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ABSTRACT

A MARKOV MODEL FOR BASEBALL
WITH APPLICATIONS

by

Daniel Ursin

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Mukul Goyal, Ph.D.

In this work we confirm a Markov chain model of baseball for 2013 Major League

Baseball batting data. We describe the transition matrices for individual player

data and their use in generating single and nine-inning run distributions for a

given lineup. The run distribution is used to calculate the expected number of

runs produced by a lineup over nine innings. We discuss batting order

optimization heuristics to avoid computation of distributions for the 9! = 362, 880

distinct lineups for 9 players. Finally, we describe an implementation of the

algorithms and review their performance against actual game data.
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1. Introduction and Definitions

The game of baseball has been studied by statisticians for decades to varying

degrees, and today’s teams are more interested in accurate data models than ever

before. In this work, we confirm the 2013 Major League Baseball batting records

with a Markov chain model of baseball developed by Bukiet [3]. A Markov chain

is a stochastic process with the Markov property. We say that a stochastic process

has the Markov property if the probability distribution of future states, conditional

on the past and present values of the states, depends only on the current state,

and not on any previous state. A Markov chain is completely determined by its

transition matrix and initial distribution.

The progression of a baseball game is very easily understood in terms of a Markov

chain. Each state represents the number of outs so far recorded in the inning and

the current locations of base-runners, and there is a transition each time a new

batter’s at-bat comes to an end. In the game of baseball, at the start of every

inning, there are no outs and no runners on the bases. This no-out, no-runner state

is the start-state each inning of every game. In general, when a baseball player

comes to the plate, he is inevitably in one of 24 possible situations:

• There are 0, 1 or 2 outs (3 possibilities)
• There are runners distributed on the bases in 8 possible configurations

– The bases are empty (1 way)
– There is exactly one runner on first, second, or third (3 ways)
– There are exactly two runners on first, second, or third (3 ways)
– The bases are loaded (1 way)

Finally, we have a three-out absorbing state giving a total of (3 × 8) + 1 = 25

states. In baseball, when three outs are recorded, the inning is over and the next

inning begins in the no-runner, no-out state for the opposing team.

For each player, we construct a transition probability matrix based on widely

available batting statistics. Suppose for example that there are no outs and no

runners on base. The probability that after the current at-bat is complete the

system will be in the no-out, runner-on-second state is the probability that the

batter hit a double. The probability that after the current at-bat is complete the

system will be in the 1-out state with no runners is the probability of that player
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recording an out by strikeout, fly-out, etc. These probabilities are easily calculated

from available batting records.

Once the probabilities have been entered, we normalize each row to ensure that

the matrix is stochastic. Determining the probability of being in a particular state

after a number of batters can be calculated by simply multiplying the transition

probability matrices of each player in the lineup in the order in which they bat and

left-multiplying the initial distribution vector v0 =< 1, 0, ..., 0 >. That is, we begin

each inning in the no-out, no-runner state. There are a few subtleties in keeping

track of runs scored but this is the essence of the Markov model.

1.1. Offensive Possibilities. In order to determine how many runs are scored

given a particular transition, we assume that at each at-bat, the following six actions

are possible [3]:

• Out - Runners do not advance. Outs increase by one.
• Walk - Batter moves to first base. Other base runners advanced when

forced.
• Single - Batter moves to first base. Runner at first advances to second.

Runners at second or third score.
• Double - Batter moves to second base. Runner at first advances to third.

Runners at second or third score.
• Triple - Batter moves to third base. All other runners score.
• Home Run - All base runners and batter score, clearing the bases.

The assumption that runners cannot advance on an out may be concerning to

baseball fans. It is possible in baseball for a runner to advance on an out during

a sacrifice fly or successful bunt. However, the simplicity of the model makes

computation efficient and the results are very accurate over the course of a season,

even without such concern.

With regard to a walk, a base runner is said to be forced if the advancement

of the previous runner would cause two players to be at the same base. Suppose

for example there are runners on first and third and the batter is issued a walk.

Then the runner on first base is forced to advance to second, since the batter is

advancing to first. The runner on third does not advance because the base runner

now at second has already advanced, and is not in danger of occupying the same

base as the runner at third.

Runners on second or third are traditionally said to be in scoring position, mean-

ing that any base hit (single, double, triple, or home run) will score them.
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One of the most popular aspects of baseball is the base-clearing home run. A

home run scores a minimum of one run (the batter), and a maximum of four runs

(the batter and base runners on first, second, and third). A four-run home run is

called a Grand Slam and is fairly rare due to a variety of reasons, such as pitcher’s

strategy, rarity of having the bases loaded, and the unavoidable low percentage of

hitting a home run in the first place. We make the assumption that the probability

of a player recording any of the above offensive possibilities is constant throughout

the game and does not depend on the position or quantity of the base runners.

2. Previous Work

The usefulness of Markov chain models to analyze baseball has been evident for

many years. Bellman [1] described the basic framework of such models and gave a

sketch of a dynamic programming approach in 1976 which would allow a manager

to optimize his run production based on a defined decision policy. In Bellman’s

Markov model there are 2592 states describing the possible situations a batter can

face.

The number 2592 = 3× 4× 3× 8× 9 comes from the 3 outs, 4 balls, 3 strikes, 8

base-runner configurations, and 9 available batters that are possible at the pitch-

by-pitch level. While very interesting and certainly an attractive resource for a

baseball manager, implementing such a system is complex and requires respectable

computing power.

In 1960, D’Esopo and Lefkozwitz [7] employed 25 states and used an averaging

technique over all players on a team or league and used a single, constant transition

matrix for their calculations and then studied the steady-state behavior of the

transition matrix.

Later authors, such as Bukiet [3] reduce the state space to a mere 25, a far

more manageable number of possibilities. This is the basis of the model that we

employ in this work. Remarkably, even with this small number of states, highly

useful models can be developed. Bukiet used batting data from the 1989 National

League teams to create individual player transition matrices. The run distribution

was then used to calculate the expected number of wins in a season and to find

optimal batting orders.
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We implemented the Markov model and ran simulations for all of the teams in

Major League Baseball for 2013. The hypothesis that we investigate for the model

is that the results of the model simulations closely approximates actual season data

for 2013.

3. Player Transition Matrices

The 25 × 25 transition matrix can be simplified through the use of blocks. In

particular, we have the following structure:

P =



A0 B0 C0 D0

0 A1 B1 E1

0 0 A2 F2

0 0 0 1


where the A, B, and C matrices are 8×8 blocks containing transition probabilities

which update the number of outs from zero to zero, one, and two outs respectively.

The D, E, and F matrices are 8×1 column vectors which hold probabilities that take

the inning to the three-out state. D0 for example holds the probabilities that an at-

bat begins with zero outs and transitions into the three-out state. That is, the batter

hits into a triple play. Similarly, E1 holds the transition probabilities of hitting into

a double play from a 1-out state, and F2 holds the transition probabilities of moving

from a two-out to a three-out state. Finally, the bottom row consists of three 1× 8

row vectors and a 1 × 1 matrix holding the single value, unity. This represents

that the three-out state is an absorbing one. If we are in a three-out state, we will

stay in this state with certainty. The block 8 × 8 zero matrices indicate that it is

impossible to transition into a state with fewer outs. Given the batting record of

a player, we construct a 25 × 25 transition matrix which associates the available

offensive options listed above with the individual season statistics of the player. We

can visualize the first block column as transitions to states with no outs, and the

second, third and fourth columns as holding transitions to states with one, two and

three outs respectively.

3.1. A - Matrices. Here and below, O represents the number of outs in the block.

The ordered pair (O,S), O ∈ {0, 1, 2, 3}, S ∈ {0, 1, 2, 3, 12, 13, 23, 123} represents

the state with O outs and with runners in configuration S. A-Matrices have the

following form before normalization:
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

(O, 0) (O, 1) (O, 2) (O, 3) (O, 12) (O, 13) (O, 23) (O, 123)

(O, 0) pHR (p1B + pBB) p2B p3B 0 0 0 0

(O, 1) pHR 0 0 p3B (p1B + pBB) 0 p2B 0

(O, 2) pHR p1B p2B p3B pBB 0 0 0

(O, 3) pHR p1B p2B p3B 0 pBB 0 0

(O, 12) pHR 0 0 p3B p1B 0 p2B pBB

(O, 13) pHR 0 0 p3B p1B 0 p2B pBB

(O, 23) pHR p1B p2B p3B 0 0 0 pBB

(O, 123) pHR 0 0 p3B p1B 0 p2B pBB


p1B = Hits−(Doubles+Triples+HomeRuns)

AtBats
,

p2B = Doubles
AtBats

, p3B = Triples
AtBats

,

pBB = Walks
AtBats

, pHr = HomeRuns
AtBats

These are transitions that do not increase the number of outs. Traditionally, base-

ball statistics include the number of total hits, doubles, triples and home runs.

They do not typically include singles specifically. To obtain this number, we simply

complement from the total number of hits.

3.2. B - Matrices. B-Matrices have the following form before normalization:

B = pOut · I8

That is, B is an 8× 8 matrix with pOut along the diagonal and zero elsewhere.

These are transitions from a no-out state to a one-out state, or from a one-out

state to a two-out state. Note that this assumes that runners do not advance on an

out. There are situations in baseball where a runner may score on a play in which

there is an out. A force-out at first can occur while a runner scores from third,

a runner may tag up and run home after a fly ball is caught deep in the outfield,

and many other scenarios are possible. This assumption frees us from having to

consider base stealing and other hard-to-describe events. To consider stealing, we

would need to maintain states that encode which players are at which bases, so

that we could calculate the probability that that player will attempt to steal and

either succeed or fail. This would greatly increase the number of necessary states.

3.3. C - Matrices. C-Matrices have the following form before normalization:
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

(2, 0) (2, 1) (2, 2) (2, 3) (2, 12) (2, 13) (2, 23) (2, 123)

(0, 0) 0 0 0 0 0 0 0 0

(0, 1) pDP 0 0 0 0 0 0 0

(0, 2) pDP 0 0 0 0 0 0 0

(0, 3) pDP 0 0 0 0 0 0 0

(0, 12) 0 0 0 0 0 0 0 0

(0, 13) 0 0 0 0 0 0 0 0

(0, 23) 0 0 0 0 0 0 0 0

(0, 123) 0 0 0 0 0 0 0 0


pDP = DoubleP lays

AtBats

These are transitions from a no-out state to a two-out state. The first entry is

zero since at least one other runner besides the batter is required to record two

outs. The next three are simply the probability that the current batter hits into a

double play, an available statistic. Note that when this happens, both players are

eliminated as base runners. Other transitions are not populated as the location of

the runners after such a play can vary from play to play. If one were interested,

placing positive probabilities in other transitions would be as simple as deciding

what statistic to use and what transitions would result from such a play.

3.4. D - Matrices. D-Matrices have the following form before normalization:

D = pTP · < 0, 0, 0, 0, 1, 1, 1, 1 >T

pTP = AllT imeTripleP lays
AtBats ≈ 692

14,000,000 ≈ .000049

There have been only 692 triple plays in major league baseball history, and there have

been more than 14 million at-bats. We simply use a constant and assume that it is equal

for all players.

3.5. E - Matrices. E-Matrices have the following form before normalization:

E = pDP · < 0, 1, 1, 1, 1, 1, 1, 1 >T

pDP = DoubleP lays
AtBats

Similar to the C - Matrices, the first entry here is zero since there must be at least one

other runner besides the batter to record two outs.

3.6. F - Matrices. F-Matrices have the following form before normalization:

F = pOut · < 1, 1, 1, 1, 1, 1, 1, 1 >T

pOut = Outs
AtBats
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When a player is batting in a two-out state, any out will cause a transition to the

three-out state.

3.7. Full Transition Matrix. The full 25 × 25 player transition matrix is made up of

the A, B, C, D, E, and F matrices and can be seen in full in the Figure 19.

4. Computing Run Distributions

In order to determine the distribution of runs for a particular lineup of 9 players,

we need to know the player transition matrices, as well as the transitions that will

cause 0, 1, 2, 3, or 4 runs to score during the course of one at-bat. We have seen

how to construct a player’s transition matrix, and we turn to the construction of the

scoring matrices which sum to the player transition matrix. Since runners do not

advance in our model, we need only consider the A-type matrix and its transitions.

The following states could have zero, one or two outs. The number of runs scored

on transition from state i to state j is

Ri,j = 1 + (Number of Base Runners(i)−Number of Base Runners(j))

Thus for each transition in the A-matrices, the following number of runs will be
scored

R =



(0) (1) (2) (3) (12) (13) (23) (123)

(0) 1 0 0 0 0 0 0 0
(1) 2 1 1 1 0 0 0 0
(2) 2 1 1 1 0 0 0 0
(3) 2 1 1 1 0 0 0 0
(12) 3 2 2 2 1 1 1 0
(13) 3 2 2 2 1 1 1 0
(23) 3 2 2 2 1 1 1 0
(123) 4 3 3 3 2 2 2 1


We break R into R = R0 + R1 + R2 + R3 + R4 where Ri is zero except where

Rj,k = i. Then, we create five matrices, P0, ..., P4 representing the transitions from

the transition matrix P where i runs are scored for i ∈ {0, 1, 2, 3, 4}. We determine

P1, P2, P3, P4 by using R1, R2, R3, R4. P0, the matrix which holds transitions that

do not score a run is calculated as the complement of the Pi from P. That is,

P0 = P − (P1 + P2 + P3 + P4). Now we have written P = P0 + P1 + P2 + P3 + P4,

and are prepared to calculate the number of runs scored during transitions.

4.1. One-Inning Run Distribution. Below we present the algorithm for gener-

ating a one-inning distribution for 9 batters. We follow the convention by Bukiet

[3] that the maximum number of runs scored in an inning is 20. This is reasonable
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since the highest scoring inning in modern baseball history (1900 - present) scored

19 runs in 1953 in the 7th inning of a game between the Boston Red Sox and Detroit

Tigers. Later we will limit the number of runs in an entire game to 20 runs. This

is an arbitrary limit on the number of runs that keeps the computations within a

reasonable scope and run-time.

In the algorithm, we iterate over the player transition matrices in the given

lineup until the probability of three outs is within ε of unity. In our calculations,

we used ε = 0.0001. We use the 25 × 25 player transition matrices, as well as a

non-stochastic, 21 × 25 score-keeping matrix, which we denote U . U has 21 rows

since a team can score between 0 and 20 runs in a single game and is initialized

to all zeroes except for unity as its first entry. This represents that before any

batters have come to bat, the game will be in a state with no runs, no outs, and

no runners aboard with certainty. There are 25 columns since the game is played

over 25 possible states.

Consider the beginning of the game, before any batters have come to bat and

no transitions have taken place. At this time, U is zero everywhere except a one

in the first entry. We proceed to build a temporary score-keeping matrix, temp,

which will become U after the first batter has completed his at-bat. Row zero of

temp is the product of the first row of U , u0 := < 1, 0, . . . , 0 >, with the scoring

matrix, P0, since the P0 matrix contains transitions that do not score any runners.

This includes outs, and any hit which does not cause a runner to score. Row one

of this new matrix is the product of u0 with the scoring matrix P1, since the P1

matrix contains transitions that score one runner. Rows two, three, and four are

the products of u0 with P2, P3 and P4, respectively and are zero because this is

the first batter to come to bat, so it is impossible to score two or more runs in this

at-bat. In general, a score-keeping matrix will only have positive entries in rows 0

through n, where n is the number of batters who have had an at-bat this inning.

This is simply because you cannot score more runs than you have had batters up

to bat.

Whereas for the first batter, U will have positive entries only in the first row

(meaning no runs have scored), for the second batter U can have positive entries

in the first or second rows. We build temp from U and the scoring matrices of the

current batter, row by row as before. The final column of U is still all zeroes because
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it is impossible to be in a three-out state where there has been only one batter.

Only after three batters can there be any positive entries in the final column of

U , since the final column represents transitions to the three-out state. We proceed

this way for each player in the lineup, until the sum of the 25th column is within ε

of 1. This column vector is the single-inning run distribution for the lineup.

Algorithm: SingleInningRunDistribution(T , ref Idx)

Data: Player Transition Matrices: T, Starting Batter Index: Idx
Result: One-inning run distribution
U ← empty 21× 25 matrix

U [0, 0]← 1

while ‖U.F inalColumnSum− 1‖ > ε do
Idx← (Idx % T.Length)

P0, P1, P2, P3, P4 ← ToScoringMatrices(T.ElementAt(Idx))

temp← empty 21× 25 matrix

for rowIdx← 0 to 20 do
row ← U.GetRow(rowIdx)× P0

+ U.GetRow(rowIdx− 1)× P1

+ U.GetRow(rowIdx− 2)× P2

+ U.GetRow(rowIdx− 3)× P3

+ U.GetRow(rowIdx− 4)× P4

/* Of course, if rowIdx− i < 0, that addend is zero */

temp.SetRow(rowIdx, row)

end

U ← temp

Idx← Idx+ 1

end

return U.F inalColumn

Algorithm 1: Compute a Single-Inning Run Distribution for a Lineup

4.2. Nine Inning Run Distributions. To compute the nine-inning run distri-

bution for a lineup of 9 batters, we simply run the one-inning run distribution

algorithm 9 times, keeping track of the first batter index so we truly cycle through

the available batters. The result will be nine one-inning distributions, which when

treated as independent random variables, can be summed to obtain the nine-inning

run distribution. The sum of two independent random variables is simply the con-

volution of their probability vectors, and we sum all nine single-inning distributions

to obtain a single stochastic vector holding the probability that a lineup scores i

runs for i ∈ {0, 1, ..., 20}.
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Algorithm: NineInningRunDistribution(T )

Data: Player Transition Matrices: T
Result: Nine-inning run distribution
Create empty list L of vectors

Idx← 0

for inning ← 1 to 9 do
distribution← SingleInningRunDistribution(T, ref Idx)

L.Add(distribution)

end

return SumDistributions(L)

Algorithm 2: Compute the Nine-Inning distribution for a Lineup

5. Applications of the 9-Inning Run Distribution

Once a nine-inning run distribution has been computed for a particular lineup,

we turn to applications of that stochastic vector. Firstly, by having the probabilities

that a team scores i runs, we can immediately state the expected number of runs

produced in a single game.

5.1. Expected Number of Runs. Given a run distribution, D, for a particular

lineup, we compute the expected number of runs as

E(D) =
∑20

i=0 i · p [i]

This is a simple calculation that can be done as soon as a run distribution has

been calculated. In the results section, we look at the accuracy of the model for the

American League versus the National League for the 2013 Major League Baseball

season.

5.2. Expected Number of Wins over a Series/Season. While simply calcu-

lating the expected number of runs produced by a lineup of batters is a useful

way to measure strength of a lineup, we are often interested in the performance

of a team over the course of an entire, 162 game, season. By computing the run

distributions for each opponent in your team’s schedule, you can then compute the

probability of each team winning the game. Of course, in order to win the game a

team must score more runs than its opponent, and we have all of the information

we need about run scoring from the pre-computed run distributions. If D1 and

D2 are the run distributions of Teams 1 and 2 respectively, then the probability of

Team 1 scoring more runs than Team 2 and hence winning the game is

PWin =
∑20

i=1

[
D1[i] ·

∑i−1
j=0D2[j]

]
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Throughout a season, teams will play series of between 2 and 4 games against

one opponent. The number of expected wins over an n-game series is EWins =

n · PWin. By doing this calculation for every series your team plays over a season,

you can determine the expected number of wins in your 162 game season. An

important assumption that we make is that the lineup remains the same in every

game throughout the season. In calculating the expected number of wins over a

season, we are assuming that a player’s transition matrix is also constant throughout

the season.

5.3. Optimal Batting Orders. Traditionally, a batting order is crafted using a
few basic rules:

• 1st: Called the leadoff, a player with a high on-base percentage
• 2nd: A player who can move base-runners by contact-hitting, bunt, or

sacrifice
• 3rd: Called the three-hole, typically one of the best batters in the lineup
• 4th: Called the clean-up position, usually a power hitter
• 5th − 7th: Decreasing order of batting ability
• 8th or 9th: The pitcher (or worst batter) typically bats in the ninth position

The first advantage of having your best players at the top of the batting order

is that they will get an extra at-bat during the game. Batters high in the order

attempt to get on base and allow a power hitter (the clean-up batter) to drive them

home with power. The worst batter is placed at the bottom of the order to attempt

to contain the low performance of the batter. From time to time, baseball managers

experiment with different ordering strategies but much of this decision comes down

to superstition and accepted baseball wisdom. An advantage of our model is that

it allows one to quickly test the difference between two lineups to determine which

is superior.

In the worst case, there are 9! = 362880 permutations of the nine batters in the

lineup. In our simulations, calculation of the run distribution for a single lineup

takes roughly 100 milliseconds. At that rate, the calculation of all 9! possible

orders takes more than 10 hours of computation time. Bukiet [3] and Pankin

[4] both give criteria-based methods for assigning batting positions. For Pankin,

batting positions are determined using common batting statistics such as on-base

percentage, slugging percentage, and ability to draw a walk or steal. This approach

is very simple and produces results comparable to the guidelines presented above.

Bukiet placed batters by considering their scoring index, computed by determining
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the expected number of runs produced with a lineup consisting of nine copies of

the player in question.

For a real baseball manager, the placement of many of the batters is already set

and one has only to decide where to place a few batters. In this case, exhaustively

calculating the expected run productions of each lineup is well within modern com-

puting abilities. For example, if the task is to simply place a single player into a

lineup, calculating these 9 possibilities takes less than a second at the rate of 100

milliseconds per lineup.

6. Results and Data

The model enjoys a high level of accuracy for the run distribution and expected

number of runs produced but does not accurately predict the number of wins that

a team will enjoy during their season. We used data from Sean Lahman’s 2013 [6]

baseball database in all calculations. For each of the 30 teams in the MLB in 2013,

we constructed lineups of the top 9 players by at-bats and ordered the batters from

most at-bats to least. This is a simple way to construct a representative lineup for

the sake of a season-long simulation.

As in previous models, we found that the expected number of runs produced by

a team was on average lower than the actual game data reflects. Authors, Pankin

[4] and Bukiet [3] suggest that the conservative offensive possibilities contributes

to this effect. In particular, the fact that runners do not advance on an out in our

model is a simplification that may be a part of the difference. The 2013 results for

runs scored by league are presented in figures 1 and 2.

The simulated data closely approximates the actual run production of the Amer-

ican and National League teams for 2013, thus confirming our hypothesis. We find

that the model can be used to accurately compute the expected number of runs

produced by a particular lineup of nine batters.

In the American League, the model predicts the most runs for Detroit and

Boston. These two teams were ultimately in contention for the World Series in

2013. High runs per game were also predicted for St. Louis and the LA Dodgers

(top teams in the National League), but were not as striking as Boston and Detroit.
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6.1. Implementation of the Model. To run simulations and interact with the

massive amount of player data, a web application was built using .NET MVC 4 and

Microsoft SQL Server [8]. To this end, a user can create a lineup of nine batters

using player batting data from any year that the player has been active. This way,

one can quickly determine the expected number of runs produced by a particular

lineup. A lineup can be reordered and tested for superiority over another lineup.

The data access layer is provided through Entity Framework 5.0 and accesses

the SQL tables provided by Sean Lahman [6] as well as other tables created for use

with the application. The data is static and contains records from every year of

Major League baseball since the late 1800s up to and including the 2013 season.

An improvement would be to run the simulations using live data where a player’s

probabilities could change as a result of actual at-bat results. This kind of socket

connection is available for a high price and is used by the Major League’s own

websites and mobile applications. Note that the application built for this work is

available only for specific IP addresses for security.

7. Conclusions and Future Work

This model provides the mechanics for creating accurate transition matrices for

every player, as soon as data is available. We were able to determine the expected

number of runs expected for a particular lineup of 9 players. This is a useful, high-

level analysis of the game provides accurate results when applied at a per-series or

per-season level. We compared the predicted number of runs produced by a lineup

with the full-season data for 2013 and examined differences between the results in

the American League and National League.

An attractive improvement would be the application of the decision process

described by Bellman [1]. The difficulty of this approach is the vast number of states

that are involved when inning number, pitch count, and base-runner positions are

included in the state definitions. The model proposed by Bellman is a pitch-by-pitch

model. A reasonable relaxation in requirements would be to use the beginning of

each at-bat as the decision epochs, rather than the beginning of each pitch. These

stats would be more widely available and be able to ignore the pitch count in

the calculation. Statistics on players stealing bases and performing with batters
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in particular positions is becoming more available but is still costly for real-time

information.

By removing the constraint that a team cannot score on an out, more realistic

game data my be possible. One of the most attractive aspects of this model is the

flexibility of the player transition matrix. Whenever more up-to-date batting data

is available, it can be added to the player transition matrix. Base running data

such as steals could be added to the transition matrix to give positive value to the

probability of a runner advancing on an out. There are other situations that runners

may advance or even score on an out, such as an error, sacrifice, bunt, or deeply hit

fly ball. Determining the probabilities that runners advance to particular bases on

events like steals and errors would not be based on widely-available statistics and

is hence not implemented in this model.

Though many modern baseball teams employ statisticians to collect and analyze

player data, baseball managers are still the last word in strategy decisions. With

the methods in this work, it is hoped that more applications will be built to imple-

ment the lineup analysis. By providing more data to teams at trade deadlines or

substitutions late in the game, this model allows a manager to quickly determine if

he is playing his players in the proper order.
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Table 1. 2013 National League Run Production

National League
Team Actual RPG Simulated RPG Difference
Washington 4.056 4.275 0.219
Atlanta 4.253 4.123 -0.13
Miami 3.173 3.035 -0.138
NY Mets 3.827 3.662 -0.165
Philadelphia 3.772 3.756 -0.015
Milwaukee 3.957 3.704 -0.252
St. Louis 4.84 4.051 -0.788
Pittsburgh 3.92 3.867 -0.053
Cincinnati 4.315 3.86 -0.454
Chicago Cubs 3.698 3.041 -0.657
LA Dodgers 4.012 4.391 0.378
San Francisco 3.889 3.966 0.077
San Diego 3.821 3.657 -0.164
Arizona 4.235 3.911 -0.324
Colorado 4.364 4.515 0.151
AVERAGE 4.009 3.854 -0.154
STDEV 0.362 0.406 0.304

Table 2. 2013 American League Run Production

American League
Team Actual RPG Simulated RPG Difference
Baltimore 4.605 4.106 -0.499
NY Yankees 4.019 3.469 -0.55
Toronto 4.401 4.123 -0.278
Tampa Bay 4.301 3.989 -0.311
Boston 5.272 4.548 -0.723
Kansas City 4.006 3.519 -0.487
Detroit 4.92 4.761 -0.159
Cleveland 4.605 3.796 -0.809
Chicago Sox 3.722 3.527 -0.195
Minnesota 3.796 3.675 -0.121
LA Angels 4.531 4.091 -0.44
Oakland 4.741 4.086 -0.655
Seattle 3.858 3.907 0.049
Houston 3.772 3.529 -0.243
Texas 4.485 3.821 -0.663
AVERAGE 4.336 3.929 -0.406
STDEV 0.448 0.365 0.241
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Figure 1. National League Runs per Game

Figure 2. American League Runs per Game

Figure 3. AL - 2013 Baltimore and Boston Run Distributions.
All run outcomes are discrete.
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Figure 4. AL - 2013 Chicago and Cleveland Run Distributions.
All run outcomes are discrete.

Figure 5. AL - 2013 Detroit and Houston Run Distributions. All
run outcomes are discrete.

Figure 6. AL - 2013 Kansas City and Los Angeles Run Distribu-
tions. All run outcomes are discrete.

Figure 7. AL - 2013 Minnesota and New York Run Distributions.
All run outcomes are discrete.
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Figure 8. AL - 2013 Oakland and Seattle Run Distributions. All
run outcomes are discrete.

Figure 9. AL - 2013 Tampa Bay and Texas Run Distributions.
All run outcomes are discrete.

Figure 10. AL - 2013 Toronto Run Distribution. All run out-
comes are discrete.
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Figure 11. NL - 2013 Arizona and Atlanta Run Distributions.
All run outcomes are discrete.

Figure 12. NL - 2013 Chicago and Cincinatti Run Distributions.
All run outcomes are discrete.

Figure 13. NL - 2013 Colorado and Los Angeles Run Distribu-
tions. All run outcomes are discrete.

Figure 14. NL - 2013 Miami and Milwaukee Run Distributions.
All run outcomes are discrete.



20

Figure 15. NL - 2013 New York and Philidelphia Run Distribu-
tions. All run outcomes are discrete.

Figure 16. NL - 2013 Pittsburgh and San Diego Run Distribu-
tions. All run outcomes are discrete.

Figure 17. NL - San Fransisco and St. Louis Run Distributions.
All run outcomes are discrete.

Figure 18. NL - 2013 Washington Run Distribution. All run
outcomes are discrete.
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