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ABSTRACT 

Stem cells exist in various tissues, including dental follicles and dental pulps. Adult stem 

cells (ASC) can be isolated from patients for autologous transplantation, which eliminates the 

risk of immune rejection with low or no tumorigenesis. However, one of the challenges is that 

ASC progressively lose their differentiation ability when cultured in vitro. This prevents 

expansion of large quantities of high-potential stem cells for therapeutics, especially for stem 

cells with limited tissue source, such as dental pulp stem cells (DPSC). The goal of this study is 

to define possible molecular regulation causing loss of differentiation. To achieve this goal, we 

determined that DPSC at passages 3 and 5 (early passage) possessed strong differentiation 

capability, and such differentiation capability is completely lost at passage 11 (late passage).  

Using whole-genome microarray to compare the transcriptomes, we found that the 

expression of 34 genes were decreased for more than 10-fold in p11 DPSC when compared to 

p3. After confirming gene expression with RT-PCR, heat shock protein B8 (HspB8) and the 

GIPC PDZ domain-containing family (Gipc2) were selected for siRNA knockdown study. 

Knockdown of HspB8 in early-passage DPSC resulted in the cells losing differentiation, but 

knockdown of Gipc2 had no effect, suggesting that HspB8 plays an important role in maintaining 

DPSC differentiation. To further study HspB8, we constructed 2 vectors, one containing the 

coding sequence (CDS) and 3’ untranslated region (3’UTR) and another containing only the 

CDS. Transfection of the vectors into early passage DPSC dramatically increased both HspB8 

mRNA and protein. However, transfection of the vectors into the late passage DPSC resulted in 

overexpression of HspB8 mRNA, but increase of HspB8 protein was seen only in CDS 

transfection. Given that 3’UTR of mRNA is the major target region for microRNAs (miRNAs), 

the results indicate that miRNAs are responsible for down-regulation of HspB8 in long-term 
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culture of DPSCs. We conclude that high-level HspB8 expression is essential for differentiation 

of DPSC, and down-regulation of HspB8 in cultured DPSC is likely due to increased expression 

of miRNAs. These are novel findings regarding HspB8 and miRNAs on the regulation of stem 

cell fate.
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CHAPTER 1: STEM CELLS AND DENTAL PULP STEM CELLS FOR RESEARCH 

AND THERAPY 

1.1 INTRODUCTION 

Stem cells are undifferentiated cells which possess the abilities of self-renewal and 

differentiation into specialized cells. These two abilities make them attractive for therapeutic 

applications, such as regeneration of diseased and injured organs and tissues. The earliest form of 

stem cell therapy was the use of transplanted bone marrow to restore hematopoiesis in irradiated 

bone tissue [1-3]. Currently, bone marrow transplant is still an effective method to restore 

hematopoiesis for treatment of leukemia [4, 5]. Recent studies have shown that stem cells can 

move towards tumors (i.e. tumor-tropism), and the usefulness of stem cells as vectors for 

targeted delivery of therapeutic agents to cancers is currently under investigation [6-9]. Besides 

therapeutic applications, stem cells also provide a useful model to study tissue development [10].  

Stem cells existing in nature can be classified into two major categories, according to 

their tissue origins: embryonic stem cells (ESC) and adult stem cells (ASC). As their names 

suggest, ESC are derived from tissues found during embryonic development, specifically in the 

blastocyst at the early stages of development. ESC possess strong capabilities of self-renewal and 

differentiation capabilities. They are pluripotent – meaning they can differentiate into cell types 

of any germ layer [11, 12]. Another important characteristic of ESC is that they can be 

maintained and proliferated in vitro for an indefinite time without losing their stem cell 

properties of self-renewal and differentiation capability. However, there are a number of 

technical and ethical issues in using ESC. One of the major drawbacks in the use of ESC is 

immune rejection because autologous transplantation of ESC is not possible. Use of ESC 

presents an elevated risk of tumorigenesis after transplantation into patients [13]. In addition, 
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isolation of ESC requires destruction of embryos, which raises issues on both ethical and legal 

fronts [14, 15].  

In contrast to ESC, ASC are derived from adult tissues, and studies suggest that stem 

cells exist in most, if not all, adult tissues. ASC possess several advantages. They can be 

harvested from the patient’s tissues and used for that same patient for autologous transplantation. 

Another major advantage of autologous stem cell transplantation is that it does not cause immune 

rejection. ASC are multipotent – they can differentiate into limited cell types. This limited 

potency allows ASC to differentiate into a unique cell type easily after transplantation. Another 

important feature of ASC is their low tumorigenicity.  Transplantation of ASC does not result in 

teratoma formation, which is a risk associated with transplantation of ESC [13]. However, one 

major drawback of ASC is that their differentiation property cannot be maintained for long 

period of time in vitro; i.e. ASC reduce or lose their differentiation capability during in vitro 

expansion [16, 17]. Primary isolated ASC can be used for only a few passages before their 

differentiation potential is lost. A large quantity of high potential ASC cannot be obtained 

through continuous expansion of the primary isolated cells. Thus, loss of differentiation hampers 

their therapeutic applications. 

Besides naturally-occurring stem cells, a third category of stem cells are artificial stem 

cells, which include the induced-pluripotent stem cells (iPS) [18, 19] and stem cells from somatic 

nuclear transfer (SCNT) [20]. The iPS cells are produced by introducing key transcription factors 

(TFs) into somatic cells, which reprogram those cells to behave similarly to ESC. This technique 

was first demonstrated in fibroblasts of mouse [18] and human origin [19]. The transcription 

factors used for such transformation are Oct3/4, Sox2, Klf4, and c-Myc. Initially, introduction of 

these genes required the use of viral transfection methods [18]. However, this technique 
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presented its own set of challenges, as these TFs are oncogenic, and may produce more harm 

than good if left unchecked [21, 22]. More recent studies have successfully generated iPS cells 

without the use of viral vectors, allowing the removal of these genes after reprogramming [23-

25].  

Stem cells from SCNT represent another attractive area as patient-specific cells can be 

generated, and harvesting such cells raises less ethical issues. These cells are generated through 

the insertion of somatic cell nuclei into the cytoplasm of an enucleated oocyte [26], a technique 

that had previously been performed using the nuclei of ES cells [27]. These newly formed cells 

are capable of blastocyst formation, from which stem cells can be harvested. When the 

blastocysts are transplanted into a surrogate mother, they can potentially form viable offspring 

[26]. However, developing stem cells using SCNT is unreliable, with successful stem cell 

formation occurring 1-2% of the time in mice [28]. Moreover, since SCNT requires the use of 

oocytes, developing human stem cell lines with this technique requires the addressing of ethical 

and legal problems [29], which are not unlike the problems faced with isolation of human ESC 

[14, 15]. 

1.2 DENTAL STEM CELLS 

Obtaining adult tissues for stem cell isolation usually requires some invasive procedures. 

However, teeth are often extracted and discarded as medical waste in dental treatment, and 

human deciduous teeth are exfoliated. Use of these teeth for isolation of dental tissue stem cells 

does not require additional surgical procedures. Thus, they provide an attractive resource of 

tissues for isolating stem cells [30].  

Stem cells have been isolated from various dental tissues. The dental follicle, a 

connective tissue sac surrounding the unerupted tooth, has been used to isolate dental follicle 
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stem cells (DFSC) [31-34]. DFSC have been shown to differentiate into calcium-depositing 

cementoblasts/osteoblasts, adipocytes, and multipolar neurons in vitro [32]. Transplantation of 

DFSC in vivo into mice yields cementum-producing tissue [35] and results in cementum 

formation [36]. Moreover, DFSC could differentiate into periodontal ligament [37], which is 

responsible for anchoring the mature tooth to the surrounding alveolar bone.  

Stem cells are also isolated from the dental pulp, which arises from the neural crest 

during tooth development [38]. When isolated from deciduous teeth in humans, they are called 

stem cells from human exfoliated deciduous teeth (SHED) [39, 40]. SHEDs are actually derived 

from the pulp of human deciduous teeth [39], and are capable of differentiating into osteogenic, 

odontogenic, and adipogenic cells, as well as neural tissue [40]. Due to the nature of deciduous 

teeth, they provide a highly accessible and non-invasive tissue source for isolation of a special 

type of dental pulp stem cells (DPSC). 

Besides DFSC and DPSC, stem cells have been obtained from other dental tissues, such 

as the periodontal ligament (PDLSC) [41], and the apical papilla of immature permanent teeth 

[42]. PDLSC bear the STRO-1
+
 marker [41], a stem cell marker found in bone marrow-derived 

stromal cells (MSC) and DPSC [40, 43-45]. They are capable of differentiating in vitro into 

cementum-secreting cells, as well as adipocytes and collagen-secreting cells. In addition, in vivo 

transplants of PDLSC were capable of forming periodontal ligament-like tissue [41]. Stem cells 

from the apical papilla (SCAP) were first isolated by Sonoyama et al. in 2008, and were 

determined to bear resemblance to DPSC [42]. At the same time, SCAP are CD24
+
, which makes 

them distinct from CD24
-
 DPSC [30]. Further studies show that SCAP are capable of 

differentiating in vitro into osteoblast/odontoblasts, as well as adipocytes [46]. 
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1.3 DIFFERENTIATION AND THERAPEUTIC POTENTIAL OF DENTAL PULP 

STEM CELLS 

DPSC can differentiate into fibroblasts, osteoblasts, odontoblasts, and adipocytes [44, 

47], as well as neurogenic and myogenic tissues in vitro [47]. A number of studies have 

suggested the potential uses of DPSC in tissue regeneration. These cells display the ability to 

grow dental-pulp-like tissue in a matrix of dentin [40, 44].  When grown on a perforated collagen 

scaffold, human DPSC differentiate into odontoblast-like cells in the presence of DMP-1 [48], or 

into dentin-like tissue in the presence of BMP2 [49]. Nam et al. showed that growth of human 

DPSC on porous granules of calcium phosphate, even in the absence of induction, promoted 

odontoblastic differentiation and dentin deposition [50]. When used in combination with a 

collagen scaffold and DMP-1, DPSC have been shown to regenerate dentin in perforated canine 

molars in vivo [51]. Additionally, DPSC can potentially be used for the repair or treatment of 

non-dental tissues. DPSC in canines, as well as stem cells from deciduous canine teeth (DTSC) 

were shown to develop into new bone when injected into mandible bone defects in vivo [52].  

Nesti et al. have shown that human DPSC, when co-cultured with mesencephalic neurons, 

attenuated neuronal destruction from 1-methyl-4-phenylpyridinium (MPP+) and rotenone [53]. 

Because both MPP+ and rotenone promote the disruption and death of dopaminergic neurons 

[54] and are used for in vitro models to mimic the destruction of dopaminergic neurons that 

occurs in Parkinson’s disease [55, 56], this result suggests that injection of DPSC may delay the 

progress of neurodegenerative disorders, such as Parkinson’s disease. Other studies have shown 

that SHEDs can enhance wound healing [57] and differentiate into neural progenitor cells [58] 

and endothelial cells [59]. These studies provide strong evidence to demonstrate that dental pulp 

stem cells are an attractive source of stem cells for regeneration of dental and non-dental tissues. 
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1.4 DIFFICULTIES AND PROBLEMS IN APPLICATIONS OF ASC 

The use of stem cells for tissue engineering or regeneration requires a large quantity of 

stem cells. However, it is difficult or often impossible to obtain sufficient quantities of stem cells 

from primary adult tissues due to the following reasons:  First, the frequency of ASC in adult 

tissues is very low – generally less than 0.1% of the cell population in any given adult tissue 

[60].  Second, invasive procedures are usually required to obtain the tissues, and the use of small 

amount of tissue for ASC isolation is desired.  Finally, in many cases only a limited amount of 

tissue is available. This is especially true for the dental tissues. For example, only a small amount 

of dental pulp could be obtained from each tooth.  As such, in vitro expansion of the primarily 

isolated ASC is required to acquire sufficient cells for clinical applications. The complications 

with in vitro expansion of ASC are twofold: first, the cells become senescent and lose their self-

renewal property after a certain number of cell doublings; and second, the cells gradually reduce 

and ultimately lose their differentiation capability as cell passage increases. Thus, it is difficult, 

often impossible, to obtain a sufficient quantity of high quality/potential ASC via in vitro 

expansion, and this has greatly hampered the clinical application of ASC. 

Loss of stem cell qualities during in vitro expansion or culture of ASC is a common 

phenomenon. Various types of adult stromal cells demonstrate a loss of proliferation, termed 

proliferative senescence [61]. Like any non-immortal somatic cell, ASC will become senescent 

(non-dividing) after approximately 40-60 doublings [62].  

In addition to a proliferative senescence, ASC also experience a decline in their capacity 

to differentiate, which is termed functional senescence by Bonab et al. [63]. They observed a 

20% decrease of differentiation into osteoblasts after 8 passages in cultured MSC. This reduction 

progressed to a 25% decrease by p10.  In addition, they reported that the decline in adipocyte 
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differentiation occurred sooner [63].  Similar to other ASC, dental stem cells are capable of 

differentiation within certain passages of in vitro culture [16, 17]. Takeda et al. reported that 

human DPSC lose the ability to differentiate at various passages, depending on the desired 

ultimate cell type. They reported a strong decrease from p3 to p10 in the activity of alkaline 

phosphatase (ALP) [16], indicating the reduction of differentiation into osteoblasts and 

odontoblast [40, 64]. In in vivo studies, DPSC could form dentin-like tissues when transplanted 

at p4, however when p10 DPSC were transplanted, formation of dentin-like tissue was not 

observed [16].  

Stem cells lose their therapeutic value upon loss of their differentiation capability. ESC 

can maintain their stem cell properties (self-renewal and differentiation capabilities) indefinitely 

in vitro under proper conditions. This evokes a big question: is it possible to develop methods to 

maintain the proliferation and differentiation capabilities of ASC? Studies have attempted to 

delay the senescence and to prolong the differentiation capability of ASC by improving culture 

medium. Gharibi and Hughes report that a great increase in proliferation and delayed senescence 

of in vitro cultured mesenchymal stem cells (MSC) can be achieved by supplementing the 

culture medium with basic fibroblast growth factor (FGF-2), platelet-derived growth factor 

(PDGF)-bb, ascorbic acid (AA), and epidermal growth factor (EGF). However, this 

supplementation did not delay the loss of differentiation. They also noticed that the loss of 

differentiation was not reflected by any changes in stem cell surface marker expression [65].  

1.5 MOLECULAR REGULATION OF STEM CELL PROPERTIES 

Self-renewal and differentiation capabilities are the two fundamental properties of stem 

cells. Studies have been attempted to elucidate the molecular regulations of such capabilities. Of 

particular note are the genes of transcription factors such as Oct4, Sox2, and Nanog. These genes 



8 

 

have been shown to maintain a pluripotent state in stem cells, and they are used to reprogram 

somatic cells into stem cells. These genes are heavily regulated by a large number of other genes 

[66-69]. Many other genes were also found to maintain stem cell properties. For example Esrrg 

preserves the undifferentiated state [68], while Wnt genes promote ESC differentiation [70]. A 

more thorough list of stem cell-related genes can be found in Table 1.1.  

Micro-RNAs (miRNAs) are short, non-coding RNAs generated from genomic DNA that 

bind to target mRNAs to exert post-transcriptional regulation (such as translational repression, 

mRNA destabilization, and/or cleavage) via the RNA-induced silencing complex (RISC) (Figure 

1.1). miRNAs have emerged as critical molecular regulators for maintaining the functions of 

stem cells by fine tuning the protein levels of various factors [91]. A majority of the current 

knowledge on miRNA regulation of stem cells was obtained from ESC, although the role of 

miRNAs in regulating ASC was also explored. In hematopoietic stem cells (HSC), miRNA-128 

(miR-128) and miR-181 are expressed to prevent differentiation, whereas miR-16, miR-103, and 

miR-107 are expressed to prevent proliferation [92]. miRNAs have been reported to regulate 

various forms of differentiation including monocytogenesis, myogenesis, cardiogenesis, 

neurogenesis, and osteogenesis [91]. One study indicated that miR-125 inhibits osteoblast 

differentiation by down-regulation of cell proliferation by an unknown mechanism [93]. Another 

study revealed that osteogenic differentiation of adipose-derived stem cells was inhibited 

because miR-26a down-regulated the translation of Smad mRNA, a transcription factor required 

for osteogenesis [94]. These studies support the idea that miRNAs can function in maintaining 

ASC fate in distinct ways. 
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Table 1.1  Genes related to stem cell function 

Gene Stem Cell-Related Functions 

BMP4 
Promotes expansion of human adipose-derived stem cells [71], induces 

trophoblast formation in human ESC [72] 

c-Myc Key factor in reprogramming adult fibroblasts into iPS cells [18, 19] 

Dax1 
Nuclear receptor, part of Oct4 signaling network [66], maintains ES cells in 

undifferentiated state [73] 

Dusp7 Knockdown induces differentiation of ES cells [68] 

EGR1 Limits proliferation and migration of hematopoietic stem cells (HSC) [74] 

Esrrb 
Transcription factor in Oct4 signaling network [66], promotes self-renewal and 

pluripotency by activating Oct4 expression [67]  

FoxO1,3,4 Cell cycle arrest and quiescence [75] 

FoxM1 
Maintains pluripotency of P19 embryonal carcinoma cells, knockdown reduces 

Oct4 and Nanog levels [76] 

KitL 
Promotes the differentiation of ES cells to germ-like precursor cell [77], promotes 

differentiation of mast cells from hematopoietic stem cells [78] 

Klf4 
Key factor in reprogramming adult fibroblasts into iPS cells [18, 19], maintains 

undifferentiated state of ESC [79] 

Klf5 Maintains undifferentiated state of ESC [79, 80] 

LIN 28 Can be used to reprogram iPS cells from human somatic cells [81] 

Mki67ip 
Knockdown reduces levels of Oct4, Sox2, and Nanog, knockdown induces 

differentiation of ES cells [68] 

Nanog Maintains pluripotency of ES cells [82] 

Oct4 Key factor in reprogramming adult fibroblasts into iPS cells [18, 19] 

Sall1 Part of Oct4 signaling network [66], binds to Nanog and Sox2 in ES cells [83] 

Sox2 
Key factor in reprogramming adult fibroblasts into iPS cells [18, 19], essential for 

maintaining ES cells [84] 

Tcfcp2L1 Transcription factor in Oct4 signaling network [66] 

Timp2 
Knockdown reduces levels of Oct4, Sox2, and Nanog, knockdown induces 

differentiation of ES cells, overexpression reduces ES cell differentiation [68] 

Wnt16 
Secreted non-canonical protein, interacts with Notch in embryonic HSC 

specification [85], the isoform Wnt16B is a marker for senescence [86] 

Zfp143 
Promotes self-renewal of ES cells through binding with Oct4 to promote Nanog 

transcription [69] 

Zfp219 
Member of Oct4 binding network [87], regulates differentiation in adult stem 

cells [88] 

Zfp462 
Maintains chromatin structure in pluripotent cells [89], maintains pluripotency in 

P19 embryonic carcinoma cells [90] 
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1.6 OBJECTIVES AND SIGNIFICANCE OF THIS DISSERTATION RESEARCH 

Use of patient-specific stem cells for autologous transplantation in regenerative medicine 

eliminates the risk of immune rejection after transplantation. DPSC are a valuable source of stem 

Figure 1.1  Schematic illustration of biogenesis of miRNAs and post-transcriptional 

regulation of gene expression in animal cells by a miRNA.  1. Transcription of DNA into 

pri-miRNA; 2. Drosha processes pri-miRNA into pre-miRNA; 3. Nuclear exporting pre-

miRNA; 4. Processing of pre-miRNA into miRNA duplex by dicer; 5. Formation of RNA-

induced silencing complex (RISC) with guide strand; 6. RISC searches for matching mRNA, 

7a. mRNA degradation when miRNA perfectly matching mRNA sequence, 7b. Translation 

inhibition when miRNA partially matching mRNA; 7c. mRNA deadenylation 
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cells for tissue engineering and regeneration. Studies have determined that DPSC can be induced 

into specialized cells with strong calcium deposition capability, suggesting that DPSC would be 

an attractive source of stem cells for regeneration related to bone and hard dental tissue. Yet, for 

any given patient, teeth that can be used for stem cell isolation are limited, and isolation of large 

quantities of stem cells from teeth is difficult. In vitro expansion of primarily isolated DPSC is 

needed for therapeutic uses of such cells. Studies have also shown that DPSC reduce their 

differentiation capabilities during in vitro culture [16, 17]. Thus, it is difficult to obtain large 

amounts of high quality DPSC through in vitro expansion. The overall goal of this dissertation 

research is to identify potential molecular regulation of the loss of differentiation capability in 

DPSC. Our overall hypothesis is that reduced expression of certain genes causes the loss of 

differentiation capability of DPSC during in vitro culture. The results of this study would aid in 

understanding the mechanisms of loss of differentiation seen in dental stem cells, as well as in 

other ASC. Elucidation of such a mechanism would facilitate the development of methods for 

maintaining the stem cell properties of ASC in long-term culture. In turn, this would permit 

growth of larger quantities of such cells for clinical applications. This is especially important for 

DPSC, due to the small size of the dental pulp and limited source available for stem cell 

isolation. Sufficient DPSC cannot be obtained from primary isolation. In vitro expansion of 

primarily isolated DPSC is needed for therapeutic uses of such cells. It is ideal that primary 

isolated high-differentiation potential DPSC can be expanded in vitro into large quantities 

without the loss of this differentiation potential and saved for future autologous therapeutic 

applications.  
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CHAPTER 2: LOSS OF DIFFERENTIATION POTENTIAL IN DENTAL PULP STEM 

CELLS DURING IN VITRO CULTURE 

2.1 INTRODUCTION 

Dental pulp stem cells (DPSC) are adult stem cells that were first isolated in human teeth 

by Gronthos et al. in 2000 [1]. They share a number of similarities with bone marrow-derived 

stromal cells (BMSC), such as the development of colony-forming unit-fibroblasts (CFU-F) in 

vitro [2], or expression of stem cell markers, including VCAM-1, fibronectin, alkaline 

phosphatase (ALP) [1], as well as the stromal cell marker STRO-1 [3, 4]. When transplanted in 

vivo, DPSC have been shown to form dentin [1], as well as respond to in vitro induction into 

neurogenic and myogenic tissues [5]. In mice, DPSC have been shown to possess neural crest 

migration signals [6]. During embryonic development, these signals direct the migration of 

cranial neural crest (CNC) cells towards the dental mesenchyme [7]. These cells have the 

capability to differentiate into neuronal cells and glial cells, as well as the skeletal and connective 

tissues of the head and neck [8]. Consistent with this finding are reports that DPSC possess 

multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes [9, 10], 

neural tissue [10, 11], and smooth muscles [10]. This multifaceted differentiation potential 

makes DPSC valuable for regeneration of dental and non-dental tissues.  

Like other ASC, the differentiation capability of DPSC is reduced when cultured in vitro.  

Takeda et al. have shown that, when subjected to osteogenic induction in vitro, human DPSC are 

capable of developing into calcium-depositing cells at early passages [12]. Transplantation of 

early-passage DPSC in vivo yielded formation of dentin and pulp-like connective tissue that was 

surrounded by a thin layer of odontoblast-like connective tissue. However, such differentiation 

potential was reduced at passage 6 (p6) and total loss of differentiation was observed around p10 

[12]. This research aims to determine the potential molecular regulation of the loss of 
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differentiation using rat DPSCs. To achieve this goal, we first need to know the differentiation 

potential of rat DPSC under our current culture conditions, such as when they start to lose the 

differentiation potential, and when they completely lose the capability 

Loss of differentiation under in vitro conditions mitigates the value of ASC. Various 

studies have been attempted to preserve the differentiation potential of stem cells, such as the 

addition of growth factors to culture medium [13]; however, the effect has been limited. 

Elucidating the mechanism of the loss of differentiation would facilitate development of 

techniques to preserve the differentiation potential of cultured stem cells. In searching the current 

literature, we found little information on the topic. Takeda et al. found that, from early to late 

passage, 719 genes had their expression levels reduced by half or more. In addition, they report 

that an increase in Wnt16 is suspected to play a role in the loss of differentiation potential in 

human DPSC [12].   

Transcription factors (TFs) are DNA binding proteins that function to regulate expression 

of various genes. The vital role of TFs has been demonstrated in reprogramming somatic non-

stem cells into pluripotent stem cells through the introduction of key TFs [14, 15]. Given the 

important roles of TFs, we speculate that TFs are involved in maintaining the differentiation 

capability of DPSC. Thus, another objective of this chapter was to compare the expression of 

selected stem cell-related TFs in the early and late DPSC to determine if these TFs change their 

expression as the passages of DPSC advance. 

It is generally accepted that ASC reduce overall differentiation potential as progression of 

cell passages. However, one study showed that passage 9 (p9) DPSC presented greater 

osteogenic differentiation than did p1 DPSC [16]. They concluded that this was because DPSC 
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spontanenously underwent differentiation into an osteoblasts lineage in growth medium [16]. 

The last objective of this study was to clarify this controversy. 

2.2 MATERIALS AND METHODS 

2.2.1 Animals and Dental Pulp Collection 

Sprague Dawley rats were handled in accordance with IACUC protocol. Dental pulps 

were extracted from the first molars of 5-7 days old postnatal rats. Briefly, the mandibles were 

surgically removed and surrounding soft tissues were cleaned off. First molars were removed 

from the tooth crypt. The pulps were extracted from the molars and sliced into 1-2mm sections, 

then transferred to a sterile tube filled with 5mL stem cell growth medium, i.e., MEM-α 

supplemented with +20% fetal bovine serum (FBS) and antibiotics [17]. 

2.2.2 Establishment of Cell Cultures from Rat Dental Pulp 

The tubes containing dental pulp tissues and medium were centrifuged at 3000rpm for 1 

minute and media was aspirated. Next, 10mL of 1% trypsin-EDTA was added to suspend the 

tissue pellet and incubated at 37°C for 10 minutes to obtain the cell suspension. After 5 minutes 

of centrifugation, the trypsin was removed and the cell pellet was re-suspended in the appropriate 

medium. For DPSC cultures, the cells were grown in stem cell growth medium consisting of α-

MEM, 20% fetal bovine serum (FBS), and antibiotics. Cells were incubated at 37°C and 5% CO2 

in humidified incubators. At 90% confluence, cells were detached using trypsin-EDTA and 

passaged to a fresh T-75 flask with an initial density of 200,000 cells per T-75 flask. For dental 

pulp cell (DPC) culture, cells were grown in MEM with 10% newborn calf serum (NCS), 1mM 

sodium pyruvate, and antibiotics as described by Wise et. al [18].  

Established dental pulp-derived cells (DPSC and DPC) at p3 were tested for 

differentiation (see section 2.2.3), and then processed for cryopreservation in liquid nitrogen for 
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future experiments. Briefly, cells were detached from T-75 flasks and centrifuged at 3000rpm for 

5 minutes, and medium was aspirated. Next, the cell pellet was re-suspended in freezing 

medium, consisting of 50% stem cell growth medium, 40% FBS, and 10% dimethyl sulfoxide 

(DMSO) to an approximate concentration of 5.0 x10
5
 cells/mL. The cell suspension was 

transferred to cryopreservation tubes and frozen at -80°C overnight before moving to liquid 

nitrogen for long-term storage. 

2.2.3 Assessment of Differentiation Capability of Dental Pulp Stem Cells 

 To assess if the established cells possess differentiation potential, both DPSC and DPC 

were seeded to 6-well culture plates (10cm
2
) at a rate of 5 x 10

4
 cells/well, with differentiation 

medium consisting of  low glucose DMEM (Gibco) supplemented with 10% FBS and 

differentiation induction reagents (50μg/mL ascorbic acid, 100nM dexamethasone, and 10mM β-

glycerolphosphate) [17]. This medium has been reported to induce osteogenic differentiation of 

various adult stem cells in several publications [17, 19, 20], including induction of osteogenesis 

of dental follicle stem cells in our lab [21]. Cells incubated in the basal low-glucose DMEM 

+10% FBS without the supplemented induction reagents were included as a control. In this 

study, DPC and DPSC were incubated in the induction medium for 7 to 14 days, with medium 

changes every 4 days. After the designated time of induction, calcium deposition was assessed 

by Alizarin red staining [22]. For Alizarin red staining, cells were washed once with PBS and 

then fixed in 10% neutral buffered formalin for 5 minutes. Cells were then washed in sterile 

milli-Q H2O twice and stained in a 1% Alizarin red S solution for 20 minutes. Immediately 

afterwards, cells were washed 4 times with sterile H2O. The degree of Alizarin Red staining was 

graded with scales outlined in Table 2.1. 
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  For gene expression analysis, established DPC and DPSC were seeded in T-25 flasks 

(25cm
2
) at a rate of 1.5 x 10

5
 cells/flask in α-MEM+20% FBS and grown for designated times. 

Next, the cells were collected into RLT buffer (Qiagen) for RNA isolation to compare gene 

expression of selected stem cell-related TFs using real-time RT-PCR. 

Table 2.1  Alizarin red staining scale 

Grade Description 

0 Complete absence of staining  

1 Staining barely visible, or localized to only 1-3 small locations 

2 Staining clearly observed, but covers less than 50% of the stained area 

3 Staining observed in 50% or more of area, with only small areas of non-staining 

4 Positive staining observed throughout the entire area 

2.2.4 Experiments to Determine Differentiation Potential of Different Passages of DPSC 

DPSC were recovered from liquid nitrogen, and cultured in T-25 flasks as described 

earlier. Cells at 90% confluency were passaged into new flasks at a 1:3 ratio (i.e. 1 flask was 

passaged to 3 flasks of the same size). Cells at passages 3, 5, 7, 9, and 11 were collected and 

subjected to differentiation induction. Briefly, cells were seeded to sterile 6-well and T-25 flasks. 

Differentiation induction was initiated when cells reached 80% confluence, as described in 2.2.3. 

After 2 weeks of induction, cells were stained with Alizarin red or collected into RLT buffer for 

gene expression analysis, as described in 2.2.3.  

2.2.5 RNA Isolation 

Cells were collected and lysed in RLT buffer, then centrifuged at 13000 rpm for 5 

minutes. The supernatant was then collected and transferred to a fresh tube. Isolation was 

performed using the RNeasy DNAse Digest kit (Qiagen). Briefly, the lysate was mixed with 70% 

ethanol at a 1:1 ratio and transferred to a RNA-binding mini-spin column. The column was then 

washed with RW1 buffer, followed by in-column DNAse I digestion (Qiagen) for 15 minutes. 
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The column was washed again before elution with 30 μL nuclease-free water. Concentration of 

RNA was determined using a Nanodrop 8000 (Thermo Scientific). 

2.2.6. Reverse-Transcription and Quantitative Real-time PCR 

M-MLV reverse transcriptase (Invitrogen) was used to generate a template strand of 

cDNA from 1000-2000ng isolated total RNA. Each RNA sample was mixed with 250 ng random 

primer in a 0.5 mL microtube and placed in a 65°C water bath for 5 minutes. The tube was 

immediately transferred to ice for 2 minutes, followed by addition of reverse-transcription buffer 

containing M-MLV reverse transcriptase. Reverse transcription was performed at 37°C for 50 

minutes and followed by incubation at 70°C for 15 minutes to deactivate the reaction. The 

resulting cDNA templates were then used for SYBR green real-time PCR to detect cycle 

threshold (CT) in an Applied Biosystems 7300 sequence detector. Each reaction contained 1-2 μL 

template cDNA, 12.5 μL of Power SYBR Green PCR Master Mix (Applied Biosystems), and 

200 – 600 nM gene-specific primers in a total reaction volume of 25μL. A full list of primers 

used for PCR is listed in Table 2.2. The CT of each gene was normalized to β-actin to obtain the  

Table 2.2  Primers used in real-time RT-PCR 

Gene RefSeq Primer Sequence 

Actin NM_031144.3 
Forward: 5'-CTAAGGCCAACCGTGAAAAGAT-3' 

Reverse: 5'-AGAGGCATACAGGGACAACACA-3' 

Ambn NM_012900.1 
Forward: 5'-GCTCCTGTTCCTGTCCCTAGT-3' 

Reverse: 5'-TTCCCAACTGTCTCATTGTCTC-3' 

BCRP NM_181381.2 
Forward: 5'-GAAAGACCCACGGGGATTAT-3' 

Reverse: 5'-CCCATCACAACGTCATCTTG-3' 

BMP4 NM_012827.2 
Forward: 5'-TGATACCTGAGACCGGGAAG-3' 

Reverse: 5'-AGAAGTGTCGCCTCGAAGTC-3' 

BMP6 NM_133530.1 
Forward: 5'-CTTACAGGAGCATCAGCACAGA-3' 

Reverse: 5'-GTCACCACCCACAGATTGCTA-3' 

BSP NM_012587.2 
Forward: 5'-ACGCTGGAAAGTTGGAGTTAGCTG-3' 

Reverse: 5'-TTCCTCTTCCTCGTCGCTTTCCTT-3' 

c-MYC NM_012603.2 
Forward: 5'-AAAGGCCCCCAAGGTAGTTA-3' 

Reverse: 5'-CTCGCCGTTTCCTCAGTAAG-3' 
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(Table 2.2 continued) 

Gene RefSeq Primer Sequence 

Dax1 NM_053317.1 
Forward: 5'-GAGCAGATCAAACACCAGCA-3' 

Reverse: 5'-CCACCTGTGGATCCTTGAGT-3' 

DMP1 NM_203493.3 
Forward: 5'-CCAGGACAGTAGCCGATCC-3' 

Reverse: 5'-TTCAATGTTTTTGGGGTGGT-3' 

DSPP NM_012790.2 
Forward: 5'-GGGAAGCTCAGTGGAAGTAAAG-3' 

Reverse: 5'-CTGCTGTGTCCCATGTTGTTAT-3' 

Dusp7 NM_001100547.1 
Forward: 5'-CAGCCAATCTGGCAATTTTT-3' 

Reverse: 5'-AACCAAGGAGAGCCTGAACA-3' 

EGR1 NM_012551.2 
Forward: 5'-AACACTTTGTGGCCTGAACC-3' 

Reverse: 5'-AGGCAGAGGAAGACGATGAA-3' 

Esrrb NM_001008516.2 
Forward: 5'-GTGCCTGAAGGGGATATCAA-3' 

Reverse: 5'-AGAAACCTGGGATGTGCTTG-3' 

FoxM1 NM_031633.3 
Forward: 5'-GGAGCCTACTCAAGCACAGG-3' 

Reverse: 5'-GGGATAGCCACCACTTGTGT-3' 

FoxO1 NM_001191846.2 
Forward: 5'-AACCAGTCCAACTCGACCAC-3' 

Reverse: 5'-TGCTCATAAAGTCGGTGCTG-3' 

FoxO3 NM_001106395.1 
Forward: 5'-TCTCCCGTCAGCCAGTCTAT-3' 

Reverse: 5'-GTCACTGGGGAACTTGTCGT-3' 

FoxO4 NM_001106943.1 
Forward: 5'-CCTGGCCTACCCAGATTGTA-3' 

Reverse: 5'-AAGGCAGCAGAAACCAGAAA-3' 

KitL 
NM_021843.4, 

NM_021843.4* 

Forward: 5'-GCTGTGAAACCTGCACTGAA-3' 

Reverse: 5'-ATGGCGCAAGTAGACTGGAC-3' 

Klf4 NM_053713.1 
Forward: 5'- GTGCAGCTTGCAGCAGTAAC-3' 

Reverse: 5'- GTGGGATAGCGAGTTGGAAA-3' 

Klf5 NM_053394.2 
Forward: 5'-ACCTACTTTCCCCCATCACC-3' 

Reverse: 5'-TAGCAGCATAGGACGGAGGT-3' 

Lin28 NM_001109269.1 
Forward: 5'- CCCAGTGTCACCCTGTCTTT-3' 

Reverse: 5'- TTCCCCACAAAAGCTTTCAC-3' 

Mki67 NM_139186.2 
Forward: 5'-GGAAGAGCAAGCAGTGATCC-3' 

Reverse: 5'-CCTGTCCATGTTTGCATGTC-3' 

Mmp13 NM_133530.1 
Forward: 5'-TTTATTGTTGCTGCCCATGA-3' 

Reverse: 5'-GAGAGACTGGATTCCTTGAACG-3' 

Msh2 NM_031058.1 
Forward: 5'-TGGATTCCACCCAGAGAAAG-3' 

Reverse: 5'-TCTCTCCGCCTGGTAAAATG-3' 

Mst1 NM_024352.1 
Forward: 5'-TACCATGGCTCAGGTGAACA-3' 

Reverse: 5'-TGGGTGTGAATTGTGGCTTA-3' 

Musashi NM_148890.1 
Forward: 5'-TGCTGGGTATTGGCATGTTA-3' 

Reverse: 5'-TAGGTGTAACCAGGGGCAAG-3' 
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(Table 2.2 continued) 

Gene RefSeq Primer Sequence 

Nanog NM_001100781.1 
Forward: 5'-TACCTCAGCCTCCAGCAGAT-3' 

Reverse: 5'-CATTGGTTTTTCTGCCACCT-3' 

Notch1 NM_001105721.1 
Forward: 5'-CTCAACACACTGGGCTCTTTC-3' 

Reverse: 5'-ACACCCTCATAACCTGGCATAC-3' 

Oct4 NM_001009178.2 
Forward: 5'-AGAACCGTGTGAGGTGGAAC-3' 

Reverse: 5'-CACTCGAACCACATCCCTCT-3' 

Ocn NM_013414.1 
Forward: 5'-ACTGCATTCTGCCTCTCTGAC-3' 

Reverse: 5'-TATTCACCACCTTACTGCCCTCCT-3' 

RunX2 
NM_001278483.1, 

NM_001278484.1** 

Forward: 5'-GCCGGGAATGATGAGAAC-3' 

Reverse: 5'- GAGGATTTGTGAAGACCG -3' 

Sall1 NM_001107415.2 
Forward: 5'-GTGGCAAGGGTGAAGACAGT-3' 

Reverse: 5'-ACAGAGGGTTGGTGAAGGTG-3' 

Sox2 NM_001109181.1 
Forward: 5'-ATTACCCGCAGCAAAATGAC-3' 

Reverse: 5'-CTAGTCGGCATCACGGTTTT-3' 

Sp7 NM_001037632.1 
Forward: 5'-CCTACTTACCCGTCTGACTTTG-3' 

Reverse: 5'-CAACTGCCTTGGGCTTATAGA-3' 

Spp1 NM_012881.2 
Forward: 5'-GCTTGGCTTACGGACTGAGG-3' 

Reverse: 5'-GCAACTGGGATGACCTTGATA-3' 

Tcfcp2L1 NM_001107170.1 
Forward: 5'-GGGACAGGACCAAAAGTCAA-3' 

Reverse: 5'-TGGGGTTCAAACACAGACAA-3' 

Timp2 NM_021989.2 
Forward: 5'-GCATCACCCAGAAGAAGAGC-3' 

Reverse: 5'-GTCCATCCAGAGGCACTCAT-3' 

Wnt16 NM_001109223.1 
Forward: 5'-GAGCTGTGCAAGAGGAAACC-3' 

Reverse: 5'-AGTGGCGACCATACAGTTCC-3' 

Zfp143 NM_001012169.1 
Forward: 5'-AGCAGCCATCTCTGGAAGAA-3' 

Reverse: 5'-GAAAGGCTCTTCCTCCTGCT-3' 

Zfp219 NM_001007681.1 
Forward: 5'-AGGAGAGTGGGCAAGCAATA-3' 

Reverse: 5'-CAGCAGCACATCCTCTACCA-3' 

Zfp462 XM_342840.5 
Forward: 5'-CAAGGCTCTGAGTGGGAAAG-3' 

Reverse: 5'-CAGCTGCATACTGTCCTCCA-3' 

* KitL mRNA has two separate isoforms, with isoform 2 having a slightly shorter CDS region, in 

addition to the translated protein having slightly different C-terminus and being shorter than 

isoform 1. The primers listed flank a conserved sequence. 

**RunX2 mRNA has two separate isoforms, with isoform 2 having a shorter 5' untranslated 

region and CDS region, as well as the translated protein having slightly different N-terminus and 

being shorter than isoform 1. The primers listed flank a sequence conserved between the two 

isoforms. 
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ΔCT with the equation:                      . We calculuated the difference in ΔCT between 

experimental and control samples (ΔΔCT) using the equation:                       

           .Relative gene expression (RGE) was calculated using the following equation:     

         [23]. The control was set to 1 with the standard error of the mean (SEM) of 0. 

2.3 RESULTS 

2.3.1 Growth Pattern of Dental Pulp Derived Cells 

Two culture systems were used to culture cells derived from dental pulps. For DPSC 

grown in stem cell medium, cultures reached 80% confluence 4-6 days after seeding. Early-

passage DPSC had a fibroblast-like appearance. Within 7-8 days, the cells reached 100% 

confluence (Figure 2.1). As passaging progressed, DPSC morphology gradually transitioned to a 

spindle-like shape, and cells were capable of forming colonies. In contrast, DPC grown in MEM 

+ 10% NCS did not display the same fibroblast-like appearance. Cells reached 100% confluency 

within 6 days, which was similar to DPSC, but they were not able to form colonies.  

 

Figure 2.1  Culture and growth of early-passage DPSC. Note that DPSC reached full 

confluency around 9 days of in vitro culture. Each frame represents to the same field of view 

over the entire 11 days of culture. 100x magnification 

A – 1day B – 3days C – 5days 

D – 7days E – 9days F – 11days 
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2.3.2 Differentiation Capability of Dental Pulp Derived Cells 

When both DPC and DPSC were incubated in differentiation-induction medium, Alizarin 

red staining indicated that calcium deposits could be detected in DPSC as early as after 7 days of 

induction. These calcium depositions were shown as scattered spots in the plate at day 7 (Figure 

2.2; Section A). After 14 days of induction, the calcium deposits were spread to the entire plate 

(Figure 2.2; Section B). In contrast to DPSC, DPC did not show any positive staining with  

 

Figure 2.2  Comparing the differentiation capabilities of early-passage DPSC and DPC. Cells 

were subjected to osteogenic induction for 1 or 2 weeks and stained with Alizarin red. 

Positive staining was seen in DPSC as soon as 1 week (A), and increased staining was seen 

after 2 weeks of induction (B). In contrast, no staining was observed in DPC after 1 or 2 

weeks of induction (C and D). All images 50x magnification. 

A B 

C D 
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Alizarin red after both 7 and 14 days of induction (Figure 2.2; Sections C & D), suggesting that 

no stem cells were present in the DPC population. 

Because calcium can be deposited by osteoblasts, odontoblasts, and/or ameloblasts, we 

further assessed the expression of marker genes specific for osteoblasts (Bsp, Ocn, Runx2, Sp7, 

Spp1), ondontoblasts (DSPP), and ameloblasts (Ambn) with real-time RT-PCR to assess the 

differentiation lineage of DPSC. The results are shown in Figure 2.3. We observed an increase in 

expression for marker genes of osteoblasts, odontoblasts, and ameloblasts after differentiation 

induction. The greatest increase in expression occurred in Ocn, with a 10-fold increase after 7 

days of induction, and an increase greater than 200-fold after 14 days. After 7 days of culture in 

induction medium, Bsp expression appeared unchanged; however, its expression had increased 

to 10-fold expression after 14 days of induction. This upregulation in expression after 

differentiation was also observed for the other osteoblast markers Runx2 and Sp7. Expression of 

the odontoblast marker DSPP increased sharply from 3-fold after 7 days to 112-fold after 14 

days.  Expression of the ameloblast marker Ambn had rapidly increased to 50-fold and 80-fold 

after 7 and 14 days of induction, respectively (Figure 2.3). These results of marker gene 

expression indicate that DPSC are capable of multipotent differentiation toward osteoblasts, 

odontoblasts, and ameloblasts under our induction conditions.  

2.3.3 Differentiation Potential of DPSC at Different Passages 

To test the differentiation capability of DPSC during in vitro expansion/culture, the 

DPSC were passaged at about 90% confluency, and different passages of cells were tested to 

evaluate their differentiation capability, as detailed in Section 2.2.4. Gradual reduction of 

calcium deposition was observed with progression of serial passaging, as shown by Alizarin red 

staining. The representative images for each passage tested are reported in Figure 2.4. The 
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Figure 2.3  Culture of DPSC in induction medium increases the expression of differentiation marker genes as determined by real-

time RT-PCR 
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Figure 2.4  Reduced differentiation after induction of DPSC across serial passages, as determined by calcium deposition with 

Alizarin red staining. Note that the gradual reduction of calcium-deposition in passages 3, 5 and 7 (A, B and C), and sharp 

decrease of staining in passages 9 (D) and no staining at passage 11 (E). 50x magnification 
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degree of staining was graded on a 0-4 scale as described in Table 2.1. Non-parametric statistical 

analysis was conducted using the SAS program for analysis of variance (ANOVA) and least 

significant difference (LSD). The results are presented in Figure 2.5. The results showed that p3 

cells had a strong differentiation potential. Differentiation potential was somewhat reduced in p5 

with no statistical difference, but significantly reduced at p7 (Figures 2.4, 2.5). However, by p9 

and p11 their differentiation potential was dramatically reduced. Generally, no Alizarin red 

staining could be seen in p11 DPSC after 14 days of induction, suggesting that the DPSC had 

totally lost their differentiation capability by this passage. Based on the results of differentiation 

potential, we classified p3 to p5 DPSC as early-passage DPSC, which possess strong 

differentiation capability; and p9 to p11 as late-passage DPSC with significantly and greatly 

reduced differentiation. capability. DPSC at p7 appeared as a transition passage before complete 

loss of differentiation capability.  

 

Figure 2.5  Reduction of differentiation capability in DPSC as cell passage increases. Note 

that cells significantly reduced differentiation at p7 as compared to p3, and almost completely 

lost differentiation after p9. Groups that do not share the same letter are statistically 

significant at P<0.05 (mean ± SEM, n=3).  
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2.3.4 Loss of Differentiation in DPSC Was Not Due to Overgrowth of DPC 

The above experiments showed that DPSC gradually reduced their differentiation 

capability during in vitro culture, and by p11 they no longer responded to differentiation 

induction, which is similar to non-stem cell DPC. Because established DPSC were 

heterogeneous, likely to contain non-stem cells in the population, there was a concern if the loss 

of differentiation seen in the late passage DPSC was due to overgrowth of non-stem cell DPC. 

To address this concern, we observed that the morphology of the two cell populations remained 

distinct, as depicted in Figure 2.6. We further compared the expression of some stem cell marker 

genes in early and late passages DPSC vs. DPC under the same culture condition. These results 

are shown in Figure 2.7. We found that many of these marker genes, including Esrrb, DMP1, 

Musashi, and Kit ligand (KitL), retained a high level of expression in late-passage DPSC, which 

were similar to early passage. More importantly, expression of those genes was generally more 

than 10 to 100-fold higher in late-passage DPSC as compared to DPC (Figure 2.7), suggesting 

that the late-passage DPSC and non-stem cell DPC were distinct populations.  

Comparing the early and late passages of DPSC, we found no significant changes in 

expression of most of the stem cell marker genes tested such as Esrrb, DMP1, Musashi, and 

KitL. However, significant changes of expression of ALP, Notch1, and BCRP were observed 

when comparing the early passage to late passage. Of these, decreased expression of ALP and 

BCRP in the late passage was observed.  

2.3.5 Expression of Transcription Factors in Different Passages of DPSC 

To study the possible transcription factors (TFs) that may be responsible for the loss of 

differentiation in DPSC, a total of 30 TFs associated with stem cell function (see Table 2.2) were 

screened for expression of the transcription factors and selected stem cell related genes in the  
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Figure 2.6  Comparing the morphological differences between late-passage DPSC (A) and non-stem DPC (B). 50x magnification 
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Figure 2.7  Expression of stem cell marker genes in early, late-passage DPSC and DPC. RGE was normalized to gene 

expression in DPC (Y-axis is log10 scale, mean ± SEM, n=3, * indicates statistical significance of p < 0.05).  
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early and late passage DPSC using real-time RT-PCR. Our objective was to determine a change 

in expression of these genes in late passage DPSC when compared to the earlier passages. The 

majority of the genes screened did not show any noticeable change between early and late 

passage DPSC (data not shown). The most notable decrease-in-expression genes in late-passage 

DPSC are displayed in Figure 2.8. Although the genes Klf5, Tcfcp2L1, and Zfp462 showed 

differences, no statistical significance was detected in those genes by ANOVA and LSD. We 

observed huge variations in expression of some of the genes among different batch of DPSC as 

reflected by large error bars (Figure 2.8).  

2.4 DISCUSSION 

Alizarin red has been used to stain calcium deposition in many labs. When subjecting 

early-passage DPSC to differentiation induction medium, strong calcium deposition was detected 

after 2 weeks of culture as revealed by Alizarin red staining, suggesting that the cells had 

differentiated into calcium-depositing cells. Because osteoblasts, odontoblasts, and ameloblasts 

are all capable of depositing calcium, Alizarin red staining alone could not determine if the 

DPSC were induced to differentiate into a particular type of calcium-depositing cells. Thus, we 

examined the expression of marker genes in these DPSC-derived calcium depositing cells, and 

we found that expression of the markers for osteoblasts, odontoblasts, and ameloblasts was 

dramatically increased after differentiation induction.  Increased expression of these 

differentiation markers indicates that DPSC were capable of differentiating into osteoblasts, 

odontoblasts, and ameloblasts. Studies by others have shown that colonies derived from human 

DPSC show a diversity in cell surface markers, suggesting that DPSC cultures are 

heterogeneous, containing different populations of cells [1]. Thus, it is also possible that 
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osteoblastogenesis, odontoblastogenesis, and ameloblastogenesis are the result of differentiation 

of different subpopulations of stem cells existing in DPSC. 

Loss of differentiation has been reported in long-term culture of stem cells derived from 

different types of tissues. This cellular aging has been observed in hematopoietic stem cells in 

mice [24]. In humans, bone marrow stromal/stem cells (BMSC) demonstrate a change in 

morphology, from a fibroblast-like spindle shape to a flat, broadened shape, after 34 – 42 

doublings in vitro, resulting in decreased differentiation of these cells [25]. Many studies 

reported that BMSC largely lose their in vitro differentiation capability around p6 [26, 27], but 

some studies have shown that differentiation reduction could occur as early as the first [28] or 

second passage [29]. Wall et al. found that stem cells derived from human adipose tissue lose the 

ability to differentiate into adipocytes as cells reach p10 [30]. It should be noted that not all ASC 

experience this loss of function at the same rate. For example, MSC isolated from human 

Figure 2.8  Comparison of the expression of TFs and stem cell-related genes in early and 

late-passage DPSC. No statistically significant change in expression of the transcription 

factors was observed (mean ± SEM, n=6)  
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umbilical cord can be grown in vitro for a longer period than those isolated from bone marrow 

[31]. This study revealed that, similar to other ASC, DPSC start to reduce differentiation 

capability at p7, and largely or completely lose differentiation around p11 (Figures 2.4, 2.5). 

By p11, DPSC were not capable of differentiating into calcium depositing cells (Figures 

2.4, 2.5) when subjected to induction. However, the expression of stem cell markers remained 

constant in early and later passages, and expression was much higher than in non-stem cell DPC.  

The results of our experiments indicate that the cells did not undergo spontaneous differentiation 

in the medium without ascorbic acid, dexamethasone, and β-glycerolphosphate. This result was 

inconsistent with the observations of Yu et al, who reported that DPSC underwent spontaneous 

differentiation into osteoblasts [16]. After reviewing the experiments of Yu et al, we found that 

although they used similar medium for establishing and maintaining DPSC, their medium 

contained ascorbic acid and bovine pituitary extract [16].  Ascorbic acid is one of the reagents 

used for inducing osteogenic differentiation [18]. Thus, it is likely that supplementation of 

ascorbic acid in the medium induced differentiation, while the effect of bovine pituitary extract 

could not be excluded. 

Individual colonies derived from single cells in the DPSC tested positive for different 

surface proteins, suggesting that DPSC are a heterogeneous cell population, containing different 

cell types [1]. Because the majority of the cells in the dental pulp are non-stem cells, it is not 

surprising that the primary isolated DPSC contained non-stem cells. One may ask if the 

reduction or loss of differentiation seen in the late passages was due to overgrowth of non-stem 

cells, such that they might become predominant in the late-passage DPSC population after long-

term culture. To address this concern, we compared the expression of common stem cell markers 

and found that most markers did not significantly change their expression in later passages, as 
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compared to early passage. More importantly, comparing the late passage DPSC to their 

counterpart non-stem cell DPC, we found that expression of these stem cell marker genes was 

much higher in late-passage DPSC than in DPC (Figure 2.7). In addition, they also displayed 

distinct cell morphology (Figure 2.6). Thus, the results of this study provide evidence that the 

loss of differentiation potential in the late passage DPSC was not due to overgrowth of non-stem 

cells, and loss of differentiation capability was likely due to intrinsic changes. 

To further explore the intrinsic changes in DPSC that may cause the loss of 

differentiation, we studied the expression of 30 stem cell-related TFs in the early and late 

passages of DPSC, and found that none of them showed significant changes between these two 

passages, suggesting that TFs may not be the key factors causing the loss of differentiation 

during long-term culture of DPSC.  
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CHAPTER 3: WHOLE TRANSCRIPTOME ANALYSIS OF EARLY AND LATE 

PASSAGES OF DENTAL PULP STEM CELLS TO IDENTIFY POTENTIAL GENES 

CAUSING LOSS OF DIFFERENTIATION IN LONG-TERM CULTURE 

3.1 INTRODUCTION 

In Chapter 2, we determined that the differentiation ability of DPSC is reduced as cell 

passage increases. Established DPSC at early passages, such as passage 3 and 5 (p3 and p5) 

possess strong differentiation capability, but as these cells progress they completely lose that 

differentiation ability at passages 9 to 11 (p9 to p11). We conducted experiments to prove that 

the loss of differentiation capability was caused by intrinsic changes in DPSC during passaging. 

Thus, we analyzed the expression of 30 stem cell-related transcription factors (TFs), but found 

that late passage DPSC did not significantly change expression of these TFs when compared to 

those in early passages. In order to identify genes causing the loss of differentiation, we decided 

to compare the transcriptomes of early and late-passage DPSC. The objectives of this chapter 

were (a) to determine what genes were significantly down-regulated in late-passage DPSC when 

compared to the early-passage, and (b) to identify candidate genes that might be involved in 

regulating differentiation of DPSC. These objectives were accomplished by using whole genome 

microarray, real-time RT-PCR, and gene knockdown techniques.  

3.2 MATERIALS AND METHODS 

3.2.1 Cell Culture 

DPSC were established using a published protocol for isolation of dental stem cells [1]. 

Briefly, dental pulps were isolated from day six rat pups and trypsinized to obtain cell 

suspension. For DPSC culture, the cells were grown in α-MEM with 20% fetal bovine serum 

(FBS). Cells were then incubated at 37°C and 5% CO2 in humidified incubators. At 90% 

confluence, cells were detached using trypsin-EDTA and passaged to a fresh T-75 flask with an 

initial density of 200,000 cells per T-75 flask.  
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3.2.2 Whole-Genome Microarray Analysis 

Whole-genome microarrays provide a powerful tool to study the transcription of the 

entire genome, known as the transcriptome, in a given cell population. To compare the 

transcriptomes of the early and late passages of DPSC, whole-genome microarray analysis was 

employed to obtain the gene transcription profile of p3 and p11 DPSC. For microarray study, 

cells were cultured and passaged as described above in Section 3.2.1 until designated passages. 

P3 and p11 cells were seeded in T-25 flasks and grown to confluence. Next, cells were collected 

and processed for RNA isolation, as described in Section 3.2.5. Concurrently, the cells were 

seeded to 6-well plates and subjected to differentiation analysis, as described in Section 3.2.4, to 

ensure strong differentiation capability of p3 cells and loss of differentiation of p11 cells. 

Microarray analysis was conducted by Phalanx Biotech (Belmont, CA) using a Rat 

OneArray containing long oligonucleotides (~60-mer in length) to detect 24,358 transcripts. The 

microarray also includes 980 control oligonucleotides for validation and normalization of the 

data. Microarray analysis was run in triplicate for each RNA sample. Raw signal intensity of 

each transcript was obtained and analyzed. Data was obtained from two sets of DPSC samples.   

3.2.3 Analysis of Microarray Data 

 A generous amount of gene expression data were generated from whole genome 

microarray analysis. Proper analysis and data mining was critical. There are two basic types of 

data mining methods for whole genome microarray studies, as described by Schulze et al. [2] and 

schematically shown in Figure 3.1. Because Method A (Figure 3.1; Section A) was proposed to 

answer specific biological questions, and our biological question was to find the gene whose 

expression was down-regulated in late-passage DPSC, this method was used for analyzing and 

mining the microarray data in this study. 
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Figure 3.1  Data mining in whole genome microarray analyses and schematic flowchart to determine the candidate genes in 

this study. The method to analyze data from whole-genome microarrays can be classified into two archetypes. (A) Microarray 

analysis which compares expression patterns between two experimental samples to address specific questions. (B) Microarray 

data from experimental samples are compared to a vast database from collection of other microarrays to discover new gene 

pathways and relationships. (C) The flowchart used in this chapter to identify candidate genes involved in loss of 

differentiation in DPSC.  
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In order to process the large quantities of information obtained from the microarray, we 

sought to reduce the overall population of genes to a smaller population by way of establishing 

more rigorous criteria for selection of the genes. Our post-microarray analysis followed a similar 

pattern described by Schulze et al. [2], and our criteria has been outlined in Figure 3.1. Briefly, 

we first compared signal intensity levels between the two separate sets of DPSC samples. We 

sought to eliminate those genes that did not display a large decrease in microarray intensity from 

early to late passage. After doing so, we used real-time RT-PCR to verify the changes of 

expression observed in the microarray data. Next, correlation analysis was conducted to 

determine the correlation between differentiation and gene expression.  Finally, siRNA was used 

to knockdown the expression of selected genes to determine if they possessed the effect to 

regulate differentiation of DPSC. 

3.2.4 Differentiation of DPSC 

Cells were seeded either to sterile 6-well plates at a rate of 5 x 10
4
 cells/well, or to sterile 

T-25 flasks at a rate of 1.5 x 10
5
 cells/plate prior to differentiation treatment. Induction medium 

was prepared using low glucose DMEM supplemented with 10% FBS, 0.05 mM ascorbic acid, 

100 nM dexamethasone, and 10m M β-glycerolphosphate [3]. Cells were incubated in this 

induction medium for 14 days prior to staining with Alizarin red S to detect calcium deposition 

[4]. Cells were also collected for RNA isolation to analyze gene expression. 

3.2.5 RNA Isolation 

Cells were collected by trypsinization and pelleted by centrifugation. The pellet was 

lysed using 350μL Buffer RLT (Qiagen). Next, RNA was isolated from the lysate using an 

automated Qiagen RNeasy DNAse Digest protocol on a Qiacube instrument (Qiagen). Briefly, 

70% ethanol was added to the sample at a 1:1 ratio and the mixture was transferred to an RNA-
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binding spin column. The bound RNA was then washed before incubating in DNAse I reagent 

for 15 minutes (Qiagen). The column was washed again, and RNA was eluted with 30 μL 

nuclease-free water. After isolation, RNA concentration was measured using a Nanodrop 8000 

(Thermo). For microarray analysis, RNA Integrity was measured using an RNA 6000 Nano 

LabChip Kit (Agilent Technologies), per the manufacturer’s instructions, using an Agilent 2100 

Bioanalyzer. RNA samples that met the following requirements were used for microarray 

analysis:  

1. Minimum RNA integrity number (RIN) of 8.0 

2. OD260/280 > 1.8 and OD260/230 > 1.8 

3. Minimum RNA quantity of 6 μg in a concentration greater than 200 ng/μL 

3.2.6 Real-Time RT-PCR 

Template cDNA was generated from isolated RNA using M-MLV reverse transcriptase 

(Invitrogen) with the same methods as described in Chapter 2 (2.2.6). Briefly, 1000-2000 ng 

sample RNA was mixed with 250 ng random primer and heated to 65°C for five minutes. 

Reverse transcriptase was added, and the reaction was incubated for 50 minutes at 37°C before 

deactivation by incubating at 70°C for 15 minutes. The cDNA were stored at -20°C until ready 

for analysis. The primer sequences used for PCR are listed in Table 3.1. All reactions were 

conducted in 25 μL per reaction containing 1-2 μL cDNA with an ABI 7300 sequence detector 

(Applied Biosystems). We used the SYBR real-time PCR to obtain cycle threshold (CT) values 

for calculation of relative gene expression (RGE). β-actin was used as control to obtain ΔCT and 

ΔΔCT was calculated as described in Chapter 2. RGE was determined using the following 

formula:             [5]. 
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Table 3.1  Real-time PCR primers used in this chapter 

Gene RefSeq Primers 

Acad9 NM_181768.2 
F: 5’-CTTGGGGAGATCATCAGCAT-3’ 

R: 5’-GCAGATACTTGGCCTTCTGC-3’ 

Alx1 NM_012921.1 
F: 5’-GATGCCAGAGAAGAGCGAAC-3’ 

R: 5’-TAGCTGCAAACTGGTGAACG-3’ 

Apbb1ip NM_001100577.1 
F: 5’-GAACCATCCAGGCTCAGAAA-3’ 

R: 5’-CAGCAGCATTTGCTCCATAA-3’ 

Arhgap20 NM_213629.1 
F: 5’-TCGGACTCTGCTGATTGATG-3’ 

R: 5’-ATTTTGGCCGAGACAAACAG-3’ 

Clgn NM_001109472.1 
F: 5’-AGATCGGATGTGGAGAATGG-3’ 

R: 5’-AGGACTCCAGATTCCCTGGT-3’ 

Colec11 XM_002729610.1 
F: 5’-TTTATCCCCCTTGTGAGACG-3’ 

R: 5’-CCACTGTTTGCTAGCTGCTG-3’ 

Egflam NM_001108938.2 
F: 5’-TAAAGCCCTGTGGACCAAAC-3’ 

R: 5’-TCCAGAGCGTGCACTGATAC-3’ 

Eya2 NM_130427.1 
F: 5’-TTGGTCACCACCACACAACT-3’ 

R: 5’-CAGCTCTCCTTGCCTGTCTT-3’ 

Fam159b XM_574844.3 
F: 5’-GGCTTCGCAGACCTCAAGTA-3’ 

R: 5’-CAGCAATTCCCAATCCAATC-3’ 

Gipc2 NM_001037210.1 
F: 5’-CACTTGGACTCACCATCACG-3’ 

R: 5’-ATTCGATATGATCCCCCACA-3’ 

HspB8 NM_053612.2 
F: 5’-TCTCCAGAGGGTCTGCTCAT-3’ 

R: 5’-GCAGGTGACTTCCTGGTTGT-3’ 

PCOLCE2 NM_001127640.1 
F: 5’-AGGACGCCTTGAAAAACCTT-3’ 

R: 5’-GCTGGTTCTTCGGAGCTATG-3’ 

Sial NM_012587.2 
F: 5’-TACGGGGTAGAGACCACAGC-3’ 

R: 5’-TCGTCGCTTTCCTTCATTTT-3’ 

Slc6a15 NM_172321.1 
F: 5’-TGGATTCGCAAGCTGTGTAG-3’ 

R: 5’-CCAAGGGAGAGGTTGTTGAA-3’ 

Tcfap2c NM_201420.2 
F: 5’-CTGAGAACCTAGGGCTGCAC-3’ 

R: 5’-GGTCCTTTGCGAATGACAGT-3’ 

Thbd NM_031771.2 
F: 5’-TATGACAAGCGAGGGTAGGG-3’ 

R: 5’-GGGACACTCTGGGATCTTCA-3’ 

Wif1 NM_053738.1 
F: 5’-GGAGGGACCTGTTTTTACCC-3’ 

R: 5’-ATGCATTTACCTCCGTTTCG-3’ 

Zfp423 NM_053583.2 
F: 5’-CGACTCCGGGATCATAACAT-3’ 

R: 5’-TCCGAGAAGAAAGTCCGAGA-3’ 

3.2.7 Statistical Analyses  

Beginning in p3, serial passages of DPSC were grown through p11, and cells were 

collected for RNA isolation in early and late passages (i.e. p3, p5, p9, and p11). Potential 

candidate genes were selected from the microarray results obtained from the microarray analysis 
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described in Section 3.2.3. Relative gene expression (RGE) of those genes was measured using 

real-time RT-PCR to compare p3 to p11. Correlation of gene expression and differentiation was 

calculated by performing Spearman correlation analysis between the RGE value and 

differentiation observed (see Figure 2.5, page 32). SAS program version 9.2 was used for the 

correlation analysis.  

All other statistical analyses were performed using SAS 9.2 using the GLM ANOVA 

procedure. Statistical significance was determined by comparing for least significant difference 

(LSD), with p < 0.05 being statistically significant. 

3.2.8 Gene Knockdown Experiment 

To determine if expression of candidate genes had any effect on differentiation, we used 

siRNA-mediated knockdown to reduce the expression of the candidate genes in early-passage 

DPSC. We designed and ordered dicer-substrate siRNA (DsiRNA) oligos using the online RNAi 

Design Tool, available on Integrated DNA Technologies’s website [6]. A list of the siRNA 

sequences used in this experiment can be found in Table 3.2. These siRNA were reconstituted to 

a concentration of 100 μM and diluted to a working stock concentration of 10 μM for cell 

transfection, as detailed below.  

Approximately 30 minutes prior to transfection, all culture medium was aspirated from 

the cultures and replaced with 2 mL fresh stem cell media in each flask or well. The 

Lipofectamine RNAiMax Transfection reagent (Invitrogen) was used to transfect DPSC with 

DsiRNA. Briefly, 9 μL of 10 μM DsiRNA stock was added to 150 μL OptiMEM. Concurrently, 

9 μL of RNAiMax reagent was added to a separate 150 μL volume of OptiMEM. The two 

solutions were then mixed at a 1:1 ratio and incubated at room temperature for five minutes to 

form the lipofection complex. Immediately following incubation, 250 μL of the appropriate  
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Table 3.2  Sequences used for DsiRNA transfection 

Gene RefSeq Sequence* 

Gipc2 NM_001037210.1 

Antisense: 5'-rGrUrCrCrUrArUrUrUrCrArArArUrGrCrCrUrUr 

CrUrUrGrGrGrUrU-3' 

Sense: 5'-rCrCrCrArArGrArArGrGrCrArUrUrUrGrArArArUr 

ArGrGAC-3' 

HspB8 NM_053612.2 

Antisense: 5'-rGrGrArGrArCrArArUrCrCrCrArCrCrUrUrCrUr 

UrGrCrUrGrCrUrU-3' 

Sense: 5'-rGrCrArGrCrArArGrArArGrGrUrGrGrGrArUrUrGr 

UrCrUCC-3' 

*The sequences listed are RNA sequences, with “r” indicating the ribose in between 

nucleotides.  

complex was added to each flask or well, and the cells were incubated at 37°C for 24 hours. 

After incubation, the medium containing the lipofection complex was removed and fresh stem 

cell culture medium was added. Cells were cultured normally after this. 

To determine knockdown efficiency, cells were collected every four days until day 13 

post-transfection for total mRNA isolation. We then used real-time PCR to determine the relative 

expression levels of these genes (RGE) when compared to a transfection control concurrently 

with each treatment groups. The primers for real-time PCR are listed in Table 3.1.  

To determine if knockdown of the candidate genes decreases differentiation ability of 

DPSC, differentiation induction medium was added to the cells 48 hours after initiating 

transfection. The induction medium was prepared using low glucose DMEM supplemented with 

10% FBS, 0.05 mM ascorbic acid, 100 nM dexamethasone, and 10 mM β-glycerolphosphate [3]. 

Cells were incubated in induction medium for 14 days prior to staining with alizarin red S [4]. 

3.3 RESULTS  

3.3.1 Comparison of the Transcriptomes of Early and Late Passages of DPSC 

There were 76 genes showing at least a two-fold differential expression in p3 and p11 

DPSC. Of the 76 genes, 34 genes had decreased their expression more than 10-fold in p11, as 
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compared to p3. The detailed fold-differential expression of these genes from microarray 

analysis can be found in Table 3.3. We selected 18 genes from these 34 genes, based on their 

displaying increased expression in p3 consistent in both microarray data sets, for further analysis 

using real-time RT-PCR with primers listed in Table 3.1. A list of these 18 genes and their fold 

changes in the microarray analysis can be found in Table 3.4. 

Table 3.3  Microarray genes with greater than 10-fold change in intensity 

Change in Intensity Gene 

> 100 fold Egflam 

100 fold – 50 fold Acad9, Thbd 

50 fold – 30 fold Colec11, Myh11, Sial, Slc6a15, Tmem117 

30 fold – 15 fold Alx1, Ccdc64, Cyp27a1, Eya2, Fam159b, Hspb8, Tc2n, Tcfap2c, 

Wif1, Zfp423 

15 fold – 10 fold Abcg2, Apbb1ip, Arhgap20, Cdh10, Clgn, Cyp2j3, Fgf12, Gipc2, 

Khdrbs3, LOC100360067, Msx2, Olr377, PCOLCE2, Pls1, Reln, Slpi 

3.3.2 Confirmation of Expression of Selected Genes with RT-PCR 

Real-time RT-PCR was conducted to determine the expression of the 18 genes in p3 and 

p11 DPSC. Relative gene expression (RGE) was calculated from the CT values by normalizing to 

p3 as a control, with RGE of 1. RGE values less than 1.0 indicated decreased expression when 

compared to p3. While Acad9 displayed an upward trend that contradicted the microarray data 

(Figure 3.2), most of the selected genes reduced their expression as cell passages increased to 

p11, however, some of them were not statistically significant (Figure 3.2). The following 13 

genes displayed significant reduction in expression in p11 when compared to p3: Apbb1ip, Clgn, 

Colec11, Eya2, Fam159b, Gipc2, HspB8, Pcolce2, Slc6a15, Tcfap2c, Thbd, Wif1, and Zfp423 

(Figure 3.2). These genes were selected for correlation analysis to determine the correlation 

between differentiation and expression of those genes in different passages.  
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Table 3.4  Genes identified from microarray and selected for real-time RT-PCR analysis and 

their fold-change in signal intensity comparing p3 to p11 in two sets of RNA samples 

Gene RefSeq Known Function Fold Change 

(p3/p11 Set 1) 

Fold Change 

(p3/p11 Set 2) 

Acad9 NM_181768.2 Mitochondiral protein 

associated with fatty acid 

digestion 

74.4 34.6 

Alx1 NM_012921.1 Alias "CART1," 

embryonic gene expressed 

in craniofacial 

development 

21.7 13.4 

Apbb1ip NM_001100577.1 Alias "RIAM," Interacts 

with Rap1-GTP, promotes 

integrin-mediated 

adhesion 

13.9 54.0 

Arhgap20 NM_213629.1 Inactivates Rho protein, 

causing neurite outgrowth 
12.8 10.4 

Clgn NM_001109472.1 Molecular chaperone 

protein, primarily 

associated with 

spermatogenesis 

14.3 23.2 

Colec11 XM_002729610.1 Strongly expressed 

embryonically in 

craniofacial cartilage, 

heart, kidney, &  vertebral 

bodies 

35.5 313.5 

Egflam NM_001108938.2 Alias "Pikachurin," ECM 

protein associated with 

photoreceptor synapse 

formation 

134.9 10.5 

Eya2 NM_130427.1 Transcriptional 

coactivator, regulates 

physiological hypertrophy 

19.1 88.1 

Fam159b XM_574844.3 Sequence with unknown 

function 
18.9 25.4 

Gipc2 NM_001037210.1 Associates with TGF-β 

receptors, Wnt pathway 

messenger 

12.8 12.1 

HspB8 NM_053612.2 Alias "Hsp22," Small 

heat-shock protein family 

member, expressed in 

motor neurons & cardiac 

tissue 

17.7 6.2 

PCOLCE2 NM_001127640.1 Binds to BMP1 to 

enhance the lysis of 

Proapolipoprotein  
13.7 10.9 
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(Table 3.4 continued) 

Gene RefSeq Known Function Fold Change 

(p3/p11 Set 1) 

Fold Change 

(p3/p11 Set 2) 

Sial NM_012587.2 Alias "Ibsp," Encodes 

BSP, Osteogenic marker, 

ECM protein which  

35.3 8.0 

Slc6a15 NM_172321.1 Neuronal transporter 

protein, used to transport 

amino acids 

47.4 9.4 

Tcfap2c NM_201420.2 Embryonic stem cell gene, 

expressed primarily in 

germ cells 

26.7 8.1 

Thbd NM_031771.2 Transmembrane protein in 

endothelial cells, binds to 

Thrombin to regulate  

coagulation 

83.7 81.5 

Wif1 NM_053738.1 Extracellular protein that 

binds to Wnt and inhibits 

its effects 

18.1 19.8 

Zfp423 NM_053583.2 Expressed in preadipocyte 

stromal tissue prior to 

adipogenesis  

16.1 6.6 

3.3.3 Correlation of Gene Expression and Differentiation 

We conducted Spearman correlation analysis to determine any correlation between 

expression of the selected genes and differentiation capability in different passages of DPSC. 

The results of this correlation analysis are listed in Table 3.5. The individual RGE of each gene, 

as well as the non-parametric differentiation scores for different passages (p3, p5, p9 and p11), 

can be found in the Appendix. The correlation analysis showed that Gipc2 has the maximal 

correlation with a correlation coefficient of 0.86, followed by Apbb1ip and Fam159b with 

correlation coefficients of 0.82. The correlation coefficients of other genes were below 0.80 

(Table 3.5). 

3.3.4 Gene Knockdown Study   

Two genes (Gipc2 and HspB8) were selected for knockdown experiments. Gipc2 was 

selected because it had the maximal correlation between its expression and differentiation in 
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Figure 3.2  Real-time RT-PCR to confirm expression of genes selected from microarray 

analysis. Comparison of RGE in p3 and p11 DPSC for the genes selected from the initial 

microarray results. (* indicates statistical significance, p < 0.05; n=3). p11 was 

normalized to p3 which was set as 1.   
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(Figure 3.2 continued) 
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different passages. HspB8 was of interest because dental stem cells appeared to be more thermal 

tolerant than their non-stem cell counterparts, and we have reported that dental stem cells also 

expressed higher level of some heat shock proteins than their non-stem cell counterpart [6, 7].  

Because 14 days of induction is required for in vitro differentiation of DPSC, we 

conducted a time-course study to check the gene knockdown efficiency. As shown in Figure 3.3, 

the post-siRNA transfection knockdown effects appear to last through day 13 for both genes 

tested. The maximum knockdown appeared to be over 90% for up to nine days post-siRNA 

transfection for both Gipc2 and HspB8 (Figure 3.3; Section A). A knockdown efficiency of 65 to 

80% was still achieved at day 13, which was statistically significant (Figure 3.3; Section B). 

3.3.5 Effect of Gene Knockdown on Differentiation of DPSC 

With successful knockdown of gene expression following transfection of early-passage 

DPSC with siRNA, we tested whether knockdown of the genes would alter differentiation 

capability. In this experiment, siRNA transfected DPSC were subjected to differentiation 

induction for 14 days. Alizarin red staining showed that knockdown of HspB8 resulted in a 

Table 3.5  Correlation analysis of differentiation with relative gene expression in different 

passages of DPSC 

Gene Correlation coefficient 

Apbb1ip 0.81989 

Clgn 0.76087 

Colec11 0.26998 

Eya2 0.74080 

Fam159b 0.81989 

Gipc2 0.85904 

HspB8 0.46634 

Pcolce2 0.69141 

Slc6a15 0.41725 

Tcfap2c 0.46634 

Thbd 0.72957 

Wif1 0.46634 

Zfp423 0.26998 
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significant reduction of calcium deposition. In fact, in some replicates, almost no calcium 

deposition was observed when HspB8 expression was inhibited, as shown in Figure 3.4. In 

contrast, knockdown of Gipc2 appeared to have no effect on calcium deposition, as compared to 

the transfection control. This experiment suggested that HspB8 may play a vital role in 

maintaining differentiation capability of DPSC. 

3.4 DISCUSSION 

With whole genome DNA microarray, we screened 24,358 transcripts in early-passage 

and late-passage DPSC. Huge amounts of data were generated from the two sets of DPSC 

samples. We used the method described by Schulze et al [2] to address our question of mining 

for candidate genes in causing loss of differentiation during in vitro expansion of DPSC. 

Figure 3.3  Knockdown efficiency of Gipc2 and HspB8 expression by siRNA. (A) DPSC 

were transfected with the appropriate siRNA and cells were collected every four days to 

determine knockdown efficiency using real-time RT-PCR. siRNA transfected cells displayed 

a sustained knockdown of Gipc2 or HspB8 through 13 days post-transfection. (B) An average 

of greater than 65% knockdown was still observed at day 13 after transfection, which was 

statistically significant. 
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Other investigators have found large variability of microarray data [2]. Because of the 

high variability in microarray analysis, using other techniques such as RT-PCR to verify the 

microarray results is very important. However, it is unfeasible to verify such large numbers of 

genes. Thus, selection of genes for RT-PCR verification was necessary. Based on our microarray 

data, we selected 18 genes whose signal intensity in p3 was 10-fold greater than in p11 for RT-

PCR analysis. 

With real-time RT-PCR, we obtained the CT values of these 18 genes in p3 and p11 of 

DPSC. From the CT values, we calculated the RGE of the genes to compare gene expression 

(Figure 3.2). Genes with no significant difference in RGE between p3 vs. p11 were eliminated. 

These selection procedures allowed us to narrow down to 13 genes for further study.  

Finally, we conducted correlation analysis to determine the correlation between gene 

expression and differentiation potential in different passages of p3, p5, p9 and p 11 DPSC. We 

selected Gipc2 and HspB8 for gene knockdown study. Expression of Gipc2 showed maximal 

correlation to reduction of differentiation in different passages, and expression of HspB8 had a 

moderate correlation with differentiation across passages.  Surprisingly, knockdown of Gipc2 did 

Figure 3.4  Differentiation of early-passage DPSC after knockdown of the expression of 

HspB8 and GipC2 as determined by Alizarin red staining. (A) Alizarin red positive calcium 

deposition shown in the control. (B) Little or no change in calcium deposition was seen in 

DPSC after knockdown of Gipc2 expression. (C) Knockdown of HspB8 resulted in dramatic 

reduction of calcium deposition. 

A B C 
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not show any effect on differentiation (Figure 3.4); however, knockdown of HspB8 did result in 

dramatic reduction of differentiation.  

Gipc2 is a homologue to the first member of its respective gene family, GIPC1 [8], which 

was first discovered in 1999 to associate with the cytoplasmic domain of the axon neural protein 

M-SemF [9]. Little is currently known about GIPC2, but its expression has been tied to a number 

of different forms of gastric cancer [10]. However, when it was discovered, GIPC2 was found to 

associate with TGF-β receptors or other types of Wnt receptors [8]. Takeda et al. discovered a 

drastic change in the expression of Wnt16 through serial passaging of DPSC [11], and the strong 

correlation of GIPC2 expression to differentiation hints at a potential relationship between the 

two genes and differentiation. In this study, we showed that knockdown of Gipc2 had no effect 

on differentiation of early passage DPSC, suggesting that it may not be involved in regulation of 

differentiation. 

Heat shock proteins (Hsps) have been found to play vital roles in regulating many aspects 

of stem cells, including self-renewal, differentiation, dormancy, and senescence of stem cells 

[12]. In addition, our lab had also recently shown that DFSC express higher levels of some Hsps, 

including small heat shock proteins (HspB1 and HspB2) than their non-stem counterparts [7]. 

HspB1, also known as Hsp27, has been shown to interact with HspB8 to regulate cell fate [13]. 

In addition, we had also previously found that DFSC increase their proliferation and 

differentiation under proper heat stress [14]. HspB8 is also a small heat-shock protein that is 

required for proper neurite formation in motor neurons [15, 16]. It has also been found to exhibit 

chaperone-like qualities both in cardiac tissue [17] and during in vitro culture [18]. When we 

consider that DPSC arise from the neural crest [19], as well as possess the capability to 

differentiate into neural tissue in vitro [20], the potential relationship between HspB8 and DPSC 

file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_8
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_9
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_10
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_8
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_11
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_12
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_7
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_13
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_14
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_15
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_16
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_17
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_18
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_19
file:///C:/Users/YAO/Desktop/MBF/Dissertation/Individual%20Chapters/CHAPTER%203%20-%20noon%2011-22.docx%23_ENREF_20


59 

 

seems more likely. Our gene knockdown study showed that knockdown of HspB8 expression 

indeed resulted in abolishment of differentiation in early-passage DPSC, suggesting that HspB8 

may exert a function in differentiation of DPSC, which is a novel finding regarding the role of 

HspB8. Thus, it was our deep interest to further study the gene expression regulation of this 

small heat shock protein in DPSC. 
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CHAPTER 4: CONSTRUCTION OF HEAT SHOCK PROTEIN B8 (HSPB8) 

EXPRESSION VECTORS AND EXPLORING THE REGULATORY MECHANISM OF 

HSPB8 EXPRESSION IN DPSC 

4.1 INTRODUCTION 

It is well known that heat shock proteins (Hsps) are molecular chaperones that can 

function to stabilize intracellular proteins and repair damaged proteins under stress conditions. 

We observed that dental follicle stem cells express higher levels of some Hsps than the non-stem 

dental follicle cells originating from the same tissue [1]. It is likely that Hsps are required to 

stabilize factors for maintaining the “stemness” of ASC under in vitro condition.  Although Hsps 

are classically considered as cell stress defense proteins, they are also involved in gene 

expression regulation [2]. Hsps were found to play vital roles in regulating many aspects of stem 

cells, including self-renewal, differentiation, dormancy, and senescence of stem cells [3]. 

HspB8, also known as Hsp22, belongs to the Small Heat Shock Protein family and is 

known for its role in pleiotropic prosurvival effects in cells. There is limited information 

regarding the role of HspB8 in stem cell behavior or properties. One study indicated that 

expression of HspB8 was increased during neuron differentiation in vitro, and overexpression of 

HspB8 promoted neuron differentiation [4]. The role of HspB8 in maintaining differentiation 

potential of stem cells and its regulation in stem cells are largely unknown. 

In the previous chapter, we found that expression of HspB8 was significantly and 

dramatically down-regulated in late-passage DPSC (p11), which have lost differentiation 

capability. Furthermore, knockdown of HspB8 expression in early-passage DPSC caused the 

cells to lose their differentiation ability. Thus, HspB8 appears to be an important gene (or one of 

the important genes) to maintain differentiation in DPSC.  In this chapter, we attempted to clone 

the HspB8 cDNA into a plasmid to construct HspB8 overexpression vectors. The purpose of 

constructing the HspB8 expression vectors is two-fold.  First, with the expression vectors, we 
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could force the late passage DPSC to overexpress HspB8 by transfecting the vectors into the 

cells.  Such an overexpression study would allow us to assess if HspB8 can function 

independently to regulate differentiation, or if it depends on other factors to exert the regulatory 

role. Secondly, because microRNAs (miRNAs) have been shown to play an essential role in stem 

cell self-renewal and differentiation [5-9], and because miRNAs are believed to regulate a large 

percentage of genes in mammalian cells [10], the constructed vectors could be used to explore if 

miRNAs are involved in regulating the expression of HspB8. This chapter provided strong 

evidence to show the possibility of miRNAs in regulating HspB8 expression. 

4.2 MATERIALS AND METHODS 

4.2.1 Cell Culture 

DPSC were established using a published protocol for isolation of dental stem cells [11]. 

Briefly, dental pulps were isolated from rat first mandibular molars and trypsinized to obtain cell 

suspension. For DPSC culture, the cells were grown in α-MEM with 20% fetal bovine serum 

(FBS). Cells were then incubated at 37°C and 5% CO2 in humidified incubators. At 90% 

confluence, cells were detached using trypsin-EDTA and passaged to a fresh T-75 flask with an 

initial density of 200,000 cells per T-75 flask.  

In preparation for experimentation, cells were either seeded to T-25 flasks or 6-well 

plates. For experiments that required assaying of total protein, we seeded 1.5 x 10
5
 cells to each 

T-25 flask. Cells destined for assaying by Alizarin red staining or collection of total mRNA were 

seeded to 6-well plates at 5.0 x 10
4
 cells per well. 

4.2.2 Clone HspB8 cDNA Fragments 

To clone HspB8 cDNA, 2 μg RNA extracted from DPSC was reverse-transcribed into 

cDNA using Oligo-dT primers to synthesize cDNA of the full mRNA transcript. A pair of PCR 
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primers (forward 5'-GCACGAATTCCAACAAACACCATGGCTGAC-3' and reverse 5'-

GCACAAGCTTGGAAGGTCCCCAGAGAAAAG-3') was designed to amplify the HspB8 

cDNA sequence. This sequence contains the 590bp coding DNA sequence (CDS) and a 383bp 3’ 

untranslated region (3’UTR). PCR was conducted by mixing cDNA and the primers, and run for 

35 cycles. The PCR product was electrophoresed and HspB8 cDNA was purified with a gel 

extraction kit (Qiagen).  This DNA fragment contained restriction enzyme sites of EcoRI 

(GAATTC) and HindIII (AAGCTT) on the ends. With the same procedures, we also cloned the 

CDS only region using another primer pair (forward 5’-CTGAATTCATGGCTGACGGGCAAT 

TGCCT-3’ and reverse 5’-CGAAGCTTTTAGGAGCAGGTGACTTCCTGGT-3’). 

4.2.3 Construction of the HspB8 Expression Vectors 

 Each of the cDNA fragments was inserted into the multiple cloning site (MCS) of 

expression vector pCMV-3Tag-3 (Figure 4.1), such that the transcription of the fragments is 

driven by the CMV promoter using the procedures detailed below. We first digested the HspB8 

DNA fragment and the plasmid separately with EcoRI and HindIII (New England Biolabs) at 

37°C for one hour, followed by enzyme deactivation at 65°C for 20 minutes. To prevent auto-

ligation, the digested plasmid and DNA fragment were subjected to agarose gel electrophoresis, 

followed by gel extraction and purification using the Qiaquick Gel Extraction Kit (Qiagen) to 

collect the linear plasmid and HspB8 DNA fragment with sticky ends. Next, the linear plasmid 

and DNA fragment were mixed in a ligation reaction at a ratio of 0.09 pmol:0.03 pmol with the 

presence of T4 DNA ligase (New England Biolabs). Ligation was performed by incubating the 

mixture at 16°C overnight. 

Following ligation, the mixture was used to transform competent E. coli cells. Briefly, 

competent E. coli cells (New England Biolabs) were thawed on ice for 30 minutes. After adding 
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Figure 4.1  Illustration of the Cloning of HspB8 cDNA CDS+3’UTR into expression 

vector pCMV-3Tag-3. Rat HspB8 cDNA was amplified using primers that contained 

hanging restriction sites for EcoRI and HindIII. The PCR product and the plasmid vector 

were digested with EcoRI and HindIII. The cDNA fragment was inserted into the 

vector.   
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 the mixture to the E. coli, the bacteria were incubated for 30 minutes on ice, followed by heat-

shock at 42°C for 30 seconds. The competent E. coli were then incubated on ice for five minutes 

before suspension in SOC medium (New England Biolabs) and incubated on a shaker at 37°C for 

one hour. Finally, the transformed E. coli were spread to a LB medium plate containing 

kanamycin as a selection drug and incubated overnight at 37° C for formation of bacterial clones. 

The plasmids containing putative HspB8 insertion were isolated from the clones using the 

QIAPrep Spin Miniprep Kit (Qiagen). 

To confirm that the plasmids contained the correct HspB8 insertion, the newly 

constructed plasmid, along with the original pCMV-3Tag-3 plasmid, were digested with EcoRI 

and/or HindIII for fiv0065 hours. Immediately after digestion, aliquots were separated via 

agarose gel electrophoresis to identify the correct DNA fragment bands.  

The new plasmids that displayed the correct plasmid+insertion pattern were sent to LSU 

GeneLab for sequencing with T3-19 primer (5’-CAATTAACCCTCACTAAAG-3’) and T7-19 

primer (5’-GTAATACGACTCACTATAG-3’). The sequence received from GeneLab was 

analyzed using UGENE [12]. The sequence was aligned in BLAST with the RefSeq of rat HspB8 

(NM_053612.2) published in the Gene Bank.  

4.2.4 Transfection of DPSC with Gene Expression Vectors 

DPSC were grown to 80% confluence. One hour prior to transfection, culture medium 

was removed, and fresh medium was added to the cultures. DPSC were transfected using the 

PolyJet™ DNA In Vitro Transfection Reagent (Signagen), a biodegradable polymer DNA 

transfection reagent, according to the manufacturer’s protocol. Briefly, plasmids were diluted in 

serum-free high glucose DMEM medium (Invitrogen). Concurrently, PolyJet™ reagent was 

added to a separate volume of DMEM. Then, the plasmid solution and PolyJet™ solution were 
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mixed in a 1:1 volume ratio and incubated at room temperature for 15 minutes. The combined 

mixture was then added drop-wise to the cells in culture at 0.1 mL mixture to 1 mL medium. The 

cells were incubated for 24 hours. Next, the medium containing transfection reagent was 

removed and replaced with fresh culture medium. This general transfection protocol was applied 

to the following two transfection experiments. 

We first optimized the protocol for transfection of DPSC using the pCMV-βLac-Zco 

plasmid (Marker Gene Technologies), which contains the LacZ reporter gene. To do this, we 

seeded 2.5 x 10
4
 DPSC to each well of a 12-well plate. When cells reached 80% confluence, they 

were transfected with pCMV-βLac-Zco at the final concentrations of 0.1, 0.2, 0.5, 1.0, or 1.5 

μg/mL using the above mentioned PolyJet™ protocol. After 24 hours, the transfection medium 

was removed and fresh culture medium was added to the cells. After an additional two days of 

incubation, cells were fixed and stained using X-Gal staining to determine the transfection 

efficiency. Briefly, cells were rinsed with PBS and fixed in 10% formalin for five minutes, and 

washed again with PBS. The fixed cells were incubated with X-Gal staining solution at 37°C 

overnight. Cells were then rinsed once with PBS, followed by rinsing in 100% ethanol for 10-30 

minutes. After aspirating the ethanol, the fixed cells were counterstained with eosin Y for 30 

seconds, followed by a rinse with 95% ethanol for one minute and three rinses in 100% ethanol 

for one minute each. The stained plates were then photographed under a microscope. The 

number of blue transfected cells and total cells in a given area were counted. Transfection 

efficiency was calculated as the percentage of the transfected cells to total cells.  

Using the optimized protocol, we transfected DPSC with the HspB8 expression vectors. 

Following transfection at designated times, cells were harvested in Buffer RLT for total RNA 

extraction using RNeasy mini kit (Qiagen) or harvested into Cytobuster buffer for extraction of 
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total protein. The RNA samples were treated twice with Turbo DNase I (Ambion) to ensure 

complete removal of the possible plasmid contamination. Next, 1-2μg RNA was reverse-

transcribed into cDNA, followed by PCR to determine the overexpression of HspB8 and other 

genes, as listed in Table 4.1. In addition, Western blotting was conducted to analyze the protein 

samples to determine the translation of HspB8, as detailed below. 

4.2.5 Western Blotting 

DPSC were harvested and lysed in Cytobuster Protein Extraction Reagent (Millipore) to 

obtain total protein. Protein was quantified by Pierce BCA assay. Then, equal amounts of the 

total protein were subjected to Western blotting analysis. Briefly, 15-25 μg of protein from each 

sample was diluted to 20 μL and mixed with 4 μL of 6X-stock loading buffer consisting of 60% 

glycerol, 12% sodium dodecyl sulfate (SDS), 0.3M dithiothreitol (DTT), 0.375M Tris (pH 6.8), 

and 0.06% bromophenol blue. The sample mix was denatured in a 95-100°C water bath for five 

minutes before being loaded into a 5% polyacrylaminde stacking gel. polyacrylamide gel 

electrophoresis (PAGE) was conducted at 80V for 15 minutes, followed by separation at 130V 

for 60-80 minutes. Then, the gel was immediately removed and proteins were transferred to a 0.2 

μm Immuno-Blot PVDF membrane (Bio-Rad) by electrophoresis at 100 – 110V for 60 – 100 

minutes. 

The membranes bound with protein were blocked for one hour at room temperature in 

0.05% Tween-20 in PBS (PBST) with 5% blotto dry milk (Santa Cruz Biotechnology). 

Following blocking, samples were incubated with 0.5-2.0 μg/mL primary antibodies in 2% 

bovine serum albumin (BSA, Amresco) PBST at 4°C overnight. Following primary antibody 

incubation, membranes were washed five times in PBST at room temperature for five minutes 

before incubating with secondary antibody. All secondary antibodies were diluted in PBST  
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Table 4.1  Primers used for real-time RT-PCR  

Gene RefSeq Primer Sequence 

Actin NM_031144.3 
Forward: 5'-CTAAGGCCAACCGTGAAAAGAT-3' 

Reverse: 5'-AGAGGCATACAGGGACAACACA-3' 

HspB8 NM_053612.2 
Forward: 5'-TCTCCAGAGGGTCTGCTCAT-3' 

Reverse: 5'-GCAGGTGACTTCCTGGTTGT-3' 

*RunX2 mRNA has two separate isoforms, with isoform 2 having a shorter 5' untranslated 

region and CDS region, as well as the translated protein having slightly different N-terminus 

and being shorter than isoform 1. The primers listed flank a sequence conserved between the 

two isoforms. 

containing 2% BSA, and membranes were incubated with secondary antibodies for 1 – 2 hours at 

room temperature. Following secondary antibody incubation, the membranes were once again 

washed five times in PBST. The membranes were then stained using SuperSignal West Dura 

Extended Duration Substrate (Thermo Scientific) for 2-5 minutes to develop protein signals, and 

the signals were captured using a Chemidoc XRS. Image processing was performed using 

Quantity One 1-D Analysis Software (Bio-Rad). 

4.3 RESULTS 

4.3.1 Construction of HspB8 Expression Plasmid Vector 

E. coli clones containing putative HspB8 expression plasmids were picked for plasmid 

isolation. Enzymatic digestion and gel electrophoresis indicated the insertion of the correct DNA 

fragment of HspB8 CDS or HspB8 CDS + 3’UTR into the EcoRI and HindIII sites of pCMV-3-

Tag-3, as shown in Figure 4.2. The plasmids were sent to LSU Genelab for sequencing. The 

resultant sequences were aligned with the NCBI Genebank HspB8 mRNA sequence, and the 

result showed a perfect match in the CDS, with only one mismatch occurring in the 3’ 

untranslated region (3’UTR) in the plasmid containing CDS+3’UTR, which is believed to be a  
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single- nucleotide polymorphism (SNP). These plasmids were respectively named pCMV-

3Tag3-HspB8CDS and pCMV-3Tag3-HspB8CDS-3’UTR, , and the E. coli clones harboring 

these plasmids were saved for propagation of the HspB8 expression vectors. 

4.3.2 Optimization of DPSC Transfection 

We optimized the PolyJet™ protocol for transfection of DPSC using the Lac-Z reporter 

plasmid. We found that PolyJet™ could be used to effectively transfect DPSC (Figure 4.3). The 

optimal transfection efficiency was seen at plasmid concentrations ranging between 0.5 μg/mL 

Figure 4.2  Enzymatic digestion of putative plasmid constructs to determine the correct 

insertion of HspB8 cDNA into pCMV-3Tag-3 plasmid. (A) Example for screening E. coli 

clones containing putative HspB8 CDS+3’UTR insertion by enzymatic digestion. Digestion 

of putative plasmid containing HspB8 CDS and 3’UTR (pCMV-3Tag3-HspB8CDS-3’UTR) 

yielded correct pattern with the correct DNA fragment insertion indicated by arrows in clones 

2 and 3. Note that expected fragment was absent in Clone 1, indicating improper ligation of 

the plasmid, and this clone was discarded. (B) Showing that enzymatic digestion of pCMV-

3Tag3-HspB8CDS-3’UTR and pCMV-3Tag3-HspB8CDS resulted in correct pattern and 

insertion of HspB8 CDS +3’UTR and HspB8 CDS (arrows) into the plasmids. Key: L – DNA 

ladder marker; E – sample digested with EcoRI; E+H – sample digested with EcoRI and 

HindIII 
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and 1 μg/mL. Averagely, 50% to 60% of cells were transfected at this condition. Greater than 

80% cells were transfected in some areas (Figure 4.3).  

4.3.3 Transfection of HspB8 Expression Vectors into DPSC 

When pCMV-3Tag3-HspB8CDS-3UTR and pCMV-3Tag-CDS were transfected into 

early and late-passages of DPSC, RT-PCR showed that both passages of DPSC exhibited a 

strong increase in HspB8 mRNA expression within 24 hours after transfection with both 

plasmids, as compared to the control transfection with pCMV-3tag3 (Figure 4.4; Sections A and 

B). 

Protein was collected from the transfected cells for Western blotting analysis to determine the 

translation of mRNA. Interestingly, increased HspB8 protein expression was seen in the early-

passage DPSC transfected with both plasmids; however, in late passage DPSC, a dramatic 

increase of protein expression was only seen in the cells transfected with the plasmids containing 

HspB8 CDS (Figure 4.4; Section C), but not in the cells transfected with the vector containing 

CDS+3’UTR (Figure 4.4; Section D). Because the 3’UTR is the major target site for miRNAs, 

this result indicated that miRNAs play an important role in regulation of HspB8 expression in 

DPSC. Specifically, reduced expression of HspB8 expression seen in late-passage DPSC was 

due to high level expression of certain miRNAs.  

4.4 DISCUSSION 

DPSC lose their differentiation capability alongside decreasing expression of certain 

genes in late passages. We have previously determined that expression of Gipc2 and HspB8 was 

greatly and significantly reduced in late passage DPSC, where DPSC lose their differentiation 

ability. The expression of these genes in later passages could be reduced on average by 70% or 

more when compared to the early passages. We had also previously confirmed that knockdown 
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of HspB8 caused loss of differentiation in early-passage DPSC, but knockdown of Gipc2 did not 

have an effect. We therefore speculate that HspB8 is involved in maintaining differentiation 

capability of DPSC.  

To further study HspB8, we cloned the different fragments of HspB8 cDNA into an 

expression vector. In late-passage DPSC, transfection of the vector expressing HspB8 CDS+ 

3’UTR resulted in an increase in transcription of the genes into mRNA, but translation of the  

Figure 4.3  Optimization of DPSC Transfection using PolyJet™ DNA In Vitro Transfection 

Reagent. Different concentrations of pCMV-βLac-Zco plasmid were transfected into DPSC 

with PolyJet™ protocol. X-Gal staining showed that optimal plasmid concentration was 

between 0.5 to 1.0μg/mL with 55% cells transfected. (mean+SD, n=6) Key: (NT) non-

transfected cells, (Ctrl) cells transfected without LacZ. All images are 50x magnification. 

NT – 0%  Ctrl – 0% 0.1 μg/mL – 4.8±3.5%  

0.2 μg/mL – 25.0±6.7% 0.5 μg/mL – 55.3±14.3% 1.0 μg/mL – 55.2±7.1%

  

1.5 μg/mL – 41.4±13.5% 
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mRNA was inhibited.  However, transfection of CDS to the same cells resulted in 

overexpression of both mRNA and protein (Figure 4.4; Sections B and D). Thus, the presence of 

the 3’UTR apparently blocked the translation of mRNA in a posttranscriptional manner. 

Recent studies revealed that miRNAs are important posttranscriptional regulators [6]. 

The main function of miRNAs is to downregulate gene expression by several mechanisms, 

including translational repression, mRNA cleavage, and mRNA deadenylation/destabilization 

[13]. After examining thousands of protein genes in response to miRNAs, Baek et. al. concluded 

that the target sites for most miRNA are located in the 3’UTR of mRNA transcripts in animal 

cells [14]. Given the facts about miRNAs, the above overexpression experiment provides strong 

evidence that miRNAs play an important role in regulating HspB8 expression. 

Figure 4.4  Transfection of plasmid vector to overexpress HspB8 CDS+3UTR or CDS 

constructs in p5 and p11 DPSC. Note that the increase in HspB8 mRNA were seen in both 

CDS+3’UTR and CDS transfections in both p5 (A) and p11 DPSC (B) shown by RT-PCR. 

Dramatic increase of protein expression was seen in p5 DPSC transfected with both plasmids 

(C). In contrast, for p11 DPSC, a dramatic increase of protein expression was seen in CDS 

transfection, but not in CDS+3’UTR transfection (D) as determined by Western blot. Instead, 

only slight increase of HspB8 protein was seen in CDS+3’UTR transfection (D). 
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Moreover, transfection of early passage of DPSC with the aforementioned HspB8 

expression vectors increased expression of mRNA and protein regardless of the presence or 

absence of the 3’UTR (Figure 4.4; Sections A and C).  We speculate that this was because the 

early passage DPSC had nonexistent or low levels of HspB8-targeting miRNAs. As cell passages 

progressed, DPSC increased expression of HspB8-targeting miRNAs, and as a result a decrease 

in the expression of HspB8 was seen in the p11 DPSC. 

In an experiment attempting to restore differentiation capability of late passage DPSC by 

overexpression of HspB8, we did not observe a positive effect (data not shown).  We reasoned 

that it is likely that HspB8 cannot independently reverse the process, and that other down-

regulated genes or factors are also involved in maintaining the differentiation potential of DPSC. 

Further studies are needed to elucidate those genes.  
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CHAPTER 5: CONCLUDING REMARKS 

5.1 OVERALL SUMMARY OF FINDINGS 

As discussed in Chapter 1, use of ASC for tissue regeneration prevents some problems 

associated with ESC [1]. On the other hand, the use of ASC requires the constant re-isolation of 

primary cultures, since in vitro culture of ASC reduces their differentiation capabilities over time 

[2, 3]. For stem cells, such as dental pulp derived stem cells (DPSC), this challenge is further 

magnified due to the low volume and availability of the tissue source. However, DPSC possess 

the ability to differentiate into a variety of different tissues, such as adipogenic, chondrogenic, 

and myogenic tissues [4, 5]. Therefore, any discovery that preserves their differentiation 

capability during in vitro culture would further enhance their utility. 

 In Chapter 2, we examined the capability of DPSC to differentiate into one of its many 

potential cell types: the calcium-depositing cells. This ability has been shown to persist in vitro 

for DPSC cultures as late as p9 [3]. We showed that calcium depositing cells derived from DPSC 

might contain osteoblasts, odontoblasts, and ameloblasts. While serial passaging of DPSC 

resulted in a change in cell morphology, the cells also eventually lost differentiation potential 

around p11. However, these cells remained distinct from non-stem dental pulp cells (DPC). In 

particular, a number of stem cell marker genes, such as KitL [6] and Esrrb [7], continued to be 

strongly expressed in the late passage DPSC when compared to DPC. We screened a number of 

different stem cell-related transcription factors, but none significantly changed/reduced its 

expression in the late passage DPSC. 

 The scope of our study expanded in Chapter 3, and we conducted a whole-genome 

microarray analysis to search for as many potential differences between early and late-passage 

DPSC as possible. From there, we found 18 genes with a marked decrease in expression in late-
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passage DPSC. After confirming the decrease in expression in most of these genes by real-time 

RT-PCR, we selected two genes, Gipc2 and HspB8, for further study. Using shRNAi, we 

knocked down the expression of these candidate genes in early-passage DPSC and attempted to 

induce differentiation. When knockdown of HspB8 almost completely prevented differentiation 

in early-passage DPSC, we concluded that high level expression of HspB8 is important for 

DPSC to maintain differentiation potential. 

 In Chapter 4, with evidence that HspB8 expression is important in differentiation, we 

sought to clone the cDNA of HspB8 into plasmid vectors that would constitutively overexpress 

HspB8 when transfected into DPSC. We cloned two DNA fragments from HspB8 cDNA, and 

inserted them into pCMV-3Tag-3 (Agilent) to construct Hspb8 expression vectors. Fragment 1 

contained HspB8 coding sequence (CDS) and 3’untranslated region (3’UTR), and fragment 2 

contained only HspB8 CDS.  These vectors were transfected into p5 and p11 DPSC using the 

optimized PolyJet™ protocol. Transfection of the vector containing both the HspB8 CDS and 

3’UTR increased HspB8 mRNA in both early and late passages of DPSC, but the increase of 

HspB8 protein was only seen in early-passage DPSCs.  In contrast, transfection of the vector 

containing only the HspB8 CDS (lacking the 3’UTR) resulted in a dramatic increase of HspB8 

mRNA and protein for both early and late passages of DPSCs.  Given that the 3’UTR is the 

major target site for miRNAs, the results strongly suggest that miRNAs are responsible in post-

transcriptional regulation to downregulate HspB8 in late-passage DPSCs. This was one of the 

most important findings of this research. 

5.2 SIGNIFICANCE OF RESEARCH 

With their relative ease of acquisition, and the ability to differentiate into a variety of 

tissues, DPSC can potentially serve multiple roles in both the regeneration and study of these 
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tissues. However, large quantities of functional DPSC must be available before serious research 

and therapy are to be considered. With dental pulp presenting a small volume of primary tissue, 

the only other way to obtain large quantities of DPSC is through in vitro culture. The mechanism 

for this loss of differentiation in DPSC remains largely unknown. While an occasional study may 

link the change of a particular gene to increased passaging [2], direct evidence of a relationship 

between a gene and changes in DPSC functionality would be of greater benefit to understanding 

and preventing this loss of differentiation capability. We believe this study helps to further 

understanding of the molecular regulation of differentiation in other tissue derived stem cells. 

The finding of miRNAs in regulating differentiation is especially significant, since each miRNA 

can regulate multiple genes. This may allow us to establish the molecular regulatory network for 

maintaining differentiation potential in ASC. 

5.3 FUTURE STUDIES  

 HspB8 has already been shown to function in concert with other small heat shock 

proteins [8, 9]. The possibility that HspB8 works with other proteins to maintain differentiation 

should be addressed. In addition, the discovery that miRNAs acting on HspB8 mRNA to inhibit 

translation is a novel one, and the interaction of HspB8 transcript with miRNAs is one that 

deserves further study. Over 1000 miRNAs have been found in animal cells. One big question is 

which miRNAs actually target HspB8 mRNA to down regulate its expression in long-term 

cultures of DPSC. In this regard, using the TargetScan miRNA prediction tool, we found 42 

potential miRNAs that may target against HspB8 (Table 5.1) [10]. Immediate future studies 

would focus on determining which of these miRNAs are elevated in the late passage DPSC, and 

which miRNAs can act to down regulate HspB8.  In addition, it is also our interest to define the 

exact target sites of miRNAs on the 3’UTR of HspB8 mRNA. Since each miRNA can target  
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Table 5.1  miRNAs predicted to target HspB8 mRNA 

miRNA Seed match on 3’UTR miRNA Sequence* 

rno-miR-3561 138-145 AGACUCACAGAUGGGACCUAU 

rno-miR-3562 36-42 AGGGUAGGUCGGUGACGGGGUU 

rno-miR-295 54-60 UCUUCACACGGGGUGUAAACUCA 

rno-miR-543 92-98 GCUUUUUGUGCGCCCGUUGAA 

rno-miR-219-1-3p 93-100 GCCCUGCAGGUCUGCGUUGAGA 

rno-miR-3541 114-121 ACGUCACUCCCCCUCCCU 

rno-miR-343 116-123 AGACCCGUGUGCCUCCCUCU 

rno-miR-3594-5p 137-143 AAGUGUGACGAGACGGGACCC 

rno-miR-323 144-150 UCUCCAGCUGGCACAUUACAC 

rno-miR-539 158-164 UGUGUGGUUCCUAUUAAAGAGG 

rno-miR-3558-3p 166-172 GUGUUUAAGCCUAGAUGUCCCAU 

rno-miR-10a-5p 166-172 GUGUUUAAGCCUAGAUGUCCCAU 

rno-miR-336 168-174 UCUGAUCUAUACCU---UCCCACU 

rno-miR-592 173-179 UGUAGUAGCGUAUAACUGUGUUA 

rno-miR-124 199-205 CCGUAAGUGGCGCACGGAAU 

rno-miR-215 204-211 ACAGACAGUUUAGUAUCCAGUA 

rno-miR-192 204-211 CCGACAGUUAAGUAUCCAGUC 

rno-miR-150 216-222 GUGACCAUGUUCCCAACCCUCU 

rno-miR-3551-5p 243-250 UACAGUUUUUGUGGUACCACUUCU 

rno-miR-3580-5p 275-281 CAGUGGUCUUAUUCAUGUUCGU 

rno-miR-194 302-308 AGGUGUACCUCAACGACAAUGU 

rno-miR-22 319-325 UGUCAAGAAGUUGACCGUCGAA 

rno-miR-431 328-334 ACGUACUGCCGGACGUUCUGU 

rno-miR-493 350-356 GACCGUGUGUCAUCUGGAAGU 

rno-let-7i 423-429 UUGUCGUGUUUGAUGAUGGAGU 

rno-let-7f 423-429 UUGGUAUGUUGGAUGAUGGAGU 

rno-let-7c 423-429 UUGGUAUGUUGGAUGAUGGAGU 

rno-let-7d 423-429 UUGAUACGUUGGAUGAUGGAGA 

rno-let-7a 423-429 UUGAUAUGUUGGAUGAUGGAGU 

rno-let-7e 423-429 UUGAUAUGUUGGAGGAUGGAGU 

rno-let-7b 423-429 UUGGUGUGUUGGAUGAUGGAGU 

rno-miR-98 423-429 UUGUUAUGUUGAAUGAUGGAGU 

rno-miR-674-5p 426-432 AUGUGGUGAGGGUAGAGUCACG 

rno-miR-3587 427-433 CGUGGUAAACUUU---AGUCACAA 

rno-miR-3571 429-435 AUACCUUACAUUUCUUCACACAU 

rno-miR-3560 489-495 UUACGUGGGCCCGUUCCUAAAC 

rno-miR-3563-3p 497-503 CAAAUGGCAGGGUGUAU 
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(Table 5.1 continued) 

miRNA Seed match on 3’UTR miRNA Sequence* 

rno-miR-615 531-537 CUAGGCUCGUGGCCCCUGGGGG 

rno-miR-3573-5p 573-580 AGGAAAGAUAGUGACGGGGAGU 

rno-miR-3583-3p 626-632 GACGUACUUCUCUCUUCAGUCC 

rno-miR-674-3p 644-650 AACAAGACUCUACCCUCGACAC 

rno-miR-337 806-812 UUUCCGUAGUAUAUC---CUCGACUU 

*The miRNA Sequences listed are arranged in a 3’ to 5’ order 

more than one gene, another research topic will be to find out if HspB8-targeting miRNAs can 

also regulate expression of other genes for maintaining differentiation, and what those genes are. 

For example, Zfp423 also reduced expression in the late passage DPSC, and in a pilot study we 

noticed that knockdown of its expression also decreased differentiation of early passage DPSC.  

In conclusion, this study revealed that DPSC lose differentiation potential around 

passages 9 or 11. High level expression of HspB8 is essential for differentiation of DPSC, and 

down-regulation of HspB8 in cultured DPSC is likely due to increased expression of miRNAs. 

These are novel findings regarding HspB8 and miRNAs on the regulation of stem cell fate. The 

potential miRNAs that may regulate HspB8 expression are predicted using a bioinformatics tool. 

5.4 REFERENCES 

1. Trounson, A., Human embryonic stem cells: mother of all cell and tissue types. Reprod 

Biomed Online, 2002. 4 Suppl 1: p. 58-63. 

2. Takeda, T., et al., Characterization of dental pulp stem cells of human tooth germs. J 

Dent Res, 2008. 87(7): p. 676-81. 

3. Yu, J., et al., Differentiation potential of STRO-1+ dental pulp stem cells changes during 

cell passaging. BMC Cell Biol, 2010. 11: p. 32. 

4. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. J Dent Res, 

2002. 81(8): p. 531-5. 

5. Zhang, W., et al., Multilineage differentiation potential of stem cells derived from human 

dental pulp after cryopreservation. Tissue Eng, 2006. 12(10): p. 2813-23. 

6. Okita, K., et al., Generation of mouse induced pluripotent stem cells without viral 

vectors. Science, 2008. 322(5903): p. 949-53. 



80 

 

7. Zhang, X., et al., Esrrb activates Oct4 transcription and sustains self-renewal and 

pluripotency in embryonic stem cells. J Biol Chem, 2008. 283(51): p. 35825-33. 

8. Sun, X., et al., Interaction of human HSP22 (HSPB8) with other small heat shock 

proteins. J Biol Chem, 2004. 279(4): p. 2394-402. 

9. Acunzo, J., M. Katsogiannou, and P. Rocchi, Small heat shock proteins HSP27 (HspB1), 

alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem 

Cell Biol, 2012. 44(10): p. 1622-31. 

10. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by 

adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 

120(1): p. 15-20. 

 



81 

 

APPENDIX A  DIFFERENTIATION AND RELATIVE GENE EXPRESSION OF 

SIGNIFICANT GENES IN MULTIPLE SERIAL PASSAGES OF DPSC 

 DPSC L10-7  DPSC L11-27 

p3 p5 p9 p11 p3 p5 p9 p11 

Differentiation 2 2 1 0 4 3 1 1 

Apbb1ip 1.00 0.08 0.01 0.01 1.00 0.30 0.08 0.02 

Clgn 1.00 0.08 0.03 0.00 1.00 0.03 0.02 0.01 

Colec11 1.00 0.19 0.10 0.12 1.00 0.06 0.09 0.07 

Eya2 1.00 0.03 0.00 0.02 1.00 0.06 0.01 0.01 

Fam159b 1.00 0.02 0.00 0.00 1.00 0.05 0.01 0.01 

Gipc2 1.00 0.34 0.04 0.02 1.00 0.42 0.16 0.14 

HspB8 1.00 0.29 0.09 0.36 1.00 0.34 0.12 0.17 

Thbd 1.00 0.03 0.00 0.00 1.00 0.02 0.00 0.01 

Wif1 1.00 0.04 0.00 0.01 1.00 0.17 0.07 0.33 

Zfp423 1.00 0.06 0.03 0.08 1.00 0.26 0.38 0.39 
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APPENDIX B  ABBREVIATIONS OF GENE NAMES USED IN THIS DISSERTATION 

Abbreviation Full gene name 

Acad9 Acyl-CoA dehydrogenase family, member 9 

Alx1 ALX homeobox 1 

Ambn Ameloblastin 

Apbb1ip 
Amyloid beta (A4) precursor protein-binding, family B, member 1 interacting 

protein 

Arhgap20 Rho GTPase activating protein 20 

Bcrp ATP-binding cassette, sub-family G (WHITE), member 2 

BMP4 Bone Morphogenetic Protein 4 

BMP6 Bone Morphogenetic Protein 6 

BSP Integrin-binding sialoprotein (alias: Ibsp) 

c-Myc Myelocytomatosis oncogene 

Clgn Calmegin 

Colec11 Collectin sub-family member 11 

Dax1 Nuclear receptor subfamily 0, group B, member 1 (alias: Nr0b1) 

DMP1 Dentin matrix acidic phosphoprotein 1 

DSPP Dentin sialophosphoprotein 

Dusp7 Dual specificity phosphatase 7 

Egflam  EGF-like, fibronectin type III and laminin G domains 

EGR1 Early growth response 1 

Esrrb Estrogen-related receptor beta 

Eya2 Eyes absent homolog 2 

Fam159b Family with sequence similarity 159, member B 

FoxM1 Forkhead box M1 

FoxO1 Forkhead box O1 

FoxO3 Forkhead box O3 

FoxO4 Forkhead box O4 

Gipc1 GIPC PDZ domain containing family, member 1 

Gipc2 GIPC PDZ domain containing family, member 2 

HspB1 Heat shock protein 1 

HspB8 Heat shock protein B8 

KitL KIT ligand 

Klf4 Kruppel-like factor 4 

Klf5 Kruppel-like factor 5 

LacZ Beta-D-galactosidase 

Lin28 Lin-28 homolog A 
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(Appendix B continued) 

Abbreviation Full gene name 

Mki67ip 
Nifk nucleolar protein interacting with the FHA domain of MKI67  

(Alias: Nifk) 

Mmp13 Matrix metallopeptidase 13 

Msh2 MutS homolog 2 

Mst1 Macrophage stimulating 1 (hepatocyte growth factor-like) 

Musashi Musashi 

Nanog Nanog homeobox 

Ocn Bone gamma-carboxyglutamate (gla) protein (Alias: Bglap) 

Oct4 OCT4 Protein 

PCOLCE2 Procollagen C-endopeptidase enhancer 2 

Runx2 Runt-related transcription factor 2 

Sall1 Spalt-like transcription factor 1 

Sial Integrin-binding sialoprotein (alias: Ibsp) 

Slc6a15 Solute carrier family 6 (neutral amino acid transporter), member 15 

Sox2 SRY (sex determining region Y)-box 2 

Sp7 Sp7 transcription factor 

Spp1 Secreted phosphoprotein 1 

Tcfap2c Transcription factor AP-2 gamma 

Tcfcp2L1 Transcription factor CP2-like 1 

Thbd Thrombomodulin 

Timp2 TIMP metallopeptidase inhibitor 2 

Wif1 Wnt inhibitory factor 1 

Wnt16 Wingless-type MMTV integration site family, member 16 

Zfp143 Zinc finger protein 143 

Zfp219 Zinc finger protein 219 

Zfp423 Zinc finger protein 423 

Zfp462 Zinc finger protein 462 
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