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Infectious and inflammatory diseases affect millions of people in the United States.  A large 

percentage of patients are either killed or debilitated by infectious diseases.  Periodontitis is 

a chronic infectious, destructive disease of the gingival tissues supporting the teeth. It begins 

when the bacteria in plaque, the microbial biofilm, causes the gums to become inflamed. If 

untreated, this disease can lead to severe tooth loss and may interact with other systemic 

health problems increasing morbidity and mortality1. It affects more than ~70% of the 

population, causing significant debilitation for the affected population and imposes a major 

economic burden to the United States2.  This disease is very complex in nature that affects 

not only soft gum tissue but also affects hard bone. A recent report from the American 

Dental Association claims $100 billion in dental spending per year, estimated to reach 

nearly $179 billion by 2021. Over the past three decades, research has shown, and experts 

comply, that there is an association between periodontal diseases and other chronic 

inflammatory conditions, such as diabetes, cardiovascular and Alzheimer’s disease, stroke, 

osteoporosis, respiratory diseases and pregnancy problems including pre-term birth3-10 . 

Therefore, treating periodontal inflammation may not only help manage periodontal 
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diseases but may also help with the management of other chronic inflammatory conditions 

in general. 

There are two major forms of periodontitis, chronic and aggressive11,12. Epidemiologic 

studies have concluded that chronic periodontitis is the most commonly occurring form of 

periodontal disease with most subjects experiencing moderate amounts of periodontal tissue 

destruction. A recent study in United state shows over 47%, American adults ≥30 years, 

have periodontitis, 8.7% mild, 30.0% moderate, and 8.5% severe periodontitis2. 

The periodontitis is initiated by microbial plaque, which accumulates in the gingival crevice 

and induces an inflammatory response13. Initial inflammation is reversible and could 

progress in susceptible individuals to a chronic destructive inflammatory condition, in which 

tooth supporting tissue are destroyed. For years identifying micro-organisms associated with 

periodontal disease or health were limited to those which could be cultured under laboratory 

conditions. Indeed, classification of the periodontal microbiota by culturing techniques in 

the late 1970s and early 1980s created a dramatic change in our understanding of bacterial 

composition of disease compared to health14-18.  Socransky et al. classified bacteria into six 

groups based on different potential pathogenicity and their role in the development of 

plaque, categorized by colors. “red complex”, which is a group of three Gram-negative 

anaerobic bacteria, includes Porphyromonas gingivalis, Treponema denticola, and 

Tannerella forsythia. The “orange complex” comprised species members of the genus 

Prevotella, Fusobacterium, and Campylobacter, Streptococcus constellatus and 

Eubacterium nodatum. The other four complexes (“blue”, “yellow”, “green”, and “purple”) 

primarily consisted of early colonizers of the tooth surfaces19. 

Recent developments in molecular-methodologies of bacterial identification, for example 
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16S rRNA amplification and high-throughput sequencing, have revolutionized the 

understanding of the composition of the periodontal microbiota20 . The study of thousands of 

plaque samples derived from multiple clinical periodontal conditions has demonstrated a 

more heterogeneous and diverse periodontal microbiota than previously thought. Newly 

recognized non or poorly cultivable organisms that increase in number in diseased sites 

include the Gram-positive Filifactor alocis and species in the genera Prevotella, 

Megasphaera, Selenomonas, and Desulfobulbus. Many of these organisms show similar 

correlation with disease as red complex21, 22 . 

Chronic periodontitis is the result of a poly-microbial induced breakdown of host 

homeostasis in susceptible individuals, not just a bacterial infection caused by a single or a 

limited number of pathogens23. The host reacts to this poly-microbial infection by producing 

cytokines and several immune modulators. Cytokines stimulate inflammatory events that 

activate effector mechanisms. These cytokines may directly or indirectly modulate 

periodontal destruction that involves the stimulation of bone resorption and induction of 

tissue degrading proteinases24. In fact microbial dental plaque starts periodontal disease but 

the form and severity of the disease is dependent on the environmental, genetic and host 

defenses to this challenge25. 

The role of the host response in periodontal bone loss is pivotal. There is evidence that an 

insufficient host response increases periodontal destruction and on the other hand a very 

strong response leads to periodontal disease26. A critical aspect of the host response is the 

detection of bacteria by Toll-like receptors (TLRs). Activation of the innate immune 

response by the binding of various bacterial components to TLRs results in the production 

of cytokines and chemokines27. The Toll-like receptors (TLRs) are a major class of 
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eukaryotic receptors for microbial pathogen associated molecular patterns (PAMPs)28 . They 

are expressed in a number of cell types, such as phagocytic cells, endothelial cells, 

fibroblasts, and inflamed periodontal tissues. When TLRs recognize PAMPs, alone or in 

homodimerization or heterodimerization with other TLR or non-TLR molecules, they 

induce signals responsible for the activation of genes relevant to the host defense including 

the inflammatory and adaptive immune- related cytokines29 . 

Toll receptor was originally identified in Drosophila as an essential receptor for the 

establishment of the dorsoventral pattern in developing embryos30 .  In 1996, Hoffmann’s 

group showed that Toll-mutant flies were more susceptible to fungal infection31 . Later, 

mammalian homologues of Toll receptor were identified one after another, and named as 

Toll-like receptors (TLRs). 13 members of the TLR family have been identified in mammals 

which 11 of them express at the protein level in humans.  TLRs are type I transmembrane 

proteins characterized by an extracellular domain containing leucine-rich repeats (LRRs) 

and a cytoplasmic tail that contains a conserved region called the Toll/IL-1 receptor (TIR) 

domain.  The structure of the extracellular domain of TLR3 was revealed by crystallography 

studies as a large horseshoe-shape32. TLR signaling consists of at least two distinct 

pathways, a MyD88-dependent pathway that leads to the production of inflammatory 

cytokines, and a MyD88-independent pathway associated with the stimulation of IFN-β and 

the maturation of dendritic cells. The MyD88-dependent pathway is common to all TLRs, 

except TLR3 33. TLRs responding to particular pathogens may activate complex networks of 

pathways and interactions, positive and negative feedback loops, and multifunctional 

transcriptional responses. Among the key downstream targets of these networks are NF-kB, 

mitogen-activated protein kinases, and members of the IRF family34. TLRs that detect 
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mainly extracellular microbial structures are expressed on the host cell surface (TLR-1, -2, - 

4, -5, -6), and TLRs that detecting viral or bacterial nucleic acids are  located intracellularly 

on endocytotic vesicles or organelles (TLR-3, -7, -8 ,-9)35. Also, TLRs has ability to 

heterodimerize within the family (e.g. TLR2 uses either TLR1 or TLR6 as signaling 

partners), or outside of TLR s family (e.g. TLR2 co- associates with CD14 or CD36). This 

ability might help to discriminate better among the abundant and diverse microbial 

structures36  . Crosstalk between complement and TLR signaling pathways has been shown 

which suggests that the complement–TLR interplay reinforces innate immunity or regulates 

excessive inflammation, through synergistic or antagonistic interactions37. 

Epithelial cells function as a physical barrier and in immune surveillance through their 

ability to elicit an innate immune response. TLRs are expressed predominantly in cells 

which mediate the first line of defense such as neutrophils, dendritic cells and 

monocytes/macrophages and in cells that are directly exposed to the outer environment such 

as epithelial cells38. 

Toll-like receptor 2 is involved in the recognition of peptidoglycans and lipoteichonic acid 

of Gram-positive bacteria39, 40. Also, TLR2 is specifically involved in the recognition of the 

periodontopathogenic bacteria Porphyromonas gingivalis38 . It was previously suggested that 

TLR 2 activity upon stimulation by P. gingivalis is related to the lipopolysaccharide41. Later 

It has been shown that TLR2 recognizes unknown cell wall components of P. gingivalis 

rather than the lipopolysaccharide itself42. It has been reported that TLR2 expression is 

higher in the gingival tissue of subjects with chronic periodontitis than in the gingival tissue 

of subjects with gingivitis43. Beklen et al. (2008), observed higher numbers of cells 

expressing TLR2 in the periodontitis tissue than in the healthy tissue44. Harokopakis and 
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Hajishengallis showed the evidence for TLR2 activation in response to the fimbriae of P. 

gingivalis which function in transmodulating the adhesive activities of human monocytes45. 

For many years, it was noted that everybody is not equally affected by the accumulation of 

bacterial plaque. Some individuals might be very susceptible and might develop aggressive 

forms of periodontitis at a relatively young age, while others might be resistant and never 

develop periodontitis13 . In some cases, the disease progression is slow, and the risk for loss 

of function of the teeth during a lifetime will be minimal, while in others it progress quickly. 

In addition, some gingival sites are more susceptible develop periodontitis than other 

gingival sites within the same subject.  The findings that high levels of inflammatory 

mediators such as IL-1, TNF and PGE2 are correlated with periodontal destruction 46 47  and 

that these mediators are able to aggravate the inflammatory response48   led to the hypothesis 

that some individuals may respond to periodontal infection with the production of high 

levels of inflammatory mediators, which in turn will result in attachment loss. Eskan et al. 

(2008), showed that Human gingival epithelial cells act differently in the expression of 

TLR4, and TLR4-normal HGECs produce four fold more IL-1β compare to the group of 

TLR4-deficient HGECs which induction of IL-1β plays an important role in mediating the 

release of other pro-inflammatory cytokines from primary human epithelial cells following 

challenge with P. gingivalis, and this process may be an inflammatory enhancement 

mechanism adopted by epithelial cells49. 

Experimental gingivitis studies show that there are variations among individuals in the rate 

of development of gingival inflammation. Wiedemann et al., (1979) reported that in a group 

of 62 who were subject to a period of withdrawal from oral hygiene, eight were ‘‘resistant’’ 
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and did not develop gingivitis within 21 days, while 25 subjects were ‘‘susceptible’’ and 

exhibited substantial gingival inflammation within 14 days. The remaining subjects formed 

an “intermediate” group50. Van der Velden showed that a group of subjects consistently 

exhibited greater than average gingival inflammation, while another group was always 

resistant51. Loe’s investigation in a Sri Lankan population without dental care and an 

absence of oral hygiene identified three sub-populations: a group with no progression of 

periodontal breakdown (11%), a group with moderate progression (81%), and a group with 

rapid progression (8%)52 . Van der Velden’s study in a remote village on Western Java who 

did not receive regular dental care reported that 20% of the population developed severe 

periodontal breakdown, but the rest of the population developed only minor to moderate 

breakdown53. 

Complex human diseases (for example Alzheimer disease, Crohns disease and 

cardiovascular diseases) present mostly a relatively mild phenotype, are slowly progressive 

and chronic in nature54 . These diseases are associated with variations in multiple genes, 

each of which has a small overall contribution and relative risk for the disease process. 

Complex diseases are typically polygenic, i.e. multiple genes each play a limited role (low-

penetrance genes), and the disease genes in these diseases considered as disease- modifying 

genes55 . Many studies have been done on the role of genes and their variants in host 

responses in periodontitis. The genetic polymorphisms may cause a change in the encoded 

protein, or its expression, and could alter innate and adaptive immunity, and may be 

deterministic in disease outcome56 . Evidence for the role of a genetic component in 

periodontitis has been investigated in family and twin studies. Van der Velden‘s study on 

young Indonesian siblings who did not receive regular dental care suggested that there may 
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be a genetic basis for the less severe forms of periodontitis57. Family studies may provide 

information on familiar aggregation, but they cannot distinguish between genetic and 

environmental influences. The twin model is probably the most powerful method to study 

genetic aspects of any disease, including periodontal disease. Michalowicz evaluated the 

periodontal condition of 110 adult twins and the results showed that between 38 and 82% of 

the population variance for these measures may be attributed to genetic factors58. In a study 

on 117 adult twin pairs, the analysis included evaluation of environmental factors such as 

smoking and utilization of dental services. The results showed that chronic periodontitis was 

estimated to have approximately 50% heritability, and this was unaltered following 

adjustments for behavioral variables59. Genetic variations linked to complex diseases are not 

easily identified in multifactorial traits. Single nucleotide polymorphisms (SNP) of the DNA 

are often used as genetic markers when they can be linked to a distinct phenotype. SNPs in 

receptors, antigen sensors in cell surfaces, and cytokines and chemokines have been shown 

to influence host immunity and inflammatory response60,61 . Periodontitis-related SNPs have 

been investigated in the Fc-gamma receptor, interleukin-1, IL-4, IL-6, IL-10, IL-18, TNFα, 

vitamin D receptor ,cluster of differentiation-14, matrix metalloproteinase-1, TLR-2, TLR4 

and COX-262 . 

There is a growing body of literature addressing the role of the environment on gene 

expression, but very little is known about the epigenetic pathways involved in the 

modulation of inflammatory and anti-inflammatory genes. Epigenetics, a relatively new 

concept in periodontitis research, may uncover the missing link between genetics, disease 

and environment. Epigenetics is described as changes in patterns of gene expression, which 

do not involve changes in the DNA sequence63. Epigenetics (as in “epigenetic landscape”) 
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was coined by C. H. Waddington in 1942 in the development context. Waddington did not 

use a specific definition for epigenetics (“All those events which lead to the unfolding of the 

genetic program for development”). By the mid-1980s it was clear that there was a new type 

of inheritance, not based on changes in DNA sequence. In 1987, Robbin Holiday wrote a 

paper “The inheritance of epigenetic defects”.  Holliday defined epigenetics as "the study of 

the mechanisms of temporal and spatial control of gene activity during the development of 

complex organisms64-66. 

Later, Epigenetics has been defined by  Riggs and colleagues as “ the study of mitotically 

and/or meiotically heritable changes in gene function that cannot be explained by changes in 

DNA sequence “ 67. In 2008, an agreement on the definition of the epigenetic trait was made 

at a Cold Spring Harbor meeting, “stably heritable phenotype resulting from changes in a 

chromosome without alterations in the DNA sequence”68. It has been founded that three 

important mechanisms provide the molecular basis of epigenetic regulation of gene 

expression. These are DNA methylation, histone modifications, and noncoding RNA 

(ncRNA)-mediated regulation. Also transvection, is also discussed as an epigenetic 

phenomena69.  

DNA methylation is a well-characterized epigenetic modification and it is also the most 

studied epigenetic mechanism in cancer70. It has been shown to play an important role in 

numerous biological processes, such as transposable element silencing, genomic imprinting 

(epigenetic process that involves DNA methylation and histone methylation in order to 

achieve mono-allelic gene expression without altering the genetic sequence)71 , X-

chromosome inactivation, and also in various disease processes including carcinogenesis. 



	
   13	
  

DNA methylation is the addition of a methyl group to cytosines at the 5ʹ′ position of a CpG 

dinucleotide by a covalent modification which results in the formation of 5-methylcytosine 

(5mC), a base that changes the interactions between protein(s) and DNA. In mammalian 

cells, DNA methylation is a replication-dependent reaction catalyzed by DNA methyl 

transferases (DNMTs) which are present at the replication fork during the S-phase. CpG 

dinucleotides are typically rare and scattered throughout the genome and are fully 

methylated. However, DNA methylation also involves CpG-rich regions called ‘‘CpG 

islands’’ (CGIs)72. Approximately, 50% of human genes contain CpG islands and most of 

these islands are unmethylated in normal tissue73.  

           Figure 1 

                      

Conversion of cytosineto 5-methylcytosine by DNA methyltransferase (DNMT). DNMT catalyses thetransfer of a 

methyl group (CH3) from S-adenosylmethionine (SAM) to the 5-carbon position of cytosine. 

 

Unmethylated CpG islands are related to transcriptionally active structure, but methylated 

DNA recruits methyl-binding proteins such as MeCp2, which promotes interaction with 

histone deacetylases (HDACs). HDAC remove acetyl groups of histones leading to 

chromatin compaction and preventing the binding of transcription factors74, so gene 
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products are not expressed and many cellular functions might change by DNA methylation, 

including DNA repair, cell proliferation regulation and inflammatory gene expression75-77. 

Each tissue has a unique epigenetic profile, and changes occur as a result of developmental 

and regenerative processes.  For example there is clear evidence that embryonic stem cells 

have a unique epigenetic pattern that changes upon differentiation cues78. 

Studies show that extrinsic factors, such as hormones, regulate differentiation, and infection 

cause epigenetic modifications79. A similar effect can be achieved in the oral cavity, which 

is under the constant influence of extrinsic factors and foreign agents. Oral hygiene is 

naturally a contributing factor to oral health. Evidence shows that a lifestyle of smoking, 

food intake, lack of exercise, and use of drugs strongly influences the epigenetic pattern and 

predisposition to most conditions that lead to human disease80. Although epigenetic studies 

on the oral epithelium are very new, several studies suggest that these cells have ability to 

respond to environmental factors. The inflammatory response involves up-regulation of 

transcription factors like NF-kB and STAT, and epigenetic chromatin changes similar to 

other inflammatory diseases81 . Gingival tissues from periodontitis patients have been 

showed to have altered epigenetic patterns, particularly at inflammation-related genes. 

Alterations in the methylation pattern have been found in other oral diseases, such as 

squamous cell carcinoma82, tongue carcinoma83 and odontogenic keratocyst84. Olivera 

reported that the methylation pattern of the IL8 gene promoter in individuals with chronic 

periodontitis is altered when compared with healthy subjects85. 

The expression changes of some loci for example IFNG, occur as a result of the loss of 

methylation at their promoter86. On the other hand, Hodge et al. (2001) showed that the 
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overexpression of IL-6 is not associated with DNA methylation at its promoter, but IL-6 

upregulation may rather activate the DNMTs (DNA Methyltransferases), leading to 

methylation changes at the IL-6-induced target genes and development of a chronic 

inflammatory condition87. Zhang et al. showed that the TNFA promoter was 

hypermethylated at two CpG sites, resulting in decreased expression. By reversing the 

methylation by treatment with a demethylating agent in vitro, it caused increased expression 

of TNFA, indicating that the methylation indeed regulated the expression88. 

The evidence of epigenetic changes associated with periodontitis also comes from data on 

COX-2, an enzyme governing the production of prostaglandins that promote inflammation 

and pain. It has been reported that COX-2 inhibitors were able to reduce the symptoms of 

periodontitis patients89. On the other hand COX-2 expression in inflamed gingival tissues 

from chronic periodontitis patients was lower and its promoter was hypermethylated 90, 91. 

De Oliveria analyzed the status of DNA methylation in the promoter region of TLR2 and 

TLR4 genes in gingival tissue samples from healthy subjects, smokers and non-smokers 

affected by chronic periodontitis. The results showed major unmethylation of the TLR4 

gene promoter in all groups, but the results for the TLR2 gene promoter are inconclusive; 

this gene was found as a mosaic of methylated and unmethylated DNA in the majority of 

samples of the three groups and they also observed a trend towards the DNA methylation of 

CpG sites recognized by the HhaI enzyme92.                                                                                                             

Other epigenetic changes such as histone modifications also are involved in periodontitis. 

Treatment with HDAC inhibitors, such as 1179.4b and MS-275, on P. gingivalis-inoculated 

mice resulted in significantly reduced bone loss, indicating that maintenance of acetylation 
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is crucial to preventing bone loss93.  

While there are many signaling pathways that are affected in periodontitis disease state, 

there is limited knowledge of the involvement of epigenetics at the level of epithelium and 

this could shed light on heterogeneity in disease susceptibility.  Characterization of TLR2 

methylation status in gingival epithelial cells is highly significant as TLR2 is indispensable 

for TLR1 and TLR6 signaling and plays crucial role innate immune homeostasis.   

In this study we showed TLR2 CpG promoter methylation in periodontitis affected human 

gingival tissues and in primary human gingival epithelial cells chronically stimulated with 

P. gingivalis that may instigate epithelial dysbiosis that may create a unique pathogen niche 

in the gingival crevice and susceptibility to periodontitis.  
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Hypothesis 

Epigenetic	
  variation	
  in	
  the	
  gingival	
  epithelial	
  cells	
  lead	
  to	
  the	
  variation	
  in	
  	
  the	
  

periodontal	
  susceptibility.	
  

 
Materials and Methods	
  
 

Cell isolation and culture: 

The gingival tissue was obtained with Institutional Review Board (University of 

Pennsylvania) approval from patients who are admitted to periodontal surgery at the School 

of Dental Medicine. The tissue was treated with 0.025% trypsin and 0.01% EDTA overnight 

at 4°C, and keratinocytes were isolated 1.  Briefly, the cell suspension was centrifuged at 120 

× g for 5 min, and the pellet was suspended in K-SFM medium (Invitrogen CA) containing 

10 µg/ml insulin, 5 µg/ml transferrin, 10 µM 2-ME, 10 µM 2-aminoethanol, 10 mM sodium 

selenite, 50 µg/ml bovine pituitary extract, 100 U/ml penicillin/streptomycin, and 50 ng/ml 

fungizone (complete medium). The cells were seeded in 60-mm plastic tissue culture plates 

coated with type I collagen, and incubated in 5% CO2 and 95% air at 37°C. When the cells 

reached sub-confluence, they were harvested and sub-cultured 2. 

 

Cell challenge assays: 

HGECs at the 3rd passage were harvested, seeded at a density of 0.5 × 105cells/well in 6 well 

culture plate coated with type I collagen and maintained in 2 ml of complete medium as 

described above. When the cells reached ~95% confluence the cells were stimulated with P. 

gingivalis (MOI:10).  Culture supernatants were collected at the end of the experiment and 

stored at -80°C until being assayed.  Production of IL-1β and TNF were measured using 
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ELSA kits (BD Biosciences, CA).  For in vitro chronic infection model (Figure 2), P. 

gingivalis at MOI:5 was stimulated for 30 minutes and washed with plain medium and 30 

minutes stimulation cycle was carried out at 4 h, 8 h and 16 h.  After 48 h from the first 

infection cycle, the cells were split and seeded equally.  When these cells reached ~50% 

confluence, the cells were exposed to one more round of P. gingivalis stimulation either in 

the presence or absence of DNMT inhibitor. After 48 hours of first stimulation, the DNA 

was extracted and purified using QIAamp DNA isolation kit (Qiagen, CA), Lysis by 

Protease K followed by purification on spin column. The extracted DNA was subjected to 

methylation qPCR using methylation specific primers from SAbiosciences, CA according to 

manufacturer’s instruction. 

          Figure 2 
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Transfection: 

Primary epithelial cultures at the fourth passage were harvested, seeded at a density of 

0.5x105 cells/well in a 6 well culture plate coated with type-I collagen, and maintained in 2 

ml of medium until they reached ~70% confluency. The epithelial cells were transfected 

with 100 pmol of pcDNA3-TLR2 and empty vector using GenMute transfection reagent 

according to manufacturer’s instruction (SignaGen, MD).  The plasmids were mixed with 

GenMute transfection reagent by pipetting up and down and incubated for 15 minutes at RT 

to let transfection complex form.  The mixture was then added drop wise on to the cells and 

Gently rocked the plate back and forth. Transfection reaction was carried out for 24 h.  After 

24 h, the cells were challenged as mentioned above. 

Real-time PCR:   

Total RNA was extracted from cultured cells by using TRIzol reagent (Invitrogen, Carlsbad, 

CA). TRIzol reagent has been added directly to the culture dishes to lyse the cells and cell 

lysate has been passed through a pipette several times. The Homogenization phase has been  

followed by Phase Separation, RNA Precipitation, RNA Wash and re-dissolving the RNA. 

The isolated total RNA samples were used to perform first strand cDNA synthesis (Applied 

Biosystems, Foster City, CA). Real-time PCR was performed by using 50ng of cDNA, 

primers and probes and GAPDH as endogenous control on ABI 7500 Fast system (Applied 

Biosystems) in the presence of TaqMan DNA polymerase3. Quantitative TaqMan PCR-

Array was custom designed based on previously published microarray data on keratinocytes 

4.  The cDNA conversion and real time PCR were carried out as mentioned above.  The fold 

increase was calculated as compared to untreated control sample according to ΔΔCT method 

5.  Mean fold increase data was used to derive heatmap with two-way hierarchical clustering 
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using MeV v4.1 software.   

Methylation qPCR: 

The genomic DNA was subjected restriction digestion using EpiTect Methyl II DNA 

restriction kit (SAbiosciences, CA. The reaction mixture consisting of methylation sensitive 

and methylation dependent restriction enzymes were incubated for 6 hours at 37°C. After 

which, the reaction was terminated and enzyme was inactivated at 65 °C for 20 minutes.  

The digested DNA samples were subjected to real time PCR using TLR2 promoter CpG 

discriminating primers from SAbioscienes, CA.  The percent methylation was calculated 

using data analysis software from Orion Genomics, LLC.    

The method employed by the EpiTect Methyl II PCR System is based on detection of 

remaining input DNA after cleavage with a methylation-sensitive and/or a methylation-

dependent restriction enzyme. These enzymes will digest unmethylated and methylated 

DNA, respectively. Following digestion, the remaining DNA in each individual enzyme 

reaction is quantified by real-time PCR using primers that flank a promoter (gene) region of 

interest. The relative fractions of methylated and unmethylated DNA are subsequently 

determined by comparing the amount in each digest with that of a mock (no enzymes added) 

digest using a ΔCT method. The reliability and simplicity of the procedure make this 

technology highly suited for semi-high–throughput DNA methylation profiling and 

biomarker development for various research fields, such as stem cell differentiation and 

development. Input genomic DNA is aliquoted into four equal portions and subjected to 

mock (no enzyme), methylation-sensitive (MSRE), methylation-dependent (MDRE), and 

double (MSRE and MDRE) restriction endonuclease digestion. After digestion, the enzyme 
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reactions are mixed directly with qPCR master mix and are dispensed into a PCR Array 

plate containing pre-aliquoted primer mixes. Real-time PCR is carried out using specified 

cycling conditions. Finally, the raw ΔCT values are pasted into the data analysis 

spreadsheet, which automatically calculates the relative amount of methylated and 

unmethylated DNA fractions. The product of the mock (no enzyme) digestion represents the 

total amount of input DNA for real-time PCR detection. In the methylation-sensitive 

digestion (Ms) reaction, the MSRE will digest unmethylated and partially methylated DNA. 

The remaining hypermethylated DNA — DNA in which all CpG sites are methylated — 

will be detected by real-time PCR. In the methylation-dependent digestion (Md) reaction, 

the MDRE will preferentially digest methylated DNA. The remaining unmethylated DNA 

will be detected by real-time PCR. In the double digestion (Msd) reaction, both enzymes are 

present, and all DNA molecules (both methylated and unmethylated) will be digested. This 

reaction measures the background and the fraction of input DNA refractory to enzyme 

digestion (Figure 3). 
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       Figure 3 

                         

 

 

Bisulfite treatment and sequencing:  

The methylation status of a DNA sequence can be determined using sodium bisulfite. 

Incubation of the target DNA with sodium bisulfite results in conversion of unmethylated 

cytosine residues into uracil, leaving the methylated cytosines unchanged. Therefore, 

bisulfite treatment gives rise to different DNA sequences for methylated and unmethylated 

DNA. The most critical step for correct determination of a methylation pattern is the 

complete conversion of unmethylated cytosines. This is achieved by incubating the DNA in 

high bisulfite salt concentrations at high temperature and low pH.  
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Figure 4

 

 

These harsh conditions usually lead to a high degree of DNA fragmentation and subsequent 

loss of DNA during purification. Purification is necessary to remove bisulfite salts and 

chemicals used in the conversion process that inhibit sequencing procedures. Common 

bisulfite procedures usually require high amounts of input DNA. However, due to DNA 

degradation during conversion and DNA loss during purification, such procedures often lead 

to low DNA yield, highly fragmented DNA, and irreproducible conversion rates.  

In figure 5 as an example, DNA with methylated CmpG at nucleotide position #5 was 

processed using the EZ DNA MethylationTM Kit. The recovered DNA was amplified by 

PCR and then sequenced directly. The methylated cytosine at position #5 remained intact 

while the unmethylated cytosines at positions #7, 9, 11, 14 and 15 were completely 

converted into uracil following bisulfite treatment and detected as thymine following PCR. 
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Figure 5

 

In our study the bisulfite conversion was done using EZ DNA methylation Gold kit from 

Zymoresearch Inc.  Briefly, 500 ng of genomic DNA was mixed with 130 µl of CT 

conversion reagent and the reaction was carried out on a thermal cycler (98°C for 10 

minutes, 64° C for 2.5 hours).  After the reaction, the product was washed using Zymo-spin 

column and desulphonated using M-Desulphonation buffer for 20 minutes at room 

temperature.  The desulphonated product was purified according to manufacturer’s 

instructions.  The promoter sequence of TLR2 was obtained from Transcriptional Element 

Regulatory Database (Cold Spring Harbor Laboratory, USA).  The CpG Island screening, 

bisulfite specific primer and methylation specific primers were designed using Mehtyl 

primer express v1.0 software (Lifetechnologies, CA).  The primer sequences are as follows: 

methylation sensitive forward primer  -TTTTGTACGGGGTAGTTGTC; reverse primer 

 -ACTACGCTTTCTCGCTACC and non-methylation forward primer         

AGTTTTGTATGGGGTAGTTGTT; reverse primer -ACTACACTTTCTCACTACCTC.  

The bisulfite converted DNA was amplified using the above primer pairs and ZymoTaq hot 

start DNA polymerase (Zymoresearch Inc., CA).  This generated product size of 295 bp 
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within promoter CpG Island.  The PCR product was purified using DNA clean and 

concentrator kit and sequenced at Penn Genomic Core, University of Pennsylvania, PA.  

The sequence obtained was analyzed using BISMA program6.  

 

Experimental Periodontitis, Oral gavage mouse model  
 
Periodontitis was induced in 6-8 week-old BALB/c mice by oral inoculation with P. 

gingivalis ATCC 33277 by means of a ball-ended feeding needle. Briefly, upon suppression 

of the normal oral flora with antibiotics (Mice were given sulfamethoxazoletrimethoprim at 

10 ml per pint in deionized water ad libitum for 10 days. This was followed by a 3-day 

antibiotic-free period), mice were orally infected five times at 2-day intervals with 109 CFU 

P. gingivalis suspended in 2% carboxymethylcellulose/PBS. Sham-infected controls 

received 2% carboxymethylcellulose/PBS alone. The mice were euthanized one month after 

the last oral inoculation. Assessment of periodontal bone loss in defleshed maxillae was 

performed under a dissecting microscope (x40) fitted with a video image marker 

measurement system (VIA-170K; Boeckeler Instruments). Specifically, the distance from 

the cement enamel junction (CEJ) to the alveolar bone crest (ABC) was measured on 14 

predetermined points on the buccal surfaces of the maxillary molars to sham controls. 

Gingival  tissue samples has been excised and DNA has been extracted for TLR2 promoter 

methylation analysis. 
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Results 
 
 
TLR2 gene expression heterogeneity in human gingival epithelial cells 

Having identified the importance of TLRs in gingival epithelial cells mounting innate 

immune responses correlated to gingivitis and periodontitis, we noted that TLR2 gene 

expression in primary human gingival epithelial cells (HGECs) upon P. gingivalis 

stimulation showed variability within gingival epithelial cells isolated from different 

patients. We defined the group of HGECs which induced relatively higher level of TLR2 

gene expression following challenge with P. gingivalis as TLR2-normal cells. The detected  

HGECs with reduced TLR2 expression at mRNA levels has been named TLR2-

dysregulated cells (Fig. 6A). Epithelial cells with relatively lower TLR2 expression also 

secrete low levels of cytokines and antimicrobial peptides. The normal cell type upregulated 

both proinflammatory cytokine and antimicrobial peptides, however, the dysregulated type 

cells with lower TLR2 expression in response to P. gingivalis also exhibited blunted 

cytokine and antimicrobial peptide response (Fig.6 B, C). Hence, we hypothesized that 

blunted TLR2 expression might be epigenetically regulated leading to altered TLR2 mRNA 

expression and subsequently pro-inflammatory cytokines, consequently leading to epithelial 

“dysregualted” phenotype in humans. 
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Figure 6 
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Fig 6: Isolated human primary gingival epithelial cells were cultured and stimulated with P. gingivalis at 
MOI:10 for 4 hours.  The cDNA was subjected to realtime PCR using TLR2 TaqMan probe.  The relative 
expression of TLR2 was calculated using GAPDH as endogenous control (A). The cDNA from three 
individuals from each group was subjected gene expression analysis using TaqMan probes. The ΔΔCT values 
were used to generate heatmap based on two-way hierarchical clustering with MeV v4.1 software 
(rows=genes, columns=sample). The color scale indicates relative expression: yellow, above mean (>3.0); 
blue, below mean (0.0); and black, unchanged (1.0) (B). The data is mean of two independent experiments. 
Production of IL-1B was assayed with ELISA(C) 

 
 
TLR2 promoter methylation in dysregulated gingival epithelial cell type 

Since we observed blunted inflammatory response in dysregulated cells with P. gingivalis 

stimulation and P. gingivalis is a known agonist for TLR2 and TLR4 3, 7, 8, we carried out 

TLR pathway DNA methylation PCR (SAbiosciences, CA) to determine if there is 

epigenetic deregulation at the promoter level in TLR signaling network.  The DNA sample 

was isolated from representative dysregulated cell type and subjected to methylation 

specific enzyme digestion.  After the digestion, the real time PCR was carried out and data 

was analyzed according to manufacturer’s instruction (SAbiosciences, CA). 26 genes 
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showed promoter methylation with TLR2 higher promoter methylation in dysregulated cell 

type (Fig. 7). Dysregulated cells has been shown three fold more methylation of TLR2 

promoter than normal cells group (Fig 8)  

                  Figure 7 

 

 

 

 

 

 

 

 
 
 
Fig 7: Promoter DNA methylation in dysregulated cells epithelial cells:  The DNA from dysregulated 
epithelial cells were subjected to toll-like receptor signaling pathway DNA methylation PCR arrays from 
SAbiosciences, CA.  The data was analyzed using EpiTect methyl II PCR data analysis program and 
methylation is represented as percent compared to unmethylated DNA standard.  TLR2 exhibited hyper-
methylation in dysregulated cells (dotted circle)	
  
 
 
 
Chronic treatment of P. gingivalis induce de novo methylation in TLR2 
promoter 
 
 
In an attempt to mimic chronic infection status and in our quest to understand how the 

bacteria changes methylation profile of epithelial cells, we developed a system called 

“chronic in vitro infection model” (Fig. 2).  The time points were chosen based on our Lab’s 

previously published results on P. gingivalis induced inflammatory cytokine response in 
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gingival epithelial cells 2,7, 8,9,10.  By using this method, we successfully induced tolerance to 

P. gingivalis (live bacteria at MOI:5 ) in ‘normal’ epithelial cells. The chronic infection was 

done according to following method.  P. gingivalis (MOI:5) stimulation was initially carried 

out for 30 minutes at 0, 4, 8 and 16 h time intervals.   After 48 h from the last stimulation, 

the cells were split and re-exposed to the P. gingivalis stimulation cycle in the presence or 

absence of 1 µM of 5-Aza-2’-deoxycytidine (decitabine) and evaluated for the TLR2 

promoter methylation status.  After which, DNA samples were subjected TLR2 promoter 

methylation PCR (SAbiosciences, CA) Repeated stimulation with P. gingivalis induced 

reprogramming of TLR2 region by inducing de novo methylation.  By using decitabine we 

were able to essentially eliminate the TLR2 promoter methylation that was induced by P. 

gingivalis (Figure 8). 

           Figure 8  

                               

Fig 8: In vitro chronic infection model: The DNA was extracted at the end of above experiment and subjected 
to TLR2 DNA methylation sensitive qPCR using TLR2 methylation primers (SAbiosciences, CA).  The data is 
represented as percent methylation compared to unmethylated standard DNA. Chronic P. gingivalis infection 
induced de novo methylation in HGECs.   
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Reconstitution of TLR2 rescue dysregulated epithelial cells 

As we noted blunted TLR2 expression in dysregulated epithelial cells, we wanted to 

overexpress TLR2 by transfecting TLR2 overexpression vector in dysregulated cells type.  

TLR2 overexperession plasmid (Addgene, MA) and empty vector was transfected using 

GenMute transfection reagent (SignaGen Laboratory, MD) and incubated the cells.  After 24 

hours of transfection, the cells were stimulated with P. gingivalis (MOI:10) for 4 hours and 

total RNA was subjected to real time PCR against TLR2 and IL-1β.  The data showed that 

the overexpression of foreign TLR2 can rescue inflammatory response to P. gingivalis (Fig. 

9).   

   

    Figure 9 

 
 
Fig 9: TLR2 overexpression up-regulates inflammatory cytokine in dysregulated cells: The dysregulated cells 
were transfected with a plasmid overexpressing TLR2 (Addgene, MA).  After 24 h post transfection, the cells 
were stimulated with P. gingivalis and cDNA was subjected to TLR2 and IL-1β mRNA expression using 
TaqMan probes.  TLR2 overexpression showed up-regulation of IL-1β induction after P. gingivalis stimulation 
in dysregulated cells.   
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DNA methyltransferase inhibitor rescue inflammatory response in 
dysregulated cells 
 
 
As a therapeutic approach, we wanted to test if the dysregulated cells can be modified to 

express TLR2  by targeting DNA methyltransferase in HGECs. The dysregulated epithelial 

cells were cultured with DNA	
  methyltransferase	
  (DNMT) inhibitor at a concentration of 1 

µM before stimulating with P. gingivalis for 4 hours.  After stimulation, the total RNA was 

extracted and subjected to real time PCR using TLR2 and TNF TaqMan probes 

(Lifetechonologies, CA).  The real time PCR data showed that DNMT inhibitor can restore 

TLR2 expression in dysregulated epithelial cells and induce inflammatory response to P. 

gingivalis . This clearly shows that DNMT as a therapeutic target in restoring inflammatory 

response to a pathogen in dysregulated epithelial cell types and DNMT inhibitor may serve 

as therapeutic agent against periodontitis (Fig.10). DNA	
  methyltransferase	
  inhibitor	
  could	
  

rescue	
  TLR2	
  and	
  TNFα	
  expression	
  in	
  “dysreglated”	
  epithelial	
  cells.	
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Figure 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10: DNA methyltransferase inhibitor rescue TLR2 expression in dysregulated epithelial cells: The 
dysregulated epithelial cells were cultured in the presence of 1 µM 5-Aza-2’-deoxycytidine (Sigma-Aldrich, 
USA).  When it reached 90% confluence, the cells were split and cultured on 6 well plates in the presence of 5-
Aza-2’-deoxycytidine.  At 90% confluence, the cells were stimulated with P. gingivalis at MOI:10 for 4 hours 
and cDNA was subjected to real time PCR using TLR2, TNF and GAPDH probes.  The data represented as 
mean standard error from three independent experiments. 
 
 

TLR2 promoter methylation in periodontal disease affected tissue in 

mouse model 

To test the change of TLR2 promoter methylation level following periodontitis, a gavage 

experimental periodontitis model in mouse has been designed. DNA isolated from the 

gingival tissue of sham and periodontitis group have been analyzed to compare the 

methylation percentage. The gingival tissue obtained from the periodontitis group showed 

higher percentage of methylated TLR 2 promoter than the control group. 
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Figure 11

 
Fig11: TLR2 promoter methylation in periodontal disease affected tissue in mouse model: Periodontitis was 
induced in 6-8 week-old BALB/c mice by oral inoculation with P. gingivalis ATCC 33277. The gingival tissue 
obtained from the periodontitis group showed higher percentage of methylated TLR 2 promoter than the 
control group. 
 
 
TLR2 promoter methylation in periodontal disease affected tissue 

Next, we wanted to examine whether this phenomena exist in patients with periodontitis.  

To confirm this, we obtained gingival tissue from periodontitis affected site and healthy site 

from patients who are undergoing flap surgery from the periodontics clinic.  This tissue was 

subjected to genomic DNA isolation and purification using QIAamp DNA kit (Qiagen, CA).  

1 µg of isolated genomic DNA was subjected to bisulfite conversion using EZ DNA 

methylation gold kit (Zymo Research, CA).  The converted samples were desulphonated and 

purified according to manufacturer’s instructions.  2 µl of elute was used was then subjected 
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to PCR using bisulfite primers designed using Methyl Primer Express Software v1.0 

(Lifetechnologies, CA).  The amplified samples were sequenced using dye termination 

method.  The DNA sequence obtained was exported to BISMA program12.  The sequence 

analysis showed TLR2 promoter methylation in the disease tissue site.  This clearly 

indicates that there is host epigenetic regulation at the periodontitis disease affected tissue. 

 

Figure 12 

   

 

Figure 12: TLR2 promoter CpG targeted bisulfite DNA sequencing: Healthy and periodontitis-affected tissue 
was collected and subjected to bisulfite treatment (Zymo Research Inc., CA).  After bisulfite treatment, the  
DNA was subjected to bisulfite sequencing.  The sequence data was analyzed using BISMA software program. 
Disease site showing TLR2 promoter CpG methylation (dotted box). 
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Discussion 

 
Periodontal disease is initiated by a microbial biofilm of ~700 different microorganisms 

most of which are Gram negative anaerobic bacilli13,14.  Among these, an important putative 

pathogen is Porphyromonas gingivalis and is now regarded as “key-stone pathogen”15, 16.  P. 

gingivalis is recognized by toll-like receptors, TLR2 and TLR4 17 and their activation is a 

crucial step in developing an innate immunity to pathogenic microorganisms.  The activated 

host innate immune defense is characterized by elevated cytokine production following 

bacterial perturbation. Successful triggering of cytokine production is considered 

homeostatic. Accordingly, the induction of inflammatory cytokines must be tightly 

regulated and multiple regulatory mechanisms control the duration of TLR induced 

inflammation18. One such control could be at the level of TLR expression itself where 

blunted TLR expression could lead failure of proper innate immune response.  

We observed a blunted pro inflammatory and antimicrobial response to P. gingivalis 

stimulation in periodontitis affected persons’ gingival epithelial cells.  In gingival epithelial 

cells, TLR2 is expression is higher than that of TLR411.  Hence we sought to understand the 

mechanism of TLR2 gene expression variation in these cells. 

 It has been shown that genetic factors are very important in the development of 

periodontitis. Some Single nucleotide polymorphisms (SNPs) and single nucleotide 

variations (SNVs) alter gene expression levels that may influence host response levels to 

microbiological growth. For example, SNPs in receptors, antigen sensors in cell surfaces, 

and cytokines and chemokines have been shown to influence host immunity and 

inflammatory response19,20. The most common polymorphism is a transition from a C to a T 
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nucleotide. These polymorphisms can affect numerous CpG sites in the genome, by altering 

a C in a CpG dinucleotide to another nucleotide that cannot be methylated21. Studies have 

shown that these SNPs can influence gene expression via effects on DNA methylation. The 

effect of SNPs on DNA methylation can either be direct, by changing a C (in a CpG 

dinucleotide) to a non-modifiable nucleotide, or indirect by altering transcription factor 

binding, which in turn independently affects gene expression and DNA methylation levels 

22,23. 

 It is important to understand that the levels of transcripts, proteins and metabolites may 

reflect not only the genetic programming, but also the consequences of response to 

environmental factors and disease progression. There are layers of chemical modifications 

on the DNA and its associated proteins that regulate gene expression. Recent studies in 

understanding genetic variation implicated not only Mendelian inheritance but also non-

Mendelian inheritance termed “epigenetics”24,25. Epigenetics has been linked to many 

diseases including cancer and inflammation 26. There have been numerous studies in humans 

relating to variation caused by epigenetic changes with respect to aging 27-29. DNA 

methylation and histone modification are the two major mechanisms of epigenetic 

alterations observed in human cells, and both mechanism block the transcriptional factors. 

studies have demonstrated that epigenetic events are able to influence the production of 

cytokines contributing to the development of diseases, such as airway inflammation and 

severe systemic inflammation24,30 . 

The post-translational histone modifications, such as acetylation/de-acetylation, methylation 

and phosphorylation, could play its epigenetic role in the organization of chromatin domains 
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and the up or down regulation of gene expression. Recent	
  studies	
  have	
  demonstrated	
  that	
  

acetylation	
   of	
   core	
   histone	
   is	
   associated	
   with	
   cardiovascular	
   diseases31. Also 

accumulating evidences points towards association of aberrant DNA methylation in the 

development of various human diseases31. Altered DNA methylation predicted Crohn’s 

disease status where key host defense mechanisms including TH17 were dysregulated 32.  

There is evidence of crosstalk between DNA methylation and histone modifications. It is not 

known how cross‐talk between these two systems is mediated, but in at least some 

circumstances, changes to histone modifications may be induced prior to methylation 

changes that then serve as more stable epigenetic marks33 . 

 Accumulating evidences points towards association of aberrant chromatin methylation in 

the development of various human diseases34. With this background we set out to test 

dysregulated and normal epithelial cells for changes in their CpG island methylation pattern 

on the promoter region of genes involved in the TLR inflammatory pathway. Importantly, 

we noted a highly methylated CpG promoter region in the TLR2 gene in dysregulated cells. 

These cells induced diminished pro-inflammatory cytokines and antimicrobial peptide in 

response to P. gingivalis.  In support of blunted inflammatory response in dysregulated 

epithelial cells, siRNA against TLR2 had similar effect in normal cells in response to P. 

gingivalis. This innate immune compromise within epithelial cells may direct effect on 

antimicrobial defense as well as indirect influence on adaptive immune responses such as 

inhibition of IL-12 from T cells that facilitate P. gingivalis persistence35.   

The epigenetic changes can be induced by repeated bacterial ligand challenge (E. coli LPS) 

as shown in murine macrophages leading to tolerance in cells with blunted cytokine 



	
   46	
  

responses36,37. ENCODE project (www.genome.ucsc.edu/ENCODE) supports our data of 

differential TLR2 methylation status, where, one CpG Island on TLR2 gene was revealed 

with differential CpG methylation across different cells lines. Moreover, CpG island 

hypermethylation in gene promoters has been shown to be an important mechanism in gene 

silencing37. The changes pertaining to epigenetics may be brought about by age related 

methylation 38 or changes that occur due to chronic inflammation as in ulcerative colitis due 

to constant turnover of cells39. Helicobacter pylori is known to be associated with the 

accumulation of aberrant DNA methylation in gastric epithelial mucosa40. LPS derived from 

P gingivalis has been demonstrated to inhibit osteoblastic differentiation of osteoprogenitor 

cells derived from fatal rat calvaria41. Recently, bacterial induced hypermethylation of Igf2 

gene has been revealed42. It is possible that similar mechanisms exist for different 

pathogens.  In humans, with chronic periodontitis, hypermethylation pattern of the promoter 

of Prostaglandin-endoperoxide synthase 2 (PTGS2) is altered43. This study also showed that 

certain genes possess ‘hot spots’ for epigenetic changes leading to silencing of certain 

genes. Nevertheless, P. gingivalis inducing DNA methylation is relevant because of the 

nature of the bacteria and its pathogenic effect in periodontal disease pathology. 

The identification of TLR2 DNA methylation status in periodontitis affected tissue samples 

supported our in vitro data.  However, this tissue comprised not only of epithelial cells but 

also other type of cells.  Further investigation with regard to gingival tissue is needed 

especially using laser scanning micro-dissection to isolate epithelial cells and to determine 

their methylation status.  We are also aware of the fact that the data needs to be validated 

using in vivo experimental periodontitis model. Although we just tested one of the 

epigenetic alteration mechanism, Cytosine Hyper methylation, we know that other 
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Chromatin epigenetic modification like Histone changes might have effect on this 

phenomena. Nonetheless, our data clearly indicates that epigenetic modification in gingival 

epithelial cells plays an important role in gene silencing pushing the cells to a hypo-

responsive state thereby failing to restrain harmful chronic inflammation.  

 

 

Conclusion 
Within the limitation of this study, our data suggest that epigenetic modifications of the 

TLR2 promoter region play an important role in inducing the hypo-responsive phenotype in 

dysregulated cells that can lead to failure of host defense mechanisms.  The use of DNA 

methyltransferase inhibitor that restored dysregulated cells cytokine response shows 

therapeutic potential.  Overall, it is plausible that the differences in epigenetic signatures on 

pattern recognition receptors may help explain periodontitis disease susceptibility. 
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