
University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

August 2016

A High Fidelity Interface for Documents Merging
Tool Using a Language Analysis Oracle
Arwa Mohammed Alsubhi
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Alsubhi, Arwa Mohammed, "A High Fidelity Interface for Documents Merging Tool Using a Language Analysis Oracle" (2016). Theses

and Dissertations. 1332.
https://dc.uwm.edu/etd/1332

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1332?utm_source=dc.uwm.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

 A HIGH FIDELITY INTERFACE FOR DOCUMENTS MERGING TOOL

USING A LANGUAGE ANALYSIS ORACLE

by

Arwa Alsubhi

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

 August 2016

ii

ABSTRACT

A HIGH FIDELITY INTERFACE FOR DOCUMENTS MERGING TOOL USING A

LANGUAGE ANALYSIS ORACLE

by

 Arwa Alsubhi

The University of Wisconsin-Milwaukee, 2016

Under the Supervision of Professor Ethan Munson

Revision is an important step in the writing process in order to obtain a good written work. It

is mostly needed in academia, industry, and government. Usually, it is done by one reviser or

more who is not the author of the written piece. The role of revisers is not limited to correcting

any spelling or grammar mistakes, but also ensuring the coherence of the writing as well as the

words used by the author to express his/her idea correctly to the readers. In addition, revisers

help the author to put his/her writing in the appropriate format. One approach to do the revision

is individually in a parallel way where each reviser modifies the original document. As a result,

the author ends up with multiple versions of his/her work. For this situation, many merging

control systems have been developed to enable the user to merge the revised versions with the

original document in order to represent the changes that were made in the revised versions in

an easily understandable way. Although these merging tools provide the users with much of

the relevant information about the changes and who made them, the interfaces of these tools

do not allow users to filter the corrections so that the users’ attention can be focused on the

most important changes. For example, if there are format changes and grammar corrections, in

addition to editing changes that could change the meaning of the author’s original writing, we

iii

believe that users would prefer to pay attention to the changes that could change the meaning

and then check the format changes, after taking a look at grammar corrections.

In this thesis we developed a new merging interface that enables the user to filter the

changes, based on their level of importance, to give them special attention. In addition, the

interface provides the users with a user-friendly control panel that allows the user to choose

among conflicting changes. This will help users produce a correct merged document.

A usability study was conducted with ten graduate students from the University of

Wisconsin–Milwaukee to test whether a high fidelity prototype of this interface would help

users to better understand the changes that were made in the two revisions as well as choose

the best revisions. While the study found both positive and negative qualities in the prototype,

most participants valued the change classification feature, suggesting that it is worthy of further

research.

iv

TABLE OF CONTENTS

Chapter 1 Introduction ... 1

1.1 Problem statement .. 1

1.2 Objective .. 4

1.3 The Oracle Approach ... 4

1.4 Key research activities .. 5

1.5 Thesis Outlines .. 6

Chapter 2 Background and Related Research ... 7

2.1 Version Control System (VCS) .. 7

2.2 Change Classification ... 9

2.3 Changes Representation ... 11

2.4 Interfaces of Existing Merging Software .. 12

2.4.1 Commercial Software ... 12

2.4.2 Open Source Software .. 15

2.5 Summary .. 16

Chapter 3 Requirements and Design .. 17

3.1 Users ... 17

3.1.1 College students ... 17

3.2 Requirement Specifications .. 18

3.3 Conceptual Model ... 19

3.4 Prototyping .. 21

3.4.1 Initial prototype and the alternative ... 21

3.5 Summary .. 24

Chapter 4 Implementation ... 25

4.1 Python programming language ... 25

4.1.1 Python libraries ... 26

4.2 Implementation challenges ... 27

4.3 Demonstration of the high-fidelity prototype ... 28

4.3.1 Design principles ... 28

4.3.2 Input data .. 30

4.3.3 The main screen .. 31

4.4 Limitation .. 37

v

4.5 Summary .. 38

Chapter 5 Evaluation .. 39

5.1 Subjects .. 40

5.2 Procedures ... 40

5.3 Tasks .. 41

5.4 Results .. 42

5.5 Lessons learned from the usability test ... 46

5.6 Summary .. 47

Chapter 6 Conclusions .. 48

6.1 Future work ... 49

References .. 51

Appendix A .. 53

Appendix B .. 55

vi

LIST OF FIGURES

Figure 2-1: Microsoft Word displays changes in merged document when “In line” option is chosen 13

Figure 2-2 Microsoft Word displays the changes in balloons ... 13

Figure 2-3 Diff Doc Merging software interface ... 14

Figure 2-4 Beyond Compare 4 merging software interface .. 15

Figure 3-1. The initial low-fidelity prototype of the merging documents tool interface............................ 23

Figure 3-2. The alternative low-fidelity prototype of the merging documents tool interface. 23

Figure 4-1 Input screen of the proposed interface .. 30

Figure 4-2Tthe text file that contains the editing changes ... 30

Figure 4-3 The main screen of the proposed interface .. 31

Figure 4-4 Initial implementation of identifying changes ... 33

Figure 4-5 Alternative implementation for identifying changes .. 33

Figure 4-6 Tooltip to direct user attention to the original document .. 33

Figure 4-7 Changes representation in merged document .. 34

Figure 4-8 Tooltip to direct users to get more revision details... 34

Figure 4-9 Popup windows to show more revision details about selected change 35

Figure 4-10 Menu bar to accept/reject changes .. 36

Figure 4-11 popup menus to accept/reject changes .. 36

Figure 4-12 A tool tip to direct the user to get a changes control panel ... 36

Figure 4-13 Our final control panel to accept/reject changes .. 37

Figure 4-14 Menu bar to save ... 37

Figure 5-1 Shows the changes control panel with two options when the modification was made in the

same way in both revisions. .. 45

file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460089
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460090
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460097
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460098
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460099
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460100
file:///C:/Users/PC/Desktop/project/Thesis/thesis/Thesis%20.docx%23_Toc454460101

vii

To my parents,

my husband,

and especially my daughters

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Dr. Ethan Munson for his guidance and support during the

course of my research. I would like to extend my gratitude toward the committee members for

taking time to assist by providing their feedback for this thesis.

1

Chapter 1 Introduction

1.1 Problem statement

Revision is an important step in the writing process in order to produce a well-written work.

It is most commonly done in academia, industry, and government [1]. Usually, it is done by one

or more revisers who are not necessarily the author of the written work. The role of revisers is not

limited to correcting spelling or grammatical mistakes, but also includes ensuring that the writing

is coherent and accurately expresses the author’s idea to the readers. In addition, revisers help the

author put his or her writing in the appropriate format.

Many approaches have been adapted to support collaborative revision. A round- robin

method can be used by passing a Microsoft Word document with track changes by email to the

next reviewer sequentially, until the writer is satisfied with the document. This system of

sequential revision reduces change conflicts that might occur when two collaborators modify the

same text in different ways. However, waiting for a collaborator to complete his or her revision is

time-consuming for the team [2].

Web-based word processing such as Google Docs is another collaborative writing

technique that allows contributors to work simultaneously on the same document. A co-writer can

access the shared document any time from any computer with no need to install a particular

application on his or her device. Also, working offline is an available option by installing a free

application in devices of co-workers who can’t access the Internet or have a slow or inconsistent

connection, which makes online editing difficult. Contributors’ works will be synchronized in the

shared document when the network connection is available. Despite all of these features of

synchronized collaborative writing, there are potential barriers that might make team members not

2

want to use this method for their writing. Security is the most important issue related to cloud

computing, because there is no guarantee of keeping confidential documents inaccessible to

unauthorized users. Also, sometimes a shared document might be lost, in the case of data

corruption or irretrievable loss on cloud servers, unless co-workers have kept a copy of the

document in their computers, which is uncommon [3].

The third common method for cooperative revision is where revisers work individually in

a parallel way, with each reviser modifying the original document to make a new version. Unlike

the previous techniques, a reviewer’s contribution is isolated from others, which can have a

positive impact on the quality of writing. Displaying a reviser’s changes to all team members could

lead to drawing others’ attention to these changes to make different modifications in the same

place, rather than focusing on other parts of the text that need improvement [4]. Displaying changes

could also lead revisers to avoiding touching others’ changes that might need consideration, in

order to maintain the social relationship [5]. Also, web-based and sequential approaches may deter

the collaborator from contributing effectively to the revision process because of concerns about

what other contributors think about his or her work [5]. For the reasons discussed above, our

research focuses on the parallel revision technique.

With parallel revisions, the author ends up with multiple versions of his or her work. As a

result, a number of merging systems have been developed to help the user merge the revised

versions with the original document. These systems try to represent the changes that were made

in each of the versions in an easily understandable way. Although these merging tools provide the

users with much of the relevant information about the changes and who made them, there are gaps

in what they provide. The user merges the multiple versions of a document either by using a

combining feature that integrates into the word processor or by using external merging tools. By

3

using the merging feature in a word processor such as MS-Word, the user needs multiple steps to

complete merging more than two versions of a document. The first step is to combine the original

version with the first revised versions and then accept or reject the changes. Second, the first step

is done with the second revised version. Finally, the user can combine the two documents resulting

from the previous steps. The main problem with this method is that there is no way to show the

users the conflicting changes in both revised versions. In contrast, external merging software

allows the user to merge up to three versions of a document and show the changes line by line, as

well as the conflicting changes, but there is no way to let the user choose the best change in the

case of a disagreement.

In addition, the interfaces of all existing merging software do not provide a way for the

user to filter the corrections, based on their level of importance, in order to give primary attention

to the most important changes. For example, if there are format changes and grammar corrections,

in addition to sentence changes which could change the meaning of the author’s original writing,

the user would probably prefer to give attention to the changes that could change the meaning of

the document. The author might choose to pay less attention to suggested format changes and

grammar corrections.

4

1.2 Objective

The objective of this thesis is to experiment with a new merging interface that enables the

user to filter document changes, based on their level of importance, in order to give special

attention to the most important changes. In addition, the thesis will assess providing users with a

user-friendly control panel that allows them to choose the best change in case of conflicts. This

will help users produce a correct merged document. Overall, the research seeks to develop an

interface that users will find more satisfying than existing interfaces for document merging.

1.3 The Oracle Approach

Much research has been done to improve the natural language processing software that

helps people enhance their writing, especially when they write in a foreign language. A contextual

spelling checker is implemented to detect words that are spelled correctly but that don’t convey

the writer’s intended meaning. These words, called homophones, have the same sound but are

spelled differently and have different meaning. An example is buy, by, and bye; these words sound

the same, but they have different meanings. Similarly, a context-based grammar checker has been

developed to identify grammar errors by considering the surrounding text. However, these tools

still can’t detect errors that human eyes can spot. In addition, no software exists that can easily

help us analyze document versions as we envision them. As a result, we pretend that we have that

system by assuming an “oracle” exists that can help us.

5

1.4 Key research activities

 The first step in our research was to create sets of sample documents, where each set

included three MS Office documents (one is the original version and the other two are revised

versions), plus a text file that describes the hand coded changes that were made in the two revised

versions. The second step was to implement a prototype that took these four files and displays the

three versions beside a proposed merged file. The implemented interface has the following

features:

 Allow the user to filter the changes that were made in the two revised versions into the

following categories: font, spelling, grammar, and editing.

 Allow the users to locate the places of changes in two revised versions that were made

in the original version.

 Allow the users to choose between the two different changes from revised versions that

were made on the same place in the original document.

 Enable the users to save the merged file as HTML.

Finally, we conducted a user study to test the usability of the proposed interface to evaluate

the proposed interface. Ten graduate students from the University of Wisconsin–Milwaukee

participated in the study. The participants came from different cultures: five were Arabic, three

were South East Asian, and two were domestic students. Tasks based on real-world scenarios

adapted from collaborative writing in academia were presented in the study. The tasks focused on

finding a specific type of modification that had been made to the original document based on our

changes classifications and accepting/rejecting the correction. Positive and negative feedback were

6

collected through observations and questionnaires, leading to ideas for future improvements of the

interface and more research investigations.

1.5 Thesis Outlines

This thesis is organized as follows: Chapter 2 provides background on version control

system, related works on changes classification and demonstration of selected existing merging

software interfaces. Chapter 3 explains how we collected and analyzed requirements for the design

of merging document interface prototype. Chapter 4 describes the details of the implementation of

high fidelity merging document interface. Chapter 5 describes our usability test of this interface,

and describes the interesting results that we found from participant experience of using this

interface. Finally, Chapter 6 includes the conclusion and the future works.

7

Chapter 2 Background and Related Research

This chapter provides the background which motivated our research, along with a selection

of important related works. The first section reviews some concepts in Version Control Systems.

Then, we will review the related works in categorizing changes, as well as methods of representing

them. Finally, a demonstration of interfacing with existing merging tools will be given.

2.1 Version Control System (VCS)

A Version Control System (VCS) is essential for any work that is performed

collaboratively. It is designed to cope with multiple versions of a file by tracking the differences

among them, checking who made the changes, and noting the time and date when the changes

were made. There are two approaches of VCS[6][7]: centralized and distributed. In centralized

version control, a single copy of a file is stored in a remote central repository, and available to be

accessed by all coworkers. Any modifications on this central copy might be made by one member

of the team, and will be stored and represented for other members. In contrast, distributed version

control allows each collaborator to revise the file locally, on their devices, which contains versions

history. Then, it detects the differences between all versions of the file and combines these changes

in a single version. The major benefits of distributed version control over centralized are [8]:

 The contributor is able to work anywhere, even with the absence of Internet

connection, while most centralized version control systems require Internet access

to participate in the work.

8

 Since each team member has an updated version history, the presence of the entire

history of the repository is guaranteed, even when catastrophic failure occurs to the

remote server or any collaborators’ devices.

 The absence of central authority led to increased contributions toward teamwork,

where every coworker was able to submit his/her changes without permission, as

with the centralized version control system.

 The need of a large amount of resources, such as storage space. Memory is reduced

significantly by using a distributed version control system, unlike centralized

version control, where large number of collaborators might work on the project

using a central server.

 The participant in a software project feels more confident with proposing and

experimenting with new features for the developed system, without fear of causing

the whole project to fail. The modification will be done locally before they are

transferred to the central server. This encourages the creative ideas within

teamwork.

 Common operations, such as merging, will be done faster in the distributed system.

They use local repositories, leading to a reduction of time, relative to what is needed

to complete these operations on the central system.

Considering the significance of versioning control in team work, researchers work to either

modify existing applications or design tools to support it. Munson and Thao [9] implemented a

framework called the version-aware document, which preserves a complete version history of an

XML document without the need to centralize or share storage. This is an extension of their

previous work on efficient algorithms for merging changes in XML documents. Their system had

9

an efficient representation of the differences among XML document versions, and provided simple

GUI application to show changes and a conflict resolver if there were any conflicting

modifications [10].

Later work by Thao’s group produced a version aware plug-in for Microsoft Word that

maintains a complete history of document revisions and can display it as a graph. The tool tracks

changes and who made them, and can merge the changes from two documents into one [11].

Other research looked at how to support versioning by doing some modifications on an

open source office suite. The LibreOffice source code was modified to support the unique

document element identifiers needed by the XML version aware model [9]. This effort was

intended to permit the LibreOffice document system to preserve the whole version history, as well

as provide full merging and differencing services [12].

2.2 Change Classification

Text changes, which were made in multiple versions of a file, have been categorized by

using different taxonomies in order to serve different purposes. Many categories have been

suggested, either for software source codes or textual edits.

It is very common in the software lifecycle to make multiple versions of the software,

especially when the work is done collaboratively among team members. The issue of identifying

the source that leads to the software failure is raised when more than one programmer works on

the code. Many researchers have attempted to design tools to assist the collaborative programmers

in their awareness of the changes made on software, and show which of them might be causing the

errors.

10

Stoerzer et al [13] designed a classification tool, called JUnit/CIA, to categorize the

changes made on Java programs. Based on the effects of these changes, which were responsible

for a program failure, the tool marks the changes with the colors of red, yellow, or green. The red

indicates that the change has a high probability of causing failures. The change marked with yellow

may cause a problem, while the green sign represents a successful associated change. The aim of

this classification is to help the programmers identify the changes (between two versions of the

Java program) that caused the test failure.

 Kim et al [14] proposed a software change classifier, based on machine-learning

approaches, in order to determine whether the changes are a bug or clean change.

Fluri and Gall [15] implemented an Eclipse plugin, called CHANGEDISTILLER. It

extracts the changes from two java source code files and represents them in a classified manner.

The changes are represented by the level of significance, which may be low, medium, high, or

crucial. The significance level of a change indicates the impact it would have on other code entities

if it is accepted. Also, CHANGEDISTILLER determines whether a modification preserves or

changes the function of the code.

In a document editing process, the most common categorization has been used widely in

the field. Identifying the corrections made on the original document involves insertion, deletion,

relocation, or conflict. When new entities are added to the original text, it will be labeled as

insertion. When the opposite happens, the label will be deletion. The conflict category is raised

when multiple versions are merged. It occurs when the text is modified in one version, while the

same text is deleted from other versions, or when the same text is modified differently in each

version [10] [16].

11

A Wikipedia article goes through multiple revisions, and each revised version has many

differences from the original article. A classifier was developed based on a machine that learns to

categorize the modifications made to the (English Language) Wikipedia article, into 21 complex

classes. These 21 categories, grouped into three main categories, include surface changes,

meaning changes, and Wikipedia policy. Spelling, grammar, paraphrasing, relocating and markup

language entity edits are considered surface modifications. On the other hand, any change in the

article’s information, references, and templates is labeled as a meaning change modification. Also,

each of these meanings classify the categories further, separating them into insertion, deletion, and

modification. The last main classification is called Wikipedia policy because it refers to changes

made because of system policies and includes vandalism and revert[17].

Zhang and Litman [18] [19] designed an automatic revision detector for argumentative

writing done by high school students. This automatic detector classifies the detected revisions

between two drafts of student writing to the reason of the editing (claim, evidence, rebuttal, etc.).

Recently Ping et al [20] proposed revision classifier to determine the significant of changes

whether corrections changes the meaning of the original writing or just a paraphrasing.

2.3 Changes Representation

To differentiate the modifications made in revised versions, during the revision process

from original entities, many techniques were adapted. Some are color-coding, symbol-coding, or

graphical visualization.

 The changed text is displayed by using different background or foreground colors, where

each color indicates the type of change or certain editors [21].

12

To avoid overwhelming the user with a lot of changes made, especially in a large document,

Zhang and Jagadish [22] presented a new way to represent the changes, which are made in plain

text to the users. The changes that are relevant to a selected text from the source file will appear

inside different brackets. The text inside ‘(‘and ‘)’ is not changed. The inserted text will be located

inside ‘{+’ and ‘+}, while the deleted string appears inside ‘[-‘and ‘-]’.

Whitaker [21] suggests using railroad or tramline diagrams to represent changes. Each

track or line indicates modification from a revised version, when the same text is changed

differently in other versions. He claims that using this method would help the user easily choose

the best change, rather than comparing them mentally.

2.4 Interfaces of Existing Merging Software

 This section gives a close look of existing merge tool interfaces and its features. The

examples of commercial tools will be discussed first, then the open source software.

2.4.1 Commercial Software

2.4.1.1 Microsoft Word 2016

Microsoft Word 2016 allows users to merge two versions of a document. The two versions

display in a pane, to the right of the merged document. All changes in the merged document appear

in different text colors, except the format changes. There are two ways to show the revisions, either

in balloons or inline (figure 1). If the balloon mode is chosen, the deleted text, as well as who made

it, will appear in a balloon on the right margin of the merged document. Each balloon is connected

to the corresponding inserted text, by line, while the inserted text appears underlined and with

different colors in the merged document (figure 2-2). On the other hand, inline mode represents

the deleted text with strikethrough, followed by underlined text. Both are represented with different

13

text colors (figure 2-1). The user can get information about who made the changes, and when, in

two ways. They can either hover on a change or use the revisions pane, which appears on the left

side of the merged document. In addition, the user can accept or reject all changes made on the

original document, or just accept or reject the individual change.

Figure 2-1: Microsoft Word displays changes in merged document when “In line” option is chosen

Figure 2-2 Microsoft Word displays the changes in balloons

2.4.1.2 Diff Doc

Diff Doc [23] compares two versions of a document from various types, including Word,

Excel, PowerPoint, pdf, text, html and xml. The two versions display side by side, and the merged

document is below them. Changes in the merged file are distinguished by using different

foreground colors. The red color, with strikethrough, represents the original modified text. Next to

14

it is the modification in red, with underline. The green text indicates an insertion, while the blue

with strikethrough represents a deleted text. In the tools, there is no support for accepting the

changes, but the user can save the merged file. Unlike the MS Word comparison tool, there is no

detection for format changes (figure 2-3).

Figure 2-3 Diff Doc Merging software interface

2.4.1.3 Beyond Compare 4

Beyond Compare 4 [24] is designed to compare and merge folders and files. It supports a

large variety of files, including MS Word, XML, text, Java, python C++, etc. Users will see the

three version of a file, side by side, above the merged version. There is a feature to filter the view.

One has the option to display only changes, only matches, or both in three versions. There is an

option to ignore the unimportant changes, such as whitespace, comments, and character case. The

important modifications will appear in red text, in all versions, while the unimportant ones are

15

colored in blue. All changes made in the two revised versions will be included in a merged file

automatically, but when a conflict happens (the same section of text has changes in both revised

versions), the software will highlight it in red. It assists users in focusing on resolving the conflict

by choosing one of the three versions. They have to click on the arrow next to the desired choice.

Users cannot choose a certain change that appears in the conflict section. Instead, they are allowed

to choose the whole section (paragraph) (figure 2-4).

Figure 2-4 Beyond Compare 4 merging software interface

2.4.2 Open Source Software

2.4.2.1 KDiff3

KDiff3 [25] is designed to support combining two or three text files/directories. Like the

previous merging tools, the three versions will display side by side, with the highlighted and

16

modified text. The user is able to accept all changes made in one line, from one version. They can

also reject the other changes made, in other versions, on the corresponding line.

2.4.2.2 WinMerge

WinMerge [26] is an open source software that is designed to compare and merge two

files/folders for the Microsoft Windows operating system. It is designed to compare text files, line

by line, with the feature of applying all changes on the original text file.

2.5 Summary

Version control is a required feature in any collaborative work. It keeps all versions of a

file/document, during the development process, as references. Moreover, it identifies the changes

made in each version and merges them in one file/document. It is an important part of any version

control system. There are two models of version control: distributed and centralized. The

distributed model is recently more favored, as it has significant advantages which enhance

teamwork. Considering the importance of version control in a collaborative edit, many efforts have

been made to design tools which support versioning, or modify applications to be versioning

aware.

Despite the existing interfaces of merging tool software do only a decent job in

representing the modifications made in multiple versions of a text file, they often do not give the

user freedom to choose a single change from one version, in case of conflicts, rather than select

the whole line or paragraph.

17

Chapter 3 Requirements and Design

This chapter defines the primary users of the merging documents tool. Then we address

requirements of our design; defining the conceptual model provides a clear idea of what the

proposed interface will look like and how it will operate. Lastly, the prototype of the interface

is demonstrated in detail.

3.1 Users

Knowing the target users of a developed system and their characteristics helps the

designers produce user-centered products that meet users’ needs effectively. The potential user

of this prototype is the original author of a written piece that needs to be revised by one or

more editors. Our focus was on one group of merging tool users, college students.

3.1.1 College students

We assume that the author is a graduate student in academia who is either international

or domestic. The most important characteristic of the user is the skill level in using editing

software, which can be basic, intermediate, or proficient. Also, time is a critical factor in

students’ academic lives due to the many deadlines they have to meet. In addition, international

students who write in English as a second language might have a large number of corrections

made on their written pieces.

18

3.2 Requirement Specifications

Our aim in this research is to design a user interface that helps people understand the

corrections that have been made in revised versions and then choose the best revisions easily

and efficiently to get the best merged result. Thus, we need to address and analyze the user

requirements.

By identifying the users and analyzing the interfaces of existing merging tools (Chapter

2), we defined the requirements of the interface as the following:

1. It should be easy to use and learn.

2. It should display all versions of the document for user reference alongside the

merge result.

3. There should be an understandable way to connect the changes made in both

revisions to their corresponding places in the original version.

4. There should be an easy way for the user to filter the changes based on the level

of importance for the user.

5. The changes that were made in the two versions of the file should be represented

in an understandable way in the merge result.

6. There should be a convenient way for the user to view revision details for a

selected correction.

7. There should be an easy way for the user to accept a specific modification even

if this modification was made differently in both versions.

19

3.3 Conceptual Model

In order to produce a well-designed product, it is important to start constructing a

conceptual model at the beginning of the design cycle of any system before prototyping. The

role of a conceptual model is to identify what tasks the user can accomplish by using the

software and how the system should behave regarding user interaction. We developed our

conceptual model by identifying several usage scenarios, as seen in the following:

Usage scenario 1: A user wants to know what kind of corrections were made on both

edited versions.

A graduate student wrote 100 pages of thesis manuscript and sent the document electronically

to two professors on the thesis committee. Later, she received two versions of the document

with many modifications. In such a large document with many corrections in both versions, it

is frustrating to go over every single change to understand what kind of modifications were

made. The solution is to filter the changes based on certain categories and use color coding to

distinguish different types of categories.

Usage scenario 2: In the view displaying the three versions of a document as references,

a user wants to know the corresponding place in the original document of specific

corrections that were made on either edited version.

Displaying only the merged result might cause some issues for the user. In the merged result,

changes are usually represented by a combination of strikethrough or underline and different

colors. Despite this being a helpful way to perceive and understand the changes, it disturbs the

reading flow [27], which has a negative impact on the user when deciding which changes to

accept. Displaying three versions of a document beside the merged result diminishes the

20

negative impact of change representation in the merged result. The user can read the changes

in the context of either revised document and decide which is the best fit. Now the problem is

how the user finds the corresponding place in the original document for specific modifications

in either edited version to compare them in the context of each version. Two methods could be

applied to solve the linking issue: using connection lines between the correction in either

version and its corresponding place in the original file or highlighting the corresponding place

in the original file when the user goes over any changes in both revised files.

Usage scenario 3: In the merged result, a user wants to know revision details about

certain modifications.

Listing the revision information for all changes that were made in both edited documents or

displaying them in balloons in the margin can be overwhelming and confusing to the user. A

better method is to provide the information about certain modifications upon request by the

user. This can be achieved by clicking on the desired correction to show more details about it;

for example, in what version the change was made and what kind of correction it is (grammar,

spelling, etc.).

Usage scenario 4: In order to obtain a good document, a user wants to choose a correction

that was made in one or both edited versions, or keep the original text.

Combining three versions of a document results in conflicts when two different changes were

made in both revised documents at the same place. One paragraph contains three conflicting

changes; in the first position, the user decides to choose the changes that were made in the

second revised document, while in the second position, the user thinks keeping the original

text preserves his intended meaning. Finally, in the third position, the user finds that accepting

21

the correction from the first revised document enhances that paragraph. To solve this issue, a

drop-down or pop-up menu could be associated with a change to enable the user to apply it.

3.4 Prototyping

Prototyping is an essential process in designing a user interface. Converting the

conceptual model into the visual medium helps the designers discover any issues that might

arise in the designed interface and find alternatives to solve them. Also, prototyping is used to

validate the requirements that were gathered at the early stages of the system design life cycle.

Many methods could be used to produce a low-fidelity prototype, such as storyboarding,

sketching, or using index cards. In order to produce our low-fidelity prototype of the merging

documents tool interface, we used the Balsamic Mockups [28] application. Compared to

drawing our design by hand on paper, using this software saved us a significant amount of

time. This software provides a large number of user interface elements to drag and drop into

the design easily, which allowed us to produce the prototype and its alternative faster and more

easily with a professional look.

3.4.1 Initial prototype and the alternative

Figure 3-1 shows our initial low-fidelity prototype, which is reflected in our conceptual

model. We divided the changes into checkboxes, where each one represents one category of

change types. The three versions of a document are displayed side by side horizontally, and

the merged result is shown beneath them. We selected the two revised documents and

identified the changes by putting the text inside parentheses when the filtering changes are

applied, highlighting the original document title to draw the user’s attention. To show more

revision detail about certain corrections in the merged result, we show the revised version

22

number after the changed text, and a pop-up window including that information is shown when

the user clicks on that number. The reason behind displaying the versions horizontally is to

connect the changes in both versions with the corresponding place in the original document by

drawing dashed lines.

We assessed the low-fidelity prototype informally, simply relying on the author’s

judgement while performing simple tests with the interface. Two issues arose in this

assessment about the initial design. First, using dashed lines to connect changes to the

corresponding places in the original document resulted in too much complexity when reading

the text in the three versions and caused visual discomfort, especially with large documents.

Second, the space and location that specified the merged result at the bottom of the window

were awkward for the user to work with to get a good combined result.

The alternative design (Figure 3-2) solves these issues. We split the screen into two sides

to give more space for the merged result. The left side shows the merged result, while the right

side displays the three versions vertically. We used the highlighting method instead of dashed

lines to connect the changes in both revised versions to the corresponding places in the original

version. We suggested using drop-down menus to accept or reject changes from the three

versions.

23

Figure 3-1. The initial low-fidelity prototype of the merging documents tool interface.

Figure 3-2. The alternative low-fidelity prototype of the merging documents tool interface.

24

3.5 Summary

We identified the primary user of our proposed interface. We also addressed the

requirements of our design based on the target user’s characteristics and the existing interfaces of

merging tools. We identified the functionalities of our suggested interface by describing the

conceptual model based on some usage scenarios. Finally, the initial prototype was built to meet

the specified requirements and user needs. Some problems related to the initial design were solved

by using alternative prototypes.

25

Chapter 4 Implementation

This chapter discusses the implementation of a high-fidelity interface for merging

documents. Firstly, we introduce the programming language and its libraries that we used to build

our prototype. Then, we provide the key challenges that we faced during the implementation and

the relevant solutions or alternative methods. Finally, we give a demonstration of the interface and

its features.

4.1 Python programming language

During a software development process, it is very important to produce a rapid prototype

rather than full software, which is usually expensive, time-consuming, and might need to be

reconstructed several times to solve any problems that might appear during testing. In contrast, an

initial prototype is easy and fast to rebuild in case of any issues raised during testing because it has

part of the full design’s functions. Although Python has slow performance compared to other

programming languages such as Java and C++, there are several reasons that make it the suitable

tool to build rapid prototypes. Python has very simple syntax, which leads to more productivity;

the designer is able to produce a piece of software with less coding compared to other programming

languages. Moreover, Python has very useful built-in functions and a large number of libraries that

serve different purposes such as image processing, natural language processing, or machine

learning. Automatic memory management – the process of locating or reclaiming objects when

they are no longer used – is another beneficial characteristic of Python. In addition, Python is very

flexible in accepting calling or being part of a system that is written in other programming

languages such as C or C++ – a very useful feature to easily convert the final design into higher

26

performance programming languages [29]. Considering all these advantages, we chose Python to

produce our high-fidelity interface for merging documents.

4.1.1 Python libraries

The objective of this thesis is to design a graphical user interface for merging documents

that helps the user understand the modifications that were made in multiple versions of a Microsoft

Word document and yields the best merged result. For that reason, we used two libraries: Python-

docx and Wxpython, one for dealing with Microsoft Word documents and the other one to produce

the graphical user interface.

4.1.1.1 Python-docx

Python-docx is designed to help programmers create Microsoft Word documents with the

docx extension or deal with an existing one. We used this library to read Microsoft Word

documents in order to display them on the interface. Unlike plaintext Microsoft Word documents

based on a certain hierarchy structure, the Python-docx module defines three object types to enable

the designer to easily handle this structure. The ‘Document’ object is the top level in the hierarchy

structure and represents the entire document. Inside a document there is one or more paragraphs,

and the ‘Paragraph’ object is defined to cope with paragraphs. Also, each paragraph object consists

of one or multiple Run’ objects, where a new run is created whenever the text style is changed.

Each run has attributes such as text, size, font, bold, and italic [30] [31].

4.1.1.2 Wxpython

We used this library to implement the graphical user interface (GUI) for several reasons.

First, it is an open source library extension of the wxWidget cross-platform GUI, which is written

in C++ and gives the interface fast performance. Also, an application that is designed by using this

27

library can run on various systems with little or no modifications in the code. Moreover, Wxpython

has many useful widgets that serve our goal to design an efficient and easy-to-use interface for

merging documents [32] [33].

4.2 Implementation challenges

Any software programmer confronts some difficulties while coding a new piece of

software and must overcome these problems either by finding a solution to the challenge or coming

up with alternatives. As we developed our proposed interface, we encountered two main

challenges.

The first problem we encountered involved reading the common format (i.e., bold and

italic) of an MS Word document text using the Python-docx library. The Python-docx library, as

mentioned earlier, organizes text into paragraphs, which are further divided into runs. The library

expects that each run represents a section of text with a different formatting style. However, we

found that Microsoft Word splits misspelled words into multiple runs, without there being any

change of style. In order to get the text and its format to display correctly in our interface, we

developed an approach to recognize the word even if it is split over multiple runs, and then

retrieved its format using Wxpython library functions.

Another challenge we faced was identifying the corrections that were made in both revised

versions, which our prototype marked by underlining words using different colors and patterns to

indicate the type of the corrections. We used a rich text box widget to display the formatted text

of MS Word documents on the interface, but this widget does not support the combination of

colored and patterned underlines. We needed different colors and patterns for underlines to

highlight different types of modifications in both revised documents, even if an overlap occurred

28

where the same spot had multiple types of changes, such as grammar and font. We tried to draw

the underlines over the rich text box widgets, but the result was unsatisfying. These newly-drawn

underlines were very slow and shifted down from words a little when the scrollbar was used. Thus,

we used an alternative method to represent the changes; we put the corrected text inside

parentheses with a different shape and color to indicate the type of changes based on our change

classifications.

4.3 Demonstration of the high-fidelity prototype

This section illustrates our proposed interface and its functionalities. First, we state some

design principles that we followed in our implementation. After that, a discussion of the input data

will be given. Finally, the components of the interface and its capabilities will be explained in

greater detail.

4.3.1 Design principles

In order to provide a good prototype that met the users’ needs, it is very important to follow

the general interaction design guidelines to ensure the quality of the final product. We considered

five main design principles [34] during the implementation process of our high-fidelity user

interface for merging documents:

1. Visibility

It is important to make all parts of the interface visible to the users, in order to let

the users, perform the intended functions. The high-visibility functions of any user

interface will give the users a clear idea to what they can do and how to perform it

easily with less effort and in less time.

2. Feedback

29

Users must be informed about the actions they perform. There are several forms of

feedback that the system provides to its users: visual changes, audio, tactile, or any

combination of these. Providing users with relevant feedback makes it clear that the

software is responding to users ’actions.

3. Constraints:

In some cases, it is important to restrict users from performing certain system

functions (i.e., the wrong task) in specific situations. Typically, designers can apply

this principle by deactivating a targeted part of the interface.

4. Consistency:

People use their previous experiences with other systems in a new one. For that

reason, programmers must design an interface that follows the common rules of

performing normal tasks such as clicking the left mouse button to select an object

on the interface. This is called external consistency. Programmers should also apply

the internal consistency in their product which includes consistent visual design and

using similar system behaviors to respond to similar user actions.

5. Affordance

This term refers to the appearance of interface objects that give the user a clue on how

to use them. For example, buttons should be designed in way that affords clicking.

In the following sections, we will point to each of these principles while we give further

descriptions of our proposed interface.

30

4.3.2 Input data

Four files should be served as inputs for our prototype (figure 4-1): three MS Word

documents, where one of them is an original document written by an original author and the others

are revised versions from different revisers, and a fourth file that is a text file that serves as the

Oracle system. In this fourth file, we grouped the corrections that were made in both edited

versions into four categories: font, grammar, spelling, and editing. Any font changes such as bold

and italic were classified under font changes. Any grammar or spelling corrections were located

under the grammar and spelling categories, respectively. Other corrections made in one or both

revised documents that don’t fall under any previous categories were included under a general

editing category. Under each classification, we listed the changes starting by paragraph number,

word number, and the word string in the original document, followed by the same information for

versions 1 and 2. Each line contains one change, and the information related to this change was

separated by the ‘|’ symbol (figure 4-2).

Figure 4-2Tthe text file that contains the editing changes Figure 4-1 Input screen of the proposed interface

31

4.3.3 The main screen

The main screen is divided vertically into two parts (figure 4-3). The left section displays

the merged document. On the top of the right part, the changes filters panel appeared. Beneath

that, the three versions of a document are displayed where the original text is showed in between

the two versions. Colored title headers differentiate each version. We used bright yellow to

highlight the original version.

Figure 4-3 The main screen of the proposed interface

4.3.3.1 Filtering and identifying changes

To give the user the freedom to select the classification of the modifications to display on

the screen, we used check boxes. If there are no changes that belong to one of our change

classifications, the checkbox that represents that category will be deactivated – this is the constraint

principle reflected in our design. We applied color coding with different parenthesis shapes to

highlight the changes that were made in both revisions. When the user selects the font check box

with blue background, the font changes will be highlighted by including them between blue

squiggly brackets. The green highlighted spelling checkbox will draw green round brackets

32

around spelling corrections. Also, when the user checks the grammar checkbox with red

background, grammar corrections will be included in red square brackets. If the changes don’t fall

under these three classifications, they appear inside turquoise chevron brackets when the turquoise

highlighted editing checkbox is selected.

At the beginning of our interface implementation, we applied our modifications

differentiations model on both widgets that contain revised versions. To meet our proposed

interface requirement of binding the changes that were made in either revised version with the

corresponding place in the original version, we provided a function of highlighting a target text of

the original document when the user hovers over the text inside the parenthesis that appears in

either widgets of the edited versions (figure 4-4).

To protect the user from losing focus while controlling two widgets that display the edited

documents, we created an alternative implementation. We applied our modifications

differentiations model on the rich text box that displays the original document and used our

highlighting function to highlight the corresponding text in both rich text boxes that show the two

revised versions as well as a corresponding text in the merged document when the user moves the

mouse over the text inside parenthesis in the original version (figure 4-5). Highlighting the text

and drawing the parenthesis represent an application of the feedback design principle. Also, we

used tooltips to guide the users to direct their attention to the original document where we applied

our modifications differentiations model on the text that has been corrected in either edited version

(figure 4-6).

33

Figure 4-4 Initial implementation of identifying changes

Figure 4-5 Alternative implementation for identifying changes

Figure 4-6 Tooltip to direct user attention to the original document

 where the changes will be identified

4.3.3.2 Merged document

The merged result will be shown on the left side of the interface. Changes will be

represented to the users by different text color where the original text has strikethrough and the

34

corresponding corrections that were made in either revision will be underlined followed by either

number 1 or 2 (number 1 indicates changes made in revised document 1, and number 2 indicates

the second revision). In addition, each one of these numbers has a background that matches the

colored title header of the widgets that contain the two edited documents (figure 4-7).

Figure 4-7 Changes representation in merged document

4.3.3.3 Revision details

A well-designed system provides a decent amount of information to the users upon

their request. When the user moves the mouse over the number that represents the version’s

number, the curser will change to a finger pointer that offers clicking and a tooltip will

appear to direct the user to get more information about that modification by double-clicking

on the number (figure 4-8). By clicking on the number, a popup window will display more

details about the type of the change based on our change classifications model using our

coloring code approach. This popup window will disappear by clicking anywhere on the

screen (figure 4-9).

Figure 4-8 Tooltip to direct users to get more revision details

35

4.3.3.4 Accept/Reject changes

It is not easy to create a really handy control widget that enables users to choose the desired

corrections to get the best merged document. As a result, we developed three alternatives controls

to enable the user to select a desired correction either by keeping the original text or accepting one

of the revisions.

Our initial changes control used the menu bar located above the merged document widget.

This menu bar contains two menus: one to deal with changes that were made in either version, and

the other to reject the corrections by keeping the original (figure 4-10). We found that this control

did not meet our objective to help the user better understand the revision process that was done on

his/her writing and choose the best fit. More specifically, this menu did not consider the

combination of the change classifications if changes occurred in the same place. Also, in order to

accept or reject a specific change, users had to go back and forth between the changed text in the

merged result widgets and the menu bar, which consumed time and effort.

To overcome the problem with our initial control change implementation, we produced a

second control change panel. Clicking on a strikethrough text lead to a popup menu that enabled

Figure 4-9 Popup windows to show more revision details about selected change

36

the user to keep the original text, while doing the same action over an underline text lead to a

popup menu that enabled the user to accept that text (figure 4-11). Although this approach was

more flexible than the original menu bar, it was still not informative enough to enable the user to

select the best corrections.

Our final control change implementation solved the issues related with the two previous

implementations. When the user hovers over any changes, a tool tip showing the control panel will

appear by double-clicking (figure 4-12). A popup window appears under the text by double-

clicking on any corrected text. This window informs the users about the type of the changes that

were made in the current position and give users the option to choose a change. This window

disappears by clicking anywhere on the window or clicking on the “Apply” button after choosing

the desired correction to applied (figure 4-13).

Figure 4-10 Menu bar to accept/reject changes

Figure 4-11 popup menus to accept/reject changes

Figure 4-12 A tool tip to direct the user to get a

changes control panel

37

4.3.3.5 Saving the merged result

Our high-fidelity interface has a feature to save the final document after choosing the

desired corrections. A save menu located in the menu bar above the combined file widget enables

users to save the merged result as an HTML file (figure 4-14). We chose to save the result as

HTML for two reasons. First, it is the only file type that supports formatted text in the Wxpython

library. Second, most editing software supports HTML, including Microsoft Word.

Figure 4-14 Menu bar to save

combined result as HTML.

4.4 Limitation

A well-designed system helps the user recover from their mistakes. There are two types

of error recovery: backward recovery and forward recovery. In forward recovery, there is no

undo action, but there is an alternative way to allow users to recover from their mistake.

Backward recovery allows users to revert to the previous state (i.e., before they executed their

last interaction) [35]. Our interface lacks this feature; when the user selects a certain correction,

he/she cannot undo to reselect from other options of correction.

Figure 4-13 Our final control panel to accept/reject changes

38

4.5 Summary

In this document, we discussed the programing language and libraries that we used to

implement our interface for merging documents. We provided a brief description of the design

principles that we followed in our design. Also, we discussed an illustration of our interface and

its functionalities and limitation in further detail.

39

Chapter 5 Evaluation

We conducted a user study to test the usability of the interface of the document merging

tool. Before our study, we hypothesized that the change filtering tool that we used in the interface

would help the user to better understand the modifications that had been made in the two revised

versions of the original document. We also assumed that the change classification feature we used

would guide users to focus their primary attention on the most important corrections that had been

made in the two edited versions. We assumed that for any changes involving deletion, addition,

and relocation, they should be grouped under the “Editing” category because they could change

the meaning of the original content. Moreover, we expected that the following two features would

assist the user in choosing the best version among the three versions in each place where a change

had been made.

 we applied a highlighting feature in the interface to highlight the corresponding text

that had been modified in one or both revisions and the merged result when the user

hovering over the original text that was included inside parentheses.

 we made the change control panel a pop-up in the merged result; when users double

click on any of the corrections, they are given the option to choose the best changes

by either keeping the original or accepting the correction from either the first

revision or the second.

We used two sets of Microsoft Word documents as the dataset of the study. Each set

included three MS Word versions of the same piece of writing; one of the three was the original

version and the other two were the revised versions. We made a variety of mistakes in the original

version, such as font errors, deletions, relocations, and spelling and grammar errors. In the two

40

revised versions, we corrected the mistakes that we had made in the original version differently or

similarly. In addition to the three MS Word documents, there is a text file that works as the Oracle

system. This file lists and classifies the changes that were made in the two revised versions,

corresponding to the place/word in the original document. In the first set, each MS Word document

contained approximately 75 words, while in the second set, each document contained

approximately 125 words. The following sections describe in detail the participants, the procedure

of the study, the tasks, and the results of the study.

5.1 Subjects

Ten graduate students from the University of Wisconsin–Milwaukee participated in the

study. Eight of them were from the College of Engineering and Applied Science, one was from

the School of Information Studies, and one was from the College of Nursing. The participants

came from different cultures: five were Arabic, three were South East Asian, and two were

domestic students. Each participant had experience with collaborative writing, working with at

least one type of versioning control software. In addition, each of them had experience with the

“track changes” feature in MS Word. Their prior experience helped us to collect their opinions on

how the proposed interface compared with previous experiences with this type of software.

5.2 Procedures

The study took place in our multimedia laboratory using a Windows laptop with an external

mouse for greater convenience. We met with one participant at a time, and we provided a five-

minute orientation on the interface, where participants were introduced to the interface’s features.

Following the orientation, two sets of tasks were given to each participant. Each set of tasks was

to be completed on one set of the writing samples. No time limit was set for the participants to

complete the tasks, because our aim was to observe how the proposed interface would be used in

41

practice. In practice, the time spent by the participants to complete the two sets of tasks ranged

from 30 to 45 minutes. Users were encouraged to think aloud while performing the tasks to assist

us in understanding their actions. Moreover, we took notes and recorded the users’ screens using

TinyTake software in order to get more information about the users’ interactions with the interface,

for further review after the study. Following the completion of the tasks, we further inquired into

the users’ opinions of the proposed interface with an online, post-study questionnaire, which was

administered using UWM Qualtrics. We used a survey with six items, including one multipart

question with Likert-type items related to satisfaction, two questions with Likert-type items related

to measure levels of agreement/disagreement about the change classifications, and three open-

ended questions [see Appendix B]. Participants were asked to complete a survey, either after the

tasks completion or at a more convenient time, using email.

5.3 Tasks

Two sets of similar tasks [see Appendix A] corresponding to two different writing samples

were given to participants. We created the tasks based on real-world scenarios adapted from

collaborative writing in academia. The tasks focused on finding a specific type of modification

that had been made to the original document based on our changes classifications and

accepting/rejecting the correction.

For example:

 For one of the tasks, we asked participants to find a correction that had been made

in either the first or second revision that could change the meaning of the original

document, as we assumed that this type of change should be taken care of first.

42

 Another task asked the participants to find three types of changes that had been

made in one place, such as font change, grammar, and spelling corrections.

 In addition, we asked the users to find spelling/grammar corrections that had been

corrected differently in each of the revised versions and choose the preferred

correction.

 At the end of each set of tasks, the participants were required to take care of one

of the categories of changes, for instance, spelling/grammar, and accept the best fit

in the merged result.

 After completing all tasks, the users were asked to save the merged result on the

desktop.

5.4 Results

Nine out of ten participants completed the surveys; two of the nine filled out the survey

immediately after the task completion, and the rest of the surveys were emailed to participants

upon request, to be completed at a more convenient time.

We received both positive and negative feedback from participants through observations

and questionnaires. On the positive side, participants were able to complete all tasks in a short

amount of time. We also drew the following conclusions based on our observations and user

feedback:

 The high fidelity interface appeared to be easy to use and learn. Although only five minutes

of orientation were provided, participants used the interface design effectively to perform

the given tasks. Seven out of nine responses indicated that our interface design was easy to

use, and six agreed that it was easy to learn. Two responses neither agreed nor disagreed

43

about the ease of use and learning, and one subject found that the interface was not easy to

learn.

 Six participants found that the proposed interface provided a decent amount of information

that helped them to understand the modifications that had been made in the two revisions.

One participant did not find the interface to be informative, and two responses expressed a

neutral opinion on this matter.

 Seven participants considered the change classification tool that we implemented in the

interface to be very useful in assisting the author to locate and understand the corrections

that had been made to the writing in the two revised versions. One of the participants

suggested applying subcategories under the grammar heading to address verb tense,

passive/active voice, and singular/plural issues. She also emphasized that this software

would be a great tool for teaching writing to high and middle school students, who could

learn from their mistakes by using the changes classification feature.

 Eight participants agreed that the change classification feature helped the user to focus first

on the most important modifications that had been made in the two revisions.

 The participants admired the color code that we used to identify the different types of

modifications, as well as the highlighter that was used to highlight the corresponding text

in one or both revised versions, as well as the corresponding text in the merged result when

the user moves the mouse over the text inside parentheses in the original version.

 The participants found the change control panel to be very helpful in easily choosing the

most suitable corrections.

 One of the participants added this complement about the interface:

44

“I sometimes struggle with using the Microsoft Word track changes feature,

especially when there are multiple versions of a document, and I am waiting to

accept changes until the end of the editing process. This interface helped me easily

identify changes by user, which can be another area of difficulty in MS Word.”

This positive feedback was encouraging. However, we also noticed some issues related to the

interface and the tasks. First, regarding the issues of the interface, we found that:

 All of the participants expected that the change filtering feature, based on our proposed

classifications, would be applied on the merged result beside the original document,

whereas we only implemented it on the original version.

 Users double-clicked to select the original text that was included inside parentheses instead

of hovering over it to highlight the corresponding text that had been modified in one or

both revisions and the merged result. The participants also complained about the

highlighter going away when the mouse was not hovering over the text that is included

inside parentheses in the original document. They expected that the highlighter would stay

until they selected other text in the original text to highlight the corresponding

modifications.

 The method we used to indicate that a specific modification had already been

accepted/rejected was very confusing to the users. In places where the user had already

accepted/rejected a modification, we got rid of the highlighting in the corresponding

modified text in the merged result and kept the highlighting in both revisions when the user

hovered over the original text that is included inside parentheses. One of the participants

suggested that for every change that has been accepted/rejected, we remove the

surrounding parentheses that appear in the original text.

45

 The participants faced difficulty when they double-clicked the changes in the merged result

to open the change control panel pop-up. From our observation, we noticed that the users

tried to right-click in order to open the change control panel.

 The participants expected to see three options on the change control panel, even when the

two revisions were the same. However, when the modifications were made in the same

way in the two revisions, we only showed two options in the changes control panel. See

Figure 5-1:

Figure 5-1 Shows the changes control panel with two options when the modification was made in the same way in both

revisions.

 While we considered modifications that include deletion, relocation, and insertion to fall

under the “Editing” category, this classification could result in changing the original text’s

meaning. Most of the participants were looking for grammar/spelling modifications when

they were asked to find a correction that could change the meaning of the original text.

 Most of the participants did not perform one of the tasks correctly, which was when they

were asked to find a format-only change and reject it. During this task, they checked the

font category only and unchecked the other changes categories. As a result, they rejected

changes that had been made to spelling and font or to grammar and font.

 The users were looking for a way to undo the changes that they had accepted/rejected,

which is a limitation of the interface.

46

Second, regarding the deficiencies with respect to the tasks, we found that:

 The participants were confused by the task that asked them to find format changes. They

asked questions about it, and some of them thought we were asking about the paragraph or

sentence format. Others asked for clarification by asking, “What do you mean by format

change?”

 Some participants were confused by the task that asked them to find grammar or spelling

changes in instances where there could be multiple categories of changes in the same place.

5.5 Lessons learned from the usability test

In section 5.4, we discussed the results of the usability test, as well as the limitations of

our interface. In this section, we will discuss the limitations of the user study.

First, although the number of users was sufficient to find many of the usability problems

in our interface design, we believe that more participants would provide even more useful

feedback.

Second, the user and the writing were unrelated. Since participants were not the authors

of the piece of writing they were working on, and they were not familiar with the given piece of

writing, the study set-up did not create a realistic setting. This issue may have created barriers for

users in performing the tasks.

Finally, the size of the writing sample used in the study was small. We believe a larger

document would create a more advanced testing environment.

47

5.6 Summary

This chapter provided an evaluation on the proposed interface for a merging documents

tool. Details of the procedure and general observations were described. Positive and negative

feedback were summarized, providing good direction for further improvement of the interface.

48

Chapter 6 Conclusions

In academia, it is very common to revise documents in a parallel manner, where each editor

works independently to make corrections to the same original document. Thus, a document’s

author often receives multiple revisions to process. As a result, many merging software tools have

been developed to merge revised versions with an original document. Although these merging

tools provide the user with all of the information about the changes and who made them, the

interfaces lack the feature of allowing the user to filter the corrections, based on level of

importance, in order to prioritize which revisions to address first. In addition, these software tools

do not provide the user with a way to select the best revision in the case of disagreements. We

designed and developed a high fidelity interface tool for merging documents to display three

versions of a document as well as the merged result of all three versions. The primary goal of

creating this interface was filtering the changes made on two revised versions of the original

document to help the author better understand the corrections. Also, the interface helps the user

take care of the most important changes first. The designed interface provides an easy way for the

user to choose the best correction from the three versions.

We also conducted a user study to evaluate the interface of the documents merging tool in

terms of user satisfaction, which has rarely been examined in related research. The results of the

user study bring new insights to the field of merging documents. The study shows that changes

classifications enhance the user understanding of changes made in the two revisions, as well as

guide the user to take care of the most important changes first. Users consistently reported that

they were satisfied with the interface in terms of ease of use, ease of learning, and effectiveness.

49

6.1 Future work

Despite extensive attempts to improve English grammar and spelling checkers, this area

still needs more consideration and collaboration between computer and linguistic scientists.

There are many issues related to spelling checkers. First, the spelling checker flags some

proper names as misspelled, which annoys some users, but some spelling checkers enable the user

to add the proper names to their dictionaries to avoid marking them as spelling errors in the future.

Second, spelling checkers may mark some words as mistakes that are correct; this confuses users.

Third, the essential problem with the spelling checker is ignoring the context surrounding the word,

which leads to improper use of homonyms. This results in embarrassing and meaningless writing.

The existing grammar checkers are more limited than spelling checkers. They do not catch

grammar errors that can be caught easily by insights. For example, the grammar checker in MS

Word does not find any grammar mistakes in the following sentences:

“Marketing are bad for brand big and small. You Know What I am Saying? It is no wondering that

advertisings are bad for company in America, Chicago and Germany. McDonald's and Coca Cola are good

brand. ... Gates do good marketing job in Microsoft.[36]”

We also believe that there could be benefit to merging tools that look for cut-and-paste

errors in revised documents. In long-lived documents like graduate theses, it is common for

authors to move content to various locations as they experiment with different narrative structures.

It is easy to make errors in this process, such as not integrating copied material correctly, or

forgetting to remove redundant copies of the same text. Automated support could ease this

problem.

Integrating the document comparison tool with a machine learning classifier to classify the

differences among the versions into different categories—such as grammar, spelling, deletion,

50

insertion, and meaning changes—would be a great improvement to the field of merging

documents. However, further work is needed to create writing samples in order to train the

classifier to get the appropriate result.

Revision could be done by handwriting on soft or hard copy of the original document.

Designing software to create an electronic copy that contains the changes that were made by hand,

using natural language processing to distinguish between the changes and the comments to avoid

including the comments in the context of the writing, would be very helpful to the user using the

document comparison tool, especially with documents that have a large number of handwritten

corrections.

51

References

[1] P. B. Lowry, A. Curtis, and M. R. Lowry, “Building a taxonomy and nomenclature of
collaborative writing to improve interdisciplinary research and practice,” J. Bus. Commun., vol.

41, no. 1, pp. 66–99, 2004.

[2] S. B. Heard, The Scientist’s Guide to Writing: How to Write More Easily and Effectively

throughout Your Scientific Career. Princeton University Press, 2016.

[3] M. Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and

Collaborate Online. 2008.

[4] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi, “He says, she says: conflict and coordination in
Wikipedia,” ACM Conf. Hum. Factors Comput. Syst., pp. 453 – 462, 2007.

[5] J. Birnholtz and S. Ibara, “Tracking Changes in Collaborative Writing: Edits, Visibility and Group
Maintenance,” Proc. ACM 2012 Conf. Comput. Support. Coop. Work, pp. 809–818, 2012.

[6] S. Otte, “Version Control Systems,” Comput. Syst. Telemat. Inst. Comput. Sci. Freie Univ. Berlin,

Ger., 2009.

[7] K. Hinsen, K. Läufer, and G. K. Thiruvathukal, “Essential tools: Version control systems,”
Comput. Sci. Eng., vol. 11, no. 6, pp. 84–91, 2009.

[8] J. A. E. Garc\ia, “Software Development and Collaboration: Version Control Systems and Other
Approaches,” 2011.

[9] C. Thao and E. V Munson, “Version-aware XML documents,” in Proceedings of the 11th ACM

symposium on Document engineering, 2011, pp. 97–100.

[10] C. Thao and E. V. Munson, “Using versioned trees, change detection and node identity for
three-way XML merging,” Computer Science - Research and Development, 2014.

[11] S. M. Coakley, J. Mischka, and C. Thao, “Version-Aware Word Documents,” in Proceedings of

the 2nd International Workshop on (Document) Changes: modeling, detection, storage and

visualization, 2014, p. 2.

[12] M. Pandey and E. V Munson, “Version aware libreoffice documents,” in Proceedings of the

2013 ACM symposium on Document engineering, 2013, pp. 57–60.

[13] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip, “Finding Failure-inducing Changes in Java Programs

Using Change Classification,” in Proceedings of the 14th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2006, pp. 57–68.

[14] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes: Clean or buggy?,” IEEE

Trans. Softw. Eng., vol. 34, no. 2, pp. 181–196, 2008.

[15] B. Fluri and H. C. Gall, “Classifying change types for qualifying change couplings,” in IEEE

International Conference on Program Comprehension, 2006, vol. 2006, pp. 35–45.

[16] Deltaxml.com, “Overview | DeltaXML DITA Merge.” 2016.

[17] J. . Daxenberger and I. . b Gurevych, “Automatically classifying edit categories in wikipedia
revisions,” in EMNLP 2013 - 2013 Conference on Empirical Methods in Natural Language

52

Processing, Proceedings of the Conference, 2013, pp. 578–589.

[18] F. Zhang and D. Litman, “Annotation and classification of argumentative writing revisions,” in
Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational

Applications, 2015, pp. 133–143.

[19] F. Zhang and D. Litman, “Sentence-level rewriting detection,” ACL 2014, p. 149, 2014.

[20] T. P. Ping, K. Verspoor, and T. Miller, “Structural Alignment as the Basis to Improve Significant
Change Detection in Versioned Sentences,” in Australasian Language Technology Association

Workshop 2015, p. 101.

[21] N. Whitaker, “Understanding Changes in n-way Merge: Use-cases and User Interface

Demonstrations,” in Proceedings of the 2nd International Workshop on (Document) Changes:

modeling, detection, storage and visualization, 2014, p. 4.

[22] J. Zhang and H. V Jagadish, “Revision provenance in text documents of asynchronous

collaboration,” in Data Engineering (ICDE), 2013 IEEE 29th International Conference on, 2013,

pp. 889–900.

[23] Softinterface.com, “Document Comparison and Document Conversion Software Tools from
SoftInterface.” 2016.

[24] Scootersoftware.com, “Scooter Software: Home of Beyond Compare.” 2016.

[25] J. Eibl, “KDIFF3 - HOMEPAGE,” Kdiff3.sourceforge.net, 2016. [Online]. Available:

http://kdiff3.sourceforge.net/.

[26] “WinMerge,” Winmerge.org. 2016.

[27] H.-C. E. Kim and K. S. Eklundh, “Reviewing practices in collaborative writing,” Comput. Support.

Coop. Work, vol. 10, no. 2, pp. 247–259, 2001.

[28] “No Title.” .

[29] M. Lutz, D. Ascher, and F. Willison, Learning python, vol. 2. O’Reilly, 1999.

[30] A. Sweigart, Automate the Boring Stuff with Python: Practical Programming for Total

Beginners. 2015.

[31] “python-docx 0.8.5 documentation,” Python-docx.readthedocs.org, 2016. [Online]. Available:

http://python-docx.readthedocs.org/en/latest/.

[32] “wxPython,” Wxpython.org. 2016.

[33] C. Precord, wxPython 2.8 Application Development Cookbook. Packt Publishing Ltd, 2010.

[34] H. Sharp, P. Jenny, and Y. Rogers, “Interaction design:: beyond human-computer interaction,”
pp. 25–29, 2007.

[35] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha, User interface design and evaluation.

Morgan Kaufmann, 2005.

[36] “THE DANGERS OF RELYING ON SPELL CHECK AND GRAMMAR CHECK,” ServiceScape. [Online].

Available: https://www.servicescape.com/article.asp?cid=93325. [Accessed: 15-Jun-2016].

53

Appendix A

 IRB Protocol Number: 16.293

 IRB Approval date: March 21, 2016

Tasks for study entitled:

Evaluation of an interface for document merging using a language analysis oracle

Please complete the following tasks as you can. If you feel uncomfortable doing any of the tasks, please

tell us and go to the next task. In our record you will be referred as Subject: ___ (using random letter)

When you are done writing your research paper, send it to two of your professors. Each professor will make

some corrections on your writing and send it back to you. Then you will have three versions of your paper,

one with your original writing and the other two with corrections by your professors. The design interface

will show the three versions. By using the features in the interface, perform the following two set of tasks

on two different given samples:

Tasks Set 1:

1. Find a correction that made in either version 1 or version 2 that might change the meaning of the

original content, and reject that change.

2. Try to find a grammar correction that has been made differently in both revised versions and

choose the correction from revised version 2.

3. Find a spelling correction that was made only in revised version 2 and accept it.

4. Try to find a change that only made on format and get more details about it.

5. Try to reject the format change that you found in task 4.

6. Find a location where three kinds of changes were made in the same place, and accept the

correction from either version 1 or version 2.

7. For all spelling modifications, accept the spelling corrections you think are more suitable.

54

Tasks Set 2:

1. Try to find a location where three kinds of changes were made in the same place, and accept the

correction from either version 1 or version 2.

2. find a correction that made in either version 1 or version 2 that might change the meaning of the

original content, and accept that change.

3. find spelling correction only that has been made differently in both revised versions and choose

the correction from revised 2.

4. Try to find change that only made on format and get more details about it.

5. Try to reject the format change that you found in task 4.

6. Try to find a grammar correction that has been made only in revised version 2, and accept it.

7. Now, for all grammar corrections, accept the changes you think are a good fit.

8. Finally save the merged result on the desktop, and call it “May 9 result”

55

Appendix B

Post-study questionnaire for study entitled:

Evaluation of an interface for document merging using a language analysis oracle

Based on your experience of using the designed interface of documents merging tool, please

answer the following questions as completely as you can. If you feel uncomfortable answering

any of the questions, please skip that question. Your name will not be recorded. In our records

you will be referred by a random letter

1. Please rate your satisfaction with the following aspects of the interface.

 Very

Dissatisfied

Dissatisfied Neutral Satisfied Very

Satisfied

a) Overall ease of use □ □ □ □ □

b) Ease of learning □ □ □ □ □

c) Intuitiveness □ □ □ □ □

d) Informativeness (i.e.

does the interface

provide enough

information for the

tasks you performed?)

□ □ □ □ □

2. To what extent do you agree or disagree with the following statement: The change

classifications (font, grammar, spelling, and editing) that were used in this interface

would help you better understand the changes that were made in both revised versions?

o Strongly agree

o Agree

o Somewhat agree

o Neither agree nor disagree

o Somewhat disagree

o Disagree

o Strongly disagree

56

3. To what extent do you agree or disagree with the following statement: The change

classifications would help you to give your primary attention to the most important

changes, especially in a large document?

o Strongly agree

o Agree

o Somewhat agree

o Neither agree nor disagree

o Somewhat disagree

o Disagree

o Strongly disagree

4. What features of the interface did you find useful?

5. What features did you find confusing? Do you have any suggestion to improve them?

6. Other comments:

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2016

	A High Fidelity Interface for Documents Merging Tool Using a Language Analysis Oracle
	Arwa Mohammed Alsubhi
	Recommended Citation

	tmp.1478548085.pdf.PseJU

