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ABSTRACT

 

QUALITY ENHANCEMENT OF 3D MODELS RECONSTRUCTED BY 

RGB-D CAMERA SYSTEMS

by 

Chuanbo Wang

The University of Wisconsin-Milwaukee, 2015  
Under the Supervision of Professor Zeyun Yu 

Low-cost RGB-D cameras like Microsoft's Kinect capture RGB data for each ver-

tex while reconstructing 3D models from objects with obvious drawbacks of poor mesh 

and texture qualities due to their hardware limitations. In this thesis we propose a com-

bined method that enhances geometrically and chromatically 3D models reconstructed 

by RGB-D camera systems. Our approach utilizes Butterfly Subdivision and Surface Fit-

ting techniques to generate smoother triangle surface meshes, where sharp features 

can be well preserved or minimized by different Surface Fitting algorithms. Additionally 

the global contrast of mesh textures is enhanced by using a modified Histogram Equal-

ization algorithm, in which the new intensity of each vertex is obtained by applying cu-

mulative distribution function and calculating the accumulated normalized histogram of 

the texture. A number of experimental results and comparisons demonstrate that our 

method efficiently and effectively improves the geometric and chromatic quality of 3D 

models reconstructed from RGB-D cameras.
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Chapter 1: Introduction

Low-cost range sensors such as Microsoft’s Kinect sensor have attracted re-

searchers in many areas including computer vision[9][10][11], augmented reality (AR)

[12], robotics[13][14], human computer interaction(HCI)[15][16][17] and even medical 

imaging[18]. 3D Reconstruction of real-world objects, human body and indoor environ-

ment is an essential component in the systems mentioned above. However the quality 

of 3D reconstruction using Kinect sensor is limited by its noisy output due to its low-cost 

hardware. 

Researchers have proposed different methods for improving the reconstruction 

quality. A possible taxonomy of these methods could be based on the targeting data set. 

The first group of researches enhance the reconstruction quality by recovering the 

depth map captured by the Kinect sensor. [19] proposes a new 3D reconstruction work-

flow based on hole-filling algorithms of 2D depth image combined with 3D point cloud 

filtering algorithms. [20] proposes a depth prediction algorithm based on fitting a poly-

nomial on the unknown depth locations to generate a noise-free depth map. [21] 

presents a depth filtering algorithm taking advantage of the color and motion information 

from the RGB camera of the Kinect sensor to increase the quality of the depth map. 

However these works only enhance the geometrical quality of 3D models with the raw 

RGB frames. 

Another group of researches aim at correcting the calibration of depth and color 

data acquired from the Kinect sensor. [22] presents a maximum likelihood solution for 

the joint depth and color calibration. [23] presents a calibration algorithm for a depth and 

�1



color camera pair that is optimal in the sense of the postulated principles using a planar 

checkerboard pattern. However their works do not enhance the data itself, therefore 

they still suffer from the artifacts of the depth map and the raw color image. 

A third group of developers combine other cameras with the Kinect sensor as a 

substitute of the color camera component in the Kinect sensor. [24] and [25] mount a 

digital single-lens reflex (DSLR) camera to the Kinect sensor and the system uses color 

images captured by the DSLR instead of the color camera in the Kinect sensor. But their 

works at least triple the hardware cost of the sensor system.

In this thesis we propose a combined method that enhances geometrically and 

chromatically colored 3D models reconstructed from the data acquired by the Kinect 

sensor. Our method makes several contributions to the field of 3D reconstruction from 

RGB-D camera systems. In Chapter 2, we introduce the hardware structure and specifi-

cations of the Kinect sensor and demonstrate how our system generates colored trian-

gle meshes from the output of the KinectFusion system. We explore possible subdivi-

sion algorithms and smoothing algorithms for smoothing the surface mesh reconstruct-

ed from RGB-D camera systems in Chapter 3, and analyze the algorithms in terms of 

effectiveness. In Chapter 4, we demonstrate how our system enhances chromatically 

the texture of 3D mesh models reconstructed from the Kinect sensor. We also describe 

the extension of histogram equalization algorithm to 3D and colored cases. In Chapter 

5, we present and analyze the results of our system. And we discuss the limitations of 

our system and ideas for future research in Chapter 6.
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Chapter 2: 3D Reconstruction from RGB-D Camera Systems

Our mesh enhancement system uses a Microsoft Kinect sensor with KinectFu-

sion[1] for 3D surface reconstruction. Mesh triangulation is performed and the RGB in-

formation is mapped to each vertex of the 3D surface model. In Figure 2.1, we demon-

strate the steps our system performs to construct a colored triangle surface mesh from 

a Kinect sensor. In the rest of this chapter, we describe the hardware components and 

specifications of the Kinect sensor, and explain how our system uses KinectFusion to 

generate 3D surface models.

2.1 Kinect Hardware

Our system uses KinectFusion, which take data from each component in the 

Kinect sensor(Figure 2.2). The Kinect sensor has a infra-red projector and two cameras, 

a depth camera and a normal RGB camera. The infra-red projector, locates on the left 

side, emits a pre-defined pattern of hundreds of infra-red rays into the space and 

projects dots all over the scene. The depth camera on the right side is a monochrome 

CMOS sensor that captures reflected Infra-Red rays(Figure 2.3) from the scene. By an-

alyzing the deformation of these dots, the Kinect sensor calculates the depth and sur-

face information of the objects in the scene and generates a depth map of it. The infra-

red projector combined with the depth camera is the core component of the Kinect sen-

sor, the depth sensor, which has a default sensing range of minimum 800 millimeters 

and maximum 4000 millimeters[7]. The Kinect sensor can however be switched to a 

“near mode” that provides a sensing range of 500 millimeters to 3000 millimeters in-
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stead of the default range. The camera in the middle is a 8-bit color VGA video camera 

that stores three channel data in the resolution of 640x480 at 30 fps. It also supports the 

resolution of 1280x960 at a lower frame rate of 12 fps and other color spaces such as 

YUV. 

The device has a viewing angle of 43 degrees vertically and 57 degrees horizon-

tally. It also has a tilt motor that allows vertically an additional ±27 degree range, which 

effectively doubles the volume that the field of view could surround. Apart from the cam-

eras, the Kinect sensor has a multi-array microphone containing four microphones, 

which allows the device to find the location of the sound source and the direction of the 

audio wave. An example of a color frame and a depth frame is showed in Figure 2.4.

�4

Figure 2.2 Infra-Red Projector, RGB Camera, Depth 
Camera[7]
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Figure 2.1 Our system uses KinectFusion to create a point cloud within a selected 
distance range, and then the point cloud is triangulated into a triangle mesh. Color 
information captured from the Kinect is used as the input of the mapping algorithm 
to create a triangle mesh with RGB values on each vertex.
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Figure 2.3 Infra-Red dots projected on the scene[27]

Figure 2.4 An example of a color frame and a depth frame



2.2 KinectFusion

KinectFusion is a 3D reconstruction system developed by Microsoft Research in 

2011. It takes live depth data from a moving Kinect camera and creates high-quality and 

geometrically accurate 3D models in real-time by allowing a user to pick up a standard 

Kinect sensor and move around the target object. The system keep tracking the 6 de-

grees of freedom pose of the Kinect sensor and fuse the data from depth frames to 

build a 3D surface model[1]. 

KinectFusion reconstructs 3D models in four main steps. First, the system pre-

processes the raw depth map from the Kinect sensor and generates a dense vertex 

map and a normal map. After that, the location and orientation of the Kinect sensor are 

also estimated from the depth data by an iterative closest point algorithm. In the third 

step, the system integrates each depth frame into the reconstructed 3D model using a 

volumetric, truncated signed distance function. Finally, a ray-tracing algorithm computes 

the surface positions. Figure 2.5 provides the workflow of KinectFusion system.
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2.2.1 Surface Measurement

First, the KinectFusion take the raw depth data from the Kinect sensor as input 

and converts it into the floating point depth values in meters, which is the distances from 

pixels in the scene to the depth sensor, using a function called NuiDepthPixelToDepth. 

Then vertex positions are computed in the camera space from the depth values. And 

the normal of each point is obtained by calculating the cross product of the neighbor 

vertex above it and the neighbor vertex on its right side. After that, the system generate 

a point cloud with location and normal for each point, which is integrated into a the 

global 3D reconstruction at the third step.

2.2.2 Pose Estimation

KinectFusion requires the pose of the sensor to integrate each depth frame into 

the final reconstruction since the sensor is moved by a user to capture color and depth 

frames from slightly different viewpoints. The system estimates the pose of the sensor 

using a interactive closest point(ICP) algorithm, which finds a rigid 6 degree-of-freedom 

alignment transform from the point cloud generated from the current depth frame to the 

one generated from the last depth frame. With the transforms between frames, the sys-

tem keeps track of the current sensor pose and its relation to the initial starting frame.

2.2.3 Volumetric Integration

During the third phase, KinectFusion integrates the depth data into a single vol-

umetric representation of the space around the camera. The point cloud generated from 

the current depth frame is converted into world coordinate system first, given the pose 
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of the camera from the previous step. Instead of fuse point clouds, the system take ad-

vantage of a volumetric signed distance functions(SDF). The SDF assigns positive 

numbers to voxels outside the surface, negative numbers to voxels inside the surface 

and zero to voxels on the surface. And the absolute values of the numbers are the dis-

tances from the voxels to the surface in the direction of the view ray. 

2.2.4 Ray Tracing

Finally, the system reconstructs a surface by ray tracing the SDF. Ray tracing is 

performed from the location and the orientation of the camera, which is generated in the 

second step, and stops when a zero crossing(when the number assigned to a voxel by 

SDF is zero from the third step) is detected indicating the surface.

2.2.5 The Triangle Mesh File Format

The version of KinectFusion we use is v1.8 and it supports three formats for the 

output 3D model: PLY, STL, and OBJ. The only format that support RGB information ex-

traction is PLY. However, KinectFusion generates PLY files as point clouds without in-

formation of edges or faces. To address this issue, we perform mesh triangulation to the 

PLY file and generate an OFF file. Then we map the RGB information of the PLY file to 

the OFF file by simply compare the location of each vertex. The result of this process is 

a colored COFF file, which is a triangle surface mesh with RGBA channels on each ver-

tex.
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Chapter 3: Geometry Processing

3D reconstruction from the Kinect sensor with KinectFusion has advantages over 

similar systems: low cost, easy setup, fast scanning, portable. However there is a trade-

off between cost and accuracy. The Kinect system is able to capture object details with 

a minimum size of approximately ten millimeters, which is also the minimum radius of 

curvature on a curved surface to be reconstructed[3]. With a minimum camera/object 

distance and a maximum voxels per meter resolution, KinectFusion generates 3D mod-

els that can be dramatically enhanced with respect to the geometric quality. To break the 

limit of resolution of the Kinect sensor, our system first applies butterfly subdivision to 

the 3D model as a pre-processing step. Then we improve the smoothness of pre-pro-

cessed meshes using surface fitting methods. In this chapter, we first explain our choice 

of surface subdivision methods followed by how it works in our system. Then we discuss  

respectively two mesh smoothing methods based on surface fitting approach.

3.1 Surface Subdivision

Our system utilizes surface subdivision method to increase the density and im-

prove the smoothness of surface meshes before smoothing. Surface subdivision, in the 

field of 3D computer graphics, is a method of representing a smooth surface via the 

specification of a coarser piecewise linear polygon mesh. The smooth surface can be 

calculated from the coarse mesh as the limit of a recursive process of subdividing each 

polygonal face into smaller faces that better approximate the smooth surface[4]. 
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3.1.1 Choices of Subdivision Method

Surface subdivision schemes roughly fall into two subcategories: approximating 

and interpolating. An example of approximating subdivision schemes for triangle mesh-

es is the Loop scheme, which applies average mask to all vertices including the original 

ones and the new vertices. The butterfly subdivision scheme is an interpolating scheme 

that only applies average mask to newly created vertices based on the original ones. 

This differs from the Loop scheme in respect of generating new vertices on the limit sur-

face. Since the goal of the geometry processing of our system is enhancing the quality 

of a 3D model reconstructed by Kinect from a real object, we choose the interpolating 

subdivision scheme, butterfly scheme to keep the geometry features of the mesh while 

being smoothed.

3.1.2 Butterfly Subdivision

Butterfly subdivision is an interpolating subdivision scheme defined for triangle 

mesh only. At each step of the scheme, each triangle is divided into four smaller trian-

gles by three new points each added to an edge of the triangle. On each edge, a edge 

point, P’, is created following an eight-point rule demonstrated in Figure 3.1[4], which is 

also the reason that this method is called butterfly. P’ is defined as

where ⍵ is a tension parameter. P1 and P2 are two end points of the edge, P3 and P4 

are two other points that form the two triangles that share the edge. And Pk, k = 5, 6, 7, 
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8, are four points that form triangles(other than the two triangles mentioned above) with 

edge (Pi, Pj), i = 1, 2, j = 3, 4.

In scheme (1), ⍵ serves as a tension parameter that as ⍵ tends to zero the limit 

surface is tightened towards the original control mesh. More specifically, when ⍵ gets 

close to 0, the new point tends to be added on the midpoint of the edge. ⍵ is found to 

satisfy the necessary conditions for C1 continuity when 0 < ⍵ < ⍵0, ⍵0 > 1/16[2]. In Fig-

ure 3.2 we show a triangle of the original surface mesh and the resulting piecewise lin-

ear surface mesh generated after one iteration of subdivision using ⍵ = 1/16. And Figure 

3.3 shows the overall comparison of the 3D model of a grabbing hand before and after 

the butterfly subdivision scheme with a tension parameter ⍵ = 1/16.
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Figure 3.1 The 8-point scheme of butterfly subdivision. 
P’ is the point newly created on the edge(P1, P2).



3.2 Isotropic Surface Fitting

The first mesh smoothing method we perform after subdivision is an isotropic 

surface fitting method based on local surface fitting with optimum vertex projection 

technique. This algorithm fits an analytical quadric surface for each vertex using the 

least-square fitting method, then the center of the maximum inscribe circle(MIC) at each 

vertex is calculated. Finally, the vertex is updated with the projection point of the center 

of the maximum inscribe circle onto the local fitted surface. Figure 3.4 shows the work-

flow of the surface smoothing procedure.
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Figure 3.2 The workflow of isotropic surface 
fitting[5]
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Figure 3.4 The left image shows the original surface mesh of a 
grabbing hand reconstructed from KinectFusion. The right image is 

the result of butterfly subdivision with tension parameter ⍵ = 1/16

Figure 3.3 A comparison of a triangle before and after subdivision.

(a) A marked triangle in the original 
surface mesh

(b) The marked triangle is subdivided into 
four smaller triangles



The isotropic surface fitting method effectively enhances the smoothness of a 

mesh, but also improves the angle quality in the mesh benefits from the optimized ver-

tex projection algorithm. As shown in Figure 3.5, given a vertex in the original mesh and 

a fitted plane generated from a adaptive number of rings of its neighbors, all vertices in 

the neighborhood is projected onto the plane and a 2D polygon is formed from these 

projection points. The center of the MIC of this 2D polygon is then found and projected 

back onto the quadric surface along the normal vector of the plane, and the projection 

point is the final new position of the vertex in the original mesh.

�15

Figure 3.5 The optimized vertex projection 
algorithm[5]



3.3 Anisotropic Surface Fitting

As an alternative triangle meshing approach, we perform anisotropic surface fit-

ting for smoothing the triangle mesh reconstructed by KinectFusion. Anisotropic surface 

fitting is a feature-preserving version of the isotropic surface fitting method we dis-

cussed in the previous section. An analytical quadric surface is fitted for each vertex us-

ing the least-square fitting method, and the center of the maximum inscribe circle at 

each vertex is calculated and then projected onto the fitted quadric surface to serve as 

the new position of the original vertex. However, instead of finding rings of neighbor ver-

tices of the original vertex for fitting, the anisotropic method selects part of its neighbors 

by filtering the other part based on a normal-weighted distance function, which takes not 

only the distance between the vertex and its neighbor, but also the normal difference 

into consideration[6]. Figure 3.6 shows the workflow of anisotropic surface fitting algo-

rithm.

3.3.1 Anisotropic Neighborhood Selection

In this approach, the key of feature preserving is the selection of anisotropic 

neighboring vertices using the normal-weighted distance function(NDF)(Figure 3.7). 

Each vertex is presented by a triangle that has the most similar normal direction to the 

normal vector of the vertex since the NDF is supposed to work on triangles. Then the 

NDF between the triangle indicating each neighboring vertex and the triangle indicating 

the center vertex is calculated, and neighboring vertices whose distance are less than a 

predefined threshold is selected to join the anisotropic neighborhood. After this proce-
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dure, the quadric surface fitted from the anisotropic neighbors of each vertex only geo-

metrically mimics the surface patch with low curvatures around the vertex. Therefore, 

instead of being smoothed, sharp features of the mesh are preserved as the boundaries 

between two surface patches.

 The results of isotropic surface fitting and anisotropic surface fitting are com-

pared in Figure 3.7. Generally the mesh is effectively smoothed using both methods. 

However they still have some flaws respectively. The isotropic method blurs the bound-
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Figure 3.6  the workflow of anisotropic surface fitting 
algorithm[6]



ary between the hand and the object. This is predictable since the isotropic method 

blurs sharp features(high curvature) such as boundaries, edges and corners. The an-

isotropic method effectively recovers the sharp boundary between objects, yet it fails to 

remove the gaps caused by vertices fall inside the surface. This is because the method 

does not consider these vertices for fitting the quadric surface since they are filtered out 

by the anisotropic neighbor selection algorithm.

To sum it up, the isotropic method is more suitable for smoothing meshes recon-

structed by KinectFusion in most cases. More specifically, the isotropic method is more 

suitable for meshes with high level of noise and without sharp features. Since KinectFu-

sion has a minimum detail detection size and a maximum number of voxels recon-

structed per meter due to the hardware limitation, the sharp features of mesh models 

reconstructed are not very sharp. Therefore the biggest advantage of the anisotropic 

method over the isotropic method is not useful under these scenarios.
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Figure 3.7 On the top is the original mesh after pre-processing, the middle image demonstrates the 
mesh after the anisotropic surface fitting, and the one on the bottom is the mesh after the isotropic 
surface fitting. A gap caused by vertices fall inside the surface is marked in red rectangles. It is fixed 
by the isotropic method as shown in the image on the bottom.



Chapter 4: Texture Enhancement

3D reconstruction using a Kinect sensor benefits researchers from different areas 

such as Human-Computer Interaction, Machine Vision and Indoor Environment Recon-

struction. Most of these applications apply image processing techniques to the depth 

map for accuracy and error correction. However, they utilize raw color information for 

the reconstruction without taking advantage of image processing techniques. The tex-

ture qualities of 3D models reconstructed from the Kinect sensor are highly influenced 

by the lighting conditions. Under less-than-ideal lighting conditions, the contrast of a 3D 

model texture could be too high or too low, which makes the details of the model ob-

scure to users. We address these issues with a modified histogram equalization algo-

rithm that is extended to colored 3D cases from the histogram equalization for 2D 

grayscale image. In this chapter, we briefly review the traditional histogram equalization 

algorithm. Then we introduce the 3D histogram equalization.

4.1 Review of Histogram Equalization on 2D grayscale image

Histogram equalization is one of the most simple, yet powerful techniques in 

imaging enhancement. For the purpose of adjusting image intensities to enhance con-

trast, histogram equalization simply counts the frequency of grayscale levels of each 

pixel in the image, and assigns a new grayscale level to pixels with the same grayscale 

level based on the statistics[8]. 

Given a image with n pixels. The pixels in the image has a intensity range from 0 

to L - 1. The image’s histogram for pixel value i is defined as
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where L is the number of possible intensity values, ni is the number of occurrence of 

grayscale level i, and n is the total number of pixels in the image.  px(i) is in fact the 

normalized histogram for intensity value i. Then we accumulate these normalized his-

tograms and define the cumulative distribution function as

 In the histogram equalized image, the new intensity of all pixels with intensity i in 

the original image will be

                            

By assigning new intensity values, histogram equalization distributes intensities 

better on the histogram. To be more specific, it increases the contrast of areas with low-

er local contrast by spreading out the most frequently occurred intensity value(Figure 

4.1). As shown in Figure 4.2, the histogram is stretched horizontally, and the area 

marked with red square in the histogram is filled after the equalization. This means that 

pixels with low intensity values is more, which corresponds to the whitened area such 

as the bridge of the nose in Figure 4.1.
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Figure 4.1 The picture of Lena before(left) and after(right) 
histogram equalization, the nose bridge of Lena is whitened 
after equalization because the local contrast of this area is 
relatively low before equalization.

Figure 4.2 The histograms of the Lena picture 
before(left) and after(right) histogram equalization, the 
histogram is flattered after equalization.



4.2 Extending Histogram Equalization to 3D cases

We obtain contrast-enhanced textures of 3D models reconstructed from the 

Kinect sensor by a modified histogram equalization method, 3D histogram equalization, 

which inherited the main idea from the original histogram equalization method. The core 

of histogram equalization works perfectly in 3D cases because both the pixels in a im-

age and the vertices in a surface mesh are discrete data sets. However, histogram 

equalization is only effective on luminance channels but the Kinect sensor captures col-

or information in RGB color space. Applying histogram equalization separately on red, 
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(d)       (e)          (f)

Figure 4.3 (a) the original color image, 
(b) the grayscale image from the L channel in CIELAB, 
(c) the grayscale image from the Y channel in YCrCb, 
(d) the grayscale image from the I channel in HSI, 
(e) the grayscale image from the V channel in HSV, 
(f) the grayscale image from the L channel in HSL.[26] 



green and blue channel results in dramatic changes of the image’s color balance since 

the histogram of these three channels are not uniform. To address this issue, textures of 

a 3D model are converted into other color spaces containing a separate luminance-like 

channel such as HSL, HSV, HSI, CIELAB, and YCrCb. Then 3D histogram equalization 

can be applied to the channel without changing the color balance. After extracting the 

luminance-like channel of color spaces mentioned above from a image of a fire 

breather(Figure 4.3), a comparison shows that the HSI color space with a intensity 

channel “I” is relatively easy and lossless for the conversions between itself and RGB 

color space.The reason that HSI is an effective intermediate for this process is that it is 

a common cylindrical-coordinate representations of points in an RGB color model and 

the distance along the cylinder axis corresponds to “intensity”. 

4.2.1 Conversion from RGB to HSL

In the conversion from RGB to HSI, the intensity is defined as

The saturation is defined in line with the psychometric definition, which is chroma rela-

tive to lightness:
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and the hue is defined in degrees:

4.4.2 3D Histogram Equalization
  

After we convert the color information of all vertices from RGB to HSI, the 3D his-

togram equalization is applied to the texture of the 3D model. In 3D histogram equaliza-

tion, the normalized histogram of the texture for intensity value i is:

where ni is the number of vertices with intensity i in the 3D model before histogram 

equalization, n is the total number of vertices, and L is the number of possible intensity 

values, in this case, 256. After 3D histogram equalization, the new intensity of vertices 

that has intensity i in the original texture is:

As shown in Figure 4.4, the 3D histogram equalization effectively reveal the hid-

den details from the texture of a 3D model of a palm.
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Figure 4.4 A comparison of a colored 3D model before and after the 3D 
histogram equalization



Chapter 5: Results and Analysis

To analyze the performance of our system, we test it on a set of 3D models re-

constructed from single objects with different sizes and materials under different lighting 

condition. These objects are: a stuffed bear with fluffy surface around 1.5 feet long, a 

stuffed giraffe with cotton surface around 4 inches long, a human hand and a flat sur-

face made of ABS plastic with the size of 6 x 9 inches approximately. The performance 

of texture enhancement is measured by histograms. The vertical axis of the histogram is 

the number of vertices with same luminance values, and the horizontal axis is the pos-

sible luminance values.

To exclude the possibility that our results are influenced by the settings of 

KinectFusion. We achieve maximum KinectFusion accuracy by choosing the implicit 

voxel volume to be as small as possible. We create dense voxels for detailed 3D recon-

struction by selecting the resolution of KinectFusion to be 5123 voxels per meter, which 

means that the lengths of voxel side is approximately 1.9 millimeter. (Memory require-

ments do scale with the third power of the volume resolution). The camera/object dis-

tance was approximately 1 meter in this case.

To demonstrate the results of geometry processing, the original mesh, the mesh 

smoothed by the isotropic approach, and the mesh smoothed by the anisotropic ap-

proach are demonstrated respectively with their normal maps. Figure 5.1 and Figure 5.2 

show the results of applying our system to the fluffy teddybear and the stuffed giraffe. 

The results of the isotropic approach is clearly smoother than the results of the an-

isotropic approach because its removal of the bumpy noises is more effective. On the 
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other hand, the results of the feature-preserving approach, the anisotropic approach, 

show that it keeps the bumpy noises as sharp features. Thus, for objects with rich de-

tails on the surface(smaller than 1.9 millimeter), our system has better performance with 

the isotropic surface fitting algorithm. However, this assessment is reversed by the re-

sults display in Figure 5.3, which shows the results of our system applied to a human 

hand. The palm of the hand is flattened by the isotropic approach and details are filtered 

out as noises. In this case, the anisotropic approach successfully preserves the correct 

features and yields a better result. Following this line of thinking, Figure 5.4 also indi-

cates that our system should utilize the anisotropic approach when the input meshes do 

not contain rich details. The orthogonal edge of the flat surface is recovered by the an-

isotropic approach but blurred by the isotropic one.

In Figure 5.5 and Figure 5.6, the results of 3D histogram equalization of these 3D 

models are presented with their histograms. As shown in the histograms, the intensity 

values or luminance values are effectively spread out by our system. The contrast of the 

textures are increased and texture details are more visible to users. We found that the 

3D Histogram Equalization tends to yield overexposed results because it enhances the 

contrast globally. 

All algorithms described have been implemented in Visual C++, running on a 3.4 

GHz 4th-generation i7 desktop computer with a GeForce GTX 770. 
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Figure 5.1 The original mesh(up), isotropic smoothed 
mesh(middle) and anisotropic smoothed mesh(bottom) 
and their normal maps of the fluffy bear
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Figure 5.2 The original mesh(up), isotropic smoothed mesh(middle) 
and anisotropic smoothed mesh(bottom) and their normal maps of 
the cotton giraffe
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Figure 5.3 The original mesh(up), isotropic smoothed 
mesh(middle) and anisotropic smoothed mesh(bottom) and their 
normal maps of a human hand
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Figure 5.4 The original mesh(up), isotropic smoothed 
mesh(middle) and anisotropic smoothed mesh(bottom) and their 
normal maps of the flat surface
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Figure 5.5 the original mesh(up), 3D histogram equalized mesh(bottom) of the fluffy 
bear and the cotton giraffe
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Figure 5.6 the original mesh(up), 3D histogram equalized mesh(bottom) of a human hand 
and the flat surface



Chapter 6: Conclusions

This thesis has described a combined method designed to enhance the 3D mod-

els reconstructed from RGB-D camera systems. The system uses a Microsoft Kinect 

device and KinectFusion for color and depth data acquisition. The system performs but-

terfly subdivision, isotropic mesh smoothing and anisotropic mesh smoothing on the 

geometry of 3D models, and applies a modified 3D histogram equalization to the texture 

of the 3D models. Our system is tested on a variety of 3D models and it is shown that it 

effectively generates 3D models with improved smoothness and contrast-adjusted tex-

tures, which reveals hidden details from the original texture.

6.1 Limitations

While taking advantages of the existing techniques, our system inherits limita-

tions from these methods. Our system extends the classic histogram equalization to 3D 

cases. Therefore, the texture enhancement component of our system is more useful 

under strong lighting conditions. Furthermore, our system suffers from the artifacts 

caused by the butterfly subdivision, which lowers the performance of anisotropic mesh 

smoothing. Thirdly, the hardware requirement of our system is relatively high comparing 

to other methods we mentioned in the first chapter. The KinectFusion system has a 

hardware requirement of Desktop PC with 3GHz (or better) multi-core processor and a 

graphics card with 2GB or more of dedicated on-board memory.
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6.2 Future Works

There are many possibilities for future improvement with our system to address 

the issues we discussed in the previous section. Our 3D histogram equalization algo-

rithm adjust the global contrast of the texture ignoring the different lighting conditions on 

the different parts of the scene. A future research could be adjusting the contrast for lo-

cal patches of the texture using an adaptive 3D histogram equalization method. Another 

interesting idea for further research is denoising the texture of Kinect-based 3D models 

following the thought of machine learning. A set of 3D models of everyday objects could 

be used by the system to learn about the pattern of how they interact with each other, 

then the system could make predictions and de-noise the texture on the boundary areas 

of the scene. Additionally, a possible future work is novel subdivision algorithms that is 

designed to condense and smooth the 3D models constructed from RGB-D camera sys-

tems.
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