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Abstract

3D shape descriptor-based facial landmark detection:

A machine learning approach

by

Reihaneh Rostami

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Professor Zeyun Yu

Facial landmark detection on 3D human faces has had numerous applications in the literature

such as establishing point-to-point correspondence between 3D face models which is itself a

key step for a wide range of applications like 3D face detection and authentication, matching,

reconstruction, and retrieval, to name a few.

Two groups of approaches, namely knowledge-driven and data-driven approaches, have been

employed for facial landmarking in the literature. Knowledge-driven techniques are the

traditional approaches that have been widely used to locate landmarks on human faces. In

these approaches, a user with sufficient knowledge and experience usually defines features to

be extracted as the landmarks. Data-driven techniques, on the other hand, take advantage

of machine learning algorithms to detect prominent features on 3D face models. Besides

the key advantages, each category of these techniques has limitations that prevent it from

generating the most reliable results.

In this work we propose to combine the strengths of the two approaches to detect facial

landmarks in a more efficient and precise way. The suggested approach consists of two phases.

First, some salient features of the faces are extracted using expert systems. Afterwards,

these points are used as the initial control points in the well-known Thin Plate Spline (TPS)

technique to deform the input face towards a reference face model. Second, by exploring and

utilizing multiple machine learning algorithms another group of landmarks are extracted.
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The data-driven landmark detection step is performed in a supervised manner providing an

information-rich set of training data in which a set of local descriptors are computed and used

to train the algorithm. We then, use the detected landmarks for establishing point-to-point

correspondence between the 3D human faces mainly using an improved version of Iterative

Closest Point (ICP) algorithms. Furthermore, we propose to use the detected landmarks for

3D face matching applications.
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Chapter 1

Overview

1.1 Problem Statement

3D facial landmark1 detection (FLD) is the process of detecting keypoints on 3D face mod-

els. The keypoints correspond to salient features of a human face such as the tip of nose,

mouth corners, inner and outer eye corners etc. [9, 10]. In many cases the located landmarks

are used to establish the correspondence between the 3D face models, a task which plays a

fundamental role in numerous applications such as 3D face reconstruction [11], face regis-

tration [12], 3D face morphing and animation [13], and various medical applications such as

diagnosis of craniofacial disorders [14, 15], to name a few out of many.

3D facial landmarking has been an active area of research in the computer graphics and

computer vision communities since more than a decade ago [1]. Large variations in differ-

ent face structures make the exact landmark detection a difficult face analysis task. An

inaccurate landmark could affect the process of finding other landmarks which are detected

afterwards [16]. Furthermore, incorrect landmarks result in a weak correspondence which

could be completely useless based on the application that the correspondence is used for. For

instance, in video tracking applications, a sparse set of corresponding landmarks which are

not sufficiently accurate would work. However, for applications such as 3D face reconstruc-

tion or morphing that require a dense set of corresponding points, small deviations from the

ground-truth can generate improper results.

In this project, we suggest a FLD framework by using a combination of the knowledge-

driven and data-driven approaches and locates the following 16 keypoints on 3D face models:

1We use landmark and keypoint terms interchangeably in this thesis.
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1. Top of the forehead

2. Nasion (nose bridge)

3. Pronasal (tip of the nose)

4. Subnasal

5. Right cheilion (mouth right corner)

6. Left cheilion (mouth left corner)

7. Pogonion (chin)

8. Right cervical (neck)

9. Left cervical (neck)

10. Center cervical (neck)

11. Right exocanthion (right outer eye corner)

12. Right endocanthion (right inner eye corner)

13. Left endocanthion (left outer eye corner)

14. Left exocanthion (left inner eye corner)

15. Right nostril

16. Left nostril

For many 3D face analysis tasks (e. g., medical applications, 3D face reconstruction,

morphing, face synthesis, animation, etc.) the availability of a dataset of 3D face models with

dense correspondences is essential because these applications mostly require some statistics

to be computed from a group of 3D faces [17]. For instance, Blanz and Vetter proposed

a strong 3D face reconstruction and morphable model in which a 3D structure of a single

2



2D face image of an individual was reconstructed using a linear combination of the 3D face

models [13]. Such approaches highly rely on the existence of 3D face databases in full and

dense correspondence. However, these databases are rare in the literature. Building the

point-to-point correspondences is quit challenging because of the variations in the scanned

face model structures, acquisition noises and spikes, isolated points and all of such difficulties

that arise while working on the real data. Therefore, for an application of our FLD system,

we propose to construct a database of 3D face models with point-to-point correspondences

using an available database of Chinese 3D scanned faces called BJUT.

Section 1.2 of this chapter reviews the recent 3D FLD systems proposed in the literature

and explains how our work roots from the literature and proposes a new perspective in

finding the facial landmarks on 3D data.

The remainder of this thesis is organized as follows. Chapter 2 summarizes the ma-

chine learning algorithms which are used in the literature to construct data-driven 3D shape

descriptors. In addition to the survey of various descriptors, multiple comprehensive tax-

onomies are suggested that provide hierarchies for the data-driven 3D descriptors from appli-

cation, learning algorithms, and input data type perspectives. We survey the literature for

the shape descriptors and the learning algorithms because these topics make two main parts

of our FLD system. While reviewing the literature, we learned that a survey on data-driven

3D shape descriptors was missing; therefore, we broadened our research and studied the field

in greater depth. In Chapters 3 and 4 we elaborate technical aspects of the knowledge-driven

and data-driven modules of our system. Finally, in Chapter 5 we propose an application of

our FLD system in establishing point-to-point correspondence.

1.2 Related works

A first application of using machine learning algorithms for 3D facial landmarking goes

back to 2013 when Creusot et al. proposed a data-driven system to detect 14 landmarks

3



automatically [1]. They reviewed the FLD systems throughly and divided the previous works

into two major groups of expert system-based and machine learning-based approaches. The

former group, referred to as the knowledge-driven techniques, provided the apriori knowledge

to the system by defining the ad-hoc definitions for the features. In these approaches,

usually a user with sufficient knowledge and experience in the area defines the features

to be extracted as the landmarks. The machine learning-based approaches, on the other

hand, take advantage of machine learning algorithms to detect significant features on the

3D face models. In these approaches, referred to as the data-driven techniques, the system

is provided with training data (rather than being provided with the features encoded into

the knowledge) so that the system learns the feature models and finds the landmarks. The

authors introduced a data-driven FLD system applied on the 3D data, for the first time. In

their system they utilized the local shape descriptors which mostly consisted of the curvature

related features such as Gaussian curvature, mean curvature, shapeIndex, etc. They trained

their system by a set of N training faces annotated with L landmarks per mesh. The local

descriptors of length D = 10 were constructed for all vertices of the training meshes. Then,

the distribution of descriptors were estimated for the L landmarks considering the descriptors

of landmarks over all N training samples. These distributions, were used to normalize the

computed shape descriptors and converting them into L × D scores that are in [0,1] per

vertex and per shape. Then, a set of training samples were selected from the input data as

the landmark and non-landmark classes. The vertices close to a specific landmark and those

far from it, were assigned to the landmark and non-landmark classes, respectively. Figure 1.1

illustrates how the training data were selected from the input 3D meshes.

The training dataset which included the scores computed for the samples along with the

class labels were the input of a classifier that learned to discriminate between the landmark

and non-landmark classes. In the testing phase, an unseen face with the computed scores was

presented to the classifier to detect the landmarks. One of the best results of the landmark

detection on sample faces is demonstrated in Figure 1.2.
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Figure 1.1: Training data generation process used by creusot et al. [1]. The blue and red
points were annotated as the landmark and non-landmark class instances, respectively. The
figure is taken from [1].

Figure 1.2: A sample result generated by the approach suggested by creusot et al. [1]. The
figure is taken from [1].

Perakis et al. [9] introduced a 3D facial landmark detection system using the shape

descriptors to detect eight keypoints. The main contribution of this work was its efficiency

in faces with expression variations and large yaw rotations. They proposed to compute local

descriptors per vertex of the input which were made up of two features; namely, shapeIndex

and spinImages. At first, a set of candidate landmarks were selected using the shapeIndex

and then these landmarks were reduced to a smaller set by considering the spinImages

similarities. Furthermore, a set of manually selected landmarks on the training dataset were

used to form a facial model by averaging. Therefore, when the landmark candidates were

provided using the shape descriptors, they were used to find the best set of landmarks that

minimizes the total distance between all of the landmarks and those of the average facial

model.

In another application, Sukno et al. suggested a statistical approach that was able to

5



capture the nonrigid transformation and handled the missing landmarks [16]. Their approach

which detected 14 landmarks, used the shape regression with incomplete local features to

detect the facial landmarks on 3D face models. The authors approached the problem from a

global view by using a shape model that also extracts the prior knowledge out of the data.

Their proposed technique consisted of three steps. At first, they computed a similarity score

for each mesh vertex based on its local geometric descriptors in a training task. Then, using

a shape model regression they estimated the positions of missing landmarks, and finally the

detected landmarks from the last two steps were combined to form the final set of landmarks.

In contrary with the previous work which focused only on the geometric information, Fan

et al. proposed a new framework that employed both geometry and texture information to

detect facial landmarks [10]. They combined the geometry data from the 3D models with the

texture information taken from the 2D images corresponding to the 3D data. They used the

geometry images to obtain the 2D representation of the 3D face models. Eight landmarks

were detected on the geometry images and then using one-to-one correspondences between

the 2D and 3D data, the landmarks were transformed back to the 3D space.

With this introduction to the recent works on the 3D landmark detection, we propose

our hybrid shape descriptor-based system to detect 16 landmarks on 3D face models which

is mostly similar to the work introduced by creusot et al. [1]. Our system consists of a

knowledge-driven module followed by a data-driven unit. The first module detects 10 land-

marks on the input face model. These landmarks are already defined by an expert as the

salient features of the face. The input to this module would be 3D face models that 10 land-

marks will be detected on them. This step of the system uses both geometric and photometric

(only for locating the mouth) information to detect the landmarks. Then, we computed lo-

cal shape descriptors for every vertex of the meshes and applied a clustering algorithm to

extract a cluster of interest for each of the remaining 6 landmarks. After that, each cluster

is fed into a relevant classifier to detect the landmark of interest in the data-driven module.

The main advantage of our work over the existing works in the literature is combining
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the strengths of knowledge-driven and data-driven approaches in detecting facial landmarks.

In fact, we use the knowledge-driven techniques to detect more salient features of the human

face such as the nose tip, the top of forehead, chin, etc. For such landmarks, we do not need

a complex set of rules and at the same time we do not generate the training data manually

or train any classifiers. For the second set of landmarks that has much more variations over

different faces and that we are not able to detect using simple ad-hoc feature definitions, we

generate the training data and use the machine learning-based approaches to detect them.

Another improvement is that we reduce the complexity of computation and guide our data-

driven technique by limiting our search space into a local cluster for each landmark. To the

best of our knowledge the existing approaches in the literature use the global search that

can increase the chance of false positives (Figure 1.2).

We use BJUT dataset, a Chinese 3D face model database, for our work. We use our

technique to establish a set of dense point-to-point correspondences between various 3D

face models which could be finally used to form a database of faces in full correspondence.

Availability of such a database of 3D face models (that are rare currently) is critical for 3D

face analysis applications such as 3D face reconstruction and 3D morphable models. We

applied our method on the BJUT dataset to build such 3D face benchmark and make it

publicly available to the computer graphics community for various 3D face analysis research

purposes. More detail regarding our approach is presented in Chapters 3 and 4.
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Chapter 2

3D shape descriptors

2.1 Introduction

3D models have become an ubiquitous data type in various fields such as material and

mechanical engineering [18], genetics [19], molecular biology [20], dentistry [21, 22], etc.

Additionally, modern scanning devices such as Microsoft kinect [23] and laser scanners have

made it possible to generate 3D models more efficiently and accurately. Many available

domain-specific databases also provide a large number of 3D shapes publicly available (Sec-

tion 2.3). A variety of applications like point matching, point-to-point correspondence, shape

segmentation and labeling, object recognition, shape reconstruction, and shape retrieval use

3D models as input. Even though there exist successful techniques such as Iterative Closest

Point (ICP) [24] and Thin Plate Spline (TPS) [25, 26] which use the geometric characteristics

of the models (given as point clouds or meshes) for shape matching, many other analyses

need their inputs to be represented in a more concise, yet informative, format. These tech-

niques work with the informative and discriminating features, so-called shape descriptors,

extracted from the 3D models rather than utilizing the models themselves.

A shape descriptor or signature is a d-dimensional vector that represents the shape in a

compact space. 3D shape descriptors are obtained by defining features on 3D models, cal-

culating, and concatenating them to form a compact vector representing the 3D shape [27].

Based on whether the features represent global or local attributes of the shape, their relative

shape descriptors could be referred to as global or local descriptors, respectively. Global

descriptors could be computed directly from the inputs or they could be preceded by calcu-

lating local descriptors (e. g. point signatures or descriptors which are computed for faces

8



or different segments of a shape).

Many shape analysis tasks would be inconvenient if not impossible to conduct, without

making use of the shape descriptors. As an example, for shape retrieval that is the process

of querying a 3D model against a database of 3D models and finding the closest match,

it is necessary to convert the shapes into feature descriptors to be able to store the large

volume of 3D data models and to quickly query and find the closest match. Another example

pertains to point matching applications where it is desired to describe point clouds by using

their local descriptors (i. e. point signatures) and then the point similarities are determined

with the distance between their descriptors. This is in contrast with the ICP method that

computes the Euclidean distance between points in the 3D space to find the closest match.

The significance of efficient shape descriptors have motivated groups of researchers to conduct

extensive studies on 3D shape descriptors and to propose different taxonomies for them.

In 2004 Tangelder and Veltcamp summarized different methods of content based 3D shape

retrieval [28]. While the main goal of this work was to review shape retrieval methods, 3D

shape descriptors as a fundamental step in shape retrieval were also thoroughly discussed.

The first survey on 3D shape descriptors was published in 2007 by Zhang et al. [29] follow-

ing a taxonomy on 3D shape descriptors in a survey on feature-based 3D object similarity

search [30]. These articles performed an extensive study and provided appropriate catego-

rizations for the shape descriptors. However, these reviews were conducted about ten years

ago, and did not include many recent state-of-the-art techniques. More recently, Heider et

al. [31] and Tang and Godil [32] surveyed 3D shape descriptors but they limited their work

to local methods only. In addition, the latter specifically evaluated the performance of 3D

shape descriptors applied to the Bag-of-Features (BoF) method. Kazmi et al. [33] reviewed

both 2D and 3D descriptors in 2013; however, their work did not include some of the recent

effective spectral methods (e. g., Heat Kernel Signatures and Wave Kernel Signatures).

The approaches which were reviewed in the aforementioned surveys were mostly tra-

ditional techniques of constructing 3D shape descriptors. These approaches were mainly
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knowledge-driven systems in which researchers with sufficient knowledge and experience in

the area, hand-crafted features to be extracted from shapes and be used as shape descriptors.

On the other hand, the successful applications of machine learning have been increasingly

attracting attentions in many research areas. Although machine learning algorithms have

been used in developing 3D shape descriptors since 1987 [34], they have become more popular

recently with new development for dimensionality reduction and especially the significantly

accelerated learning of a deep structure which emerged in 2006 [35, 36].

Why data-driven approaches? In general, data-driven approaches are machine learning

based techniques that analyze large volumes of data and extract meaningful knowledge out of

them. The major advantage of using data-driven approaches rather than knowledge-driven

techniques in constructing 3D shape descriptors is that they learn features and descriptors

from the sample data (training data) automatically with no or little amount of knowledge

provided by experts [37]. The ad-hoc feature definition in the knowledge-driven systems

requires a well-informed and skillful expert who is not always available. Therefore, this could

make potential barriers in constructing informative and reliable descriptors that captures the

discriminative and salient features of the objects. In fact, providing a data-driven system

with examples of a desired property and training it to learn the features automatically would

be much easier and more intelligent than coming up with a formal definition of the property

which most of the time is not easy to formulate and is subject-dependent [38]. Furthermore,

due to being task-specific, the traditional approaches are less generic than the data-driven

techniques and it is hard to apply them to different tasks. In fact, data-driven techniques

build more generalizable shape descriptors because they learn constructing the descriptors

through large training datasets and not pre-defined rules.

Contribution To our best understanding, the present survey is the first comprehensive

study on data-driven 3D shape descriptors. The large body of work on data-driven 3D

shape descriptors beside the lack of such an extensive study on state-of-the-art techniques,

lead us to review the recent advances in this area. Therefore, in this study we particularly
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focus on the systems built based on machine learning algorithms to construct 3D shape

descriptors. We provide an extensive taxonomy for the surveyed methods and elaborate on

the comparisons of these approaches in various criteria such as input data types, applications,

machine learning algorithms based on which the descriptors were computed, and the feature

extraction techniques. We also categorize the proposed descriptors in the literature based on

their input data type and the applications. In general, it is our hope to provide a complete

and deep categorization and a broad insight into what has been accomplished in the area of

data-driven 3D shape descriptors. We hope to help future researchers making an informed

decision on algorithms for their available data type and specific applications they aim to

work on.

Organization The remainder of this chapter is organized as follows. Section 2.2 provides

the background for this survey. The general framework of data-driven systems which con-

struct 3D shape descriptors besides the components of this framework are reviewed, partic-

ularly. Section 2.3 summarizes a list of many datasets used to construct shape descriptors,

recently. Then, Section 2.4 reviews the data-driven 3D shape descriptors proposed in the

literature both thematically and chronologically, along with proposing an algorithm-oriented

taxonomy for them. The reviewed works are discussed in Section 2.5, alternative taxonomies

for them are proposed, and advantages and limitations of each category are discussed in de-

tail. Finally, Section 2.6 suggests several directions for future research.

2.2 Background

In this section we present a general pipeline of data-driven systems that build 3D shape

descriptors. To construct such a descriptor, a set of training data needs to be presented

to a machine learning algorithm. The input could be either the original data itself or a

set of extracted features. The training set is presented to the system iteratively until some

criteria is met, meaning the algorithm has converged to a potentially meaningful descriptive
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model. After the training phase, the system is ready to generate shape descriptors for unseen

data samples. This pipeline which is illustrated in Figure 2.1 includes three major blocks,

similar to the pipelines which were suggested in the literature for various data-driven systems

(e. g., data-driven shape processing [39], model classification [40], and image-based object

classification [41] as a few examples).

Feature
extraction

Data-driven 3D 
shape descriptors

Data collection 

Model learning

Middle-level

Low-level

Figure 2.1: Three common components of the data-driven systems pipeline to generate 3D
shape descriptors. The system could be feature-based or not. In the feature-based techniques
the low-level features are extracted out of the input data and then could either be fed to
the learning algorithms (blue arrows) or be processed one more step to generate middle-level
features before being provided to the learning algorithms (orange arrows). The original data
is fed to the learning algorithm directly in a non-feature-based technique (green arrow).

Different techniques and algorithms could be used to build components of the pipeline

demonstrated in Figure 2.1. Any categorization for such techniques or algorithms will divide

the obtained shape descriptors into categories, accordingly. For example, a categorization of

different data types collected for the learning system (e. g., 2D images, 3D point clouds and

meshes, voxel grid data, etc.) could divide the descriptors into relevant categories (e. g.,

the 3D descriptors which are built based on the 2D images, etc.). A categorization on the

various learning algorithms used to generate the descriptors would also divide the obtained

descriptors into the corresponding groups (e. g., 3D descriptors which are constructed em-

ploying the autoencoders, etc.). Therefore, we suggest three main categorizations for the
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data-driven 3D shape descriptors based on this pipeline:

• Algorithm-oriented

• Data-oriented

• Application-oriented

In Section 2.4 we propose a comprehensive and deep taxonomy that divides the reviewed

descriptors into a fine hierarchical categorization. The taxonomy is proposed based on an

algorithm-oriented perspective (i. e., it considers the learning architectures and algorithms

used in the model learning component of the pipeline). We also propose two additional tax-

onomies based on input data types as well as applications, in Section 2.5. Three components

of the pipeline, data collection, feature extraction, and model learning, are elaborated in

subsections 2.2.1, 2.2.2, and 2.2.3, respectively.

2.2.1 Data collection

Input data makes an important component of the pipeline. As it was explained in the

introduction, data-driven techniques highly rely on the provided input data as the training

set. It does not matter how well-designed the architecture of the learning algorithm is or how

precisely the feature extraction is defined to detect the salient features, no descriptor will

be constructed if no appropriate dataset is available. The more information-rich and larger

the training datasets are, the more accurate and precise the computed descriptors would be.

Machine learning algorithms require large and versatile datasets so that all aspects of the

objects with the fine details could be learned. There exist a lot of different datasets in the

literature which most of them are publicly available on the web. A complete list of many

datasets which are used in the literature to construct 3D shape descriptors is discussed in

Section 2.3.
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2.2.2 Feature Extraction

Groups of systems that exploit machine learning algorithms to build shape descriptors do

not use the input data as they are; instead, they extract low-level features out of the data

and feed them to the learning system for constructing the shape descriptors. For example,

geometric features such as curvature (mean curvature, Gaussian curvature, etc.), average

geodesic distance, and spin image have been used in the literature [42, 43, 38]. In addition,

there have been recent spectral features such as Heat Kernel Signatures and Wave Kernel

Signatures which were used broadly for local feature extraction (e. g. [43, 44, 37, 45, 46, 8],

etc.).

On the other hand, a group of descriptors in the literature employed a technique called

Bag-of-Features (BoF) to extract the middle-level features out of the low-level ones and these

features were fed into the learning algorithms as the training data ( [45, 47]). Experiments

have shown providing the middle-level features to the deep learning algorithms leads to more

successful descriptors compared with using the original 3D data or the low-level features as

input [45]. The reason could be because the 3D data are not rich in features (as opposed to the

2D image data which could be directly fed into the machine learning algorithms) [45, 48]. On

the other hand, providing the low-level features to the learner requires much higher volume

of training data which is not the case for the middle-level features [45].

Due to the popularity of the spectral techniques including HKS and WKS for low-level

feature extraction, we summarize them in more detail in this section. In addition, because

of the importance of the BoF technique in extracting the middle-level features we explain

its functionality at the end of this section, as well.

Spectral Shape Descriptors Generally speaking, spectral descriptors are constructed by

computing the eigenvalues and eigenfunctions of mesh operators [49] such as the Laplace-

Beltrami operator (LBO) [50]. Typically, the LBO which is defined as the divergence of

gradient of the function f defined on the Riemannian manifold M , is approximated on a

triangulated surface mesh using the cotangent scheme [51]. LBO is a widely used mesh
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operator and plays a key role in various spectral shape descriptors (e. g., [52, 53, 54, 5]).

Heat Kernel Signature (HKS) which takes a spectral approach for constructing shape de-

scriptors was proposed in 2009 by Sun et al. [53]. HKS assigns a vector
−→
P (x) = (ht1(x, x), ht2(x, x), · · · , htn(x,

to each point x of the 3D mesh in which t1, · · · , tn represent a finite set of times and ht(x, x)

is the amount of heat retained at point x after time t. These vectors which are called the

local shape descriptors or heat kernel signatures represent the points of a 3D surface mesh.

The heat diffusion on the manifolds can be described by the heat equation in which the

LBO is a leading element [53]. With notable properties such as being intrinsic, isometric,

and stable against the perturbations [53], HKS is a prominent spectral descriptor with many

applications (e. g. [55, 56, 57] to name a few). Two famous extensions of the HKS namely

Scale-Invariant HKS (SI-HKS) [58] and Volumetric HKS (V-HKS) [59] were also introduced

in the literature.

Wave Kernel Signature (WKS) another spectral shape descriptor, was suggested in 2011

by Aubry et al. [54] being adopted from ”Quantum Mechanics” to capture multi-scale details

of 3D shapes. They used the Schroedinger equation to represent the movement of quantum

mechanical particles on surfaces. Like HKS, each point of 3D meshes was associated with a

vector
−→
P (x) = (pe1(x), pe2(x), · · · , pen(x))

T [5] where pe(x) is the probability of measuring

a quantum particle at point x with an initial energy distribution function. The solution to

the Schroedinger equation which is related to eigen-decomposition of the LBO, is used to

compute
−→
P (x). Since WKS is parametrized using frequency rather than time it can control

accessing high frequencies as well [54] by using a set of band-pass filters [5] as opposed

to HKS which is made up of a set of low-pass filters. Therefore, WKS results in precise

descriptors to capture local information of shapes [60]. WKS is a well-known descriptor and

holds intrinsic, informative, and stability properties.

HKS and WKS have made the building blocks of many data-driven approaches in the

literature; in addition, many researchers were inspired by these descriptors to construct

data-driven shape descriptors in the spectral domain (e. g. [44, 48, 5]). Moreover, both
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descriptors have been employed as standards by researchers to evaluate the performance

of their descriptors (e. g. [37, 4], etc.). We refer the readers to the work conducted by

Litman an Bronstein for a profound comparison between the HKS and WKS descriptors [5].

Besides, additional information on spectral mesh processing could be found in a recent

survey by Zhang et al. [49]. Also Masci et al. provided a nice review on various spectral

shape descriptors [44].

Bag-of-Features Bag-of-Features (BoF) is one of the frequently used techniques in con-

structing global data-driven 3D shape descriptors or extracting middle-level features out of

the provided low-level features. In this technique, at first the feature points are extracted

out of the shape. Then, a clustering algorithm is used to segment the feature space. Finally,

a codebook which is typically referred to as visual dictionary, is constructed representing

each cluster seed (visual words) computed in the previous step. This codebook is used to

generate the descriptors for any unseen input data. The feature points are computed for the

new input, each feature point is assigned to the closest cluster seed and then the input is

coded in a vector that represents the histogram of occurrences of the visual words [2]. While

mostly the K-means algorithm is used in the BoF framework, some alternative algorithms

could be used instead such as the sparse coding approach [61]. Figure 2.2 summarizes this

technique applied on 3D data models.

2.2.3 Learning algorithms

This section reviews learning algorithms that were used in the literature to build 3D shape

descriptors. These algorithms are trained to learn the desired shape descriptors. The learning

process could be carried out in different types in terms of the amount of supervision provided

to the algorithms. The learning type divides the algorithms into three categories namely

supervised, unsupervised, and semi-supervised groups.

Supervised learning algorithms In this type of algorithms, the supervision is provided

to the algorithms mostly through the class labels. For example, while training a system for
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Figure 2.2: A schema of the Bag-of-Feature approach [2]. The figure is taken from [2].

classification, the class label of each sample data is provided along with it. Supervision can

also be provided in the form of a set of known correspondences such as the technique used

in the distance metric learning in which a set of known correspondences are given to the

system as the training data [62].

Unsupervised learning algorithms In this technique, no supervision is provided to the

algorithms. All training data that the algorithm receives is the data itself. The algorithm will

learn the underlying model of the data by observing a large volume of data from the domain

of interest. Clustering is a famous example of unsupervised learning. The inadequacy of the

labeled data and availability of loads of unlabeled data made the unsupervised learning a

proper approach [63] for training data-driven systems.

Semi-supervised learning algorithms In this type of learning, a small amount of su-

pervision is provided to the system beside the large amount of unlabeled training data [64].

For example, in a clustering algorithm we could provide the class labels for a small group of

instances while for all the others the class labels remain unknown. This technique is useful

for cases that only portion of our training data possesses the target class information.

Learning type is an important feature of a learning algorithm; however, it cannot provide

a unique categorization for them. It is mainly because there are learning algorithms that,
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for example, could be trained in both supervised and unsupervised manners (we refer the

reader to Section 2.4.2 for examples of such algorithms). Therefore, we consider another

feature for an alternative categorization of the learning algorithms. The architecture of the

algorithms could classify them into two broad deep and shallow groups [65]. We summarize

the various learning algorithms used in the literature to construct the 3D shape descriptors

in the following two subsections, accordingly.

Shallow learners

Shallow learners have very few levels of computation and require a huge set of training

samples since they use a large number of computational units (e. g., functions that are

computed in units of a learning architecture such as perceptron blocks in ANNs or kernel

units in SVM, etc.) to capture and represent the underlying model of the data [66]. Linear

models, decision trees [67], K-means clustering [68], support vector machines (SVM) [69],

and one-hidden-layer neural networks [70] are famous examples of shallow learners.

Many data-driven shape descriptors in the literature were learned using the shallow struc-

tures. For example, descriptors that were computed using the BoF technique, mostly used

unsupervised K-means clustering algorithm to transform local descriptors into global shape

descriptors. These applications are listed in Section 2.4.1 of this chapter. Besides, some

proposed descriptors in the literature formulated the descriptor learning as an optimiza-

tion problem. They mostly used distance metric learning [62] to solve the problem. Metric

learning which is a supervised learning algorithm provides the supervision in the form of

known correspondences between similar candidates rather than providing class labels for

the training examples. Other learning algorithm used in the literature [71] is the standard

L-BFGS [72] which is the limited-memory version of BFGS algorithm for function minimiza-

tion in large scale using the inverse Hessian matrix. The L-BFGS reduces the memory usage

of the minimization algorithm.
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Deep learners

In contrast to those of the shallow structures, the circuits of deep architectures which are

made up of many layers are significantly simpler but they need to solve highly complex

optimization problems [65]. Deep learning algorithms learn several levels of feature rep-

resentations by making use of the supervised, semi-supervised, or unsupervised learning.

These algorithms are typically implemented as a kind of Artificial Neural Networks (ANNs)

which are consisting of many nodes/neurons that each of them is a simple computational

block. The effectiveness of deep learning comes from avoiding predefinition of the features in

order to capture hierarchical representations, automatically. In fact, the features are not en-

gineered or hand-crafted by human programmers, instead they are automatically extracted

from the input data by the deep structure [73, 74]. The key property of a deep network is

being able to learn the high-level (abstract) features to deal with different types of invari-

ances [65]. When an observation X is presented to a deep network, the training strategy

for the lower layers is to extract the low-level (detailed) features while the upper levels learn

the combinations of these features resulting in the abstract features defining X [35]. Even

though the history of deep learning goes back to 1940s known as cybernetics at that time [75]

it has become more popular since 2006 [35, 36].

The first deep structure that we introduce, is the Fully Connected Network (FCN). These

networks are Multi-Layer Perceptrons (MLP)s with a large number of hidden layers [76]. As

with MLPs, error back-propagation (BP) is the technique which is used to train FCNs

and calculate the weights. However, this technique has some shortcomings such as back-

propagated and summed error values in the network maybe faded or enlarged drastically

as the training is continued [77]. In fact, this type of gradient based optimization that is

initialized with randomly chosen weights may get trapped in a local solution [66]. The FCN

formulates a highly non-convex problem; therefore, it needs a precise parameter initialization.

Using an unsupervised pre-training technique that was first proposed in [35] could provide

a better initialization for the parameters in terms of avoiding more local extrema [76]. We

19



refer the reader to [77] for other methods that avoid the problems of BP.

Convolutional Neural Networks (CNNs), a category of ANNs, are based on convolving

filters with multiple arrays input data [73] to extract features [78]. In fact, CNNs consist of

layers of convolution, sub-sampling, and optional fully connected layers [73] which enables

CNNs to learn the hierarchical features [37]. CNNs are much simpler than FCNs as they

suppress the unnecessary complexity of FCNs. In FCNs, each node of the higher level gets

input from all of the nodes in the lower level, generating N × M connections in a simple

two-layer network with N and M neurons in the first and second layers, respectively. In

contrast, CNN simplifies this structure such that the neurons in the higher layer only get

input from local nodes of the lower layer. This structure drastically reduces the number of

connections. As the connections represent the weights, there will be much lower number of

weights to be calculated resulting in a much simpler optimization function [73]. In addition,

CNNs have the weight sharing property which means smaller number of parameters need

to be learned [43]. Besides, CNNs are translational invariant [78] which is rooted from the

transition invariance property of the convolution operator [79]. CNNs have had success in

handwritten text and document analysis since 1989 [80, 81]. Recent applications of CNNs

in constructing 3D shape descriptors are summarized in Section 2.4.2. Also, for a succinct

explanation and discussion of CNN we refer the readers to the ”Deep Learning” article by

LeCun et al. [73].

Autoencoders, are networks that solve the encoding problem with basic architecture of

N input and N output units plus a total of log
2
N units in the hidden layer [82]. The net-

work gets the input, encodes it into the data of smaller size and then decodes it back to the

original data. Therefore, no class labels are provided for the autoencoders; instead, they use

the input itself as the target output. However, some applications in the literature provided

a single target class for a modified version of the autoencoder (called Many-to-one autoen-

coder) different from original input data (summarized in Section 2.4.2). Depending on the

functions used for nodes of the hidden layer, the number of nodes, and the error criteria, the
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autoencoder can behave like or unlike the PCA [63]. More precisely, the autoencoder learns

feature vector or the code for the input through minimizing the reconstruction error [83, 84].

To get more information on the general framework of autoencoders we refer the readers to

the article by Rumelhart et al. [82] who first introduced the autoencoders. Also, different

types of autoencoders are reviewed in [85] by Baldi.

Restricted Boltzmann Machines (RBMs) are relatively simple neural networks introduced

by Hinton and Sejnowski in 1985 [86, 87]. RBMs consist of an input layer and a hidden layer

which their nodes are connected in a way that represents a bipartite graph [35]. Each node

in the hidden layer is connected to every node of the input layer. All of these undirected

edges are assigned individual weights. When the input values arrive to the input layer they

are multiplied by their corresponding weights and summed together plus a so-called bias

value to make the input for nodes of the hidden layer. Each node of the hidden layer has an

activation function that gets the input and generates some output. In the backward path,

the outputs of the hidden layer are used as inputs for nodes of the first layer, their weighted

sums are calculated, and used as a reconstruction for the original input values. RBM uses

Kullback-Leibler Divergence [88] to diminish the difference between the distributions of the

input and the reconstructed values [89]. This way the RBM learns the model of the input

gradually in an unsupervised manner. Even though RBMs are relatively shallow learning

architectures, we discuss them under deep learning algorithms mainly because RBMs are

usually used as the basic units of Deep Belief Networks [35].

Deep Belief Networks (DBNs) are learning architectures made up of cascades of RBMs

blocks. Therefore, a DBN that consists of a single block is equivalent to an RBM [66]. A

famous property of DBNs is the greedy learning approach in which each block of RBM is

trained individually [90]. After the training is done and the parameters are computed, the

training of the next level starts and so on. In general, in a DBN weights of the last layer

are determined through the RBM learning process. Then, all other weights are obtained

through a top-down pass. This method of learning is called greedy layer-wise training [66].
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In a final pass, the input vector is fed into the DBN. The values for all hidden units are

calculated using the predicted weights [91].

Applications of deep learning in the 3D shape analysis became popular in the last decade.

It has been broadly applied to various areas such as the natural language and text process-

ing [92], image analysis [93], speech recognition [94], bioinformatics [95], transportation [96],

and genetics [97, 98].

2.3 Datasets

This section introduces databases which have been used as the benchmarks for testing the

data-driven 3D shape descriptors in the literature. The datasets cover a wide range of objects

such as chairs, mugs, bags, vehicles, planes, buildings, human heads and bodies, etc. There

are datasets that provide 3D models in unstructured data types such as point clouds and

polygon meshes. Another data representations provided in the literature are depth and RGB

images which unlike the previous group, have regular grid-like structures. At the end of this

section, we summarize the information regarding each data source in table 2.1.

2.3.1 3D Head Database

The head database is provided by the Max-Planck Institute for Biological Cybernetics in

Tuebingen, Germany. It contains images of 200 laser-scanned heads without hair from 7

different views [99]. Head structures are obtained by sampling at 512 equally-spaced angles

and 512 equally-spaced vertical steps in RGB colors. Each structure contains 70000 vertices

approximately. In order to protect the privacy of individuals, images are synthesized by

morphing techniques and many are removed. In addition, 5 sets of full 3D head scans are

available in the dataset [13].
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2.3.2 Princeton Shape Benchmark (PSB)

The Princeton Shape Benchmark (PSB), has been introduced in order to overcome the lack

of a general framework for comparing shape-based retrieval and analysis algorithms [100].

The benchmark contains 1814 3D polygonal models collected from the World Wide Web

over two years, in addition to the multiple classifications and software tools for evaluating

the results of shape matching experiments. The dataset has been split into halves to form

the training and test sets. It also includes a set of hierarchical classifications supervised by

humans according to functions and forms.

The training and test sets each contains 907 different models and are partitioned into 90

and 92 classes, respectively. From the bottom to the top of the hierarchy, the classes are

merged to form coarser-grained classes. In the top most hierarchy, there are only two classes,

natural and man-made. The Princeton Shape Retrieval and Analysis Group provides free

source code for a variety of tasks including parsing and visualizing the Object File Format

(.off) and the classification (.cla) files.

2.3.3 NORB Dataset

The NORB dataset is a large publicly available dataset for the problem of recognizing generic

objects, from different lighting conditions and viewpoints purely based on the shape. It

contains 97,200 stereo image pairs of 50 toys belonging to 5 categories consisting of the

four-legged animals, human figures, airplanes, trucks, and cars. The images were captured

under 6 lighting conditions, 9 elevations, and 18 azimuths. There are 10 instances in each

category where half of them are used for training, and the other half for testing [101]. The

dataset was last updated in October 2005.
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2.3.4 SCAPE

The SCAPE dataset is part of the Shape Completion and Animation of PEople method,

a data-driven method for building a human shape model. The models are generated by

combining the shape and pose parameters in order to capture deformations due to changes

in both human shapes and poses [102]. The surface data is acquired using a Cyberware

whole-body scanner. Full-body meshes are constructed by merging four direction scans

which are captured by the scanner simultaneously. Afterwards, each mesh is sub-sampled to

about 50,000 triangles. The SCAPE dataset contains a scanned human figure of 37 different

people, each in 70 different poses [103].

2.3.5 TOSCA

The TOSCA dataset [104] is part of the TOSCA (Tools for Surface Comparison and Analysis)

project. It is a synthetic dataset which contains 3D non-rigid shapes in two categories

named TOSCA high-resolution and non-rigid world. The high-resolution dataset provides

80 objects, including 11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs, 4 gorillas, 12 female

figures, and two different male figures in 7 and 20 poses. The number of vertices of each

object is 50000 approximately. Meshes within the same class share the same triangulation

and an equal number of vertices. This property leads to the groundtruth correspondence. As

the meshes do not suffer from either noise or missing data, the dataset does not necessarily

represent true models in real-world applications.

The non-rigid world dataset [105, 106] is composed of: 9 cats, 11 dogs, 3 wolves, 17 horses,

15 lions, 21 gorillas, 1 shark, 24 female figures, and two different male figures, containing 15

and 20 poses. It also contains a partial dataset of 6 centaurs and 6 seahorses. The number

of vertices of each object is 3000, approximately. The datasets are available in MATLAB

(.mat) and ASCII text file formats.
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2.3.6 SHREC

The 3D SHape REtrieval Contest (SHREC) was initiated by the Network of Excellence

AIM@SHAPE in 2006. It included single track of polygon soup model based on the Princeton

Shape Benchmark. The next year, it was followed in conjunction with the SMI’07 conference

(Shape Modeling International) involving multiple tracks including watertight models, CAD

models, partial matching, protein models, and 3D face models. Since then, the contest is

being held every year in multiple tracks [107, 108].

The purpose of the event is to provide an environment for researchers who work in the

field of 3D object retrieval to present and evaluate state-of-the-art algorithms by using a

common test collection. Since 2009, the event is being organized in conjunction with the

Eurographics Workshop on 3D Object Retrieval (EG 3DOR) [109]. It has already provided

many 3D object models in different categories.

2.3.7 NIST Shape Benchmark (NSB)

The SHape Analysis Research Project (SHARP) with the purpose of investigating 3D shape

retrieval algorithms and advancing the state-of-the-art in this field, has been created by the

National Institute of Standards and Technology (NIST). The NIST Shape Benchmark (NSB)

contains 800 complete 3D models of daily life objects that are categorized into 40 classes, 20

models per class.

The NSB dataset, is collected from major 3D repositories on the Internet with the aim to

overcome existing deficiencies of other available benchmarks, including domain dependency,

having too few models per class, and having unequal number of 3D models in each class.

This might lead to a bias in learning algorithms towards a specific class. Before providing

groundtruth database, every model is normalized in terms of size, translation to the center

of the mass, and rotation with respect to the principal axes. The latter process is very

important to obtain a collection of models that are invariant to rotation, translation and

scaling [110].

25



2.3.8 FAUST

The TOSCA dataset is unrealistic since artist-defined deformations and artificial noise can

not reproduce what we find in the real world. The main causes of misaligned vertices are

missing data (specially on hands and feet), skin stretching, and clothing. The FAUST dataset

was created in 2014 containing 300 real, high resolution human body scans (10 subjects, 30

poses), with automatically computed groundtruth correspondences. The average number of

vertices is 172000 for each subject [111]. The dataset is acquired with a full body high-

accuracy 3D multi-stereo system.

To achieve the accurate registration of the meshes, subjects are painted with a high

frequency texture pattern. And textured markers are placed on key anatomical locations.

This explains why the dataset is called FAUST that stands for Fine Alignment Using Scan

Texture. The groundtruth correspondences is assured to be accurate within 2mm.

The dataset is subdivided into a training set (100 scans, 10 per subject) and test set

(200 scans). The groundtruth correspondences of the training set are defined by aligning

each scan with a common template mesh and exploiting both 3D shapes and surface texture

information. However, the alignment information of the test set is withheld for evaluation

purposes through the provided website. The benchmark is partitioned into 60 scans requiring

intra-subject matching, and 40 scans requiring inter-subject matching.

2.3.9 Generic Warehouse Shape Benchmark (GWSB)

The Generic Warehouse Shape Benchmark (GWSB) is a large benchmark provided by the

SHARP group from National Institute of Standards and Technology as a special track under

the SHREC’10 - 3D Shape Retrieval Contest 2010. It comprises 3168 generic models. All

models are classified into 43 classes with different number of objects in each class [112].

The models were downloaded from Google 3D Warehouse. Duplicate and corrupted models

are removed and the finalized models are accessible in the ASCII Object File Format (.off)

including the models that had been originally created in the sketch-up format (.skp) [112].
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2.3.10 Engineering Shape Benchmark (ESB)

Engineering Shape Benchmark (ESB) is a 3D shape benchmark which has been developed by

Purdue University researchers. It provides 867 closed triangulated meshes of CAD parts in

the mechanical engineering field. Models are available in (.stl) and (.obj) formats in addition

to the thumbnail images (JPG). The classification of the dataset has two levels of hierarchies

with three super-classes and 45 sub-classes [113]. The dataset has no training set or test set.

The need for ESB dataset despite existing PSB dataset arises from the fact that engineer-

ing shapes are characterized by the presence of features such as holes, tunnels, etc., unlike

multimedia where the overall shapes are more important. Besides, models such as tables or

chairs are considered as assemblies of individual parts in the engineering field rather than

gross 3D shapes in multimedia field. Moreover, the PSB classifies models based on their

functionality, while in the engineering field parts with different functions may have similar

shape and vice versa. Therefore, models in the ESB are classified based on their shapes.

2.3.11 McGill 3D Shape Benchmark

The McGill 3D Shape Benchmark provides repository of 3D models with emphasis on ar-

ticulating parts. The dataset is a collection of adopted models from PSB and some other

repository websites in addition to a number of models created by CAD modeling tools [114].

The complete database contains 456 models, 255 of which are shapes with articulating parts.

They are categorized into 10 classes with 20-30 models in each category. The rest of the

models are shapes with moderate or no articulating parts [47]. The models are available in

different forms including voxelized (.im) and mesh forms (.off or .ply).

2.3.12 RGB-D Object Dataset (RGB-D OD)

The large scale RGB-D Object Dataset is provided by researchers from University of Wash-

ington in collaboration with the Intel Labs Seattle. It is freely available to non-commercial

27



research/educational use. There are images of 300 household objects organized into a hi-

erarchical category structure with 51 leaves [115]. The dataset contains synchronized and

aligned RGB and depth images of each object at a resolution of 640× 480 pixel. While each

object rotates on a turntable, images were captured using a Kinect style 3D camera from

three different viewing heights (30, 45 and 60 degree above horizon). The images are already

cropped and segmented [116].

2.3.13 ModelNet

The ModelNet, a comprehensive object dataset of 3D computer graphics CAD models, is

collected by the researchers from the Computer Science Department of Princeton University.

They intended to expand the variety of categories as well as the number of examples per

category in comparison with previously available CAD datasets such as the Princeton Shape

Benchmark. The dataset is collected by downloading common object categories from 261

CAD model websites and removing those with too few search results. After that, the mis-

categorized models were removed using Amazon Mechanical Turk followed by removing

irrelevant, unrealistic, or duplicate models manually by the corresponding researchers [117].

Based on the latest information provided on the Princeton ModelNet website, the dataset

consists of 127,915 CAD models belonging to 662 object categories.

2.3.14 NYU Depth Dataset

The NYU Depth Dataset is introduced by the researchers from the Computer Science De-

partment of the New York University to provide a better understanding of the RGB-D

scenes. It contains diverse and complex real world indoor scenes exhibiting a large number

of objects which are recorded by both RGB and depth cameras from the Microsoft Kinect.

The dataset is useful for various tasks including recognition, segmentation and inference of

physical support relationships.

So far, there are two versions of the dataset available.The second version consists of
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1449 RGB-D images, captured from commercial and residential buildings of three different

US cities, featuring 464 indoor scenes. It is consisting of 35,064 distinct objects with a

dense per-pixel labeling. Images are manually annotated using Amazon Mechanical Turk

[118]. Both datasets come with a toolbox containing several useful functions in MATLAB

for manipulating and handling the data [118, 119].

The dataset is provided in two versions, normalized-uniform and jittered-cluttered. In the

normalized-uniform version objects are centered in the images with a uniform background

[120]. In the jittered-cluttered version, objects are randomly perturbed in 5 ways, superim-

posed onto the complex background, and have been changed by adding distractor objects to

the background toward the boundary of the image [101].

2.3.15 The Shape COSEG Dataset

The COSEG dataset provides 3D smooth manifolds of shapes with the co-segmentation

groundtruth and labeling information. It consists of 11 sets of shapes with 7 of them collected

from another research project conducted by Sidi et al. [121]. These object classes are the

candelabra, chairs, four-legged animals, goblets, guitars, lamps, and vases. One small but

challenging sets of the irons as well as three large sets of tele-aliens, vases, and chairs were

created by researchers from Shandong University, China [122, 123].

2.3.16 Persistent Heat Signature (PHS) Dataset

The Persistent Heat Signature dataset was introduced by researchers from the Ohio State

University after the need for an efficient shape retrieval algorithm in case for partial and

incomplete models in presence of pose variations. The dataset was constructed by adopting

models from available sources and adding partial and incomplete version of them [124]. It

consists of queries of 50 models, in which 18 of them are complete and the rest are incomplete

or partial models, and a database of 300 shapes from 21 classes such as dogs, horses, airplanes

and etc. [46].
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In order to generate the partial data, a model was rotated randomly and all vertices

that were visible from the viewing point were kept. One or more portions of a complete

model were removed to generate the incomplete data. Each shape is scaled to a unit box to

eliminate the effect of the global scaling. Among complete, incomplete and partial data of

every pose of each model, only one of them is kept [124].

2.3.17 RueMonge 2014

This dataset was provided by the ETH Zurich university [125] in 2014. The dataset includes

428 3D polygon meshes of textured Haussmanian style buildings with different segment

labels. The data which is semantically segmented and annotated includes window, wall,

door, street, road, etc labels. They also provide different sets of training and testing datasets

in the txt file formats.

2.3.18 ShapeNet

ShapeNet is a huge database of 3D objects (e. g., planes, bicycles, bottles, chairs, tables,

etc.) was proposed by a joint research group from the Princeton and Stanford universities

and the TTIC institute [126, 127]. This continuing project includes the large-scale 3D models

with complete annotations, parts description, and multiple images per 3D data model. The

database includes two sub-categories, ShapeNetCore which includes 51,300 3D models di-

vided into 55 classes of objects and ShapeNetSem which contains 270 classes including 12,000

models. The models are all included in a hierarchical taxonomy. Besides the data models,

open-source frameworks are also available to view and rendering the ShapeNet models.

2.3.19 Part annotation dataset

A group of researchers from various universities and research institutes (including Stanford

University, University of Texas-Austin, University of British Columbia, TTI Chicago, and
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Adobe Research) generated a large-scale shape dataset [128]. The shapes of this dataset were

obtained from the ShapeNetCore sub-category of the ShapeNet database.The new dataset,

in which object parts are semantically annotated, consists of shapes from different categories

such as bags, cars, lamps, airplanes, etc. They annotated more than 93,000 parts to generate

a massive repository. The dataset is available in form of point clouds along with separate

files provided for each object annotating the vertex labels.

2.3.20 Scannet

Scannet is the most recent dataset we list in this section. This database was introduced in

2017 by Stanford and Princeton Universities and the Technical University of Munich [129].

This dataset includes 2.5 million views in over 1500 scans of different places such as offices,

apartments, etc. The data models are semantically segmented and fully annotated. A

handheld capturing device was designed with a commodity RGB-D sensor similar to the

Microsoft Kinect to collect the data. After the data was captured the 3D surface was

reconstructed and the scenes were annotated by assigning instance-level semantic category

labels and the object instance labels. the object labels are corresponding to the synonym

sets of well-known datasets such as ModelNet and ShapeNet.

The data was captured during one month by 20 users in various countries. The project is

continuing and included 1513 scans of different locations such as offices, apartments, libraries,

etc. initially. The database is suggested to be useful for 3D scene understanding tasks such

as labeling, classification, and retrieval.

2.4 Data-Driven 3D shape Descriptors

This section surveys data-driven 3D shape descriptors both thematically and chronologically

and proposes an algorithm-oriented taxonomy for the reviewed works. Based on architec-

tures of learning algorithms used to construct the shape descriptors, we divide the descriptors
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into two broad categories: (1) shallow and (2) deep shape descriptors summarized in Sec-

tions 2.4.1 and 2.4.2, respectively. Then, we narrow down this taxonomy, which is illustrated

in Figure 2.3, into smaller sub-categories with respect to the specific learning algorithms used

under each group. The related works within each sub-category are mostly organized based

on their architectures, and the order they were published (sometimes if there were relevant

approaches, we reviewed them next to each other disregarding their chronological orders).

Learning type as another key feature of a learning algorithm, is also included in this tax-

onomy. Groups which are indicated with the same colors have the same learning types.

The categorization which is illustrated in Figure 2.3 drives the organization of the data-

driven shape descriptors being reviewed in this section. Afterwards, Section 2.5 will discuss

alternative categorizations of the descriptors.

Data-driven 3D shape descriptors

Deep Shallow

Probabilistic modelsAutoencoder-based

DBN-based GAN-based

Clustering-based*

Figure 2.3: Algorithm-oriented taxonomy. The superscripted asterisk indicates a categoriza-
tion exception, in terms of the learning type. In the framework suggested in [3], even though
a supervised approach was used for dictionary construction phase of the BoF technique,
it is discussed under the unsupervised clustering-based group. This is mainly because the
method used in this work, was close to the works summarized under this group. Also, the
superscripted plus sign, shows a categorization exceptions in the learning architecture. The
descriptor suggested in [4] used a deep structure, however, because of the bind with the other
similar works, it is listed under the optimization-based shallow group.

2.4.1 Shallow descriptors

This group of descriptors which are built using shallow learning architectures are divided

into the optimization-based and the clustering-based sub-groups. The works under the
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optimization-based category were implemented in the supervised manner while the unsu-

pervised learning was used for majority of the clustering-based descriptors.

Optimization-based

The approaches that fall into this sub-category formulate the construction of 3D shape de-

scriptors as an optimization problem which is solved in a supervised manner. In these algo-

rithms, the supervision is provided as sets of corresponding and non-corresponding training

points on multiple 3D models. This is as opposed to the regular supervised learning in which

the supervision is given in the form of class labels for each instance of the training dataset.

A main disadvantage of these approaches is preparing the training data which is usually time

consuming as it is often carried out manually. The optimization-based techniques are most

useful for establishing point-to-point correspondence and shape matching.

One of the first optimization-based techniques was proposed by Steinke et al. [38] who

introduced a machine learning approach to learn the correspondence between two objects

from a same class rather than defining the correspondence using the ad-hoc criteria which was

used in most of the related previous works. The main focus of this work is to find a mapping

function between reference and target objects such that some properties of the reference

are maintained under the deformation function. The invariant properties are learned by

providing a set of correspondence and non-correspondence points to their learning system.

To this end, they provide their learner with a dictionary of basic features. These potential

features include a signed distance function and its first derivative (surface normal) and some

curvature and texture related features. Their system learn the properties by minimizing the

variations between the corresponding points while maximizing the variations between the

features of non-corresponding pairs. The learned mapping for each object is proposed to be

used as a representation for the entire shape.

In contrast to the works that define shape descriptors in spatial domain (such as the

system suggested by Steinke et al. [38]), many recent frameworks introduced 3D shape de-
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scriptors in spectral domain. One of the pioneer works in this area, was proposed by Aflalo

et al. [130] where the heat diffusion on surfaces is used to learn an optimal heat kernel.

They use sets of corresponding pairs of vertices on different meshes along with collections

of non-corresponding pairs as the training data. They solve an optimization problem to

obtain a diffusion kernel k(x, x) under the criteria of minimizing the ratio between diffusion

distances of corresponding and non-corresponding pairs. All of the diagonal elements of k,

are exploited as point descriptors (analogous to the HKS) and the histogram of k’s values

on the shape is used as the global shape descriptor. They use their proposed technique for

shape retrieval applications.

The descriptor proposed by Aflalo et al. [130] had the limitation of using a single frequency

response to characterize the diffusion metrics. Therefore, Litman and Bronstein [5] continued

this work by approaching the problem of finding shape descriptors as a learning problem by

considering a multiple frequency response function. They indicated that neither HKS nor

WKS has a good level of both specificity and sensitivity. The frequency responses forming

their elements are highly overlapped and they are invariant to exactly isometric deformations

of the shape. Therefore, they proposed a family of spectral shape descriptors by generalizing

HKS and WKS. The new descriptor is obtained by minimizing a distance function. The

function finds a matrix of coefficients that minimize the distance between geometry vectors

of some similar points and at the same time maximize the distance between those of dissimilar

points. The corresponding similar and dissimilar points of the mesh are determined when

training dataset is prepared. Given two radii r and R (with r ¡ R) for each point p of

the mesh, the functions Br(x) and BR(x) denote the balls of radius r and R, respectively,

centered at point x under the geodesic metric. All points that reside in Br(x) are marked as

alike points to point x, while points that are not in BR(x) are considered as non-similar to x.

The points that lie between r and R are removed from further consideration. These marked

points are used as a training dataset to specify the coefficient matrix. They showed that

their learnable descriptor outperforms the fixed ones (HKS and WKS). They discussed that
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HKS is a 3D shape descriptor which performs poorly in the localization and is more specific

than WKS while WKS is more sensitive than HKS. This makes HKS and WKS more useful

for shape retrieval and shape matching, respectively [5]. Their proposed descriptor possesses

the advantages of both HKS and WKS. Figure 2.4 shows the results of using all of the three

descriptors on 3D human models. Different variations of the work by Litman and Bronstein

were proposed by several researchers that are listed below.

Figure 2.4: The comparison between HKS (first row), WKS (second row), and the data-
driven spectral descriptors (third row) proposed in [5]. The Euclidean distances between
the extracted descriptors for the white points (shown by red arrows) in each model were
computed and visualized from the highest (red) to the lowest (blue). As it is observed, HKS
finds the correspondence areas with high specificity, however, it is not sensitive enough. In
fact, the areas illustrated with the blue color are connected but they are too large. On the
other hand, the blue area in WKS are smaller, however, they are spread all over the model.
The proposed descriptors in [5], enjoy both advantages to some extend. As it is observed,
the blue areas in the third row, are smaller than the ones obtained using HKS. Besides, they
are denser compared with those of WKS. This figure is taken from [5].

In a similar application to [5], Corman et al. [71] used the supervised learning tech-
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nique for non-rigid shape matching. In their method, a correspondence model is learned

given a collection of mappings between a set of training shapes using functional map rep-

resentation [131]. They used the functional maps as the groundtruth to solve a non-linear

optimization problem employing the standard L-BFGS algorithm. In this approach, a train-

ing set (consists of computed probe functions that represent local features such as HKS,

WKS, etc., for corresponding like and dislike points) is used to learn a set of optimal de-

scriptors (unlike the work proposed by Litman and Bronstein [5] in which point signatures

are learned).

An improvement on Litman’s work [5] was presented in [4]. This work is an exception

under the optimization-based category as it uses the deep architecture. Indeed, we listed it

here due to the strong bond it makes to previous works in terms of the way it approaches

the shape descriptor learning problem by providing the supervision in the form of known

correspondences to the learning algorithm. In this approach, rather than using the linear

mapping between the geometry vectors (capturing the local geometric information surround-

ing the points employing B-spline functions and eigendecomposition of LB operator) and the

feature space, Xie et al. employ a nonlinear mapping to deal with large deformations and to

describe the shapes more precisely. To learn the binary spectral shape descriptors they solve

an optimization problem using a deep Fully Connected Network. The problem formulates

the minimization and maximization criteria for the Mahalanobis distance between similar

and dissimilar pairs of points (comparable to the approach taken in [5]), respectively. The

final descriptor would be the output of the neural network which is converted into a binary

vector employing the sign function.

Clustering-based

The descriptors which are reviewed in this section, are mostly built using the BoF technique.

In brief, this technique uses a large volume of shapes to construct a codebook or dictionary

of visual words (which could be any local features computed for shapes such as HKS, etc.)
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employing an unsupervised algorithm. In fact, the local features of shapes are sampled to

generate a subset of features (visual words) which will be used to construct such a dictionary.

The sampling strategy of feature points plays a key role in selecting the informative and

influential visual words to construct a proper dictionary [2]. Various sampling methods

were proposed in the literature. Based on how dense or sparse the features are sampled,

the result will be referred to as dense [48] or sparse [132] feature point subset, respectively.

These sampling methods and their applications are discussed later in this section. After

the dictionary is constructed, histogram of the visual words are computed for each input

3D shape, as a global shape descriptor. Different vector quantization algorithms such as

k-means clustering or sparse coding have been used in the literature for this step. The major

advantage of using BoF technique is that it does not require any class labels for training

datasets. On the other hand, its limitation is that it usually ignores the joint occurrences

of visual words resulting in the lack of spatial information in computed shape descriptors.

Some novel techniques however, included the expression information into the descriptors by

considering joint occurrences of the visual words to improve the performance. Also, other

applications suggested to provide some levels of supervision at the time of building the

dictionary to increase the efficiency of shape descriptors. These techniques are discussed

later in this section.

One of the first applications of machine learning algorithms in 3D shape analysis in

which a clustering algorithm is used for shape descriptor construction was proposed in 1987

by Hoffman et al. [34]. In this application, input is provided in the form of range images and

feature vectors (such as coordinates of the pixel in the image, the depth information, etc.)

are computed for each pixel of input. Then, a clustering algorithm is employed to partition

the input image into different segments (or surface patches). They suggested using a decision

tree algorithm for coarse classification of surface patches and assigning concave, convex, or

planar class labels to each patch of the image. Two suggested applications of the proposed

classification method are object recognition and shape representation. They recommended
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to use a combination of the patch class labels for shape description. Other researchers in

the literature, used the concavity and convexity information for shape segmentation tasks,

later on.

After the above background on an early clustering-based approach, we review a set of

more recent applications of these techniques in shape description. Using the BoF technique,

Toldo et al. [132] segmented 3D shapes into their constructing parts, computed local de-

scriptors for each part, and then built a global shape descriptor. In detail, the concavity and

convexity information extracted from principal curvatures is employed for shape segmenta-

tion (similar to the pioneer approach proposed by Hoffman et al. [34]) in their work. Then,

four different local descriptors, namely Shape Index (SI), Radial Geodesic Distance (RGD),

Normal Direction (ND), and Geodesic Context Histogram (GCH) are computed to construct

a single descriptor for each segment. The K-means clustering algorithm is exploited to gen-

erate a visual codebook using the region descriptors. Finally, histogram of the visual words

included in the dictionary is used to construct global shape descriptors which are applied

to retrieval and partial matching tasks. The authors in [133] proposed a similar schema for

shape categorization applications. However, they used a different set of local descriptors for

shape segments.

The techniques proposed in the works suggested by Toldo et al. (e.g. [132, 133]) im-

prove the performance of BoF technique by including salient visual words (i. e., the segment

features) into the dictionary (these application are examples of sparse feature sampling al-

gorithms). Another improvement in BoF technique in shape representation is suggested by

Bronstein et al. [48] who introduced spatially sensitive BoF techniques. More specifically,

they use both dense (computed at each point of the shape) and sparse (computed at salient

features of the shape) spectral descriptors to construct a vocabulary of geometric words using

the K-means algorithm. Each shape is represented by its distribution over the words of this

vocabulary. Furthermore, they suggested to compute the histograms using a combination

of words (resulted in spatially sensitive descriptors) that they referred to as expressions. In
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the end, metric learning techniques [134] are employed to encode input shapes into binary

representations so that they could be indexed and compared easily. Their technique outper-

formed the approaches which consider single geometric words, in the presence of noise or in

partial shape retrieval applications.

The previous works that sampled feature points using either sparse [132] or dense [48]

approaches, are confined by some limitations [2]. For example, the quality of mesh topology

can affect the sparse sampling. Also, the dense sampling requires to be spread equally on

meshes which could be more of a problem in low quality mesh tessellations [2]. To address

these issues, Lavoue used the BoF technique to establish shape descriptors out of randomly

selected feature points on meshes [2]. To this end, he randomly selects a set of seeds on the

mesh and then applies the Lioyd’s relaxation algorithm iteratively multiple times so that

the seeds are spread on the surface uniformly. He includes the spatial information in the

descriptor considering the histogram of pairs of words rather than merely single visual words

that ignores this information. In this work, a spectral descriptor is computed for each feature

point over its local neighborhood, using the Fourier spectrum of its surrounding patch. The

K-means clustering algorithm is employed to construct the codebook of visual features. Then

each shape is illustrated as a histogram of the visual words as in the standard BoF framework.

In this spatial BoF technique, the final histogram includes the information regarding pairs

of visual words that are close in the spatial domain. Furthermore, the standard and spatial

versions of BoF are combined to construct a global shape descriptor that is applied to both

complete and partial shape retrieval.

BoF technique has been applied to various input data types in the literature. In an

application proposed by Blum et al. [116], RGB-D images are used to extract global shape

descriptors. In this work, at first salient feature points are detected in RGB-D images using

the SURF algorithm [135]. Then, a region (by the size 16 × 16) surrounding each feature

point is determined in all four channels (color and depth) of the input. Multiple random

patches are selected in such region, to generate the training set X. This training set is
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clustered using the k-means algorithm to obtain k cluster centroids which are all added to

the dictionary. After the dictionary is built, it is used to generate global shape descriptors

for unseen images. Therefore, for any new image at first, the SURF algorithm is used to

find the feature points in a similar approach to that of the training phase and then patches

are sampled randomly in the surrounding region of the salient points. The distance between

the patch and all of the k cluster seeds are computed and averaged to be used for generating

the salient points histogram vectors. If the distance to a centroid, is less than the average,

the corresponding entry for that centroid in the histogram vector is set to 1 and it is set to

0 otherwise. Finally, these histogram vectors are sum-pooled to form the overall descriptor.

The authors, compared the classification performance of their unsupervised method with

supervised algorithms such as the SVM [69] and Random Forests [136] showing a considerable

superiority.

In another view-based technique, Lian et al. [137] proposed to construct 3D shape de-

scriptors for retrieval applications using depth images. After a preprocessing step (such as

the pose normalization), they represent the input shape with a set of depth images from

which salient SIFT [138] features are extracted. Rather than using the K-means clustering

to find the cluster centroids, they simply use a randomly selected set of local features to

create the codebook. Afterwards, each generated view is represented by a descriptor which

is actually the histogram of visual words. Finally, the Clock Matching technique is applied

to calculate the dissimilarity between two shapes for shape retrieval using the computed

shape descriptors. Their suggested descriptor, expose superior performance in both rigid

and nonrigid shape retrieval in comparison to a set of state-of-the-art methods.

In contrast to the previous methods that used unsupervised learning for dictionary con-

struction, Litman et al. [3] proposed a supervised framework for BoF technique to improve its

performance. This supervised application is an exception listed under the clustering-based

category which includes unsupervised techniques. It is mainly because this application uses a

BoF framework and is tightly coupled with all the previous techniques we mentioned in this
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section. In the previous works, no shape class labels are provided at the time of constructing

the dictionary; however, Litman et al. suggested a supervised learning approach by incorpo-

rating the class labels in the codebook generation phase. In fact, in unsupervised approaches

local shape descriptors are computed for a large set of training shapes and then such descrip-

tors are partitioned into k clusters which their centroids are added to the dictionary. Finally,

histograms of the visual words are computed for unseen shapes as global shape descriptors.

Typically, the k-means clustering algorithm is used for vector quantization and computing

the histograms in the standard BoF technique. In contrary, in the approach suggested in [3],

which is tailored to retrieval task, class labels are available in the training phase. They also

suggested sparse coding as a substitute for vector quantization in the standard BoF tech-

nique. In brief, the output of vector quantization procedure (typically implemented using

k-means algorithm) are binary vectors with a single non-zero element. However, sparse codes

could have multiple nonzero elements with arbitrary scalars. To include the supervision into

the dictionary construction phase, they created a set of similar (objects from the same class)

and dissimilar (objects from dissimilar classes) training instances. The criterion for adding a

visual word to the dictionary is that it must minimize the distance between the sparse codes

of similar instances and at the same time must maximize the distance between the codes of

dis-similar samples. This way rather than using a fixed dictionary as in standard BoF, the

dictionary gets updated by each training entry knowing its class label. At last, the dictio-

nary is used to build the global descriptors in the BoF framework. The performance metric

comparisons between this approach and other recent techniques such as ShapeGoogle [48],

proves the excellence of the proposed framework.

In a recent approach, Wan et al. [46] applied the BoF framework for incomplete 3D

shape retrieval. With this application the researchers showed that a dictionary of local

features which was built using complete shapes could be used to extract local descriptors

for incomplete shapes, if the words of the dictionary are sparsely coded. In this approach,

at first sparse dictionary learning is used to construct dictionaries of HKS basis descriptors
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for each individual complete shape (e.g., complete human body, complete hand, etc.). Then,

HKSs are computed for all vertices of incomplete input shape which its actual class should be

retrieved. For such an incomplete shape Si the researchers reconstruct each signal fi (where

fi represents a local shape descriptor computed for vertex i of Si) as a linear combination

of basis descriptors of a dictionary Dc which is built exclusively for a specific shape Sc.

These reconstructed vectors are local shape descriptors for the incomplete shape. In the

end, the reconstruction error of all fis are summed to compute the distance between Si

and Sc. As each shape has its exclusive dictionary, the distances between Si and all those

shapes are computed using local shape descriptors and relevant dictionaries. The smallest

distance among others determines the actual class for the input. With this application

the researchers measured the distance between complete and incomplete shapes using the

constructed data-driven local shape descriptors. This technique avoids the approach taken

by most traditional applications in which feature points are extracted and matched between

the shapes for incomplete shape retrieval. A disadvantage of the traditional approaches

which is addressed in this work is that missing parts of incomplete shapes can affect the

feature points detection, easily [46].

2.4.2 Deep descriptors

A wide range of deep learning algorithms have been used in the literature to construct

the 3D shape descriptors. We divide this group into descriptors that are built based on

probabilistic models, autoencoders, or CNNs. The probabilistic group is further divided into

two sub-categories named DBN-based and GAN-based descriptors.

The CNN-based approaches are implemented in the supervised manner while the majority

of the other techniques use variety of learning types (Figure 2.3).
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Probabilistic models

A group of state-of-the-art applications in the literature use probabilistic models to learn 3D

shape descriptors. The works reviewed in this category are mostly implemented using the

DBNs; however, some state-of-the-art works use Generative Adversarial Networks (GANs) to

construct the shape descriptors. Descriptors of this category are divided into the DBN-based

and GAN-based sub-groups, accordingly.

DBN-based The satisfactory performance of DBNs on unlabeled data [120] makes them

good candidates for the unsupervised learning tasks (however, the works that utilized DBN

were mostly using a combination of supervised and unsupervised learning types). Further-

more, because of their greedy training scheme in which each layer of the architecture is

trained locally they overcome the training complexity of other deep architectures [47]. This

section reviews proposed methods that employ DBNs as major components in their pipeline

to construct shape descriptors.

In one of the first applications of deep learning in constructing 3D shape descriptors,

Nair and Hinton [120] proposed to exploit DBNs in a semi-supervised manner. In this work,

the efficiency of DBNs on unlabeled data is coupled with a level of supervision provided to

the learner through a small set of labeled data, resulting in a semi-supervised algorithm for

DBNs. Originally, in DBNs which are stacked RBMs each layer is trained individually in

an unsupervised manner. Through this training process a DBN learns levels of non-linear

features from the provided data. Nair and Hinton discussed two different approaches could

be taken to use DBNs for classification purposes. In the first approach, class labels of each

training object could be provided to a pre-trained DBN to fine-tune the learned hierarchies

of features. In an alternative approach, the highest level of unsupervised features (learned

by the pre-trained DBN for each training object) along with the object’s class label could

be provided to the last layer of the DBN (an RBM) to train the system for classification

applications. In this work, Nair and Hinton suggested a new top-level model for DBNs

in which both hidden and visible (last layer) units along with the class labels contribute in
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training the DBN for object classification tasks. Their results shows that using deep learning

outperforms shallow models particularly when their novel top-level model is used for DBNs.

The proposed DBN could be trained by providing either a set of labeled feature vectors or

labeled images to learn a 3D tensor of parameters. These parameters code inputs into global

shape descriptors.

A more recent application of DBNs was proposed by Liu et al. [47] in which a global

descriptor is built based on the rendering multiple 2D views for 3D shapes. In this approach

200 depth images are taken from the input 3D model, then low-level local features are

extracted out of the images using the SIFT [138] algorithm. After that, a visual vocabulary

is built and the BoF technique is used to extract histogram of the words for each model as

the descriptor (middle-level features). These vectors are fed into a DBN to learn higher level

features. The new extracted features are used as shape descriptors to represent the models

for classification and retrieval purposes.

Another application of applying DBNs on 3D data, was proposed by Wu et al. [117].

Rather than using a view-based approach (approaches that use 2D/2.5D images as input)

they transformed the unstructured input data into a volumetric representation to be used

as input in their approach. This novel application, utilizes a convolutional DBN (CDBN)

to represent a 3D model in the form of probability distribution of binary variables on a 3D

voxel grid. Their system, called 3DShapeNets, which is the first application of deep learning

on 3D data, receives a 2.5D depth image as input and generates a volumetric structure, in

which the shape distribution is learned. In more detail, they represent the shape in the form

of a 3D matrix of size 30 × 30 × 30. Each element of this matrix is set to be either 1 or 0

if its corresponding voxel resided inside or outside of the mesh, respectively. Multiple levels

of filters are convolved with the input subsequently, resulted in computing a 1D vector. In

their proposed architecture, they use the weight sharing property of convolution to reduce

the parameters to be learned; however, this structure does not contain pooling levels to

prevent the extra uncertainty in the shape reconstruction. Finally, the 1D vector along with
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a class label are presented to the top layer of a learning architecture which is built as an RBM

with 4000 hidden units. This layer made an associative memory that learns the distribution

of the binary values mentioned above. Such a distribution is used as a global descriptor

for the input shape. The proposed descriptor was evaluated in classification and retrieval

applications.

The extrinsic works such as the view-based and volumetric approaches, suffered from

the problem of not being able to capture the shape deformations; therefore, the researchers

moved towards the approaches which could analyze the shape deformations. An example

is the work suggested by Bu et al. [45] who employ a DBN to build 3D shape descriptors

from local features (i. e. HKS and the Average Geodesic Distance (AGD)). They establish

middle-level features from the low-level features using the BoF technique. Then, by stacking

a number of RBMs, they make a DBN to learn the high-level features out of the middle-

level ones. Such high-level representations are used to classify and retrieve 3D objects. In

another experiment, they compare the retrieval performance of the middle-level vs the high-

level features and show the latter is superior to the former. The retrieval performance of this

approach, demonstrated substantial success on some benchmark datasets while the similar

work proposed in [47] for 2D views, showed much less proficiency.

Another state-of-the-art example was proposed by Han et al. [6] by combining benefits

of the DBN in unsupervised learning and advantages of convolutional networks, to propose

a local shape descriptor called circle convolutional RBM (CCRBM) [6]. The work proposed

by Bu et al. [45] was novel in terms of being applied on 3D meshes; however, it was limited

by the requirement of computing the local features and using them as the input to the

learning algorithm. In contrast, the innovation proposed by Han et al. is to use 3D meshes

directly as input for a DBN algorithm. Applying the convolution on 3D shapes is not as

straightforward as applying it on 2D images due to the irregular structures of 3D models.

To tackle the problem, Han et al. suggested a circular convolution in which a sector window

is located on a vertex and is rotated around the normal vector of the vertex by some stride
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angle in a specific direction, to compute the convolution. While calculating the convolution,

the local area is projected onto the tangent plane perpendicular to the normal vector of the

center vertex (Figure 2.5). The Projection Distance Distribution (PDD) is used to generate

a histogram that shows number of the points residing within a sector window. CCRBM used

three virtual, detection, and max-pooling layers to learn the final point signature from the

PDD.

    The normal of A

     Circle direction

3D local region

The tangent plane of A

A

3D sector window

2D sector window

Figure 2.5: Circle convolution on a 3D local area, taken from [6].

GAN-based Generative probabilistic models are algorithms that receive a set of samples

taken from a specific distribution as the training data and learn an estimation of the data

distribution. There are two types of generative models. A group which are able to generate

new samples based on the distribution that they learned, and a group that estimates the

probability distribution of data, explicitly [64]. The latter is usually accomplished through

learning compact descriptors for groups of shapes. GANs are special types of generative

models that generate sample data; however, they are used to provide distribution of the data,

as well [64]. An advantage of using GANs is that they could be easily used for unsupervised

learning as well as being trained with the missing data (e. g., semi-supervised learning) [64].

To review the most recent works on GANs at first we list the similar works in the literature

which introduce a history of GAN-based shape descriptors.

Kalogerakis [139] proposed a generative model which learns the underlying model of the

training data and generates samples of that model. Learning the data models require a
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dataset of the shapes segmented into their constructing components along with their ge-

ometric features (i. e. a detailed feature vector for each component including 3D scale

vector, curvature information, etc.) as the training data. In fact, for each training seg-

mented shape, a feature vector including the discrete and continuous feature vectors as well

as the number of components of each category (observed variables) are provided to the sys-

tem. After the system is trained, it is able to combine various components, to generate new

synthesized shapes by capturing the probabilistic relationship between the components of

a class of shapes. Besides, the latent variables of the probabilistic model (learned through

Expectation-Maximization (EM) algorithm) could result in a compact representation of the

shape segments. However, no measurements of the shape descriptor applications are reported

in this work.

Following the above idea, in another application Huang et al. [140] proposed a structure

based on Deep Boltzman Machines (DBMs) to learn the probabilistic model of the data and

the compact shape descriptors. They improved the preceding wok [139] by providing much

less amount of supervision to their algorithm. In fact, they did not rely on the training data of

segmented shapes. Their proposed system which learns a hierarchical part template consists

of multiple phases. First, the input data (of each particular group for example, chairs, tables,

etc.) are clustered into the shapes with similar compositions. Then, within each cluster the

different parts of the shape are learned, and finally, the high-level part models are learned.

Such a high-level representation is used to establish the correspondence between the shapes

from different classes. In the next phase, a probabilistic deformation model is learned by

estimating the joint probability of point correspondences and the part template assignments.

Such a model is the basis of learning surface variability within a category of shapes which is

hierarchically captured in the latent variables of the model. Top layers of the latent variables

produce the compact shape descriptors that are applied to shape classification tasks.

To improve the previous work suggested by Huang et al. [140] through avoiding the supply

of a training dataset of parts, Wu et al. [141] proposed using GANs to learn representations
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of 3D shapes from the volumetric data. In this approach, the researchers proposed a GAN

in which an adversarial discriminator was added to the generative modeling. In fact, in the

GAN (called 3D-GAN) a generator and a discriminator work together. While the generator

synthesizes the new samples (trying to challenge the discriminator), the discriminator is

trained to classify real and generated samples, accurately. The discriminator generates a

score in the range [0,1] for each sample, determining how likely the sample belongs to real

or synthesized classes. Five volumetric convolutional modules plus some layers in between

(e. g., normalization layers, ReLU layers, etc.) make the building blocks of the generator.

On the other hand, the architecture of the generator is inverted to build the discriminator

module. In this framework, both generator and the discriminator are trained, simultaneously.

After the system is trained, the discriminator learns the representations for the shapes. The

accuracy of the learned descriptors is comparable with a list of supervised learning methods,

and in some cases (e. g., the 3DShapeNets [117]) it is better. In comparison with the other

unsupervised techniques, 3D-GAN is superior. For an in depth article on GANs, we refer

the readers to the comprehensive tutorial prepared by Goodfellow [64].

CNN-based

This group of broadly used descriptors, are constructed using the convolutional neural net-

works. The benefits (see Section 2.2.3 for details) of CNNs such as the weight sharing

property which simplifies the network substantially, have made CNN-based shape descrip-

tors popular in many shape analysis tasks. This attribute significantly reduces the number

of parameters to be learned which is a desired feature in deep networks. On the other

hand, irregular structure of meshes and lack of the shift-invariance property [44, 142] in un-

structured nature of 3D data, makes it complicated to apply the convolution on 3D shapes

(as opposed to the straightforwardness of convolving filters with 2D images). Therefore,

many researchers suggested novel ideas to bridge this gap by either suggesting an equivalent

grid-like representations for 3D data or proposing a novel implementation of the convolu-
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tion operation for 3D data. This section reviews the convolutional approaches, beginning

with systems that are pioneers in extending the convolution operation to 3D domain (being

motivated by successful applications of CNNs in 2D images). We review a diverse list of

CNN-based approaches in which the descriptors are built using various input data types.

One of the first applications of CNN in constructing 3D shape descriptors was proposed

by Socher et al. [78]. In this application, a 3D object classifier is developed using a combi-

nation of CNN and Recurrent Neural Networks (RNNs). In detail, at first RGB-D images

(representing 3D data) are given to a CNN to extract low-level features such as edges. Then,

these features are given to an RNN to learn combinational higher level features and their

relations. This is carried out by mapping the input into a lower dimension space, resulting in

the shape descriptors used for object classification. They reported that their fast combina-

torial model worked more efficiently in comparison with the other methods such as SVM [69]

and Random Forests [136].

In a state-of-the-art approach Su et al. [143] designed a two-layer CNN system to build

a 3D shape descriptor using 2D images as input. The proposed descriptor is computed

on multiple 2D images rendered from a 3D model [143]. The collection of 2D views, are

presented to a CNN hierarchy to generate a compact 3D shape descriptor. Each CNN of the

first level extracts the information from its single view input image, resulting in a descriptor

for the view. Then, the higher level CNN learns a combination of this information to create

a single shape descriptor. A contribution of this work is that rather than simple averaging or

concatenating the multiple descriptors, they are combined using a CNN architecture. The

researchers used multiple 2D views of a single 3D model to train their system for classification

and retrieval applications. Their proposed system, proves to be superior compared with the

ShapeNets [117] in retrieval application. Also, testing the system for classification application

by providing a single view, resulted in an enhancement with respect to the ShapeNets.

The previous works that used 2D/2.5D views of a 3D shape as input (we refer to them as

view-based techniques), used the extrinsic approaches to represent the unstructured data.
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These approaches are unable to analyze the isometric deformation of the shapes. To deal

with such a limitation, different grid-like representations are suggested by researchers that

capture more detail (deformations) of 3D shapes. For example, Sinha et al. [43] introduced

a new implementation of the geometry images for 3D shapes to fill the gap of applying

the CNN on 3D data avoiding view-based techniques. To extract geometry images, they

transform the surface of a mesh into a sphere which is later mapped into an octahedron.

Then, the octahedron is cut and padded into a grid-like geometry image. The intrinsic

properties of the input mesh such as curvature information and the HKS local descriptors

are coded into the suggested geometry images. These images are used as the input for CNN

to compute shape descriptors that represent the surface of input shapes. They demonstrated

this approach outperformed the previous volumetric ([117]) and view-based ([48]) approaches

in both classification and retrieval applications.

In another application, Guo et al. [42] used CNN to build local 3D shape descriptors

which were learned from low-level geometry features of input mesh and were applied to a

labeling task. In this work, the researchers introduced a new grid-like representation for each

triangle of irregular mesh data. Such a representation generates vectors of 600 components

for each face of input mesh. These vectors are computed from seven geometry features (e.

g., curvature, average geodesic distance, spin images, etc.) of each face and are reshaped

as 30 × 20 patches to be used as the input to the proposed CNN architecture. A sequence

of convolution, down-sampling, and pooling combines the 600 values non-linearly resulting

in a compressed feature vector V containing 192 components. In the last step, a mapping

function is used to convert V into a vector P of length Nc which determines the probability of

input face belonging to each of the Nc components of the shape. The parameters of proposed

CNN and mapping function are learned in a supervised manner given a vector of class labels

for each input. Such groundtruth information is provided in the form of binary vectors with

a single non-zero element representing the part of object that input face belongs to. The

generated local shape descriptors (P s) in this work are used for shape labeling application.
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The work suggested by Guo et al. [42] which uses feature vectors computed for faces

of the input mesh is intrinsic and deals with the unstructured-ness of meshes; however,

this approach ignores the spatial correlation [144]. Therefore, Zeng et al. [144] proposed a

CNN-based system that addresses this limitation by considering local neighborhood of points

in the input mesh. In detail, a patch surrounding an arbitrary point (randomly selected)

on input is mapped into a local descriptor. In fact, a set of known corresponding and

non-corresponding patches are used as groundtruth matches to learn a nonlinear mapping

function. The function finds local descriptors for similar points in such a way that the l2

distance between their descriptors is smallest. The patches are provided to the CNN in the

form of 30 × 30 × 30 voxel-grid representations and 512-dimensional local descriptors are

computed for patches. The network architecture consists of eight layers of convolution plus

a single pooling layer. They use a siamese network architecture and provide pairs of inputs

simultaneously, to train the network. In siamese architecture two identical networks are

used concurrently to compare two input patterns. These networks share the same parameters

and weights and compute a single output that demonstrates the similarity between the input

data [145]. The constructed local descriptors are employed for applications such as matching

and registration. In this work, the proposed network is trained using self-supervised learning

in which the target values do not come from human annotations; instead, they are taken from

an existing source in the world [146]. For example, correspondence labels for this network is

adopted from various RGB-D reconstruction datasets.

The work suggested by Zeng et al. [144] was constrained by limited training data and

the low resolution of the volume generated around points of interest [147]; therefore, Huang

et al. proposed constructing local shape descriptors in a view-based technique to exploit

numerous image datasets for training their system [147]. This work is a novel technique

in which a view-based approach builds local descriptors as opposed to all of the previous

reviewed works in the literature that construct local descriptors from the mesh, volume,

or point cloud data. Following the idea suggested by Su at al. [143], the authors train a
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CNN-based architecture to construct local descriptors. They render multi-scale 2D images

for each point of the input shape (could be polygon meshes or point clouds) and use pairs

of similar and dissimilar points as training data for a siamese network. Using a network

consisting of a set of convolution, pooling, and nonlinear transformation a 4096-dimensional

vector is computed for each view. These vectors are combined in the max view pooling layer

to generate a single vector of the same dimension for each point. Finally, a dimensionality

reduction technique yields a vector of a lower dimension K = 128 by experimenting a wide

range of values for K. The vectors computed for the pairs of training data are computed

such that the similar points are mapped to closer descriptors and the distance between the

dissimilar pairs are maximized. A part-aware nonrigid alignment method is employed to

generate a massive amount of correspondence training data for their system.

Masci et al. [44] also proposed a novel approach by an architecture that expands the

CNN to non-Euclidean manifolds and is able to capture shape deformations and anisotropic

structures. They suggested a geodesic CNN (GCNN) to learn features for shape descrip-

tion by generalization of CNN to manifolds and establishing a system with multiple linear,

geodesic convolution, angular max-pooling, Fourier transform magnitude, and covariance

layers. In this framework, a local geodesic patch is defined to apply the convolution on

triangular meshes in a point-wise manner. In more detail, once being placed on each vertex

xi of input mesh, the geodesic patch divides 1-ring neighborhood of the vertex into equal Nθ

angular bins. Then, the bins are propagated to the neighboring triangles of the 1-ring area

resulted in a more expanded region. Also, this selected region is divided into Nρ radial bins

being equally expanded over the region. Such a patch is slid over the triangular mesh to

convolve the filter with functions (e. g., HKS, WKS, etc.) defined on vertices of the input

mesh similar to the approach which is carried out in 2D domain. This proposed GCNN is

employed to build local shape descriptors in a supervised manner. Using a set of known

corresponding and non-corresponding points as the training set, parameters of the network

are obtained in a way that minimize the distances between the alike points and at the same
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time maximize the dissimilarities between the uncorrelated points.

The work suggested by Masci et al. [44] was continued by Boscaini et al. [37]. They

generalized the defined convolution to the spectral domain for learning local shape descrip-

tors. The main advantage of this work over the proposed approach by Masci et al. [44] is

its flexibility in being applied to various 3D structures. In fact, their proposed convolution

operation is applicable to frequency domain and hence it is not limited to polygon meshes

only (i. e., it is applicable to other 3D data structures too, such as point clouds). In more

detail, the patch operator that was applied on meshes in [44], is replaced with a patch which

works in the frequency domain. In this application, Windowed Fourier Transform (WFT) is

generalized to the spectral domain to extract local patches. WFT is applied on a function f

defined on input mesh (f could be a point descriptor such as HKS, WKS, etc.) and by taking

the first K frequencies of WFT into account, a ”meta-descriptor” (i. e., a K-dimensional

vector) is obtained. A group of windows with different sizes are used for this step and for

each window size, a 300-dimensional vector is computed as point signatures. The vectors

summarize function f surrounding a certain point x. A two-layer CNN with a function f

as the input is used to produce a Q-dimensional descriptor at the point x. The similar set

of training data which was used by the previous work is employed in this system as well to

learn descriptors.

In a similar application, Boscaini et al. [7] proposed local descriptors that are declared

in the spectral domain; however, they utilized anisotropic diffusion to take advantage of

the curvature direction in learning local descriptors using CNN. To form the anisotropic

descriptors, they introduced the definition of anisotropic Laplacian, in which a thermal

conductivity tensor is incorporated in the diffusion equation

ft(x, t) = divX(D(x)∇Xf(x, t)) (2.1)

Using this equation the direction information can be included in the diffusion resulting in
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the descriptors that are unambiguous to symmetry (Figure 2.6). For more information on

applying CNN to spectral domain we refer the readers to a recent article by Bronstein et

al. [148]. They present an in-depth discussion on the considerations for CNN applications in

shape analysis tasks for spatial and spectral domains. In summary, defining the convolution

in the spectral domain resolves the problem of expanding convolution to the graphs; however,

such formulation of the convolution would be domain dependent.

Figure 2.6: The Euclidean distance between the descriptor of the white point on the left
shoulder obtained in [7] and those of the other points are represented. Red color corresponds
to the higher distances. As it is observed, the point is detected locally with high level of
sensitivity and specificity. The figure is taken from [7].

In a recent work proposed by Qi et al. [149], the performance of CNNs applied on volu-

metric data and multiple 2D views are compared and it is shown that the former performed

worse than the latter. The researchers propose three techniques to improve the performance.

First, they adopt the architecture of multi-view CNNs to achieve a volumetric CNN in which

an anisotropic elongated kernel is employed to convert the input data from a volume to 2D

representation. In fact, the kernel is convolved with the volumetric data followed by an ag-

gregation step to form a 2D plane representation of the input to be fed into the image-based

CNN. This novel approach enables users to take advantage of rich volume data as well as

the efficiency of multi-view CNNs. Second, in a separate improvement they enhance the

performance of the volumetric CNN, through augmenting the data by both azimuth and

elevation rotations rather than a single orientation used in 3D ShapeNets by Wu et al. [117].

Finally, they add a multi-orientation pooling stage to the system to capture various orien-

tations in the input. Similar to other CNN architectures, a sequence of convolutions and
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pooling operations (mlpconv was used in this work to be more discriminative [149]) extracts

high-level features out of the input data being used as shape descriptors.

In another state-of-the-art study, Qi et al. suggested a deep learning algorithm called

”PointNet” to form global and local shape descriptors on raw point cloud data for the first

time [150]. They discussed that methods which generate structured representations (e.g.,

grid-like or voxelized) for point clouds or meshes to feed them to CNNs, transform the

data into large volumes which leads in computation complexities. Moreover, they found

these methods result in fine details loss due to the quantization process. Therefore, they

suggested an approach that consumes the raw data directly to avoid such limitations. Their

system, takes a n × 3 matrix, containing coordinates of point clouds in 3D space as input

(plus some additional features such as normals) and generates a vector representing k class

assignment scores for a classification task. The concept of order is a challenge of working

with unstructured data (which does not apply to the regular data such as 2D images). Qi et

al. addressed this problem by using a symmetry function. More specifically, the input data

goes under a transformation (to be canonicalized) and then is fed to a MLP that generates a

n×64 matrix as point features. These features, are used as the input to a symmetric function

(implemented in form of a max pooling, an average pooling, and a weighted sum layer) to

make the system invariant to the input order. This symmetry function works as a mapping

that transforms the irregular input point cloud into an ordered vector. The proposed system

was also tested for a segmentation task, generating a n×m matrix that illustrates segment

assignment scores for n points and m different segments of the input. By concatenating the

shape descriptor and point features extracted in the classification network, a new set of local

features are extracted in the segmentation module. The proposed architecture in this work is

pretty similar to the CNN, because of extracting a set of local features from the data within

the deep architecture (similar to the application of convolution in a CNN). Also, because

pooling could be think of as a special convolution operation [151] we categorized this work

under the CNN-based group.
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Qi et al. [152] proposed an improvement on the above work by introducing a hierarchi-

cal neural network, called PointNet++. This enhancement generalizes the previous design

by applying the PointNet recursively on overlapped subsets of the input data in a multi-

resolution manner to learn local hierarchical features in the metric space.

Another work inspired by the PointNet was introduced by Deng et al., recently [153].

They discussed limitations of the PointNet such as constructing task-specific local descrip-

tors. Therefore, they suggested the PPFNet to improve the performance of PointNet by

extracting more powerful global-aware local descriptors. In this system, the supervision is

provided in the form of sets of N -combination of input points (as opposed to pairs of cor-

responding and non-corresponding points utilized by optimization-based systems). In more

detail, a set of N local patches are selected uniformly from two input point clouds. The

similarities and dissimilarities between the pairs of input patches are given to the networks

for the training data. The patches are given to separate weight-sharing PointNets to extract

local features which are then fed into a max-pooling layer to construct the global features

and attaching them back to the local features. In the last step, a group of MLPs are used to

combine the global and local features, furthermore. Finally, a distance matrix of all patch

descriptors are computed and given the groundtruth and using the back-propagation the

architecture updates PPFNet’s weights such that the optimal descriptors are constructed.

A recent and novel convolutional approach for shape labeling and keypoint detection

was proposed by Yi et al. [142], in which a kernel is convolved with the function defined

on input mesh in the spectral domain. To this end, the graph Laplacian of input mesh

is formed and its eigenfunctions are computed to be used as basis functions. Function f

defined on the mesh is represented as the linear combination of such basis functions. The

collection of magnitudes associated with each basis function is used to represent the function

f . Analogous to the Fourier analysis, the convolution in the spatial domain is transformed

to a point-wise multiplication between a kernel and the function in the spectral domain.

The input to their neural network, are functions which represent a set of hand-crafted local
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features (such as geometry and curvature related features) computed on each vertex as

well as the graph Laplacian of 3D objects. Their system generates a segment label or a

landmark detector function for each vertex of the mesh by computing high-level features for

the vertices. This is carried out through a convolutional network including multiple steps of

spectral-spatial transformations which are the key blocks of their deep architecture. Because

of the suggestion of a synchronization over spectral representations of input shapes, the

researchers introduced their approach being generalizable to shapes with various topology

and geometry.

The last two works which are reviewed under this group, are approaches that use the

octtree idea to voxelize the input 3D data. Riegler at al. [154] proposed a technique to deal

with the 3D data in a novel way to capture the shape descriptors by expanding the idea

of octtrees to the 3D meshes. Due to the sparsity of 3D data, such as point clouds and

meshes, converting them into the volumetric data, as many previous works did, is memory

demanding. Besides, processing such volume of data is time consuming. This motivated

the researchers to propose a new method that only focuses on the boundaries of the objects

rather than the entire volume. With this technique, the convolutional networks are easily

applicable to 3D data and significant amount of memory and computational time are saved.

In this approach, called OctNet, a voxel grid is constructed for the input data through

dividing the entire shape into octants, iteratively. Partitioning the space into smaller cells

is done adaptively by considering a criterion. For example, the cells which overlap the

boundary of the shape, are divided further into another level of smaller cells. Therefore,

the cells are denser on the boundary and more sparse anywhere else. Such a volumetric

structure (some local geometry and texture features are extracted for each vertex) is fed

into a deep convolutional network consisting of convolution, pooling, and unpooling layers.

In fact, the architecture of this network simulates a set of an encoder and a decoder such

that the convolution and the pooling layers form the encoder and the unpooling (e. g., an

interpolation implemented using the nearest neighbor) layer forms the decoder function. In
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such a structure, the results of the encoder step are concatenated to form shape descriptors

which are later on used in a shape classification application.

In a similar approach to the method proposed by Riegler at al. [154], Wang et al. [151]

suggested to apply convolutional networks on high-resolution octtree-based data. The data

includes features such as averaged normal vectors computed at leaf octants for 3D unstruc-

tured data. Their approach, called O-CNN, focuses on the boundaries of 3D data and

generates high-resolution representation being able to capture fine details of shapes. In their

proposed technique, convolution operation is applied on the octtree data, followed by a max-

pooling layer, iteratively. Finally, a softmax layer is used to apply the suggested O-CNN in

a classification task. They suggested to use the result of the classification step, as a shape

representation to query the dataset for shape retrieval applications. In fact, the O-CNN

generates a vector for each input shape which represents the probability of the shape being

a member of a particular category. Such vectors serve as global shape descriptors for inputs.

Autoencoder-based

Autoencoders are one of the frequently used deep learning algorithms because of featured

characteristics such as being able to capture non-linear feature spaces and stability against

the missing values [155]. Autoencoders are categorized under the unsupervised learning

algorithms [85] because no class label is provided to them for training. However, most of the

techniques discussed under this sub-category modified the target output of the autoencoders

such that a single target (instead of the input itself) is provided to the autoencoder, making

it rather a discriminative model. This type of encoder is called many-to-one encoder [8].

Fang et al. [8] used a many-to-one autoencoder to construct a deep shape descriptor for

shape retrieval. In their method, two shape features namely HKS and Heat shape descriptors

(HeatSD) are extracted. The HeatSD, a global descriptor, is developed using a multi-scale

HKS by computing the distribution of HKS values at all vertices and over all scales. HeatSD

features are used as inputs for two encoder modules. Eigen-shape and Fisher-shape descrip-
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tors are target outputs for the two modules. The networks are trained using Eigen-shape

and Fisher-shape descriptors to minimize the intra-class variance and maximize the inter-

class distance. Target Eigen-shapes and Fisher-shapes are obtained from a collection of the

HeatSDs using Principal Component Analysis (PCA) [156] and Linear Discriminant Anal-

ysis (LDA) [157] techniques. In the end, hidden layer nodes of the neural networks are

concatenated to each other forming a deep shape descriptor. The general schema of their

proposed system is demonstrated in Figure 2.7. The comparison between the proposed deep

shape descriptor and the ShapeGoogle [48] using the precision-recall curve, shows that the

former outperforms the latter. Furthermore, it works well for the partial shape retrieval and

is robust against some levels of noise.

Figure 2.7: Framework of the autoencoder based descriptor proposed by Fang et al. [8]. The
figure is taken from [8].

In a similar approach, Xie et al. [158] used a discriminative autoencoder to form the 3D

shape descriptors. In their system, many multi-scale shape distributions at different scales

are created for each shape in classes. The HKS are obtained for each shape at each time

step. Then, the shape distribution at time t is formed by calculating the histogram of the

HKSs on N vertices of the shape at time t (known as scale t). A discriminative autoencoder
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is established for each scale using the Fischer discrimination criterion. The nodes of the

hidden layers of the autoencoders are concatenated to form the 3D shape descriptor.

As opposed to the previous works that spectral features were extracted out of input

3D shapes, Zhu et al. [74] proposed a global view-based descriptor for 3D shapes using an

autoencoder whose weights are initialized by DBN. They generated multiple 2D depth images

for the 3D models. The images are directly fed to an autoencoder-based learner without

forming any feature vectors. Similar to previous approaches, the autoencoder generates a

compact representation for the model in the hidden layer. To improve the performance, the

researchers used DBNs to initialize the weights of the autoencoder and then used BP for fine-

tuning. The autoencoder, constructs shape descriptors by encoding each depth image into

a lower-dimension vector. Furthermore, in another experiment they constructed different

feature descriptors using the SIFT [138] algorithm and BoF technique, to be used along with

their global shape descriptor. They emphasized, more local information is captured by the

second descriptor because of using the SIFT algorithm. They suggested to combine the two

descriptors by computing their linear combination, to improve the retrieval performance.

Many-to-one autoencoders are also applied on 3D data in a recent feature-based approach.

Dai et al. extracted global shape descriptors computed using the SI-HKS features of each

vertex for different 3D shapes [159]. The global descriptors computed for shapes of each class

are presented to the separate autoencoders. The deformation-invariant shape descriptors are

learned in hidden layer of the auto-encoder. Comparing the mean average precision of the

proposed approach on different datasets proved it to be superior to some of the existing

supervised and unsupervised algorithms.

2.5 Discussion

In this chapter we reviewed the data-driven 3D shape descriptors. In Section 2.4 the descrip-

tors were surveyed in accordance with the proposed taxonomy in Figure 2.3. This taxonomy
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is discussed under Section 2.5.1. We propose two other possible classifications for the re-

viewed papers in Section 2.5.2. Also, Section 2.5.3 lists limitations of using data-driven

techniques in constructing 3D shape descriptors.

2.5.1 Algorithm-Oriented Categorization

The learning type and architecture are key features that provide a good overview of any

learning algorithm. In Figure 2.3, we categorized the existing data-driven 3D shape de-

scriptors based on the learning architectures of the algorithms which was used to construct

the descriptors. We also used learning types to group the works by color. Therefore, we

divided all of the descriptors into two major categories (deep and shallow), accordingly. In

the next level, the subcategories were suggested based on the learning algorithms which were

commonly used in each broad category.

Although the above mentioned categorization rules seem straightforward, assigning the

proper category was challenging for some descriptors, mostly because they were calculated

using a combination of different techniques. For several descriptors, we studied how the

learning algorithms were combined to form the descriptors. In more detail, to assign de-

scriptors to most relevant categories, we considered which part of a proposed framework

played a key role in constructing the 3D shape descriptor or which one of the used algo-

rithms made the most prominent part of the pipeline. For example, Zhu et al. suggested a

combination of DBN and autoencoder to form a global shape descriptor [74]. They also pro-

posed another shape descriptor in BoF framework and used a linear combination of the two

to form a final shape descriptors. This work has been categorized under autoencoder-based

descriptors (disregarding the usage of BoF technique and the DBN) as this deep algorithm

was the focus of their proposed method. Another example, is the work proposed in [6].

Even though BoF has been used along with the CCRBM, we listed the technique under the

DBN-based category (rather than clustering-based group which is inferred by usage of the

BoF technique), since BoF was merely employed to evaluate the proposed local descriptor
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in shape retrieval applications. The above examples show that there is not a solid boundary

between different branches of the proposed taxonomy.

Table 2.2 summarizes the reviewed data-driven 3D shape descriptors in terms of different

criteria. The following items discuss the different columns of the table in more detail:

1. Feature-based : If the algorithms extracted the low-level or middle-level features out of

the original input data and fed these features to the learning algorithms rather than

the original data itself, we marked them as the feature-based techniques.

2. Feature level (Low-level/ Middle-level): If a technique was indicated as the feature-

based technique, this column is filled out specifying which type of features were ex-

tracted from the input data to be used as the input of the learning algorithm.

3. Learning algorithm: Various machine learning algorithms such as deep learning al-

gorithms, BoF, clustering, etc. were employed to construct data-driven 3D shape

descriptors in the literature. The learning algorithm used by each work to construct

the shape descriptor, is listed under this column in Table 2.2.

4. Domain (spectral/spatial): Spectral methods such as HKS and WKS have had success-

ful applications in the literature to compute both local and global descriptors (Section

2.2.2). If a proposed work used spectral methods to compute shape descriptors, we

marked it as the spectral otherwise it was considered as a spatial method. Besides,

there were techniques that rather than extracting the local spectral features and using

them as the input to the learning algorithm, transformed the input data from spatial to

spectral domain and then fed this data into their learning algorithms (e. g., [37, 7, 142]

etc.). These approaches are also marked as spectral descriptors.

5. Application: Shape descriptors have been applied to a wide variety of shape analysis

tasks such as establishing point-to-point correspondence, shape matching, mesh la-

beling and segmentation, shape retrieval, shape detection and recognition, and shape

classification. We listed the applications for each work under this column in Table 2.2.
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6. Dataset : The datasets used for each algorithm are listed under this column. The data

types and the objects included in each dataset were reviewed in Section 2.3.

7. Data type: This column lists the data type used by the algorithms to construct the

descriptors.

8. Type: The type of descriptors would be either local or global. If a method captures

local features of input shape it is considered as local. The methods that consider the

shape as a whole and ignore the local features, would generate global descriptors.

9. Learning Type (LT): This column lists the type of learning algorithm used for construct-

ing the descriptors. The learning type is determined as supervised or unsupervised.

For the semi-supervised applications or the descriptors that were built using both su-

pervised and unsupervised algorithms, we marked both columns under the learning

type.

Moreover, advantages and limitations of all the reviewed articles are discussed in Table 2.3

to Table 2.7, where each table belongs to a subcategory of descriptors.

2.5.2 Alternative Taxonomies of 3D Shape Descriptors

Some aspects of the systems that build data-driven shape descriptors, such as input data

type and application, are not included in the algorithm-oriented taxonomy because it only

considers the learning algorithm used to build the descriptors. Learning algorithm, input

data type, and application are three important attributes of such systems. Using any of

these fundamental attributes as a criterion for categorization potentially provides a great

perspective for the researchers who want to establish a new data-driven system to build 3D

shape descriptors. Therefore, we provide two alternative taxonomies based on the input data

types of the algorithms and the applications the descriptors were employed for.
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Input-oriented taxonomy

The input type has a profound influence on the success of different algorithms for extraction

of 3D shape descriptors. For example, applying some of the approaches on 3D meshes is not

as straightforward as applying them on 2D images because of the unstructured nature of the

polygon meshes. Therefore, it is important to present a taxonomy of the data-driven shape

descriptors based on their input data type.

Figure 2.8 demonstrates the input-oriented categorization. We divide all of the existing

data-driven shape descriptors into three broad categories, namely: view-based, geometry

images, volumetric, and model-based groups.

Data-driven 3D shape descriptors

2D 2.5D Polygon mesh Part-basedPoint cloud

View-based Graph-basedGeometry images Volumetric

Octtree-basedVoxel-grid

Figure 2.8: An alternative taxonomy for data-driven 3D shape descriptors by considering
the input data types.

View-based In these techniques usually a geodesic sphere is considered surrounding the

shape. Then RGB/gray or depth images, or a combination of both are taken from a given

set of angles. In fact, the 3D shape is represented by a sequence of 2D images. In most

applications the descriptors were computed for each image individually and then they were

combined to form a global shape descriptor.

Using view-based techniques to built 3D shape descriptors have been a prominent ap-

proach. It is because progressive 2D image descriptors could be invoked easily [143] and

machine learning and more specifically deep learning algorithms could be successfully ap-

plied on 2D images. Also, the shape descriptors which are made using 2D images are fairly

compact and persistent against the perturbations (e.g., noise in the surfaces or tessella-

tions [143]). Besides, a large volume of 2D datasets (much higher than the existing 3D

64



datasets) are available, that makes the model training more accurate and precise [178, 143].

Due to the unstructured nature of the 3D shape models, applying deep learning techniques

directly on them is inconvenient [6]. Therefore, several effective applications suggested pro-

jecting 3D shapes on 2D images to convert the irregular format of 3D shapes into regular

grid-like structures [6]. This helps the researchers to use the descriptors which are introduced

for 2D images in the literature rather than applying the learning algorithms directly on 3D

data.

On the other hand, the researchers would face with some challenges while using the view-

based approaches. For example, the number of 2D views rendered from a 3D model must

be large enough so that the entire shape surface is captured as accurate as possible [178].

Usually, these approaches (and the volumetric representation which will come later) miss

some levels of details during the process of transforming 3D shapes into 2D views [148].

Besides, different parts of a shape may be appeared in more than one view, therefore, an

effective technique needs to be taken to unify the parts specifically [178]. Also, as view-based

and volumetric techniques handle the geometric properties in the Euclidean representation

which is not intrinsic, their analysis miss significant level of details of 3D models. This issue

has been elaborated clearly by Bronstein et al. in [148].

The view-based approaches typically generate global shape descriptors that are used for

shape retrieval, classification, and recognition. These methods mainly take average over all

of the descriptors obtained for each view or concatenate them to form a single 3D shape

descriptor. However, some techniques were proposed in the literature to combine the de-

scriptors more elegantly such as the approach proposed in [143].

Geometry images Geometry images are another structured 2D representations suggested

in the literature for 3D shapes to convert their unstructured formats to grid-like representa-

tions. Using geometry images enables analyzing isometric deformations of 3D shapes which

is not possible with view-based techniques. On the other hand, geometry images are confined

with some limitations. For example, computing geometry images for shapes of non genus-0
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(shapes with holes) is not easy, and for surfaces of high genus can constitute difficulties. In

addition, they are not applicable to non-manifold geometry [179].

Volumetric Volumetric techniques take the input data in form of voxelized (voxel-grid)

models. Using the volumetric data to construct shape descriptors, is suggested by researchers

in the literature as another approach of transforming the unstructured 3D data into struc-

tured representation. However, the main disadvantage of this approach is that the voxel-grid

data needs much larger storage with respect to the original data [150]. Besides, this extra

volume implies excess required processing resources [43]. Some novel approaches in the liter-

ature suggested using octtrees for generating the volumetric representation which reduces the

storage requirement significantly by focusing on boundaries of 3D shapes (e.g., [154, 151]).

Graph-based The graph-based techniques used the irregular 3D models to compute data-

driven shape descriptors. Majority of the available 3D databases (summarized in Table 2.1),

provide the data in the form of point cloud or polygon mesh. Therefore, the main advantage

of the graph-based techniques is that no data conversion is required and the raw irregular

3D data could be fed to learning algorithms as they are. On the other hand, applying some

of the techniques such as convolutional approaches on these data types is tricky and requires

either to modify and customize the definition of convolution operation or to convert 3D data

into grid-like structures. This is mainly because, the concept of order is unclear in 3D data

as opposed to the grid-like data types. Also, the limited number of available training 3D

data for deep learning [74], makes these algorithms less feasible for constructing data-driven

3D shape descriptors.

To the best of our knowledge, none of the proposed graph-based 3D shape descriptors

(except the work proposed in [38]) considered both photometric and geometric information

to form the shape descriptors.

In addition to the point cloud and polygon mesh data types, we also considered a part-

based data representation under the graph-based group. The part-based representation,

characterizes a shape in an abstract format focusing on its hierarchical structure of parts.
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Even though the reviewed data-driven shape descriptors did not use this type of representa-

tion, some recent applications such as [180, 181] used deep learning algorithms to learn such

representations for different objects. The part-based representation provides a succinct ex-

planation for 3D objects to understand different components of a shape which could be used

for object decomposition, shape understanding, shape interpolation, component matching,

etc. [180, 181].

Application-oriented taxonomy

In a different point of view, we classify the 3D shape descriptors into two main categories,

namely: global and local descriptors which have particular applications in shape analysis

tasks. This categorization is demonstrated in Figure 2.9.

Data-driven 3D shape descriptors

RetrievalClassificationRecognition

Global Local

Labeling and segmentation Correspondence and matching

Figure 2.9: An alternative taxonomy for data-driven 3D shape descriptors by considering
the application.

The application-oriented categorization would be useful for future researchers to know

which applications the different data-driven shape descriptors could be efficient in.

Global shape descriptors were mainly used for shape recognition, classification, and re-

trieval purposes, while the local ones were mostly applied to shape segmentation and labeling,

point-to-point correspondence, and shape matching tasks. To our best understanding, all

of the local descriptors from literature (that are reviewed in this work) used the 3D data

representation (including point clouds, meshes, and volumes), and were mostly implemented

using deep learning algorithms. On the other hand, the global descriptors were built using

all types of input data. In addition, variety of learning algorithms were used to implement

67



the global descriptors.

Based on the application, global or local features or a combination of both could be used.

For shape retrieval, the global characteristics of shape models would be able to provide us

with a concise shape descriptor, no matter what class the input data belongs to (e.g., animals,

objects, planes, cars). On the other hand, if the classes of the input models are the same such

as looking in a dataset for human heads or human body, exploiting both global and local

features would be beneficial to distinguish between the different objects, more efficiently.

Even though the proposed algorithms were designed to provide the descriptors with a

high level of discriminating property to distinguish between fine details of input data, we

did not find any shape processing applications on human faces which includes a lot of details

(except the work proposed by [38] for learning correspondence between human heads).

2.5.3 Limitations

This subsection discusses some limitations of using data-driven techniques for constructing

3D shape descriptors. These limitations mostly pertains to any data-driven application in

general; however, we discuss them particularly with respect to the applications of construct-

ing 3D shape descriptors.

Since the availability of large datasets makes an essential contribution in success of data-

driven techniques, large and information-rich training data should be available so that learn-

ing algorithms capture 3D shape descriptors from the examples, accurately and precisely.

Moreover, supervised learning algorithms in general, require precisely selected class labels.

The systems that use this type of learning algorithms to construct 3D shape descriptors

should provide their systems with proper set of class labels so that a compact and effective

shape descriptor can be learned. Such a shape descriptor must be capable of capturing fine

details of the shape and should possess the desired characteristics of a shape descriptor such

as being efficient [5], intrinsic and invariant to shape deformations [182], etc. In some appli-

cations (for instance in constructing local shape descriptors for mesh labeling, segmentation,
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and point-to-point correspondence [42]) providing the class labels is not straightforward and

sometimes entails large volume of manual work [38]. However, in many other applications

training data can be generated automatically (e. g., [5]). Overfitting is another problem

that could arise while working with learning algorithms, however, it could be prevented by,

for example, providing large number of training data [42].

In spite of the above challenges, the potentials of data-driven approaches have proved

them to be beneficial and extremely reliable specifically with the recent advances in the deep

learning approaches. This encourages researchers in the computer graphic community to

exploit these approaches in constructing 3D shape descriptors. We refer the readers to a

recent comprehensive survey by Xu et al. [39] for data-driven methods employed for various

shape analysis applications such as classification, segmentation, reconstruction, etc.

2.6 Future Directions

This chapter aimed to include the majority of the relevant and state-of-the-art systems for

constructing data-driven 3D shape descriptors. We found a large body of intelligent and fully

automated descriptors suggested in the literature. We included the exemplary works from a

wide variety of applications and discussed samples from each novel group of ideas proposed

for constructing data-driven shape descriptors. However, we would like to acknowledge the

works we missed in this survey.

There have been numerous techniques suggested in the literature for feature extraction

out of 3D data. As the automatic feature extraction is advancing rapidly and has become

more popular than hand-crafted techniques, various feature learning methods that use ma-

chine learning algorithms could be of great interest and a good future research topic.

Another future direction could be a comparative study that quantitatively evaluates

various approaches that combine local descriptors to compute global descriptors that preserve

as much local information as possible and are both specific and sensitive.

69



Another interesting future research area, is to explore the type of features (e. g. low-level

versus middle-level features) fed to deep learning algorithms to compute shape descriptors.

A comparative study on low-level and high-level features used for learning algorithms in the

literature, would be beneficial. Each of the above approaches have some advantages and

disadvantages. For instance, using low-level features needs a larger set of training data than

utilizing the middle-level features.

Besides, a comprehensive study could be conducted on various shape descriptors to eval-

uate and compare their robustnesses against noise, incomplete data, and resolution. Further-

more, some recent approaches (e. g. [144]) suggested in the literature moved towards using

self-supervised learning approaches. A study on how this learning type improves learning

various shape descriptors could be an interesting future research direction.
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Table 2.1: Outline of the 3D databases.
Dataset Data Type Provided by date

Data for-
mat

total Annotation Availability

3D Head
database

Images of laser
scanned heads

Max-Plank Inst. 1996

.png,

.bmp,

.jpg, &

.obj (for
head
scans)

200

Synthetic laser-scanned
heads without hair from 7
different views plus 5 full
3D head scans.

http://faces.kyb.

tuebingen.mpg.de/

index.php

PSB
Polygon
meshes

Princeton Univer-
sity

2003 .off & .cla 1814
907 for training and 907
for testing

http://shape.cs.

princeton.edu/

benchmark

NORB Images
Courant Inst. &
New York Univer-
sity

2004 .mat 97200
Stereo image pairs of 50
toys belonging to 5 cate-
gories

http://www.cs.nyu.edu/

~ylclab/data/norb-v1.0

SCAPE
Polygon
meshes

Stanford Univer-
sity & University
of California, Santa
Cruz

2005 2590
Human models, scans of
different people

http://ai.stanford.

edu/~drago/Projects/

scape/scape.html

TOSCA
Polygon
meshes

Part of TOSCA
project

2006 .mat & .off 216
High resolution synthetic
3D non-rigid shapes

tosca.cs.technion.

ac.il/book/resources_

data.html

SHREC
3D object
models

Eurographics work-
shop

2006
3D object retrieval using a
common test collection

http://www.shrec.net/

NIST
Polygon
meshes

National Institute
of Standards and
Technology (NIST)

2008 .off 800
Contains of complete 3D
models in 40 classes and 20
models in each one

http://www.itl.nist.

gov/iad/vug/sharp/

index.html

McGill
3D shape
benchmark

Polygon
meshes

McGill University 2008
.im & .off
or .ply

456
10 classes. 20-30 models in
each class

http://www.cim.mcgill.

ca/~shape/benchMark/.

ESB
Polygon
meshes

Purdue University 2008
.stl, .obj,
& jpg

867

Meshes of CAD parts clas-
sified into a groundtruth
classification with two lev-
els of hierarchy. There are
three super-classes with
sub-classes under them.

https://engineering.

purdue.edu/PRECISE/

shrec08.

PHS
Polygon
meshes

Ohio State Univer-
sity

2010 300

Consists of 300 shapes that
are divided into 21 classes
of objects such as dogs,
horses, airplanes, humans,
etc.

GWSB
Polygon
meshes

Sharp group 2010 .off & .skp 3168
Generic models from
google 3D warehouse

http://www.itl.

nist.gov/iad/vug/

sharp/contest/2010/

Generic3DWarehouse

RGB-D OD RGB-D images
University of Wash-
ington & Intel

2011 300
Synch & aligned RGB and
depth images

https://rgbd-dataset.

cs.washington.edu

COSEG 3D shapes
SIAT, hina TAU,
Isreal SFU, Canada

2012 .seg 1090
Consists of 11 sets of
3D smooth manifolds of
shapes

http://web.siat.ac.cn/

~yunhai/ssl/ssd.htm

NYU
RGB & Depth
images

New York Univer-
sity

2012 .mat 1449

Introduced to provide a
better understanding of
the RGB-D scenes, con-
sisting of 35064 distint ob-
jects

http://cs.nyu.edu/

~silberman/datasets/

FAUST
Polygon
meshes

Max Planck Inst. 2014
.ply &
.png

300

Real high-resolution non-
watertight meshes of hu-
man body scans. 10 dif-
ferent subjects from 30 dif-
ferent poses. Divided into
train and test categories
with 100 and 200 shapes,
respectively.

http://faust.is.tue.

mpg.de

RueMonge2014
Polygon
meshes &
2D images

ETHZ 2014 428

Textured 3D point clouds
of Haussmanian style
buildings with seven
different segment labels

http://www.vision.ee.

ethz.ch/~rhayko/

paper/eccv2014_

riemenschneider_

multiviewsemseg/

ModelNet
Polygon
meshes

Princeton Univer-
sity

2015 .off 127915
Includes 3D computer
graphics CAD models
from 662 object categories

http://modelnet.cs.

princeton.edu/.

ShapeNet Polygon mesh

Princeton Uni-
versity, Stanford
university, and
TTIC

2015
OBJ &
MTL

63300

Contains 3D models along
with the complete annota-
tions for each object and
multiple views

https://shapenet.org/

Part an-
notation
dataset

point cloud
Various universities
and institutes

2016 .off

∼16K
models
of 16
shape
cate-
gories

Contains a subset of
ShapeNet models with se-
mantic annotations added
for their parts

http://web.stanford.

edu/~ericyi/project_

page/part_annotation

Scannet RGB-D images

Stanford Univer-
sity, Princeton
University, and
Technical Univer-
sity of Munich

2017 .ply&.sens

2.5M
views of
∼1500
scans

The dataset includes the
RGB-d images and re-
constructed indoor scenes
from various offices and
apartments which are fully
annotated (semantically
labeled).

http://www.scan-net.

org/
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Table 2.2: Summary of data-driven 3D shape descriptors.
Ref

Feature level Learning
algorithm/framework

Domain
Application Database

In
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t
d
a
ta

ty
p
e Type LT
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e
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re
-b

a
se

d
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o
w
-l
e
v
e
l
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e
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e
l

S
p
e
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a
l

S
p
a
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l

L
o
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a
l

G
lo
b
a
l

U
n
su

p
e
rv

is
e
d

S
u
p
e
rv

is
e
d

[34] X
clustering, decision
tree

X segmentation, recognition
synthetic data and the
range images

2.5D X X X X

[38] X SVM X correspondence heads mesh X X X

[120] X RBM, DBN X recognition NORB 2D X X X X

[132] X BoF X
retrieval, partial matching,
segmentation

SHREC’07 mesh X X X

[133] X BoF X
retrieval, classification,
segmentation

SHREC’07 mesh X X X

[48] X BoF X retrieval ShapeGoogle mesh X X X

[130] X metric learning X retrieval ShapeGoogle mesh X X X

[78] - - CNN, RNN X classification RGB-D OD 2.5D X X -
[116] X BoF X classification RGB-D OD 2.5D X X X

[2] X BoF X retrieval McGill, SHREC’07 mesh X X X

[137] X BoF X retireval
PSB, NSB, GWSB,
McGill, SHREC’11

2.5D X X X

[47] X BoF , DBN X classification, retrieval SHREC’07, McGill 2.5D X X X

[71] X L-BFGS X shape matching TOSCA mesh X X X

[5] X metric learning X correspondence TOSCA, SCAPE mesh X X X

[45] X BoF, DBN X classification, retrieval
PSB, SHREC’07,
SHREC’11

mesh X X X

[3] X BoF X retrieval
ShapeGoogle,
SHREC’14

mesh X X X

[117] - - CDBN X retrieval ModelNet, PSB, NYU 2.5D X X -
[42] X CNN X labeling COSEG mesh X X X

[44] - - CNN X correspondence, retrieval FAUST, TOSCA mesh X X -
[37] - - CNN X correspondence SCAPE, FAUST mesh X X -
[143] - - CNN X recognition ModelNet 2D X X -
[8] X auto-encoder X shape retrieval ShapeGoogle, McGill mesh X X X

[158] X auto-encoder X matching, retrieval McGill, ShapeGoogle mesh X X X

[46] X Sparse coding X incomplete shape retrieval PHS, SHREC’15 mesh X X X

[74] - - Autoencoder, BoF X retrieval PSB, ESB, NTU 2.5D X X -
[?] X FCN X correspondence SCAPE, TOSCA mesh X X X

[6] - - CCRBM, BoF X correspondence, retrieval
SCAPE, McGill,
SHREC’07, SHREC’15

mesh X X -

[7] - - CNN X correspondence SCAPE, FAUST mesh X X -
[149] - - CNN X classification ModelNet volume X X -

[43] X CNN X classification, retrieval
McGill, SHREC’11,
ModelNet

geometry
images

X X X

[141] - - GAN X classification ModelNet volume X X -
[159] X Auto-encoder X retrieval McGill, SHREC’10 volume X X X

[154] X
convolutional
encoder-decoder

X
segmentatiotn, classifica-
tion

ModelNet, Rue-
Monge2014

volume X X X

[150] X FCN X
classification, segmenta-
tion

Part annotation
dataset, ModelNet

point
cloud

X X X X

[152] X FCN X
classification, segmenta-
tion

ModelNet, MNIST,
SHREC’15, Scannet

point
cloud

X X X X

[142] X CNN X
segmentation, key-point
detection

SHREC’14 mesh X X X

[151] X CNN X
classification, retrieval,
object part segmentation

Part annotation
dataset, ModelNet

volume X X X

[144] - - CNN X matching, reconstruction
RGB-D scene images
taken from a variety of
reconstruction datasets

volume X X -

[147] - - CNN X
correspondence, segmenta-
tion, matching

correspondences gener-
ated automatically from
part annotation dataset

2D X X -

[153] - - CNN X registration the same as [144]
point
cloud

X X -
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Table 2.3: Clustering-based descriptors.
Ref. Summary Advantages Limitations

[34] A shape representation technique is pro-
posed based on the surface primitives clas-
sification of range images.

• The intrinsic shape proper-
ties are used in the learning
algorithm.

• As the success of the
method depends on the
segmentation of the object,
occlusion could affect the
recognition [160].

• Selecting a good patch size
is a trade off [34].

[132, 133] Local descriptors are computed for each seg-
ment of input shape, out of which global
shape descriptors are learned using the BoF
technique.

• Fast.

• Efficient for partial match-
ing as the segments are
used as words.

• Successful for composed ob-
jects retrieval.

• The segmentation is un-
stable with respect to the
topology changes [2].

[48] A spatial BoF (bag of expressions) followed
by metric learning to represent the shapes
as the binary codes is introduced.

• Invariant to isometric de-
formation and many types
of transformation.

• Not considering photomet-
ric information [161].

[2] The BoF framework is used on 3D meshes
for constructing global shape descriptors.

• Fast.

• Effective for partial shape
retrieval.

• Not a precise matching
between the correspond-
ing segments of a partial
query [2].

[116] RGB-D images are used to extract global
shape descriptors using the BoF technique.
SURF features are used as local features.

• Encodes both texture and
depth information into the
descriptor.

• The time length of finding
the interest points and con-
volution computations is
likely to make the algo-
rithm slow [162].

[137] Depth images are used for shape retrieval
employing MDS embedding, Clock Match-
ing, and BoF. A dictionary is built with
randomly selected local feature vectors and
SIFT features are extracted out of depth im-
ages as local descriptors.

• Good non-rigid shape re-
trieval.

• Feature descriptors are all
put inside a shared bag
rather than using separate
bags for features of each
view [163].

[3] A supervised BoF is proposed for dictionary
learning.

• Invariant to any kind of
transformations.

• It could be time consum-
ing [3].

• A simple mean pooling fil-
ter is used in the Vector
quantization phase [3].

• HKS which is not sensitive
enough, is used as the local
descriptor [3].

[46] Sparse dictionary learning is used to de-
scribe incomplete shapes.

• Efficient descriptor for in-
complete non-rigid shape
retrieval.

• The incomplete query
shape needs to be con-
nected [46].

• There are some restrictions
on boundary region detec-
tion [46].
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Table 2.4: Optimization-based descriptors.
Ref. Summary Advantages Limitations

[38] A human head correspondence is computed
through a deformation function that maps
source points to the target points. Such
mapping is suggested to be used as shape
descriptors.

• Both geometry and texture
information is used.

• A large number of 3D head
scans are required with the
texture which is not easy to
obtain [164, 165].

[130] A supervised learning of an optimal diffu-
sion kernel is proposed. The diagonal ele-
ments of this kernel, are exploited as point
descriptors and the histogram of their values
is used as a global shape descriptor.

• Scale invariant.

• Noise resistant.

• A single frequency response
is employed to characterize
the diffusion metrics [166].

[5] A generic local shape descriptor is learned
using metric learning.

• Benefits from the advan-
tages of both HKS and
WKS.

• The similar and dissimilar
training point sets are se-
lected from the same shape
which does not allow the in-
variance across various ob-
jects [37].

[71] A correspondence model is used to learn a
set of optimal descriptors using functional
maps.

• Generates informative
descriptors for non-rigid
shape matching.

• Obtains good functional
subspaces useful for estab-
lishing point-to-point cor-
respondence [167].

• Training cost is compara-
tively high [71].

[4] A binary global 3D shape descriptor is pro-
posed based on local spectral descriptors.

• The binary descriptors re-
quire less memory and are
fast for retrieval purposes.
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Table 2.5: Probabilistic models.
Ref. Summary Advantages Limitations

[120] A global view-based shape descriptor is pro-
posed using DBN formed by stacking RBMs.

• The effective initialization
of the DBN helps to avoid
local optima [168].

• The initialization step in-
creases the cost of building
the DBN model [168].

[47] A combination of BoF and DBN methods are
used on depth images to form a global shape
descriptor. Feature points are extracted by
SIFT.

• Middle-level features ex-
tracted by BoF are used for
DBN resulting in less re-
quired training data than
using low-level features for
training the DBN.

• A large number of depth
images (i. e., 200) are
required for each mesh to
train the system.

[117] Convolutional DBN is used to form global
shape descriptors for voxelized models gen-
erated from 2.5D images.

• Requires an arbitrary
single-view image as input.

• Has a comparatively mas-
sive architecture [169].

• Inappropriate for de-
formable models [44, 6].

[45] DBN is used to form the global shape de-
scriptors using HKS and AGD as local de-
scriptors.

• Middle-level features are
used as the input for deep
learning to deal with the
unstructured nature of the
input mesh.

• A small number of training
data are required.

• Weak generalization be-
cause of using middle-level
features (information
loss) [45].

[6] A circle convolutional RBM is proposed for
local shape descriptor.

• Automatic feature extrac-
tion.

• Applicable on irregular
data.

• High level of noise or non-
manifold surfaces affect the
performance of the algo-
rithm [6].

• Selecting the appropriate
stride angle is a trade
off [6].

[141] A combination of convolutional networks
and GANs are used to learn a representa-
tion for volumetric data.

• This technique does not re-
quire any segmented shapes
or parts given as the train-
ing data and the discrimi-
nator is trained completely
unsupervised.

• The GAN architecture is
confined with the resolution
of the input data and not
able to capture the fine de-
tails [170].

• The generator and the dis-
criminator can be easily
instable during the train-
ing phase which can cause
the training not to con-
verge [171].
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Table 2.6: CNN-based descriptors.
Ref. Summary Advantages Limitations

[78] A combination of CNN and RNN is used to
form a global descriptor using RGB-D in-
put images. An unsupervised pre-training is
used for CNN.

• No supervision is required
for feature extraction step.

• Fast.

• The depth modality has not
been treated as a sepa-
rate channel. Hence, the
method is not modeling in
full 3D [117, 172].

[143] High-level features are learned out of low-
level ones to generate a global shape descrip-
tor using CNNs.

• uses the benefit of regular
structure of 2D images for
unstructured 3D data.

• Depending on the appear-
ance of objects in rendered
2D images, this technique
would not work well for
sparse and incomplete mod-
els [173].

[43] A novel implementation of geometry im-
ages is suggested to convert the irregular 3D
shapes models into the grid-like 2D repre-
sentation to be used as the input for a CNN.

• Constructed descriptors in-
clude intrinsic properties of
shapes.

• Being an extension of deep
learning to manifolds oper-
ated in the Euclidean do-
main.

• Transforming 3D objects
into the geometry images is
challenging as there is no
unique way for the transfor-
mation [79].

[42] A local shape descriptor is computed for
each triangle of the input mesh. The de-
scriptors are a label vector that include
probability of the triangle belonging to each
object part.

• Applicable for meshes of
various classes.

• Simple network structure.

• To work well, the train-
ing data must have a
small number of label cat-
egories [42].

• Ignores the spatial correla-
tion [144].

• Uses synthetic and com-
plete data, only [144].

[144] A CNN based system is proposed to learn
local shape descriptors in a supervised man-
ner. The network is trained in the siamese
fashion.

• Uses the massive amount
of available 2D datasets to
learn 3D shape descriptors.

• Limited training data [147].

• Low resolution of volumes
generated at the points of
interest [147].

[147] A siamese architecture is trained to con-
struct local shape descriptors. The system
is trained by 2D images taken at different
scales and views for each certain point of 3D
meshes.

• Point descriptors are
learned using a view-based
approach that benefits
from the large volume
of available 2D image
datasets [147].

• Viewing configuration is se-
lected heuristically [147].

[44] Geodesic CNN is applied on Non-Euclidean
manifolds to compute the local shape de-
scriptors.

• Generalizable.

• Anisotropic.

• Could be used for any func-
tion defined on the surface
(e. g., texture).

• The method works on trian-
gular meshes and may fail
on low quality triangula-
tions [37].

• Deciding the topology of
the patches is important
in succeed of the algo-
rithm [37].

[37] A generalization of CNN to spectral domain
is introduced to form local descriptors.

• Robust to noise.

• High level of both speci-
ficity and sensitivity

• The proposed class-specific
descriptor could only be
used for objects of the
same or close-to-same
classes [37].

[7] An Anisotropic local spectral shape descrip-
tor is proposed using CNNs.

• Anisotropic and being able
to distinguish between sym-
metric features.

• Works for both meshes and
point clouds.

• Requires a rich training
dataset with given corre-
spondences [7].

[149] An anisotropic elongated kernel is suggested
to apply CNN on the volumetric data and
computing global shape descriptors.

• Combines the benefits of
the information available in

• Computing the convolution
on the large resolution vol-
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Table 2.7: Autoencoder-based descriptors.
Ref. Summary Advantages Limitations

[8, 158] Autoencoders are used to construct 3D deep
shape descriptors employing HKS local de-
scriptors applied on mesh data.

• Robust to the inconsisten-
cies and large variations
within the input meshes.

• Does not assure to gen-
erate the maximum mar-
gin between the classes of
shapes [176].

[74] DBN is used to initialize the weights of an
autoencoder to form global descriptors for
2D depth images. A linear combination of
the global descriptors with engineered local
descriptors are used to construct final de-
scriptors.

• No supervision is used to
extract the global descrip-
tors.

• 3D information is lost due
to considering each 2D view
individually [177].

[159] SIHKS local features are extracted for the
3D shapes and are fed to a many-to-one au-
toencoder to form global shape descriptors.

• Deformation invariant.
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Chapter 3

Facial landmark detection: Knowledge-driven approach

3.1 Introduction

In this chapter we describe the technical aspects of our system which detects the 10 land-

marks on the 3D facial models using the expert systems. In fact, the ad-hoc features have

been defined (partly based on the anthropometric properties) by the experienced and knowl-

edgeable experts beforehand. A general framework is illustrated in Figure 3.1.

BJUT 

face models

Pre-processing

tasks

Knowledge-driven 

landmark detection

Facial landmarks

detected on the input

Figure 3.1: The framework of the expert system designed for facial landmark detection. The
expert system module consists of a knowledge-driven landmark detection algorithm.

The advantage of using this approach for landmark detection is that we avoid the labor

intensive process of the training data generation. We benefited from the simple feature

definitions and also there were no need to going through the computationally complex process

of training a machine learning algorithm to detect the landmarks. However, we experimented

various definitions to encode the features of the mesh salient points into a set of rules to be

used by our system.

We believe it is a trade off between where to move to the intelligent landmarking. In

more detail, if we choose to continue with expert systems we will save a huge amount of time

because of avoiding manual work and time that was spent on gathering a precise training

data; but on the other hand we are missing the accuracy.
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The organization of this chapter is as follows. Section 3.2 introduces the database which

was used to implement the proposed idea. In addition, this section specifies our system in

detail. We elaborate the results in Sections 3.3. In the end, Section 3.4 discusses the results.

3.2 Materials and methods

This section begins with an introduction to the BJUT database (Section 3.2.1) which we

utilized to experiment our proposed approach and continues with the elaboration of the

approach. However, before we describe the main module of the system we demonstrate the

pre-processing tasks performed on the data to prepare it as the input for the system in

Section 3.2.2. The main module of our system explained in Section 3.2.3 contains of using

the knowledge-driven techniques to detect the landmarks on the face models. A set of local

and global properties of the faces such as geometric and photometric features, local shape

descriptors computed on each vertex of the model, the average length, height, and width of

the human faces, etc. have been used to detect the landmarks.

3.2.1 Database

The BJUT-3D Large-Scale Chinese Face Database [183] constructed by The Multimedia

and Intelligent Software Technology Beijing Municipal Key Laboratory, Beijing University

of Technology, was used for our experiments. This database consists of 500 high-resolution

Chinese 3D faces, 250 females and 250 males with frontal views and neutral poses without

accessories (e. g., glasses, hats, etc.). The object models consist of both shape and texture

data with 65,000 vertices and 130,000 triangles, in average. A set of sample female and male

faces are illustrated in Figure 3.2. While working with the dataset we noticed various artifacts

such as low-quality tessellation, spikes, and isolated vertices in the meshes particularly in

the high-frequency areas (e. g., ears, noses, eyelids, lips). The most noisy part of the faces

were the eyes because of the light reflections at the scanning time. On the boundaries also
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(particularly, close to the neck corners), there have been numerous noisy samples. Figure 3.3

shows samples of these artifacts.

Figure 3.2: Examples of male (first row) and female (second row) 3D face models provided
in the BJUT database.

The BJUT database is popular and have been used in various applications in the literature

(e. g., [10, 184, 185, 186]) for different 3D face analysis tasks.

3.2.2 Pre-processing and data preparation

Multiple preprocessing algorithms for data preparation are required before proceeding to the

main modules of the system. The pre-processing phase includes the following techniques to

prepare the input data for the system:

• File type conversion: The 3D models provided in the BJUT dataset were not in text

or an standard format (such as (Object File Format) OFF files) readable by most 3D
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Figure 3.3: Examples of noisy shapes.

visualization software packages. Therefore, the ”FDViewer” a tool provided along with

the BJUT database was used to visualize and transfer the data models to readable text

files, manually. The files generated by this software were in a predefined text format

including a header file that contained information about the institute that conducted

the scanning project plus the indicators for vertices, faces, and texture information.

We implemented a MATLAB program to read all the text files and convert them into

the standard OFF format.

• Scaling: To unify the height of each face, the height, width, and depth were all divided

by the height. Therefore, the height of each face is 1 cm. As in most faces the height

was the largest value among the other dimensions, the face resides within a bounding

cube with the unit side length.
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• Smoothing: To alleviate the effect of noise, Taubin mesh smoothing algorithm [187]

was applied to the input meshes. We iterated the smoothing algorithm 10 times with

the shrinkage factor, λ, and the inflation factor, µ, equal 0.50 and -0.51, respectively.

• Curvature estimation: We performed the curvature analysis for every point of the

mesh. Our curvature calculation was based on the well-known curvature estimation

algorithm proposed by Rusinkiewicz [188] and the source code was taken from [189].

More precisely, we used the Gaussian curvature which is the multiplication of the two

principle curvatures in our work.

• Computing HKS: HKS point signatures [190] were computed and stored for every sin-

gle point of the 3D models. The program was written in c++ and called from our

MATLAB function to compute the HKS for all input shapes. The HKS descriptors

were computed using the first smallest 100 eigenvalues and their corresponding eigen-

functions of the LB operator discretized on the 3D face model. The heat diffusion was

sampled at 100 time steps. The temporal domain is sampled logarithmically over the

time interval [tmintmax] while tmin = 4ln10/λ100 and tmax = 4ln10/λ2 [190].

3.2.3 Landmark detection

This section, explains the expert system module in which a knowledge-driven approach was

taken to find the facial landmarks. This module, locates 10 different landmarks on each in-

put face automatically using the predefined rules by an expert. These landmarks are showed

in Figure 3.4. Various geometry related metrics and features were exploited for different

landmarks. We elaborate the approach used to extract the landmarks in the order they were

detected.

1. Pronasal (tip of the nose): The tip of the nose is the first salient feature we

detected on the faces. As the faces in our database were all taken in frontal view, we
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Figure 3.4: The 10 landmarks which are found in the knowledge-driven module.

selected the most common approach used in the literature (e. g. [191]) to detect the

nose which is the closest point to the camera location. To improve the result and avoid

likely noises in the nose area we selected the closest 20 vertices to the camera and then

averaged them to obtain a single point. Then, the closest point on the mesh (out of

the selected 20 faces) was selected as the tip of the nose.

2. Nasion (nose bridge): There is a concave area above the nose and with almost the

same distance from the eyes. To detect this point, we limited our search to the points

resided above the detected tip of the nose and their x coordinates were in a distance

0.05 from it. Then, the HKSs were computed for all these candidates. The point which

has the smallest HKS at the first time step among the others was selected as the point

of interest.

3. Top of the forehead: To detect this point, we employed the other two landmarks

detected so far. We experimented two approaches to find this landmark. First, to have

an estimation of the x coordinate of the top of the forehead we averaged the x values

of tip of the nose and the middle of the eyes. A set of candidate points were the ones

who resided higher than the nose bridge and within a distance 0.005 of the desired x
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value for the top of the forehead. Out of these possible candidates, the point which

had the highest z coordinate was selected as the landmark.

The previous approach was not accurate enough particularly for the faces that had

noisy boundary around the forehead; therefore, we used an alternative approach which

was based on averaging. After finding the estimation of x coordinate the same as

the previous approach, a set of candidate points whose x coordinates resided within a

distance 0.05 of the estimated x were found. These candidates were sorted descendingly.

The top N = 20 points were averaged and then a point of the surface which had the

closest Euclidean distance to this mean point was selected as the top of the forehead

landmark.

4. Subnasal: For this point, we restricted our search to an area below the tip of the

nose and looked for a point with the least difference between the HKS values at first

and second time steps. In more detail, the heat values at the second time step was

subtracted from the heat values captured at the first time step and named heatDiff .

A candidate set of points were obtained by an intersection of the following criteria.

The points whose:

• z coordinates (heights) were below the tip of the nose within a distance 0.07.

• x coordinates were within a distance 0.005 from the x coordinate of the nose tip.

• heatDiff values were less than that of the nose tip.

The candidate with the lowest heatDiff was selected as the bottom of the nose.

However, as this criteria did not work very well, we tried another idea in which a mean

value is used rather than taking a min values as the landmark to handle the noisy data

better. Also, based on the experiments we ran on the 79 faces we decided to widen

the local search area to avoid missing the true positive samples. Furthermore, we also

tested the Gaussian curvature to be included in our experiment rather than using the

heat differences and found it detecting the bottom of the nose landmarks much better;
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hence, we disregarded the HKS differences from further consideration and continued

with the curvature estimation.

Therefore, the improved criteria was to find a set of candidates whose x coordinates

resided withing the distance 0.01 of that of the nose tip and they were located below

the tip of the nose in a distance = 0.1 from it. The candidates were narrowed down

to get a new subset of points by getting the original candidates sorted ascendingly

based on their Gaussian curvature estimations and selecting the points corresponding

to the first N = 10 smallest estimated curvatures. A point of the surface which had

the closest Euclidean distance to the center of gravity of the candidates, was selected

as the bottom of the nose.

5. Cheilions (mouth right and left corners): To detect these landmarks, we used

the texture along with the geometry information. At first, we limited our search to all

the points that resided in the front 20% of the face (along y axis which is towards the

viewer), between the d1 = 0.03 and d2 = 0.2 distance below the nose tip, and within

the 2× width/5 band centered at tip of the nose (please see Figure 3.5).

width/5 width/5

Width

Figure 3.5: The local search area for the lip.

After limiting our search from the geometry point of view, we need to find the vertices
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that belong to lips considering the texture information. We transformed the color from

RGB to HSV space to disregard the brightness and lighting effects and only considering

the color. The vertices which their hue values met the following criterion:

hue < 0.03 or hue > 0.12 (3.1)

were considered as the lip candidates. Figure 3.6 illustrates a sample detection of

the lips based on the texture. Limiting the search area prior to using the texture

information is required. For example, if we use the texture without the restriction,

some areas of the skin on the cheeks can result in the false positives because of scars

or acnes on the face that have changed the skin color towards the lip color on the area.

Figure 3.6: A sample detection of the lips based on the texture information.

To find the mouth right and left corners, we limited the search to the most right and

most left part of the bounding box. The selection of the amount of the bounding box

that should be considered for each corner required a lot of experiments to find the

optimum criteria that matched every face with different genders and face proportions.

Among the candidates points for each corner, the ones which had the highest Gaussian

curvature were detected as the corners.

6. Cervical (right and left): To find these landmarks the search is limited to all the

points whose z coordinates were below the lower side of the lip bounding cube. For

the right and left sides, we limited the search to all the points with an x coordinate

greater than or smaller than the 0, respectively. Out of each group of candidates, the
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vertex that had the highest value of HKS point signature at the first time step were

selected as the neck landmarks.

7. Pogonion (chin): To detect the chin landmark, at first we computed a desired x

coordinate by taking an average over the x coordinates of top of the forehead, tip of

the nose, middle of the eyes, and left and right corners of the lips. We selected a set

of candidates whose heights were below the lower side of the lips bounding cube by

dist = 0.1, whose x coordinates were within a dist = 0.01 of the estimated x coordinate,

and their depths were within the front half of the face. After constructing the bounding

box to limit the search space, we implemented a first approach in which a set of top

N = 20 vertices with the highest Gaussian curvature among all the candidates were

extracted, they were averaged to get a mean point, and then a closest vertex to the

computed mean was detected on the surface as the chin landmark. However, our

experiments showed that this criterion did not work well for all of the faces.

The large variations in the chin structures of different faces was the major reason of

failing the technique. Besides, we noticed that our criteria missed the normal vector

information that could be a distinguished indicator for the chin landmark. Therefore,

we revised the above technique by defining a score for the point that resided within

the bounding cube of interest. We also defined a normal vector v = (0, 0,−1) that

represents the desired normal vector for the chin landmark. The score s was defined

as follows:

s = αp+ βy (3.2)

in which p is a vector that holds the dot products of vector v with the normal vectors

of the vertices in the bounding cube, y represents the y coordinates of the candidate

vertices, and α and β represent the contribution coefficients of the normal vector and

the y coordinates. In fact, with such a criteria we are looking for the point which

its y coordinate is the closest to the camera and at the same time its normal vector
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is the closest to the vector v. In our experiments, α and β were set to 0.4 and 0.6,

respectively. The candidate vertices (resided in the bounding cube of interest) were

sorted descendingly based on their s scores, the vertices corresponding to the top N = 2

scores were averaged and a mean value was obtained. A vertex on the surface mesh

with the closest distance to the mean was selected as the chin landmark.

8. Center cervical: An estimation of the desired x coordinate for the middle of the

neck was computed by taking average over the x coordinates of top of the forehead,

middle of the eyes, tip of the nose, right and left corners of the lips, and the chin

landmarks which were detected so far. A set of candidate vertices were formed by the

points which their z coordinates were below the chin landmark, their x coordinate were

within a distance d = 0.01 of the estimated x, and their y coordinates were less that

that of the chin landmark. These points were sorted according to their z coordinates,

ascendingly. The top N = 20 vertices were selected, averages, and the closest point to

such mean value was detected as the landmark of interest on the surface mesh.

Rotation invariant nose detection:

Various rotation invariant nose tip detection approaches were presented in the literature. For

example, Anuar et al. used the morphological approaches being applied on the candidate

regions for nose tip that were selected by considering the convexity of the areas. Then, using

a trained system with the point signatures computed for the vertices in the areas of interest,

they selected a finer region for the nose tip [192]. However, the shortcoming of this approach

is that it generates the nose region rather that the certain nose tip. Another application

pertains to the work proposed by Guo et al. [193]. In this pose invariant approach, a sphere

is fitted to every vertex of the face and a statistic value was computed for the sphere. Using

a set of training data a proper f values that correspond to tip of the nose were obtained.

Therefore, out of all vertices, a vertex which had the closest value to that of the target,

was selected as the nose tip. In this heuristic approach, a set of training set was used to
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find the correct definition of the feature (the tip of nose) by the researchers. Therefore, it

has a disadvantage of requiring the expert to make decision for two parameters for the used

sphere.

In this section, we propose an improved algorithm for nose tip detection. This algorithm,

is invariant with respect to yaw, pitch, and roll rotations and requires two simple thresholds

to be selected by an expert. To this end, we used HKS local shape descriptors. We have

studied how the heat is diffused over 3D face models for many faces and figured out a specific

pattern that governs this diffusion. To study such a diffusion pattern, we created videos of

100 steps that heat is diffused on the face over the 100 sampling steps. As it is shown in

Figure 3.7, the initial heat is higher on the boundary of the face.

As the time passes towards the last steps, the heat is diffused from high temperature to

low temperature areas such that all points of the face hold an almost equal amount of heat

at the end. Somewhere around halfway of the 100 steps, there is a good chance of separating

the wide band of boundary from the interior of the surface. This will result in a portion of

the face that includes nose and mouth. Please refer to step 50 illustrated in Figure 3.7. By

configuring the threshold which is used for this segmentation a wider or smaller area of the

center of face could be included in the result. We selected the low 8% temperature from step

50 of faces.

3.3 Experimental results

150 face models (75 males and 75 females) out of the 500 were randomly selected to eval-

uate our proposed approach. In this section, we report on the software packages and the

frameworks we used to implement our proposed approach (Section 3.3.1). We also, represent

the pre-processing results in Section 3.3.2. The 10 landmark defined in Section 3.2.3 were

detected on all of the 150 faces. In addition, a set of groundtruth landmarks were created

on the face models, manually. The Euclidean distance between the detected landmarks and
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Figure 3.7: Heat diffusion over face models within 100 steps sampled every 10 steps on an
example face.

their corresponding groundtruth points are reported in Section 3.3.3.

3.3.1 Experimental setup

Major parts of the pre-processing step such as computing HKS point signatures and the

Taubin Smoothing were implemented in C++ programing language. However, the main
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part of our system is implemented in MATLAB environment. The executable files were

built for the above algorithms which were called from within our MATLAB program. We

ran all of the experiments on a PC with 64-bit Windows 10 Home Edition and Inter(R)

Core(TM)i3 CPU 3.4 GHz, which was supplied with a 8.00 GB of RAM.

3.3.2 Preprocessing results

As it was mentioned earlier, a mesh smoothing technique namely Taubin algorithm was used

to alleviate the effect of noise on the data. Figure 3.8 shows an example of how this method

improves the mesh quality by enhancing the poor triangulations.

Figure 3.8: A sample result of applying Taubin method. The poor triangulations were
improved, significantly. Even though the algorithm is famous in avoiding undesired changes
(e. g., blurring, geometry changes, etc.), or blurring in the model, iterating the algorithm
for too many times results in missing the salient features of the mesh.

Figure 3.9 also, shows a Gaussian curvature values estimated on a sample face model.

The warmer colors show the more concave areas such as the corners of the eyes and lips.

A visualization of the first value of HKS is also provided in Figure 3.10.

3.3.3 Landmark detection results

This section summarizes the experimental results for the facial landmarking to detect the 10

salient feature points introduced in Section 3.2.3. We applied our knowledge-driven technique

on 150 faces (75 male and 75 female) drawn from the BJUT database. It is necessary to
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Figure 3.9: Example of the Gaussian curvature visualization on a sample face.

Figure 3.10: Visualization of the first value of the HKS point signature of a sample face
model (frontal and side views). This figure shows that how HKS values are salient in some
of the landmarks such as the two sides of the neck (colored in dark red) and tip of the nose.

say that for some points of interests such as tip of the nose or chin, the detected landmark

illustrates a better point than the ground-truth. This is because selecting the ground-truth

particularly for nose tip was not an easy task to do. Therefore, the average distance for

those points are worse than actual value. Average distances are shown in Table 3.1.

Sample results obtained using the knowledge-driven approach are demonstrated in Fig-

ures 3.11.
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Table 3.1: Average distance (localization error) between the detected landmarks and the
ground-truth using the knowledge-driven technique on 150 faces of BJUT database.
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average 2.60 2.52 2.46 1.46 0.80 0.74 3.72 3.90 3.90 3.43
standard deviation 1.74 1.72 1.50 1.12 2.50 1.94 3.81 12.75 13.14 7.90
min 0 0 0 0 0 0 0 0.40 0.29 0
max 9.10 9.79 7.60 7.89 20.64 17.46 39.95 133.27 136.58 97.02
<= 10 mm (%) 100 100 100 100 97.33 98.67 98.00 90.67 92.00 98.67
<= 20 mm (%) 100 100 100 100 99.33 100 99.33 98.00 96.00 99.33

3.3.4 Rotation invariant nose tip detection results

Sample results are demonstrated in Figure 3.12 for faces undergone random rotations.

Table 3.2 summarizes the results obtained using the rotation invariant technique on all

150 faces in comparison to the original nose tip detection approach.

Table 3.2: Average distance between (localization error) the detected nose tip landmarks and
the ground-truth using the rotation invariant and the closest point to the camera approaches
on all 150 faces.

localization error(mm)
nose tip detection

original rotation invariant
average 2.46 2.62
standard deviation 1.50 4.92
min 0 0
max 7.60 47.00
<= 10 mm (%) 100 98.67
<= 20 mm (%) 100 98.67

3.4 Discussion

In this chapter we used knowledge-driven techniques to detect 10 different landmarks on 3D

human faces. We summarized our results for the proposed method. We also, proposed a
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Figure 3.11: Automatically detected landmarks are shown with red asterisks and the ground-
truth are shown with green squares on male (first row) and female (second row) sample faces.
Numbers in gray boxes show the distance between the detected and ground-truth points in
millimeter.

rotation invariant technique to detect the nose tip for faces with arbitrary yaw, pitch, or roll

rotations. We compared the results of this technique with the original one that used the

closest point to camera as the criterion for nose tip detection. This comparison (Table 3.2)

shows that the rotation invariant techniques works very close to the original approach. In

fact, we obtained only 2 wrong nose tip detected out of 150 faces. Figure 3.13 shows the two

false positive results.
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Figure 3.12: Rotation invariant nose tip detection on four sample faces. Red asterisks show
the candidates points selected from step 50 of HKSs and the green points show the nose
landmark detected by our algorithm. Selection criterion for this point is the maximum HKS
value in the first step among all red candidates.

Figure 3.13: Two wrong nose tips detected using the rotation invariant technique. Green
squares and red dots indicate the ground-truth and detected nose tips, respectively.
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Chapter 4

Facial landmark detection: Data-driven approach

4.1 Introduction

We evaluated the knowledge-driven approach proposed in the previous chapter to detect

the 10 landmarks and presented the results. However, we were not able to continue with

the traditional approaches to detect more complicated landmarks such as the corners of the

eyes. In fact, the major difficulty with the traditional approaches is defining good features

which is not always an easy task to accomplish. For example, for tip of the nose it is pretty

easy (if the faces have the frontal or near frontal orientations) to detect it by finding the

closest point to the camera. But it is not always the case, most times feature definition is

not straightforward and several definitions need to be designed, implemented, and evaluated

to get the accurate results. The chin and top of the forehead keypoints are examples of

this issue in our experiments. Therefore, we chose to find the rest of the landmarks using

the machine learning algorithms. In this chapter we express the data-driven approach of

detecting 6 landmarks (showed in blue in Figure 4.1).

Data-driven approaches, were proposed in the literature to learn and locate the features

automatically without any need to define the rules beforehand. In these approaches, that

utilize machine learning algorithms, the examples that own the features of interest are pre-

sented to the learning algorithm such that the algorithm learns the features. This is a great

improvement that eliminates the need for encoding the features into rules which some times

makes a barriers for feature extraction because of the lack of the knowledge. However, this

improvement is achieved at the cost of preparing a large set of training instances to the algo-

rithm to learn the rules accurately and precisely. In addition, if the supervised learning type
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is used, a class label is required for each data sample as well which is not always available

and often requires a lot of manual work.

Therefore, selection between the two knowledge-driven and data-driven approaches is

always a trade-off. This led us to the idea of combining them together such that for the

landmarks which were easy to find we used the traditional approaches to avoid the burden

of training data preparation. When it was no longer worth to continue with the knowledge-

driven approaches, we switched to the data-driven techniques. This point was where, even

with several advanced feature definitions and running experiments repeatedly, we were not

able to detect the landmarks of interest accurate enough. Our proposed methodology which

detects 6 additional landmarks on the 3D facial model (Figure 4.1), is elaborated in Sec-

tion 4.2.

1: Top of the forehead

2: Nasion (nose bridge)

3: Pronasal (tip of the nose)

4: Subnasal

5: Right cheilion (mouth right corner)

6: Left cheilion (mouth left corner)

7: Pogonion (chin)

8: Right cervical (neck) 

9: Left cervical (neck)

10: Center cervical (neck)

11: Right exocanthion (outer eye corner)

12: Right endocanthion (inner eye corner)

13: Left endocanthion (outer eye corner)

14: Left exocanthion (inner eye corner)

15: Right nostril

16: Left nostril 

Figure 4.1: The 16 landmarks being detected on the 3D facial models using the proposed
hybrid methodology. The red and blue landmarks are detected using the knowledge-driven
(expert system module) and data-driven (machine learning module) parts of the system,
respectively.

97



4.2 Landmark detection

Our proposed hybrid system which detects the landmarks on 3D face models consists of (1)

off-line and (2) on-line phases described in Sections 4.2.1 and 4.2.2, respectively. Figure 4.2

shows pipeline of the system.

4.2.1 Off-line phase

The off-line phase includes the following four modules:

1. Ground-truth data generation

2. Semi-supervised clustering setup

3. Training data and local shape descriptor construction

4. Supervised learning

Ground-truth data generation In this step a user selects 16 ground-truth landmarks

(demonstrated in Figure 4.1) on the 100 training faces, manually. We iterated this operation

twice. Once with the textured faces and once without the texture and only by visualizing

the Gaussian curvature. Visualizing the faces with the texture was misleading for the user

to select the accurate ground-truth. Therefore, in the second round of capturing the ground-

truth keypoints, we guided user by visualizing the curvature. This, resulted in a much

accurate ground-truth landmarks (except for the nose tip). Furthermore, we select a reference

face from within the database. In future, the training and testing faces will be deformed

towards this face for cluster analysis.

Semi-supervised clustering setup This step which itself consists of three sub-steps,

configures the semi-supervised clustering algorithm. At first, all the 100 training faces were

deformed towards the candidate reference face. We used the manually selected landmarks

from the previous step as the control point for the Thin Plate Spline (TPS) algorithm [25, 26]

to implement the deformation. This algorithm, received a set of corresponding points on the
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Semi-supervised clustering setup
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Figure 4.2: The general pipeline of our proposed approach consisting of two main phases.
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two source (training meshes) and target (reference mesh) models as input and generated a

deformation matrix. This algorithm which is summarized in Equation 4.1, is able to capture

both affine and non-affine transformations for every single point of the source mesh.

f(P ) = Pd+Kw (4.1)

In this equation, P is a matrix of the homogeneous coordinates of the points on source

mesh, d and w which are obtained through solving the following equation, represent the

affine and non-affine transformations, respectively.
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In which K is an M ×M matrix where M is the number of control points and M1 and

M2 represent the coefficients of the control points on source and target meshes, respectively.

TPS has been used widely in the literature for face registration [191].

After all faces were transformed towards the target mesh, we took the averages for every

landmark over all 100 faces in the deformed space obtaining 6 vectors of length three holding

the geometry information of the average points. These mean values, were used in the on-

line phase of the system as the seeds to provide the clustering algorithm with the already

computed seeds.

Training data construction In this step we collected the data to train our classifiers

following the ideas proposed in [5, 1] on how to prepare the training dataset. In the next sub-

step, we will train six different classifiers for the six landmarks colored in blue in Figure 4.1.

In fact, each one of these classifiers will receive a set of relevant training data and will learn

a landmark of interest.

The training data is a set of features computed for each vertex in a group of vertices.

We refer to this feature vector as the local shape descriptor or point signature. Each point

signature was coupled with either a positive or a negative class label indicating whether
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its associated vertex belonged to the landmark or non-landmark classes, respectively. By

landmark class we mean the ground-truth landmark itself and its 4 closest neighbors in terms

of Euclidean distance and by non-landmark we mean the vertices whose Euclidean distance

from the landmark was less that α × diameter and β × diameter while diameter was the

longer diameter of the shape bounding box. We selected α and β to be 0.025 and 0.015 for

the eye landmarks, respectively. For nostril landmarks we selected a greater set of α and

β that is 0.04 and 0.03, respectively. The reason was the particular nose structure in the

nostril areas. An example of the training data preparation for the outer corner of the right

eye is illustrated in Figure 4.3.

Figure 4.3: An example of selecting the positive (green and white (ground-truth)) and
negative (red) class samples for the training dataset.

The training data was collected from every single 100 training face models. For example,

to prepare the training set for the classifier which was selected to learn the right eye outer

corner landmark we collected the positive and negative training data from all training faces

for the right eye corner landmark. This procedure was iterated for all 6 landmarks colored

in blue in Figure 4.1.

The point descriptor that we made for each vertex included the following features:

• Hue

• Saturation
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• k1 (Principle Curvature)

• k2 (Principle Curvature)

• Gaussian curvature

• ShapeIndex

The curvature estimated at a point represents how much the surface has been bended in

the area. The k1 and k2 represent two principle curvatures estimated at each point. These

measures usually are not used alone [1]. Often a new measure which is computed using the

two is used as a feature. Gaussian curvature (K) is one of the famous features computed

based on the principle curvature as K = k1k2. Another feature that we used, was the

ShapeIndex which was computed at each vertex as follows:

SI =
1

2
+

1

π
arctan

k1 + k2
k1 − k2

(4.2)

We were inspired by the work proposed by Creusot et al. [1] to include the curvature

related features into the point descriptors. ShapeIndex was also suggested by other work in

the literature to be used in constructing the shape descriptor for 3D faces [9]. We combined

the texture information in form of the hue and saturation to our descriptor, as well. To

our best understanding, few number of landmarking techniques in the literature were based

on the shape descriptors and no descriptors for the 3D face models in the literature were

built using a combination of photometric and geometric features of the shapes. They mostly

included only the local geometric information of the shape.

A final step in the data preparation was dealing with the unbalanced data. As the

number of positive instances we collected in the previous step were much less than the

number of negative ones, our dataset suffered from the class imbalance problem. Various

techniques have been proposed in the literature to overcome such a problem [194]. One of

the frequently used approaches was the data oversampling technique. Oversampling means
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to generate more samples from the rare class to build a dataset which has almost identical

number of samples in all (in our case two) classes. This could be done in different ways such

as simply duplicating the instances of the smaller class or synthesizing new samples from

the rare class. In this application, we oversampled the positive class by repeating the shape

descriptors of the rare class to tackle the problem of unbalanced data.

Supervised learning After the training data was prepared, we needed to setup the classi-

fiers which learn each of the six landmarks, individually. We used the Multi-Layer Perceptron

(MLP) and the Adaboost algorithms for the classification problem. Considering the number

of available features per vertex and the total number of instances, the two methods were

promising options that we expected to generate accurate results.

4.2.2 On-line phase

The on-line phase consists of an expert system and a machine learning module.

1. Expert system module: This module locates the 10 landmarks on each input unseen

face automatically using various geometry concepts and computed features predefined

by an expert (this module was explained in Chapter 3). The located landmarks were

corresponding to the red keypoints illustrated in Figure 4.1.

2. Machine learning module: The result of the expert system module which were the 3D

face models with 10 detected keypoints, are fed into this module which itself consists of

three sub-modules: TPS deformation, cluster analysis, and classification. In fact, the

clustering model and the classifier which were learned in the off-line phase, are tested

in this module.

Face deformation In the off-line phase we selected a reference face which is used in

the machine learning module. The faces that were presented to the face deformation

step had 10 detected landmarks. The corresponding landmarks were also detected

on the reference mesh. Therefore, we used this set of corresponding points as the
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control points to initialize the TPS algorithm and deformed the input face towards the

reference face.

Classification The clusters extracted in the previous step were presented to their

relevant classifiers. For example, the 100 points that belonged to the right nostril

cluster were used by the classifier which was train to detect the right nostril landmark

and so on.

4.3 Experimental results

In this section we provide the results for the data-driven approach of our system. Table 4.1

shows the result of classifier training for all 12 classifiers (6 MLPs and 6 Adaboosts) trained

for detecting six landmarks.

Table 4.1: Performance of MLP and Adaboost classifiers on 100 training faces (class 0:
non-landmark, class 1: landmarks) using 10-fold cross validation.
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te class 0 97 99.3 99.7 99.8 99.6 99.9 96.8 99.1 95.9 99.7 95.3 99.7

class 1 96.8 100 99.6 100 99.2 100 90.8 100 94.8 100 92.4 100
average 96.9 99.6 99.6 99.9 99.4 100 93.8 99.5 95.3 99.9 93.9 99.8

Table 4.2 shows the results of applying the MLP classifiers on 100 taring samples including

50 female and 50 male face models. Computing the distance between the manually selected

landmarks and the ones detected by the algorithm is suggested as an evaluation metric in the

literature [9]. Therefore, based on this idea we propose to evaluate our landmark detection

system as such.

Sample faces from Figure 3.11 are shown in Figure 4.4 with 6 landmarks detected on

them using the data-driven techniques.
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Table 4.2: Average distance (localization error) between the detected landmarks and the
ground-truth using the data-driven technique on 100 training and 50 testing faces of BJUT
database.

localization
error (mm)

right eye
right corner

right eye
left corner

left eye
right corner

left eye
left corner

right nostril left nostril

train test train test train test train test train test train test
average 2.07 3.15 0.65 1.05 0.97 0.82 2.15 2.43 1.04 1.47 0.67 0.97
standard
deviation

2.81 4.38 1.54 1.94 1.86 1.52 3.33 3.95 0.93 2.22 0.76 2.24

min 0 0 0 0 0 0 0 0 0 0 0 0
max 19.30 24.63 14.46 11.95 14.42 8.56 22.75 22.31 6.98 15.88 3.20 15.88
<= 10mm
(%)

98.00 92.00 99.00 98.00 99.00 100 97.00 96.00 100 98.00 100 98.00

<= 20mm
(%)

100 92.00 100 100 100 100 97.00 96.00 100 100 100 100

Figure 4.4: Six automatically detected landmarks and their corresponding distances from
the ground-truth in millimeters.
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4.4 Discussion

In this chapter we proposed a shape descriptor-based system to detect 6 landmarks on 3D

face models automatically. We trained two different classifiers, Adaboost and MLP, to detect

6 landmarks on the 3D human faces. We used 100 faces (66% of the data) selected randomly

from the BJUT database as the training data and 50 face models were used to test our

classifiers.

In our experiments, Adaboost classifier generated better results with respect to MLP in

terms of accuracy (Table 4.1). However, visualizing the classifiers results showed the MLP

is superior to Adaboost. In fact, the number of false positives detected by Adaboost was

less than that of the MLP; however, the localization error for those points were worse. In

other words, the MLP detects more points as the false positives but they are close to the

ground-truth. This, lead us to only consider the results of MLP classifier.

Limitations There were some limitations that confined our proposed approach:

• Since our technique is implemented on a Chinese dataset, it is very likely that our

measurements of the faces which are mostly used in the expert system module of our

framework may need some configuration to apply it on other datasets which include

non-Asian faces.

• If a keypoint is detected inaccurately in the expert system module, it is very likely that

the rest of the keypoints which were computed based on which are false localized[16].

• Our proposed approach works perfectly for the faces with neutral expression and frontal

view without pose variations.
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Chapter 5

Application and conclusion

5.1 Introduction

In this chapter we use our FLD system for establishing point-to-point correspondence be-

tween 3D face models. In fact, we utilize the automatically detected landmarks for estab-

lishing an accurate and precise point-to-point correspondence between the polygon meshes

taken from the BJUIT database.

5.2 Point-to-point correspondence

Being inspired by the approach suggested in [165], this section elaborates an application

of our proposed framework in establishing point-to-point correspondence between 3D face

models. For this application, we select a reference face model which will be deformed to-

wards a target model to find dense correspondences. Using this approach, we establish the

correspondence by generating the target mesh using the reference mesh. The geometry and

topology of the new face (the estimated face for the target) is identical to the geometry of

the target mesh and the topology of the reference mesh, respectively.

The landmarks on the reference were already selected manually. Also, the corresponding

landmarks are detected for the target model using our proposed system automatically. Then,

the two sets of landmarks (i. e. those of reference and target meshes) will be used to

initialize a TPS deforming module that transforms the reference mesh to the deformed space.

Afterwards, an improved version of the ICP algorithm [24] is applied to move the deformed

mesh toward the target mesh iteratively. In each iteration, the distance between the vertices
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of the reference mesh and a point of interest on the target mesh is computed. The point

of interest would be the intersection of the normal vector of the vertex on the reference

mesh and the surface of the target mesh. Then, the points of the reference mesh are moved

towards their corresponding points on target mesh by a coefficient α (while 0 < α < 1) of

the distance. We chose α to be 1

5
of the distance in each iteration. We iterated the ICP

algorithm five times for each face.

5.2.1 Spike removal

High levels of noise (particularly spikes) in the 3D models harden the shape analysis task.

It was mentioned in the literature that inner eye corners are easy to detect in human 3D

face models by metrics such as shapeIndex; however, spikes in the eyes (Figure 3.3) made

it impossible to detect the eye corners using the knowledge-driven approaches, accurately.

In fact, the algorithm was trapped by the spikes in many face models and selected eye

corner points with high localization errors. Furthermore, finding the intersection points on

the target meshes in the ICP algorithm is degraded when spikes are present. Therefore,

the aforementioned problems encouraged us to implement a spike removal algorithm before

establishing the correspondence.

It is impossible to remove spikes without degrading the mesh structure. This makes the

landmark detection more challenging than it is for both knowledge-driven and data-driven

approaches. However, we found that dealing with such problem using the machine learning

algorithms is much easier than employing the heuristic approaches; that is why we detect

the eye corners using the data-driven techniques.

Even though Taubin smoothing algorithm has been used in the pre-processing step to

improve the triangulation quality of the meshes (Figure 3.8), it was not successful in spike

removal. We did not find many spike removal algorithm proposed in the literature. In

implementing our algorithm for spike removal we are inspired by the techniques suggested

in ??. We limited our algorithm to removing the spikes from eyes as these areas include the
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most spikes and the the spikes in the eye affect our shape processing algorithm the most.

Spikes are areas with high curvatures. Therefore, we are interested in such points on the

mesh. Also, since the eye spikes are the most problematic ones we focus on them. To narrow

down our search area to finding the eye spikes, we look for the spikes whose deviations are

towards the viewer (i. e., towards y axis). This way we can filter out the spikes which are

located on the sides of the face models (we have many of them around the neck corners and

the areas with hair). With liming our work to the spikes towards y axis in fact, we have

limited our search to the eye areas. Because the majority of such spikes are located in the

eye areas and we observed few spikes towards y axis which are not in the eyes.

Spike detection and removal algorithm

The spike detection and removal algorithm is implemented in an iterative manner. Following

steps summarize the algorithm:

1. All points whose curvatures are beyond mean curvature ±2×standard deviation

are considered as spike candidates.

2. y coordinates of the candidates are updated with the median of y coordinates

of their 1-ring neighbors (the x and z coordinates remain unchanged).

3. Curvature is re-computed.

4. Steps 1 to 3 are iterated until the cardinality of the candidate set is less

than a threshold (we considered 100 elements) or for n number of times1.

5.3 Experimental results

In this section we represent the results of applying our algorithm on 150 3D face models (75

males and 75 females) from BJUT database. 100 (50 males and 50 female) out of the 150

1We ran experiments for both and realized that there are not much smoothness after five iteration.
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faces were used as the training data in the data-driven module of our FLD system the rest

50 faces (25 males and 25 females) were used at testing phase.

The average face of our database of 150 face models is illustrated in Figure 5.1. This face

has 30,572 vertices and 60,983 triangles the same as all 150 face models of the database.

Figure 5.1: An average face obtained from the database of 150 human faces in point-to-point
correspondence (frontal and side views).

Results of spike removal algorithm is also illustrated in Figure 5.2 for a sample face. Also,
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Figures 5.6 to 5.9 demonstrate the generated in full correspondence face models for the four

samples from Figure 4.4.

Figure 5.2: Top row: from left to right, the original mesh (eye) and first to last iterations of
spike removal algorithm is demonstrated. Bottom row magnifies the particular spike areas.

5.4 Discussion

We used the 16 landmarks for establishing a set of dense point-to-point correspondences

between various 3D face models. Applications of such correspondences would be face au-

thentication and authorization, 3D face analysis, 3D face reconstruction and morphing, med-

ical applications such as diagnosis of the abnormality in the skull structure, etc. Moreover,

availability of a database of 3D face models which are in full correspondence is critical for

most of the above applications. Many existing 2D and 3D face datasets are listed here

http://www.face-rec.org/databases/; however, databases of 3D face models that are in

point-to-point correspondence are rare in the literature. We applied our method on the

BJUT dataset to build such 3D face benchmark and provide it for various 3D face analysis

tasks.

Constructing the aforementioned dataset was a challenging task. It was mainly because

a set of landmarks were necessary to initialize establishing the correspondence between the

3D face models. Such landmarks could be selected manually by user and then the TPS and
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ICP algorithms can be used to establish the correspondence. Figure 5.3 shows a sample

result of establishing the correspondence using 26 manually selected landmarks. However,

manually selection of the landmarks for every 150 faces of dataset was time consuming, error

prone, and labor intensive. Therefore, we designed our hybrid FLD system to initialize the

correspondence module with automatically selected landmarks. That saves a great deal of

time and speeds up constructing the database. In addition any new face model can be added

to the dataset easily without need of manual landmark selection. On the other hand, using

a FLD system (rather than asking a human to select the landmarks) add more errors to

the system. Also, our FLD detects 10 less landmarks (Figure 5.3) that degrades the final

results. In fact, initializing the TPS and ICP algorithm with more landmarks generates more

accurate and precise results.

5.4.1 Performance metric

To measure how close the generated faces are to the original face models, we used the

Euclidean distance between the surfaces of the faces as a performance metric. Figure 5.4

illustrates the Euclidean distance between the 150 faces and the reference face in each of

the five iterations of ICP algorithm. Figure 5.5 demonstrates the timing for 150 faces for

establishing correspondence using ICP algorithm. Other similar performance metrics [1]

were also proposed in the literature.

5.5 Conclusion and future work

In this thesis we implemented a hybrid facial landmark detection system. The system consists

of two knowledge-driven and data-driven modules. Ten and six landmarks were detected

in the knowledge-driven and data-driven modules, respectively. This system detects one

of the highest number of landmarks among the similar approaches in the literature [195].

The detected landmarks were used to establish point-to-point correspondence for 150 3D
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Figure 5.3: Face correspondence step-by-step. This implementation works with a large
number of manually selected landmarks.

face models resulting in a database in full and dense correspondence that will be publicly

available to the computer graphics community for various face analysis tasks.

Future work A future direction to continue this work would be to improve the accu-

racy of the landmark detection by either making more efficient rules in the knowledge-driven

module or exploring more powerful classifiers in the data-driven landmark detection. Fur-

thermore, recently introduced shape descriptors (reviewed in Chapter 2) that are applied

directly on 3D meshes or point clouds could be used in the data-driven module. Such meth-

ods that are mostly based on deep learning should be more effective in capturing the local
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Figure 5.5: Time statistics for establishing point-to-point correspondence.

structure of the landmarks.

Another future work could be improving the spike removal algorithm. Our current ap-

proach performs well on the spikes and enhances mesh quality; however, a more proficient

method could be suggested to take care of small spikes which are ignored by our algorithm.
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Figure 5.6: Original (left) and created (right) models. This face model is corresponding with
the face on the top left of Figure 4.4.

Finally, more diverse set of 3D face models could be included to the generated database.

The current database that we created includes only Chinese people. Adding more faces can

make a more versatile and strong database which is useful in variety of face analysis tasks.
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Figure 5.7: Original (left) and created (right) models. This face model is corresponding with
the face on the top right of Figure 4.4.
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Figure 5.8: Original (left) and created (right) models. This face model is corresponding with
the face on the bottom left of Figure 4.4.
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Figure 5.9: Original (left) and created (right) models. Left eye is noisy. As it is shown in the
face model located on the bottom right of Figure 4.4, right and left corners of the left eye
are detected with a large localization errors 7.42 and 11.00, respectively. This has degraded
establishing point-to-point correspondence and quality of the generated mesh.

118



Bibliography

[1] C. Creusot, N. Pears, and J. Austin, “A machine-learning approach to keypoint detec-

tion and landmarking on 3d meshes,” International journal of computer vision 102,

146–179 (2013).
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beltrami operators for shape analysis and segmentation,” Computers & Graphics 33,

381–390 (2009).

124



[52] R. M. Rustamov, “Laplace-beltrami eigenfunctions for deformation invariant shape

representation,” in “Proceedings of the fifth Eurographics symposium on Geometry

processing,” (Eurographics Association, 2007), pp. 225–233.

[53] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative multi-

scale signature based on heat diffusion,” in “Computer graphics forum,” , vol. 28

(Wiley Online Library, 2009), vol. 28, pp. 1383–1392.

[54] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature: A quan-

tum mechanical approach to shape analysis,” in “Computer Vision Workshops (ICCV

Workshops), 2011 IEEE International Conference on,” (IEEE, 2011), pp. 1626–1633.

[55] D. Raviv, R. Kimmel, and A. M. Bruckstein, “Graph isomorphisms and automor-

phisms via spectral signatures,” IEEE transactions on pattern analysis and machine

intelligence 35, 1985–1993 (2013).

[56] P. Skraba, M. Ovsjanikov, F. Chazal, and L. Guibas, “Persistence-based segmenta-

tion of deformable shapes,” in “Computer Vision and Pattern Recognition Workshops

(CVPRW), 2010 IEEE Computer Society Conference on,” (IEEE, 2010), pp. 45–52.

[57] D. De Youngster, E. Paquet, H. Viktor, and E. Petriu, “An isometry-invariant spectral

approach for protein-protein docking,” in “Bioinformatics and Bioengineering (BIBE),

2013 IEEE 13th International Conference on,” (IEEE, 2013), pp. 1–6.

[58] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-rigid

shape recognition,” in “Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on,” (IEEE, 2010), pp. 1704–1711.

[59] D. Raviv, M. M. Bronstein, A. M. Bronstein, and R. Kimmel, “Volumetric heat kernel

signatures,” in “Proceedings of the ACM workshop on 3D object retrieval,” (ACM,

2010), pp. 39–44.

125



[60] M. Aubry, U. Schlickewei, and D. Cremers, “Pose-consistent 3d shape segmentation

based on a quantum mechanical feature descriptor,” in “Joint Pattern Recognition

Symposium,” (Springer, 2011), pp. 122–131.

[61] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” in

“Advances in neural information processing systems,” (2007), pp. 801–808.

[62] L. Yang, “Distance metric learning: A comprehensive survey,” (2006).

[63] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and trends R© in

Machine Learning 2, 1–127 (2009).

[64] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint

arXiv:1701.00160 (2016).

[65] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical

evaluation of deep architectures on problems with many factors of variation,” in “Pro-

ceedings of the 24th international conference on Machine learning,” (ACM, 2007), pp.

473–480.

[66] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise training

of deep networks,” Advances in neural information processing systems 19, 153–160

(2007).

[67] J. R. Quinlan, “Induction of decision trees,” Machine learning 1, 81–106 (1986).

[68] J. MacQueen et al., “Some methods for classification and analysis of multivariate

observations,” (1967).

[69] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning 20, 273–297

(1995).

[70] R. Hecht-Nielsen, Neurocomputing (Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1989).

126
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