
University of Pennsylvania
ScholarlyCommons

Dental Theses Penn Dental Medicine

Summer 8-4-2017

The Role of Mas-Related G-Protein Receptor X2
(MRGPRX2) on Neuropeptide Induced Reponses
in Human Mast Cells
Wichayapha Manorak
University of Pennsylvania School of Dental Medicine, wmanorak@upenn.edu

Follow this and additional works at: http://repository.upenn.edu/dental_theses

Part of the Dentistry Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/dental_theses/24
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Manorak, Wichayapha, "The Role of Mas-Related G-Protein Receptor X2 (MRGPRX2) on Neuropeptide Induced Reponses in
Human Mast Cells" (2017). Dental Theses. 24.
http://repository.upenn.edu/dental_theses/24

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/dental_theses?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/dental?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/dental_theses?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/651?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/dental_theses/24?utm_source=repository.upenn.edu%2Fdental_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/dental_theses/24
mailto:repository@pobox.upenn.edu


The Role of Mas-Related G-Protein Receptor X2 (MRGPRX2) on
Neuropeptide Induced Reponses in Human Mast Cells

Abstract
Rationale: Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides (NPs) that promote inflammatory
responses by signaling through the neurokinin-1 receptor (NK-1R). Antagonists of NK-1R are highly effective
in allergic inflammation and airway hyperresponsiveness in mice but lack efficacy in humans. The reason for
this difference is unknown. Human mast cells express both the NK-1R and Mas-related G protein receptor X2
(MRGPRX2) which are both activated by SP. The objective of this study was to determine if HK-1 activates
human mast cells via MRGPRX2. Moreover, since MRGPRX2 contains a cholesterol recognition amino acid
consensus (CRAC) domain the interaction between MRGPRX2 and cholesterol in lipid rafts likely
contributes to MRGPRX2 function. Another objective in this study is to investigate whether lipid rafts are
associated with MRGPRX2 function.

Materials and Methods: Flow cytometry was used to determine the expression of NK-1R and MRGPRX2 in
a human mast cell line (LAD2). MRGPRX2 function was investigated by using SP and HK-1 to induce
degranulation with a selective NK-1R antagonist (CP96345). Methyl-b-cyclodextrin (MbCD) was used for
cholesterol depletion in this study. In addition, mutants of the CRAC domain on MRGPRX2 were used to
compare the functions of the receptor on degranulation and Ca2+ mobilization in response to SP, HK-1, and
other compounds (ciprofloxacin, HOE 140 and compound 48/80). Confocal microscopy was used to
determine the localization of lipid raft compartments and MRGPRX2.

Results: LAD2 cells expressed both MRGPRX2 and NK-1R. HK-1 and SP induced degranulation in LAD2
cells and RBL-2H3 cells stably expressing MRGPRX2, but this response was resistant to inhibition by an
NK-1R inhibitor (CP96345). However, SP and HK-1 induced degranulation in RBL cells transiently
expressing NK-1R and this response was inhibited by CP96345. Depleting cholesterol by using MbCD
decreased the degranulation response. Furthermore, confocal microscopy showed that the lipid rafts and
MRGPRX2 colocalized in both WT and the CRAC domain mutants. However, CRAC domain mutants of
MRGPRX2 did not respond to SP in Ca2+ mobilization and degranulation assays.

Discussion: This study provides a potential explanation for the previous observation that NK-1R antagonist
are highly effective in allergic responses in mice but fails in human. Our findings suggest that unlike the
situation in mice where the effects of neuropeptides are mediated via NK-1R, these effects are mediated by
MRGPRX2 in humans. Moreover, lipid rafts may not be associated with MRGPRX2 function. However, the
CRAC domain mutant appears to be defective in coupling G protein.

Conclusion: This finding suggests that MRGPRX2 may serve as a novel target for modulating asthma and
other neuropeptide/mast cell-mediated diseases.
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Abstract  

Rationale: Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides (NPs) that 

promote inflammatory responses by signaling through the neurokinin-1 receptor (NK-

1R). Antagonists of NK-1R are highly effective in allergic inflammation and airway 

hyperresponsiveness in mice but lack efficacy in humans. The reason for this difference 

is unknown. Human mast cells express both the NK-1R and Mas-related G protein 

receptor X2 (MRGPRX2) which are both activated by SP. The objective of this study 

was to determine if HK-1 activates human mast cells via MRGPRX2. Moreover, since 

MRGPRX2 contains a cholesterol recognition amino acid consensus (CRAC) domain the 

interaction between MRGPRX2 and cholesterol in lipid rafts likely contributes to 

MRGPRX2 function. Another objective in this study is to investigate whether lipid rafts 

are associated with MRGPRX2 function. 

Materials and Methods: Flow cytometry was used to determine the expression of NK-

1R and MRGPRX2 in a human mast cell line (LAD2). MRGPRX2 function was 

investigated by using SP and HK-1 to induce degranulation with a selective NK-1R 

antagonist (CP96345). Methyl--cyclodextrin (MCD) was used for cholesterol 

depletion in this study. In addition, mutants of the CRAC domain on MRGPRX2 were 

used to compare the functions of the receptor on degranulation and Ca2+ mobilization in 

response to SP, HK-1, and other compounds (ciprofloxacin, HOE 140 and compound 

48/80). Confocal microscopy was used to determine the localization of lipid raft 

compartments and MRGPRX2. 

Results: LAD2 cells expressed both MRGPRX2 and NK-1R. HK-1 and SP induced 

degranulation in LAD2 cells and RBL-2H3 cells stably expressing MRGPRX2, but this 
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response was resistant to inhibition by an NK-1R inhibitor (CP96345). However, SP and 

HK-1 induced degranulation in RBL cells transiently expressing NK-1R and this 

response was inhibited by CP96345. Depleting cholesterol by using MCD decreased the 

degranulation response. Furthermore, confocal microscopy showed that the lipid rafts and 

MRGPRX2 colocalized in both WT and the CRAC domain mutants. However, CRAC 

domain mutants of MRGPRX2 did not respond to SP in Ca2+ mobilization and 

degranulation assays. 

Discussion: This study provides a potential explanation for the previous observation that 

NK-1R antagonist are highly effective in allergic responses in mice but fails in human. 

Our findings suggest that unlike the situation in mice where the effects of neuropeptides 

are mediated via NK-1R, these effects are mediated by MRGPRX2 in humans. Moreover, 

lipid rafts may not be associated with MRGPRX2 function. However, the CRAC domain 

mutant appears to be defective in coupling G protein. 

Conclusion: This finding suggests that MRGPRX2 may serve as a novel target for 

modulating asthma and other neuropeptide/mast cell-mediated diseases.  
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Chapter 1 

Introduction 

 The immune system is the host defense response which is comprised of innate and 

adaptive immunity. Innate immunity (non-specific) recognizes and destroys the foreign 

antigen to protect cells and then adaptive immunity (specific) which is mediated by B and 

T cells, comes after to create immune memory. When there are injuries or foreign 

antigens enter the human body, the immune system will create an inflammatory response.  

1. Mast Cells (MCs) 

MCs are multifunctional immune cells that are important in allergic and 

inflammatory diseases including anaphylaxis and asthma [1, 2].  

MCs development and differentiation  

MCs are leukocytes which are derived from hematopoietic progenitor cells [3]. The 

hematopoietic lineage for MCs development differs from other myeloid-derived cells in 

that MCs leave the bone marrow as progenitors rather than as circulating end-stage cells 

[4]. They circulate in the immature form in the blood stream before migrating to 

vascularized tissues, where they undergo final differentiation and maturation with the 

help of stem-cell factor and other cytokines secreted by endothelial cells and fibroblasts 

[5].  

After their development from bone marrow-derived progenitor cells that are 

primed with stem cell factor, MCs continue their maturation and differentiation in 

peripheral tissue, developing into two well-described types: MCT and MCTC cells [6]. 

These cells can also be distinguished on the basis of their tissue location, dependence on 

T lymphocytes protease composition and their secretory granule contents. In human, 
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most MCs are MCTC which are found in connective tissues such as the skin and contain 

both tryptase and chymase [7]. In contrast to MCT which are found in lung and contain 

only tryptase. In mice, connective tissue MCs resemble MCTC cells while mucosal MCs 

resemble MCT cells [8]. 

MCs functions 

MCs are best known for their role in responding to a mediating allergic disease 

[3]. They are critical regulators of innate immunity and play important roles in allergic 

and hypersensitive disease [3, 4, 9, 10], regulating inflammation, host defense, and innate 

immunity. MCs are one of the first immune cells to interact with pathogens. They are 

also involved in maintaining a healthy physiology by promoting innate immunity, 

angiogenesis, and wound healing [11]. 

By virtue of their location and mediator production, MCs may play an active role 

in many diseases, such as allergy, parasitic diseases, atherosclerosis, malignancy, asthma, 

pulmonary fibrosis, and arthritis [3, 10]. Recent data shows that MCs play a vital role in 

host defense against pathogens by secretion of tumor necrosis factor alpha. MCs also 

express the Toll-like receptor, which may further accentuate their role in the immune-

inflammatory response [10]. MCs also promote the initiation and generation of the 

adaptive immune response by expressing both major histocompatibility complex (MHC) 

class I and class II proteins by which they present antigens to T cells [12-14]. 

MCs activation and mediator production 

MCs can be activated by antigens/allergens, superoxides, complement proteins, 

NPs, and lipoproteins. After activation, MCs express mediators such as histamine, 

leukotrienes, and prostanoids, as well as proteases, and many cytokines and chemokines 
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[10]. Mediators such as histamine and leukotriene can induce bronchoconstriction, mucus 

secretion, and mucosal edema which are all features of asthma. 

MCs are the participants in allergic inflammation, expressing a potent array of 

inflammatory mediators and large numbers of the high affinity IgE receptor (FcIR) [15]. 

IgE-dependent activation of MCs leads to the secretion of mediators. However, MCs can 

also be activated to perform important effector and immunomodulatory functions by 

mechanisms that are independent of IgE, and amount of the of stimulus can determine the 

kinetics, amounts and/or spectrum of mediators that are released [6]. 

The activation of mast cells is via stimulation of the FcIR. First, IgE binds to the 

FcIR on tissue MCs. The cross-linking of bound IgE to FcRI by allergen then triggers 

MC degranulation [7, 16]. This results not only in the release of performed MC 

mediators, such as histamine and tryptase, but also in the synthesis and release of newly 

generated lipid mediators [15]. 

MCs and the nervous system  

MCs are found localized near nerve endings at several organs and organ systems 

including the skin, lungs, intestinal mucosa, and central nervous system. Histamine, 

tryptase, and serotonin released from MCs have an impact on the activity of sensory 

neurons, and conversely, MCs are activated by NPs such as SP which are released by 

terminal nerve endings of sensory neurons [17]. SP plays a key role in stress response, 

neurogenic inflammation, and pain [17, 18]. Human MCs have been shown to 

degranulate and release mediators in response to SP [19-21]. Other NPs, which activate 

MCs include vasoactive intestinal polypeptide (VIP) and neuropeptide Y [20, 22, 23]. A 

very rich supply of sensory nerve endings is found on the skin, which releases SP and 
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other NPs leading to MC degranulation in response to the continuous exposure to 

physical as well as emotional stimuli. Therefore, the interaction between MC and NPs 

results in the promotion of MC-driven inflammation and granulocyte infiltration [18, 24]. 

2. MRGPRX2 

G-Protein Coupled Receptors (GPCRs) are the largest and most diverse family of 

transmembrane proteins. They are activated by a wide variety of stimuli including 

biogenic amines peptides, bioactive intracellular signaling events [25, 26]. Mas-Related 

G-Protein Coupled Receptors (MRGPRs) belong to the GPCR family and are divided 

into several subfamilies. The MRG gene family has 32 murine and 4 human gene 

(MRGPRX1-MRGPRX4) [27]. Not only is MRGPRX2 a member of the Mas-related 

gene that is primarily expressed in human dorsal root ganglia and mast cells but, 

MRGPRX2 is a receptor expressed on human skin mast cells. Human mast cell line 

(LAD2) express MRGPRX2 responsive to LL-37 [2]. 

MRGPRX2 has been shown to function as the non-selective, high affinity binding 

site for ligands such as Substance P (SP), cortistatin (CST), somatostatin, mast cell 

degranulating peptide (MCDP), neuropeptide Y, compound 48/80 and VIP [2, 17, 25, 

28]. Although these peptides are structurally unrelated, they are all amphipathic small 

peptides, which induce dose-dependents degranulation in human MCs via the activation 

of MRGPRX2. This induction is associated with an increase in the intracellular Ca2+ 

concentration [25, 28]. 

A unique feature of MRGPRX2 is that it is activated by antimicrobial peptides 

(AMPs) such as the cathelicidin, LL-37, human -defensins (hBDs), and NPs such as SP 

which is produced by mast cells, lung epithelial cells and nerve endings. However, 
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MRGPRX2 is not expressed in mice. Therefore, many of the peptides that induce 

degranulation in human MCs via MRGPRX2 do not activate murine MCs.  

Subramanian et al. also showed that hBDs and the cathelicidin LL-37 activate 

human MCs via MRGPRX2 [29, 30]. In their study, LL-37 and the Cortistatin induced 

sustained MRGPRX2 functions as a non-selective binding site that links these basic 

peptides to G proteins, leading to the secretion of histamine and other mediators by MCs 

[31].  

3. Neurokinin-1 Receptor (NK-1R) 

The protein is the product of the TACR1 gene [32]. Tachykinin receptor 1 (TACR1), 

also known as neurokinin-1 receptor (NK-1R) or SP receptor (SPR), is a GPCR found in 

the central and peripheral nervous systems. The endogenous ligand for this receptor is 

SP, although it has some affinity for other tachykinins. MCs express the NK-1R which 

can respond to antigens with immune function and leads to inflammation and allergic 

reactions via IgE and non-IgE-mediated mechanism [33].  

4. Neuropeptides (NPs) 

SP and HK-1 are NPs in the tachykinin family that are amplified inflammatory 

response [34] by signaling through the NK-1R [35]. In addition to FcRI, MCs express 

numerous GPCRs, which are the most common targets of drug therapy. SP is released 

from the peripheral nerve endings of sensory neurons. While the newly NPs, HK-1 is the 

only tachykinin peptide that is produced outside the neuronal tissue [36]. A recent study 

by Sumpter et al., [37] showed that FcRI activation of murine BMMCs results in 

enhanced expression of both HK-1 and NK-1R without modifying SP levels. 

Furthermore, it was found that FcRI-mediated MC degranulation and TNF/IL-6 

https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Peripheral_nervous_system
https://en.wikipedia.org/wiki/Endogenous
https://en.wikipedia.org/wiki/Ligand
https://en.wikipedia.org/wiki/Substance_P
https://en.wikipedia.org/wiki/Tachykinin
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production is substantially inhibited in NK-1R-/- BMMCs when compared to wild-type 

MCs. These findings suggest that HK-1, via its action on NK-1R, acts as an 

autocrine/paracrine factor for FcRI-mediated MC mediator release. As described below, 

the HK-1/NK-1R axis has a profound impact on IgE-mediated experimental anaphylaxis 

and MC-dependent model of chronic atopic airway inflammation. These are important 

feature of asthma [38]. 

5. Role of MRGPRX2 in asthma 

There are differences between the mechanisms through which NPs activate murine 

and human MCs. Although normal human lung MCs are the MCT type, severe asthma is 

dominated by the presence of MCTC in the airway submucosa and epithelium. It is now 

well documented that MCTC type MCs express MRGPRX2, which is activated by SP.  

Fujisawa et al. [39] showed that skin MCTC express MRGPRX2 and that its 

expression is upregulated in patients with severe chronic urticaria. They also showed that 

isolated human lung mast cells (MCT) do not express cell surface MRGPRX2. Another 

study was done by Balzar et al. which showed MC phenotype, location, and activation in 

severe asthma. They found that there is a shift in phenotype from MCT in normal lung to 

MCTC in severe asthma. This study led to the study by Idahosa et al. [40] in the title of 

“MRGPRX2 in health and disease”. They used immunohistochemistry and 

immunofluorescence techniques to determine the expression of MRGPRX2 in normal 

and diseased human tissue. They analyzed control samples as well as skin, gingiva and 

lung samples from patients with atopic dermatitis, rosacea, chronic periodontitis and 

asthma. It was found that MCs in healthy and diseased skin, gingiva and lungs express 

MRGPRX2. There was a significant increase in number of MCs, MRGPRX2-positive 
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cells, as well as MRGPRX2-positive MCs in asthmatic lung tissue compared to healthy 

lung tissue. Idahosa et al. concluded that expression of MRGPRX2 is upregulated in 

chronic asthma, suggesting that participates in the pathogenesis of asthma.  

6. Murine and human MCs 

Sumpter et al. [37] showed that the HK-1 and its cognate GPCR, NK-1R are 

upregulated in FcIR-activated murine bone marrow-derived MCs. In vivo studies 

demonstrated that the autocrine HK-1 acts via NK-1R on MCs and functions as an 

adjuvant for IgE-medicated anaphylaxis and lung inflammation in a mast cell-dependent 

model of chronic asthma. However, previous studies showed that while NK-1R 

antagonists block experimental allergic responses in mice, they lack efficacy in humans. 

This discrepancy can be challenge in translating findings from animal models to the 

clinic. NK-1R not only participates in experimental allergic responses as discussed 

above, but it also plays an important role in human disease. However, a number of NK-

1R antagonists, which are highly effective in animal models of allergic asthma and 

inflammation lack efficacy in humans [41-44]. 

7. Lipid Raft 

Cell membranes are phospholipid bilayers, crowded with proteins occupying around 

20% of the bilayer area. Membrane proteins alter their lipid environment not only by 

binding specific lipids but also by influencing their surrounding lipid environment [45]. 

Lipid rafts can be found in all eukaryotic cells. They are compose of high levels of 

cholesterol, sphingolipids, and gangliosides [46-48]. Lipid rafts are highly organized and 

probably exist in a liquid-ordered phase which is different from the rest of the plasma 

membrane that consists mainly of phospholipids in a liquid-disordered phase.  
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Lipid raft are implicated in the function of diverse signaling pathways such as those 

mediated by growth factors, morphogens, integrins, and antigen receptors on immune 

cells including mast cells. The structural basis for the association of FcRI with lipid rafts 

is partially understood and appears to involve the transmembrane segments of FcRI. 

8. Cholesterol recognition amino acid consensus (CRAC)  

Cholesterol is a component of cell membranes, which modulates the physical state 

of membrane phospholipid bilayers, including membrane fluidity and membrane 

permeability [49]. At the cell membrane interface, there are segments of integral 

membrane proteins that facilitate interactions with cholesterol-binding proteins or that 

have partitioned into cholesterol-rich domains, characterized by the presence of a 

“cholesterol recognition amino acid consensus” sequence, otherwise known as the 

CRAC domain which is defined as a sequence pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K-, in 

which (-X-)(1-5) represents between one and five residues of any amino acid [50-52]. Li et 

al. [50] showed that first protein studied with a CRAC domain was the peripheral-type 

benzodiazepine receptor now known as the translocator protein (TSPO). The CRAC 

domain of the TSPO is located at its C-terminus. TSPO transfers cholesterol across the 

membrane. In this process, the CRAC domain is critical for cholesterol binding [53]. 

CRAC peptides have been synthesized and investigated in artificial bilayer lipid 

membranes (BLM). Epand et al. [54] found that the cholesterol-binding peptide, LWYIK, 

was able to stimulate the formation of cholesterol-rich domains in BLM, which is 

comprised of phosphatidylcholine and cholesterol. The CRAC domain is a primary 

structure pattern used to identify regions that may be responsible for preferential 

cholesterol binding in many proteins [55]. 
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9. CRAC domain in GPCRs 

GPCRs are the largest molecule involved in signal transduction across the 

membrane [56-58]. Membrane cholesterol plays an important role in the function of 

GPCRs. Several structural features of proteins are involved in cholesterol have been 

recognized. CRAC sequence represents such a motif. Many proteins that interact with 

cholesterol have been reported to contain the CRAC motif in their sequence. 

Interestingly, the function of GPCRs has been previously shown to be dependent on 

membrane cholesterol [59]. The presence of CRAC domains in GPCRs indicates that 

interaction of cholesterol with GPCRs could be specific in nature [59-61]. Since 

MRGPRX2 contains a CRAC domain, the interaction of the receptor with cholesterol in 

lipid rafts likely contributes to its function. 

 SP and HK-1 are NPs that promote inflammatory response by signaling through 

NK-1R. Antagonists of NK-1R are highly effective in allergic inflammation and airway 

hyperresponsiveness in mice, but lack efficacy in humans. However, the reason for this 

difference is unknown. The objective of this study was to 1) verify the presence of NK-

1R and MRGPRX2 on human MCs and to test if HK-1 activates MCs via MRGPRX2. 

Since MRGPRX2 contains a CRAC domain, the interaction between the receptor with 

cholesterol in lipid rafts will likely contribute to receptor function. Finally, this study 

aims 2) to investigate the role of lipid rafts and the CRAC domain in MRGPRX2 

function. 
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Chapter 2 

Objective 

There are two objectives of the present study 

1) To verify the presence of NK-1R and MRGPRX2 on human MCs and to test if 

HK-1 activates MCs via MRGPRX2.  

2) To investigate the role of lipid rafts and the CRAC domain in MRGPRX2 

function. 
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Chapter 3 

Materials and Methods 

 

3.1 Materials 

Reagents:  

All cell culture reagents were purchased from Invitrogen (Gaitherburg, MD). Amaxa 

transfection kit (Kit V) was purchased from Lonza (Gaitherburg, MD).  

Antibody:  

Antibody PE anti-human MRGX2 Clone : K125H4 (Cat:359004) was obtained from 

BioLegend (San Diego, CA) and Anti-Tac1r (Rabbit polyclonal Anti-Neurokinin 

Receptor 1 antibody) TA329063 was obtained from Origene (Rockville, MD). Goat anti-

rabbit IgG-FITC sc-2012 was obtained from Santa Cruz Biotechnology (Dallas, TX). 

Plasmid:  

MRGPRX2 plasmid encoding hemagglutinin (HA)-tagged human MrgX2 in pReceiver-

MO6 vector was obtained from GeneCopoeia (Rockville, MD). NK-1R plasmid was 

obtained from cDNA resource center (Bloomsburg, PA). Wild type and CRAC domain of 

MRGPRX2 (VLWPIWYRCRRPR) was made by single point mutation: Mutant 8 (M8) 

(VLWPIWPRCRRPR) and Mutant 10 (M10) (VLWPIWYRCRRPA) were obtained from 

Penn Genomics Analysis Core (Philadelphia, PA). 

Inhibitor:  

A selective and potent non-peptide NK-1 receptor antagonist (CP 96345) (CAS 132746-

6-2) ((2S,3S)-cis-2-(Diphenylmethy)-N-[(2-methoxyphenyl)methyl]-1-
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azabicyclo[2.2.2]octan-3-amine) cat# 135911-02-3 was purchased from Chem Cruz 

(Dallas, TX) 

Neuropeptides:  

Substance P (SP) and human hemokinin-1 (HK-1) cat# SP-89065-5 was obtained from 

Alpha diagnostic international (San Antonio, TX) 

Cholesterol removal:  

Methyl--cyclodextrin (MCD) cat#332615 was purchase from Sigma (St. Louis, MO) 

Compound:  

Ciprofloxacin cat# 449620050 was purchased from Acros (NJ, USA), HOE 140 was 

purchased from Anaspec (Fremont, CA) and compound 48/80 cat# 94724-12-6 was 

purchased from Santa Cruz (Dallas, TX). 

3.2 Methods 

3.2.1 Cell culture  

3.2.1.1 Rat Basophilic Leukemia (RBL-2H3) cells were grown in complete 

Dulbecco’s modified Eagle’s medium supplemented (DMEM) containing 10% fetal 

bovine serum (FBS), L-glutamine (2 mM), penicillin (100 IU/ml), and streptomycin (100 

µg/ml).  

3.2.1.2 LAD2 cells were used to represent human MCs. Cells were maintained in 

StemPro-34 medium containing nutrient supplements (Invitrogen) supplemented with 2 

mM L-glutamine 100 IU/ml penicillin, 100 µg/ml streptomycin, and 100 ng/ml rhSCF. 

Half of the cell culture medium was replaced weekly with fresh culture medium.  

3.2.2 Transfection 



 

 20 

MRGPRX2, NK-1R, WT, M8 and M10 – RBL-2H3 cells were detached with 

0.05% trypsin-EDTA (1x) was purchased from Gibco by Life Technologies, washed with 

DMEM, and 106 cells were transfected with plasmids encoding HA-tagged MRGPRX2, 

NK-1R and CRAC mutant plasmid, using the Amaxa nucleofector device and Amaxa kit 

V according to the manufacturer’s protocol. After nucleofection, MRGPRX2 cells were 

cultured in the presence of G418 (1 mg/ml) and cells expressing equivalent receptors 

were sorted using an anti-HA-specific antibody 12CA5/fluorescein isothiocyanate-

conjugated anti-mouse-IgG and used for studies on degranulation. NK-1R, WT, M8 and 

M10 cells were seeded into 96 well-plates for studies on degranulation. 

3.2.3 Flow Cytometry - analysis of receptor expression  

LAD2 and NK-1R (1 x 106 cells) were washed twice with cold FACs buffer (PBS 

containing 2% FBS) and stained with Anti-Tac1r at 4 C for 30 min. Cells were washed 

twice with cold FACs buffer and stained with Goat anti-rabbit IgG-FITC sc-2012 at 4 C 

for 30 min. Cells were washed twice with cold FACs buffer and fixed in 300 µl of 1.5% 

formaldehyde. Samples were acquired and analyzed with BD LSR II flow cytometry. 

MRGPRX2, WT, M8 and M10 cells (1 x 106) were washed twice with cold FACs buffer 

(PBS containing 2% FBS) and stained with Antibody PE anti-human MRGX2 

Clone:K125H4 (Cat:359004) at 4 C for 30 min. Cells were washed twice with cold 

FACs buffer and fixed in 300 µl of 1.5% formaldehyde, and samples were acquired and 

analyzed with BD LSR II flow cytometry. 

3.2.4 Degranulation  

LAD2 cells (1 x 104 cells) NK-1R, MRGPRX2, WT, M8 and M10 cells (5 x 104 

cells) were seeded into 96-well plates in a total volume of 50 µl HEPES buffer containing 
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0.1% BSA (Sigma) in control group and treated with 10 µM of CP 96345 for 10 mins at 

37 C in test group then exposed to 10 µM of HK-1 and 1 µM of SP for 30 mins at 37 C. 

Moreover, WT and mutants were exposed to 100 µg/ml of ciprofloxacin, 25 µg/ml of 

HOE 140 and 10 µg/ml of 48/80 compound for an hour at 37 C. For total -

hexosaminidase release, unstimulated cells were lysed in 50 µl of 0.1% Triton X-100. 

Aliquots (20 µl) of supernatants or cell lysates were incubated with 20 µl of 1 mM p-

nitrophenyl-N-acetyl--D glucosamine for an hour at 37 C. The reaction was stopped by 

adding 250 µl of a 0.1 M Na2HCO3 buffer and absorbance was measured at 405 nm. 

3.2.5 Cholesterol depletion - MRGPRX2 (5 x 104 cells) cells were seeded into 

96-well plates in a total volume of 200 l overnight. Cells were rinsed twice with HEPES 

buffer containing 0.1% BSA to remove excess medium. 50 l of MβCD (10 mM) was 

added for 45 mins in the test group while only HEPES buffer containing 0.1% BSA was 

added in control group. Cells were rinsed twice times with HEPES buffer containing 

0.1% BSA. 45 l of HEPES buffer containing 0.1% BSA was added to each well and 

cells were incubated for 5 mins in a 37 C water bath with constant shaking. Cells were 

exposed to 1 µM of SP for an hour at 37 C. Cells were then used for the degranulation 

assay. 

3.2.6 Confocal microscopy to examine localization of lipid raft compartments 

and MRGPRX2 [62]– MRGPRX2, WT and M8 (1 x 106 cells) were sensitized by SP (1 

µM). Cells were then collected and fixed in 4% paraformaldehyde (Sigma-Aldrich). Cells 

were resuspended in 0.15% triton-X (Sigma-Aldrich) in PBS containing 1% FBS 

(Invitrogen) and probed with Cholera toxin subunit B, Alexa Fluor 488 conjugate 

antibody (1:100) (Invitrogen) and Antibody PE anti-human MRGX2 (1:100) for 30 mins 
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on ice to detect lipid rafts and MRGPRX2. Cells were washed twice with PBS, and then 

place onto slides and air dried. Slides were sealed with Pro-Long antifade reagent 

(Invitrogen). Confocal images of cells were obtained using a Plan Fluor 100x oil 

objective and Nikon ECLIPSE TE200 microscope (Nikon). Ez-C1 Nikon software with a 

channel-series approach was used to prevent spectral overlap between fluorescent signals. 

3.2.7  Calcium mobilization –WT and M8 (1.5 x 106 cells) were loaded with 1 

µM indo-1 AM (Invitrogen) and 1 µL of IgE for 30 min at room temperature. Cells were 

washed and resuspended in 1.5 ml of HEPES buffer containing 0.1% BSA, Ca2+ 

mobilization was measure in a Hitachi F-2500 spectrophotometer with an excitation 

wavelength of 355 nm and an emission wavelength of 410 nm. Mean Ca2+ ratios were 

calculated by averaging the ratios at individual time points following stimulation with 1 

µM of SP and 100 ng/ml of DNP/BSA. 

Statistical analysis  

GraphPad Prism scientific software was used for statistical analysis. Differences 

in percent of -hexosaminidase release were evaluated by using unpaired t-Test (2 

groups) and Anova-Williams test (multiple comparisons). Moreover, P<0.05 was 

considered statistically significant. 
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Chapter 4 

Results 

1. NPs activate human MCs (MRGPRX2 and NK-1R) 

• Human MCs 

Using flow cytometry, we found that LAD2 cells which we used to represent 

human mast cells express both MRGPRX2 and NK-1R (Fig.1). In this study,  the NPs 

which we have used are HK-1 (10 M) and SP (1 M). They induced degranulation in 

LAD2 cells. We found that in both control and NK-1R antagonist groups. HK-1 and SP 

induced degranulation: 20-25% and 30-35% β-hexosaminidase release respectively. 

However, this response was resistant to inhibition by an NK-1R antagonist CP93645 

(Fig.2). There are no significant (P<0.05) differences between control and NK-1R 

antagonist group. 

• NK-1R 

To test the effectiveness of NK-1R antagonist by using RBL-2H3 cells transiently 

expressing NK-1R. Flow cytometry analysis showed that cells were expressing NK-1R 

(Fig.3).  NK-1R responded to both SP and HK-1 for degranulation. When using HK-1, 

we found that there is 25% β-hexosaminidase release in the control group and only 10% 

degranulation in the NK-1R antagonist group. For SP, there is 25% β-hexosaminidase 

release in the control group and 15 % β-hexosaminidase release in the NK-1R group. 

This shows that CP93645 caused significant (P<0.05) inhibition of this response (Fig.4). 

This NK-1R antagonist has high effectiveness for inhibition. 
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• MRGPRX2 

To investigate the role of MRGPRX2 on HK-1 induced mast cell degranulation, 

we used RBL-2H3 cells stably expressing MRGPRX2. We determined that there is 

MRGPRX2 expression by using flow cytometry (Fig.5). We found that both SP (1 M) 

and HK-1 (10 M) induced degranulation. In both groups, there is 50% β-

hexosaminidase release by using HK-1 and 75-90% β-hexosaminidase release by using 

SP. However, this response was resistant to inhibition by CP93645 (Fig.6). There are no 

significant (P<0.05) differences between control and NK-1R antagonist group. 

2. NPs induced lipid raft part response in human MCs (MRGPRX2) 

• Cholesterol depletion  

Recent studies have shown that MRGPRX2 contains the CRAC domain and we 

know that MβCD depletes cholesterol, which reduces receptor activity. In this study we 

were using SP (1 M) to induce degranulation in MRGPRX2. There is 30% β-

hexosaminidase release in the control group (without MβCD). However, there is only 15 

% β-hexosaminidase release in MβCD group, which suggests that MβCD caused 

significant (P<0.05) inhibition of this response (Fig.7). 

• WT and CRAC mutants 

Flow cytometry showed that receptor expression level of the CRAC mutants (M8 

and M10) is greater than 90% (Fig.8 and 9). We found that both SP (1 M) and HK-1 (10 

M) induced degranulation in the control group (WT) 30-35% β-hexosaminidase release. 

The degranulation was significantly decreased (P<0.05) in mutants in which we only 

found 10% β-hexosaminidase release (Fig.10). Furthermore, there is 40% β-

hexosaminidase release induced by ciprofloxacin (100 g/ml), HOE 140 (25 g/ml) and 



 

 25 

48/80 (10 g/ml) in WT. However, there is less than 10% β-hexosaminidase release in 

mutants which is significantly decreased (P<0.05) when compared with control group 

(Fig.11).  

• The association between lipid rafts compartment and MRGPRX2 by 

confocal microscopy 

Using PE anti-human MRGX2 antibody, we found that MRGPRX2 present 

MRGPRX2 in red (Fig.12A) and cholera toxin subunit B, Alexa Fluor 488 conjugate 

antibody, we found that MRGPRX2 present the lipid raft compartment in green 

(Fig.12B). Overlay of MRGPRX2 (red) and cholera toxin (green) showed that there is 

colocalization (orange) (Fig.12C). Similar to how CRAC domain mutant presents the 

MRGPRX2 (red) (Fig.12D) and lipid raft part (green) (Fig.12E). Overlay of MRGPRX2 

(red) and cholera toxin (green) showed that there is colocalization (orange) (Fig.12F). 

• Ca2+ mobilization  

To test the CRAC domain mutant defective in coupling to G protein by using Ca2+ 

mobilization. We found that SP (1 M) resulted in enhanced Ca2+ mobilization in 

MRGPRX2 treated with this IgE and also antigen (100 ng/ml DNP/BSA) increasing Ca2+ 

mobilization (Fig.13A). Mutant is associated with a significant reduction in SP-induced 

Ca2+ mobilization, however, the antigen (100 ng/ml DNP/BSA) is inducing Ca2+ 

mobilization (Fig.13B). 
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Chapter 5 

Discussion 

MCs are the immune cells that are best known for allergic disease such as asthma. 

MCs response to endogenous and exogenous stimuli that promote degranulation. While 

both human MC subtypes (MTC and MCT) are activated via FcIR, only MCTC respond to 

SP [63, 64], which is reduced by NK-1R antagonist or in cells obtained from NK-1R-/- 

mice.  These findings suggest that activation of NK-1R in murine MCs by SP results in 

increased vascular permeability and inflammatory cell aggregation. NK-1R is the classic 

GPCR for neurokinins such as SP. It now appears MRGPRX2 that is also a neurokinin 

receptor [39] found on human MCs. Given the recent study [40] which reports that 

expression of MRGPRX2 on human MCs is upregulated in asthmatic lung suggests it 

participates in the pathogenesis of asthma. SP and HK-1 are NPs which belong to the 

tachykinin family. SP is released from nerve ending while HK-1 is produced by FcRI-

activated MCs. Recent studies [37] have showed that HK-1 acts on NK-1R in an 

autocrine manner to facilitate IgE-mediated anaphylaxis and lung inflammation. 

However, NK-1R antagonists, which are highly effective in modulating experimental 

allergic inflammation in mice, does not inhibit MCs response in humans. This 

discrepancy exemplifies the challenges in the translating findings from animal models to 

human model. Although SP induces degranulation in human skin MCTC via the activation 

of MRGPRX2 [39]. However, the effect of HK-1 in human MCs has not been reported. 

We hypothesized that HK-1 can activate human MCs. This study demonstrates how HK-

1 activates human MCs (MRGPRX2) and which receptor is induced by HK-1. We found 

that LAD2 cells, which represent human MCs, express both MRGPRX2 and NK-1R. NPs 
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(HK-1 and SP) induced degranulation in LAD2 cells, but this response was resistant to 

inhibition by an NK-1R inhibitor CP93645. Thus, despite the presence of NK-1R in 

LAD2 cells, SP and HK-1 preferentially utilize MRGPRX2 to induce degranulation. To 

determine if the NK-1R antagonist (CP93645) is effective in inhibition, we used RBL-

2H3 cells transiently expressing NK-1R responded to both SP and HK-1 for 

degranulation and that CP93645 caused significant inhibition of this response. This 

suggests that CP93645 is highly efficient inhibitor. We also tested the role of MRGPRX2 

on SP and HK-1-induced mast cell degranulation, we used RBL-2H3 cells stably 

expressing MRGPRX2. We found that both SP and HK-1 induced degranulation, but this 

response was resistant to inhibition by CP93645. Previous studies demonstrated that NK-

1R antagonists are highly effective in modeling allergic responses in mice but fail in 

humans. This study provideds a potential explanation for this difference. Unlike the 

situation in mice where the effects of neuropeptides are mediated via NK-1R, our 

findings suggest that in humans, these effects are mediated via MRGPRX2. Nevertheless, 

the limitation of our study is that it is difficult to control the receptor expression level to 

be the same in all cell types. Therefore, the stably expressing receptor can be more 

reliable than the transiently transfected cells. 

GPCRs are the largest molecules involved in signal transduction [56-58]. 

Membrane cholesterol plays an important role in the function of a member of GPCRs 

such as MRGPRX2. Many proteins that interact with cholesterol have been reported to 

contain the CRAC domain in their sequence which is presented in MRGPRX2. Lipid 

rafts are part of membrane which can bind to protein, lipid and signaling substrate [65]. 

There are many studies that have shown that lipid rafts promote MC activity [66, 67]. It is 
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possible that we can also modulate MRGPRX2. Our hypothesis was that MRGPRX2 

might be associated with MRGPRX2. Because MRGPRX2 contains a CRAC domain, the 

interaction of the receptor with cholesterol in lipid rafts likely contributes to its function. 

This study showed that depleting cholesterol with MβCD reduced the receptor activity, 

which was measured by using SP induces degranulation in MRGPRX2. There is 

significant reduction of this response in MGPRX2 with MβCD compared with the control 

group (without MβCD). This suggests that the cholesterol on MC membrane is associated 

with MRGPRX2 function. In addition, we induced point mutations in the CRAC domain 

sequences of MRGPRX2 to explore the function of the receptor by changing its DNA 

sequence in the CRAC domain (mutants). The CRAC domain mutant expressed the same 

level as the receptor WT; however, NPs (HK-1 and SP) induced degranulation in the 

control group, but this response was significantly reduced in CRAC domain mutants. To 

further test how the cells function by using other compounds such as ciprofloxacin 

(antibiotic drug), and HOE 140 (selective B2 bradykinin receptor antagonist), which are 

used to treat asthma patients, and compound 48/80, which is widely used in animal or 

tissue models as a selective mast cell activator to induce degranulation. Even though the 

CRAC domain mutant expressed at similar levels to the WT, receptor do not function. In 

addition to discover the association between lipid rafts compartment and MRGPRX2. 

Our hypothesis was that WT might colocalize with lipid raft compartments in contrast to 

CRAC mutant should be difference by using confocal microscopy, the lipid raft 

compartment and MRGPRX2 were stained by fluorescent cholera toxin subunit B [62] 

and antibody PE anti-human MRGX2 respectively to investigate the association between 

lipid rafts compartment and MRGPRX2. Our confocal microscopy data suggests that the 



 

 29 

lipid raft colocalized with MRGPRX2 in both control (MRGPRX2) and CRAC domain 

mutants. These findings demonstrate that lipid rafts may not be associated with 

MRGPRX2 and CRAC mutant appear to be defective in coupling to G protein. Given the 

results of Ca2+ mobilization to test if the CRAC domain mutant is defective in coupling to 

G protein. There was no Ca2+ mobilization in CRAC domain mutant. 

SP and HK-1 cause mast cell degranulation via MRGPRX2 in humans. In 

addition to this receptor, lipid rafts may not be involved in MRGPRX2 function; 

however, the CRAC mutant appears to be defective in coupling to G protein which 

affects MCs function. In future studies, we may be able to develop antagonists for 

MRGPRX2 or we may try to inhibit the CRAC domain of this receptor for asthma 

therapy. This finding suggests that MRGPRX2 may serve as a novel target for 

modulating asthma and other neuropeptide/mast cell-mediated diseases.  
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Chapter 6 

Conclusion 

MCs are multifunctional immune cells. Their responses contribute to allergic and 

inflammatory disease such as anaphylaxis and asthma. MC activation start when they are 

activated by ligands binding to their receptors. In addition to FcRI, MCs express 

numerous GPCRs including MRGPRX2 and NK-1R. This study has shown that human 

MCs express MRGPRX2 and NK-1R on the cell surface. NPs (HK-1 and SP) cause MC 

degranulation via MRGPRX2 while NPs activate murine MCs through NK-1R. However, 

in human MCs it prefers to go to MRGPRX2. Since MRGPRX2 contains a CRAC 

domain, the interaction of the receptor to the cholesterol in lipid rafts could potentially 

contribute to its function. This study demonstrated that cholesterol depletion reduced the 

MRGPRX2 receptor activity. CRAC domain mutants express the receptor at similar level 

to WT, but the receptors do not function. The data presented here supports that the CRAC 

domain may not be associated with MRGPRX2 and the CRAC domain mutant appears to 

be defective in coupling to G protein. Future directions for this study include the 

development of small molecule MRGPRX2-specific antagonists, or inhibiting the CRAC 

domain of MRGPRX2, both of which may be new targets for the treatment of MC-

mediated allergic and inflammatory disease. 
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CHARPTER 7 

Figures 

Figure 1. Receptor expression level in LAD2 (human MCs). 
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Figure 2. NPs induced degranulation in LAD2 
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Figure 3. Receptor expression level in RBL-2H3 cells transiently 

expressing NK-1R. 
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Figure 4. NPs induced degranulation in RBL-2H3 cells transiently 

expressing NK-1R. 
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Figure 5. Receptor expression level in RBL-2H3 cells stably expressing 

MRGPRX2. 
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Figure 6. NPs induced degranulation in RBL-2H3 cells stably expressing 

MRGPRX2. 
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Figure 7. Cholesterol depletion in RBL-2H3 cells stably expressing 

MRGPRX2. 
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Figure 8. Receptor expression level in RBL-2H3 cells stably expressing 

CRAC mutant of MRGPRX2 (M8). 
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Figure 9. Receptor expression level in RBL-2H3 cells stably expressing 

CRAC mutant of MRGPRX2 (M10). 
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Figure 10. NPs induced degranulation in RBL-2H3 cells stably 

expressing MRGPRX2 and CRAC mutants of MRGPRX2 (M8 and 

M10). 
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Figure 11. Other compounds induced degranulation in RBL-2H3 cells 

stably expressing MRGPRX2 and CRAC mutants of MRGPRX2 (M8 

and M10). 

 

 

 

 

  

* 
* 

* 
* 

* 
* 



 

 42 

Figure 12. Lipid raft compartment and MRGPRX2 by confocal 

microscopy. 
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Figure 13. NPs induces Ca2+ mobilization in RBL-2H3 cells stably 

expressing MRGPRX2 (A) and CRAC mutant of MRGPRX2 (M8) (B). 
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CHARPTER 8 

Figures legend 

Figure 1 Receptor expression level in LAD2 (human MCs). LAD2 cells were 

incubated with anti-Tac1r followed by goat anti-rabbit IgG-FITC and PE anti-human 

MRGX2. Representative histogram of expression level of MRGPRX2 (blue line) and 

NK-1R (red line) as analyzed by flow cytometry is shown. 

Figure 2 NPs induced degranulation in LAD2. LAD2 cells were incubated with 

CP93645 (10 µM) and stimulated with SP (1 µM) and HK-1 (10 µM). Percent 

degranulation was determined. Data are mean + S.E. of three experiments. Statistical 

significance was determined by unpaired t-Test (2 groups) and Anova-Williams test 

(multiple comparisons). 

Figure 3 Receptor expression level in RBL-2H3 cells stably expressing 

MRGPRX2. Cells were incubated with PE anti-human MRGX2. Representative 

histogram of expression level of MRGPRX2 (blue line) as analyzed by flow cytometry is 

shown. 

Figure 4 NPs induced degranulation in RBL-2H3 cells stably expressing 

MRGPRX2. Cells were incubated with CP93645 (10 µM) and stimulated with SP (1 

µM) and HK-1 (10 µM). Percent degranulation was determined. Data are mean + S.E. of 

three experiments. Statistical significance was determined by unpaired t-Test (2 groups) 

and Anova-Williams test (multiple comparisons). 

Figure 5 Receptor expression level in RBL-2H3 cells transiently expressing 

NK-1R. Cells were incubated with anti-Tac1r followed by goat anti-rabbit IgG-FITC. 
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Representative histogram of expression level of NK-1R (red line) as analyzed by flow 

cytometry is shown. 

Figure 6 NPs induced degranulation in RBL-2H3 cells transiently expressing 

NK-1R. Cells were incubated with CP93645 (10 µM) and stimulated with SP (1 µM) and 

HK-1 (10 µM). Percent degranulation was determined. Data are mean + S.E. of three 

experiments. Statistical significance was determined by unpaired t-Test (2 groups) and 

Anova-Williams test (multiple comparisons). 

Figure 7 Cholesterol depletion in RBL-2H3 cells stably expressing MRGPRX2. 

Cells were incubated with MβCD (10 mM) for cholesterol depletion and stimulated with 

SP (1 µM). Percent degranulation was determined. Data are mean + S.E. of three 

experiments. Statistical significance was determined by unpaired t-Test (2 groups) and 

Anova-Williams test (multiple comparisons). 

Figure 8 Receptor expression level in RBL-2H3 cells stably expressing CRAC 

mutant of MRGPRX2 (M8). Cells were incubated with PE anti-human MRGX2. 

Representative histogram of expression level of CRAC mutant of MRGPRX2 (M8) (red 

line) as analyzed by flow cytometry is shown. 

Figure 9 Receptor expression level in RBL-2H3 cells stably expressing CRAC 

mutant of MRGPRX2 (M10). Cells were incubated with PE anti-human MRGX2. 

Representative histogram of expression level of CRAC mutant of MRGPRX2 (M10) (red 

line) as analyzed by flow cytometry is shown. 

Figure 10 NPs induced degranulation in RBL-2H3 cells stably expressing 

MRGPRX2 and CRAC mutants of MRGPRX2 (M8 and M10). Cells were stimulated 

with HK-1 (10 µM) and SP (1 µM). Percent degranulation was determined. Data are 
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mean + S.E. of three experiments. Statistical significance was determined by unpaired t-

Test (2 groups) and Anova-Williams test (multiple comparisons).  

Figure 11 Other compounds induced degranulation in RBL-2H3 cells stably 

expressing MRGPRX2 and CRAC mutants of MRGPRX2 (M8 and M10). Cells were 

stimulated with Ciprofloxacin (100 µg/ml), HOE 140 (25 µg/ml), and 48/80 compound 

(10 µg/ml). Percent degranulation was determined. Data are mean + S.E. of three 

experiments. Statistical significance was determined by unpaired t-Test (2 groups) and 

Anova-Williams test (multiple comparisons).  

Figure 12 Lipid raft compartment and MRGPRX2 by confocal microscopy. 

Cells were incubated with PE anti-human MRGX2 (red) (A) and cholera toxin subunit B, 

Alexa Fluor 488 conjugate antibody (green) (B). Overlay of MRGPRX2 (red) and 

cholera toxin (green) showed that there is colocalization (orange) (C). The same as 

CRAC mutant presents the MRGPRX2 (red) (D), and lipid raft part (green) (E). Overlay 

of MRGPRX2 (red) (D) and cholera toxin (green) (E) showed that there are 

colocalization (orange) (F). 

Figure 13 NPs induces Ca2+ mobilization in RBL-2H3 cells stably expressing 

MRGPRX2 (A) and CRAC mutant of MRGPRX2 (M8) (B). Cells were incubated 

with Indo-1AM and IgE, washed in Ca2+-free buffer, and stimulated with SP (1 M). 

Extracellular Ca2+ was determined. After 2 mins, cells were exposed to DNP/BSA (100 

ng/ml) and extracellular Ca2+ was again determined. Traces represent results from three 

similar experiments. 
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