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ABSTRACT 

SCATTERING CORRECTION METHODS OF INFRARED SPECTRA USING 

GRAPHICS PROCESSING UNITS 

 

by 

 

Asher Imtiaz 

 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Roshan M. D'Souza  

 

 

Fourier transform infrared (FTIR) microspectroscopy has been used for many years as a 

technique that provides distinctive structure-specific infrared spectra for a wide range of 

materials (e.g., biological (tissues, cells, bacteria, viruses), polymers, energy related, 

composites, minerals). The mid-infrared radiation can strongly scatter from distinct 

particles, with diameters ranging between 2-20 micrometer. Transmission measurements 

of samples (approximately 100 micrometers x 100 micrometers x 10 micrometers) with 

distinct particles. will be dominated by this scattering (Mie scattering).  The scattering 

distorts the measured spectra, and the absorption spectra appear different from pure 

absorbance spectra. This thesis presents development and implementation of two 

algorithms for processing of FTIR spectra and evaluating the resulting mid-FTIR images. 

The first procedure removes Mie scattering spectral features, and shows resulting spectra 

and images to confirm that scattering intensity has been minimized, and the second 

procedure is a spatial deconvolution algorithm which is used to improve the contrast and 

fidelity of the imaging data.  

Both the algorithms discussed in this thesis were implemented using Graphics Processing 

Units (GPUs) for fast hyperspectral processing by exploiting the parallelism in 
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distributed computational environment. 30x speedup was achieved in spatial 

deconvolution algorithm implementation as compared with MATLAB implementation of 

the same problem specifications. Scattering correction implementation on GPU achieved 

10x speedup for single iteration as compared with previous MATLAB implementation.  

Next, some tests were run on real datasets and its' GPU implementation time is compared 

with previous implementation on CPUs. In the end some future directions and prospects 

are mentioned. 
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1. Introduction 

This thesis presents development and implementation of two algorithms for processing of 

Fourier transform infrared spectra and evaluating the resulting mid-FTIR images. The 

first procedure removes Mie scattering spectral features, and shows resulting spectra and 

images to confirm that scattering intensity has been minimized. The scattering correction 

algorithm is modified from the one presented in [4] and is implemented using Graphics 

Processing Unit. The second procedure is a spatial deconvolution algorithm which is used 

to improve the contrast and fidelity of the imaging data. In the first section of the thesis, 

some subject background of the FTIR imaging is summarized and contributions of this 

thesis are mentioned. In the next section, previous related work in the area is presented. 

In the end future directions of the work is mentioned specially highlighting 

microtomography for which these two processes are important to be computed 

efficiently.  

1.1. Background 

Spectroscopy that deals with the infrared region of the electromagnetic spectrum is 

known as Infrared spectroscopy or IR spectroscopy. It is based on absorption 

spectroscopy and covers a wide range of techniques. This technique can be used to 

identify and study chemicals just like with all other spectroscopic techniques. 
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In absorption spectroscopy technique we measure the absorption of radiation, as a 

function of frequency or wavelength, due to its interaction with a sample. 

FTIR stands for Fourier Transform InfraRed and is considered as the preferred method of 

infrared spectroscopy. In infrared spectroscopy, infrared radiation is passed through a 

sample. Some of the infrared radiation is absorbed by the sample and some of it is passed 

through or transmitted. The resulting spectrum represents the molecular absorption and 

transmission, creating a molecular fingerprint of the sample. Like a fingerprint no two 

unique molecular structures produce the same infrared spectrum. This makes infrared 

spectroscopy useful for several types of analysis. FTIR can provide useful information 

such as it can identify unknown materials, it can determine the quality or consistency of a 

sample and it can also determine the amount of components in a mixture. 

 

During the last decade, there has been a significant increase in the use of infrared micro-

spectroscopy to study biological and biomedical samples. In the field of cancer diagnosis, 

several papers demonstrate that infrared micro-spectroscopy can be used to analyse 

biopsy samples, and in some cases more reliably than a trained histopathologist, 

eliminating subjectivity and offering the possibility of high-throughput screening. In 

addition to studying tissue samples at sub-cellular resolution there has been increasing 

interest in the study of single biological cells.  
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Figure 1: FTIR spectroscopy work flow for imaging and diagnosis. Reproduced from 

reference [17]. 

The application of Fourier-transform infrared (FTIR) spectroscopy in biomedical 

research is relatively novel. Although the physical and mathematical principles behind 

FTIR spectroscopy have been laid for over a century, it is only in the last fifty years or so 

that the required technology – both instrumental and computational – has been fully 

developed to make FTIR spectroscopy instruments available. [1] summarizes in detail the 

major applications of FTIR spectroscopy seen over the past decades which includes a 

diverse range of investigations. In the survey [1] gives the following examples and 
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applications of FTIR spectroscopy; the technique is used to study the presence and 

development of cancer in cervical cytology; in tissue samples such as brain, colon, 

lymph, colorectal, prostate, skin, liver, endometrium, blood vessels, bone marrow, cervix, 

breast, larynx, and stomach; toxicological studies such as the Syrian hamster embryo 

(SHE) assay; environmental studies; presence of disease in biofluids such as serum; 

taxonomic identification; detection of cellular mechanisms; and, detection of stem cells in 

cornea and intestine. [1] 

 

Synchrotron-based multiple-beam Fourier transform infrared (FTIR) chemical imaging 

known as IRENI (infrared environmental imaging) has recently been developed at the 

Synchrotron Radiation Center (SRC) in Madison, WI, USA [6]. The infrared imaging 

data used in the work presented in this thesis is all collected on IRENI at SRC. Overview 

of the IRENI beamline is illustrated in Figure 2 and explained in details in [6]. 

In FTIR based imaging, the data is collected as a hyperspectral cube (x,y, Abs(ν)), which 

convolutes the sample information with the point spread function (PSF) of the 

instrument. Hyperspectral cube is illustrated in Figure 3. 
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Figure 2: Overview of IRENI beamline. Reproduced from reference [10]. 

 

 

 

Figure 3: Hyperspectral image cube. Reproduced from reference [23]. 
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1.2. Contributions 

In this thesis, two algorithms for processing of FTIR spectra are implemented using 

Graphics Processing Units. The first removes Mie scattering spectral features and for the 

first time all the main steps of algorithm pipeline were executed on GPUs as compared to 

previous implementations where only a small portion of algorithm was implemented on 

GPU. The algorithm is based on the preliminary algorithm presented in [4] and some 

modifications have been done in the algorithm. One of the major changes is the way 

principle components were found. The second procedure, a spatial deconvolution 

algorithm was completely implemented on GPUs which is used to improve the contrast 

and fidelity of the imaging data. The unique contribution of this thesis is reporting the 

results of applying combination of deconvolution and scattering correction on the same 

FTIR imaging data. The implementations presented in this thesis achieved 10x and 30x 

speedup, respectively, as compared with an existing MATLAB implementation of the 

same problem specifications. The other main contribution was the development of the 

reference spectrum through experimentation which is used as an input for scatter 

correction algorithm. The reference spectrum is the pure absorbance spectrum which is 

used to correct the scattered spectrum. Software with very intuitive user interface was 

also developed to parse input image data, process image data and generate output image 

data in different formats. Many parameters to control algorithms are also provided to user 

to play with for different image data. 
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2. Related Work 

In the recently published survey of the area [17], the authors have grouped the spectral 

correction methods into mainly two groups which researchers are using currently. Two 

groups are ‘physics based’ and ‘model based’. In physics based approach, explicit optical 

image–formation modeling from first principles is used to predict and correct data. Here 

each sample effect (boundary scattering, scattering centers in the sample and substrate) 

needs to be explicitly accounted for. The theory has been shown to be generally valid and 

there are methods mentioned in [17] which exist now for correcting the same for films, 

spheres and fibers. In case of model based methods, a model is assumed to explain all 

sample effects, typically, Mie scattering. Subsequently, rigorous theory is used to recover 

spectra, e.g., including extended multiplicative scattering correction (EMSC), resonant 

Mie scattering correction (RMieSC) and rubber band baseline correction. Model-based 

methods will generally be faster than explicit modeling methods and may prove to be 

broadly useful but need to be validated in each case. This thesis is based on the model 

based work to correct spectra. Bhargava, et al., in [19, 20] provides the first principles 

calculations that is the basis of the physics behind the scattering calculations 

implemented in this thesis. They focused on identifying, understanding, and removing 

Mie scattering effects in spectra, i.e., light scattering from particles that are comparable in 

size to the wavelength of the incident radiation. The scatter is characterized by large 

baseline variations; strong absorption bands frequently exhibit dispersive band shapes, so 

that apparent peak maxima are shifted and absorption intensities are changed. These 

effects arise from fundamental interactions between light and materials and have been 
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successfully modeled on the basis of Maxwell’s equations in [19, 20], but they require 

computationally expensive calculation. 

 

Bassan, et al., in [4] proposed scattering correction algorithm for infrared spectra as 

shown in Figure 4. His algorithm uses full Mie theory and he also used GPU to compute 

one part of the algorithm. 

Research has been going on understanding the spectral features for many years and in 

2009 the observed distorted spectral features were resolved theoretically by the 

Manchester (UK) research group centered around P. Gardner. In these recent 

investigations it was reported that Mie scattering and the “dispersion artefact” were in 

fact closely related, and they indicated that the use of the term “dispersion artefact” 

should be discontinued, since the distorted band shapes are due to a real physical effect, 

rather than an instrumental or computational artefact. Figure 4 shows the flow chart of 

algorithm and details of the algorithm are presented in [4]. 
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Figure 4: Flowchart of the algorithm proposed by Bassan, et al., in [4] 

 

Bird, et al., also in [5] have also proposed a two step resonant Mie scattering correction 

based on the work of [4]. In [5], the authors have applied a different approach than that 

proposed by Bassan et al in [4]. They utilized a set of standard spectra for each class type 

that are devoid of dispersive line shapes instead of using an iterative process for 

correction which was presented in [4]. These standard spectra are extracted from class 

type libraries built from Hierarchical Cluster Analysis (HCA) imaging results. These 

standard spectra are converted to pure reflective spectra via numerical Kramers-Kronig 
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transform, and are used as interference spectra in an EMSC based correction procedure. 

The average of all standard spectra was used as the reference spectrum in this EMSC 

calculation. They report that the approach is very and hence advantageous.  They also 

mentioned that the standard spectra are transferable for samples that contain the same cell 

or tissue type. This last point attests to the power and flexibility of the method [5]. 
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3. Implementation 

Implementation on Graphical Processing Units 

The need for development of algorithms and implementation on massive parallel 

processors such as GPUs arises because of the size of FTIR microspectroscopy imaging 

data. A typical dataset has around 800 images of 128 x 128 pixels. Gardner group in 2010 

reported in [2, 4] that to correct an IR image with 10 iterations used to take 

approximately 2 days. In [4] they improved and optimized the image correction to 20 

minutes compared to 2 days. Our implementation corrects the whole spectra for a single 

iteration in around 12 seconds. This higher speed was achieved by implementing all main 

steps of the algorithm pipeline using GPU.  

 

Parallel processing on GPU 

The algorithms implemented in this thesis use parallel processing with NVidia GPUs. 

CUDA (Compute Unified Device Architecture) is the parallel computing platform and 

programming model which is implemented by NVidia’s GPUs. In this section the various 

tools, techniques and programming models used in this implementation are described. 

3.1. Graphics Processing Units (GPUs) 

Graphics Processing Units were initially developed to handle computations related to 

graphics rendering. The need for specialized rendering routines led GPU vendors to 

provide user-defined functionality through shader programming [29]. Subsequently, 
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researchers used shaders to essentially trick GPUs into performing scientific 

computations. This further led GPU vendors to develop extensions of the C language in 

order to directly access the parallel processing power for general purpose scientific 

computing. Examples of these APIs include CUDA [25] and OpenCL [26]. Driven 

mostly by 3D graphics, GPU has evolved into a highly parallel processor with 

tremendous computational horsepower [21]. Figure 5 shows the growth over the last 

decade or so.  

 

Figure 5: Growth of floating-point operations per second for the CPU and GPU. 

Reproduced from reference [21]. 
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GPUs are based on single instruction and multiple data (SIMD) architecture. The 

programming model created by NVIDIA and implemented by the GPUs is called CUDA 

(Compute Unified Device Architecture). CUDA provide both low level and high level 

API for developers. In GPUs, more transistors are dedicated to computation. GPU 

architecture has two main components, global memory and streaming multiprocessors 

(SMs). The implementation for the work presented in this thesis use Fermi architecture 

by NVIDIA as shown in Figure 6. Each SM in Fermi has 32 CUDA cores, cache and 

shared memory. 

 

 

Figure 6: GPU Fermi architecture [29].  16 multiprocessors are positioned around a 

common L2cache. Each orange portion is scheduler and dispatch, green portions are 

execution units and light blue portions are memory for register file and L1 cache  
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The basic execution unit is a thread. Every thread executes the same program called a 

kernel. Threads are organized into logical partitions called thread blocks (TBs). During 

execution, all threads in a TB are assigned to a single MP. Threads in a TB can 

communicate via shared memory and can be synchronized. In a typical execution, the 

number of TBs far exceeds the number of MPs (Figure 7). At the hardware level, threads 

are organized into warps. All threads in a warp execute in lock-step fashion. Warps are 

equivalent to threads in the symmetric multi-process context. It is therefore advisable to 

avoid thread divergence with a warp. If two or more threads in a warp access the same 

shared memory bank, this operation will cause bank conflicts and serialization. However, 

if all threads access a single shared memory location, then an efficient broadcast 

mechanism is used. In accessing global memory, all threads in a warp must access 

memory within a contiguous 128b segment. Non-compliant memory accesses are called 

un-coalesced accesses and are serialized. 

Many high performance numerical libraries like CUBLAS and CULA provide BLAS 

and LAPACK implementations on GPUs as well as hybrid computations involving both, 

CPUs and GPUs. CUDA 4.2 API based on Fermi architecture was used to implement 

both algorithms presented in this paper.  
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Figure 7: CUDA Model [21].   Threads, blocks, and grids, with corresponding memory 

spaces for private per-threads, shared per-block, and global per-applications. 

 

 

Following GPUs were used for the development and all the tests. 

GPU 1: NVIDIA Tesla C2050, 2.6 GB Global Memory 

GPU 2: NVIDIA GeForce GTX 580, 3 GB Global Memory 
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4. Deconvolution 

The first part of the project was to implement deconvolution algorithm on GPU as first 

part of spatial image restoration of chemical images. A GPU based program has been 

implemented and rapid deconvolution has been applied to Fourier transform infrared 

imaging data collected on IRENI at the Synchrotron Radiation Center (SRC). A 

deconvolution approach to remove the PSF has been described in detail in a recent 

publication [9], and improves spatial and spectral fidelity of the data sets for a well-

known test sample. 

 

The point spread function (PSF) of an optical imaging system provides a measure of 

diffraction effects, chromatic aberrations and other factors that distort the object being 

imaged. The relationships between an observed image, the true form of the object being 

imaged and the PSF that represents the optical response of the system to a point light 

source are described within the degradation model of image formation. 

Mathematically, these three quantities are related by the convolution operation [9] 

Imeas = Itrue * PSF    (1) 

where * denotes convolution. If the PSF for a given optical system is known, one can 

remove the blurring because of diffraction effects from the measured images, to restore 

images with enhanced resolution and contrast. 
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Here a summary is provided for the computational method presented in [9] for spatial 

deconvolution.  

For the IR imaging community, it has long been a goal to perform spatial and spectral 

deconvolution of hyperspectral cubes. However, to perform spatial deconvolution 

properly, an appropriate characterization of the PSF of the optical imaging system must 

be performed and implemented. In doing this, we must account for the fact that the PSF is 

intrinsically wavelength-dependent, yet we need to apply it to the broad mid-IR 

wavelength range (2.5−10 μm, for IRENI). Other approaches to deconvolution of IR 

hyperspectral data sets have applied the well-known methods of Fourier Self- 

Deconvolution (FSD) to the spectral domain as well as the spatial domain. These 

methods, implemented in commercial software packages, deconvolute Lorentzian 

lineshapes from the spectra, as well as from the two-dimensional images in the 

hyperspectral cube. The fundamental difference in the method presented in [9] is that the 

work has focused on deconvolving a PSF which truly represents the response of the 

imaging system to a point light source and thus correctly describes the mechanism of 

image formation. For our current version of software, two different psf for two different 

optics (36x, 0.5 NA and 74x, 0.65 NA objectives) are implemented. By employing the 

convolution theorem, (1) may be inverted and the solution for the deconvoluted image 

may be expressed as 
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Results in [9] have shown that upon comparison of the raw and deconvoluted data from 

both objectives, it is clear that in all cases the deconvolution produces images showing 

sharper, more well- defined features with enhanced contrast. 

 

 

 

Figure 8: Raw and deconvolved chemical images; Extracted single spectra from the 

original (left-hand side) and deconvolved data sets (right-hand side) taken along the 

white line in the respective images. Reproduced from reference [10]. 
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The tasks that are accomplished within GPU for spatial deconvolution algorithm  include 

the following: 

 PSF Schwartzchild from spectrum for all wavenumbers  

 Parallel reduction to find max for each PSF and scaling the calculated PSF 

 Shift PSF data for FFT 

 Execute FFT all the PSFs in a batch 

 Mirroring image data for FFT 

 Shift the image data before FFT 

 Executing FFT for all the images in a batch  

 Shift back the image data after FFT 

 Deconvolve all the images with calculated PSF 

 Shift the image data before FFT 

 Executing FFT for all the deconvolved images in a batch  

 Shift back the image data after FFT 

 Get data from mirrored image 

 

Input to the program was image data cube, wave numbers at which each image is taken 

and a Hanning apodization kernel for deconvolution. 

The first step of the algorithm was to measure the fitted wavelength-dependent point-

spread-functions (PSFs) which were done for all wave numbers in one GPU call. 

Second step was to deconvolve the image data after Fourier with PSF and calculating 

apodization kernel on the fly on the GPU.  For deconvolution, the input image data needs 
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to be prepared before taking its FFT. For pre-processing image data shift and mirroring 

operations were also implemented efficiently on GPU. To scale image data, minimum 

and maximum of image data at each wave number was required. That means calling 

reduction method multiple times. Thrust library was used efficiently to scale data [27]. 

As compared to previous implementation of the same algorithm, the time to process 

similar data sets reduced from around 30-40 seconds to around 1 second. 

 

4.1.1. User Interface for Spatial Deconvolution 

The GUI takes Opus file as input which contains the information about image data and 

also the image data itself. In the first step Opus file is read and data is extracted and 

converted into raw binary image data. A parser was written in C++ to read the Opus file 

format and being integrated to work with the GUI. Image data was then passed to a 

custom library created for deconvolving data. QT which is widely used for application 

development is used to create the UI. Further adding some imaging capabilities and 

integrating with CUDA based API. The user interface with the sample run is shown in 

Figure 9. 
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Figure 9: User interface for spatial deconvolution algorithm 
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5. Scattering 

Fourier transform infrared (FTIR) spectroscopy has been demonstrated as a potential tool 

for disease diagnostics in tissue and in its microscopical form, for cellular analysis. The 

use of synchrotron sources and attenuated total reflection imaging have achieved 

subcellular resolution thus promising a powerful technique for the analysis of the 

biochemical origin of disease. However, both tissue and cellular material are extremely 

spatially inhomogeneous on a micrometre scale in terms of physical morphology and 

chemical content and such inhomogeneity can give rise to elastic scattering of the 

incident radiation which is the origin of a broad undulating background to spectra which 

have been attributed to Mie scattering. [15] 

The algorithm presented by Bassan et al. in [4] is used here with modifications and 

implemented using GPUs.  

The following are the steps involved in scatter correction algorithm  

 Input a scatter free reference spectrum (ZRef) 

 Calculate 1000 scattering possibilities using difference particle diameters 

(QCurves) 

 Getting 7 principal components using singular value decomposition (SVD) 

 Linear regression to estimate scatter contributions 

 Subtract the scatter spectrum 
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Following is the flow chart of the scatter correction algorithm with grey highlighted parts 

showing steps performed on GPU.  Other than implementation of several parts of 

algorithm on GPU, one main difference is how principal components are found. We have 

used singular value decomposition to find the 7 principal components.  

 

  

Input: 

ZRaw 

ZRef 

Output: 

ZCorrected 
 

 Raw Ref 1 1 2 2 7 7... ...Z hZ c p c p c p   

SVD 
For calculating 

principal components 

Kramers-

Kronig 

Calculate 

Q curves 

ZRef 

 

Loadings, p 

Spectrum 

modeling 
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The following reference spectrum was used as input for the spider silk datasets which 

shows a lot of scattering features.  

 

Figure 10: Reference Spectrum 

 

 

 

Figure 11: Real refractive index 
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Overall our scattering correction implementation produces results of a dataset containing 

around 800 images of 128x128 in around 12 seconds on average.  

 

Process Matlab version CUDA version Speedup 

Kramers-Kronig 63.15 ms 2.91 ms 21x 

Generating 1000 Q 

Curves 

46.57 ms 2.69 ms 17x 

 

Table 1: Execution time of two computationally expensive tasks on the GPU 

 

 

 

5.1.1. User Interface for Scattering Correction 

The GUI for scattering correction takes Opus file or comma separated DPT file as input 

which contains the information about image data and also the image data itself. In the 

first step input file is read and data is extracted and converted into raw binary image data. 

Similar to the architecture of previous software mentioned before, image data was then 

passed to a custom library created for handling all the processing for scatter correction. 

After the correction, the software generates a binary output file which can be used to 

generate Chemigrams and further used as input for deconvolution code. The user 

interface with the sample run is shown in Figure 12. 
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Figure 12: User interface for scattering correction algorithm. 
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6. Simulated Data 

To check the fidelity of the scatter correction method, we prepared simulated data sets. 

The simulated data set was prepared by taking a reference spectrum presented in figure 

10. In the first test, reference spectrum was given as ZRaw to the correction algorithm. 

Since there was no scatter present so the corrected spectra was almost similar to the input 

as shown in figure 13. Then using van de Hulst approximation equation, 100 different 

scatter curves were calculated with varying parameters a (average refractive index), b 

(resonance parameter) and diameter values. Then these known scatter curves were added 

to the reference spectrum to get ZRaw. Then this simulated ZRaw was provided as input 

to the scattering correction to get corrected spectrum. Selected results are shown in figure 

14, 15 and 16. 

 

Figure 13: Simulated data result with reference spectra as input Z_Raw. 
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Figure 14: Simulated data result 1. 

 

Figure 15: Simulated data result 2. 
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Figure 16: Simulated data result 3. 
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7. Data 

The following datasets have been used to see the results of the code for scattering 

correction and spatial deconvolution algorithm implementation on GPU.  

7.1. Spider Silk 

Spider Silk dataset has been provided by Sujatha et al. [12]. The data recorded show 

exaggerated scattering features and correcting scattering is important in the further data 

analysis. Spider silk is a remarkable biopolymer, a lightweight protein fiber that spiders 

produce for diverse purposes including web structure, prey immobilization, making egg 

cases and which is a key to their survival. With a unique combination of high elasticity, 

mechanical strength and toughness, its superior material properties surpass those of any 

currently known man-made fiber. In addition, these fibers are biocompatible and 

biodegradable. It is one of the best examples of block copolymers in Nature in which 

repeating structural motifs are linked together covalently resulting in polymers that 

organize themselves into a variety of nano-structures with exceptional material 

properties. The extraordinary mechanical properties have been attributed to the 

hierarchical structuring at the nanometre length scales, and are designed to perform 

different functions at each level, effectively linking nano-scale constituents to properties 

at the macro level, a strategy often used in Nature (silk, bone, wood). These features 

coupled with potential diverse applications render spider silk as an ideal model for 
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biomimetic research. Over the last few years there has been a great deal of interest in 

understanding how this nano-structuring works, both from a theoretical and experimental 

perspective, made feasible with the advent of more advanced experimental and 

computational facilities. Recent advances in bioengineering have made considerable 

progress in the production of synthetic silks, however, to date synthetic fibers do not 

exhibit the same physical or mechanical properties of natural spider silk. The viable 

production and use of these proteins as synthetic materials requires greater knowledge of 

the secondary, tertiary, and quaternary structure of the proteins that comprise spider silk. 

7.2. DRG Neurons 

DRG neurons (dorsal root ganglia) data was collected at the synchrotron radiation center 

(SRC, Stoughton, WI) using the IRENI beamline [6]. Barabas et al. in [13] hypothesized 

that heterogeneous populations of sensory neurons likely differ in chemical features. Also 

they conducted FTIR spectromicroscopy to identify DRG subpopulations based on 

chemistry. [13] is the first report to use FTIR spectromicroscopy to assess the 

biochemical composition of somatosensory neurons. They employed synchrotron 

radiation at the InfraRed ENvironmental Imaging (IRENI) mid-infrared beamline at the 

Synchrotron Radiation Center (SRC; University of Wisconsin-Madison). The use of this 

beamline enables rapid, diffraction-limited spatial resolution imaging of individual 

neurons [6]. Importantly, this experimental approach can probe length scales that are on 

par with subcellular structures. 
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Using FTIR spectromicroscopy in [13], the authors were able to visualize the distribution 

of chemical features and identify changes in chemistry on a single-cell basis. The authors 

also identified and characterized particularly unusual architectures of chemical structures 

that were created by an annular “ring” distribution of carbohydrate and/or lipid 

enrichment in the cytoplasm in sensory neuron subpopulations, a feature that has never 

before been reported in native cells of any type. 

 

  



33 

 

 

 

8. Scattering and Deconvolution 

This thesis also presents results of applying deconvolution and then correcting scatter of 

deconvolved FTIR images. To the best of our knowledge such analysis has never been 

published before. Several studies have employed signal processing techniques to improve 

image quality. This technique of deconvolution and then scatter correction or scatter 

correction and then deconvolution is currently being studied and we are looking at results 

to further highlight its importance. In this section, we used our implementation to run on 

datasets mentioned earlier and some results are reported.  

8.1. Results  

The following images are chemigrams of DRG Neuron dataset. 

 

Figure 17: Chemigrams of DRG Neuron dataset. Original raw data (left) and 

deconvolved (right) with 74x absorbtion option. 
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The following images are chemigrams of spider silk tomography dataset.  

 

 

Figure 18: Chemigrams of spider silk image data 
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Figure 19: Average spectra of original image 

 

 

Figure 20: Average spectra after scatter correction 
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Figure 21: Average spectra - Scatter correction and then deconvolution 

 

Figure 22: Single pixel spectra of spider silk tomography dataset. Original data spectra 

(left), Scatter corrected then deconvolved (right) 
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9. Future Work 

Future work has been identified in different areas based on the work presented in this 

thesis. Our future work will continues in three different areas. The first is the 

development and implementation of 3D microtomography reconstruction on GPU that 

outperforms all state of the art algorithms and that can be easily accessible and applicable 

to huge applications in the area. The second possible target of future work in this area is 

to release user friendly software for proposed algorithm. The third area lies on the 

application side. In this work, though we have achieved better speedups and computation 

time for both the algorithms. There have been many technological advances in GPU 

hardware and software configurations in the last year or two. New architecture provides 

more promise to achieve even higher efficiency and algorithm development to improve 

execution time will be needed in the foreseeable future. 

9.1. Tomography 

FTIR spectro-microtomography provides spectrally rich, label-free, nondestructive 3D 

visualizations of biological and materials samples. Several groups are working to create 

efficient data collection and analysis facilities with the promise of quantitative analysis, 

which will incorporate advances from protein crystallography, X-ray tomography, 

medical tomography, FTIR spectroscopy, and computational control and analysis to 

automate the collection, processing and storage of large spectral tomographic data sets. 
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Continued advances in mid-IR array detector technologies, synchrotron IR beamlines and 

computational tomography tool sets are expected to improve FTIR spectro-

microtomography. In [8], the methods proposed are expected to facilitate a wide variety 

of scientific, industrial, materials, energy and medical applications. 

 

Reconstruction of the transmission image of one wavelength is similar to traditional X-

ray tomography. Martin et al. in [8] have written scripts that allow reconstruction of any 

(or all) of the mid-IR wavelengths to compare absorption features, spectral integrations of 

wavelength regions corresponding to absorption feature(s), ratios of two absorption band 

intensities or any of these spectral functions with an automated baseline subtraction. By 

reconstructing all wavelengths, they have shown that they can reassemble the 

reconstructed spectrum for any or every voxel within the 3D space (an example is shown 

in Fig. 19). Having complete spectra for every voxel can help users to interpret chemical 

and structural variations in different regions of the sample and/or enable more advanced 

spectral comparisons and allow the use of sorting tools such as principal-component 

analysis, cluster analysis and other statistical analysis techniques. However due to the 

size of data, this task is time consuming. Using GPUs to do most of the processing, we 

can get reconstructed spectrum faster and will be one of the next steps in this direction.  
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Figure 23: FTIR spectro-microtomographic imaging of Zinnia. Reproduced from 

reference [8]. 
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9.2. FTIR Biospectroscopy 

Biospectroscopy is defined in [1] as applying Fourier-transform infrared (FTIR) 

spectroscopy to biological questions which is relatively novel. This area of study is 

growing fast. [1] has identifed some potential fields of application which include 

cytological, histological and microbial studies. This potentially provides a rapid and non-

destructive approach to clinical diagnosis. Its increase in application is primarily a 

consequence of developing instrumentation along with computational techniques. In the 

coming decades, biospectroscopy is likely to become a common tool in the screening or 

diagnostic laboratory, or even in the general practitioner’s clinic. Despite many advances 

in the biological application of FTIR spectroscopy, there remain challenges in sample 

preparation, instrumentation and data handling. The focus of our work is mainly in data 

analysis and handling and [1] identify four main goals in this area: Pattern Finding; 

Biomarker Identification; Imaging; and, Diagnosis. [1] grouped these into two 

frameworks: Exploratory; and, Diagnostic. They claim that in the near future research 

should be focused on the challenges of dataset standardization; building information 

systems; development and validation of data analysis tools; and, technology transfer.  

While the existing large amount of biological studies that use FTIR biospectroscopy are 

of remarkable value to validate a novel approach to diagnosis, FTIR biospectroscopy 

lacks research that is mainly focused on modelling and validation of data processing 

methods. [1] has summarized some specific challenges in FTIR biospectroscopy data 

handling. 
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9.3. GPU Technology 

NVIDIA has released two new high performance computing architectures called ‘Kepler’ 

and ‘Maxwell’ since we started this development. GPUs based on Kepler are now widely 

available and in use. The following are the main improvements and features in the new 

Kepler based GPUs as compared to the previous Fermi architecture [30]. 

 Over 2400 stream processors as compared to around 500 processors in Fermi 

GPUs. 

 For single precision around 3.5 TFLOPS and for double precision 1.1 TFLOPS on 

Kepler GPUs as compared to 1.1 TFLOPS and 500 GFLOPS for single and 

double precision on Fermi GPUs 

 Maximum registers available per thread increased from 63 to 255 

The important two new features of Kepler GPUs are Dynamic Parallelism and HyperQ.  

With the capability of Dynamic Parallelism, GPU can generate new work for itself. This 

feature will provide more flexibility to design parallel algorithms. GPUs will be more 

efficiently used as computation evolves. The code is easier to write for most applications 

and more control is now inside GPU kernels to adapt to different parallel program 

structures. 

One of the other interesting features HyperQ will allow Kepler GPUs to simultaneously 

make 32 connections with the CPU which will be managed at hardware level. In Fermi 

there was just single connection available between CPU and GPU. This will increase 

GPU utilization dramatically. 
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Porting the code and further implementation with these new features will surely improve 

the running time on Kepler and Maxwell. This will result in more speed up and will help 

improve overall running time of applications which use these algorithms as a building 

block. 
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