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LITERATURE REVIEW 

 
1. Facet joint and pain 

 
a) Facet joints 
       The facet joints, also referred to as “zygapophyseal 
joints”, or “Z-joints”, are paired joints in the posterior 
aspect of the spine. Along with the intervertebral disc 
anteriorly, they make up the basic functional unit of the 
spine (Figure A). They are numbered based on the 
vertebrae involved in forming the joint and named as left 
or right. The facet joints consist of the inferior articular 
process of one vertebra and the superior articular 
process of the adjacent inferior vertebra.  

 
Figure A. The spinal column, cord and vertebrae. 
(www.columbianeurosurgery.org/) 
 
        Each facet joint is a diarthrodial joint with a distinct 
joint capsule that encloses a joint space that can 
accommodate approximately 1-1.5cc of fluid (Glover 

http://www.columbianeurosurgery.org/
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1977). Studies have demonstrated that facet joint 
capsules are innervated richly with encapsulated, 
unencapsulated, and free nerve endings (Cavanaugh et al. 
1996, Inami et al. 2001, McLain 1994). Nerve endings 
containing both substance P and calcitonin gene related 
protein (CGRP) along with neuropeptide Y, have been 
found in the facet capsule, which indicates the presence 
of nociceptive afferent and sympathetic efferent fibers 
(Kallakuri et al. 2004). Substance P nerve fibers also 
have been found in the subchondral bone and 
intraarticular inclusion in degenerative spines (Beaman 
et al. 1993). It has been shown that the C6-C7 facet joint 
in the rat has cell bodies in the C7 DRG, and the majority 
of them are CGRP containing (Figure B) (Kras et al. 2013). 
Thus, that anatomic study suggested that peptidergic 
afferents in the C7 DRG play a major role in pain from the 
C6-C7 facet joint (Kras et al. 2013). 
 

 
Figure B.  CGRP labeled neurons in the C7 rat DRG in rats (Kras et 
al. 2013). 
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b) Cervical facet joint and pain 
        The cervical spine of the human vertebral column is 
a heterogeneous structure that consists of three distinct 
joints at each spinal level. The bilaterally located facet 
joints are involved in degenerative disorders such as 
facet arthrosis. In addition, these joints are implicated in 
spinal dysfunction secondary to traumatic events, such 
as low-speed rear end crushes (Aprill et al. 1990, 
Barnsley et al. 1994). In the particular case of vehicular-
related injuries, commonly known as whiplash or 
whiplash-associated disorders, the mechanism of injury 
is attributed to sliding, stretching, and/or pinching of the 
facet joint during the early stage of the rear impact 
acceleration (Bogduk & Yoganandan 2001, Yoganandan 
& Pintar 2000). 
 
 

 
Figure C. Lateral view of the cervical spine (a) and axial view of a 
lumbar vertebra (b) showing the overall anatomy and the facet 
joints (Jaumard et al. 2011). 
 
        Whiplash-associated disorders are among the most 
common injuries associated with motor-vehicle 
accidents. In the United States, more than 59% of 
insurance claimants for motor-vehicle injury reported 
neck injuries in 1993 (Insurance Research Council 1999). 
Studies of the natural history of whiplash-associated 
disorders have suggested that chronic pain with 
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continuous symptoms develops in 6% to 33% of acutely 
injured victims (Barnsley et al. 1994, Hildingsson & 
Toolanen 1990). The social cost of whiplash injury, 
including medical and legal expenses, is enormous, 
reaching as high as $29 billion annually in the United 
States alone (Freeman et al. 1999). 
 
c) Lumbar facet joint and pain 
        Pain originating from the lumbar facet joints is a 
common cause of low back pain in the adult population 
(Strine & Hootman 2007). Chronic low back pain (LBP), 
defined as pain lasting more than 3 months, is the second 
most common reason for visits to a physician and the 
most common reason for missing work across all 
socioeconomic strata in the United States (Andersson 
1999, Deyo & Weinstein 2001, Freburger et al. 2009).  
Chronic LBP occurs in 5% to 8% of community-dwelling 
persons (Cassidy et al. 1998, Elliot et al. 1999) and is 
reported in 19% of working adults (National Center for 
Statistics 2001). The total costs of the condition are 
estimated at more than $100 billion annually, with two-
thirds of that due to decreased wages and productivity 
(Katz 2006). 
        Chronic LBP is known to be associated with 
degeneration of the spinal motion segment (Adams & 
Roughley 2006, Edgar 2007, Kallewaard et al. 2010). 
Degeneration is thought to initiate in the intervertebral 
disc with subsequent degeneration occurring in the facet 
joints (Adams & Roughley 2006). Although disc 
degeneration occurs frequently with aging and may be 
asymptomatic in many individuals, it can cause severe 
LBP in some cases (Adams & Roughley 2006, Andersson 
1999, Cassidy et al. 1998, Devo & Weinstein 2001, Elliot 
et al. 1999, Freburger et al. 2009, Katz 2006, National 
Center for Statistics 2011). 
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      2. Whole-body vibration and pain  

        Several epidemiological studies have linked exposure 
to whole body vibration (WBV) with neck and back pain 
(Boshuizen et al. 1992, Boshuizen et al. 1999, Bovenzi & 
Hulshof 1988, Nevin & Means 1999), suggesting that 
vibration can lead to the onset of both such pain 
syndromes.  American male workers operating vibrating 
vehicles, such as industrial trucks and tractors, have 
been reported to have a higher prevalence of low back 
pain and are three-times more susceptible to acute 
herniated lumbar discs than workers whose occupations 
do not involve such exposures (Boshuizen et al. 1999, 
Kelsey & Hardy 1975). 
        A limited number of studies have defined the 
biomechanical response to vibration and related 
resonance and vibration frequency to physiological 
responses known to be involved in pain-related injuries. 
The resonant frequency of the seated human undergoing 
vertical vibration has been reported to be 4.5 Hz from a 
series of studies using accelerometers on the first and 
third lumbar vertebrae (L1, L3) and the sacrum of 
volunteers exposed to vertical vibrations, ranging in 
frequencies from 2 to 15 Hz (Mansfield & Griffin 2000,  
Panjabi et al. 1986). 
        The resonant frequency of the prone rabbit exposed 
to horizontal vibration between 2 and 8 Hz also was 
approximately 4.5 Hz (Weinstein et al. 1988). In contrast, 
the resonance of the seated primate in the vertical 
direction ranges from 9 to 15 Hz (Smith & Kazarian 
1994). A repeated WBV exposure  for 30 m in    
vibration at a magnitude of 0.56 g establishes pain (Baig 
et al. 2013). In addition to these biomechanical studies, 
studies have reported changes in pain-related 
neuropeptides and damage to arterial endothelial cells 
for WBV exposures ranging from 4.5 to 60 Hz (Curry et al. 
2002, Weinstein et al. 1988). These studies provide 
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evidence of important mechanical and physiological 
changes in tissues involved in WBV and suggest WBV as a 
putative mechanism for chronic pain. 

     
     3. Integrated stress response 

        The integrated stress response (ISR), also known as 
the endoplasmic reticulum (ER) stress response, is a 
common cellular response to disruption of homeostasis 
in injury or disease status (Dong et al. 2008, 2011, Lindl 
et al. 2007). ER is a dynamic network of interconnected 
membrane tubules that essentially reaches every part of 
the cell, including dendrites (Spacek & Harris 1997) and 
axons (Westrum & Gray 1986) in neurons (Figure D). 
The ER is associated with microtubules (Feiguin et al. 
1994) and largely contributes to local calcium 
homeostasis and signaling, and protein and lipid 
biosynthesis. Thus, the ER may be one of the main 
organelles that sense the disruption of the axon and 
reacts by sending back information to the soma. 
Inflammation can lead to reactive oxygen species (ROS), 
which within the endoplasmic reticulum can initiate 
three different pathways; (1) double-stranded RNA-
activated protein kinase (PKR)-like endoplasmic 
reticulum stress kinase (PERK) (Harding et al. 1999), (2) 
inositol-requiring enzyme 1 (IRE1a) (Wang et al. 1999), 
and (3) activating transcription factor 6 (ATF6) (Haze et 
al. 1999).  Activation of the ISR culminates in increased 
expression of the ISR binding protein (BiP), which plays 
a major role in the repair of unfolded and misfolded 
proteins (Schröder & Kaufman 2005). 
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Figure D. The Structure of the endoplasmic reticulum (ER), 
(O'Connor & Adams , 2010). 

 
        Under unstressed conditions, BiP binds to the 
luminal domains of IRE1, PERK, and ATF6 to prevent 
their dimerization. With the accumulation of the 
unfolded proteins, BiP released from IRE1 permits 
dimerization to activate its kinase and RNase activities to 
initiate XBP1 mRNA splicing, thereby creating a potent 
transcriptional activator. BiP release from ATF6 permits 
transport to Golgi compartment where ATF6 is cleaved 
by SIP and S2P proteases to yield a cytosolic fragment 
that migrates to the nucleus to further activate 
transcription of unfolded protein response (UPR) -
responsive genes (Chen et al. 2002). Finally, BiP release 
permits PERK dimerization and activation to 
phosphorylate eukaryotic initiation factor 2 alpha (eIF2 
alpha), which leads to general attenuation of 
translational initiation. Through its phosphorylation of 
eIF2 alpha, PERK blocks the synthesis of new 
polypeptides, in this manner reducing the entry of 
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nascent polypeptides into ER lumen. This allows the ER 
time to refold misfolded proteins and dispose that are 
terminally misfolded, important elements of the cells 
“unfolded protein response” (UPR), which seeks to 
restore ER homeostasis. eIF2 alpha is known to be 
phosphorylated by four different kinases, including 
double stranded RNA-activated PKR, PERK, GCN2, and 
HRI in response to a variety of stress stimuli. 
Phosphorylation of eIF2 alpha inhibits the dissociation of 
eIF2 alpha, thereby preventing the exchange of GDP for 
GTP and reducing the rate of ternary complex formation. 
This lowers the rate of protein synthesis and enhances 
he translation of mRNAs. 
        Interestingly, phosphorylation of eIF2 alpha favors 
translation of activating transcription factor 4 (ATF4)  
(Harding et al. 1999), which has been shown to promote 
apoptotic cell death via transactivation of C/EBP-
homologous protein (CHOP) (Yamaguchi et al 2007). 

 
Figure E. Schematic illustration of the integrated stress 
response (ISR), (Tanaka K et al. 2013). 
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     4. Reactive oxygen species 
Oxidative stress, cytotoxic effects of reactive oxygen 
species (ROS), is considered a prominent factor in many 
degenerative neurological conditions, such as Alzheimer 
disease, Parkinson disease, and other brain dysfunctions 
(Gerlach et al. 1994). ROS are oxygen containing 
chemicals, free radicals and non-radicals, such as 
oxidative phosphorylation and monoamine oxidase 
reaction (Gerlach et al. 1994). Under normal 
physiological conditions, production of ROS is balanced 
by several cellular antioxidant mechanisms (Jenner 
1994). In certain conditions, levels of ROS rise to the 
point that may endanger the functional and structural 
integrity of cells, sometimes leading to irreversible 
damage (Jenner 1994). To counteract oxidative stress, 
cells have complicated mechanisms of defense against 
this toxicity, one of the most important mechanisms 
involves the activation of Nrf2 pathway (Kensler et al. 
2007), which leads to the expression of cytoprotective 
enzymes, such as NAD(P)H: quinone oxidoreductase 1 
(NQO-1) and heme oxygenase 1 (HO-1) (Figure E). 
Recent studies indicate that ROS are also involved in 
persistent pain (Kim et al. 2004). Also, increased 
production of ROS (Park et al. 2006) and enhanced 
antioxidant activity (Guedes et al. 2006) were observed 
in the spinal cord after a peripheral nerve injury. 
Increased levels of extracellular hydrogen peroxide were 
also observed in the spinal trigeminal nucleus after 
formalin injection into the lip of the rat, and this increase 
coincided with pain behaviors (Viggiano 2005). These 
studies suggest that higher levels of ROS and increased 
antioxidant activity in the spinal cord and brainstem 
after peripheral nerve injury or tissue inflammation may 
be important factors in persistent pain. 
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Manuscript 
 
 

     Introduction 
 

            Facet joints are implicated as a major source of neck 
and low-back pain. Whiplash-associated disorders are 
among the most common injuries associated with motor-
vehicle accidents. In the United States, more than 59% of 
insurance claimants for motor-vehicle injury reported neck 
injuries in 1993 (Insurance Research Council 1999). 
Studies of the natural history of whiplash-associated 
disorders have suggested that chronic pain with 
continuous symptoms develops in 6% to 33% of acutely 
injured individuals (Hildingsson & Toolanen 1990). The 
social cost of whiplash injury, including medical and legal 
expenses, is enormous, as high as $29 billion annually in 
the United States alone (Freeman et al. 1999). 
 
        Pain originating from the lumbar facet joints is a 
common cause of low back pain in the adult population.  
Chronic low back pain (LBP), defined as pain lasting more 
than 3 months, is the second most common reason for 
visits to a physician and the most common reason for 
missing work across all socioeconomic strata in the United 
States (Andersson 1999, Deyo & Weinstein 2001, 
Fregurger et al. 2009). Chronic LBP occurs in 5% to 8% of 
individuals (Cassidy 1998, Elliot et al. 1999) and is 
reported in 19% of working adults (National Center for 
Health Statistics 2001). The total costs of the condition are 
estimated at more than $100 billion annually, with two-
thirds of those costs due to decreased wages and lost 
productivity (Katz 2006). 
 
        Whole-body vibration (WBV) has been linked to the 
development of chronic cervical and low-back pain. Yet, the 
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mechanism of its development and the cellular cascades 
responsible for its maintenance remain poorly understood. 
One of the mechanisms may be dysfunction of the 
integrated stress response (ISR), also known as the 
endoplasmic reticulum (ER) stress response. This common 
cellular pathway responds to disruption of homeostasis in 
injury or disease status (Dong et al. 2008, Lindl et al. 2007). 
The ER is a dynamic network of interconnected membrane 
tubules that essentially reaches every part of the cell, 
including the dendrites (Spacek & Harris 1997) and axons 
(Feiguin et al. 1994) in neurons. The ER is associated with 
microtubules and largely contributes to local calcium 
homeostasis and signaling, as well as protein and lipid 
biosynthesis (Ron & Walter 2007). Thus, the ER may be 
one of the main organelles that sense the disruption of the 
injured axon and reacts by sending information back to the 
soma.  Studies from Dong. et al. have demonstrated a 
correlation between the activation of the ISR and facet 
mediated pain in a rat model (Dong et al. 2008, 2011). 
 
        Although inflammation and cellular activation are 
known to be involved in pain, the role of the mediators of 
the integrated stress response in cells in the spinal cord 
following painful exposures has not been investigated. The 
purpose of this study was to evaluate changes in the major 
chaperone protein of the endoplasmic reticulum, BiP, in the 
spinal cord in association with pain after WBV using a 
novel model in the rat (Baig et al. 2013, Kartha et al. 2014). 
  
     Materials and Methods 

 
        All procedures used male Holtzman rats (275-325g), 
were IACUC-approved, and adhered to the guidelines for 
Research and Ethical Issues of the International 
association of Study for pain (IASP). 
 
 



 22 

Whole-Body Vibration Exposure 
Vibration exposure was performed under inhalation 
anesthesia (4% isoflurane for induction, 3.5% for the 
maintenance), according to previous published methods 
(Baig et al. 2013, Kartha et al. 2014). 
 

      

 
Fig. 1.  Schematic illustrating the timeline for WBV exposures 
(blue) and behavioral assessment (orange circles) at days 0, 1, 6, 7, 
10, 14. Harvests were performed at day 1 and day 14 in separate 
groups of rats. 
  
        Whole-body vibration was applied daily for a period 
of 30 minutes on 7 consecutive days (Fig. 1). During each 
WBV exposure session, the rat was placed in a prone 
position and secured to a customized acrylic platform by 
Velcro straps (Fig. 2). The platform was rigidly fixed to a 
linear servomotor (MX80L; Parker Hannefin) that was 
programmed and controlled by a digital driver (VIX500IH; 
Parker Hannefin) to translate the platform through a full 
stroke distance of 1.5mm. A laser LVDT (LTC-050-10; 
MTI) also tracked the platform motion. Two miniature 
quartz shear accelerometers (ACC104A; Omega) were 
used to quantify accelerations of the moving plate and 
also embedded in a Velcro strap that secured the rat to the 
plate near the lower thoracic and upper lumber spines 
(Fig. 2). 



 23 

 
Fig. 2.  Schematic of WBV device, indicating the set-up and 
instrumentation. 
 
Behavioral Assessment 
        Behavioral sensitivity was assessed by measuring 
mechanical hyperalgesia in both the forepaws and hind 
paws during the study period. Hyperalgesia was 
measured prior to (day 0) the first day of WBV exposure 
and daily on the morning following the prior day’s WBV 
session (Fig. 1). For each session, the plantar surface of 
each paw was stimulated with a range of von Frey 
filaments (0.4-26g) using customary methods. The 
average threshold was taken as the threshold for each 
paw, day, and group. Response thresholds were also 
measured for an additional 7 days after the cessation of 
the WBV exposure. A repeated-measures ANOVA with 
post hoc Bonferroni compared response thresholds 
between WBV and sham control groups over time. 
 
Treatment Day 14 Lumbar Day 1 Cervical Day 1 Lumbar 
WBV N=4 N=4 N=4 
Sham N=4 N=4 N=4 
Table 1. Sample size of each group of animals. 
 
Western Blot Analysis 
        Spinal cord tissue was harvested on day 1 and 14 to 
quantify BiP expression using Western blot analysis 
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(Table 1). The cervical and lumber enlargements were 
separately isolated and whole protein lysates obtained. 
Total protein concentration of the lysates was determined 
using a BCA protein assay reagent kit (Pierce 
Biotechnology). Protein (1.35μg/μl in 37μl) was loaded 
into each lane of a 4-12% Bis-Trisgel for separation. A 
broad-range molecular weight ladder was also run on 
each gel to identify the approximate size of the molecule. 
Subsequent to separation, proteins were transferred onto 
a PVDF membrane and blocked in TBS with 1% Tween-20 
(TBS-T) and 5% non-fat milk for 2hrs at room 
temperature. The membrane was incubated at 4℃ 
overnight with mouse monoclonal antibody to BiP 
(1:1000; BD BioSciences) in TBS-T, followed by goat anti-
mouse antibody (1:15,000; LI-COR). The membrane was 
imaged and analyzed by the Odyssey infrared 
fluorescence detector system (LI-COR) to quantify the 
expression level of BiP. BiP expression for each sample 
was normalized by Beta-tubulin (1:1000; Convance) 
levels and compared between WBV and Sham groups 
using separate t-test for each of cervical and lumbar spinal 
cord segments. 
 
Results 
 
Behavioral Sensitivity 
 
        To determine if WBV induced behavioral sensitivity, 
mechanical hyperalgesia was measured using the paw 
withdrawal threshold. WBV induced an immediate 
decrease in paw withdrawal threshold in both the 
forepaw and hind paw starting on day 1, that was 
sustained for 7 days after the cessation of the WBV 
exposure (Fig. 3 & 4). The response threshold was 
significantly reduced in forepaw on day1 (p=0.001), Day 
14 (P=0.01), and hind paw on day 1 and 14 (p=0.01). 
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Fig. 3. Average withdrawal thresholds in WBV and Sham groups in the 
forepaw. *=WBV significantly lower than Sham (p=0.001) on day 1. **= 
WBV significantly lower than Sham (p=0.01) on day 14. 
 

Fig. 4. Average withdrawal thresholds in the WBV and Sham groups in 
the hind paw.  *= WBV significant lower than Sham on day 1 and day 14 
(p=0.01). 
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Western Blot Analysis 

 
        We hypothesized that neuronal cells in the spinal cord 
would be under endoplasmic reticulum stress following WBV. 
To measure this, the levels of the ISR marker, BiP, in protein 
extracts from lumbar spinal cords in WBV treated rats at day 
14 was measured and compared with levels in sham control 
rats at that same time. BiP expression levels were assessed by 
immunoblot of protein lysates extracted from the spinal cord 
(Fig. 5).  We found that there was no significant difference in 
BiP between sham and WBV-treated rats at day 14 by 
immunoblot (Figs. 5 & 6).   
        In order to assess the ER stress at an earlier stage in this 
model, we investigated the level of BiP, as well as the PERK 
target, phospho-eiF2 alpha (peIF2-alpha) at day 1 in the 
cervical spinal cords of rats exposed to WBV compared with 
sham.  At this time point we did not see changes in BiP levels 
(Fig. 7). Phosphorylation and expression levels of normalized 
peIF2-alpha, eIF2-alpha, and BiP were compared in cervical 
tissue at day 1, with phosphorylation level in the WBV group 
significantly lower (p=0.04) than control sham group (Fig. 8).  
Normalized expression of peIF2-alpha (p=0.01), eIF2-alpha 
(p=0.02) were also significantly lower, while BiP levels 
(p=0.06) were not significantly different in the WBV group 
than in the sham control group. 
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Membrane 1:  
    WBV----------- | Sham --------| 

  BiP 

  β-III tubulin 

  GAPDH 
 
 
Membrane 2: 
WBV-------| Sham ---------------| 

  BiP 

  β-III tubulin 

  GAPDH 
 
Fig. 5 Immunoblot of BiP, β-lll tubulin, GAPDH. 

 
 

Fig. 6 Normalized BiP levels in the WBV and sham groups at day 14. 
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    |WBV----|Sham----|             |WBV----|Sham---|   

 
                       

                                  

                           
              Fig. 7. BiP expression normalized by Beta Tubulin (*p=0.06). 

 

 
Fig. 8. Phosphorylation level (*p=0.04), and the expression level 
of normalized peIFa-alpha, eIF2-alpha, and BiP. 
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               WBV-----| Sham----|           |WBV-----| Sham---| 

 
 

           
Fig. 9. BiP expression normalized by Beta Tubulin in the lumbar 
spinal cord (p=0.16) 

 

            
Fig. 10. Phosphorylation level, and the expression level of 
normalized peIF2-alpha, eIF2-alfa, and BiP. 
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peIF2-alpha, eIF2-alpha, and BiP were compared in 
lumbar tissue. There was no significant changes in   
phosphorylation level (p=0.1), or the normalized 
expression of peIF2-alpha (p=0.15) and eIF2-alpha 
(p=0.29) (Fig. 10). BiP expression level was also 
unchanged (p=0.16) (Fig. 10). 

 
 
 
 
Discussion 
 

        This study demonstrates that a single exposure of 
whole body vibration is sufficient to induce an immediate 
behavioral sensitivity in both the forepaws and hind paws 
(Figs. 3 & 4). In this study, however, there was no 
significant difference in the expression level of BiP in 
either of the cervical or lumbar spinal cords following 
WBV at either day 1 or day 14 (Figs. 7 & 9). In a previous 
study, an increase in neuronal BiP expression in the DRG 
was demonstrated seven days after a painful joint 
distraction (Dong et al. 2008, 2011). Extending those 
studies to examine BiP changes in the spinal cord showed 
that the effects of this model on BiP expression appeared 
to be limited to the DRG.  
        In order to analyze BiP expression at the earlier stage 
of injury, we investigated the BiP expression at day 1 (Figs. 
7 & 9). However, we detected no significant differences in 
either the cervical or the lumbar spinal cords (Figs. 7 & 9). 
In order to estimate the ideal sample size, power analysis 
calculation was performed, indicating that a sample size 
of 8 rats is needed for each group in order to test 
statistically significant difference. This analysis indicates 
the need for larger sample sizes for cervical tissues of day 
1. Interestingly, using this same model, our group has 
found out that BiP expression is increased in the DRG at 
day 1 following the WBV (Fig. 11).  
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Fig. 11. BiP (green) expression in neurons (red; MAP2) of cervical 
DRG. BiP expression was increased at day 1 after whole-body 
vibration (A-C) compared to sham (D-F). Red and green colocalize 
to yellow. (H) Quantification of neuronal BiP intensity normalized 
to MAP2 area shows significant (* p<0.01) increase of BiP in 
vibration group compared to sham and normal group. Scale bar 
(50μm) applies to all panels. Taken from thesis of Gharbi N. 2013. 

 
        Western blot analysis uses tissue homogenates, which 
does not enable profiling specific cell types within the 
tissue. So, it must be determined what the distribution of 
BiP in a spinal cord is by region and by cell type, as well as 
in comparisons between DRG and spinal cords responses. 
Additional studies are needed for that work. To further 
investigate the correlation of the behavioral sensitivity 
and normalized BiP expression as well as the individual 
difference in perceiving pain, the BiP expression of each 
rat in the cervical and lumbar cord was compared to 
withdrawal threshold (Figs. 12 & 13). There is a trend in 
the WBV group in lumbar at day 14 (Fig. 12-1) and WBV 
group in lumbar at Day 1 (Fig. 12-3), however, there is no 
trend in the cervical and lumbar cord at day 1(Fig. 12-1),  
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BiP expression in the animals at day 1 was scattered in 
cervical and lumbar spines. 

 

 
Fig. 12-1. Correlation of normalized BiP expression and 
withdrawal threshold (Day 14 Lumbar). 

 

 
Fig. 12-2. Correlation of normalized BiP expression and 
withdrawal threshold (Day 1 Cervical). 
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Fig. 12-3. Correlation of normalized BiP expression and 
withdrawal threshold (Day 14 Lumbar). 
 

 
Fig. 13. Comparison of both cervical and lumbar BiP expression in 
each of the rats in this study. 
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upstream of BiP expression, we investigated the 
phosphorylation of eIF2-alpha. There were no significant 
differences in phosphorylation of eIF2-alpha between 
WBV and sham controls in lumbar cord, but spinal 
express was significantly lower in the WBV group in 
cervical. After exposure to ER stress, the pathway 
activated most rapidly is translational repression 
mediated by PERK. Because eIF2 alpha is a direct 
substrate of PERK, its phosphorylation does not depend 
on nuclear translocation. Consequently, the inhibition of 
protein synthesis occurs very rapidly following exposure 
to ER stress. For example, eIF2 alpha phosphorylation and 
translational repression are complete as soon as 30 
minutes after exposure to stress (Novoa et al. 2003). 
Considering this immediate ER stress response, day 1 may 
be too late with respect to the peak of the 
phosphorylation.  Additional studies are needed to 
determine that definitionally. 
        Phosphorylation of eIF2 alpha plays an important role 
in the inhibition of translation initiation induced in cells 
exposed to different stressful conditions including heme 
depletion in reticulocytes (Chen 2000, Ochoa 1983,), viral 
infection (Kaufman 2000), exposure to arsenite (McEwen 
et al. 2005), and ischemic reperfusion (Burda et al. 1994, 
DeGarcia et al. 1996, Martin de la Vega et al. 2001). Under 
these circumstances, four specific eIF2 kinases are 
responsible for eIF2 alpha phosphorylation and integrate 
the diverse stress signals into a common pathway (de 
Haro et al. 1996, Shi et al. 1998, Wu & Kaufman 1997). 
Compelling evidence indicates that PP1 contributes to the 
cellular recovery from stress by acting as an eIF2a 
phosphatase (Brush et al. 2003, Novoa et al. 2001). PP1 
was first identified as an eIF2a phosphatase in 
reticulocyte lysates (Ernst et al. 1982) and has in fact been 
established as the physiological eIF2a phosphatase (Brush 
et al. 2003, Novoa et al. 2001). Three PP1 regulators, 
Inhibitor-1 (I-1), GADD34 (growth arrest and DNA-
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damage-inducible protein 34) and CReP (constitutive 
repressor of eIF2a phosphorylation), have been 
implicated in targeting PP1c to eIF2, thereby regulating 
the eIF2a-phosphorylation state (Connor et al. 2001, 
Hemmings et al. 1984, Jousse et al. 2003, Kojima et al. 
2003, Marciniak & Ron 2006, Novoa et al. 2001). 

        Following an episode of cerebral ischemia, translation 
initiation is strongly inhibited upon reperfusion. 
Phosphorylation of eIF2 alpha, which occurs rapidly at 
early reperfusion, is the main mechanism responsible for 
reperfusion-induced translational repression (Burda et al. 
1994, DeGarcia et al. 1996). It has been reported that 
phosphorylation of eIF2 alpha occurs rapidly during the 
first minutes of post-ischemic reperfusion after an 
episode of cerebral ischemia, and the highest level of 
phosphorylation was after 30 minutes of perfusion, and 
decreased significantly after 4 hours (Garcia et al. 2007). 
Taking those studies together, it can be hypothesized that 
there might have been such a dynamic phosphorylation at 
the earlier stage before day 1.   It has also to be considered 
that the different result of this study from previous study 
(Fig. 11) may be due to the difference of anatomical 
location (Figure A). The DRG, lying along the vertebral 
column surrounded by fibrous tissue, may receive a large 
magnitude of tissue injury compare to spinal cord that is 
enclosed by vertebrae. Thus, it is not surprising that the 
ISR is only present in DRG, and not contributing to the 
onset of the sustained behavioral sensitivity. 

        Further study, specifically investigating the other 
transmembrane proteins, such as IRE1 and ATF6 are 
needed to confirm possible upstream BiP activities. Also, 
by determining the distribution of BiP and peIF2-alfa in 
both the DRG and the neuronal cells in spinal cord 
including at earlier time points than day 1 will give us a 
better understanding of ISR in WBV injury model. 
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Conclusions 
         
        The present study demonstrates that painful whole 
body vibration induces an increased behavioral sensitivity 
that is sustained even 7 days after the cessation of the 
vibration. Despite this, BiP expression was not changed in 
the lumbar at Day 1 or day 14, while phosphorylation of 
eIF2 alpha in the cervical spinal cord at day 1 is 
significantly lower than that of lumbar spinal cord. This 
finding warrants further investigation given that 
behavioral sensitivity remains until day 14. 
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