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ABSTRACT 
 

DESIGN AND BASIC VERIFIATION OF A DISCRETE EVENT 

SIMULATOR FOR GLUCOSE METABOLISM IN HUMAN BEINGS 

 
by 

Elizabeth Andrews 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Mukul Goyal 

 
 
 

This thesis describes the design and basic verification of a discrete event simulator 

for glucose metabolism in human beings. The simulator implements the glucose 

metabolism related behavior of various organs in the human body and tracks the 

blood plasma glucose level as the human body goes through a sequence of diet and 

exercise events. The simulator can mimic insulin resistance in various organs as 

well as the loss of insulin production in the pancreas and the adverse impact of 

these changes on the metabolic behavior of various organs. Thus, the simulator can 

serve as a model for people with diabetes. Such a model can be immensely useful 

to study the impact of specific life style changes on a person with diabetes. This 

thesis describes the simulator design as well as the results of simulations that verify 
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the basic correctness of the simulator. This simulator represents the result of a 

multi-year collaborative effort involving the author, her MS thesis advisor and 

several other students working with the thesis advisor.  

  



 iv 

TABLE OF CONTENTS 
 
 

ABSTRACT .................................................................................................................................. II	
LIST OF FIGURES ..................................................................................................................... V	

LIST OF TABLES .................................................................................................................... VII	
CHAPTER 1 .................................................................................................................................. 1	

INTRODUCTION ...................................................................................................................... 1	
PREVIOUS WORK .................................................................................................................... 2	

CHAPTER 2 .................................................................................................................................. 4	
SIMULATOR DESIGN OVERVIEW ........................................................................................ 4	
DETAILED DESIGN DESCRIPTION ...................................................................................... 7	

THE MAIN () FUNCTION ...................................................................................................... 7	
SIMCTL ................................................................................................................................. 10	
HUMANBODY ...................................................................................................................... 11	
LIVER .................................................................................................................................... 15	
MUSCLE ............................................................................................................................... 23	
STOMACHINTESTINE ......................................................................................................... 29	
BLOOD ................................................................................................................................. 35	
ADIPOSETISSUE ................................................................................................................. 38	
KIDNEY ................................................................................................................................ 39	
BRAIN ................................................................................................................................... 43	
HEART .................................................................................................................................. 44	

CHAPTER 3 ................................................................................................................................ 47	
SIMULATION RESULTS AND MODEL VERIFICATION .................................................. 47	

NORMAL GLUCOSE HOMEOSTASIS - HEALTHY INDIVIDUAL .................................... 47	
IMPACT OF DIABETES ON NORMAL GLUCOSE HOMEOSTASIS ................................. 50	

CHAPTER 4 ................................................................................................................................ 62	
CONCLUSION ......................................................................................................................... 62	
FUTURE ENHANCEMENTS ................................................................................................. 63	
REFERENCES ......................................................................................................................... 64	

 



 v 

LIST OF FIGURES 
 
 

Figure 1: Top level class diagram of simulator .............................................................................. 5	
Figure 2: Algorithm for main( ) function ........................................................................................ 7	
Figure 3: File Format - Food, Exercise and Parameter ................................................................... 7	
Figure 4: File Format - Event .......................................................................................................... 8	
Figure 5: Algorithm for processExerciseEvent( ) function ........................................................... 12	
Figure 6: Algorithm for processTick( ) function - Liver .............................................................. 17	
Figure 7: Glucose absorption by the liver ..................................................................................... 18	
Figure 8: Glycogen synthesis in the liver ..................................................................................... 19	
Figure 9: Glycogen breakdown in the liver .................................................................................. 20	
Figure 10: Glycolysis in the liver .................................................................................................. 21	
Figure 11: Gluconeogenesis in the liver ....................................................................................... 22	
Figure 12: Glucose absorption in the muscle ................................................................................ 25	
Figure 13: Glycolysis in the muscle .............................................................................................. 26	
Figure 14: Algorithm for processTick( ) function - StomachIntestine ......................................... 32	
Figure 15: Glycolysis in the bloodstream ..................................................................................... 36	
Figure 16: Maintenance of insulin level in the bloodstream ......................................................... 37	
Figure 17: Glucose uptake by the kidney ..................................................................................... 40	
Figure 18: Glycolysis in the kidney .............................................................................................. 41	
Figure 19: Gluconeogenesis in the kidney .................................................................................... 41	
Figure 20: Algorithm for processTick( ) function - Brain ............................................................ 44	
Figure 21: Algorithm for processTick( ) function - Heart ............................................................ 46	
Figure 22: Blood Glucose Level vs time - Healthy individual ..................................................... 48	
Figure 23: Liver Glycogen Storage vs time - Healthy individual ................................................. 49	
Figure 24: Blood Glucose Level - Insulin Resistance 0 ............................................................... 52	
Figure 25: Blood Glucose Level - Insulin Resistance 0.25 .......................................................... 53	
Figure 26: Blood Glucose Level - Insulin Resistance 0.5 ............................................................ 53	
Figure 27: Blood Glucose Level - Insulin Resistance 0.75 .......................................................... 54	
Figure 28: Blood Glucose Level - Insulin Resistance 1 ............................................................... 54	
Figure 29: Liver - Insulin Resistance 0 ......................................................................................... 56	
Figure 30: Liver - Insulin Resistance 0.25 .................................................................................... 57	



 vi 

Figure 31: Liver - Insulin Resistance 0.5 ...................................................................................... 57	
Figure 32: Liver - Insulin Resistance 0.75 .................................................................................... 58	
Figure 33: Liver - Insulin Resistance 1 ......................................................................................... 58	
Figure 34: Muscle - Insulin Resistance 0 ...................................................................................... 59	
Figure 35: Muscle - Insulin Resistance 0.25 ................................................................................. 60	
Figure 36: Muscle - Insulin Resistance 0.5 ................................................................................... 60	
Figure 37: Muscle - Insulin Resistance 0.75 ................................................................................. 61	
Figure 38: Muscle - Insulin Resistance 1 ...................................................................................... 61	
 
  



 vii 

LIST OF TABLES 
 
 

Table 1: Configuration parameters - HumanBody ........................................................................ 11	
Table 2: Configuration parameters - Liver ................................................................................... 16	
Table 3: Configuration parameters - Muscle ................................................................................ 24	
Table 4: Configuration parameters - Digestive system (StomachIntestine) ................................. 32	
Table 5: Configuration parameters - Blood .................................................................................. 36	
Table 6: Configuration parameters - AdiposeTissue .................................................................... 39	
Table 7: Configuration parameters - Kidney ................................................................................ 43	
Table 8: Configuration parameters - Brain ................................................................................... 44	
Table 9: Configuration parameters – Heart .................................................................................. 45	



 1 

CHAPTER 1 
 
 
INTRODUCTION 

Diabetes refers to a set of metabolic disorders characterized by persistently high blood plasma 

glucose levels. Recent decades have seen an explosive growth in the number of people afflicted 

by diabetes. Sedentary life style and bad food habits are the main reasons behind this growth. A 

person with Type 2 Diabetes (the most common diabetes variant) can significantly improve the 

daily life quality as well as prospects of avoiding long-term diabetes complications (limb 

amputations, kidney/heart failure, blindness etc.) by following a healthy life style that keeps the 

blood plasma glucose level under control. However, modifying life-long habits is hard and hence 

a number of Internet and smart-phone based tools have been designed that help diabetic people 

keep their blood plasma glucose level under control. The blood plasma Glucose level Simulator 

described in this thesis, henceforth called the GS simulator, can be used to design the next 

generation of these tools. While the current generation tools essentially allow the user to record 

the diet/exercise activities and plasma glucose levels measured using glucose meters and view 

the accumulated information in a variety of ways, the next generation tools will be able to create 

user-specific models of plasma glucose level variation using the accumulated information and 

use these models to suggest life-style changes and even real-time guidance regarding diet and 

exercise activities. The GS simulator can simulate the variation in plasma glucose level as the 

human body goes through a sequence of diet and exercise activities. Thus, the simulator can be 

used to determine the life style changes that will allow the user to achieve good control over the 

plasma glucose level. The GS simulator can also be used to implement a diabetes self-

management tool that provides real-time guidance regarding diet and exercise to a diabetic user.  
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PREVIOUS WORK 

Energy metabolism in human beings is a well-researched field. While there exists more than a 

hundred years of research in understanding various metabolic processes taking place in the 

human body, new insights are being gained even today. Basic tenets of energy metabolism in 

humans are well understood and a number of textbooks describe this material. Our primary 

source for understanding energy metabolism in human beings has been Keith Frayn’s “Metabolic 

Regulation: A Human Perspective,” third edition [1]. The glucose metabolism in human beings, 

as implemented in the current version of GS simulator, is largely based on the Frayn’s text. In 

addition, the simulator’s implementation of the behavior of various organs (including the values 

of various parameters affecting this behavior) has been heavily influenced by a number of well-

cited papers [1] [2] [3] [4] [5] [6] [7] [8] [9]. 

 

Glucose plays an essential role in human body’s energy metabolism. Due to its relevance in 

maintaining the proper functioning of the human body, over the years, several studies have been 

conducted to understand blood glucose dynamics. Mathematical modelling has been a popular 

focus in this area of research and has been used to study several different aspects of glucose 

metabolism such as glucose-insulin sensitivity, prediction of glucose concentrations in plasma, 

the effect of exercise on glucose metabolism and many others. One of the most popular models 

developed to aid understanding of glucose metabolism - particularly the glucose-insulin system – 

is Bergman’s minimal model [10]. This model is based on differential equations and consists of 

two parts – glucose kinetics and insulin kinetics. Over the years, this model has been examined 

and revised many times to incorporate additional physiological effects of glucose and insulin.  
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Additionally, the impact of mild-to-moderate exercise has also been studied and incorporated 

into the Bergman’s minimal model by different researchers [11] [12].  

 

Surprisingly, it appears that discrete event simulation of energy metabolism in human beings is 

not yet a well-explored area. Our literature survey revealed only two simulators that are 

somewhat similar to our efforts. One of them is DiMSim simulator [13], where metabolic 

pathways are viewed as bipartite graphs consisting of metabolites and reactions linked by 

unidirectional or bidirectional arcs, while the other is Discrete Metabolic Simulation System 

(DMSS) [14]. In both cases, the discrete event simulation framework was built based on the 

biochemical interactions among various organs in the human body.
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CHAPTER 2 
 
 
SIMULATOR DESIGN OVERVIEW 

The core of the GS simulator consists of a HumanBody object and a Simulator Controller 

(SimCtl) object. The HumanBody object reads the files describing various diet and exercise 

activities and values for parameters affecting the behavior of various organs. This information is 

then stored inside appropriate data structures inside the HumanBody object. The SimCtl object 

reads a timed sequence of diet/exercise events the body will go through. These events are stored 

in the order in which they will be fired in an event queue maintained in the SimCtl object.   

 

The GS simulator has been designed as a single-threaded application. Since the actual 

functioning of the human body resembles a multi-threaded application, early work did consider a 

multi-threaded approach where classes representing each individual organ ran on its own distinct 

thread. However, further research established that a ‘tick’ based sequential design or polled 

design - where predefined functions (representing different metabolic processes in different 

organs) execute at each tick - could mimic the required metabolic behavior of the human body 

without any loss of functionality. In this design, the current time is stored in a member variable 

called tick inside the SimCtl object. At the beginning of each tick, the SimCtl object fires all the 

diet/exercise events whose firing time has arrived and lets the HumanBody object know. The 

SimCtl object then calls the processTick() function on the HumanBody object, which in turn 

allows all organs to do the work they are supposed to do during this tick. After this, the SimCtl 
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object increments the tick value (i.e. advances time by one unit) and repeats the whole process 

again.  A high level simplified class diagram of the simulator is given in Figure 1. 

 

 
Figure 1: Top level class diagram of simulator 

 

The simulator consists of primarily ten classes that represent the human body and its internal 

organs.  The class HumanBody is designed to model the metabolic behavior of the actual human 

body. In order to do so, we have modeled the HumanBody class as an envelope class that 

contains member objects representing various organs. The HumanBody object not only 

maintains global information relevant to each organ, but also regulates the interdependencies 

among various organs. 

 

Each organ class in turn implements the behavior of individual organ of the human body (except 

StomachIntestine which represents the functionality of the digestive system consisting of the 

stomach, the small intestine and the portal vein). These classes model the metabolic pathways 

related to glucose metabolism in their corresponding organ, communicating with each other 

using a pointer to the HumanBody object. Additionally, the bloodstream (or the blood plasma) is 

represented by the Blood class. This class is used primarily to maintain substrates related to 

glucose metabolism in the blood. 
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In order to represent different metabolic states of a human being, this study defines 6 states - 

FED_RESTING, FED_EXERCISING, FED_POSTEXERCISE, 

POSTABSORPTIVE_RESTING, POSTABSORPTIVE_EXERCISING, 

POSTABSORPTIVE_POSTEXERCISE. Various organs have different values for the 

parameters governing their behavior for different metabolic states. The next section provides 

a detailed description of the top-level classes defined in this simulator. 
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DETAILED DESIGN DESCRIPTION  

THE MAIN () FUNCTION 

The main( ) function serves as the starting point of the simulator by creating new instances of the 

SimCtl and HumanBody classes and invoking methods defined in these classes to process all the 

configuration and event description files used by the simulator. The algorithm for main( ) is 

given in Figure 2. 

 

Figure 2: Algorithm for main( ) function 
 

The Food and Exercise files are used to store information about the different food types and 

different exercises. Each line in these files represent an individual food type or exercise type 

respectively. The Parameter file contains all the configurable fields related to each organ. These 

parameters are dependent on the metabolic state of the body. Similar to the Food and Exercise 

files, each line of the Parameter file (i.e. the configuration file) corresponds to a single parameter 

(corresponding to a particular metabolic state and organ).  Each line of these files should adhere 

to their respective format detailed in Figure 3. 

 

Figure 3: File Format - Food, Exercise and Parameter 

1. Declare an instance of the class SimCtl. 
2. Declare an instance of the class HumanBody. 

3. Invoke HumanBody methods to process Food, Exercise and Parameter 
description files. 

4. Invoke a SimCtl method to process the Events file. 
5. Invoke a SimCtl method to start the simulation. 

Food file         -   id name servingSize RAG SAG protein fat 
Exercise file     -  id name intensity postExerciseDuration 
Parameter file    -  BodyState BodyOrgan ParameterName ParameterValue 
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Please note that food intake - which includes the serving size along with the quantity of Rapidly 

Available Glucose, Slowly Available Glucose, protein and fat in this serving - is specified in 

grams. Exercise intensity is measured in MET (abbreviated from Metabolic Equivalent of a 

Task), where 1 MET is equal to 1 kcal per kg per hour and is nominally defined as the normal 

resting metabolic rate (i.e. whole body energy expenditure) [1].  

 

The Event file is used to store the sequence of events we want to simulate using this simulator. 

Each line in this file represents an individual event and should adhere to the format detailed in 

Figure 4. 

 

Figure 4: File Format - Event 
 

Here, day, hour and minutes refer to the number of days, (residual) hours and (residual) days 

the simulator has been running. It is used to calculate the tick count at which the event should be 

fired (i.e. the time at which this event occurs). The three remaining fields depend on the event 

itself. At the time of writing this document, the simulator has the capability to handle 3 types of 

events – Food, Exercise and Halt. Type indicates the type of event being fired, subtype indicates 

the particular ID of the food eaten or exercise done, and howmuch is used to specify the amount 

of food eaten or the duration of the exercise event.  The Event file is processed by loading all the 

events specified in the file into a priority queue. (The class priq mentioned in Figure 1 is an 

implementation of a priority queue itself. Specific details regarding this implementation are 

beyond the scope of this document.)   

 

Event file   -   day hour minutes type subtype howmuch 
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The following classes have been defined to aid event handling.  

1. Event 

The Event class is a base class to FoodEvent, ExerciseEvent and HaltEvent classes, 

which represent the different types of events that can be given as an input to the 

simulator. This class defines variables to store the time at which an event occurred and 

the type of the event that occurred.  

 

2. FoodEvent 

The FoodEvent class inherits the Event class and contains additional information to 

handle a food event -  such as variables to store the quantity of food intake and the ID of 

food that has been eaten.  

 

3. ExerciseEvent 

The ExerciseEvent class inherits the Event class and contains additional information to 

handle an exercise event – such as variables to store the duration of the exercise in 

minutes and the ID of the exercise done.  

 

4. HaltEvent 

The HaltEvent class inherits from the Event class and contains no additional information. 

It is used to halt the simulation. 

 

Once all the pre-processing and initializations have been completed, the simulator starts the 

simulation of glucose metabolism in the human body. It enters a repetitive pattern using the 
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concept of ‘ticks’, where predefined tasks are performed during each tick. This functionality is 

implemented in the SimCtl method run_simulation( ).  

 

SIMCTL 

The class SimCtl is responsible for initializing and maintaining the ‘tick’ counter - the unit time 

for this simulator. In our design, each tick is defined as a single minute. Although changing the 

definition of ‘tick’ will not affect the overall architecture of the GS simulator, it is important to 

note that doing so will require updates to the value of several configuration parameters. 

Furthermore, if each ‘tick’ is defined to be a much larger time frame (than a minute), the order of 

execution of functions - representing metabolic processes in various organs-  in each tick may 

become relevant. At the moment, when the ‘tick’ definition is one minute, the order in which 

various organs perform their tasks is not relevant. 

 

The run_simulation( ) method of the SimCtl class uses an infinite loop, where each iteration 

specifies the tasks done during a single tick. During each tick, the simulator first determines if 

the event queue contains any events that must be fired at this time. For each such event, the 

simulator calls the corresponding event processing method defined in the HumanBody class. 

Finally, the method processTick( ) is called on the HumanBody object and the tick counter is 

updated. The processTick( ) and event processing methods (mentioned above) defined in the 

HumanBody class are discussed next.  It is important to note that processTick( ) is a method 

present in every organ class, and the HumanBody class itself. This method is responsible for 

executing all the tasks defined for each tick for that particular organ.  
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HUMANBODY 

The class HumanBody is designed to model the metabolic behavior of the actual human body. In 

order to mimic the biological structure and metabolic pathways of the human body, the GS 

simulator models the HumanBody class as an envelope class containing objects representing 

individual organs of the human body. This class also maintains variables - such as bodyState 

and bodyWeight_ - that store information relevant to all the organ classes. 

 

The primary responsibilities of the HumanBody class includes alerting different organs that a 

new tick has started, facilitating the interdependencies between various organs, and maintaining 

the metabolic state (and corresponding parameters) of the simulator. Additionally, this class also 

has several methods that process Food and Exercise events.  The configuration parameters of the 

HumanBody class are as follows: 

 

Parameter Default Value Comments 
insulinResistance_ 0 This parameter will have a 

value between 0 and 1. It 
controls the reaction of 
individual organs to the 
presence of insulin in the 
bloodstream.  

insulinPeakLevel_ 1 This parameter will have a 
value between 0 and 1. It 
controls the amount of insulin 
the pancreas produces (in 
comparison to the insulin 
produced in a healthy person. 

bodyWeight_ 65 Weight of the simulated body 
in kilograms 

Table 1: Configuration parameters - HumanBody 
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As mentioned earlier in this documentation, processTick() is the method responsible for 

executing all the tasks defined for each tick for that particular organ. In the HumanBody class, 

this method has two essential tasks. The first task is to notify each organ class about the 

occurrence of a new tick by calling their respective processTick( ) methods, while the second 

task is to maintain the metabolic state of the body after the execution of exercise related events. 

The latter is done by tracking the current metabolic state of the GS simulator. If the simulator is 

in one of the exercise states i.e. FED_EXERCISING or POSTABSORPTIVE_EXERCISING, 

the state is changed to the corresponding post-exercise state, FED_POSTEXERCISE or 

POSTABSORPTIVE_POSTEXERCISE if the duration of the exercise event has completed. 

Similarly, the state is changed from post-exercise to the corresponding resting state based on the 

value of postExerciseDuration, which you may recall is a value specified in the Exercise file. 

This value is used in the method processExerciseEvent( ) – method used to process exercise 

events – to calculate the tick count at which this change of state must occur. 

 

The algorithm for processExerciseEvent( ) is given in Figure 5. 

Figure 5: Algorithm for processExerciseEvent( ) function 
 
 

 

1. If the body is already in an Exercise state, error out and exit the 
simulator. 

2. Calculate the current energy expenditure based on body weight and 
intensity of exercise. 

3. Change the current metabolic state to its corresponding Exercise 
state. 

4. Calculate the tick at which Exercise event is completed. 
5. Calculate the amount of time, the human body will remain in a post-

exercise state.  
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The method processExerciseEvent( ) is called by the class SimCtl when an Exercise event is 

fired by the GS simulator. This method first checks if the simulator is already in an Exercise 

state, in which case it causes the simulator to exit without any further operation. This was done 

in order to force the user of this simulator to change the ‘Event’ file because realistically, a 

human being does not perform an exercise within another exercise. Once the event has been 

validated, the additional energy expenditure caused by this exercise is calculated based on the 

individual’s body weight and the intensity of exercise as (body weight * exercise intensity) / 60, 

where exercise intensity is measured in MET. Since the body weight is specified in kilograms 

and intensity is measured in MET, where 1 MET is 1kcal / (kg * hour), the energy expenditure 

calculated using this formula is specified in kcal/minute. This calculated amount is then stored in 

a variable currEnergyExpenditure to be used as required by the organ classes.  

 

A post-exercise state was defined in this study to accommodate for the fact that in actuality, the 

human body remains at an elevated metabolic state for some period after exercising. In this 

study, the duration for this period is modeled as a fraction of the duration of the exercise itself. 

The tick count at which the simulator has to switch from the exercise state to a post-exercise 

state is calculated by simply adding the duration of this exercise event (specified using subtype 

in Event file) to the current value of simulator tick count. This count is tracked by the method 

processTick( )to initiate the change of state when required.  

 

In order to process food events, i.e. a person eating, the HumanBody class contains a method 

processFoodEvent().  This method has two responsibilities – the first one is model eating by 

adding the ‘nutrients’ to their corresponding variables in StomachIntestine class and the second 
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one is to switch the metabolic state to a fed state. The former responsibility is carried out by 

calling an addFood( ) method defined in the StomachIntestine class.  

 

The HumanBody class also defines a method stomachEmpty() to handle the change of state 

from fed to post-absorptive. The fed state is characterized by the presence of nutrients in the 

stomach. In this simulator, this presence is tracked by the StomachIntestine class in its 

processTick( )method. If the stomach is found to be empty, the simulator transitions to the post-

absorptive state by executing the method stomachEmpty() (called by the StomachIntestine class). 

This method the changes the metabolic state of the GS simulator to either 

POSTABSORPTIVE_RESTING, POSTABSORPTIVE_EXERCISING or 

POSTABSORPTIVE_POSTEXERCISE based on the current state.  

 

It is important to note that a change in the metabolic state of the GS simulator necessitates the 

updating of configuration parameters associated with that change. For example, the rate at which 

glycogen breakdown occurs in the muscle varies between the rest and exercise state.  Therefore, 

the HumanBody class contains the method setParams(), which is  called every time a state 

change occurs in the simulator. Similar to the method processTick(),  this method is present in 

every organ class and the HumanBody class itself. It is used to set the new parameter values - 

associated with the new state - for each organ.  In this HumanBody class this method is primarily 

used to call the setParams()methods in all organ classes. Additionally, it also sets the value for 

the HumanBody configuration parameters. 
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LIVER 

The Liver class models the metabolic pathways of the liver body organ.  These pathways 

primarily include glycogenolysis (glycogen breakdown), gluconeogenesis (glucose generation 

from lactate, glycerol and amino acids), glycolysis (glucose breakdown to form lactate and fatty 

acids), and glycogen synthesis. In reality, all these metabolic processes are multi-step processes 

with several intermediate products. For example, glucose breakdown to glycogen involves the 

formation and subsequent breakdown of glucose-6-phosphate (G6P) and pyruvate.  A part of this 

G6P is then used to synthesize glycogen while a part of the pyruvate is used to synthesize lactate. 

In order to simplify the simulator, this study does not model intermediate products, i.e. for the 

given example - in this simulator - G6P and pyruvate are not modeled; only glucose, glycogen 

and lactate are included. Additionally, although in reality these processes occur in a concurrent 

manner, in the GS simulator, these metabolic processes are modeled sequentially in the 

processTick( ) method of the Liver class. For its functioning, the processTick( )method interacts 

with the PortalVein class (defined as part of the digestive system in StomachIntestine) and the 

Blood class. It retrieves required data from these classes and then performs a sequence of tasks 

which simulate the metabolic processes.   

 

The configuration parameters of the Liver class are as follows: 

 

Parameter Default Value Comments 
glucoseToGlycogen_ glycogenToGlucose_ Rate at which glucose is 

converted to glycogen in 
mg/kg/min 

glycogenToGlucose_ 2*0.9007795 Rate at which glycogen is 
converted to glucose in 
mg/kg/min 
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glycolysisMin_ 0.297 The minimum rate at which 
glycolysis occurs in the liver 
in mg/kg/min 

glycolysisMax_ 2.972 The maximum rate at which 
glycolysis occurs in the liver 
in mg/kg/min 

glycolysisToLactateFraction_ 1 By default, all lactate 
generated  during glycolysis is 
released into the bloodstream 

gluconeogenesisRate_ 1.8*0.45038975 Rate at which glucose is 
generated from 
gluconeogenesis substrates in 
mg/kg/min 

gngFromLactateRate_ gluconeogenesisRate_ Rate at which glucose is 
generated from lactate when 
plasma level of lactate is high 
(measured in mg/kg/min) 

normalGlucoseLevel_ 100 Amount of glucose in liver 
measured in mg/dL 

fluidVolume_ 10 Volume of liver in dL 
Glut2Km_ 20*180.1559/10.0 Michaelis constant for 

GLUT2 
measured in mg/deciliter 

Glut2VMAX_ 50 Maximum rate of movement 
measured in mg/kg/min 

Table 2: Configuration parameters - Liver 
 

 

As outlined in the algorithm given in Figure 6, the source of glucose for the liver is the portal 

vein. The rate and direction of movement of glucose between the liver and portal vein is 

determined by their relative concentrations of glucose. Glucose will move from the environment 

with higher concentration to the one with lower concentration. This can be explained using 

Michaelis-Menten kinetics. A detailed explanation of Michaelis-Menten kinetics and glucose 

transporters is beyond the scope of this documentation. However, a brief summary of the same is 

given below. Please note that this summary is based on information from Frayn’s textbook [1].  
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Figure 6: Algorithm for processTick( ) function - Liver 
 

 

Movement of glucose across membranes is facilitated by glucose transporters. Broadly speaking, 

there are two types of glucose transporters – active and passive. This explanation touches upon 

only passive transporters, also known as the GLUTn transporters. Passive transporters mediate 

the movement of glucose down a concentration gradient.  Michaelis-Menten kinetics is often 

used to explain the properties of this movement. In the GS simulator, the rate of movement 

across membranes, Vtransport, is modeled using Michaelis-Menten law i.e. Vmax * ([S]/ (Km +[S])). 

Here, Vmax refers to the maximal rate of transport while [S] refers to the difference in relative 

concentrations across membranes. In this context, Michaelis-Menten constant or Km indicates the 

affinity of a transporter for glucose molecules. A low value for Km suggests high affinity. i.e. the 

rate of uptake is independent of glucose concentrations within the normal plasma glucose 

concentration range (i.e. uptake is more or less constant). On the other hand, when affinity is 

low, the rate of glucose uptake is calculated using Michaelis-Menten law. 

 
1. Compare the concentrations of glucose in the portal vein and the 

liver, and transfer glucose from the organ/vein with higher 
concentration to vein/organ with lower concentration. 

2. Release all the glucose remaining in the portal vein to the 
bloodstream. 

3. Synthesize glycogen from glucose based on insulin and glucose level.  
4. Perform glycogenolysis to form glucose based on insulin and glucose 

level. 
5. Perform glycolysis based on insulin level, and release the lactate 

formed into the bloodstream.  
6. Consume gluconeogenesis substrates from the blood to perform 

gluconeogenesis based on insulin level and substrate concentration. 
7. Process amino acids in portal vein.  
8. Based on glucose concentration inside the liver and blood glucose 

concentration, release glucose into the bloodstream. 
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Liver cells have predominantly GLUT2 type of glucose transporter [1]. GLUT2 has low affinity 

for glucose molecules [1]. As a result, the rate of movement of glucose between the liver and 

portal vein is dependent on their relative concentrations of glucose. During each tick, the current 

glucose concentrations in liver and portal vein determine the amount of glucose transferred 

between the two. Once the transfer has been simulated, all the glucose remaining in the portal 

vein is released into the bloodstream. This is done in order to simulate the fact that after food 

intake, most of the ingested glucose passes through the liver (without being absorbed or stored) 

initially to enter the blood stream.   

 

Figure 7: Glucose absorption by the liver 
 

 

Following this, the GS simulator moves on to model the remaining metabolic processes 

performed by the liver organ.  

 
      double glInPortalVein = body->portalVein->getConcentration(); 
      double glInLiver = glucose/fluidVolume_; 
     
      if (glInLiver < glInPortalVein) 
      { 
          double diff = glInPortalVein - glInLiver; 
          x = (double)(Glut2VMAX__(SimCtl::myEngine())); 
          double g = x * diff/ (diff + Glut2Km_); 
         
          if (g > body->portalVein->getGlucose() ) 
          { 
              g = body->portalVein->getGlucose(); 
          } 
         
          body->portalVein->removeGlucose(g); 
          glucose += g; 
      } 
 
      //release all portalVein glucose to blood 
      body->portalVein->releaseAllGlucose(); 
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1. Glycogen synthesis 

In the Liver class, the configuration parameter glucoseToGlycogen_ determines the 

amount of glucose converted to glycogen, for a healthy individual, in each tick.  The 

actual amount of glycogen synthesized is a random amount averaged on this parameter.  

Furthermore, glycogen synthesis in the liver organ depends on the current concentration 

of glucose in the liver, and the current insulin level of the individual [1]. Insulin 

suppresses glucose production while it stimulates glycogen synthesis [1] [2].  The GS 

simulator models the impact of these factors by calculating a fractional value ‘scale’ 

which is then multiplied to glucoseToGlycogen_ to calculate the absolute amount of 

glycogen synthesized during each tick by the liver. ‘Scale’ is positively related to both 

the current concentration of glucose in the liver and the current insulin level of the 

individual (maintained by the Blood class using insulinPeak_).  

Figure 8: Glycogen synthesis in the liver 
 

 

2. Glycogenolysis 

Hepatic glycogenolysis or glycogen breakdown is brought about by a drop in blood 

glucose level [1]. This occurs both during the post-absorptive state and during an exercise 

 
    glInLiver = glucose/fluidVolume_; 
    double scale = glInLiver/normalGlucoseLevel_; 
    scale *= body->blood->insulin; 
    x = (double)(glucoseToGlycogen__(SimCtl::myEngine())); 
    double toGlycogen = scale * x; 
    if (toGlycogen > glucose) 
        toGlycogen = glucose; 
    glycogen += toGlycogen; 
    glucose -= toGlycogen; 
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event. In the GS simulator, the configuration parameter glycogenToGlucose_ determines 

the amount of glycogen converted to glucose, for a healthy individual, in each tick. 

Similar to glycogen synthesis, this process is also dependent on the current insulin level 

of the individual [1] [2]. Glycogenolysis also depends on the ability of the liver to 

respond to insulin fluctuation in the bloodstream. The GS simulator models this 

dependency using the configuration parameter insulinResistance_. As mentioned earlier, 

this parameter can take a value between 0 and 1, where 0 indicates a healthy person who 

responds to insulin as expected, while 1 indicates a person with extreme Type 2 diabetes. 

Similar to glycogen synthesis, the GS simulator models the impact of these factors by 

calculating a fractional value ‘scale’ which is then multiplied to glycogenToGlucose_ to 

calculate the absolute amount of glycogen broken down during each tick by the liver. In 

order to suppress glycogenolysis when insulin level is high and stimulate it when the 

insulin level is low, ‘scale’ is inversely dependent on the insulin level. The impact of 

insulin is restricted by multiplying ‘scale’ with insulinResistance_, to model Type 2 

diabetes. 

 

Figure 9: Glycogen breakdown in the liver 
 

 
    scale = 1 - (body->blood->insulin)*(1 - (body>insulinResistance_)); 
    glInLiver = glucose/fluidVolume_; 
    if( glInLiver > normalGlucoseLevel_ ) 
        scale *= normalGlucoseLevel_/glInLiver;  
    x = (double)(glycogenToGlucose__(SimCtl::myEngine())); 
    double fromGlycogen = scale * x; 
    if( fromGlycogen > glycogen ) 
        fromGlycogen = glycogen; 
    glycogen -= fromGlycogen; 
    glucose += fromGlycogen; 
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3. Glycolysis 

Glycolysis is the process by which glucose is converted to lactate. Similar to 

glycogenolysis, glycolysis is also dependent on the current insulin level and insulin 

resistance of the individual [1] [2]. Insulin stimulates glycolysis [1]. The GS simulator 

mimics glycolysis in the liver using the configuration parameters glycolysisMin_ and 

glycolysisMax_. In this model, irrespective of other factors glycolysis always occurs at a 

basal rate with an average value of glycolysisMin_.  Additionally, depending on the 

current insulin level and insulin sensitivity of the individual, glycolytic rate can increase. 

This insulin dependency is also modeled by the GS simulator and the additional amount 

of glucose converted to lactate is calculated as a fraction of the peak value 

glycolysisMax_, based on ‘scale’ - the variable used to model the impact of insulin using 

the same logical concepts described above. In the GS simulator, lactate is the only 

product of glycolysis. This lactate is released into the bloodstream once formed.  

 

Figure 10: Glycolysis in the liver 
 

 

 
    scale = (1.0 - body->insulinResistance_)*(body->blood->insulin); 
     
    x = (double)(glycolysisMin__(SimCtl::myEngine())); 
    if( x > glycolysisMax_*(body->bodyWeight_)) 
        x = glycolysisMax_*(body->bodyWeight_); 
     
    double toGlycolysis = x + scale*((glycolysisMax_*(body-
>bodyWeight_)) - x); 
     
    if( toGlycolysis > glucose) 
        toGlycolysis = glucose; 
     
    glucose -= toGlycolysis; 
    body->blood->lactate += toGlycolysis*glycolysisToLactateFraction_; 
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4. Gluconeogenesis  

Gluconeogenesis is the process by which glucose is generated from non carbohydrate 

substrates - primarily lactate, alanine and glycerol. The pathway of gluconeogenesis is 

primarily controlled by two factors – substrate concentration and the hormonal regulation 

of concerned enzymes [1]. The effect of enzymes is out of the scope of this study and is 

hence not currently modeled in the simulator. Additionally, gluconeogenesis is also 

dependent on the insulin level (i.e. it is inhibited by insulin) and insulin resistance of the 

individual [1] [2].  

Figure 11: Gluconeogenesis in the liver 
 

The simulator models the process of gluconeogenesis by consuming the required 

substrates (maintained as a single entity) from the Blood class and adding it to the 

glucose store in the Liver class. The amount of substrates consumed is controlled by 

configuration parameter gngRate_. At each tick, the liver consumes a random amount of 

substrates - with an average value of gngRate - from the bloodstream. The impact of 

insulin level and insulin resistance is modeled based on ‘scale’ as described above. 

 

Additionally, hepatic gluconeogenesis can also be stimulated by an increased 

concentration of lactate in the bloodstream. For example, after an exercise event. In this 

 
   scale = 1 - (body->blood->insulin)*(1 - (body->insulinResistance_)); 
   x = (double)(gngRate__(SimCtl::myEngine())); 
   double gng = x *scale; 
   glucose += body->blood->consumeGNGSubstrates(gng); 
 
   x = (double)(gngFromLactateRate__(SimCtl::myEngine())); 
   glycogen += body->blood->gngFromHighLactate(x); 
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scenario however, gluconeogenesis will contribute to glycogen stored in the liver rather 

than generate glucose [1]. This metabolic pathway has been modeled in this simulator, by 

calling a method gngFromHighLactate() of the Blood class. This method calculates the 

amount of glycogen produced from lactate based on the current concentration of lactate 

in the blood.   

 

In addition to these four metabolic processes, during every tick the relative concentrations of 

glucose in the liver and bloodstream is used to determine the movement of glucose between the 

two. Similar to the movement of glucose between the portal vein and liver, this flow is also 

modeled - in the GS simulator - using Michaelis-Menten kinetics of GLUT2 transporter.  

 

Finally, the liver also consumes unbranched amino acids from the bloodstream. A majority of the 

consumed amino acids is converted to alanine and transferred back to the blood stream, while the 

remainder is oxidized or used for the synthesis of glucose, fatty acids and ketone bodies. In the 

simulator the latter is not modeled. The former is modeled as part of the PortalVein subclass of 

the StomachIntestine class, and will be discussed later in this documentation.  

 

MUSCLE 

The Muscle class models the metabolic pathways of the skeletal muscles.  There are two main 

processes that the GS simulator needs to capture with respect to skeletal muscles. These include 

glucose absorption from the bloodstream and glycolysis. Identical to the processes explained in 

the Liver class, the metabolic processes of the skeletal muscles are also multi-step processes with 

several intermediate products that the simulator does not model. It is important to note that, even 
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though these processes occur in a concurrent manner in actuality (like in the liver organ), the 

simulator models them sequentially in the Muscle class method processTick(). Additionally, the 

metabolism of skeletal muscles changes dramatically during an exercise event. The impact of 

exercise has also been modeled in the processTick()method. 

 

The configuration parameters of the Muscle class are as follows: 

 

Parameter Default Value Comments 
basalGlucoseAbsorbed_ 0.344 Glucose absorbed by the 

muscle at basal rate due to the 
presence of GLUT1 
(mg/kg/min) 

glucoseOxidationFraction_ 0.5 The fraction of absorbed 
glucose that is oxidized  

bAAToGlutamine_ 0 The amount of glutamine 
produced from branched 
amino acids in 1 tick 

glycolysisMin_ 0.4 The minimum rate of 
glycolysis in the muscle 
measured in mg/kg/min 

glycolysisMax_ 9*glycolysisMin_ The peak value for glycolysis 
in the muscle, expressed in 
mg/kg/min 

Glut4Km_ 5*180.1559/10.0 Michaelis constant for 
GLUT4 

Glut4VMAX_ 10 Maximum rate of movement 
measured in mg/kg/min 

Table 3: Configuration parameters - Muscle 
 
 

A detailed explanation of the metabolic processes - with respect to glucose metabolism - of the 

muscle organ is given below: 
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1. Glucose absorption  

In the muscle, glucose uptake is controlled by the glucose transporters GLUT1 and 

GLUT4 [1].  While GLUT1 plays a role in the uptake of glucose at a “basal” rate, 

GLUT4 is insulin-sensitive [1]. Insulin increases the rate at which muscle takes up 

glucose from the blood. The glucose absorbed by the muscle may either be oxidized, used 

for glycogen synthesis, or processed via the pathway of glycolysis.  

Figure 12: Glucose absorption in the muscle 
 

In the GS simulator, basal absorption of glucose has been modeled using the 

configuration parameter basalAbsorption_ as a more or less constant uptake. The 

amount of glucose absorbed is calculated as a random value with an average of 

basalAbsorption_.  This is due to the fact that GLUT1 - the transporter which mediates 

basal absorption in the muscle - has a high affinity for glucose and is therefore 

independent of the concentration of glucose in the bloodstream. On the other hand, 

glucose uptake by the glucose transporter GLUT4 has been modeled based on glucose 

concentration using Michaelis-Menten kinetics. Since GLUT4 is insulin-sensitive, the 

    
   // Absorption via GLUT1          
   x = (double)(basalAbsorption__(SimCtl::myEngine())); 
   body->blood->removeGlucose(x); 
   glycogen += x; 
 
   // Absorption via GLUT4     
   double bgl = body->blood->getBGL(); 
   double scale = (1.0 - body->insulinResistance_)*(body->blood-
>insulin); 
   x = (double)(Glut4VMAX__(SimCtl::myEngine())); 
   double g = scale*x*bgl/(bgl + Glut4Km_); 
   body->blood->removeGlucose(g); 
   glycogen += (1.0 - glucoseOxidationFraction_)*g; 
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impact of current insulin level and insulin resistance of the individual has also been 

modeled by calculating their ‘scale’ of impact (on glucose absorption) as discussed in the 

section ‘Liver’ above. In both these processes of glucose uptake, glucose is removed 

from the blood stream and stored internally as glycogen in the Muscle class.   

 

2. Glycolysis 

In the muscle, glucose absorbed from the bloodstream is either oxidized or stored locally 

as glycogen. The GS simulator thus models glycolysis by breaking down stored muscle 

glycogen to form lactate. The process of glycolysis in the muscle in similar to the 

corresponding process in the liver, and is therefore modeled in a similar manner using the 

configuration parameters parameters glycolysisMin_ and glycolysisMax_.  

 

Figure 13: Glycolysis in the muscle 
 

 

    
      scale = (1.0 - body->insulinResistance_)*(body->blood->insulin); 
         
      x = (double)(glycolysisMin__(SimCtl::myEngine())); 
      if( x > glycolysisMax_*(body->bodyWeight_)) 
         x = glycolysisMax_*(body->bodyWeight_); 
         
      g = x + scale* ( (glycolysisMax_*(body->bodyWeight_)) - x); 
         
      if( glycogen >= g ) 
      { 
           glycogen -= g; 
           body->blood->lactate += g; 
      } 
      else 
      { 
           body->blood->lactate += glycogen; 
           glycogen = 0; 
      } 
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Skeletal muscles also participate in amino acid metabolism by converting branched amino acids 

in the blood to glutamine [1].  This metabolic pathway has also been modeled in the 

processTick() method by consuming branched amino acids from the Blood class and releasing it 

back to the Blood class as glutamine. 

 

Carbohydrate metabolism in the skeletal muscle during exercise  

The Muscle class plays a vital role in glucose metabolism during an exercise event. In reality, 

exercise is broadly categorized into aerobic and anaerobic exercise.  Anaerobic exercise refers to 

high intensity short duration exercise while aerobic exercise on the other hand involves 

prolonged lower intensity exercise. An example of anaerobic exercise is sprinting, while running 

a marathon would be an example of aerobic exercise. In this simulator, only the impact of 

aerobic exercise on glucose metabolism has been modeled. Anaerobic exercise is beyond the 

scope of this study. 

 

In order to meet the energy requirements of aerobic exercise, it is necessary for skeletal muscles 

to use stored fuels in addition to what is found in the muscle itself. Therefore, the muscle must be 

supplied with the required substrates through the circulatory system.  Additionally, these fuels 

must be almost completely oxidized in order to prevent the build up of lactic acid, which causes 

the onset of muscle fatigue [1] [15].  

 

The two sources of fuel are carbohydrates and fat, and their relative usage as energy substrates in 

the muscle vary based on the intensity and duration of the exercise event.  In relatively light 

exercise most of the required energy comes from non-esterified fatty acids [1]. At higher 
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intensities, carbohydrate tends to predominate early on, with the predominance of fat increasing 

as glycogen stores get depleted [1].  The oxidation of glucose is a major source of energy for 

exercising human beings. The importance of carbohydrates as an energy source increases with 

the intensity of exercise.  For low intensity aerobic exercise, carbohydrate oxidation accounts for 

10-15% of total energy production, increasing progressively to 80-100% of total energy 

production during high intensity exercises [16]. It is important to note that in this context, 

exercise intensity refers to VO2max or maximal aerobic capacity of the individual.  

 

The skeletal muscle has access to two sources of glucose – plasma glucose and glycogen stored 

in the muscle itself.  Plasma glucose is an important source of energy during exercise, with its 

importance increasing with the intensity of exercise [17]. However, research shows that the total 

contribution of plasma glucose to energy production during exercise remains approximately at 

around 10% without significant variation across exercise of different intensities [1] [17]. The GS 

simulator thus models plasma uptake by the skeletal muscle during exercise - in the 

processTick() method of the Muscle class - by calculating the amount of glucose required to 

support 10% of the current exercise event. This glucose is then consumed from the bloodstream. 

 

On the other hand, the contribution of stored glycogen to total energy production varies based on 

the intensity of the exercise event. During low intensity exercise, stored glycogen does not 

contribute significantly to energy production, and carbohydrate oxidation appears to be met 

solely by glucose uptake [17]. From earlier discussion we know that the contribution of 

carbohydrate metabolism to total energy production increases with the intensity of exercise but, 

the contribution of plasma glucose uptake remains relatively constant across different levels of 
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exercise intensity.  This means that at moderate to higher intensities, the contribution of stored 

muscle glycogen to total energy production becomes predominant. In order to simulate the 

contribution of stored glycogen, this study categorizes an exercise event into 3 broad 

classifications based on their intensity.  The break points for this categorization are 3 MET and 6 

MET. All exercises below 3 MET are considered low intensity exercises while those above 6 

MET are considered high intensity exercises. The contribution of glycogen to total energy 

production is then calculated based on the category of the exercise event.  For low intensity 

exercises, the contribution of glycogen is assigned to 0. In case of high intensity exercises, 30% 

of the total energy production comes from glycogen [1]. For moderate exercises (between 3 

MET and 6 MET), the contribution is glycogen is calculated as proportional to the exercise 

intensity, with a maximum contribution of 30%. 

Additionally, the rate of glycolysis is also affected by an exercise event. During light exercise, 

plasma taken up from the bloodstream is almost completely oxidized and therefore does not 

contribute to glycolytic flux. However, as the intensity of exercise increases, glycolytic flux 

increases, thereby resulting in a higher rate of glycolysis. The GS simulator models this increase 

based on the intensity of the exercise event.  

 

STOMACHINTESTINE 

The StomachIntestine class models the digestive system of the human body. It includes 

functionality to mimic the metabolic processes of the stomach, intestine and portal vein.  

Primarily, this class is responsible for modeling all the functionality related to glucose 

metabolism, between the time you ingest food and its corresponding nutrients appear in the 
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blood stream.  In this study, ingested food has been modeled using its component nutrients - 

RAG, SAG, protein and fat. Although the simulator does not currently model fat and protein 

metabolism, these nutrients have an impact on the digestion of dietary carbohydrates (RAG and 

SAG) [18] [19]. This impact has been considered and modeled in this simulator.   

The configuration parameters of the StomachIntestine class are as follows: 

Parameter Default Value Comments 
fluidVolumeInEnterocytes_ 1 Configuration parameter of 

enterocytes - Expressed in dL 
fluidVolumeInLumen_ 1 Configuration parameter of 

enterocytes - Expressed in dL 
Glut2Km_In_ 20*180.1559/10.0 Configuration parameter of 

enterocytes - Michaelis-
Menten constant for GLUT2 
movement in mg/dL 

Glut2VMAX_In_ 1 Configuration parameter of 
enterocytes - Maximum rate 
of movement measured in 
mg/kg/min 

Glut2Km_Out_ 20*180.1559/10.0 Configuration parameter of 
enterocytes - Michaelis-
Menten constant for GLUT2 
movement in mg/dL 

Glut2VMAX_Out_ 1 Configuration parameter of 
enterocytes - Maximum rate 
of movement measured in 
mg/kg/min 

sglt1Rate_ 1 Configuration parameter of 
enterocytes - Constant rate of 
movement due to active 
transport measured in mg/min 

glycolysisMin_ 0.1801559 Configuration parameter of 
enterocytes - Basal rate of 
glycolysis in the enterocytes 
measured in mg/kg/min 
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glycolysisMax_ 5*glycolysisMin_ Configuration parameter of 
enterocytes - The peak value 
for glycolysis in the 
enterocytes expressed in 
mg/kg/min 

aminoAcidsAbsorptionRate_ 1 Configuration parameter of 
enterocytes - Rate at which 
amino acids are released into 
the portal vein per tick 
(measured in mg/min) 

glutamineOxidationRate_ 1 Configuration parameter of 
enterocytes - Rate at which 
glutamine in the blood is 
oxidized (measured in 
mg/min) 

glutamineToAlanineFraction_ 0.5 Configuration parameter of 
enterocytes - Fraction of 
glutamine converted to 
alanine 

RAG_Mean_ 5 Configuration parameter of 
StomachIntestine - To control 
the rate at which RAG is 
available for absorption 

RAG_StdDev_ 5 Configuration parameter of 
StomachIntestine - To control 
the rate at which RAG is 
available for absorption 

SAG_Mean_ 60 Configuration parameter of 
StomachIntestine - To control 
the rate at which SAG is 
available for absorption 

SAG_StdDev_ 20 Configuration parameter of 
StomachIntestine - To control 
the rate at which SAG is 
available for absorption 

FatDelayMax_ 300 Configuration parameter of 
StomachIntestine - Maximum 
allowed delay caused in 
availability of glucose due to 
presence of fat in food 
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ProteinEffectMin_ 0.5 Configuration parameter of 
StomachIntestine - Minimum 
delay caused in availability of 
glucose due to presence of 
protein in food 

fluidVolume_ 1 Configuration parameter of 
PortalVein - Expressed in dL 

Table 4: Configuration parameters - Digestive system (StomachIntestine) 
 
 

The process of digestion begins in the mouth followed by the stomach. However, since the role 

of both these organs is primarily limited to mechanical digestion [1] i.e. the breakdown and 

liquefaction of food particles, they do not play a significant role in this simulator. The mouth 

organ has not been modeled, while the functionality of the stomach organ in this simulator is 

limited to storing the ingested nutrients (in response to a food event).  

The third stage (following mouth and stomach organ) in the process of digestion is intestinal 

absorption - the primary activity modeled in the StomachIntestine class. The algorithm for the 

processTick() method of  the StomachIntestine class is given in Figure 14. 

 

Figure 14: Algorithm for processTick( ) function - StomachIntestine 
 
 

 

1. Calculate the amount of RAG digested in 1 tick, dependent on effect of 
protein.  

2. Calculate the amount of SAG digested in 1 tick, dependent on effect of 
protein and fat.  

3. Model the consumption of digested glucose by enterocytes i.e. the 
absorptive cells of intestine. (This glucose then either enters the 
portal vein or is used as a substrate for glycolysis) 

4. Model the consumption of protein by enterocytes. 
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Englyst et al. [20] proposed a classification of dietary carbohydrates - as Rapidly Available 

Glucose (RAG) and Slowly Available Glucose (SAG)  - based on their likely site, rate, and 

extent of digestion. Englyst’s experiments concluded that RAG was available for intestinal 

absorption 20 minutes after food ingestion while SAG was available after 120 minutes. In order 

to accurately model the process of glucose digestion and absorption from the small intestine, it is 

necessary to take this into consideration. In the simulator, the appearance of RAG and SAG for 

intestinal absoprtion is modeled separately using a normal distribution with configuration 

parameters - RAG_Mean_, RAG_StdDev_, SAG_ Mean _ and SAG_StdDev_ -for mean and 

standard deviation.  

 

At this point, it is necessary to note that the presence of fat and protein in diet can significantly 

impact the metabolism of glucose in the gastrointestinal tract by reducing the rate at which 

glucose from diet is available for digestion [18] [19]. One of the reasons suggested for this 

change is a delay in gastric emptying caused by the presence of protein and fat [19].  The 

simulator models this impact by reducing the amount of RAG and SAG available for intestinal 

absorption (at each tick) based on the amount of protein and fat present in the ingested food. 

Since no significant link was found between their respective impacts on glucose metabolism 

[19], the simulator models the effects of fat and protein on digestion separately. With respect to 

protein, the impact has been modeled dependent on the percentage of protein found in the diet. 

As the percentage of protein increases, the model widens the number of ticks over which glucose 

gets absorbed. The impact of fat has also been modeled in a similar manner. However, since the 

impact of fat plateaus once the amount of fat in the diet is high [21], the simulator limits the 
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delay caused by fat using a configuration variable FatDelayMax_ when the percentage of fat in 

the diet is over 65%. 

 

Once the ingested carbohydrates have been processed and is finally available for intestinal 

absorption, they enter the enterocytes (absorptive cells of intestinal mucosa). According to 

Frayn’s textbook [1], this absorption is mediated by both active and facilitated diffusion. During 

the initial stages of digestion, the high concentration of glucose available for absorption enables 

passive (facilitated) diffusion via GLUT2. As you may recall, GLUT2 has low affinity for 

glucose molecules. Therefore, the rate of movement of glucose is dependent on the concentration 

of glucose available for absorption and the amount of glucose currently stored in the enterocytes. 

In the GS simulator, this movement has been modeled based on Michaelis-Menten kinetics. In 

the later stages of digestion, once the concentration of glucose available for absorption reduces, 

active transport - mediated by SGLT-1, ensures that dietary glucose is completely absorbed [1].  

This has been modeled in the GS simulator using a configuration variable sglt1_. Once the 

glucose available for absorption has dropped, the GS simulator loads all remaining dietary 

glucose into the enterocytes at a basal rate averaged on sglt1_, during each tick.   

 

Once the glucose has been loaded into the enterocytes, it either enters the portal vein, mediated 

by GLUT2 or it acts as a substrate for glycolysis [1]. The simulator models the former using 

Michaelis-Menten kinetics. The latter depends on the insulin level and insulin resistance of the 

individual and results in lactate in the bloodstream. Glycolysis in the enterocytes is modeled 

using configuration parameters glycolysisMin_ and glycolysisMax_. The impact of insulin has 

been modeled using ‘scale’ as described in earlier sections.  
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It is important to note that enterocytes also absorb dietary protein, resulting in the addition of 

amino acids in the bloodstream. This has been modeled using a method of the PortalVein 

subclass of StomachIntestine. Specific details about amino acid metabolism is out of the scope of 

this document. Although (some) amino acid metabolism is considered and implemented in this 

simulator, the research and implementation of this portion was done by other researchers and is 

hence not included my thesis documentation. The occurrence of this metabolic process is 

however mentioned for the purpose of completeness. 

 

BLOOD 

With the exception of the portal vein, the Blood class represents the entire bloodstream of the 

human body. This class is primarily used to maintain substrates related to glucose metabolism in 

the blood. Several methods, in addition to the processTick( ) method, have been defined in the 

Blood class for this purpose.  Additionally, it is relevant to note that red blood cells consume 

glucose every minute in order to produce lactate via glycolysis. This process has been captured 

in the simulator and is modeled in the processTick( ) method of the Blood class.  

 

The configuration parameters of the Blood class are as follows: 

Parameter Default Value Comments 
fluidVolume_ 50 Expressed in dL 
glycolysisMin_ 0.1801559 The basal rate for glycolysis 

in the blood mxeasured in 
mg/kg/min 

glycolysisMax_ 5*glycolysisMin_ The peak value for glycolysis 
in the bloodstream expressed 
in mg/kg/min 

normalGlucoseLevel_ 100 Measured in mg/dL 
highGlucoseLevel_ 200 Measured in mg/dL 
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minGlucoseLevel_ 40 Measured in mg/dL 
highLactateLevel_ 4053.51 Measured in mg 

Table 5: Configuration parameters - Blood 
 
 

The two main processes modeled in processTick( ) includes glycolysis (conversion of glucose to 

lactate) and the maintenance of insulin level in the human body. The GS simulator models 

glycolysis in the blood using the same logical concepts used for other organs, i.e., it is modeled 

using configuration parameters glycolysisMin_ and glycolysisMax_, and the impact of insulin is 

modeled by calculating ‘scale’. 

Figure 15: Glycolysis in the bloodstream 
 

Following the pathway of glycolysis, the simulator moves on to update the insulin level of the 

human body based on the current plasma glucose level. This process depends on the diabetic 

health of the individual. The GS simulator models this using insulinPeakLevel_, a configuration 

parameter of HumanBody class. This parameter (which takes a value between 0 and 1) is 

configured to 1 for a normal healthy individual and to 0 for an individual suffering from extreme 

Type 1 Diabetes (0 indicates that the pancreas is unable to produce any insulin.) 

 

 

    double scale = (1.0 - body->insulinResistance_)*(body->blood->insulin); 
 
    x = (double)(glycolysisMin__(SimCtl::myEngine())); 
    if( x > glycolysisMax_*(body->bodyWeight_)) 
        x = glycolysisMax_*(body->bodyWeight_); 
     
    double toGlycolysis = x + scale * ( (glycolysisMax_*(body->bodyWeight_)) 
- x); 
     
    if( toGlycolysis > glucose) 
        toGlycolysis = glucose; 
 
    glucose -= toGlycolysis; 
    body->blood->lactate += toGlycolysis; 



 37 

The GS simulator updates the insulin level of the individual at each tick by comparing the 

current plasma glucose level with the configuration parameters highGlucoseLevel_ and 

normalGlucoseLevel_ (configuration parameters of the Blood class). The insulin level is 

assigned as 0 when plasma glucose is lesser than normal glucose level (configuration parameter 

of the Blood class), and is assigned to insulinPeakLevel_ when the plasma glucose level is at 

the configured high value. In between these extremes, the insulin level is calculated as a fraction 

of peak glucose level, based on current plasma glucose concentration.  

 

Figure 16: Maintenance of insulin level in the bloodstream 
 

As mentioned earlier, several methods in addition to the processTick( ) method have been 

defined in the Blood class to maintain additional substrates in the bloodstream. These methods 

are called by the organ classes every time the organ consumes or releases the corresponding 

substrate from/into the bloodstream.  The methods present are: 

 

1. consumeGNGSubstrates() 

2. removeGlucose() 

 

    double bgl = glucose/fluidVolume_; 
     
    if( bgl >= highGlucoseLevel_) 
        insulin = body->insulinPeakLevel_; 
    else 
    { 
        if( bgl < normalGlucoseLevel_) 
            insulin = 0; 
        else 
        { 
            insulin = (body->insulinPeakLevel_)*(bgl - 
normalGlucoseLevel_)/(highGlucoseLevel_ - normalGlucoseLevel_); 
        } 
    } 
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3. addGlucose() 

4. gngFromHighLactate() 

 

In each of these functions, the organ that consumes/adds the substrate will pass the amount to be 

processed as a parameter to these functions. Since the names of the functions are self-

explanatory, I will not be explaining their functionality further.   

 

ADIPOSETISSUE 

Biologically speaking, there are two types of adipose tissue in the human body. In an adult 

human, the adipose tissue is almost all “white”, and its major metabolic role is the controlled 

storage and release of fat [1].  There are two sources for the fat stored in the adipose tissue - 

triacylglycerol from plasma and de novo lipogenesis, the synthesis of lipid from other sources, 

mainly glucose [1]. Since a typical western diet contains contains significant amount of fatty 

acids, the former is more important. Based on this information, in this study, we have not 

modeled the uptake of glucose to form TAG in adipose tissue in our simulator. 

 

The release of fat from adipose tissue results in the formation of glycerol. Since glycerol is one 

of the substrates utilized for gluconeogenesis, we have modeled this pathway in our simulator.  

Fat mobilization is suppressed by insulin [1]. In the simulator, this has been taken into 

consideration by limiting the occurrence of the fat breakdown (lipolysis) to when the the plasma 

glucose level is lesser than the normal glucose level of the human body. Additionally, since the 

simulator does not keep track of the amount of TAG stored internally in the adipose tissue, the 
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amount of glycerol entering the bloodstream at each tick has been modeled using configurable 

parameter, loaded from the configuration file. 

 

The adipose tissue also participates in amino acid metabolism in a manner similar to that of the 

muscle organ i.e. adipose tissue converts branched amino acids in the blood to glutamine.  This 

metabolic pathway has also been modeled in the processTick( ) method. 

 

The configuration parameters of the AdiposeTissue class are as follows: 

Parameter Default Value Comments 
bAAToGlutamine_ 0 The amount of glutamine 

produced from branched 
amino acids in 1 tick 

lipolysisRate_ 0 The amount of 
gluconeogenesis substrates 
generated from fatty acids in 1 
tick 

Table 6: Configuration parameters - AdiposeTissue 
 

 

KIDNEY 

The Kidney class models the metabolic pathways of the kidney body organ.  With respect to 

glucose metabolism, these pathways primarily include glycolysis, gluconeogenesis and glucose 

reabsorption from the kidney.  

 

Kidney cells have both GLUT1 and  GLUT2 glucose transporters [1]. While GLUT1 results in a 

basal rate of movement of glucose across the membrane, the movement mediated by GLUT2 is 

dependent on the relative concentrations of glucose in the kidney and the bloodstream. The GS 
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simulator models the basal rate of movement using a configuration parameter 

basalAbsorption_. During each tick, a random value (with an average of basalAbsoprtion_) is 

calculated to simulate basal glucose movement between the kidney and the bloodstream.  On the 

other hand, the movement mediated by GLUT2 is modeled using Michaelis-Menten kinetics in 

the GS simulator. During each tick, the relative glucose concentrations in the kidney and the 

bloodstream determines the rate and direction of glucose transfer between the two. Additionally, 

renal glucose uptake also depends on the insulin-sensitivity of the individual [8]. The GS 

simulator models this dependency using the configuration variable insulinResistance_.  

 

Figure 17: Glucose uptake by the kidney  

 
    double bgl = body->blood->getBGL(); 
    double glInKidney = glucose/fluidVolume_; 
     
    x = (double)(Glut2VMAX__(SimCtl::myEngine())); 
    double y = (double)(basalAbsorption__(SimCtl::myEngine())); 
     
    if( glInKidney < bgl ) 
    { 
        double diff = bgl - glInKidney; 
        double g = (1 + body->insulinResistance_)*x*diff/(diff + Glut2Km_); 
        g += y;  
         
        body->blood->removeGlucose(g); 
        glucose += g; 
    } 
    else 
    { 
        double diff = glInKidney - bgl; 
        double g = (1 + body->insulinResistance_)*x*diff/(diff + Glut2Km_); 
        g += y; 
         
        if( g > glucose ) 
        { 
           exit(-1); 
        } 
         
        glucose -= g; 
        body->blood->addGlucose(g); 
} 
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The simulator also models glycolysis and gluconeogenesis, occurring in the kidney organ, during 

each tick. Based on data from Gerich’s paper [2], we know that both these processes - in the 

kidney - are dependent on the insulin level and insulin resistance of the individual. The simulator 

thus models these processes as explained earlier (for other organs) in this documentation. 

Glycolysis results in lactate in the bloodstream while gluconeogenesis consumes substrates from 

the bloodstream to produce glucose, which is stored internally in the Kidney class. Similar to the 

liver, gluconeogenesis is also stimulated in the presence of high lactate content in the blood, and 

is thus modeled in a similar manner.  

 

Figure 18: Glycolysis in the kidney  
 

Figure 19: Gluconeogenesis in the kidney 

 
    double scale = (1.0 - body->insulinResistance_)*(body->blood->insulin); 
     
    x = (double)(glycolysisMin__(SimCtl::myEngine())); 
    if( x > glycolysisMax_*(body->bodyWeight_)) 
        x = glycolysisMax_*(body->bodyWeight_); 
     
    double toGlycolysis = x + scale* ( (glycolysisMax_*(body->bodyWeight_)) 
- x); 
     
    if( toGlycolysis > glucose) 
        toGlycolysis = glucose; 
    glucose -= toGlycolysis; 
    body->blood->lactate += toGlycolysis; 

 
   scale = 1 - (body->blood->insulin)*(1 - (body->insulinResistance_)); 
   x = (double)(gngRate__(SimCtl::myEngine())); 
   double gng = x *scale; 
   glucose += body->blood->consumeGNGSubstrates(gng); 
 
   x = (double)(gngFromLactateRate__(SimCtl::myEngine())); 
   glucose += body->blood->gngFromHighLactate(x); 
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Kidney is also responsible for reabsorbing (almost) all the glucose from the glomerular filtrate, 

since the human body does not ‘want’ to excrete glucose [1].  Since the GS simulator does not 

have a separate class representing the blood in the glomerular filtrate, this process has been 

modeled using the common bloodstream or Blood class. In order to model this process, the GS 

simulator uses two configuration parameters - glucoseExcretionRate_ and 

reabsorptionThreshold_. The amount of glucose to be excreted in urine - for each tick - is 

specified using the configuration parameter glucoseExcretionRate_, while 

reabsorptionThreshold_ is used to indicate how much of this glucose is reabsorbed into the 

bloodstream. This process has been modeled as part of the processTick() method. 

 

Finally, Frayn’s textbook [1] states that while glutamine is not a good substrate for hepatic 

uptake, it is particularly removed by the kidney for further processing. The simulator models this 

metabolic pathway by consuming a constant amount of glutamine consume from the bloodstream 

during each tick. This amount is specified using the configuration parameter 

glutamineConsumed_. 

 

The configuration parameters of the Kidney class are as follows: 

Parameter Default Value Comments 
fluidVolume_ 1.5 Measured in dL 
Glut2VMAX_ 5 Michaelis constant for 

GLUT2 
Glut2Km_ 20*180.1559/10.0 Maximum rate of movement 

measured in mg/kg/min 
Glut1Rate_ 1 Constant rate of movement 

measured in mg/kg/min 
glycolysisMin_ 0.1801559 The minimum rate of 

glycolysis in the kidney 
measured in mg/kg/min 
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glycolysisMax_ 5*glycolysisMin_ The peak value for glycolysis 
in the kidney expressed in 
mg/kg/min 

gluconeogenesisRate_ 1.8*0.45038975 Rate at which 
gluconeogenesis occurs in 
each tick measured in 
mg/kg/min 

gngFromLactateRate_ gluconeogenesisRate_ Rate at which glucose is 
generated from lactate when 
plasma level of lactate is high 
(measured in mg/kg/min) 

glutamineConsumed_ 0 Amount of glutamine 
consumed by the kidney at 
each tick  

reabsorptionThreshold_ 11*180.1559/10 Amount of glucose reabsorbed 
from the glomerular filtrate 
measured in mg/dl 

glucoseExcretionRate_ 100/(11*180.1559/10) Amount of glucose excreted in 
urine measured in mg/dl 

Table 7: Configuration parameters - Kidney 
 

 

BRAIN 

The Brain class models the metabolic pathways of the brain body organ. With respect to 

glucose, metabolism within the brain is rather straightforward. Under normal circumstances, the 

brain does not appear to use any metabolic fuel other than glucose. The glucose transporter 

expressed in the brain is GLUT3. GLUT3 has a high affinity for glucose and therefore, the 

consumption of glucose by the brain is not dependent on plasma glucose concentration. GLUT3 

is also not sensitive to insulin.  

 

The glucose consumed by the brain is primarily completely oxidized. A portion of it is used to 

form alanine, which it then releases back into the blood stream. This consumption of glucose by 

the brain has been modeled by the simulator in the processTick() method of the Brain class. In 



 44 

addition to glucose consumption, the brain also consumes branched amino acids from the blood. 

The amino acids are converted to glutamine and released back to the bloodstream. This process 

has also been modeled in the simulator. The configuration parameters of the Brain class are as 

follows: 

 

Parameter Default Value Comments 
glucoseOxidized_ 1.08 Measured in mg/kg/min 
glucoseToAlanine_ 0 The amount of alanine 

produced from plasma glucose 
in 1 tick 

bAAToGlutamine_ 0 The amount of glutamine 
produced from branched 
amino acids in 1 tick 

Table 8: Configuration parameters - Brain 
 

The algorithm for the processTick() method of  the Brain class is given in Figure 20. 

Figure 20: Algorithm for processTick( ) function - Brain 
 

 

HEART 

The Heart class models the metabolic pathways of the heart body organ. In reality, the heart can 

use a number of fuels, including fatty acids, glucose and blood [1]. The rate at which it uses each 

fuel is dependent on their concentration in the blood.  

 

1. Consume glucose from the blood based on body weight. 
2. Convert a portion of consumed glucose to alanine (based on 

configuration parameter) 
3. Release alanine to blood 
4. Consume branched amino acids from the blood. 
5. Generate glutamine from branched amino acids 
6. Release glutamine to blood 
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With respect to uptake of glucose, the heart has two glucose transporters, GLUT1 and GLUT4 

While GLUT1 results in a basal rate of movement of glucose across the membrane, the 

movement mediated by GLUT4 is insulin-sensitive and depends on the relative concentrations of 

glucose in the heart and the bloodstream. The GS simulator models the basal rate of movement 

using a configuration parameter basalAbsorption_. On the other hand, the movement mediated 

by GLUT4 is modeled using Michaelis-Menten kinetics. The impact of insulin on GLUT4 

absorption is calculated using the same logical concepts as described for other organs. Insulin 

stimulates glucose uptake mediated by GLUT4. Glucose absorption by the heart has been 

modeled in the processTick() method of the Heart class. Additionally, the heart also consumes 

glucose from the blood to form lactate. This metabolic pathway has been modeled using the 

configurartion parameter lactateOxidized_. 

 

The configuration parameters of the Heart class are as follows: 

 

Parameter Default Value Comments 
basalGlucoseAbsorbed_ 14 Measured in mg/kg/min 
Glut4Km_ 5*180.1559/10.0 Michaelis constant for 

GLUT4 
Glut4VMAX_ 0 Maximum rate of movement 

measured in mg/kg/min 
lactateOxidized_ 0 The amount of plasma lactate 

oxidized by the heart in 1 tick 
Table 9: Configuration parameters – Heart 

 
 
The algorithm for the processTick() method of  the Heart class is given in Figure 21. 
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Figure 21: Algorithm for processTick( ) function - Heart 

  

 

1. Consume glucose at the basal rate (dependent on body weight) 

2. Consume additional glucose based on plasma glucose concentration and 

insulin level of the individual.  

3. Consume glucose from the blood to form lactate. 

4. Oxidize a portion of this lactate based on configuration parameters. 

5. Release remaining lactate to blood stream. 
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CHAPTER 3 
 

SIMULATION RESULTS AND MODEL VERIFICATION 

In this chapter, the results of simulating glucose metabolism in the human body, for 300 minutes, 

is presented. 3 set of simulations were conducted in order to verify different aspects of glucose 

metabolism modeled by the GS simulator. 

 

NORMAL GLUCOSE HOMEOSTASIS - HEALTHY INDIVIDUAL  
 
The first set of simulations (Figure 22 and Figure 23) verify the maintenance of normal glucose 

homeostasis in a healthy individual. Multiple simulations were run varying the initial blood 

glucose and lactate concentrations.  Figure 22 illustrates the variation of plasma glucose 

concentration (measured in mg/dL) with time, while Figure 23 depicts the corresponding 

fluctuation of glycogen (measured in mg) in the liver. As expected, each curve in Figure 22 (each 

representing a different initial blood glucose level) converged to the normal blood glucose level 

within 2 hours, irrespective of the initial glucose/lactate concentrations. This mimics the 

maintenance of normal glucose homeostasis in a healthy individual. In the GS simulator, normal 

plasma glucose level can be modified by changing the appropriate configuration parameters.  

 

In the human body, the required plasma glucose concentration is maintained by primarily 

controlling the metabolic processes in the liver, muscle and kidney. In case of liver metabolism -  

broadly speaking -  if the blood glucose level is higher than normal, the liver takes in glucose and 

stores it in the form of glycogen, thereby increasing the local glycogen storage; and if the blood 

glucose level is lower than normal, glycogen breakdown in the liver increases, resulting in a 
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reduced amount of glycogen in the liver.  Figure 23 rightly illustrates this fluctuation in liver 

glycogen storage with respect to plasma glucose concentration. As you can see, the graph for 

Initial BGL 300 increases rapidly for the first 1 hour (due to high plasma glucose concentration). 

The liver glycogen then decreases once the plasma glucose level has stabilized. This decrease 

illustrates the maintenance of plasma glucose level at 100-120mg/dL when organs consume 

glucose from the bloodstream.  

 

Similarly, the graph for Initial BGL 50 portrays the rapid breakdown of liver glycogen at low 

plasma glucose concentrations. The graph correctly shows a steep decline in liver glycogen till 

the plasma glucose level has stabilized. Beyond this the slope of the graph reduces to illustrate 

the breakdown of liver glycogen at normal plasma glucose levels. 

 

 
Figure 22: Blood Glucose Level vs time - Healthy individual  
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Figure 23: Liver Glycogen Storage vs time - Healthy individual 
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IMPACT OF DIABETES ON NORMAL GLUCOSE HOMEOSTASIS  
 
Figure 24 through Figure 38 illustrates the effect of Type 1 and Type 2 diabetes on glucose 

metabolism. In this set of simulations, we verify the effect of insulin peak, i.e. the capacity of the 

pancreas to produce insulin, on plasma glucose concentration and the corresponding fluctuation 

of liver and muscle glycogen level when the insulin resistance of the individual is fixed. Please 

note that insulin resistance is a fraction between 0 and 1 used in the simulator to control the 

reaction of various organs to the presence of insulin in the blood (i.e. it models the extent of 

Type 2 diabetes), while insulin peak is used to indicate the maximum amount of insulin that the 

individual is capable of producing in comparison to a healthy individual. A perfectly healthy 

individual will have insulin resistance 0 and insulin peak 1. A value of 0 for insulin peak level 

indicates Type 1 Diabetes (the diabetes variant where the body does not have the ability to 

produce any insulin). People with Type 2 Diabetes also over time partially lose their ability to 

produce insulin.  

 

Simulations - Blood Glucose Level 

The initial blood glucose level is set at a high value of 300 mg/dL. Figures 24 though 28 

illustrates the variation of plasma glucose with time. As expected, for each level of insulin 

resistance, the insulin peak value determines the rate at which blood glucose level returns to the 

normal value. The GS simulator rightly demonstrates that the plasma glucose level returns to the 

normal level at an increasingly slower rate when the extent of Type 1 diabetes increases.  

 

Figure 24 illustrates glucose metabolism in an individual with insulin resistance 0, i.e. a person 

whose organs respond to insulin in the bloodstream as expected. Each curve in turn represents an 
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individual with a different value for insulin peak i.e. individuals with varying extents of Type 1 

diabetes. When insulin peak is 1 and insulin resistance is 0, we see that the blood glucose level 

stabilizes rapidly. This mimics the maintenance of normal glucose homeostasis in a healthy 

individual. However, as the value for insulin peak decreases (indicating a reduction in the ability 

of the pancreas to produce insulin) we see that time taken for the curves to stabilize (i.e. time 

taken to return to normal plasma glucose concentration) increases. This is because the GS 

simulator correctly models the insulin sensitivity of metabolic processes in various organs. For 

example, consider an individual with insulin peak 0, i.e. an individual who cannot produce 

insulin. In this case, glucose metabolism in several organs - especially the liver, muscle and 

kidney - is severely impacted, resulting in increased levels of glucose in the bloodstream. In the 

liver, glycogen breakdown, glycogen synthesis, gluconeogenesis and glycolysis is not regulated 

by insulin as expected, when the insulin peak value is 0. As a result, glycogen breakdown occurs 

at all times irrespective of plasma concentrations, while glycogen synthesis is always restricted. 

This in turn increases the local concentration of glucose in the liver, thereby reducing absorption 

of glucose by the liver organ. Similarly, in the muscle, glucose absorption is restricted since 

GLUT4 is insulin dependent.  In all organs, glycolysis is restricted and gluconeogenesis 

continues unrestricted, both contributing to glucose in the bloodstream. 

 

Figure 28 illustrates glucose metabolism in an individual with insulin resistance 1, i.e. a person 

whose organs do not respond as expected to insulin. In this case, we see that even if pancreas 

produce insulin as expected (insulin peak 1), the stabilization of plasma glucose concentration is 

less rapid. This is a because the organs do not respond to insulin in the bloodstream as expected, 

and this sensitivity is modeled in the GS simulator. For example, consider an individual with 
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insulin peak 1 and insulin resistance 0. In this case, insulin sensitive pathways - such as glycogen 

breakdown in the liver - are not regulated by insulin level of the bloodstream. Glycogen 

breakdown in the liver happens in an unrestricted manner (since liver does not respond to high 

insulin level in body), while glucose absorption by the muscle is also restricted. Additionally, in 

all organs, glycolysis is restricted and gluconeogenesis continues unrestricted, both contributing 

to glucose in the bloodstream. 

 

 
1. INSULIN RESISTANCE 0  

 

	
        Figure 24: Blood Glucose Level - Insulin Resistance 0 
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2. INSULIN RESISTANCE 0.25 
 

	
Figure 25: Blood Glucose Level - Insulin Resistance 0.25 
 

 
 

 
 

3. INSULIN RESISTANCE 0.5 
  

	
Figure 26: Blood Glucose Level - Insulin Resistance 0.5 
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4. INSULIN RESISTANCE 0.75  
 

	
Figure 27: Blood Glucose Level - Insulin Resistance 0.75 

 
 
 
5. INSULIN RESISTANCE 1 

 

	
Figure 28: Blood Glucose Level - Insulin Resistance 1 
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Simulations - Liver Glycogen 

Figures 29 though 33 illustrate the change in liver glycogen levels in response to high plasma 

glucose concentration in individuals with varying extents of Type 1 diabetes. In healthy humans, 

when the plasma glucose concentration is high, the pancreas generate insulin to prompt the 

organs - primarily the liver, muscle and kidney - to absorb excess glucose from the bloodstream. 

In the liver, most of this glucose is stored locally as glycogen.  When a person suffers from 

diabetes, the ability of the pancreas to produce the required insulin is impaired. This in turn 

impacts the response of organs to high plasma glucose concentrations.  

 

In figures 24 through 28, we saw that the blood glucose level stabilizes with time. The liver 

organ plays an important role in this process. When the plasma concentration of glucose is high, 

the liver organ responds to the corresponding high insulin level, to absorb excess glucose from 

the blood and store it locally as glycogen. Figures 29 through 33 verifies that the GS simulator 

correctly mimics this process. In each graph, we see that when the individual is capable of 

producing insulin the glycogen levels in the liver increases initially. This models the uptake of 

glucose - by the liver - in response to the high plasma glucose concentration. Once the plasma 

glucose levels have stabilized, glycogen breakdown occurs in order to support the energy 

requirements of various organs and maintain normal glucose levels.  

 

Additionally, the GS simulator models the effect of insulin on glucose metabolism in the liver. 

As discussed in this documentation, glycogen breakdown is restricted by insulin while glycogen 

synthesis is stimulated by insulin. Similarly, glycolysis is stimulated and gluconeogenesis is 

restricted by the presence of insulin. When insulin is not present (or present in reduced amounts) 
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in the body, this expected response for each of these processes is affected. For example, when 

insulin peak is 0, glycogen break occurs in an unrestricted manner irrespective of plasma glucose 

concentration. Similarly, glycogen synthesis does not occur. As a result, the liver glycogen in the 

liver does not increase in response to high plasma glucose concentrations. The curve representing 

Insulin Peak 0 in figure 29 illustrates this scenario. As the extent of Type 1 diabetes increases, 

i.e. the value of insulin peak decreases, we see that the initial rise in liver glycogen levels in 

response to high plasma glucose concentration is less rapid. This in turn widens the time taken 

for blood glucose level to stabilize. Once the blood glucose level stabilizes, glycogen breakdown 

occurs to maintain the required plasma glucose level. 

 

1. INSULIN RESISTANCE 0  
 

	
Figure 29: Liver - Insulin Resistance 0 
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2. INSULIN RESISTANCE 0.25  

 

	
Figure 30: Liver - Insulin Resistance 0.25 
 
 

 
3. INSULIN RESISTANCE 0.5 

 

	
Figure 31: Liver - Insulin Resistance 0.5 
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4. INSULIN RESISTANCE 0.75  
 

	
Figure 32: Liver - Insulin Resistance 0.75 
 
 
 

5. INSULIN RESISTANCE 1 
 

	
Figure 33: Liver - Insulin Resistance 1 
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Simulations - Muscle Glycogen 

Figures 34 though 38 illustrate the change in muscle glycogen levels in response to high plasma 

glucose concentration in individuals with varying extents of Type 1 diabetes. As explained 

above, when a person suffers from Type 1 diabetes insulin sensitive processes in various organs 

are affected. In the muscle, glucose absorption - which typically increases in response to 

increased insulin levels in the bloodstream when plasma glucose concentration is high - is 

affected. The GS simulator models this insulin dependency as expected. For each level of insulin 

resistance, we see that the amount of glucose absorbed from the bloodstream (and stored as 

glycogen in the muscle) in response to high glucose concentration reduces as the extent of Type 

1 diabetes increases.  This in turn widens the time taken for blood glucose level to stabilize. 

Once the blood glucose level stabilizes, glycogen levels decrease as a result of glycolysis. 

 
 
1. INSULIN RESISTANCE 0  

 

	
Figure 34: Muscle - Insulin Resistance 0 
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2. INSULIN RESISTANCE 0.25  

 

	
Figure 35: Muscle - Insulin Resistance 0.25 
 
 
 

3. INSULIN RESISTANCE 0.5 
  

	
Figure 36: Muscle - Insulin Resistance 0.5 
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4. INSULIN RESISTANCE 0.75 
 

	
Figure 37: Muscle - Insulin Resistance 0.75 
 
 
 

5. INSULIN RESISTANCE 1 
 

	
Figure 38: Muscle - Insulin Resistance 1 
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CHAPTER 4 
 

CONCLUSION 

This research is introducing and implementing a discrete event simulator for glucose metabolism 

in human beings. The simulator was designed and implemented using an object oriented 

approach, with different classes representing the human body and its organs. The simulator 

models actual biochemical reactions related to glucose metabolism occurring in the human body, 

and can be configured to handle different metabolic states. Since the GS simulator is modeled to 

simulate the variation in plasma glucose level as the human body goes through a sequence of diet 

and exercise activities, this simulator can be used to implement a diabetes self-management tool 

that will allow the user to achieve good control over the plasma glucose level.  

 

The proposed simulator was verified for basic metabolic pathways by simulating the response to 

variation in plasma glucose concentrations in healthy and diabetic individuals. In healthy 

individuals, the GS simulator accurately demonstrated how the normal glucose homeostasis is 

maintained, irrespective of initial blood glucose concentrations. The relationship between plasma 

glucose and insulin was also simulated and verified for healthy individuals and individuals 

suffering from different degrees of Type 1 and Type 2 diabetes. 

 

 

  



 63 

FUTURE ENHANCEMENTS 

Exercise affects normal (at rest) glucose metabolism in a variety of ways. The GS simulator is 

currently designed to model only aerobic exercise. In order to increase its applicability, 

subsequent versions of the simulator can be designed to handle anaerobic exercise events as well. 

Additionally, further research can be conducted in order to model more metabolic pathways 

including fat and protein metabolism.  
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