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Abstract

Stage-Specific Predictive Models for Cancer Survivability

by

Elham Sagheb Hossein Pour

The University of Wisconsin–Milwaukee, 2016
Under the Supervision of Professor Rohit J. Kate

Survivability of cancer strongly depends on the stage of cancer. In most previous works,

machine learning survivability prediction models for a particular cancer, were trained

and evaluated together on all stages of the cancer. In this work, we trained and eval-

uated survivability prediction models for five major cancers, together on all stages and

separately for every stage. We named these models joint and stage-specific models re-

spectively. The obtained results for the cancers which we investigated reveal that, the

best model to predict the survivability of the cancer for one specific stage is the model

which is specifically built for that stage. Additionally, we saw that for every stage of

cancer, the most important features to predict survivability, differed from other stages.

By evaluating the models separately on different stages we found that their performance

differed on different stages. We also found that evaluating the models together on all

stages, as was done in past, is misleading because it overestimates performance.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Cancer as one of the top leading causes of mortality worldwide is a generic name given

to a collection of related diseases that stimulate some of the body's cells start to divide

without stopping [3], and the rapid extension of those abnormal cells violates their usual

boundaries, leading to metastasizing in which the malformed cells spread across other

organs. This process is the major cause of death from cancer diseases all across the

world, accounting for about 8.2 million deaths in 2012 [48]. There have been more than

hundred types of cancer, including breast, liver, stomach, prostate, colorectal, lung, and

brain purposes to name a few. After heart diseases, cancer was the second leading cause

of death in the United States in 2014 while 22.52% of total deaths were because of cancer

[2], [34]. From 2009 to 2013, concerning the United States, the most common cancer

incidences were related to female breast cancer, prostate cancer, lung & bronchus cancer,

colon and rectum cancer, and corpus & uterus; NOS respectively [1]. Figure 1.1 shows

the top five cancers with highest incidence rates beside the stomach cancer (since it is

among the set of cancers in this study) in the United States from 2009 to 2013 [1].

Given the fact of the high rate cancer mortality and the number of people who are

involving with such a disease, the study of cancer and its survivability rates has been

a longstanding research in the biomedical literature [12], [14], [18], [21], [42], [49], [52].

Cancer survival rates indicate the percentage of cancer patients who survive a certain

kind of cancer for a specific period of time. For a particular cancer, the n-year survival rate

is the percentage of cancer patients who live at least n years after being diagnosed with

the cancer. For example, in the United State, from 2006 to 2012 the overall 5-year survival

rate for bladder cancer was 77.5% [4], meaning that of all those people who have bladder
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Figure 1.1: Age-adjusted invasive cancer incidence rates for the 6 major cancers in the
United States: 2009-2013. The vertical axis units are expressed per 100,000 persons age
adjusted to the 2000 US standard population [1]. Age-adjusted rate is a rate related to
some events that became standard for a particular population. Therefore, this form of
rate makes it possible to compare the rates for populations with different ages distribution
in a fairly manner [1].

cancer, 78 of every 100 are living five years after diagnosis. Analysis of cancer survival data

and its associated results is necessary to evaluate cancer treatment programs and to watch

for unusual changes. Researchers and scientists all around the world are developing cancer

treatment methods based on its general survivability rate, hoping the new treatments

may lead to a better prognosis for patients. To this end, an accurate prediction of cancer

survivability became very important. A reliable prediction of cancer survivability truly

enables physicians to make well-organized systematic treatments, improving the quality of

care that healthcare provides to the cancer patients. Also accurate prediction models help

them to make more informed decisions to treat patients. For example, they may choose

new medications or more aggressive therapies for patients with less hope of survival.
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1.2 Literature Review

In this section we will discuss the current knowledge and progress so far in the com-

putational methods developed for cancer survivability prediction. In the last few years,

several machine learning approaches have been utilized for caner survivability prediction

[10], [16], [27], [35]. While some of them employed only clinical and genomic data which is

not widely available for the research community, the rest used publicly available datasets

(e.g., SEER dataset) [6], [7] which included tens of thousands of records. A drawback

of these datasets is that they do not usually contain genomic and clinical information

specific to patients.

Generally speaking, machine learning is used to build prediction models by using

training data or past experiences in a particular domain. Machine learning is basically

applied to four major paradigms, such as classification, clustering, regression, and rule

extraction [39]. Classification methods try to assign labels to new unlabeled data, while

clustering algorithms divide data into different groups based on similarities or a set of

structural measures [51]. Regression statistically approximates the underlying associa-

tions between variables and is used in modeling, while rule extraction algorithms are

employed to explore propositional rules or relationships between attributes in the data.

Support vector machines (SVM) [15], artificial neural networks (ANN) [26], näıve Bayes

[36], logistic regression [28], decision trees [45] are the most popular machine learning

algorithms which have been utilized for cancer survivability prediction. While In 2000,

Zupan et al. [53] applied two well-know machine learning strategies including näıve Bayes

and decision trees on a dataset including 1055 instances of prostate cancer patients to

make survivability predictive models, and showed that both models were able to produce

promising results using such a dataset, in 2005, Delen et al. [19] employed ANN, deci-

sion trees, and logistic regression to design a group of prediction models utilizing a large

dataset including more than 200,000 cases. For the evaluation purposes, they used 10-

fold cross-validation strategy to measure the performance of the three prediction models.

Their experimental results indicated that the decision tree (C5) was able to offer the best

predictive model with 93.6% accuracy on the holdout sample. ANN was the second with
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91.2% accuracy and the logistic regression models came to be the worst of the three with

89.2% accuracy using the proposed dataset.

In 2005, Chang et al. [13] utilized decision trees and a data set to confirm that a

wound-response gene expression signature was a powerful predictor of clinical outcome in

different patients with early stage breast cancers. Together with their other obtained ex-

perimental results on advanced breast, gastric, and lung cancer, that discovery reinforced

the concept that a gene expression program associated to the physiological response to a

wound was frequently activated in common human epithelial tumors, increasing risk of

cancer advancement and metastasis. In 2006, Jonsdottir et al. [30] developed a predictive

model for breast cancer survivability and assessed 5 year outcome of an incidence of can-

cer using data mining algorithms. They utilized almost one hundred datasets containing

a set of different features (e.g., age, an indicator if the tumor was found in a medical

examination, an indicator if the nodes are palpateble or suspicious, pathologic primary

tumor size, etc.) along with näıve Bayes, decision trees, logistic regression, and a meta

algorithm which was able to combine results from other classification algorithms. While

the AUC values for the proposed strategies ranged from 76% to 85%, one limitation was

investigating only small number of available instances in the datasets. In 2006, Bellaachia

et al. [11] examined the prediction of survivability rates of breast cancer using data min-

ing algorithms. They applied näıve Bayes, back-propagated neural network, and C4.5

decision tree algorithms on a publicly available SEER dataset which included 151,886

instances. They found that C4.5 algorithm has had a better performance than two other

data mining techniques. In 2006, Cruz et al. [17] extensively reviewed and compared

the general performance of several machine learning algorithms that are being applied to

different cancer prediction and prognosis, particularly identified a number of trends con-

cerning the types of machine learning algorithms being employed, the types of training

data being integrated, and the types of cancer diseases being well analyzed along with

and the performance of these methods in predicting cancer survivability.

In 2016, Liang et al. [37] studied lung cancer survivability analysis using a semi-

supervised machine learning algorithm including Cox proportional hazards regression

4



model (Cox) [25] and accelerated failure time model (AFT) [40], and reported the pro-

posed semi-supervised algorithms was more appropriate tool for survival analysis in clin-

ical cancer research. In 2016, Kate et al. [33] used three different machine learning

strategies to predict breast cancer survivability separately for every stage. They com-

pared the proposed methods with the traditional joint models built for all the stages,

evaluated the models separately for every stage and together for all the stages. The re-

sults obtained by their study showed that the most appropriate model to predict breast

cancer survivability for a specific stage was the model trained for that particular stage.

Readers interested in recent advances in building cancer survivability models are referred

to [9], [20], [31], [38], [43], [46], [50] for other techniques.

1.3 Motivations and Objectives

While using a broad range of machine learning algorithms and training strategies have

been well studied in the past, the use of different cancer stages either for training a

prediction model or for model evaluation have been limited so far. Cancer stage refers to

the extent of the cancer. Cancer incidences are basically assigned stages based on tumor

size and/or the vastness of spread, accordingly survivability rates varies across the stages.

There are several cancer staging systems in use. While such a system categorizes cancers

to be in Stage 0, Stage I, ..., and Stage IV along with further subcategories, another

system namely TNM (tumor, node, metastasis) tries to categorize cancers based on the

status of tumor, node, and metastasis [22]. Since we are going to apply our proposed

method on the SEER dataset, in this work we used the staging system of that data which

includes four stages: in-situ, localized, regional and distant. Table 1.1 illustrates these

stages in further detail [5].

For the most cancers, the survivability rates differ significantly according to the stage

of the cancer. For instance, for the breast cancer, while the survivability rate for in-situ

stage is 99.42%, it is 36.17% for distant stage, and survivability rate for all stages is

92.04%. We obtained these numbers from the subset of the SEER dataset which we
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Table 1.1: Cancer stages in the SEER dataset.
Stage Description

In-situ Abnormal cells are existent but they have not spread to nearby tissue
Localized Cancer is limited to the place where it started. There is no any sign that it has spread
Regional Cancer has spread out to nearby lymph nodes, organs, or tissues
Distant Cancer has spread out to distant parts of the body

used in this work. It is clear that the survivability prediction for in-situ stage is so

much different from distant stage. The research study Kate et al. [33] found that the

models trained with every stage separately (called stage-specific model) could often

provide better survivability prediction than the model which is trained with all stages

(called joint model). The work investigated the idea for only the breast cancer. In

this study, we are going to investigate this idea on other cancers to determine whether

the stage-specific models are able to provide better prediction than joint model or not.

Additionally, we are interested in seeing whether the most important features to predict

survivability are different for different stages.

Hence the objective of the proposed research is to:

• Examine and build survivability prediction models for five major cancers, trained

on all stages (joint models) and separately for every stage (stage-specific models).

• Analyze whether the best model to predict the survivability of the cancer for one

specific stage is the model which is specifically built for that stage.

• Investigate the importance order of features to predict survivability for every stage

of cancer.

• Find reasons for the differences between stage-specific and joint models.

• Compare the performance of different machine learning methods for building cancer

survivability predictive models.

6



1.4 The Main Contributions

Our goal is to utilize machine learning algorithms to design and develop stage-specific

survivability predictive models for five different cancers: lung & bronchus, breast, colon,

corpus uteri, and stomach cancers. We first selected the five most common cancers

with no missing feature values from the SEER dataset. We dropped prostate cancer

and included the next most common cancer, because of prostate cancer has a very high

survivability rate which makes predicting survivability almost trivial and because it had

very few incidences available for the distant stage. We compared cancer survivability

prediction models trained on all stages (joint model) and trained separately on every stage

(stage-specific model). We illustrate which features are most indicative of survivability

across different stages. We show performance differences when the models are evaluated

separately for different stages. We also compare the performance of different machine

learning techniques on building predictive models for cancer survivability on different

cancer stages.

7



Chapter 2

Materials and Methods

In this section, we explain the different computational approaches involved in our pro-

posed stage-specific predictive models for cancer survivability. We shall begin with the

dataset and machine learning algorithms which we used, then, we will explain our ap-

proach.

2.1 Dataset

For the current research study, we used SEER Cancer Dataset [6], [7] which is a publicly

and freely available dataset collected as part of National Cancer Institute’s Surveillance,

Epidemiology, and End Results program. It is a dataset of cancer incidences in the

United States, which is collected from geographical areas which represent 28% of the US

population (according to the US Census 2010), and is updated every year.

The available features for cancer data in this dataset are more general, and it does

not include the genome and/or clinical information, but since it is widely available and it

covers millions of cancer instances, it has been considered as a very valuable data source

for cancer research.

The SEER dataset can be easily obtained through the Internet. To obtain the data, an

applicant need to sign up a data use agreement letter available through the website. Once

the user sends a signed agreement letter, they provide the user, access to the dataset.

The latest version of SEER dataset which was used in the current thesis was released in

April 2016 and included cancer incidences form 1973 to 2013 to a total of 9.18 million

incidences.

8



2.2 Definitions

Following are the definitions of two important terms used in this work.

• Survivability Rate: According to the National Cancer Institute (NCI), the surviv-

ability rate of cancer indicates that, from 100 persons diagnosed with a particular

type of cancer, how many of them live for more than n years. And usually the

number of years to investigate the survival rate is 5 years (n=5).

• Survived vs. Not Survived: In respect to the survivability rate definition, if a

patient with specific cancer, lives more than 5 years after his/ her diagnosis, then

the patient can be considered as survived. To consider a patient who is diagnosed

with a specific cancer as not survived, this patient should have died within 5 years

of the diagnosed date and the cause of death of that person must be the same cancer

with which he/she was diagnosed. So, if a patient was diagnosed with a specific

cancer and died after 2 years because of any other reason, this patient could not be

considered either as survived or not survived. Therefore, the information of such

patients would not be used for the survivability cancer research.

2.3 Machine Learning Methods

In the following sections, we first discuss the concept of information gain, then we will

briefly review as set of classification algorithms including logistic regression, näıve Bayes,

decision tree, and cost-sensitive classifiers. Finally, we will explain our proposed approach

to build cancer survivability predictive models.

2.3.1 Information Gain

Information gain [39] is a fundamental concept in machine learning which can be used to

see order of importance of the features. While the information gain is specifically used

in decision tree algorithm, it can also work as a feature selection tool for other methods.
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Information gain statistic for a feature indicates its importance in the prediction of the

class.

2.3.2 Logistic Regression

Linear regression is one the machine learning methods that is used to model continuous

value functions. A popular type of generalized linear regression is called logistic regression

which models the probability of the variable being predicted as a linear function of a group

of predictor variables. The logistic regression is used for binary classification when the

output variable of a model is specified as a categorical binary [32].

2.3.3 Näıve Bayes

Näıve Bayes is a classification method based on probability theory. In order to estimate

joint probability distribution of the features and output, it makes a näıve assumption

that all the features are conditionally independent of each other given the output. Along

with this assumption it uses Bayes theorem to compute probability of the output given

the features in terms of the probability of the features given the output which is easier

to estimate using the training data. Näıve Bayes is computationally a very fast machine

learning method [24].

2.3.4 Decision Tree

Decision tree is among one the most popular classification models in machine learning.

Decision tree is a rule based method in which a tree structure is learned from the training

data where each node represents a test on a feature value, and each branch denotes a

result of the test and the terminal shows the classes. The ID3 and C4.5 are among widely

used decision tree algorithms in machine learning community [32].

10



2.3.5 Cost-Sensitive Classification

For an unbalanced data, a machine learning method can classify most of the instances

in the majority class to maximize the accuracy, without doing anything associated to

the minority class, which can cause misleading results. In such dataset to maximize the

accuracy in both majority and minority classes, we can use cost sensitive classifier which

penalizes misclassifying the minority class [33] according to a user-specified weight.

This algorithm has a cost matrix which lets the users or developers assign some

penalty for miss classifying classes. The algorithm does not determine which cost works

best, therefore, the investigator has to find the best cost to assign empirically which

is typically done through internal cross-validation within the training data. The cost

sensitive algorithm employs a classifier (e.g., decision tree, logistic regression, etc.) as its

internal classification algorithm.

2.3.6 Probability or Confidence

All machine learning algorithms we used, give us a probability or confidence for each

given instance which indicate how much they are confident about putting that instance

in one specific class. These confidences are used to plot ROC Curve [29]. We will talk

about ROC later in the next section.

2.3.7 Model Evaluation

There are several evaluation measures, including accuracy, f-measure, precision, recall,

sensitivity, specificity, AUC, etc. which can be used to evaluate prediction models. There

are advantages and disadvantages of using them, but in general, most of them can not

indicate the overall model performance. For example, the accuracy only checks the correct

classification on test data which could be misleading. Let’s consider a scenario where we

have 95% of data belonging to one majority class, if a classifier just classifies all the data

in this class, then the final accuracy would be 95% without doing anything regarding the

minority class and this misclassification will not be fairly represented in the accuracy of

11



the model. However, the AUC (Area Under the ROC Curve) metric can fairly reflect the

performance of the model even in such situations.

ROC (Receiver Operating Characteristic curve), is a curve between a models true

positive rate (or sensitivity which is the fraction of positive instances which model classi-

fied correctly as positive) versus false positive rate (or 1-specificity which is the fraction

of negative instances misclassified as positive by model). For every decision threshold for

the confidence of the model in classifying instances we obtain a true positive rate and a

false positive rate. Thus by varying the decision threshold from 0 to 1, one can obtain

an entire range of true positive rates and false positive rates which when plotted on a

graph is called an ROC curve. One of the noticeable property of ROC curve is that it is

independent of the class distribution. It means that, if the distribution of positive and

negative instances changes in the dataset, its value does not change [44].

Area under this curve (AUC) is then used to indicate performance with a single

number. AUC is a very popular metric to evaluate the performance of classifiers. We

used AUC as a measure to evaluate and compare the performance of the models. It can

be helpful to indicate that the value of AUC ranges from 0.5 to 1. A random classifier has

a 0.5 AUC and the perfect classifier has 1 AUC. A higher AUC shows better performance

for a classifier.

10-Fold cross validation

In this evaluation methodology the available data is randomly divided into k equal size

folds, and each time the model is trained with k-1 folds and tested remaining fold, and

this process is repeated for k times each time using a different fold for testing. The final

performance is reported by taking average of the k metrics obtained from the k folds.

k=10 is the standard and the most common value used for k.
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2.4 Methodology

In this section, we will explain our methodology to build cancer survivability predictive

models.

2.4.1 Data Preparation

Our data preparation had two different stages as follows:

The SEER Dataset Subset Selection

The first step in the data preparation was to pick up a subset of the SEER dataset

for the proposed study. We needed to select a subset related to a specific cancer in a

specific period of time. In doing so, the need was to choose a group of patients who have

diagnosed by a specific cancer in a desired period of time. The “Primary Site” and “Year

of diagnosis” features in the SEER helped to do pick such records. For investigating 5

years survivability, we needed at least, 5 more years data ahead of every diagnosed records

to check the patient vital status. So, since the last data available in SEER covers up to

2013, we limited our instances to the instances having diagnosed date in years 2004 to

2008. We did not select the data before 2004, because many SEER fields where changed

in 2004, and in addition cancer rates changed over time (some of the features which are

used in this study, just have value for the instances after 2004 in the SEER).

Cancer Patients Tagging

The second step here was to tag patients as survived or not survived, or ignore the

instance (while the cause of death of a patient is different from the cancer of the study

or the patient died after 5 years of living with the cancer). In doing so, we utilized three

different SEER dataset features including “vital status recode”, “survival months” and

“cause of death” to develop the following rule which assist us to tag the patients:
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if ("survival months">=60 and "vital status recode"="alive" )

{

tag the patient as "survived";

}

else if ("survival months"<60 and "cause of death"="the cancer of study")

{

tag the patient as "not survived";

}

else ignore this patient instance;

For those patients who have been diagnosed of cancer more than once, we picked up

their last diagnosis to have them in the data subset. “patient Id number”, “month of

diagnosis”, and “year of diagnosis” or “SEER record number” are the features in the

dataset that we used to determine the last diagnosis in case there were more than one.

2.4.2 Features

For building a cancer survivability predictive models, it is crucial to use informative

features. We used 18 features of the SEER dataset to build survivability predictive

models. We picked these features because they have been used in previous works in the

literature [8], [11], [18], [33], [41].

The features which should be used are illustrated in Table 2.1. We needed the in-

stances with valid feature values and also be categorizable as either survived or not

survived, and with diagnosis date between 2004 to 2008. In doing so, we checked out

the entire SEER dataset using such criteria and eventually the following cancers received

the largest valid records respectively: Breast, Colon, Lung & Bronchus, Prostate, Corpus

Uteri and Stomach. Among those cancer diseases, prostate has had a very high survival

rate (98.9%) which makes building survivability prediction models for that cancer not

very useful, therefore, this study focused on the rest of them. There were enough in-

stances for breast and colon cancers even after excluding ones with missing features, but

for the rest, we included the instances with missing features.
14



Table 2.1: The SEER dataset features used to make a predictive model.

Feature name Data type Description

Marital Status at DX Nominal Marital status of the patient
Race/Ethnicity Nominal Race of the patient
Sex Nominal Gender of a patient
Age of Diagnosis Numeric Age of the patient at diagnosis
Primary Site Nominal It specifies the site in which the primary tumor

has emerged (this feature is also can be used to
categorize the cancer types)

Histologic Type ICD-O-3 Nominal It describes the microscopic form of the primary tumor
Behavior Code ICD-O-3 Nominal It can describe the primary tumor as either benign or

malignant, noninvasive or invasive
Grade Nominal It is for categorizing the shape of the tumor and its

speed of spread
Reginal Nodes Positives Numeric The exact number of examined regional lymph nodes,

containing metastases
Reginal Nodes Examined Numeric The exact number of regional lymph nodes

which were removed and examined
CS Tumor Size Numeric Indicating size of Tumor in mm
CS Extension Nominal Regarding the extension of the tumor
CS Lymph Nodes Nominal Describes how the lymph nodes are involved
CS Mets at DX Nominal Provide information about metastasis at distant
RX Summ-Surg Prim Site Nominal Describes the surgical routine which is used to remove

or/and destroy involved tissue of the primary site in
the first step of treatment

RX Summ-Radiation Nominal Shows which radiation therapy approach has used
in the first step of primary site treatment

Summary stage 2000 (1998+) Nominal There are now 4, In-situ, Localized, Regional,
Distant stages, showing the spread of the cancer

Sequence Number-Central Nominal Indicates the sequential number of all in situ, benign,
malignant and borderline primary tumors that
can be reported during the living time of a patient

15



We also excluded male patient instances for breast cancer because they contribute

only 1% of all the incidences [47]. Corpus uteri also is a cancer related to female organs.

Therefor, “gender” feature was not used in building breast cancer and corpus uteri models.

“Sequence number-central” feature also was used just for building the lung & bronchus,

colon and corpus uteri. We will discuss about its reason later.

Tables 2.2 to 2.6 show stage-wise survivability distribution for five different cancers

obtained from the SEER dataset. One can see that the survivability rate in In-situ stage

is high and the number of records in this stage are few. Therefore, like the previous

research study [33], we excluded this stage from all of our investigations.

By using the information gain statistic, we recognized the importance of the “Refer-

ence Number-Central” feature for lung & bronchus, colon and corpus uteri cancers . This

feature was used previously to build lung cancer survivability model [8]. Therefore, for

these cancers we used this feature, but for the rest, we did not use this feature to make

predictive models.

2.4.3 Predictive Models

In every experiment in this study, we utilized 10-fold cross validation. For each cancer,

we randomly shuffled the order of available instances and divided the data in 10 equal

folds, such that the distribution of the survived and not survived and also every stage

in the 10 folds were equal (stratified). For the stage-specific models, we used the same

folds, just by keeping the data regarding every stage and ignoring the rest of the records.

We used this strategy to be able to perform a fair and meaningful comparison between

models. By looking at the records in the tables 2.2 to 2.6, it is clear that we were dealing

with unbalanced data in all 5 cancers. One can see how the number of survived and

not survived are different from each other at every stage and/or in all stages together.

For classifying such unbalanced data, we used cost-sensitive classifier by considering its

ability to apply penalty for any misclassification. To know which cost we should use

to make a model for every fold, we assigned different costs (0.25, 0.5, 1, 2, 4, 6, ...,

18, 20) for misclassification of minority class (either survived or not survived). And for
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every cost, we did 5 internal cost cross validation through the available training data

and eventually picked the cost which gave the best AUC average. We used this cost for

building the model for its fold. We employed näıve Bayes, logistic regression, and decision

tree (AD3) machine learning algorithms as an internal classifier for the cost-sensitive

algorithm. Therefore, for every cancer, we first built models trained with all available

data for that cancer by doing 10-fold cross validation and three different machine learning

algorithms, and called these models as joint models. Then, we employed the same folds

by keeping only the instances of one stage every time and doing 10-fold cross validation

using the same three machine learning methods to build the stage-specific models. For

expressing the performance of every model, we utilized the AUC average obtained through

the 10-fold cross validation.

To compare the models, we reevaluated the joint models for every stage separately.

We tested the joint models by 10 folds, including those instances that only belong to one

specific stage at a time, and recorded the average of obtained AUC as the joint model

performance for that specific stage. We did this process for all 3 stages. For stage-specific

models, besides obtaining results for their each individual stages we obtained their results

of each stages to also obtain results on all stages together as was done in [33]. We named

these results (which are obtained from combination of every three stage-specific models)

as combined model results.

2.4.4 Test Bed and Experimental Setup

For all experimental results presented in this section, we used 64-bit Windows 8 operating

system on a PC with 2.20 GHz Intel Dual core CPU, 4MB cache and 8GB of RAM. All

parts of the system were developed by Java2SE 8 and Weka data mining library (version

3.6.13) [23] which has been freely available to the research community.

17



Table 2.2: The breast cancer stage-wise survivability distribution obtained from the
SEER dataset. We utilized these data records to build and also analyze predictive cancer
survivability models.

Total incidences Survived Not survived Percent survived

All stages 174518 160623 13892 92.04%
In-situ 10106(5.79%) 10047 59 99.42%
Localized 106390(60.96%) 102737 3653 96.57%
Regional 55340(31.71%) 46872 8468 84.69%
Distant 2682(1.54%) 970 1712 36.17%

Table 2.3: The lung & bronchus cancer stage-wise survivability distribution obtained
from the SEER dataset. We utilized these data records to build and also analyze predic-
tive cancer survivability models.

Total incidences Survived Not survived Percent survived

All stages 183033 24358 158675 13.31%
In-situ 80(0.04%) 26 54 32.50%
Localized 27809(15.19%) 13190 14619 47.43%
Regional 42256(23.09%) 8414 33842 19.91%
Distant 112888(61.68%) 2728 110160 2.42%
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Table 2.4: The colon cancer stage-wise survivability distribution obtained from the
SEER dataset. We utilized these data records to build and also analyze predictive cancer
survivability models.

Total incidences Survived Not survived Percent survived

All stages 61858 40200 21658 68.99%
In-situ 256(0.41%) 247 9 96.48%
Localized 21307(34.45%) 19036 2271 89.34%
Regional 29050(46.96%) 19452 9598 66.96%
Distant 11245(18.18%) 1465 9780 13.03%

Table 2.5: The corpus uteri cancer stage-wise survivability distribution obtained from
the SEER dataset. We utilized these data records to build and also analyze predictive
cancer survivability models.

Total incidences Survived Not survived Percent survived

All stages 36820 33731 3089 91.61%
In-situ 514 (1.40%) 512 2 99.61%
Localized 28127 (76.39%) 27381 746 97.35%
Regional 6616 (17.97%) 5373 1243 81.21%
Distant 1563 (4.24%) 465 1098 29.75%

Table 2.6: The stomach cancer stage-wise survivability distribution obtained from the
SEER dataset. We utilized these data records to build and also analyze predictive cancer
survivability models.

Total incidences Survived Not survived Percent survived

All stages 18286 5283 13003 28.89%
In-situ 179 ( 0.98%) 140 39 78.21%
Localized 4945 (27.04%) 3245 1700 65.62%
Regional 5962 (32.61%) 1645 4317 27.59%
Distant 7200 (39.37%) 253 6947 3.51%
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Chapter 3

Results and Discussion

To analyze our proposed predictive cancer survivability models, several experiments were

performed. The joint versus stage-specific predictive models analysis results are shown

in Section 3.1. In Section 3.2, we measured and analyzed the order of importance of the

features. Finally, in Section 3.3 we further compared the performance of three machine

learning methods to make survivability predictive models.

3.1 Joint versus stage-specific predictive models

The AUC average obtained from the models trained with the all cancer stages (joint

models) and also trained with each stage separately (stage-specific models), are shown in

the Tables 3.1 to 3.5.

Where a model performance is statistically significantly better (with p value less than

0.05) compared to its corresponding paired value (the value at the same row and for the

same machine learning technique), we denoted it in bold in the table. Two-tailed paired

t-test was used for statistical significance testing.

Table 3.1: AUC obtained from joint models and stage-specific models for breast can-
cer. Bold numbers are statistically significantly better (p<0.05; two-tailed paired t-test)
compared to the corresponding value at the same row and for the same machine learning
algorithm in the table.

Näıve Bayes Logistic Regression Decision Tree
joint stage-specific joint stage-specific joint stage-spacific

all-stages 0.828 0.843 0.846 0.847 0.846 0.838
Localized 0.758 0.768 0.769 0.774 0.773 0.779
Regional 0.759 0.778 0.792 0.789 0.781 0.788
Distant 0.654 0.707 0.700 0.714 0.664 0.710
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Table 3.2: AUC obtained from joint models and stage-specific models for lung &
bronchus cancer. Bold numbers are statistically significantly better (p<0.05; two-
tailed paired t-test) compared to the corresponding value at the same row and for the
same machine learning algorithm in the table.

Näıve Bayes Logistic Regression Decision Tree
joint stage-specific joint stage-specific joint stage-spacific

all-stages 0.907 0.911 0.924 0.925 0.918 0.909
Localized 0.845 0.856 0.865 0.866 0.840 0.861
Regional 0.789 0.806 0.835 0.836 0.816 0.830
Distant 0.764 0.821 0.822 0.826 0.803 0.819

Table 3.3: AUC obtained from joint models and stage-specific models for colon can-
cer. Bold numbers are statistically significantly better (p<0.05; two-tailed paired t-test)
compared to the corresponding value at the same row and for the same machine learning
algorithm in the table.

Näıve Bayes Logistic Regression Decision Tree
joint stage-specific joint stage-specific joint stage-spacific

all-stages 0.853 0.862 0.861 0.868 0.864 0.838
Localized 0.713 0.750 0.741 0.764 0.751 0.755
Regional 0.736 0.758 0.762 0.778 0.739 0.756
Distant 0.730 0.772 0.754 0.788 0.752 0.778

Table 3.4: AUC obtained from joint models and stage-specific models for corpus uteri
cancer. Bold numbers are statistically significantly better (p<0.05; two-tailed paired
t-test) compared to the corresponding value at the same row and for the same machine
learning algorithm in the table.

Näıve Bayes Logistic Regression Decision Tree
joint stage-specific joint stage-specific joint stage-spacific

all-stages 0.912 0.874 0.909 0.891 0.910 0.848
Localized 0.824 0.835 0.818 0.812 0.815 0.814
Regional 0.809 0.818 0.818 0.813 0.787 0.794
Distant 0.762 0.821 0.792 0.775 0.784 0.805

Table 3.5: AUC obtained from joint models and stage-specific models for stomach can-
cer. Bold numbers are statistically significant (p<0.05; two-tailed paired t-test) to the
corresponding value at the same row and for the same machine learning algorithm in the
table.

Näıve Bayes Logistic Regression Decision Tree
joint stage-specific joint stage-specific joint stage-spacific

all-stages 0.904 0.852 0.919 0.791 0.927 0.778
Localized 0.855 0.854 0.863 0.873 0.894 0.902
Regional 0.760 0.797 0.800 0.805 0.788 0.814
Distant 0.772 0.831 0.818 0.836 0.844 0.849
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From the above five tables, it can be seen that:

• For all the stages, the stage-specific näıve Bayes models were always statistically

significantly better than the joint models (except for stomach localized).

• For breast, colon and lung & bronchus cancers, the stage-specific decision tree

models were statistically significantly better than the joint models.

• The joint models did not perform statistically significantly better than the stage-

specific models for any stage (in the all last three rows).

• The performance of most models are generally worse on the distant stage. This

is most likely because there was less data available for that stage for training the

models. This indicates that if more data is collected for distance stage it may

improve performance. We would not have made this observation if we had not

evaluated results separately for every stage.

• The performance when evaluated on all the stages together is always better than the

performance when evaluated on each stage separately whether for joint models or

stage-specific models. This is counter-intuitive because one would normally expect

performance on all stages to be around average of the performance on individual

stages. But as was pointed out in [33], the different survivability rates of differ-

ent stages lead to an over-estimation of performance when evaluated on all stages

together. For example, by simply calling all localized instances to survive and oth-

ers to not survive one can get a reasonably good performance when evaluated on

all the stages together. Thus by simply biasing instances in early stages to more

likely survive and latter stages to less likely survive one can artificially boost the

performance of evaluation on all stages together [33]. A machine learning model

can easily learn such a bias from data. Thus evaluating a model on all stages to-

gether overestimates its performance and is misleading. For example, boosting up

the confidence of survivability prediction of the patients in localized cancer stage,

because of the other patients are in the distant stage (with lower survivability rate)

is not wrong, but it cannot add any meaningful information to the survivability
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prediction of the instances in the localized stage. Hence to get a fair idea about a

models performance it is best to evaluate it separately for every stage [33] and not

on all stages together as was done in most of the previous work.

• As we discussed earlier (Section 2.4.3), the number of training data for joint models

is significantly larger than the stage-specific models, and by building the stage-

specific models with less training data, we can have faster training times for those

machine learning algorithms which have higher than linear training time complexity.

• All above results were according to the thoughts and results which was discussed

in the recent work performed for breast cancer [33], and we can see they are still

correct for 4 more additional cancers mentioned in this study.

3.2 Features importance order in different models

To investigate the differences between the joint and the stage-specific predictive models,

we checked the order of used features according to their importance in predicting the

class. This was measured in terms of the information gain statistic. The results obtained

for this experiment are shown in the Figures 3.1 to 3.5.

From all these figures (Figures 3.1 to 3.5), we can conclude the following facts:

• All the figures, clearly show that, every stage has different order of important

features and this fact approves the idea of building stage-specific predictive models

for cancer survivability instead of joint predictive models.

• The importance order of used features differ from one cancer to another cancer.

• For breast cancer, “tumor size” is between the top three features in all related figures

which indicates its high contribution to predict the survivability in this cancer. For

lung & bronchus and stomach cancers, “site-specific surgery” is in between the top

two features. This emphasizes the importance role of this feature to predict the

chance of survivability in these cancers. It is also shown that how survivability

predictive models can help the physicians to decide the best site for surgery. Also
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Figure 3.1: Information gain statistic for all the used features for breast cancer pre-
dicting survivability on all stages together and on the different stages separately.

Figure 3.2: Information gain statistic for all the used features for colon cancer predicting
survivability on all stages together and on the different stages separately.
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Figure 3.3: Information gain statistic for all the used features for lung & bronchus
cancer predicting survivability on all stages together and on the different stages sepa-
rately.

Figure 3.4: Information gain statistic for all the used features for corpus uteri cancer
predicting survivability on all stages together and on the different stages separately.
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Figure 3.5: Information gain statistic for all the used features for stomach cancer
predicting survivability on all stages together and on the different stages separately.

“age” can be seen as an important factor in these cancers.

• Metastasis at diagnosis was ranked 2-7 in all five cancers on distant stage (ranked

4, 2, 4, 7, 5 for breast, colon, lung & bronchus, corpus uteri, and stomach cancers

respectively) and it shows its importance to predict the survivability of the patients

having cancer in distant stage which is compatible with clinical sense of metastasis.

• There are other important facts which can be seen in these figures, but it must be

investigated by experts in cancer treatment, so they can interpret the figures from

clinical side appropriately.

3.3 Comparative study of machine learning methods

As it can been seen in the Tables 3.1 to 3.5, we have tried 3 popular machine learning

algorithms to build joint and stage-specific survivability models. As we discussed earlier,

these algorithms are the most popular techniques to build survivability models. We

compared the performance of stage-specific models, created with these three algorithms

to figure out which algorithm gives a model with better performance.
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Table 3.6: Algorithms comparison result for breast cancer survivability predictive mod-
els.

Comparison result
Localized AD3 >Logistic regression >Näıve Bayes

Regional
Logistic regression >Näıve Bayes,
AD3 >Näıve Bayese

Distant
No statistically significant differences found
between used algorithms

Table 3.7: Algorithms comparison result for colon cancer survivability predictive mod-
els.

Comparison result
Localized Logistic regression >AD3 >Näıve Bayes

Regional
Logistic regression >Näıve Bayes,
Logistic regression >AD3

Distant Logistic regression >Näıve Bayes

Table 3.8: Algorithms comparison result for lung & bronchus cancer survivability
predictive models.

Comparison result
Localized Logistic regression >AD3 >Näıve Bayes

Regional Logistic regression >AD3 >Näıve Bayes

Distant Logistic regression >AD3

In the Tables 3.6 to 3.10, one can see the results of these comparisons. For some

models, we did not find any statistically significant difference (p value less than 0.05).

We considered two-tailed paired t-test to compare the corresponding values (values at

the same row but obtained from different machine learning techniques). The results are

denoted by using the “greater than” symbol (>). Therefore, where the algorithm is

statistically significantly better than the other algorithm, we expressed it greater than

the other.

From the Tables 3.6 to 3.10, it can be seen that logistic regression and AD3 generally

do better performance on localized and regional stages in building survivability prediction

models than näıve Bayes for cancers in the study (except for corpus uteri cancer). In

general, there is not much difference between them on distant stage instances.
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Table 3.9: Algorithms comparison result for corpus uteri cancer survivability predictive
models.

Comparison result

Localized
Näıve Bayes >AD3,
Näıve Bayes >Logistic regression

Regional
Näıve Bayes >AD3,
Logistic regression >AD3

Distant Näıve Bayes >Logistic regression

Table 3.10: Algorithms comparison result for stomach cancer survivability predictive
models.

Comparison result
Localized AD3 >Logistic regression >Näıve Bayes

Regional AD3 >Logistic regression >Näıve Bayes

Distant
No statistically significant differences found
between used algorithms
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Chapter 4

Conclusion and Outlook

In past, only joint survival prediction models were built by training machine learning

methods on all the stages together. They were also evaluated together on all the stages.

In [33] stage-specific models were built for breast cancer survivability and it was reported

that joint models offer no advantage over stage-specific models for predicting breast cancer

survivability and are often worse. It was also reported that evaluating on all stages

together, as was always done in past, leads to an overestimation of performance.

In this study, we investigated whether the above observations made about breast can-

cer in [33] also generalizes to other cancers. To this end, we built joint and stage-specific

survivability predictive models for five cancers - breast, colon, lung & bronchus, corpus

uteri, and stomach. We used SEER dataset along with three machine learning algorithms

- näıve Bayes, logistic regression, and decision tree to make the survivability predictive

models. According to the obtained results, joint models do not provide better perfor-

mance than stage-specific models, and in most cases, their performance are statistically

significantly worse than the stage-specific models. We also saw that the order of impor-

tance of features, as determined using information gain statistic, is different for each stage

which further supports building separate models for every stage instead of building joint

models. Based on these results, we recommend building separate survivability predictive

models for separate stages. We also found that the evaluation of models on all stages

together is misleading, since it tends to overestimate the performance. Therefore, to see

the real performance of a model, we recommend evaluating its performance for each stage

separately. Hence we found that the observations reported in [33] for breast cancer also

generalize to other cancers.

We also saw that there is no specific pattern to suggest using a specific algorithm to

make accurate predictive models for cancer survivability, but all the algorithms used here
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can give a reasonable performance. However we note that näıve Bayes requires much

less computational time and the models generated with logistic regression and AD3 were

better for most cancers. We also observed that the performance of most models was

generally worse on the distant stage. In future, more training data of that stage may

help improve the performance.
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