognize the ligands and agonists responsible 

for signal transduction. One of the characteristics of the LRRs is its sequence motif 

L(X2)LXL(X2)NXL(X2)L(X7)L(X2); in this consensus sequence, the “X” is an amino acid. 

LRRs and TLRs are separated from the transmembrane sequences by a ‘LRR carboxy-

terminal domain’, which has the consensus motif CXC(X23)C(X17)C (Barton and 

Medzhitov 2002, Akira and Takeda 2004, Rakoff-Nahoum and Medzhitov 2009, Brown, 

Wang et al. 2011).  
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The TIR domain of toll proteins is a conserved protein–protein interaction module. In 

humans, the TIR domain is present in several cytoplasmic proteins, such as MyD88 

(REFS 9–12) and TIRAP13 (TIR domain-containing adaptor protein); both are considered 

to be molecular adaptors that are involved in the signal transduction of TLRs (Barton and 

Medzhitov 2002). 

The first discovered member of the toll family, Drosophila Toll, was discovered while 

observing maternal effects in fruitfly embryos. Other genes in this pathway encode the 

toll ligand Spätzle, the adaptor protein Tube, the protein kinase Pelle, the nuclear factor-

κB (NF-κB)-family transcription factor Dorsal, and the Dorsal inhibitor and mammalian 

inhibitor of the κB (IκB) homologue Cactus (Barton and Medzhitov 2002, Kennedy 2010).  

The similarities between the Drosophila Toll pathway and mammalian IL-1R pathway 

demonstrated that the toll pathway could potentially be involved in the immune system of 

the fruitfly, as well as in developmental patterning. This was observed in the genetically 

modified Drosophila, which rapidly developed a fungal infection, because of the failure to 

activate the production of the antifungal peptide Drosomycin. Additionally, fruitflies with 

loss-of function mutations in their Spätzle, tube, or pelle proteins were much more 

susceptible to fungal infections. Consequently, the toll pathway not only mediates 

dorsoventral pattern formation in embryos, but also mediates the antifungal immune 

defense in adult fruitflies (McNutt 1974, Akira and Takeda 2004).  

Although the toll/NF-κB pathways of Drosophila and mammals have several features in 

common, some differences also exist. One of the unresolved issues regarding the 
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immune system of the Drosophila involve the identities of pattern recognition molecules 

that activate the processing of Spätzle in response to fungal and gram-positive infections. 

Another is the identity of the receptor that mediates the activation of the Imd pathway in 

response to gram-negative bacterial infections. Because there are nine TLRs in 

Drosophila, it is possible that one of them was probably responsible for the activation of 

the Imd pathway (Akira and Takeda 2004).  

There are at least ten TLRs in humans and mammalian species, and each of these have 

a distinct function with regard to the recognition of a ligand during an innate immune 

response. Many more ligands are yet to be identified, both for the TLRs that already have 

assigned ligands and those with no known ligands. TLR ligands are notably distinct and 

diverse with regard to their origin and structure. Most TLR ligands are consistent microbial 

products (PAMPs) that generate signals about the presence of an invader. All individual 

TLRs can probably recognize various structurally unrelated ligands. Some TLRs require 

additional proteins, in order to recognize their ligands. Despite the fact that the 

mechanism for ligand recognition is not completely known, studies have demonstrated 

that mammalian TLRs identify and recognize their ligands via direct binding, and therefore 

function as PRRs (Akira and Takeda 2004). 

TLR4 was the first mammalian TLR to be found and characterized. It is expressed in 

several cell types, most commonly in macrophages and DCs. TLR4 recognizes LPS and 

activates signal transduction. The recognition of LPS by TLR4 requires several adaptor 

molecules. LPS binds to a serum protein, LBP (LPS-binding protein), which transfers LPS 



 

 

27 

monomers to CD14. CD14 is a high-affinity LPS receptor that can be found in the serum, 

or is expressed on the surface of macrophages as a glycophosphoinositol. CD14 is very 

important for the recognition of LPS, as CD14-deficient mice have a profound defect with 

regard to their responsiveness to LPS. MD-2, another accessory molecule of the LPS 

receptor, is a small protein that is expressed on the cell surface and is associated with 

the ectodomain of TLR4 (Akira and Takeda 2004).  

 

 

Figure 2: Toll like receptors and Imd pathways of drosophila: 

The Toll pathway in the Drosophila is triggered by the presence of fungal and gram-positive bacteria. The 

activation of this pathway requires Tube and MyD88 adaptors, leading to degradation of Cactus, and the 

release of transcription factors of the nuclear factor-κB (NF-κB) family. The Imd pathway is activated in 

response to gram-negative bacterial infections. This pathway involves the Drosophila homologue of the 

protein kinase TAK1 (TGF-β-activated kinase), IKK-γ/IKK-β protein kinase complex, caspase Dredd, and 

NF-κB family transcription factor Relish (Akira and Takeda 2004).  
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RP105 is another accessory molecule that cooperates with TLR4 during LPS recognition; 

it is associated with MD-1, a homologue of MD-2. 

 

Figure 3: Toll-like receptors (TLRs) and their specific ligands: 

TLRs recognize several pathogen-associated molecules. TLR4 recognizes lipopolysaccharides (LPS), 

while TLR2 recognizes a broad range of ligands after it forms dimers with TLR1 and TLR6. TLR3 is 

associated with the recognition of double-stranded RNA (dsRNA). TLR5 shows specificity towards bacterial 

flagellin. TLR9 acts as a receptor for unmethylated CpG motifs, which are abundant in bacterial DNA (Akira 

and Takeda 2004).  

 

TLR4 also mediates the recognition of several other ligands such as LTA53, and a heat-

sensitive cell-associated factor derived from Mycobacterium tuberculosis. TLR4 is also 

involved in the recognition HSP60, a heat shock protein (HSP). During the injury or lysis 

of cells infected with viruses, HSP60 can be released from necrotic cells. HSP60 might 
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have a role in enabling tissue remodeling and wound healing to occur after cell death 

(Akira and Takeda 2004, Teixeira, Zhao et al. 2019).  

TLR5 mediates the recognition of flagellin, a conserved protein that forms bacterial 

flagella. Flagellin is a protein that does not undergo any process of posttranslational 

differentiation that could enable it to be distinguished from host cellular molecules. 

The pattern of recognition of unmethylated CpG motifs in bacterial DNA by TLR9 is the 

most noteworthy. Unmethylated DNA i (the so-called ‘CpG motif’) has a potent 

immunostimulatory activity. Because cytosine methylation does not occur in bacteria, and 

most CpGs in the mammalian genome are methylated, CpG motifs might signal the 

presence of microbial infections (Akira, Uematsu et al. 2006).  

Recognition of Pathogens by TLRs: 

Nowadays, significant levels of effort and several studies have been directed towards 

understanding the complex signal transduction pathways that are activated by TLRs. The 

transcription factor NF-κB is an important regulator that induces the expression of key 

pro-inflammatory mediators and cytokines that contribute to an immune response. NF-κB 

is a hetero or homodimeric transcription factor that binds to the promoter of a wide range 

of different target genes. TLR signaling cascades lead to IkB phosphorylation, 

ubiquitination, and proteasomal degradation of this protein, which consequently enables 

the release of NF-κB dimers. The phosphorylation of IkB is performed by the IkB kinase 

complex, a large multi-subunit complex consisting of at least two catalytic subunits and a 
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regulatory subunit. The induction of NF-κB -dependent gene expression generates strong 

pro-inflammatory responses. Genes activated by NF-κB are upstream activators of NF-

κB, and lead to the amplification of the host defense response to microbial invaders. Pro-

inflammatory gene expression is mediated and controlled by TLRs, and is also regulated 

by the activation of mitogen-activated protein kinases. This leads to the phosphorylation 

of multiple proteins and several transcription factors, which consequently induces the 

release of pro inflammatory cytokines. TLRs acquire intracellular adaptor molecules and 

kinases, to enable them to transduce their signals and activate immune responses. For 

example, the TIR domain of the adaptor molecule MyD88 is associated with the TIR 

domain of all TLRs. The MyD88 adaptor is mostly necessary for transmitting signals to 

NF-κB /mitogen-activated protein kinase pathways. MyD88 recruits the IL-1 receptor-

associated kinase, which then induces the activation of tumor necrosis factor receptor-

associated factor 6, and the NF-κB and mitogen-activated protein kinases. Although 

MyD88 is considered to be a universally used adaptor protein for all TLRs, recent studies 

have revealed the existence of other adaptors, such as TIRAP, TRAM, and TRIF (Akira, 

Yamamoto et al. 2003, Akira, Uematsu et al. 2006, Xia, Winkelmann et al. 2013, Qin, Li 

et al. 2016). 

 Myd88-Dependent and Myd88-Independent Pathways:  

During infections, multiple TLR pathways are activated by different ligands, which are 

components of microbes that activate or trigger the immune system. The interplay 

between TLR signaling pathways could have important effects on host inflammatory 
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responses. Gram-negative bacteria release peptidoglycan-associated lipoprotein (PAL), 

which is a TLR2 agonist, in conjunction with bacterial proteins and LPS into the blood of 

septic animals and human serum. PAL and LPS synergistically activate the generation of 

immune responses. It is important to understand the mechanism of response of TLRs, as 

the ligands, duration for which cells are challenged, and concentrations of these bacterial 

products would play a role in the immune response and the outcome (Akira and Takeda 

2004, Bagchi, Herrup et al. 2007). MyD88 is an adaptor molecule used by most TLRs, 

which are generated via two intracellular pathways, i.e. the MyD88-dependent (D) and 

the MyD88-independent (I) pathways. When the ligand triggers a TLR, MyD88 engages 

with the internal portion of the TLR and downstream signaling is propagated. Studies have 

identified two intracellular TLR pathways. The D pathway requires the adaptor molecule 

MyD88 to propagate signals and induce the expression of pro-inflammatory cytokines 

such as TNF and IL8 (Bagchi, Herrup et al. 2007, Xia, Winkelmann et al. 2013). The I 

pathway generates signals through the Toll-IL-1R domain-containing adaptor-inducing 

IFN-b, which leads to IFN-b production. The I pathway also activates NF-kB; however, 

this activation process is delayed and also leads to the production of TNF and other 

inflammatory cytokines. All TLRs use the MyD88-dependent pathway, which requires an 

MyD88 adaptor molecule, with the exception of TLR3 and TLR4, which use the MyD88-

independent pathway. In the dependent pathway (D), TLRs require the MyD88 adaptor 

molecule and in the independent pathway (I), TLRs do not require MyD88 as an adaptor 

molecule. To date, TLR4 is the only TLR that activates both the D and I pathways. It has 

been recently reported that TLR3, which recognizes viral dsRNA and induces 
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inflammatory cytokines, such as TNF and IL-6, can only use the independent pathway (I). 

TLR3 has been reported to induce IFN-b production via the I pathway; however, additional 

pathways that mediate the induction of IFN- b by dsRNA have also been identified 

(Bagchi, Herrup et al. 2007). To date, no clear explanation has been provided about how 

synergy, priming, and tolerance between TLR agonists occur (Bagchi, Herrup et al. 2007).  

 

 

Figure 4:  TLRs and TLR agonists corresponding to I and D pathways 

The D pathway is demonstrated using a black background and white text, while the I pathway is shown 

using a white background and black text. TLR4 has affects both D and I pathways. The curved arrow 

indicates that both the D and I pathways induce inflammatory cytokines through NF-κB (Bagchi, Herrup et 

al. 2007). 
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TLR2 and TLR3:  

TLR2 is responsible for the recognition of bacterial and fungal components such as 

peptidoglycans from gram-positive bacteria, bacterial lipoproteins, mycobacterial cell-wall 

lipoarabinomannans, glycosylphosphatidylinositol lipids from Trypanosoma Cruzi, a 

phenol-soluble modulin produced by Staphylococcus epidermidis, and yeast cell walls. 

TLR2 functions as a receptor and can identify and recognize LPS produced by Leptospira 

interrogans and Porphyromonas gingivitis, both of which are structurally very distinct from 

gram-negative LPS. This vast range of ligands recognized by TLR2 can partially explain 

the association of TLR2 with TLR1 and TLR6. Hence, the formation of heterodimers 

between TLR2 and either TLR1 or TLR6 determines the specificity of ligand recognition. 

For example, TLR2 cooperates with TLR6 for the recognition of the mycoplasmal 

macrophage-activating lipopeptide with a weight of 2 kDa. In this case, TLR6 is 

responsible for discriminating between bacterial lipoproteins, which are triacylated at the 

amino-terminal cysteine residue, and the diacylated mycoplasmal lipoprotein MALP-2. It 

is not completely clear if TLR2 heterodimerization is induced by appropriate ligands or if 

it occurs before the ligand interacts with the receptor (Bagchi, Herrup et al. 2007, 

Benakanakere, Li et al. 2009, Blednov, Black et al. 2017, Chen, Xie et al. 2017). One 

interesting aspect is that TLR1 and TLR6 are expressed on many cell types; however, 

the expression of TLR2 is restricted to antigen-presenting cells and endothelial cells. The 

combination of TLR2 with TLR1 or TLR6 provides an important mechanism for mediating 

the cellular responsiveness to microbial products. The complete repertoire of possible 

TLR heterodimers is not completely known; however, TLR4 and TLR5 seem to function 
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as homodimers (Burns, Bachrach et al. 2006, Sahoo, Basu et al. 2013, Kennedy, 

Najdovska et al. 2014, Mortazavi, Amin et al. 2015). 

TLR3 has two interesting characteristics that make it unique among mammalian TLRs. 

TLR3 does not contain a conserved proline residue in the position equivalent to that of 

proline-712 of mouse TLR4, which results in the unresponsiveness of TLR3 to LPS. 

Interestingly, TLR3 is expressed predominantly in dendritic cells. Current studies show 

that TLR3 acts as a cell-surface receptor for dsRNA. dsRNA is a molecular pattern 

produced by most viruses during their infection cycle. The synthetic analogue of dsRNA, 

known as polyinosine-polycytosine (poly I:C), activates TLR3 when cells are stimulated 

with it. Cells with a TLR3 deficiency do not respond to Poly I:C, as well as to viral dsRNA. 

The contribution of TLR3 to immune defense against viruses is not fully understood; 

however, TLR3 is strongly activated when stimulated with viral dsRNA in epithelial cells, 

which represent the first line of defense. In our studies, when epithelial cells are 

challenged with Poly I:C, TLR2 is sometimes upregulated significantly more than TLR3 

(Bakaysa, Potter et al. 2014). HMGB1 and Hsp60 seem to activate TLR2 through TLR3 

stimulation. This observation suggests the occurrence of crosstalk between TLR2 and 

TLR3, and that HMGB1 and Hsp60 play a role in activating TLR2 that has never been 

demonstrated before (Chalmers, Eidelman et al. 2013, Singh, Biswas et al. 2016, Al-Ofi 

and Al-Ghamdi 2018, Martinus and Goldsbury 2018).  

 

 



 

 

35 

Role of HMGB1 and Hsp60 (endogenous ligands) in TLR activation:  

Previous studies have shown that damaged and necrotic cells passively release HMGB1, 

which activates TLR2. In injury models, Hsp60 and HMGB1 have been shown to increase 

TLR2 signaling. The protein encoded by HSP60 is a member of the chaperonin protein 

family. This protein is implicated in mitochondrial protein import and microcellular 

assembly. HSP60 facilitates the correct folding of proteins imported from the cytoplasm 

and assists in their transportation as well. HSP60 also prevents misfolding and promotes 

the refolding or assembly of unfolded and stress-denatured mitochondrial proteins. The 

increase in protein expression is regulated transcriptionally, and the upregulation of 

HSP60 is a crucial part of the stress response of cells. The role of HSP60 in performing 

cellular activities and maintaining integrity is crucial. Knockouts lead to multitudes of 

negative cellular complications and the effect of HSP60 on these cellular processes is not 

always fully understood. HSP60 knockout in adult mouse heart resulted in altered 

mitochondrial complex activity, mitochondrial membrane potential, ROS production, and 

eventually led to dilated cardiomyopathy, heart failure, and lethality (Chalmers, Eidelman 

et al. 2013, Singh, Biswas et al. 2016, Al-Ofi and Al-Ghamdi 2018, Hu, Chen et al. 2018, 

Martinus and Goldsbury 2018). 

 In the cytosol, HMGB1 promotes autophagy and the recruitment of the myddosome 

complex to Toll-like vesicular receptor compartments. Outside the cell, it binds to specific 

receptors, or with high affinity to DNA, nucleosomes, IL-1β, lipopolysaccharides, and 

lipoteichoic acid, to mediate responses under certain physiological or pathological 
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conditions. Known receptors for HMGB1 include TLR2, TLR4, the receptor for advanced 

glycation end products, CD24-Siglec G/10, chemokine CXC receptor 4, and TIM-3 

(Chalmers, Eidelman et al. 2013).  

The bioactivity of extracellular HMGB1 is determined by the extent of modification of 

conserved redox sensitive cysteine residues (C23, C45, and C106). The molecular 

conformation of these cysteine residues allows HMGB1 to bind and signal to cells via the 

TLR4/MD-2 complex, to induce cytokine release in macrophages. The role of HMGB1 in 

inflammation and immunity is determined by its post translational modifications. The post-

translational acetylation of lysine residues within nuclear localization signals of HMGB1 

promotes the inflammation and hyperacetylation of HMGB1, shifts its equilibrium from a 

predominant nuclear location toward a cytosolic and subsequent extracellular presence 

failure, and enhances its lethality. We hypothesize that the stimulation of epithelial cells 

with Poly I:C would trigger the TLR3-HMGB1-Hsp60-TLR2 pathway and reveal the 

crosstalk of signals between TLR2 and TLR3.  

Summary: 

The recognition of a pathogen is essential for initiating an innate immune response. This 

recognition occurs via germline-encoded pattern-recognition receptors. We have 

chosen to focus upon TLRs, which are pattern recognition receptors. They are 

responsible for recognizing PAMPs.  

The current studies separate TLR2 and TLR3 signaling pathways. During the 

development of drugs, we should consider the response of these TLRs together.  
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After identifying TLR3 as one of the important receptors in the inflammatory cytokine 

network of HGECs, we hypothesized that TLR3 downstream signaling might control the 

activation of other TLRs via the MyD88-dependent expression of endogenous TLR 

ligands. 

Specific Aims: 

Aim 1:  

To determine the association between TLR2 and TLR3 in vitro  

To determine the role of the Myd88-TLR3 pathway in vitro 

To determine the role of HMGB1 and Hsp60 in the TLR2 pathway signalizing in vitro  

Aim 2:  

To test the hypothesis that the TLR3-dependent augmentation of pro-inflammatory 

cytokine production involves MyD88 in vivo 
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Chapter 3: Materials and Methods  

Cell challenge assays: 

Primary human gingival epithelial cells (HGECs) were isolated from the same cell donor 

and experiments repeated 3 times after obtaining approval from the Institutional Review 

Board, at the University of Pennsylvania. HGECs were harvested at the 3rd passage step, 

and seeded at a density of 0.5 × 105 cells/well in 6-well culture plates, according our 

previously published method. The cells were maintained in 2 ml of complete medium until 

they attained 80% confluency and then washed twice with fresh medium and maintained 

in 2 ml of plain medium. At 90% confluency, the cells were incubated with a panel of 

bacterial and viral ligands (live Porphyromonas gingivalis, heat killed P. gingivalis (P.g), 

Pam3CSK4, P.g LPS; Poly I:C, E. coli K12 LPS, Flagellin from Salmonella typhimurium, 

FSL1, Imiquimod, and ODN) for 24 hours, as described previously (Livak and Schmittgen 

2001). After stimulating cells for 24 hours, the supernatant was collected and TNF ELISA 

was performed. In later experiments, cells were either stimulated with 1 µg/ml FSL-1 

(TLR2/6 ligand), 5 µg/ml of Poly I:C (TLR3 ligand), or 1 µg/ml Pam3CSK4 (TLR1/2 ligand) 

(Invivogen, CA), based on the results of an initial dose response and agonist screening 

process. Culture supernatants were collected at the end of the experiment and stored at 

-80 °C until further use. The production levels of IL-8 and TNF were determined by 

enzyme-linked immunosorbent assay (ELISA), according to the manufacturer’s 

instructions (R&D systems). None of the agonist stimuli affected cell viability, as shown 

by the results of the trypan blue exclusion process, performed as reported previously 

(Teixeira, Zhao et al. 2019). 
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RNAi: 

SMARTpool siTLR2, siTLR3, and MyD88 ON-TARGETplus SMARTpool and ON-

TARGETplus non-targeting siRNA were obtained from Dharmacon. HGECs were 

transfected using the siPort NeoFx transfection reagent, according to the manufacturer’s 

instructions (Ambion). Briefly, 100 nM of siRNA was used to transfect cells that had 

achieved 60%–70% confluency. Cells were stimulated with Poly I:C 24 h-post 

transfection, and harvested after another 24 h (Livak and Schmittgen 2001).  

Real-time PCR: 

cDNA was prepared using the cDNA archive kit (Thermo Fisher), from total RNA 

sequences extracted from cultured cells using the RNeasy mini kit (Qiagen). Real-time 

PCR was performed using the TaqMan technique with 50 ng of cDNA on the 7500 Fast 

system (Applied Biosystems). TLR1, TLR2, TLR3, TLR6, IL-8, TNF, HMGB1, Hsp60, and 

GAPDH primers and probes were prepared as described previously. The quantitative 

TaqMan PCR-Array was custom designed, based on our previously published microarray 

data regarding HGECs. HGECs were grown till they achieved confluency, and stimulated 

with Pam3CSK4 (1 µg/ml), FSL-1 (1 µg/ml), or Poly I:C (5 µg/ml) for 30, 60, 90, 120, and 

240 minutes, and 4 and 24 hours. The fold increase was determined by the ΔΔCT method 

(Livak and Schmittgen 2001). The mean log fold increase was used to derive a heat map 

with two-way hierarchical clustering (rows=genes, columns=samples), using the MeV 

v4.1 software, as shown previously (Livak and Schmittgen 2001).  
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TNF and IL-8 analysis by ELISA: 

TNF and IL-8 levels in the supernatants of HGECs were determined by using the 

Quantikine ELISA kit (R&D Systems Inc.). All experiments were performed in triplicate 

(Bagchi, Herrup et al. 2007, Teixeira, Zhao et al. 2019).  

Animal Model: 

The animal study was conducted to test the hypothesis that the TLR3-dependent 

augmentation of pro-inflammatory cytokine production involves MyD88 in vivo. 

Experiments were performed using 8 adult female C57BL/6J mice (14–16 g) per group, 

with a protocol approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee. The rostral back of the animals was trimmed with an electric shaver and 

subsequently removed. Poly I:C was topically applied on mice for 6, and 12 hours. A 

chromophore containing 25 and 8 mg of Poly I:C was applied on the shaved skin of the 

back (2.5 cm × 2 cm); the best time point and concentration were selected (8mg for 12 

hours) based on the preliminary results. Control mice were treated similarly with a control 

vehicle Chromophore (Alkanani, Hara et al. 2014, Sakai, Sanders et al. 2016, Blednov, 

Black et al. 2017, Hu, Chen et al. 2018). 

Animals were euthanized under isoflurane sedation, and their skin was acutely dissected 

(Blednov, Black et al. 2017). Skin was fixed in 4% paraformaldehyde, followed by 30% 

sucrose, frozen in an optimal cutting temperature (OCT) compound (Tissue-Tek, Sakura 

Finetek, Torrance, CA), cut in 8-μm sections on a cryostat, and stored at -80 ºC. The 
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slides were defrosted the next day and fixed in 10% formaldehyde for 10 minutes. After 

an appropriate period, the slides were immersed in methanol at -20 °C for 5 minutes, and 

then washed in PBS three times, for 5 min each. Samples were blocked in 10% horse 

serum for 30 minutes at room temperature, and again washed in 1x PBS. Primary 

antibodies (p-IRF-3 (S536),	 P-NF-KappaB p65 (S536), Isotype and TNF alpha from 

CellSignaling®) were added and the reaction mixture was incubated in a humid chamber 

overnight at 4 ºC (primary antibodies were diluted 1:800 and 1:100 times, according to 

the manufacturer’s instructions, using 0.5% horse serum (Xia, Winkelmann et al. 2013, 

Hu, Chen et al. 2018). On the next day, samples were incubated with a secondary 

antibody (Alexa Fluor from CellSignaling®) in a humid chamber for 1 hour at room 

temperature. Secondary antibodies were diluted 1:100 or 1:200 (concentration used) 

times using 0.5% horse serum). The slides were mounted with a cover slip using 

Prolong® Gold anti-fade reagent with DAPI and mounting media (P-36931, Life 

Technologies™), and stored for 20 minutes in a dark drawer. The edges were sealed with 

nail vernix and slides were observed under a microscope (Sakai, Sanders et al. 2016). 

All images for each specific anti-body were capturing using the same capture time.TNF 

and GRO capture time was 10s using the Z-stacking technology.  NFkb and IRF capture 

time images were 15 s with Z-stacking technology.  

Images captured from 3–4 skin sections obtained from each animal were imaged at a 

magnification of 60X. Images were evaluated by a trained observer blinded to the 

treatment conditions. The intensity of immunofluorescence within the epidermis was 
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measured using Image J (subtracting background fluorescence), and the mean 

immunofluorescence was determined for each mouse (8 mice per group) (Gonzalez-

Barranco, Sandoval-Islas et al. 1978, Marcelli Barge, Benajam et al. 1979, Szaleczky, 

Pronai et al. 2000, Niflioglu and Lebe 2014). 

Statistical Analysis 

Statistical analysis was performed using Prism 6.0 (GraphPad). Data were analyzed via 

one-way ANOVA, followed by Tukey's multiple comparison tests. 

Preliminary Data (Pilot Study): 

A pilot study was performed using 20 mice (5 per group). The rostral back of the animals 

was trimmed with an electric shaver and subsequently removed. Poly I:C was topically 

applied on mice for 6, and 12 hours. A chromophore containing 25 and 8 mg of Poly I:C 

was applied on the shaved skin of the back (2.5 cm × 2 cm); the best time point and 

concentration were selected (8mg for 12 hours) based on the preliminary results.  
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Figure 5:  Epithelial cell staining for the visualization of phosphorylated NF-κB transcriptional 

factors in wild type mice versus MyD88 knockout mice. 

Epithelial cells from wild type mice were challenged with 8mg and 25mg of Poly I:C at 6 and 12 hour’s timee 

points. Immunofluorescence was observed because of the P-NF-kappaB p65 (S536) in skin tissue sections 

treated with Poly I:C. A higher mean of fluorescence intensity was observed on the surface skin of the 

mouse treated with 8mg of Poly I:C for 12 hours (pink [P-NF-kappaB p65]; blue [DAPI]).(Original 

magnification 60x). EPI, epithelium;CT, connective tissue. (N = 5 mice per group. Bar = 10 μm).  

Control mice were treated similarly with a control vehicle Chromophore (Alkanani, Hara 

et al. 2014, Sakai, Sanders et al. 2016, Blednov, Black et al. 2017, Hu, Chen et al. 2018). 

High expression of Phospho-NFkB colocalization was encountered on animal treated with 

8mg of Poly I:C for 12 hours.  
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Chapter 4: Results  

We have previously shown that the activation of TLR3 in HGECs induces robust pro-

inflammatory responses that are mediated by the mTOR signaling network (Teixeira, 

Zhao et al. 2019). Here, we further investigated whether other TLR signaling pathways 

could contribute to this robustness in the activation of the pro-inflammatory network in 

HGECs. Similar to the previously examined time-dependence of treatment, the early and 

late activation of the inflammatory response was investigated 30, 60, 90, and 120 

minutes, as well as 4 and 24 hours after stimulation with ligands. We observed that Poly 

I:C induced a higher expression of TLR2, TLR4, and TLR7, as compared to that induced 

by FSL-1 and LPS at earlier time points. In comparison to other ligands, Poly I:C also 

induced the robust activation of pro-inflammatory genes and their expression (Figure 6). 

 

Figure 6:  TLR3 stimulation of HGECs leads to robust activation of TLR signaling: 

Cells were treated with various TLR ligands for 24 h and the supernatant was subjected to TNF 

measurement using ELISA. TLR3 stimulation occurred via the Poly I:C induced robust generation of TNF 
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cytokines. (Data represented as mean ±SE of three independent experiments using primary epithelial cells 

from a donor).  

Surprisingly, cells stimulated with Poly I:C for 24 hours induced significantly higher levels 

of TLR2 (Figure 6). Further, to investigate the cytokine production after 24 hours, HGECs 

were treated with a panel of TLR ligands and examined for TNF production. Poly I:C 

induced higher levels of TNF production, as compared to that of other TLR ligands 

(Figure 7), which is in agreement with our previous observation. TLR2 can 

heterodimerize with TLR1 or TLR6 to induce Myd88-mediated signaling. To check if there 

is any difference in the expression levels of TLR1, TLR2, and TLR6, HGECs were treated 

with Pam3CSK4 (TLR1/2), FSL-1 (TLR2/6), and Poly I:C (TLR3) ligands for 24 hours and 

examined using quantitative real-time PCR.  
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Figure 7 : Stimulation of HGECs with TLR3 leads to robust activation of TLR2 TNF and IL-8 signaling:  

HGECs were incubated with E. Coli LPS (1 µg/ml), FSL-1 (1 µg/ml) and Poly I:C (5 µg/ml) for 30, 60, 90, 

120 minutes, and 4 and 24 hours. We isolated total RNA, converted it to cDNA (pooled from three 

independent experiments), and analyzed customized qPCR-arrays. The ΔΔCT values were used to 

generate the heatmaps based on two-way hierarchical clustering, using MeV v4.1 software (rows=genes, 

columns=samples). The color scale indicates certain relative expression levels: Red, above mean; green, 

below mean; and black, below background. Statistical comparison was performed after ELISA via one-way 

ANOVA, followed by Tukey's multiple comparison test (*p < 0.05). Results are represented as mean ± SE 

values. 
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Unexpectedly, Poly I:C induced higher TLR2 expression levels than TLR3 (Figure 8). 

Because the level of TLR2 gene expression and TNF production after providing Poly I:C 

stimulation was significantly higher at 24 hours, we hypothesized that the production of 

robust pro-inflammatory mediators via TLR3 signaling occurs partly through the activation 

of TLR2.  

 

Figure 8: TLR3 stimulation induced high levels of TLR2 gene expression: 

 

 HGECs were treated Pam3CSK4 (1 µg/ml), FSL-1 (1 µg/ml), and Poly I:C (5 µg/ml) for 4 and 24 hours. 

Quantitative real-time PCR was performed for cDNA, as stated above. Poly I:C induced higher levels of 

TLR3 gene expression at 4 hours, but at 24 hours post stimulation, TLR3 activation induced significantly 
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higher levels of TLR2 gene expression. Statistical test: We performed one-way ANOVA, followed by Tukey's 

multiple comparison test (*p < 0.05). Data represented as mean ±SE of three independent experiments 

using primary epithelial cells from a donor. 

TLR3-mediated expression of TLR2 requires MyD88:  

To test whether TLR3 can impact the expression levels of TLR2, TLR3 was down-

regulated by siRNA and HGECs were stimulated with Poly I:C. As shown in Figure 9, the 

silencing of TLR3 led to a significant down-regulation of TLR2. Conversely, the silencing 

of TLR2 and subsequent stimulation with FSL1 had no effect on the TLR3 expression 

levels (Figure 9). 

 

Figure 9 :Silencing of TLR3 reduced TLR2 gene expression in HGECs:  

Epithelial cells were challenged with Poly I:C and FSL1. When TLR3 was silenced, the expression of TLR2 

was significantly downregulated after stimulation with Poly I:C (A). On the other hand, the silencing of TLR2 

had no effect on the expression of TLR3 (B). Statistical test: We performed one-way ANOVA, followed by 
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Tukey's multiple comparison test (*p < 0.05). Data represented as mean ±SE of three independent 

experiments using primary epithelial cells from a donor.  

 

It is well-documented that TLR2 signaling requires MyD88 adapter molecules, and that 

TLR3 does not require MyD88 to induce downstream signaling (Bagchi, Herrup et al. 

2007, Xia, Winkelmann et al. 2013, George, Kim et al. 2017). Therefore, we investigated 

whether the ability of TLR3 to impact TLR2 expression is affected by the presence of 

MyD88. To accomplish this, MyD88 was silenced by siRNA and HGECs were 

subsequently stimulated with Poly I:C for 24 h. Accordingly, the silencing of MyD88 down-

regulated TLR2 expression levels, while no changes were observed in TLR3 levels 

(Figure 10A and 10B). Together, our data demonstrates the necessity of MyD88 for the 

TLR3-regulated expression of TLR2. 
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Figure 10:  Up-regulation of TLR2 by Poly I:C is partly mediated by MyD88:  

Epithelial cells were challenged with Poly I:C and FSL1. When MyD88 is silenced, the expression of TLR2 

significantly decreased after stimulation with Poly I:C. (A). However, the silencing of Myd88 did not alter the 

expression of TLR3 (B). Statistical test: We performed one-way ANOVA, followed by Tukey's multiple 

comparison test (*p < 0.05). Data represented as mean ±SE of three independent experiments using 

primary epithelial cells from a donor. 

TLR3 signaling increases pro-inflammatory cytokine secretion partially through 

the activation of TLR2 and MyD88. 

To provide insight into the role of MyD88, we investigated the differential expression 

profiles of TLR2, TLR3, and MyD88, after silencing genes using siRNAs and 

subsequently providing exposure to their respective ligands. First, we examined the 

silencing of TLR2. As expected, TLR2 expression levels were minimal in the absence and 
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presence of its ligand, FSL-1 (Figure 11A). Interestingly, stimulation with the TLR3 ligand, 

Poly I:C, was capable of restoring the expression levels of TLR2 more robustly than that 

with FSL-1 alone (Figure 11A). Additionally, the silencing of TLR3 and subsequent 

exposure to Poly I:C resulted in a 2-fold increase in the expression of MyD88. (Figure 

11C).  

 

 

Figure 11: TLR3 stimulation induces MyD88 production and its inhibition attenuates its expression: 

 HGECs were challenged with Poly I:C and FSL1. were treated with respective ligands after silencing TLR2, 

TLR3, and MyD88. The silencing of TLR3 induced a significantly higher expression of TLR2, even when 

TLR2 was silenced (A). As expected, siTLR3-treated cells down-regulated TLR3 (B). Interestingly, Poly I:C 

treated cells significantly increased Myd88 expression levels (C). However, when MyD88 is silenced, Poly 

I:C significantly down-regulated MyD88 expression. The extent of TLR2 upregulation by Poly I:C was higher 

than that of TLR3 upregulation by FSL-1. Statistical test: We performed one-way ANOVA, followed by 

Tukey's multiple comparison test (*p < 0.05). Data represented as mean ±SE of three independent 

experiments using primary epithelial cells from a donor. 
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Next, we determined whether the down-regulation of TLR2 or MyD88 could affect 

cytokine secretion. To accomplish this, TNF and IL-8 levels were quantified from HGECs 

in which TLR2 was silenced, after their subsequent stimulation with Poly I:C. As shown 

in Figures 12A and 12B, both TNF and IL-8 levels were significantly reduced to 70%. A 

similar Poly I:C treatment for silencing MyD88 in HGECs also caused a significant 

reduction in TNF and IL-8 levels; this observation was in accordance with the interactions 

expected to occur between TLR2 and MyD88.  

 

 

Figure 12: Poly I:C partially upregulates cytokine production by activating TLR2 and MyD88: 

HGECs were stimulated with Poly I:C and FSL1 for 24 hours, after silencing TLR2, TLR3, and MyD88. 

ELISA results for supernatants showed that there was a significant decrease in IL-1beta (A), TNF (B) and 

IL-8 (C) levels, when TLR3 and MyD88 were silenced. Moreover, TLR2 silencing significantly down-

regulated the secretion of IL-1beta, TNF and IL-8 after poly I:C treatment. Striking differences were 
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observed when Myd88 was silenced; IL-1beta, TNF, and IL-8 secretion levels were significantly down-

regulated after poly I:C treatment. These data underline the unexpected role of Myd88 in the My88-

independent pathway. Statistical test: We performed one-way ANOVA, followed by Tukey's multiple 

comparison test (*p < 0.05). Data represented as mean ±SE of three independent experiments using 

primary epithelial cells from a donor. 

 

Activation of TLR2 by TLR3 is mediated via the induction of endogenous ligands 

HMGB1 and Hsp60.  

Recent investigations into microbial molecules and their signaling pathways in host cells 

have identified several host-derived endogenous ligands(Al-Ofi and Al-Ghamdi 2018). 

These endogenous molecules include proteins that activate TLR signaling during 

pathological processes, even in the absence of microbial PAMPs(Singh, Biswas et al. 

2016). These ligands include various types of molecules, such as proteins, fibronectin, 

heparin sulfate, biglycan, fibrinogen, oligosaccharides, and nucleic acids. Key proteins 

include high-mobility group box 1 (HMGB1), HSPs, tenascin-C, cardiac myosin, and S100 

proteins, of which HMGB1 and Hsp60 have been specifically shown to activate the TLR2 

signaling network(Chalmers, Eidelman et al. 2013). To understand the role of TLR2 in 

TLR3-mediated transcriptional activation more effectively, HGECs were stimulated with 

poly I:C and the TLR2 agonists Pam3CSK3 and FSL-1 for 4 and 24 hours, and the 

HMGB1 and Hsp60 expression levels were examined. Stimulation with poly I:C produced 

maximal levels of HMGB1 after 4 hours, while FSL-1 induced maximal levels of HMG1 

after 24 hours (Figure 13B).  
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Figure 13: TLR3 stimulation activates endogenous TLR2 ligands: 

HGECs are stimulated with Pam3CSK3, Poly I:C, and FSL-1 for 4 and 24 hours. The cDNA was used to 

measure HMGB1 and Hsp60 gene expression levels. Poly I:C increased the expression of both Hsp60 

(HSPD1) and HMGB1 genes. Poly I:C treatment significantly increased the HMGB1 expression at the 4-

hour time point (A), whereas FSL1 induced higher HMGB1 levels at 24 hours (B). On the other hand, the 

Hsp60 expression was minimally activated by FSL-1 treatment, but was robustly upregulated by Poly I:C 

at the 4 and 24 hour time points (C and D). Statistical test: We performed one-way ANOVA, followed by 

Tukey's multiple comparison test (*p < 0.05). Data represented as mean ±SE of three independent 

experiments using primary epithelial cells from a donor. 



 

 

57 

Additionally, poly I:C robustly promoted the expression levels of Hsp60 at both time 

points, while a minimal effect was observed after stimulation with FSL-1 (Figures 13C 

and 13D). To check if the downregulation of TLR 2 occurred, we observed the expression 

levels of IL-8 and TNF. TNF and IL-8 levels were reduced by 95% when HMGB1 and 

HSP60 were silenced. When we treated epithelial cells with Poly I:C and silenced both 

endogenous ligands Hsp60 and HMGB1, the TNF and IL-8 expression levels were 

downregulated, in comparison to levels observed after media alone was treated with Poly 

I:C and SiRNA was mock treated with Poly I:C. This shows the role of HMGB1 and HSP60 

in the functional activation of TLR2 via Hsp60 and HMGB1 (Figure 14).  

 



 

 

58 

Figure 14: HMGB1 and Hsp60 knockouts reduce pro-inflammatory cytokine levels when epithelial 

cells are stimulated with Poly IC: 

HGECs stimulated with Poly I:C for 4 and 24 hours. Poly I:C treatment increased the expression of both IL-

8 and TNF. On the other hand, the knockout of Hsp60 and HMGB1 robustly reduce the expression of TNF 

and IL-8 after treatment with Poly I:C at the 4 and 24 hour time points. Statistical test: We performed one-

way ANOVA, followed by Tukey's multiple comparison test (*p < 0.05). Data represented as mean ±SE of 

three independent experiments using primary epithelial cells from a donor. 

A western blot was performed and the results showed that the knockout of only HMGB1 

reduces the protein Hsp60 level, which reveals a co-interaction between these two 

molecules (Figure 15). 

Together, our data demonstrate that TLR3 stimulation not only leads to TLR2 up-

regulation, but also induces the production of endogenous ligands of TLR2 that might be 

responsible for the activation of pro-inflammatory cytokines (Figure 16).  
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Figure 15 :  Immunoblot from epithelial cells treated with 10 ng of siRNA HMGB1 and Hsp60 challenged with 

Poly I:C: 

Cells in which HMGB1 was knocked out caused a significant reduction in Hsp60 (60 kDa) expression levels, 

as compared to that observed in control cells. HMGB1 and Hsp60 seem to work as a complex. Levels of 

the housekeeping protein b-Actin were similar between samples.    
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Figure 16 :  Immunoblot from epithelial cells treated with 10 ng of siRNA HMGB1 and Hsp60 challenged with 

Poly IC: 

Cells in which HMGB1 was knocked out caused a significant reduction in Hsp60 (60 kDa) expression levels, 

as compared to that observed in control cells. Levels of the housekeeping protein b-Actin were similar 

between samples.  
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Figure 17 :  Ratiometric analysis of Immunoblot from epithelial cells treated with 10 ng of siRNA HMGB1 

and Hsp60 challenged with Poly I:C: 

Cells in which HMGB1 was knocked out caused a significant reduction in Hsp60 (60 kDa) expression levels, 

as compared to that observed in control cells. Levels of the housekeeping protein b-Actin were similar 

between samples 
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Figure 18 :  Ratiometric analysis of Immunoblot from epithelial cells treated with 10 ng of siRNA HSP60 and 

HMGB1 challenged with Poly I:C: 

Cells in which HMGB1 was knocked out caused a significant reduction in Hsp60 (60 kDa) expression levels, 

as compared to that observed in control cells. Levels of the housekeeping protein b-Actin were similar 

between samples.  

 



 

 

63 

 

 

Figure 19: Diagram showing the role of TLR3 in endogenous ligand activation and triggering of the 

TLR2 receptor:   

The stimulation of TLR3 by Poly I:C leads not only to TLR2 up-regulation, but also induces the production 

of endogenous ligands of TLR2 that might be responsible for the activation of pro-inflammatory cytokines.  
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Lower expression of the pro-inflammatory gene TNF and GRO and transcription 

factors NF-κB and IRF-3 in a Myd88-/- mouse 

The expression of pro-inflammatory transcriptional factors and cytokines was 

successfully reduced after epithelial cells of Myd88-/- mice were stained, after their skin 

was treated with Poly I:C.  

Immunopositive cells were a majority on the epithelial layer of wild type mice compared 

to Myd88-/- mice group. We also have encountered few immunopositive cells on the 

connective tissue. That is expected as the connective tissue have fibroblasts and immune 

cells which also present TLR3 in their endosome organelles.   TNF wide type group 

showed 90% of positive cells compared to 35% in TNF Myd88-/- mice group. GRO wide 

type group showed 75% of positive cells compared to 30% in GRO Myd88-/- mice group. 

NFkB wide type group showed 95% of positive cells compared to 40% in NFkB Myd88-/- 

mice group. IRF wide type group showed 80% of positive cells compared to 35 % in IRF-

3 Myd88-/- mice group. 

When we compared Isotype antibody and control (mouse treated with vehicle and not 

Poly I:C) We found Isotype and control to be the same Figure 20.  

All images for each specific anti-body were capturing using the same capture time.TNF 

and GRO capture time was 10s using the Z-stacking technology.  NFkb and IRF capture 

time images were 15 s with Z-stacking technology.  
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The statistical differences in the mean immunofluorescence intensity values for NF-κB, 

IRF-3, and TNF were significant in wild type mice challenged with Poly I:C, as compared 

to the values for Myd88 knockout mice challenged with Poly I:C (Figure 33).  

 

Figure 20 : Epithelial cells staining for the visualization of TNF cytokines in wild type mice 

Epithelial cells challenged with Poly I:C. Poly I:C treatment increase TNF secretion within the cytoplasm 

compared to Vehicle.(Original magnification 60x). EPI, epithelium; C, connective tissue. N = 8 mice per 

group. Bar = 10 μm.  
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Figure 21:  Epithelial cell staining for the visualization of phosphorylated NF-κB transcriptional 

factors in wild type mice versus MyD88 knockout mice. 

Epithelial cells from wild type mice and MyD88 knockout mice challenged with Poly I:C. 

Immunofluorescence was observed because of the P-NF-kappaB p65 (S536) in skin tissue sections treated 

with Poly I:C. A higher mean of fluorescence intensity was observed on the surface skin of the wild type 

mouse (green [P-NF-kappaB p65]; blue [DAPI]).(Original magnification 60x). EPI, epithelium;CT, 

connective tissue. N = 8 mice per group. Bar = 10 μm.  
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Figure 22: Epithelial cells staining for the visualization of TNF cytokines in wild type mice versus 

MyD88 knockout mice: 

Epithelial cells from wild type mice and MyD88 knockout mice challenged with Poly I:C:  

Immunofluorescence was observed in skin tissue sections treated with Poly I:C enabled the visualization 

of TNF. A higher mean fluorescence intensity was observed on the skin surface of the wild type mouse 

(green [TNF]; blue [DAPI]). (Original magnification 60x). EPI, epithelium;CT, connective tissue. N = 8 mice 

per group. Bar = 10 μm.  
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Figure 23: Epithelial cells staining for the visualization of GRO cytokines in wild type mice versus 

MyD88 Knockout mice: 

Epithelial cells from wild type mice and MyD88 knockout mice challenged with Poly I:C: 

Immunofluorescence was observed in skin tissue sections treated with Poly I:C enabled the visualization 

of GRO. A higher mean fluorescence intensity was observed on the skin surface of the wild type mouse 

(green [GRO]; blue [DAPI]). Original magnification 60x). EPI, epithelium;CT, connective tissue. N = 8 mice 

per group. Bar = 10 μm.  
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Figure 24:  Epithelial cell staining for the visualization of IRF-3 factor in wild type mice versus MyD88 

knockout mice.  

Epithelial cells from wild type mice and MyD88 knockout mice challenged with Poly I:C: 

Immunofluorescence was observed because of the use of p-IRF-3(S536) in skin tissue sections treated 

with Poly I:C. A higher mean of fluorescence intensity was observed on the surface skin of the wild type 

mouse (green [IRF-3]; blue [DAPI]). Original magnification 60x). EPI, epithelium; CT, connective tissue. N 

= 8 mice per group. Bar = 10 μm.  
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Figure 25:  Epithelial cell staining for the visualization of phosphorylated NF-κB transcriptional 

factors in wild type mice.  

Epithelial cells from wild type mice challenged with Poly I:C: Immunofluorescence was observed because 

of the P-NF-kappaB p65 (S536) in skin tissue sections treated with Poly I:C. A higher mean of fluorescence 

intensity was observed on the surface skin of the wild type mouse (green [P-NF-kappaB p65]; blue [DAPI]). 

Red box: Phospho-NFkB colocalization. Original magnification 60x). EPI, epithelium; CT, connective tissue. 

N = 8 mice per group. Bar = 10 μm.  
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Figure 26:  Epithelial cell staining for the visualization of IRF-3 factor in wild type mice. 

Epithelial cells from wild type mice challenged with Poly I:C: Immunofluorescence was observed because 

of the use of p-IRF-3(S536) in skin tissue sections treated with Poly I:C. A higher mean of fluorescence 

intensity was observed on the surface skin of the wild type mouse (green [IRF-3]; blue [DAPI]). Red box: 

IRF-3 colocalization. Original magnification 60x). EPI, epithelium; CT, connective tissue. N = 8 mice per 

group. Bar = 10 μm.  
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Figure 27: Epithelial cells staining for the visualization of TNF cytokines in wild type mice: 

Epithelial cells from wild type mice challenged with Poly I:C: Immunofluorescence was observed in skin 

tissue sections treated with Poly I:C enabled the visualization of TNF. A higher mean fluorescence intensity 

was observed on the skin surface of the wild type mouse (pink [TNF]; blue [DAPI]). Red box: TNF secretion 

within the cytoplasm. Original magnification 60x). EPI, epithelium; CT, connective tissue. N = 8 mice per 

group. Bar = 10 μm.  
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Figure 28: Epithelial cells staining for the visualization of GRO cytokines in wild type mice: 

Epithelial cells from wild type mice challenged with Poly I:C: Immunofluorescence was observed in skin 

tissue sections treated with Poly I:C enabled the visualization of GRO. A higher mean fluorescence intensity 

was observed on the skin surface of the wild type mouse (pink [GRO]; blue [DAPI]). Red box: GRO secretion 

within the cytoplasm. Original magnification 60x). EPI, epithelium; CT, connective tissue. N = 8 mice per 

group. Bar = 10 μm.  
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Figure 29: Epithelial cell staining for the visualization of IRF-3 transcriptional factor in MyD88 

knockout mice: 

Epithelial cells from MyD88 knockout mice challenged with Poly I:C: Immunofluorescence was observed 

because of the use of p-IRF-3(S536) in skin tissue sections that received Poly I:C treatment. A low mean 

fluorescence intensity was observed on the skin surface of the treated MyD88 knockout type mouse (green 

[IRF-3]; blue [DAPI]). Red box: IRF-3 colocalization. Original magnification 60x). EPI, epithelium; CT, 

connective tissue. N = 8 mice per group. Bar = 10 μm.  
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Figure 30: Epithelial cell staining for the visualization of phosphorylated NF-κB transcriptional factor 

in MyD88 knockout mice: 

Epithelial cells from MyD88 knockout mice challenged with Poly I:C: Immunofluorescence was observed 

because of the use of P-NF-kappaB p65 (S536) in skin tissue sections that received Poly I:C treatment. A 

low mean fluorescence intensity was observed on the skin surface of the treated MyD88 knockout type 

mouse (green [ P-NF-kappaB p65]; blue [DAPI]). Red box:  P-NF-kappaB p65 colocalization. Original 

magnification 60x). EPI, epithelium; CT, connective tissue. N = 8 mice per group. Bar = 10 μm.  
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Figure 31: Epithelial cell staining for the visualization of GRO cytokines in MyD88 knockout mice. 

Epithelial cells from MyD88 knockout mice challenged with Poly I:C: Immunofluorescence was observed 

because of the use of GRO anti-body in the skin tissue sections after Poly I:C treatment: low mean of 

fluorescence intensity was noted on the surface skin of MyD88 knockout type mouse that received Poly I:C 

treatment (green [GRO]; blue [DAPI]). Red box: GRO secretion within the cytoplasm. Original magnification 

60x). EPI, epithelium; CT, connective tissue. N = 8 mice per group. Bar = 10 μm. 
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Figure 32: Epithelial cell staining for the visualization of TNF cytokines in MyD88 knockout mice. 

Epithelial cells from MyD88 knockout mice challenged with Poly I:C: Immunofluorescence was observed 

because of the use of TNF anti-body in the skin tissue sections that received Poly I:C treatment. A low 

mean fluorescence intensity was noted on the skin surface of the treated MyD88 knockout mouse (green 

[TNF]; blue [DAPI]). Red box: TNF secretion within the cytoplasm. Original magnification 60x). EPI, 

epithelium; CT, connective tissue. N = 8 mice per group. Bar = 10 μm. 
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 Figure 33: The intensity of immunofluorescence within the epidermis, measured using Image J 

software: 

Epithelial cells from wild type mice and  MyD88 knockout mice challenged with Poly I:C. 

Immunofluorescence of IRF-3, NF-κB transcriptional factors, and TNF cytokines in the epithelial cells of 

mouse skin sections: The mean fluorescence intensity is higher in the stained cells of the wild type mouse, 

compared to the values for the knockout mouse. Statistical test: We performed one-way ANOVA, followed 

by Tukey's multiple comparison test (*p < 0.05). Results represent mean ± SE values 
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Chapter 5: Discussion and Future Direction 

The binding of ligands to TLRs induces downstream signaling via two distinct pathways, 

i.e. the MyD88-dependent and TRIF-dependent pathways, for the induction of pro-

inflammatory cytokines and IFN genes (Bagchi, Herrup et al. 2007, Kenny, Talbot et al. 

2009). However, MyD88 is used by TLR2, TLR5, TLR7, TLR8, and TLR9, while TRIF is 

used by TLR3. TLR4 uses both MyD88- and TRIF-dependent mechanisms (Barton and 

Medzhitov 2002, Sahoo, Basu et al. 2013). However, the involvement of TLR3 with the 

MyD88 signaling network remains controversial. While Takumi, Kawasaki at al. 2014 

advocates that TLR3 signaling pathway is totally independent of MYD88 other studies 

(Jingya, Xia at al. 2013) indicate that both TLR3- and MyD88-dependent signaling play 

important roles in shaping the development of humoral responses to the single-cycle 

vaccine RepliVax WN (Jingya, Xia at al. 2013).  Our study corroborates with Jingya, Xia 

studies showing that Poly I:C up-regulated TLR2 levels in siTLR2 treated cells; this 

suggests that TLR3 stimulation leads to a strong transcriptional activation of TLR2. 

Furthermore, we showed that Poly I:C causes an increase in MYD88 expression, even 

though it is thought to be independent.  

TLR3 is identified as a major MyD88-independent PRR (pattern-recognition receptor) for 

the induction of type-1 IFN, in response to different viral infections. However, the role of 

TLR3 in bacterial infections is poorly understood (Angeliki, Xagorari at al. 2008).  MyD88 

is an important adapter molecule that recognizes all TLR ligands except TLR3 (Xia, 

Winkelmann et al. 2013). Our data demonstrate the interactions between Myd88 in the 

regulation of TLR2 expression by TLR3, which suggests that Myd88 expression was 
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stimulated indirectly. In addition, it was shown for the first time that the up-regulation of 

TLR2 occurred in Poly I:C treated cells, as TLR2 silencing significantly down-regulated 

IL-8 and TNF secretion after Poly I:C treatment. After Mydd88 was silenced, the secretion 

of both TNF and IL-8 was significantly down-regulated upon Poly I:C treatment. The data 

emphasize the unexpected role of MyD88 in the MyD88-independent pathway.  

The recognition of pathogens by epithelial cells involves interplay between PAMPs 

(pathogen-associated molecular patterns) and various host PRRs. The occurrence of this 

interaction during infection results in the release of various inflammatory mediators and 

chemokines that induce an influx of neutrophils into the site of infection, activates nearby 

macrophage and antigen presenting cells, and ultimately decides the acquired immune 

response (Pan, Fisher et al. 2011). Bacterial LPS has been shown to up-regulate TLR3 

expression via the TLR4-MyD88-IRAK-TRAF6-NF-κB-dependent signaling pathway, for 

enhancing anti-viral responses (Pan, Fisher et al. 2011, Bakaysa, Potter et al. 2014). 

However, the role of TLR3 in bacterial infections is poorly understood and remains 

controversial (Thorburn, Tseng et al. 2016, He, Ichinose et al. 2017, Shirjang, Mansoori 

et al. 2017). The results of our study revealed the unexpected role of MyD88 in the 

MyD88-independent pathway for the first time, along with the role of HSMGB1 and HSP60 

in the downstream activation of TLR3. This results in the generation of more inflammatory 

signals of TLR2 that might lead to persistent inflammation.  

In a seminal paper, Lai et al. investigated a skin injury model (full-thickness incisions 

were performed creating a circular wound) of mice and identified the fact that 
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inflammation was driven by TLR3 mediated responses in keratinocytes (Perkins and 

Vogel 2015, Lakpour, Koruji et al. 2017, Wissler, Ehlerding et al. 2019). The results 

showed the necessity of TLR3 for the induction of inflammation after a skin injury. 

Interestingly, staphylococcal LTA-mediated TLR2 signaling suppressed TLR3 signaling 

via the induction of the negative regulatory factor TRAF1 (Benakanakere, Zhao et al. 

2010, Granick, Falahee et al. 2013, Fang, Shi et al. 2016, Hu, Cong et al. 2016). The 

authors observed that RNA from necrotic epithelial cells triggered TLR3 on undamaged 

epithelial cells, leading to the release of pro-inflammatory cytokines, and concluded that 

the specificity of a ligand and its response is dictated by a cell type specific TLR2 ligand 

(Chalmers, Eidelman et al. 2013, Hu, Chen et al. 2018, Martinus and Goldsbury 2018). 

In our experiment, HGECs behaved differently than expected. TLR3 ligand stimulation in 

HGECs led to the synergistic activation of TLR3 and TLR2 via the induction of the 

endogenous ligand for TLR2. In our study when TLR3 is triggered by Poly I:C TLR2 is 

upregulated although in siTLR2 treated cells suggesting that TLR3 stimulation leads to a 

strong transcriptional activation of TLR2. Furthermore, TLR3 stimulation via Poly I:C 

induces endogenous ligands of TLR2 in vitro.  In addition, Poly I:C increases MyD88 

expression even though it is thought to be independent. Along with it, TNF and IL8 

secretion were significantly downregulated upon Poly I:C treatment in MyD88 deficient 

mouse.  

 Taken together, the above data suggest that TLR2-TLR3 regulatory networks are 

complex and reveal their association with the TLR3-MyD88-TLR2 signaling axis. 

Interestingly, viral infections occurred in fetal membranes that secreted MIP-1β and 
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RATES (Bakaysa, Potter et al. 2014), in response to Poly I:C, via MyD88 signaling 

(Rajalakshmy, Malathi et al. 2015, Rashidi, Mirahmadian et al. 2015, Muralidharan, Lim 

et al. 2018). This suggests their association with TLR3-MyD88 signaling, which probably 

depends on the cell type specificity and stimulus. Nonetheless, there are no reports 

suggesting the involvement and cooperation of MyD88 in TLR3 signaling pathways in oral 

keratinocytes. The results of our study have defined the role of Myd88 in the Mydd88-

independent signaling pathway for the first time. In this pathway, TLR3 activated TLR2 

expression via a Myd88-dependent mechanism, and TLR3 mediated the up-regulation of 

endogenous ligands for TLR2, mainly, HMGB1 and Hsp60. This exacerbated TLR2 

signaling during pro-inflammatory cytokine production. We believe that this discovery 

regarding the co-operation among TLRs for the activation of pro-inflammatory cytokines 

is novel; it might result in persistent inflammation if a viral infection has occurred. On the 

contrary, studies have provided evidence regarding the protection provided by the TLR3 

and MyD88-dependent signaling pathways against viral infections. The increased 

susceptibility and high mortality of viral infections has been noted in MyD88-/-.TLR3-/- 

knockout mice at the early stage of infection (Xia, Winkelmann et al. 2013, Hu, Cong et 

al. 2016). These data corroborate a comprehensive examination of the roles of these 

pathways interacting with each other during the development of long-term adaptive 

immune responses to viruses.  

The impact of the lack of TLR3 or MyD88-dependent signaling is also manifested during 

B cell memory development (Xia, Winkelmann et al. 2013). When MyD88 knockout mice 

were treated with RepliVAX WN to determine the response of B cells, a significant 



 

 

83 

reduction in B cell activation was observed. This study also noted that the activation of 

TLR2 occurs via TLR3 in a downstream direction, through HSP60 (Xia, Winkelmann et 

al. 2013). 

Human oral cavity (mouth) hosts a complex microbiome consisting of bacteria, archaea, 

protozoa, fungi and viruses. These bacteria are responsible for two common diseases of 

the human mouth including periodontal (gum) and dental caries (tooth decay) (Mosaddad, 

SA at al. 2019). 

The focus has traditionally been on bacteria and fungi when discussing microbiological 

aspects of oral disease. Viruses are probably more involved in diseases associated with 

the oral cavity than has been previously thought. The role of several viruses in ulceration 

is well known, but viruses of the herpes family may play a role in periodontitis, and 

papillomaviruses are probably involved in oral cancer (Grinde, Bjorn at al. 2010). 

It should be noted that the microbial activity can also induce viral replication, as has been 

shown recently in the case of EBV and malaria. If the impact of viral replication on the 

bacterial environment is real, then it might be expected that the bacterial profiles would 

differ between sites with or without virus. Such correlations have been previously 

reported. (Siqueira, JF at. Al 2017). 

 Epithelial cells in the mucosa serve as a barrier for those micro-organisms and recognize 

them through pathogen recognition receptors (PRRs) that instigate antibacterial and 

antiviral responses.  The mechanism of co-operation between TLRs may help explain the 
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complexity of viral and bacterial infections. Poly I:C can potentially be used as an adjuvant 

in the development of vaccines and therapeutic approaches to enhance host immunity 

and reduce destructive inflammation. 

Conclusion: 

The results of the current study suggest that both TLR3- and MyD88-dependent signaling 

play important roles in shaping the development of innate immune responses. This might 

help to explain the occurrence of complications such as bacterial and viral infections in 

patients with chronic oral inflammation. However, we believe that the use of Poly I:C as 

an adjuvant is an excellent choice for the development of vaccines against chronic oral 

infections such as periodontitis, to mount a robust immune response if necessary. 

Furthermore, dsRNA potentially represents an additional reservoir of genetic information 

in microbial populations (Mindich et al. 2006). A potential source of genetic material in 

microbial populations is dsRNA. dsRNA is used as genomic material by some viruses that 

infect bacterial (Mindich et al. 2006) and eukaryotic microbial hosts. Further studies are 

needed to understand the synergistic activation between a bacterial receptor (TLR2) and 

the TLR3-and MyD88-dependent signaling mechanism. 

Toll-like receptors in Orthodontics: 

Fibroblasts serve as an important mechano-sensor function in the PDL and Gingiva. 

Fibroblasts are cells that also express TLR3 receptors. The concept of aseptic 

inflammation was recently strengthened by discovery of the DAMPs system, where 
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endogenous molecules are able to trigger inflammatory response by cellular stress or 

damage through the biding of toll-like receptors (TLRs) and nod-like receptors (NLRs) 

(Masaru, Yamagushi et al. 2015). Orthodontic tooth movement is known to cause 

inflammatory reactions in the periodontium and dental pulp, which will stimulate release 

of various biochemical mediators (Masaru, Yamagushi et al. 2015). The effect of toll like 

receptors stimulation on orthodontic tooth movement is still unknown and a study to 

investigate if the activation of TLRs affect the orthodontic tooth movement would be of a 

great value.   
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