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ABSTRACT 

3D SEM SURFACE RECONSTRUCTION FROM MULTI-VIEW IMAGES 

by 

Waleed ur Rehman 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Zeyun Yu 
 

The scanning electron microscope (SEM), a promising imaging equipment has been used 

to determine the surface properties such as compositions or geometries of specimens by 

achieving increased magnification, contrast, and resolution. SEM micro-graphs, however, 

remain two-dimensional (2D). The knowledge and information about their three-dimensional 

(3D) surface structures are critical in many real-world applications. Having 3D surfaces from 

SEM images provides true anatomic shapes of micro-scale samples which allow for quantitative 

measurements and informative visualization of the systems being investigated. A novel multi-

view approach for reconstruction of SEM images is demonstrated in this research project. This 

thesis focuses on the 3D SEM surface reconstruction from multi-view images. We investigate an 

approach to reconstruction of 3D surfaces from stereo SEM image pairs and then discuss how 

3D point clouds may be registered to generate more complete 3D shapes from multi-views of 

the microscopic specimen. Then we introduce a method that uses an algorithm called KAZE, 

which reconstructs 3D surfaces from multiple views of objects. Then Numerous results are 

presented to show the effectiveness of the presented approaches. 
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Chapter 1 

Introduction 

1.1. Background and Problem Statement 

3D surface reconstruction from a set of 2D images has been an active research area in the 

field of computer vision. The technique of Scanning Electron Microscope (SEM) imaging has also 

been traditionally used in various research areas to view the surface structure of microscopic 

samples. However, SEM images remain two-dimensional (2D). Having three-dimensional (3D) 

shapes from 2D SEM images would provide anatomic surfaces allowing for quantitative 

measurements and informative visualization of the objects being investigated. Many facets of 

science have benefited and could further benefit from 3D SEM surface reconstruction 

techniques. In computer science tremendous amount of work is available on algorithm 

designing and software developing of 3D surface reconstruction from 2D images. 

1.2. The Scanning Electron Microscope 

A scanning electron microscope (SEM) is used to generate surface images of a specimen on 

a microscopic level. It does this by scanning a specimen with a beam of high energy electrons in 

an optical column. The electrons emitted by the beam then interact with the atomic structure 

of the specimen and generate topographic images. The beam is generated in a vacuum by the 

electron gun. The electron gun comprises of three main components; filament, shield and an 

anode. The filament serves as the source of electrons for the beam. The shield functions to 

direct the emitted electrons in a downward trajectory in the column of the microscope. The 
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anode is for drawing electrons down into the column at a constant speed. This electron column 

uses magnetic electron lenses on the sides of the column to project an image of the electron 

beam onto the specimen. Throughout the length of the column, the beam is de-magnified by a 

factor of 100 to 1000 times its original size and is focused on the specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 SEM Schematic https://nau.edu/cefns/labs/electron-microprobe/glg-510-

class-notes/instrumentation/ 

https://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/instrumentation/
https://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/instrumentation/
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1.2.1. Secondary Electron Images and Backscattered Electron Images 

The reflection of secondary electrons is helpful in creating the topographic imagery of a 

sample. Secondary electrons (SEs) are created when electrons are ejected due to impact with 

the electron beam. The secondary electrons are distinguished from the backscattered electrons 

as they have much lower energies. 

Backscattered electrons (BSEs) are mainly used to learn about the composition of the 

sample and have energies much higher than the secondary electrons. The backscattering of 

electrons occurs as a result of multiple deflections through small angles on a sample. BSEs are 

scattered from the sample with little energy loss and are able to travel greater depths within 

the sample. 

Like the SE emissions, the BSE emissions are also affected by the angle of the surface. The 

detector ‘sees’ different electrons produced from various angles on the surface and a 

topographic image can be generated. However, the topographic image produced by BSEs tends 

to have a lower resolution than that produced by SE emission. 

Table 1 Comparison of the Secondary Electron and Backscattered Electron imaging in a SEM 

SE Based Imaging BSE Based Imaging 

Higher resolution Lower resolution 

Darker intensities Brighter intensities 

Inelastic scattering (low energy electrons) Elastic scattering (high energy electrons) 

Contains topographical information Contains compositional information 

 



4 

 

1.3. 3D Surface Reconstruction 

3D surface reconstruction techniques constitute an important part of 3D computer vision. It 

has been used in the process of creating 3D models from only a set of 2D images. The origin of 

3D computer vision dates to 1957 when Gilbert Hobrough illustrated a method and designed 

the apparatus for analog implementation of stereo image correlation. In 1963, Larry Roberts 

proposed the first 3D surface reconstruction technique by introducing a machine perception 

algorithm which could create and display 3D geometry information of objects from a single 

two-dimensional photograph. In 1970, B. P. Horn designed another 3D surface reconstruction 

technique called Shape-from-Shading (SFS) which used shading from an individual image to 

calculate the surface orientation. In 1977, R. J. Woodham designed the Photometric Stereo (PS) 

algorithm which was a multi-view version of the Shape-from-Shading. In 1990, C. Tomasi and T. 

Kanade estimated 3D surface structure from a sequence of 2D images. The method they 

proposed is now popularly known as called Structure from Motion (SFM). In 2002, T. Zickler, P. 

N. Belhumeur, and D. Kriegman designed Helmholtz stereopsis to reconstruct the 3D geometry 

of an object from a collection of 2D images. In 2011, J. Shotton et al. provided a new method to 

predict 3D positions of body joints from a single depth image in a fast and accurate manner by 

recording the shape of the reflected points of light by means of a camera. Instead of temporal 

information, this was known as structured light capture. This technique has famously been used 

in Microsoft's Kinect accessory. 
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1.4. 3D Surface Reconstruction from SEM Images 

The process of creating a 3D shape model of a microscopic sample is still not quite easy to 

solve since its three-dimensional shape in the real world is only projected into and available as 

2D digital images. Over the past years, there has been an expansion in the designing and 

development of 3D surface reconstruction algorithms for images obtained by a SEM. These 

algorithms can be categorized into three main classes: 

 1) Single-View  

2) Multi-View 

3) Hybrid 

1.4.1. Single View Approach 

In the Single-View approach, a set of 2D images from a single view point with varying 

light directions are used for 3D SEM surface reconstruction. Photometric Stereo is the main 

algorithm used in this class to produce 3D geometry information of a microscopic sample. 

Photometric Stereo is a 3D computer vision algorithm which rapidly computes the three-

dimensional geometry of an object by examining 2D images that are being viewed from the 

same viewpoint, but being illuminated from different directions. The Photometric Stereo 

method has five general steps:  

1) Take a set of single view digital images of an object under different light directions. 

2) Determine the light directions. 

3) Calculate surface normal. 

4) Calculate reflection coefficient. 

5) Estimate depth. 
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1.4.2. Multi-View Approach 

In the Multi-View approach, a 3D computer vision algorithm is used, namely Structure 

from Motion (SFM). This method utilizes stereo pairs taken by tilting the microscopic object 

between photographs. Structure from Motion is established on the theory of projective 

geometry, with considering different perspectives from different view angles to restore the 3D 

structure of a specific object. By using corresponding feature points or key points in the image 

pairs, a 3D point can be reconstructed by linear triangulation. Basic requirements are the 

determination of camera calibration (intrinsic camera parameters) and camera’s rotation and 

translation. The SFM method has five major steps: 

1) Take a set of digital images of an object. 

2) Identify key points or feature points in the images that can be detected in other images in 

the set. 

3) Search for corresponding points in images which is also known as point-matching.  

4) Estimate camera projection matrices.  

5) Compute 3D surface model by using linear triangulation. 

 

1.4.3. Hybrid Approach 

The third class of 3D SEM surface reconstruction algorithms is called the Hybrid method, 

and it offers a compromise between the Single-View and the Multi-View approaches. This 

approach uses an algorithm to reconstruct surfaces and 3D images by applying stereo and 

shading information from two 2D images. Since the shape from shading does the 
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reconstruction very well when the 2D data has homogeneous texture, the stereo and shading 

information are complementary requirements of the reconstruction, and shape from stereo 

helps when there are various features in the data. 
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Chapter 2 

3D SEM Reconstruction from Multiple Views 

2.1. Introduction 

Scanning electron microscope (SEM) is one the principal research and industrial equipment 

for imaging on the microscopic scale. SEM and its diverse applications have been a very active 

research over the decade, and scientific studies well covered the use of SEM in broad domains 

ranging from biomedical applications to materials sciences and Nano-technologies. SEM is an 

advanced microscopy device that produces high quality images of microscopic specimens using 

a focused beam of electrons which can be then captured by two types of detectors, secondary 

electron (SE) and backscattered electron (BSE) detectors, to provide both compositional and/or 

geometrical information. However, SEM micrographs remain 2D while the need for having a 

more quantitative knowledge of the 3D shape/surface of the microscopic samples is of high 

importance. The techniques used for this purpose can be categorized into three major classes: 

a) single-view, b) multi-view, and c) hybrid strategies. In single-view approaches, using varying 

lighting directions on a single perspective, a group of 2D SEM images are captured and utilized 

for 3D SEM surface modeling. In multi-view strategies, on the other hand, a set of 2D SEM 

images from different perspectives assists the 3D SEM surface reconstruction process. While 

each technology carries its own cons and pros, the hybrid mechanisms try to combine single-

view and multi-view algorithms to restore a 3D shape model from 2D SEM images. 

The Photometric Stereo as the major strategy in the single-view class tries to estimate the 

surface normal vectors of the microscopic sample by observing the object being illuminated 
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from different directions. Paluszynski et al. designed a single-view 3D surface modeling 

approach based on the Photometric Stereo algorithm which also incorporates advanced signal 

processing algorithms along with both SE and BSE detectors to restore the 3D shape model of 

SEM images. Pintus et al. developed an automatic alignment strategy for a four-source 

Photometric Stereo technique for reconstructing the depth map of SEM specimen. Kodama et 

al. designed a genetic algorithm to tackle the topographical surface reconstruction problem of 

SEM based on Photometric Stereo method. The proposed genetic algorithm has been applied 

to the line profile reconstruction from the signals captured by both SE and BSE detectors. 

Vynnyk et al. proposed a Photometric Stereo based algorithm to 3D SEM surface reconstruction 

and studied the efficiency of SEM detector system towards a 3D modeling. Slowko et al. 

designed a Photometric Stereo based algorithm to reconstruct the 3D surface model of SEM 

micrographs with the use of angular distribution of back-scattered electron emission to achieve 

a digital map of surface elevations. This contribution examined different SEM environmental 

conditions as a high vacuum SEM which was equipped with the BSE detector system utilized for 

3D surface reconstruction.  

The multi-view class is one of the most promising class of methods for 3D surface modeling 

of SEM images. It is based on acquisition of multiple images from different perspectives. The 

Structure from Motion (SfM) and Stereo Vision algorithms are advanced visual computational 

methods which consider feature-points matching for accurate 3D SEM surface reconstruction. 

The class of multi-view 3D reconstruction approaches can be categorized into two major 

classes: a) sparse feature-based approaches and b) dense pixel based approaches. While 

methods from the first class are employed to establish a set of robust matches between an 
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image pair or a set of images based on sparsely placed distinct feature-points, dense multi-view 

techniques try to discover matches for all points in the images. These matches along with other 

computational methods will then be used to accurately estimate the projective geometry and 

3D surface models. Raspanti et al. presented a high resolution dense multi-view method for 3D 

reconstructions of biological samples obtained by a SEM. The work implemented novel 

solutions including a neural adaptive point matching technique to tackle the problem of dense 

3D reconstruction. Samak et al. developed a SfM based algorithm to restore 3D surface model 

of SEM micrographs. The proposed method initialized a set of 3D points from 2D corresponding 

points and then triangulated the obtained 3D points into the 3D surface mesh with a mapped 

texture on the shape model. Carli et al. evaluated the uncertainty of stereo vision algorithm for 

the problem of 3D SEM surface modeling. Uncertainty for different cases of tilt and rotation 

were discussed in the work and a relative uncertainty equal to 5% and 4% was achieved for the 

case of rotation and tilt respectively. Zolotukhin et al. studied the pros and cons of SfM 

algorithm focusing on two-view 3D SEM surface reconstruction problem. Tafti et al. reviewed 

the state of the art 3D SEM surface reconstruction solutions, addressing several enhancements 

for the research study, and developed a sparse mutli-view algorithm to tackle 3D SEM surface 

modeling problem. Using machine learning solutions and adaptive strategies, Tafti et al. 

proposed an improved sparse feature-based multi-view method which outperforms their 

earlier work in terms of accuracy and computation demands. Marinello et al. analyzed and 

studied the 3D reconstruction of SEM images based on different instrumental configurations 

including calibration, title-angle, magnification etc.  
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In single-view 3D surface reconstruction, creating a full model of the microscopic sample is 

not possible since the images are limited to only one view-point. Moreover, recreating the SEM 

micrographs of the sample under different illumination conditions is difficult. On the other 

hand, multi-view approaches offer a more general and achievable framework for the task. 

 

2.2. Procedure 

2.2.1. Overview 

The overview of the proposed work is almost the same as described in the previously for 

the multi-view approach. Scattered electron based images are used in the approach since we 

are interested in the reconstruction of the surface of the microscopic specimen. These multi-

view image datasets are captured by using a SEM device with computer controlled specimen 

stage. From this dataset a pair of images (stereo pair) is selected and then Epipolar rectification 

using sparse SURF features done to ensure a more horizontally-concentrated disparity 

variation. This is followed by dense correspondence between the pixels which provides the one-

to-one correspondence between the matching points of the two images. 
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Once the images are rectified, the Patchmatch Stereo algorithm is used to generate depth maps 

from which 3D point cloud can be generated for the purpose of reconstruction. This process is 

repeated for other images of the same sample taken at different angles and similarly other 

point clouds are generated and then registered. The registration of these points clouds can be 

done manually as well by simply loading the point clouds and using the basic computer vision 

(b) (a) 

(b) (a) 

Figure 2 (a) View 1 of Tapetal Cell of Arabidopsis Thaliana http://selibcv.org/3dsem/; (b) View 2 of 

Tapetal Cell of Arabidopsis Thaliana http://selibcv.org/3dsem/   

Figure 3 (a) Rectified view 1 of Tapetal Cell of Arabidopsis; (b) Rectified view 2 of Tapetal Cell of 

Arabidopsis 

http://selibcv.org/3dsem/
http://selibcv.org/3dsem/
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functions of translation and rotation. For manual registration the corresponding points must be 

selected between the point clouds and then using translation and rotation overlapped with 

each other. The approach in the research used is the Iterative Closest Point Algorithm. In the 

following subsections each of the steps are elaborated in more detail. 

 

2.2.2. Image Rectification 

Image rectification is a transformation process used to project images onto a common 

image plane. It is used in computer stereo vision to simplify the problem of finding matching 

points between images known as the correspondence problem. 

In an image there can be various objects, and from these objects some feature points 

can be extracted to provide a feature description for the object. This feature description is used 

to identify this object in the other images of the dataset. 

The feature point extraction and their matching is one of the key point in the process of 

image rectification. The feature point matching can be done by either of the following feature 

detectors: SIFT (Scale-Invariant Feature Transform) or SURF (Speeded Up Robust Features). 

The feature detector used in this approach is SURF which is a local feature detector and 

descriptor. The main reason for choosing SURF over SIFT is that it is several times faster than 

SIFT and is also more robust against different image transformations (as claimed by its authors). 

The SURF algorithm is based on the same principles as SIFT but it varies in each step. The 

algorithm has three parts: 1) Interest point detection, 2) Local neighborhood detection and 3) 

Matching. 
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(b) (a) 

(b) (a) 

Figure 4 (a) Pseudoscorpion Left View 

https://www.sciencedirect.com/science/article/pii/S0968432817303128;  

(b) Pseudoscorpion Right View 

https://www.sciencedirect.com/science/article/pii/S0968432817303128 

Figure 5 (a) Pseudoscorpion Left View 30 Strongest Surf Points; (b) Pseudoscorpion 

Right View 30 Strongest Surf Points 

https://www.sciencedirect.com/science/article/pii/S0968432817303128
https://www.sciencedirect.com/science/article/pii/S0968432817303128
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The figure 5(a) and figure 5(b) shows the step where strongest feature/key points are detected 

for both the images that are provided input to the algorithm. After this detection the 

correspondence between the two images is found using these feature/key points. 

 

 

 

 

 

 

 

 

 

 

The points matched between the two views can be clearly seen from the figure 6 above. With 

this point correspondence the images can be rectified and then all these epipolar lines will be 

parallel in the rectified image plane. The result can be seen below in figure 7(a) and figure 7(b). 

Figure 6 Pseudoscorpion Matched Points between Left View and Right View 
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By combining the figure 7(a) and figure 7(b) we get figure 8 which is said to be the composite of 

both the images. It is more like an overlapping of the images in cyan and red color to identify 

the difference between the two. 

(b) (a) 

Figure 7 (a) Pseudoscorpion Left View Rectified; (b) Pseudoscorpion Right View 

Rectified 

Figure 8 Pseudoscorpion Composite of Left 

View and Right View 
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 Followed by this process comes the process for evaluating the disparity values and 

finding the depth map for the given stereo pair. This is achieved by using the Patchmatch 

algorithm. 

 

2.2.3. Patchmatch 

In order to find correspondence between patches (usually small regions) between the 

images, the Patchmatch algorithm is often used. The algorithm takes a stereo pair of images as 

input (thus also called Patchmatch Stereo Algorithm). Then it defines a nearest-neighbor field 

(NNF). The Patchmatch Stereo algorithm is iterative and works in three steps: 1) Initialization, 2) 

Propagation, 3) Refinement. 

A straightforward implementation i.e. CPU based implementation of the Patchmatch 

Stereo algorithm consumes a large amount of time. For this approach a GPU implementation 

has been used which enabled much faster computing of the disparity maps for the input stereo 

image pair. The algorithm takes two rectified images as its input. Along with this rectified stereo 

image pair user needs to define the disparity value range (minimum disparity and maximum 

disparity). This disparity value range can have significant effect on the resulting 3D models. Not 

only this the range also affects the total computing time of the implementation. Also patch 

radius and patch stride values must be provided by the user to proceed. Otherwise a default 

value of 10 for patch radius and 1 for patch stride is selected which in most cases works fine. To 

observe the effect of disparity values on the results, 3 different value ranges were used that can 

be seen in the figures provided below. 
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2.2.3.1. Disparity Test Value [-40 40]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) (a) 

Figure 9 (a) Left View Image Initialization Step [-40 40]; (b) Right View Image Initialization 

Step [-40 40] 

Figure 10 Left View Image Propagation Step [-40 40] 
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Figure 11 Right View Image Propagation Step [-40 40] 

Figure 13 Right View Image Refinement Step [-40 40] 

Figure 12 Left View Image Refinement Step [-40 40] 
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2.2.3.2. Disparity Test Value [-10 10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

(b) (a) 

Figure 14 (a) Left View Image Disparity Map [-40 40]; (b) Right View Image Disparity Map [-40 40] 

Figure 15 (a) Left View Image Initialization Step [-10 10]; (b) Right View Image Initialization 

Step [-10 10] 
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Figure 16 Left View Image Propagation Step [-10 10] 

Figure 17 Right View Image Propagation Step [-10 10] 

Figure 18 Left View Image Refinement Step [-10 10] 
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Figure 19 Right View Image Refinement Step [-10 10] 

Figure 20 (a) Left View Image Disparity Map [-10 10]; (b) Right View Image Disparity Map [-10 10] 

(a) (b) 
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2.2.3.3. Disparity Test Value [-30 30] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

(b) (a) 

Figure 21 (a) Left View Image Initialization Step [-30 30]; (b) Right View Image Initialization Step 

[-30 30] 

Figure 22 Left View Image Propagation Step [-30 30] 



24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Right View Image Propagation Step [-30 30] 

Figure 25 Right View Image Refinement Step [-30 30] 

Figure 24 Left View Image Refinement Step [-30 30] 



25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the figures shown above it can be clearly seen that the results, when choosing disparity 

values to be -10 10, are of the better quality than the rest of the two-other set of images. Also 

choosing -30 30 yields the worst result amongst the three sets. These results directly affect the 

next step of the approach which is point cloud generation. If the disparity maps are not well 

defined or have a significant amount of noise in them then the resulting point cloud is a noisy 

mesh as well. 

These results were achieved using the GPU implementation of the Patchmatch Stereo 

algorithm. The same results can also be achieved by using the CPU version but it is highly time 

consuming. Table 2 Comparison Between Computational Time Required by CPU and GPU 

Implementation of the Patchmatch Stereo Algorithm provides the comparison in running time 

(b) (a) 

Figure 26 (a) Left View Image Disparity Map [-30 30]; (b) Right View Image Disparity Map [-30 30] 
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between the CPU and GPU implementation of the Patchmatch Stereo algorithm for different 

SEM images. 

 

Table 2 Comparison Between Computational Time Required by CPU and GPU Implementation of the Patchmatch Stereo 

Algorithm; http://selibcv.org/3dsem/; https://www.sciencedirect.com/science/article/pii/S0968432817303128 

SEM Dataset CPU 

Implementation 

GPU 

Implementation 

Diatom Frustule 12895.30seconds/ 

214.922minutes/ 

3.582hours 

85.61seconds/ 

1.426minutes 

Hexagon TEM Copper Grid 

 

13401.59seconds/ 

223.359minutes/ 

3.723hours 

83.75seconds/ 

1.395minutes 

Pollen 

 

12636.05seconds/ 

210.601minutes/ 

3.510hours 

83.83seconds/ 

1.397minutes 

Tapetal Cell of Arabidopsis 

Thaliana 

 

15009.24seconds/ 

250.154minutes/ 

4.169hours 

84.64seconds/ 

1.444minutes 

Pollen Grain from Brassica 

Rapa 

 

12596.33seconds/ 

209.939minutes/ 

3.499hours 

85.55seconds/ 

1.426minutes 

Pseudoscorpion  

 

12601.89seconds/ 

210.0315minutes/ 

3.501hours 

82.86sec/ 

1.381minutes 

Anther  

 

13341.91seconds/ 

222.365minutes/ 

3.706hours 

86.03sec/ 

1.434minutes 

 

http://selibcv.org/3dsem/
https://www.sciencedirect.com/science/article/pii/S0968432817303128
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All the SEM images used here were of the same resolution 640x480 for the sake of fairness of 

comparison. The disparity values were set to -10 10 for every stereo pair of every dataset. It is 

clearly seen that the GPU implementation is much faster than the CPU implementation. The 

computational time difference between the two implementations is huge. It takes the CPU 

several hours to compute whereas the GPU does the same computation in less than a couple of 

minutes. If the resolution of the images were to be higher than the one being used or if the 

disparity values were set to a higher range the computational time would also increase multiple 

folds specially for the CPU implementation. 

 The next step is to generate dense point cloud and from that constructing the 

3D surface model. To achieve a much better-quality construction the approach adds the feature 

of point cloud registration. This not only provides better viewing angles for the constructed 3D 

model but also a much denser surface reconstruction which is the main objective of this 

research. 

2.2.4. Point Cloud Generation and Registration 

The results from the previous step are crucial for the point cloud generation. The quality of the 

point cloud depends on the correctness of the rectification of the stereo images and the 

disparity map generated by the Patchmatch algorithm. Once the depth map has been received 

the point cloud can generated using the rectified image that was used as input to the 

Patchmatch algorithm. An important parameter here is the rotation angle which the user must 

provide. Usually if the SEM images are taken by the user then the rotation angle is known and 

that helps in achieving relatively more accurate results.  
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This 3D reconstruction is done by using the resulting depth map of the disparity value 

test set -10 10. Once the 3D construction is done and high detail result is achieved we can move 

to the next step of registration. But before that the we must generate multiple cloud points 

from different images of the same dataset. This means that the approach described until now 

has to be implemented several times (at least 2 times) since registration can be performed on 

Figure 27 3D Surface Reconstruction of Pseudoscorpion SEM Stereo Pair 



29 

 

at least 2 set of point clouds. From Figure 28 Sparse 3D Reconstructed Pseudoscorpion Surface 

below it is seen that from a single stereo pair the reconstruction can be sparse. 

 

 

This structure is missing details and geometry which is crucial when the interest lies in 

observing the true shape of the sample. This is where point cloud registration helps and 

overcomes this obstacle. Point cloud registration is basically using transformation and rotation 

tools and fitting the two points clouds in such a manner that the key points match with high 

accuracy. Figure 29 Dense 3D Surface of Pseudoscorpion using Point Cloud Registration shows 

how point cloud registration overcomes this obstacle and provides a much better 3D model to 

work with. 

Figure 28 Sparse 3D Reconstructed Pseudoscorpion Surface 
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2.3. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Dense 3D Surface of Pseudoscorpion using Point Cloud Registration 

Figure 30 Hexagon TEM Copper Grid Dataset http://selibcv.org/3dsem/ 

http://selibcv.org/3dsem/
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Figure 31 Reconstructed 3D Model without Point Cloud Registration Hexagon TEM Copper Grid Dataset 

Figure 32 Reconstructed 3D Model with Point Cloud Registration Hexagon TEM Copper Grid Dataset 
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Figure 33 Pollen Grain from Brassica Rapa Dataset http://selibcv.org/3dsem/ 

Figure 34 Reconstructed 3D Model without Point Cloud Registration Pollen Grain from Brassica Rapa 

Dataset 

http://selibcv.org/3dsem/
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Figure 35 Reconstructed 3D Model with Point Cloud Registration Pollen Grain from Brassica Rapa Dataset 

Figure 36 TEM Copper Grid Dataset http://selibcv.org/3dsem/ 

http://selibcv.org/3dsem/
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Figure 37 Reconstructed 3D Model without Point Cloud Registration Pollen Grain from TEM Copper Grid 

Dataset 

Figure 38 Reconstructed 3D Model with Point Cloud Registration Pollen Grain from TEM Copper Grid Dataset 
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2.4. Conclusion 

The results shown do provide a denser and a much more complete view of the specimen as 

compared to the traditional 2 image 3D reconstruction. The results are not only dense but also 

provides more detail and information about the structure and shape of the SEM micrograph. 

Even though the results are better than before, this approach has its limitations. Since the 

approach works locally, that is, it generates the point clouds for every pair of stereo images 

independently, the errors and noise generated in each point cloud is accumulated in the final 

result when all the point clouds are registered. 

To tackle this problem a global approach method is discussed in the next chapter which 

instead of working on 2 images at a time, works on the entire data set to find the matches 

between the images and computing the correspondence between these images within a 

dataset. 
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Chapter 3 

Global Approach: Regard3D 
 

3.1. Introduction to Regard3D 

Regard3D is a structure-from-motion program. That means, it can create 3D models from 

objects using a series of photographs taken of this object from different viewpoints. The 

photographs provided as the input must follow this criterion for best possible results: 

• Image must be JPEG. 

• The focal length as well as the sensor size of the imaging device (for at least some 

pictures) must be known. This means that: 

o EXIF (metadata) must be present. This provides focal length and camera’s 

make and model. 

o The imaging device (camera) used must be in Regard3D’s database. 

• Higher the resolution better the resulting reconstruction. 

• The photographs should provide a complete view of the object. Any part of the 

object not visible in more than three pictures will be excluded from the resulting 3D 

model. 

Classic A-KAZE (more precise but slower) and Fast A-KAZE (faster but slightly less good key-

points get detected) are two key-point detectors that are used in this approach.  
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3.2. KAZE Algorithm 

KAZE is a multiscale 2D feature detection and description algorithm in nonlinear scale 

spaces. Previous approaches detect and describe features at different scale levels by building or 

approximating the Gaussian scale space of an image. However, Gaussian blurring does not 

respect the natural boundaries of objects and smooths to the same degree both details and 

noise, reducing localization accuracy and distinctiveness. In contrast, KAZE detects and 

describes 2D features in a nonlinear scale space by means of nonlinear diffusion filtering. This is 

done by blurring locally adaptive to the image data, reducing noise but retaining object 

boundaries, obtaining superior localization accuracy and distinctiveness. Even though the 

features are somewhat more expensive to compute than SURF due to the construction of the 

nonlinear scale space, but comparable to SIFT, the results reveal a step forward in performance 

both in detection and description against previous state-of-the-art methods. The algorithm 

used in this particular approach is the sped-up version of the KAZE algorithm. It is known as 

Accelerated KAZE or A-KAZE. 

3.3. A-KAZE 

A-KAZE or Accelerated KAZE uses a mathematical framework called Fast Explicit Diffusion 

(FED) to dramatically speed-up the nonlinear scale space computations. A-KAZE achieves 

comparable results to KAZE (in some datasets) while being much faster than the KAZE. 
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3.4. Obtaining a 3D Model 

To obtain a 3D model, the following steps are performed: 

3.4.1. Feature Point Detection 

For each image, features also called key-points are detected. Features are points in an 

object that have a high probability to be found in different images of the same object, 

for example corners, edges etc. Regard3D uses A-KAZE for this purpose. 

For each feature, a mathematical descriptor is calculated. This descriptor has the 

characteristic that descriptors of the same point in an object in different images (seen 

from different viewpoints) is similar. Regard3D uses Local Intensity Order Pattern (LIOP) 

for this purpose. 

3.4.2. Key-point Matching 

The descriptors from different images are matched and geometrically filtered. The result 

of this step is a collection of matches between each image pair. 

Now "tracks" are calculated. For each feature that is part of a match in an image 

pair, it is searched also in other images. A track is generated from features if these 

features satisfy some conditions, for example a track is seen in at least 3 images. 

3.4.3. Triangulation 

The next step is the triangulation phase. All the matches of all the image pairs are used 

to calculate: 

o The 3D position and characteristic of the "camera", i.e. where each image was 

shot and the visual characteristics of the camera. 
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o The 3D position of each "track" is calculated 

3.4.4. Densification 

The result of the triangulation phase is a sparse point cloud. To obtain a denser point 

cloud ("densification"), several algorithms can be used. 

3.4.5. Surface Generation 

• The last step is called "Surface generation". The point clouds are used to generate a 

surface, either with colored vertices or with a texture. 
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3.5. Pipeline 

 

 

  

Input Dataset

• Input a set of images.

Compute 
Matches

• detect keypoints in each image and match them with keypoints from 
other images. This is done using A-KAZE.

Triangulation

• The 3D position and characteristic of the camera (where each image was 
shot) is calculated.

Densification

• The triangulated point cloud is rather sparse, it is difficult to make out 
the original object. The point cloud is densified so a surface can be 
constructed.

Surface 
Generation

• Since it is still a point cloud (a set of 3D points with color), a surface that 
connects (most of) these points is constructed.
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3.6. Results 

 

3.6.1. Dataset 1: Kermit 

 

 

Figure 39 Kermit Dataset 11 Images Montage 

https://www.gcc.tu-darmstadt.de/home/proj/mve/ 

https://www.gcc.tu-darmstadt.de/home/proj/mve/
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Figure 40 Matching Results from Kermit Dataset 

Figure 41 Dense Point Cloud Generation from Triangulated Points Kermit 
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Figure 42 Generated Surface from 11 Images Kermit Dataset 
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Figure 43 Der Hass Dataset 79 Images Montage 

https://www.gcc.tu-darmstadt.de/home/proj/mve/ 
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Figure 44 Matching Results From Der Hass Dataset 

Figure 45 Dense Point Cloud Generation from Triangulated Points Der Hass 
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Figure 46 Generated Surface from 79 Images Der Hass Dataset 
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The results shown above were generated using Regard3D running on a system with 

specifications as follows: 

• Processor: Intel® Core™ i5-75300HQ CPU @ 2.50GHz 2.50GHz 

• RAM: 8.00 GB 

From the table provided below, the time it takes for each step to complete can be seen as well 

as the total time it takes from finding putative matches to generation of the surface with 

textures. 

Table 3 Step by Step Running Time for Each Dataset 

Dataset Number 

of 

Images 

Compute 

Matches 

Triangulation Create 

Dense 

Pointcloud 

Generate 

Surface 

Total Time 

Kermit 11 7.889 sec 2.293 sec 113.227 sec 218.591 sec 342sec 

Der 

Hass 

79 475.585sec 59.750sec 1111.190sec 1158.187sec 2804.712sec 

 

Both the datasets used were downscaled to the same image resolution of 640x480 for the sake 

of relatively faster running time and fair comparison. The settings that were used for each step 

were set for achieving maximum level detail in the final 3D generated surface model. As shown 

in Table 3 Step by Step Running Time for Each Dataset the total time it took for Kermit dataset 

which consists of 11 images is 342 seconds or 5 minutes and 42 seconds. As for the Der Hass 

dataset which consisted of 79 images the total time required to generate the 3D surface was 

2804.712 seconds or 46 minutes and 44.712 seconds. 
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3.7. Other Low Detail 3D Reconstructions 

 

 

 

 

 

Figure 47 Low Detail 3D Model Reconstruction of Objects From 3 Images 

Figure 48 Low Detail 3D Model Reconstruction of Human Face with 30 Images 
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3.8. Conclusion 

The approach demonstrated above is a general/global 3D reconstruction approach. It can 

be used to generate 3D model surfaces from any given set of images as long as the camera 

parameters are known to the user. This provides nicely detailed geometry and textures with 

fine details. As mentioned in the requirements the higher the input image quality the higher the 

quality of the resulting 3D model will be. The difference in quality can also be seen from 

comparing Figure 42 Generated Surface from 11 Images Kermit Dataset, Figure 46 Generated 

Surface from 79 Images Der Hass Dataset, Figure 47 Low Detail 3D Model Reconstruction of 

Objects From 3 Images and Figure 48 Low Detail 3D Model Reconstruction of Human Face From 

30 Images. 

 Even though the results from this general 3D modeling approach are promising and look 

good, the actual goal to achieve is 3D surface reconstruction of SEM images is not yet 

achievable using this approach. Since the intrinsic camera parameters such as the camera’s 

focal length and sensor width are not known, it is not possible to add these values to the 

camera database for Regard3D. Thus, some modifications and enhancements are to be made 

before it can be done. 
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Chapter 4 

Conclusions 

4.1. Conclusions and Future Work 

In this thesis we surveyed different approaches for the 3D surface reconstruction. We 

discussed the multi-view approach which takes only two images as input at a time. This 

approach included several steps such as image rectification, using Patchmatch Stereo’s GPU 

implementation and point cloud registration. The approach is useful when dealing with SEM 

images as can be seen from the figures in the Chapter 2. Since a 3D reconstruction from only 

two images does not always necessarily provide enough detail and texture, thus the 3D view 

remains incomplete. With the approach discussed in Chapter 2 we can provide multiple images 

as input (two at a time) and then generate multiple point clouds for the surface reconstruction. 

But this pose another obstacle that no view is fully complete view of the specimen under 

observation. 

Point Cloud Registration being the answer to the problem, is used in this thesis to merge 

those multiple point clouds for the same specimen and creating one complete 3D surface. This 

registration technique helps not only to provide a more complete view of the specimen but also 

adds to missing points in other point clouds. During the generation of point clouds some detail 

in geometry or texture is sometimes left out. This may happen due to faulty feature point 

detection or some accuracy error during the Patchmatch procedure or can also be because of 

the noise generated at any given step. With point cloud registration we overlap and fit the 
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feature points in such a way that it fills these holes and provides a view with small error and 

more completeness in structure. 

Point cloud generation from a pair of images and then registering them is still a local 

approach to solving the problem thus any error generated in the point cloud generation will 

accumulate when registering multiple point clouds. This can sometimes lead to results that are 

not desired and are noisy rather than complete. 

To overcome this problem, we discussed the global approach using Regard3D and 

showed various results generated by the approach. The results were promising in terms of 

details and large area reconstruction when the intrinsic camera parameters are known. The 

approach used the Accelerated KAZE algorithm for the feature point extraction and 

correspondence between the images. It also had multiple libraries backing it up for the purpose 

of triangulation and surface reconstruction as well as point cloud creation. The end results were 

impressive but this approach was not quite useful when applied on images whose EXIF or 

camera details were not known specifically with the SEM images datasets. 

Though this is an obstacle for now, but it can be solved by designing such programs that 

can compute the parameters required by the global approach. With the focal length and 

rotation angle known this approach can be applied not only to any point and shoot camera but 

SEM micrographs as well thus providing a complete view (ideally 360-degrees).  

 Not only this but nowadays much work has been done in the field of computer vision for 

integrating machine learning/deep learning techniques to the algorithms. This not only 

improves the overall functionality of the program but also enhances the efficiency and 
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effectiveness. This new technology used along with the high-power GPUs can revolutionize the 

field of computer vision by speeding up the processes and providing high quality results. 
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