
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

5-1-2014

Pre-computation in Width-w τ-adic NAF
Implementations on Koblitz Curves
William Robert Trost
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Trost, William Robert, "Pre-computation in Width-w τ-adic NAF Implementations on Koblitz Curves" (2014). Theses and
Dissertations. 432.
https://dc.uwm.edu/etd/432

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=dc.uwm.edu%2Fetd%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/432?utm_source=dc.uwm.edu%2Fetd%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

PRE-COMPUTATION IN WIDTH-W τ -ADIC NAF

IMPLEMENTATIONS ON KOBLITZ CURVES

by

William R. Trost

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin - Milwaukee

May 2014

ABSTRACT

PRE-COMPUTATION IN WIDTH-W τ -ADIC NAF

IMPLEMENTATIONS ON KOBLITZ CURVES

by

William R. Trost

The University of Wisconsin - Milwaukee, 2014

Under the Supervision of Professor Guangwu Xu

This paper examines scalar multiplication on Koblitz curves employing the Frobenius

endomorphism. We examine simple binary scalar multiplication, binary Non Adjacent

Formats or NAF’s, followed by τ -NAF methods. We pay particular attention to width-

w τ -NAF where we focus on pre-computation. We present alternative pre-computation

arrangements for αu for width sizes of 5 and 6 which are better than any previously

published results since they: involve a single power of τ ; are based on least norms; and

have a maximum of 2w−2 − 1 elliptic curve operations. We then study widths of 7 and

8 producing efficient arrangements. Arrangements for width sizes of 7 and 8 have never

before appeared in the literature.

Furthermore, we introduce a simplified rounding technique for reduction modulo
τm − 1

τ − 1
relaxing the requirement of least norms. Lastly, we discuss an O(n) technique for finding

arbitrary powers of τ in software.

ii

c© Copyright by William R. Trost, 2014
All Rights Reserved

iii

To

my wife, Sharon, my son, Nathan

and

my daughter, Sammi

iv

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF FIGURES . vii

LIST OF TABLES . viii

LIST OF ALGORITHMS . ix

LIST OF SYMBOLS . x

ACKNOWLEDGEMENTS . xi

1 Introduction . 1

2 Background and Preparation . 5

2.1 Weierstrass Equations . 5

2.2 Review of Groups, Rings, and Fields . 7

2.2.1 Groups . 7

2.2.1.1 Group Definition . 7

2.2.1.2 Order of a Group . 7

2.2.1.3 Subgroups . 7

2.2.1.4 Cyclic Subgroups . 8

2.2.2 Rings . 8

2.2.2.1 Definition of Rings . 8

2.2.2.2 Commutative Ring . 9

2.2.2.3 Ring with Unity . 9

2.2.2.4 Zero Divisors . 9

2.2.2.5 Integral Domain . 10

2.2.2.6 Ideals . 10

2.2.2.7 Cosets . 10

2.2.2.8 Homomorphism . 11

2.2.2.9 Characteristic of a Ring 12

2.2.3 Field . 12

2.2.3.1 Polynomials over a Ring 12

2.2.3.2 Irreducible Polynomial 13

2.2.3.3 Polynomial Quotient Ring 13

2.2.3.4 Extension Field . 13

2.3 Mathematics of Elliptic Curves . 14

2.3.1 Elliptic Curve as an Additive Group 14

2.3.2 Elliptic Curves over F2m . 16

2.3.3 Group Law for E/F2m : y2 + xy = x3 + ax2 + b 17

2.3.4 Group Law for E/F2m : y2 + cy = x3 + ax+ b 18

v

3 Methods . 20

3.1 Elliptic Curve Scalar Multiplication . 20

3.1.1 Binary Method . 20

3.1.2 Non Adjacent Format (NAF) . 21

3.1.3 Non Adjacent Format (NAF) - Window Method 23

3.2 Koblitz Curves . 25

3.2.1 Main Subgroup . 25

3.2.2 Frobenius Mapping (Endomorphism) 26

3.2.3 The Norm of a Z[τ] and Associated Properties 27

3.2.4 Group Order . 28

3.2.4.1 Lucas Sequence . 28

3.2.4.2 τ identity . 28

3.2.4.3 Group Order of Koblitz Elliptic Curve 28

3.3 τ −NAF . 29

3.3.1 Reduced τ -NAF or RTNAF . 31

3.3.2 Division and Modular Reduction in Z[τ] 32

3.3.2.1 A Simplified Rounding Technique in Modular Reduction 37

3.3.2.2 Scalar Multiplication using Reduced τ −NAF 39

3.3.2.3 Efficient Squaring . 40

3.4 Width-w τ -NAF . 41

3.4.1 Precomputation Width-w τ -NAF 43

4 Pre-Computation . 48

4.1 Efficient Table Calculation . 48

4.2 E0, w = 5 . 50

4.3 E1, w = 5 . 50

4.4 E0, w = 6 . 51

4.5 E1, w = 6 . 52

4.6 E0, w = 7 . 53

4.7 E1, w = 7 . 54

4.8 E0, w = 8 . 55

4.9 E1, w = 8 . 57

5 Discussion . 59

5.1 Summary . 59

5.2 Future Work . 60

Bibliography . 61

Appendix A: a = 0 Width-w τ-NAF Tables 63

Appendix B: a = 1 Width-w τ-NAF Tables 72

Appendix C: Code Snippets . 81

vi

LIST OF FIGURES

2.1 Elliptic Curve a = -1 and b = 1 . 6

2.2 Elliptic Curve a = -3 and b = 1 . 6

2.3 Extension Field . 14

2.4 Elliptic Curve y2 = x3 + x+ 1 demonstrating point addition 15

2.5 Elliptic Curve y2 = x3 − 6x− 2 demonstrating point addition 15

2.6 Elliptic Curve y2 = x3 − 4x demonstrating point doubling when P = Q 16

3.1 U tiling for rounding λ for case a = 1 35

vii

LIST OF TABLES

1.1 Key Size Comparison (in bits) [14] . 1

3.1 E1: Width 4τ -NAF Table . 45

3.2 E1: Width 5τ -NAF Table . 46

A:.1 E0: Width 3 τ -NAF Table . 63

A:.2 E0: Width 4 τ -NAF Table . 63

A:.3 E0: Width 5 τ -NAF Table . 64

A:.4 E0: Width 6 τ -NAF Table . 65

A:.5 E0: Width 7 τ -NAF Table . 66

A:.6 E0: Width 8 τ -NAF Table . 68

B:.1 E1: Width 3 τ -NAF Table . 72

B:.2 E1: Width 4 τ -NAF Table . 72

B:.3 E1: Width 5 τ -NAF Table . 72

B:.4 E1: Width 6 τ -NAF Table . 74

B:.5 E1: Width 7 τ -NAF Table . 75

B:.6 E1: Width 8 τ -NAF Table . 77

viii

TABLE OF ALGORITHMS

1 Basic Elliptic Curve Point Addition for y2 + xy = x3 + ax2 + b 19

2 Computing kP (Naive) . 19

3 Binary Method for Computing kP . 21

4 Computing NAF(k) . 22

5 Computing kP using NAF(k) . 22

6 Computing NAFw(k) . 23

7 Computing kP using NAFw(k) . 24

8 Computing TNAF . 30

9 Division in Z[τ] . 34

10 Rounding(λ) . 36

11 Reduction Modulo (τm − 1)/(τ − 1) . 37

12 Simplified Reduction Modulo (τm − 1)/(τ − 1) 38

13 Reduced τ -NAF . 39

14 Scalar Multiplication on Koblitz Curves 39

15 width-w τ -adic NAF Method . 43

ix

LIST OF SYMBOLS

G group
R ring
I ideal
F field
Z the set of integers
R the set of real numbers
C the set of complex numbers
F2m an extension field of characteristic 2 (binary field)
〈P 〉 the cyclic group generated by the point P
R[x] a polynomial over the ring R
|G| the order of the group G
E elliptic curve
E0 Koblitz curve where a = 0
E1 Koblitz curve where a = 1
µ (−1)1−a where a = 0, 1 from the Koblitz Curve

E(F) elliptic curve defined over a finite field F
∞ the identity element in the additive group (E(F),+)
kP the scalar multiple of the point P by the integer k

NAF Nonadjacent Format

τ the complex number
µ+
√
−7

2
Z[τ] the ring of polynomials in τ with integer coefficients
τ -NAF tau-addic NAF
N(...) the norm

δ
τm − 1

τ − 1
δ the conjugate of δ

x

ACKNOWLEDGEMENTS

First and foremost, I wish to express my sincere thanks to my thesis advisor and mentor

Professor Guangwu Xu. This was a journey for me which proved to be difficult, surpris-

ing at times, but extremely rewarding. I will never forget reading the first few papers

he suggested and thinking to myself, “how will I ever do this”? The mathematics was

daunting for me but he was so willing to teach and encourage. There are no words to

express my gratitude for all the time spent with me above and beyond a typical studen-

t/advisor relationship, and for answering every single one of my questions! His patience

with me was unyielding. Somehow a sincere thank you just doesn’t seem enough. I

walk away with a tremendous amount of knowledge gained, not only in elliptic curve

cryptography, but in mathematics as well. Well done Professor!

I also need to thank my family. My wife Sharon and my children Nathan and Samantha.

I know I spent many hours away from them pursuing my master’s degree as well as

writing this thesis paper. I could not have done this without their encouragement,

support, and understanding. I most certainly have been blessed with a wonderful family!

My heartfelt thanks to Professor Christine Cheng who was my first instructor upon

starting my pursuit of a master’s degree in computer science. She truly inspires her

students! Most of all, however, I appreciated her “pearls of wisdom”- one of which was

a personal mantra for my thesis project.

I thank my friend and colleague Ross Ellison. He allowed me to ramble on continuously

about my thesis work and listened to every word I said. I also thank him for producing

the “U Tiling” figure, 3.1 which I know took a lot of time. I appreciated his sound

advice and feedback but, most of all, I appreciated his friendship.

I acknowledge the help and support from my peers and associates at AT&T- particularly

Brian Rexroad, who suggested study in elliptic curve cryptography, Mark Regas, Craig

Harvey, and Garry Hodgson. Without their support I would not have been able to

complete this work. My deepest thanks!

Last, but certainly not least, my friend Homer Eshbaugh for spending many hours

proofreading my thesis paper and correcting my grammar and punctuation. His wisdom

has made this thesis substantially more readable for which I am very grateful.

xi

1

Chapter 1

Introduction

Elliptic Curve Cryptography is an approach to data encryption proposed independently

by Neal Koblitz [10] and Victor Miller [16] in 1985. It is based on the intractability of

certain mathematical equations which, in this case, is the problem of discrete logarithms.

Given an elliptic curve E defined over a finite field Fq, a point P ∈ E(Fq)

of order n, and a point Q ∈ 〈P 〉, find the integer k ∈ [0, n − 1] such that

Q = kP . The integer k is called the discrete logarithm or ECDLP of Q to

the base P and denoted as k = logP Q [8].

Such problems are also known as one way functions since it easy to compute the value

of a function y = f(x), given x, but very difficult to compute its inverse x = f−1(y)

given y.

The goal of elliptic curve cryptography is to provide the same level of security as other

well known asymmetric key encryption techniques, e.g. RSA, ElGamal and Rabin, but

with a much smaller key size [6]. Table 1.1 provides a survey of key sizes.

The advantage of smaller keys sizes is that it takes less computational time to encryp-

t/decrypt information. Although symmetric key ciphers offer more security for smaller

key sizes it requires that two parties share a key or “secret”. One of the disadvantages

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1.1: Key Size Comparison (in bits) [14]

2

of symmetric key ciphers is the inability to scale. For example, if n parties wish to share

secrets amongst themselves then this would require

(
n

2

)
=

n!

(n− 2)!2!
symmetric keys!

Additionally, according to Kerckhoff’s Principle, one should always assume that an ad-

versary knows the encryption/decryption algorithm, and resistance to cipher attacks

should be based solely on the inability to guess the key[6]. The key size should be large

enough to make it extremely difficult to guess the key and impossible, or very nearly

impossible, to enumerate all the possible key values. It should also be small enough that

it can encrypt/decrypt information.

Although elliptic curve cryptography can utilize smaller key sizes, it relies heavily on

scalar multiplication of kP where k is an integer (very large) and P is a point on the

elliptic curve. As we will elaborate upon later in this thesis, we can form an algebraic

group from a finite set of points on the elliptic curve under the binary operation of

addition so that the meaning of kP is one of multiples, i.e. P + P + · · · + P up to k

times. As we will discover, this is not your typical cartesian point addition, where we

simply add points, but an addition that follows a chord-tangent rule.

Since scalar multiplication is a major operation in elliptic curve cryptography, a vast

amount of research has been focused on improving scalar multiplication. This research

ranges from improvements in the algorithms used to perform basic mathematical opera-

tions, such as multiplication and division (multiplication by inverse and exponentiation),

to improvements in the implementation of scalar multiplication. This thesis mainly fo-

cuses on improvements in implementation, specifically pre-computation in width-w τ -

NAF, but we also offer an improvement in the basic mathematical operation of power

of squares needed in τ -adic methods.

One immediate improvement in calculating kP , over simply taking multiples of P , is to

convert k to its binary representation taking advantage of the fact that on average 50% of

the binary terms will be 0. Moreover, since computing “−P” is trivial, past researchers

extended binary methods to nonadjacent formats or NAF’s, capitalizing further on the

sparseness. Further improvements were discovered by taking width-w NAF’s where we

pre-compute multiples of P in sizes up to w.

Koblitz [11] introduced a class of elliptic curves over a field of characteristic 2 taking

advantage of the Frobenius mapping

τ(∞) =∞, τ(x, y) = (x2, y2)

whose characteristic equation is of the form

τ2 = µτ − 2

where µ is a parameter derived from the elliptic curve. Koblitz called these curves

Anomalous Binary Curves, but today they are labeled Koblitz curves in honor of their

discoverer. These curves are recognized as some of the standard curves used for data

3

encryption by the National Institute of Standards and Technology or NIST [12]. It is

important to note that solving this characteristic equation for τ results in a complex

number.

Since scalar multiplication is computationally expensive but squaring is relatively in-

expensive, Koblitz showed that point doubling, 2P , could be replaced by the much

more efficient power series in τ by diligent use of the Frobenius characteristic equation.

τP is substantially easier to compute then 2P . This opened the door to a whole new

methodology for scalar multiplication.

Jerome Solinas [19] took advantage of this fact and introduced a τ -adic NAF method

which offered a 50% time improvement over any previously known methods for op-

erating on nonsupersingular elliptic curves. Furthermore, Solinas demonstrated that

any signed binary representation of an integer can be replaced by an equivalent (and

unique) signed τ -adic expansion, in terms of sums and differences of distinct powers of

τ , maintaining the nonadjacency property. Analogously following width-w binary NAF

methods, Solinas extended his τ -adic NAF method to a window width-w τ -adic method

utilizing pre-computation which offers dramatic savings in computational time.

Ian F. Blake, Kumar Murty, and Guangwu Xu in [2] proved the existence of a window

τ -NAF using a more flexible approach which they called a general window τ -adic form.

They further expanded this idea to characteristic 3 elliptic curves [1] and then on to all

general quadratic Euclidean imaginary fields [3].

Pre-computation involves computing all multiples of P for a width size of w. It is,

therefore, advantageous to streamline pre-computation, especially in larger width sizes

of w, where pre-computation begins to dominate the total calculation time. Solinas

offered a set of equation or arrangements for pre-computation using least norms but

they were suboptimal.

Blake, Murty, and Xu [2] later provided a more optimal set of arrangements for a

width size w = 6. They were able to do this by proving that other congruence class

representatives, which were not of least norm, but, satisfying the condition that the

norm of the representative is less than τw, could be used. This arrangement was more

optimal but contained a τ2 term.

We expanded upon this work in pre-computation and now offer better arrangements

than any previously published results. These arrangements involve just a single power

of τ , use least norms, and employ no more than 2w−2−1 elliptic curve additions. We not

only provide efficient arrangements for current width sizes, which have been published

up to width size of 6, but expand this to width sizes of 7 and 8. Width sizes of 7 and

8 have never before been presented in the literature. This work is the result of tireless

analysis and observation, first expanding on the smaller width arrangements, and then

4

moving to the larger width 7 and 8 arrangements. We present our results for width sizes

from 5 to 8 and conjecture that such efficient arrangements exist for even larger widths.

This thesis is organized into 5 chapters and several appendices. Chapter 2 covers back-

ground information with a brief study in abstract algebra for concepts needed in later

chapters, as well as a thorough discussion on elliptic curve mathematics and scalar

multiplication. Chapter 3 is an extensive survey of scalar multiplication techniques

culminating in our work on pre-computation in width-w τ -adic NAF’s. Our contribu-

tion begins at the end of chapter 3 and continues through chapter 4. Chapter 4 is

our pinnacle chapter where we discuss how we derived our efficient arrangements based

on observation, as well as a complete listing of these efficient arrangements for width

size of 5 through 8. Chapter 5 offers a brief summary as well as possible future work.

Appendices A: and B: provide a complete listing of τ -NAF’s for all equivalence class

representatives such that the norm of the representative is less than τw. These tables

were used extensively in our search for efficient arrangements.

5

Chapter 2

Background and Preparation

2.1 Weierstrass Equations

An elliptic curve E over a field F is the graph of an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where a1, a2, a3, a4, a6 ∈ F and 4 6= 0. 4 is the discriminant of E and is defined as

follows:

4 = −d22d8 − 8d4
3 − 27d6

2 + 9d2d4d6

d2 = a1
2 + 4a2

d4 = 2a4 + a1a3

d6 = a3
2 + 4a6

d8 = a1
2a6 + 4a2a6 − a1a3a4 + a2a3

2 − a42

If K is any extension field of F then the set of K rational points on E is given by

E(K) = {∞} ∪ {(x, y) ∈ K ×K | y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0}
The∞ element acts as the identity element and is justified by extending the affine plane

over K to the projective plane, P 2
K , where the affine plane is defined as:

A2
K = {(x, y) ∈ K ×K}

such that

A2
K ↪→ P 2

K .

All vertical lines in the x-y plane intersect at the point of ∞ in the projective plane.

Additionally, ∞ = −∞∗. In practical applications, such as computer programs, it is

enough to treat the point at ∞ as a special case and assign a sentinel value consisting

of any point not on E.

∗For a further discussion of the projective plane and the point at ∞ see [20].

6

It is not possible to draw meaningful graphs of elliptic curves over most finite fields;

however, to get an idea what an elliptic curve looks like, we can draw them over the real

numbers as can be seen in figures 2.1 and 2.2. for the equation y2 = x3 + ax+ b∗

Figure 2.1: Elliptic Curve a = -1 and b = 1 with F = R

Figure 2.2: Elliptic Curve a = -3 and b = 1 with F = R

∗For a general in depth treatment of Weierstrass equations and elliptic curves in general see [8] [20] [18].

7

2.2 Review of Groups, Rings, and Fields

The purpose of this section is to provide a basic understanding of the mathematics

required in Elliptic Curve Cryptography. We define the mathematical (abstract) struc-

tures of Groups, Rings, and Fields. This is not intended to be a panoptic treatment of

this topic but a short review of this subject as it applies to the mathematics needed for

later discussion. For a comprehensive treatise, we refer the reader to the many excellent

resources that can be found in the bibliography. See [17] [7] [5] [9].

2.2.1 Groups

2.2.1.1 Group Definition

A Group is one of the most basic algebraic structures consisting of a set with a single

binary operation designated as ∗. A binary operator ∗ on a nonempty set G is a rule

which assigns to each ordered pair (a, b), a, b ∈ G, exactly one element a ∗ b in G,

a, b ∈ G × G. In symbolic form ∗ : G × G → G on a nonempty set G. A set G along

with this binary operator ∗, denoted as (G, ∗), satisfies the following axioms:

1. ∗ is associative. For all, x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

2. There is an identity element e in G such that a ∗ e = a and e ∗ a = a for every

element a in G.

3. For every element a in G, there is an element a−1 in G such that a ∗ a−1 = e and

a−1 ∗ a = e. That is, every element has an inverse.

Further, G is called an abelian group or commutative group, if for all x, y ∈ G, x ∗ y =

y ∗ x. Note that this is not a requirement in order for the set G to be a group under ∗.

2.2.1.2 Order of a Group

If G is a finite group then the number of elements in G is called the order of G and is

customarily denoted by the symbol |G|.

2.2.1.3 Subgroups

Among the nonempty subsets of a group G some subsets may themselves be groups with

respect to the binary operator ∗. Such a subset is called a subgroup of G. Formally, if a

8

subset H ⊆ G forms a group with respect to ∗ then the subset H is called a subgroup

of G.

If the order of a group G is finite then, by Lagrange’s Theorem, the order of any subgroup

of G divides the order of G. More precisely, if H is a subgroup of G, then |G| / |H| =

[G : H], an integer value, where [G : H] is called the index of H in G.

2.2.1.4 Cyclic Subgroups

If H is a group generated by a single element a ∈ G, we call H a cyclic subgroup

generated by a which is denoted by 〈a〉.

More definitively, let G be a group. For any a ∈ G, the subgroup

H = 〈a〉 = {x ∈ G |x = an for some n ∈ Z}

is the subgroup generated by a. That is, a is a generator of G and forms a cyclic group.

The order of an element a is defined to be the least positive integer n such that an = e∗†.

If there does not exist such a nonzero integer n then we say that a has order infinity.

2.2.2 Rings

Next in complexity is the algebraic structure termed a Ring which involves two binary

operations, traditionally called addition and multiplication, and commonly denoted as

+ and ·. One must caution that the definition of addition and multiplication in this case

extends beyond the conventional meaning of addition and multiplication of numbers.

2.2.2.1 Definition of Rings

By a ring, then, we mean a set R with operations called addition and multiplication

satisfying the following axioms:

1. R under the operation of addition alone forms an abelian group.

2. R is closed under multiplication. That is, x, y ∈ R implies that x · y ∈ R.‡

3. Multiplication is associative.

∗If the operation on the group is multiplication then we speak in terms of powers of a, i.e.
a0, a1, a2, . . . , an−1. When working with additive groups we speak of multiples of a, i.e.
. . . , (−a) + (−a) + (−a), (−a) + (−a),−a, a, a+ a, a+ a+ a.
†The order of an element a is also defined as | < a > |.
‡In practice it is common to see x · y abbreviated as xy.

9

4. Two distributive laws hold on R, for all x, y, z ∈ R:

(a) x · (y + z) = x · y + x · z.

(b) (x+ y) · z = x · z + y · z.

Since R under the operation of addition alone is an abelian group, there is an additive

identity called the zero element written as 0. Additionally, every element has an additive

inverse, called its negative, which is denoted by −a. Subtraction is then defined as:

a− b = a+ (−b).

2.2.2.2 Commutative Ring

By definition, addition is commutative but there is no such requirement for multiplica-

tion. If multiplication is also commutative then we call this ring a commutative ring. In

addition, there is no requisite that a ring have a multiplicative identity, i.e. an element

e ∈ R, such that xe = ex = x for all x ∈ R. If there is an identity under the operation

of multiplication then it is called the unity of R and is denoted by the symbol 1. If R

has a unity then we call R a ring with unity. Note that 1 6= 0. If 1 = 0 and x ∈ R then

x = x1 = x0 = 0 and, hence, 0 must necessarily be the only element in the ring, i.e. we

would have a trivial ring.

2.2.2.3 Ring with Unity

If R is a ring with unity e and there is an element x in R such that ax = xa = e then x

is a multiplicative inverse of a and a is called a unit∗. The multiplicative inverse of a is

denoted as a−1.

The ring that we use later in this thesis will be a commutative ring with unity.

2.2.2.4 Zero Divisors

Let R be a ring and given a ∈ R such that a 6= 0. If there exists another element b ∈ R
and b 6= 0 such that either ab = 0 or ba = 0 then a is called a zero divisor. For example,

in the ring Z6 = {0, 1, 2, 3, 4, 5}, 2 · 3 = 0 even though the factors 2 and 3 are both

nonzero†.

∗a is also said to be invertible.
†Notice, 3 and 4 are also zero divisors since 3 · 4 = 0.

10

2.2.2.5 Integral Domain

So far we have defined the terms commutative ring, ring with unity, and zero divisors,

all of which are important concepts leading to the definition of an integral domain.

Let D be a ring. Then D is an Integral Domain provided:

1. D is a commutative ring.

2. D has a unity e and e 6= 0. The fact that e 6= 0 means that D must have at least

two elements.

3. D has no zero divisors.

2.2.2.6 Ideals

A subset I is called an ideal of a ring R if I satisfies the following conditions:

1. I is nonempty.

2. x ∈ I and y ∈ I implies that x+ y ∈ I. That is, I is closed under addition

3. x ∈ I implies −x ∈ I. That is, I is closed under negatives.

4. x ∈ I and r ∈ R implies that xr and rx are in I. That is, I absorbs products in

R.

More succinctly, a nonempty subset of I of a ring R is called an ideal of R if I is closed

with respect to addition and negatives, and I absorbs products in R.

2.2.2.7 Cosets

Let R be a ring and I an ideal of R. For any element r ∈ R the symbol I + r de-

notes the set of all sums i + r as r remains fixed and i ranges over I. Symbolically,

I + r = {i+ r | i ∈ I}
I + r is called the coset of I in R.

Notice that a ring R is an abelian group under addition and any ideal I of R is a normal

subgroup of this additive group. Let R/I represent the additive group that consists of

all the cosets

r + I = I + r = {r + i | i ∈ I}
of I in R. Further it can be shown that if a ∈ R and b ∈ R then

(a+ I) + (b+ I) = (a+ b) + I

11

and hence, R/I is an abelian group with respect to this operation of addition, called

coset addition, i.e. (R/I,+)

Additionally, we can form a ring from the cosets in R/I if we consider the multiplication

defined by

(a+ I)(b+ I) = ab+ I.

It can be shown that under this operation of multiplication, called coset multiplication,

and the operation of coset addition defined above (R/I,+, ·) forms a ring. This ring is

called a quotient ring of R by I. Moreover, the quotient ring construction is a method-

ology for producing homomorphic images of any ring R. Matter of fact, it is a way of

producing all of the homomorphic images of R. Homomorphism is discussed in detail

in the next section.

2.2.2.8 Homomorphism

A ring homomorphism is a function or mapping between two rings which respects the

operations of addition and multiplication.

More precisely, a homomorphism from a ring R to a ring S is a function f : R→ S such

that

1. f(a+ b) = f(a) + f(b) for all a and b in R.

2. f(ab) = f(a)f(b) for all a and b in R.

If f is a homomorphism from a ring R to a ring S, the kernel of f is the set of all

elements of R which are mapped by f onto the zero element of S. Thus, the kernel of

f is the set

K = {x ∈ R | f(x) = 0}.
It is a very important fact that the kernel of f is an ideal of R.

An isomorphism from a ring R to a ring S is a homomorphism which has both a one-to-

one (injective mapping) correspondence and onto (surjective mapping) correspondence.

This is written symbolically as

R ∼= S.

By the Fundamental Theorem of Ring Homomorphisms we have

Theorem 2.1. If f is an onto mapping from a ring R to a ring S then S is isomorphic

to R/K where K is the kernel of f .

12

2.2.2.9 Characteristic of a Ring

If there are positive integers n such that nr = 0 for all r in the ring R then the smallest

such positive integer is called the characteristic of R. If no such positive integer exists

then R is said to have characteristic zero.

For example, the ring of integers, Z, has characteristic zero since nr = 0 for all r ∈ R
requires that n = 0; whereas, the finite ring Z6 = {0, 1, 2, 3, 4, 5} has characteristic 6

since 6r = 0 for all r ∈ Z6.

2.2.3 Field

If R is a commutative ring with unity in which every nonzero element is invertible then

R is called a field. In other words, a ring R, (R,+, ·), is a field if (R\{0}∗, ·) is also an

abelian group.

Some important properties of fields are†:

1. Every field is an integral domain.

2. Every finite integral domain is a field.

3. Zn is a field if and only if n is prime.

Fields are of considerable importance in mathematics since they possess many beautiful

properties and have many fascinating applications. Some important fields are: the field

of rational numbers, Q; the field of real numbers, R; and the field of complex numbers,

C. All of these will be exploited later in this thesis.

2.2.3.1 Polynomials over a Ring

Let R be a commutative ring with unity 1, and let x be an indeterminant‡. A polynomial

in x with coefficients in R is an expression of the form:

a0x
0 + a1x

1 + a2x
2 + . . .+ anx

n

where n is a nonnegative integer and each ai ∈ R. The set of all polynomials in x over

R is denoted by the symbol R[x].

In order to specify the ring of polynomial, we need to define two binary operators, viz.

addition and multiplication. Let f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 aix

i in R[x]. Define

∗The set of elements in R less the zero element.
†See [17] [7] [5] [9] for proofs of these properties.
‡x is nothing but a formal symbol used as a placeholder here.

13

addition as:

f(x) + g(x) =
∑k

i=0(ai + bi)x
i

where k is the larger of n or m∗. Additionally, define multiplication as:

f(x)g(x) =
∑n+m

i=0 cix
i

where

ci =
∑i

j=0 ajbi−j .

It can be shown† that, under the operations of addition and multiplication defined above,

R[x] is, indeed, a ring.

Because of the possible presence of zero divisors, synonymous with our earlier discussion

on rings, and, in order to obtain the results we need on the division of polynomials

required later in this paper, the ring of coefficients must actually be a field. This assures

that every nonzero element of F has a multiplicative inverse. The polynomial whose

coefficients come from a field will be denoted as F [x].

2.2.3.2 Irreducible Polynomial

A polynomial of positive degree n over the field F has at most n distinct zeros in

F . A polynomial p(x) in F [x] is irreducible if p(x) cannot be expressed as a product

p(x) = f(x)g(x) with both f(x) and g(x) of positive degree. p(x) is said to be reducible

if it is not irreducible.

2.2.3.3 Polynomial Quotient Ring

If p(x) is a polynomial with positive degree over the field F then F [x]/(p(x)) along with

coset addition defined as

[f(x) + (p(x))] + [g(x) + (p(x))] = (f(x) + g(x)) + (p(x)),

and coset multiplication defined as

[f(x) + (p(x))][g(x) + (p(x))] = f(x)g(x) + (p(x))

forms a quotient ring. It can be further shown that this is a commutative ring with

unity.

If p(x) is an irreducible polynomial then the ring F [x]/(p(x)) is a field.

2.2.3.4 Extension Field

If F and K are fields such that K ⊆ F then F is called an extension field of K

∗We extend the smaller polynomial with leading zero terms.
†Again, we point the reader to the excellent resources in the bibliography for proofs.

14

K
F

Figure 2.3: Showing F as an extension field of K

Extension fields are important since it can be proved that if a polynomial over F has no

roots in F then there exists a suitable extension field of F which does contain roots. A

perfect example of this is the polynomial x2 + 1 = 0 which has no roots in R. It does,

however, have roots (solution) in C. In fact, if we let F be a field and p(x) a nonconstant

polynomial in F [x] then there exists an extension field K of F and an element c in K

such that c is a root of p(x).

2.3 Mathematics of Elliptic Curves

2.3.1 Elliptic Curve as an Additive Group

If E is an elliptic curve defined over the field F (or an extension field of F), then there

is a tangent-chord rule for adding two points in E(F) to give a third point in E(F).

Under the binary operation of addition, and, setting the identity element as ∞, the set

of E(F) forms an abelian group, (E(F),+). That is to say, it forms an additive group

such that:

1. P +Q = Q+ P for all P,Q on E (Commutativity).

2. P +∞ = P for all points P on E. (Existence of Identity Element).

3. Given P on the curve E there exist a Q such that P +Q =∞. The point Q will

usually be expressed as −P (Additive Inverse).

4. (P +Q) +R = P + (Q+R) for all P,Q,R on E (Associativity).

Again, it is not possible to draw meaningful graphs over the finite field F , since we

have a discrete number of points, but we can get a “flavor” for how the tangent-chord

rule behaves on the field R. Figures 2.3 and 2.4 depict point addition and figure 2.5

demonstrates point doubling.

15

Figure 2.4: Elliptic Curve y2 = x3 + x+ 1 demonstrating point addition

Figure 2.5: Elliptic Curve y2 = x3 − 6x− 2 demonstrating point addition

16

Figure 2.6: Elliptic Curve y2 = x3 − 4x demonstrating point doubling when P = Q

2.3.2 Elliptic Curves over F2m

For the purpose of our research, we work with a specific class of elliptic curves over the

finite field F2m where m is prime and the characteristic is 2. By making an appropriate

change of variable, this results in a simplified version of the Weierstrass equation. Given

a field with characteristic 2, there are two cases to consider, viz. a1 = 0 and a1 6= 0.

If a1 = 0 then the permissable change of variables is defined as:

(x, y)→ (x+ a2, y) (2.2)

which transforms the elliptic curve (2.1) into

y2 + cy = x3 + ax+ b (2.3)

where a, b, c ∈ K with discriminant 4 = c4.

If a1 6= 0 then we can apply the following change of variables

(x, y)→

a21x+
a3

a1
, a31y +

a21a4 + a23

a31

 (2.4)

17

which transforms the elliptic curve (2.1) into

y2 + xy = x3 + ax2 + b (2.5)

where a, b ∈ K with discriminant 4 = b. [8][20].

We are mostly interested in the latter for the case where a = 0 or 1 since such curves

are nonsingular, i.e. there is a tangent line at each point∗, and they have interesting

properties which we can exploit to substantially improve scalar multiplication. Such

curves are called anomalous binary curves. See section 3.2.

2.3.3 Group Law for E/F2m : y2 + xy = x3 + ax2 + b

1. Identity: P +∞ =∞+ P = P for all P ∈ E(F2m).

2. Negatives: if P = (x, y) ∈ E(F2m) then (x, y)+(x, x+y) =∞. Since P+(−P) =∞
then −P = (x, x+ y).

3. Point Addition: Let P = (x1, y1) and Q = (x2, y2) such that P,Q ∈ E(F2m) and

P 6= ±Q then P +Q = (x3, y3) where:

x3 = λ2 + λ+ x1 + x2 + a

and

y3 = λ(x1 + x3) + x3 + y1,

and λ =
y1 + y2

x1 + x2
.

4. Point Doubling: Let P = (x1, y1) ∈ E(F2m) such that P 6= −P . Then 2P =

(x3, y3) where

x3 = λ2 + λ+ a = x21 +
b

x21

and

y3 = x21 + λx3 + x3

with

λ = x1 +
y1

x1
.

∗The first derivative does not vanish at any points.

18

2.3.4 Group Law for E/F2m : y2 + cy = x3 + ax+ b

Although we will not be considering this class of binary elliptic curves I present the

group law for completeness:

1. Identity: P +∞ =∞+ P = P for all P ∈ E(F2m).

2. Negatives: if P = (x, y) ∈ E(F2m) then (x, y)+(x, y+c) =∞. Since P+(−P) =∞
then −P = (x, y + c).

3. Point Addition: Let P = (x1, y1) and Q = (x2, y2) such that P,Q ∈ E(F2m) and

P 6= ±Q Then P +Q = (x3, y3) where:

x3 = λ2 + x1 + x2

and

y3 = λ(x1 + x3) + y1 + c,

and λ =
y1 + y2

x1 + x2
.

4. Point Doubling: Let P = (x1, y1) ∈ E(F2m) such that P 6= −P . Then 2P =

(x3, y3) where:

x3 =

x21 + a

c

2

and

y3 =

x21 + a

c

 (x1 + x3) + y1 + c.

We present algorithm 1 for an implementation of point addition, and algorithm 2 for a

naive approach to scaler multiplication on elliptic curves. Algorithm 2 is particularly

naive since it is infeasible to calculate large values of k and is synonymous with com-

puting exponentiation over a large group.

19

Algorithm 1: Basic Elliptic Curve Point Addition for y2 + xy = x3 + ax2 + b

Input: Points P = (x1, y1) and Q = (x2, y2) on E
Output: The sum R := P +Q

1 if P =∞a then
2 output R← Q and stop

3 if Q =∞ then
4 output R← P and stop

5 if x1 = x2 then
6 if y1 + y2 = x2 then
7 output ∞ and stop
8 else
9 λ← x2 + y2/x2

10 x3 ← λ2 + λ+ a
11 y3 ← x22 + (λ+ 1)x3

12 else
13 λ← (y1 + y2)/(x1 + x2)
14 x3 ← λ2 + λ+ x1 + x2 + a
15 y3 ← (x2 + x3)λ+ x3 + y2

16 Output R← (x3, y3)

aThe point at infinity. Sometime written as O in the literature. In software, this is typically
implemented as any point not on the curve- typically (0, 0) if this point is not on the curve.

Algorithm 2: Computing kP (Naive)

Input:
A positive integer k
A point P on the elliptic curve

Output: kP
1 Q←∞
2 for i = 0; i < k; i+ + do
3 Q← Q+ P // using a point addition algorithm

4 return Q // kP

20

Chapter 3

Methods

3.1 Elliptic Curve Scalar Multiplication

Since we are working with points on an elliptic curve, a majority of the computational

time is spent performing point addition and subtraction in the abelian group, (E(F),+).

Specifically, when dealing with elliptic curve cryptography, a majority of the protocols

are based on scalar multiplication where a point P is added to itself k times, denoted

as kP , and, hence, the computational time depends mostly on the complexity of scalar

multiplication.

This section discusses techniques that offer improvements in performing scalar multipli-

cation, culminating in our research on width-w τ − adic NAF’s as applied to a specific

class of elliptic curves known as Anomalous Binary Curves (ABC’s) or Koblitz curves.

This class of curves has some very interesting mathematical properties which, particu-

larly, lend themselves to substantially improved scalar multiplication techniques.

We also propose a simplified rounding technique as well as a method for efficiently

computing higher powers of the τ endomorphism in software. Finally, we examine the

width-w equivalence class tables and provide, what we believe, are optimal arrangements

of these tables in αu.

3.1.1 Binary Method

A simple approach but an improvement over algorithm 2 is to convert the integer k to

its binary format and only consider nonzero bits. Note that every integer has a unique

binary representation.

21

Algorithm 3: Binary Method for Computing kP

Input:
A positive integer k in the binary format (b0b1 · · · bt−1)
A point P on the elliptic curve

Output: kP
1 Q← P
2 for i = t− 2; i ≥ 0; i−− do
3 Q← 2Q
4 if bi = 1 then
5 Q = Q+ P // using a point addition algorithm

6 return Q // kP

The complexity of this algorithm is∗

mD +
m

2
A

where m = dlog
2
ke, D is the number of point doublings, and A is the number of point

additions [8].†

3.1.2 Non Adjacent Format (NAF)

As a further improvement, we can reduce the number of point additions by converting

the scalar multiplier k to its nonadjacent format, NAF, representation. Just as every

integer has a unique binary representation, every integer also has a unique NAF.

More formally, a NAF for an integer k > 0 has the following representation:

k = c0 + c12 + c22
2 + . . .+ ct−12

t−1

such that

1. ci ∈ {0, 1,−1}.

2. cici+1 = 0.

When computing the binary representation of a positive integer, we repeatedly divide

by 2 and store off the remainder until one can no longer divide by 2. To compute the

NAF, we follow the same process but, instead, allowing a remainder of -1, 0, or 1 and

choosing the remainder which makes the quotient even. This can be implemented in

software by algorithm 4.

∗t− 1 v log2n.
†You would expect, on average, that bi = 1 half of the time, and hence, we reduce the number of
additions by one half.

22

Algorithm 4: Computing NAF(k)

Input: A positive integer k
Output: NAF(k)

1 i← 0
2 while k ≥ 1 do
3 if k mod 2 6= 0 then
4 ci ← 2− (k mod 4)
5 k ← k − ci
6 else
7 ci ← 0

8 k ← k/2
9 i+ +

10 return c0, c1, . . . , ct−1

Example 3.1. As an example, we compute the NAF of k = 107

NAF(107) = {1, 0, 0,−1, 0,−1, 0,−1} = 128− 16− 4− 1 = 107.

The scalar multiplication k of a point P , kP , on an elliptic curve, can be computed as

follows by algorithm 5.

Algorithm 5: Computing kP using NAF(k)

Input:
The NAF of a positive integer k
A point P on the elliptic curve

Output: The point kP
1 Q← P
2 for i = t− 2; i ≥ 0; i−− do
3 Q← 2Q // Point Doubling

4 if ci = 1 then
5 Q← Q+ P // Point Addition

6 else if ci = −1 then
7 Q← Q− P // Point Addition

8 return Q

The complexity of this algorithm is approximately

mD +
m

3
A

due to that fact that the average density of nonzero digits is close to 1/3 [8].

It should be noted that this is not the most efficient implementation since it requires the

computation of NAF(k) up front (called a left-to-right method) requiring more storage

space. It is possible to use a right-to-left method which builds up the NAF starting at

the least significant bit and ending at the most significant bit. Although this does not

change the complexity of the algorithm, it does offer an improvement in storage and

overall running time.

23

3.1.3 Non Adjacent Format (NAF) - Window Method

A more efficient NAF algorithm can be devised with the use of additional memory and

performing some precalculation. This method is called the width-w window method and

will be denoted as NAFw(k). It can be shown that given w > 1 then each positive

integer k has a unique width-w τ -NAF of the form:

k =
l−1∑
i=0

ui2
i

where

1. each nonzero ui is odd and |ui| < 2w−1.

2. among any w consecutive coefficients, at most only one is nonzero.

Additionally, NAFw(k) have the following properties [8]:

1. NAF2(k) = NAF(k).

2. The length of NAFw(k) is at most one more digit (binary) in length when compared

to the corresponding binary representation.

3. The average density of nonzero digits among all NAFw(k) of the same length for

a given w is approximately 1/(w + 1).

The NAFw(k) can be efficiently computed using algorithm 6.

Algorithm 6: Computing NAFw(k)

Input:
A positive integer k
w > 1

Output: NAFw(k) = 〈ul−1, ul−2, . . . , u1, u0〉
1 c← k
2 NAF ← 〈〉
3 while c > 0 do
4 if c is odd then
5 u = c modsa 2w

6 c← c− u
7 else
8 u← 0

9 Prepend u to NAF
10 c← c/2

11 return NAF

amods means that the remainder u satisfies −2w−1 ≤ u < 2w−1.

24

Notice that when w = 2, this reduces to the case of the ordinary NAF.

Example 3.2. As an example, we compute the NAF of k = 107 for window sizes

2 ≤ w ≤ 6. Notice that NAF2(107) furnishes the same representation as that of the

ordinary NAF

• NAF2(107) = 〈1, 0, 0,−1, 0,−1, 0,−1〉 = 1·27−1·24−1·20 = 128−16−4−1 = 107

• NAF3(107) = 〈1, 0, 0, 0,−3, 0, 0, 3〉 = 1 · 27 − 3 · 23 + 3 · 20 = 128− 24 + 3 = 107

• NAF4(107) = 〈7, 0, 0, 0,−5〉 = 7 · 24 − 5 · 20 = 112− 5 = 107

• NAF5(107) = 〈3, 0, 0, 0, 0, 11〉 = 3 · 25 + 11 · 20 = 96 + 11 = 107

• NAF6(107) = 〈1, 0, 0, 0, 0, 0, 0,−21〉 = 1 · 27 − 21 · 20 = 96 + 11 = 107.

The scalar multiplication k of a point P on an elliptic, kP , can be computed using

algorithm 7 using the NAFw(k) algorithm 6.

Algorithm 7: Computing kP using NAFw(k)

Input:
The NAFw of a positive integer k
A point P on the elliptic curve

Output: The point kP
1 P0 ← P
2 P2w−2−1 ← 2P0

3 for i = 1; i < 2w−2 − 1; i+ + do
4 Pi ← Pi−1 + P2w−2−1

5 Q←∞
6 for i = l − 1; i ≥ 0; i−− do
7 Q← 2Q
8 if ui 6= 0 then
9 j ← (|ui| − 1)/2

10 if ui > 0 then
11 Q← Q+ Pj

12 else
13 Q← Q− Pj

14 return Q

According to [8], the complexity of this algorithm is approximately

[D + (2w−2 − 1)A] +

 m

w + 1
A+mD

25

3.2 Koblitz Curves

We now turn our attention to a specific class of elliptic curves which are particulary well

suited for scalar multiplication. A method using τ -NAF’s, which boasts a 50% improve-

ment in computation time over any previously known methods, was first presented by

Solinas in [19] for such a class of elliptic curves. We review this class of curves along

with the τ -NAF method and present some improvements.

Anomalous binary curves∗ or ABC’s for short were first proposed by Neal Koblitz in

his seminal paper on utilizing elliptic curves in cryptography [10]. ABC’s are more

commonly called Koblitz curves and contain properties which provide for efficient scalar

multiplication. These curves are defined over F2 as follows:

1. E0 : y2 + xy = x3 + 1.

2. E1 : y2 + xy = x3 + x2 + 1.

or more compactly

Ea : y2 + xy = x3 + ax2 + 1

where a = 0 or 1.

3.2.1 Main Subgroup

Let Ea(F2m) denote the group of F2m rational points on the elliptic curve Ea. This

group should be chosen such that it is difficult to compute the discrete logarithms of its

elements. It is desirable that the group order of Ea(F2m), |Ea(F2m)|, should be divisible

by a large prime [15]. Notice that any group that one works with is an extension of the

group Ea(F2), and thus, by Lagrange’s theorem, the order of this group will be divisible

by the order of the subgroup Ea(F2). For the elliptic curve Ea, we have

f = |Ea(F2)|† =

{
4 for a = 0

2 for a = 1
(3.1)

The Koblitz curves over F2 are

E0(F2) = {∞, (0, 1), (1, 0), (1, 1)},
E1(F2) = {∞, (0, 1)}.

∗An elliptic curve Ea(F2m) of p elements will be called anomalous if the trace of the Frobenius map (the
map (x, y) 7→ (xq, yq)) is equal to 1. Equivalently, an anomalous curve over F , is one for which the
number of Fq-points is equal to q. [11].
†This is also written as #Ea(F2).

26

The order of Ea(F2m) will never be prime, but we can choose our groups such that they

are very nearly prime. That is, we choose groups Ea(F2m) such that the order is divisible

by f and a large prime number so that

|Ea(F2m)| =

{
4 · r for a = 0

2 · r for a = 1
(3.2)

where r > 2 and r is prime∗. It is the subgroup of order r which is of main interest for

cryptographic purposes. This subgroup is termed the the main subgroup.

3.2.2 Frobenius Mapping (Endomorphism)

An important property of a Koblitz curve is that if P = (x, y) is a point on Ea then the

point Q = (x2, y2) is also on Ea. This forms an endomorphism† known as the Frobenius

map

τ : Ea(F2m)→ Ea(F2m)

where

τ(∞) =∞ and τ(x, y) = (x2, y2).

As will be shown later, squaring can be efficiently computed.

It can also be shown that the following relationship holds

(x4, y4) + 2(x, y) = µ · (x2, y2) (3.3)

where

µ = (−1)1−a

for every (x, y) on Ea. Given that τ(x, y) = (x2, y2), equation (3.3) can be written

symbolically as

τ2P + 2P = µτP (3.4)

or

(τ2 + 2)P = µτP (3.5)

for all P ∈ Ea(F2m). Therefore, on an anomalous elliptic curve Ea(F2m) the Frobenius

map satisfies the characteristic equation

τ2 − µτ + 2 = 0. (3.6)

∗This can only happen if m is prime. If m is not prime then any subgroups will have an order that
divides m which will not be prime by Lagrange’s theorem. If m is prime then the only subgroups will
be Ea(F2) and that arising from the subgroup of order r.
†A morphism which maps an object to itself, i.e. if a group G is a group homomorphism, f : G→ G′

then G = G′.

27

Solving 3.6 for τ we get

τ =
µ+
√
−7

2
. (3.7)

Let Z[τ] denote the ring of polynomials in τ with integer coefficients. We can now

multiply points on Ea by any element in the ring Z[τ] such that if

α = uk−1τ
k−1 + · · ·+ u1τ + u0 ∈ Z[τ] (3.8)

and P ∈ Ea(F2m) then

(uk−1τ
k−1 + · · ·+ u1τ + u0)P = uk−1τ

k−1P + · · ·+ u1τP + u0P. (3.9)

However, since τ2 = µτ − 2 then every α ∈ Z[τ] can be expressed in the canonical form

α = a0 + a1τ where a0, a1 ∈ Z.

3.2.3 The Norm of a Z[τ] and Associated Properties

The complex numbers are not well ordered∗, but we can impose an ordering by taking

the norm. The norm of α = a0+a1τ ∈ Z[τ] is the product of α and its complex conjugate

so that the norm is

N(a0 + a1τ) = a20 + µa0a1 + 2a21.
† (3.10)

We have the following properties for the norm function from [8][19]:

1. N(α) ≥ 0 for all α ∈ Z[τ] with equality if and only if α = 0.

2. 1 and -1 are the only elements of Z[τ] having a norm of 1.

3. N(τ) = 2.

4. N(τ − 1) = f = |Ea(F2)|.

5. N(τm − 1) = |Ea(F2m)|.

6. N((τm − 1)/(τ − 1)) =
|Ea(F2m)|
|Ea(F2)|

=
|Ea(F2m)|

f
= r.

7. The norm function is multiplicative so that it satisfies N(αβ) = N(α)N(β) for all

α, β ∈ Z[τ].

8. The distance (Euclidean) from 0 to α in the complex plane is given by
√
N(α) so

that the Triangle Inequality has the form
√
N(α)N(β) ≤

√
N(α) +

√
N(β).

∗You cannot order the complex numbers due to the presence of i2 = −1.
†One must be careful when deriving this equation. τ must be separated into its real and imaginary
parts before taking the conjugate.

28

9. The ring Z[τ] is a Euclidean domain with respect to the norm function. That is,

for any α, β ∈ Z[τ] with β 6= 0, there exists κ, ρ ∈ Z[τ], not necessarily unique,

such that α = κβ + ρ and N(ρ) < N(β). As a result, the ring Z[τ] has a unique

factorization and the element τ , having a prime norm, is a prime element.

3.2.4 Group Order

The size of the group is very important in the determination of the cryptographic

strength of an elliptic curve. It is easy to see that the larger the group size the more dif-

ficult it is to solve the discrete logarithm problem, thus providing greater cryptographic

strength. It is elementary to determine the group size of a Koblitz curves given the

following information.

3.2.4.1 Lucas Sequence

The Lucas sequences∗ are defined as follows:

U0 = 0, U1 = 1 and Uk+1 = µUk − 2Uk−1 for k ≥ 1. (3.11)

V0 = 2, V1 = µ and Vk+1 = µVk − 2Vk−1 for k ≥ 1. (3.12)

3.2.4.2 τ identity

It can be proved by induction that

τk = Ukτ − 2Uk−1 for k ≥ 1. (3.13)

3.2.4.3 Group Order of Koblitz Elliptic Curve

We can now compute the group order for a Koblitz curve from the property

N(τm − 1) = |Ea(F2m)| (3.14)

using the norm function given in section 3.2.3 and the identity given in equation (3.13).

In later sections we will be focusing on the main subgroup, so its order will also be

important. Of course, if one knows the order of the group Ea(F2m), one can find the

∗Lucas sequences Ln(P,Q) are a certain integer sequence that satisfy the recursion relation
Xn = PXn−1 −QXn−2 where P and Q are fixed integers. The Fibonacci sequence and the Mersenne
primes are examples.

29

order of the main subgroup by dividing by the value given in equation (3.1). The order

of the main subgroup can also be calculated by the equation:

|Ea(F2m)| = 2m + 1− Vm. (3.15)

3.3 τ −NAF

Most of the work in this section is a recapitulation of the work done by [19] as well as

information from [8]. It is important to review this work, since the details will be needed

later to increase the understanding of the window-w τ -NAF method, where we exploit

this information in order to improve on this methodology. In addition, we have tried to

expound on the information where necessary in order to increase clarity.

Koblitz [11] demonstrated that it was possible to convert an integer n ∈ Z into an

equivalent τ -adic expression by representing n “to the base τ”, i.e. a power series in τ .

Koblitz also proved that n has a unique representation in the form∑
uiτ

i

where ui ∈ {0, 1}. However, this representation does not exhibit the nonadjacency prop-

erty. It was Solinas [19] who proved that it was feasible to create a τ -adic expansion such

that no two consecutive terms were nonzero, i.e. exhibits the nonadjacency property.

This is called a τ -NAF or TNAF. A τ -NAF is defined as:

Definition 3.1. A τ -NAF of a nonzero element k ∈ Z[τ] is an expression

α =
l−1∑
i=0

uiτ
i

where ui ∈ {0,±1}, ul−1 6= 0, and no two consecutive digits, ui, are nonzero.

Example 3.3. For example, with a = 1, we have∗

9 = τ5 − τ3 + 1

so that if P = (x, y) is a point on E1, then

9P = (x32, y32)− (x8, y8) + (x, y)

Before presenting the algorithm for the τ -NAF, we need the following theorem for the

division of α ∈ Z[τ] by τ and τ2.

Theorem 3.2. Let α = r0 + r1τ ∈ Z[τ]†

(i) α is divisible by τ if and only if r0 is even. If r0 is even then

α/τ = (r1 + µr0/2)− (r0/2)τ .

∗To see this, resolve terms by powers of τ2 and substitute the identity τ2 = τ − 2.
†Recall from the norm properties 3.2.3 property 4 that the norm of τ is 2, and hence, the possible
remainders upon division by τ are {1, -1}.

30

(ii) α is divisible by τ2 if and only if r0 ≡ 2r1 (mod 4).

Solinas also proved

Theorem 3.3. Every element of the ring Z[τ] has a unique τ -adic NAF.

He also showed by proposition

Proposition 3.4. The average density among τ -adic NAF’s of length ` is asymptotically

1/3.

We now present algorithm 8 for the computation of a τ -NAF.

Algorithm 8: Computing TNAF

Input: Integers r0, r1 representing κ = r0 + r1τ ∈ Z[τ]
Output: τ −NAF (κ)

1 i← 0
2 while r0 6= 0 or r1 6= 0 do
3 if r0 is odd then
4 ui ← 2− (r0 − 2r1 mod 4)
5 r0 ← r0 − ui
6 else
7 ui ← 0

8 t← r0
9 r0 ← r1 + µr0/2

10 r1 ← −t/2
11 i← i+ 1

12 return (ui−1, ui−2, . . . , u1, u0)

Example 3.4. Following example 3.1 for the ordinary NAF(107), we calculate the

τ−NAF(107) for a = 1

τ−NAF(107) = 〈−1, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0,−1, 0,−1〉

= −1 · τ13 − 1 · τ8 + 1 · τ4 − 1 · τ2 − 1 · τ0.

From the Lucas sequence, equation 3.11, we have

τ2 = τ − 2,

τ4 = −3τ + 2,

τ8 = −3τ − 14,

τ13 = −τ − 90,

31

so that

τ−NAF(107) = −τ13 − τ8 + τ4 − τ2 − 1

= −(−τ − 90)− (−3τ − 14) + (−3τ + 2)− (τ − 2)− 1

= 107.

The length of the τ -NAF(k) is approximately log2(N(k)) = 2 log2 k [8] which is twice the

length of the NAF(k). This virtually eliminates the advantage of the τ -adic NAF. For-

tunately, this situation can be rectified by replacing the τ -adic NAF with an equivalent

expression called the reduced τ -adic NAF, which is only half as long [19].

3.3.1 Reduced τ-NAF or RTNAF

In order to find the reduced τ -NAF or RTNAF, we need the following proposition and

theorem.

Proposition 3.5. If γ, ρ ∈ Z[τ] with

γ ≡ ρ mod (τm − 1)

then

γP = ρP

for all P ∈ Ea(F2m).∗

For cryptographic purposes, we can further refine proposition 3.5 by narrowing our focus

to the main subgroup†. From the norm properties 4, 5, and 6 given in section 3.2.3, it

can be shown that

Theorem 3.6. Given δ = (τm − 1)/(τ − 1) with

γ ≡ ρ(mod δ)

then

γP = ρP .

It follows from Theorem 3.6 that the

reduced τ−NAF(n) = τ−NAF(ρ) (3.16)

where

ρ = n mod δ (3.17)

∗This follows from the fact that τm(P) = P and δ(P) = P so that
(τm − 1)P = τmP − P = P − P =∞. But γ ≡ ρ(mod τm − 1)⇒ γ = κ(τm − 1) + ρ for some κ ∈ Z[τ]
by the division theorem. Hence γP = κ(τm − 1)P + ρP = κ∞+ ρP =∞+ ρP = ρP .
†as opposed to the entire group Ea(F2m).

32

with respect to the main subgroup. Solinas proved that the length of the reduced τ -NAF

(RTNAF), `RTNAF , is bounded above [19]

`RTNAF ≤ m+ a.

Thus, the weight of the RTNAF(k) is about equal to the weight of NAF(k), but RTNAF

eliminates the elliptic point doubling using the more efficient τ mapping∗ with roughly

the same number of point additions. However, to exploit the RTNAF, we need an

algorithm to reduce an integer n modulo δ.

3.3.2 Division and Modular Reduction in Z[τ]

By property 9 of the norm properties 3.2.3, Z[τ] is an euclidean domain, and, hence, we

can utilize the division theorem†. From the division theorem and analogous to integer

division, we wish to find a quotient κ = q0 + q1τ and a remainder ρ = r0 + r1τ where ρ

has the smallest norm possible (a condition we will later relax) such that

γ = κδ + ρ

where γ = c0 + c1τ and δ = d0 + d1τ . In order to do this, you obtain κ by rounding off

γ/δ and then find ρ, the remainder, by subtracting this result from γ. That is

ρ = γ − κδ.

To obtain κ by rounding off γ/δ, we let

γ

δ
=
γ

δ

δ

δ
=

γδ

N(δ)
=
g0 + g1τ

N
.

In order to find γδ, we need the complex conjugate of δ = d0 + d1τ , i.e. δ. To find δ,

we need to split δ into its real and imaginary parts. Hence,

δ =

d0 +
d1µ

2

+
d1
√
−7

2

so that

∗Although [19] recommends converting to a normal basis since squaring can be implemented by a
register shift in computer hardware, we show that computing powers of τ can be implemented
efficiently in software as well.
†a = qn+ r ⇒ q = ba/nc and r = a - qn where a is a positive integer. See [13].

33

δ =

d0 +
d1µ

2

− d1
√
−7

2

.

Thus

γδ =

c0 +
c1µ

2

+
c1
√
−7

2

d0 +
d1µ

2

− d1
√
−7

2

= c0d0 +

c0d1µ

2
+
c1d0µ

2
+
c1d1µ

2

4
+
c1d0
√
−7

2

+
c1d1µ

√
−7

4
−
c0d1
√
−7

2
−
c1d1µ

√
−7

4
+

7c1d1

4
.

Simplifying and given that µ2 = 1, we have

= c0d0 +
c0d1µ

2
+
c1d0µ

2
+
c1d0
√
−7

2
−
c0d1
√
−7

2
+ 2c1d1

= c0d0 + c1d0

µ+
√
−7

2

− c0d1
 − µ+

√
−7

2

+ 2c1d1

= c0d0 + c1d0τ − c0d1

µ+
√
−7

2
− µ

+ 2c1d1

= c0d0 + c1d0τ − c0d1τ + c0d1µ+ 2c1d1

= [c0d0 + c0d1µ+ 2c1d1] + [c1d0 − c0d1]τ

= g0 + g1τ. (3.18)

so that

g0 = c0d0 + c0d1µ+ 2c1d1 and g1 = c1d0 − c0d1. (3.19)

We find κ by rounding

κ = round

g0 + g1τ

N

and the remainder ρ by

ρ = γ − κδ.

This now makes it easy to write the following algorithm 9 for division in Z[τ].

34

Algorithm 9: Division in Z[τ]

Input:
The dividend γ = c0 + c1τ
The divisor δ = d0 + d1τ

Output:

The quotient κ = q0 + q1τ
The remainder ρ = r0 + r1τ

1 g0 ← c0d0 + c0d1µ+ 2c1d1
2 g1 ← c1d0 − c0d1
3 N ← d20 + d0d1µ+ 2d21
4 λ0 = g0/N
5 λ1 = g1/N
6 (q0, q1)← round(λ0, λ1)
7 r0 ← c0 − d0q0 + 2d1q1
8 r1 ← c1 − d1q0 − d0q1 − d1q1µ
9 return q0, q1, r0, r1

The rounding function in algorithm 9 is compulsory since λ0, λ1 ∈ Q, and we require

all coefficients to be elements of Z. The rounding function must “pick” an element of

Z[τ] that is close to the complex number λ0 + λ1τ . In the ring of integers, the division

algorithm always produces a remainder of least value; however, this may not necessarily

be the case in the complex numbering system since the complex numbering system is

not well ordered∗.

Solinas [19] took great care in presenting a methodology in which the norm of this

remainder was of least value. As a result, Solinas determined that an arbitrary point

λ0 + λ1τ lies in the interior of a region U if it satisfies the following set of inequalities

(see figure 3.1):

1. −2 ≤ λ0 − 3µλ1 < 2 represented by the labels “a” and “b” in figure 3.1.

2. −1 ≤ 2λ0 + µλ1 < 1 represented by the labels “c” and “d” in figure 3.1.

3. −2 ≤ λ0 + 4µλ1 < 2 represented by the labels “e” and “f” in figure 3.1.

This set of inequalities tiles the τ plane as shown in figure 3.1.

∗Again, we impose an ordering by taking norms.

35

Figure 3.1: U tiling for a = 1

36

Solinas presented algorithm 10 for rounding λ based on this set of inequalities.

Algorithm 10: Rounding(λ)

Input: Real numbers λ0, λ1 where λ = λ0 + λ1τ
Output: Integer numbers q0, q1 where κ = q0 + q1τ = round(λ)

1 f0 ← round(λ0)
a

2 f1 ← round(λ1)
3 r0 ← λ0 − f0
4 r1 ← λ1 − f1
5 h0 ← 0
6 h1 ← 0
7 r = 2r0 + µr1
8 if r ≥ 1 then
9 if r0 − 3µr1 < −1 then

10 h1 ← µ

11 else
12 h0 ← 1

13 else
14 if r0 + 4µr1 ≥ 2 then
15 h1 ← µ

16 if r < −1 then
17 if r0 − 3µr1 ≥ 1 then
18 h1 ← −µ
19 else
20 h0 ← −1

21 else
22 if r0 + 4µr1 < −2 then
23 h1 ← −µ

24 q0 ← f0 + h0
25 q1 ← f1 + h1
26 return q0, q1

aRounding here is the standard rounding algorithm applied to floating point numbers.

If we ignore the quotient κ in algorithm 9 and output the remainder ρ, then this algo-

rithm can be regarded as a modular reduction algorithm. We can further simplify this

algorithm by making the following alterations.

From equation (3.19)

g0 = c0d0 + µc0d1 + 2c1d1,

g1 = c1d0 − c0d1. (3.20)

Let γ = n then

γ = c0 + c1τ = n⇒ c0 = n and c1 = 0 (3.21)

37

so that the integers appearing in 3.19 are

g0 = (d0 + µd1)n,

g1 = (−d1)n. (3.22)

Let
s0 = (d0 + µd1),

s1 = −d1.
(3.23)

We now present algorithm 11 for reducing an integer n modulo δ.

Algorithm 11: Reduction Modulo (τm − 1)/(τ − 1)

Input:
m from the field characteristic F2m

a the elliptic curve parameter
s0, s1 as defined in equation (3.23)
r the order of the main subgroupa

n the scalar multiple

Output: Integer numbers r0, r1 where r0 + r1τ = n mod(τm − 1)/(τ − 1)
1 d0 ← s0 + µs1
2 λ0 ← s0n/r
3 λ1 ← s1n/r

4 (q0, q1) = round(λ0, λ1)
b

5 r0 ← n− d0q0 − 2s1q1
6 r1 ← s1q0 − s0q1
7 return r0, r1

aSee equation 3.15.
bvia algorithm 10.

3.3.2.1 A Simplified Rounding Technique in Modular Reduction

As mentioned earlier, we claim that we can relax the requirement that the remainder

ρ be of least norm, and develop a rounding algorithm leading to a simplified modular

reduction technique. This is accomplished by truncating the values of λ0 and λ1 such

that

q0 =
⌊
λ0

⌋
=

⌊
(d0 + µd1)n

N(δ)

⌋
,

q1 =
⌊
λ1

⌋
=

⌊
− d1n
N(δ)

⌋
. (3.24)

Effectively, this can be seen as a square tiling of the τ plane represented by the following

set of inequalities:

1. −1/2 ≤ λ0 < 1/2.

38

2. −1/2 ≤ λ1 < 1/2.

This slightly changes the representatives of the equivalence classes used in τ -NAF

methods since part of the U tiles will lay outside the square tiles. In practice, there

is no guarantee that least norms are more efficient in τ -NAF methods. The fact

that this is an equally valid representation can be seen by the fact that, given nP =

(r0 + r1τ)P (modulo δ), then, by the division theorem, we have

n = (q0 + q1τ)δ + (r0 + r1τ) (3.25)

where q0 and q1 are given by 3.24 so that

r0 + r1τ = n− (q0 + q1τ)δ. (3.26)

Since any multiple of δ is 0, we have that n = (r0 + r1τ) modulo δ. We now present the

following reduction algorithm, algorithm 12, using this simplified rounding technique.

Algorithm 12: Simplified Reduction Modulo (τm − 1)/(τ − 1)

Input:
m from the field characteristic F2m

a the elliptic curve parameter
s0, s1 as defined in equation (3.23)
r the order of the main subgroup
n the scalar multiple

Output: Integer numbers r0, r1 where r0 + r1τ = n mod(τm − 1)/(τ − 1)
1 d0 ← s0 + µs1
2 λ0 ← s0n/r
3 λ1 ← s1n/r
4 q0 = bλ0c
5 q1 = bλ1c
6 r0 ← n− d0q0 − 2s1q1
7 r1 ← s1q0 − s0q1
8 return r0, r1

We now have the necessary components to compute the reduced τ -NAF which is accom-

plished by algorithm 13.

39

Algorithm 13: Reduced τ -NAF

Input:
m from the field characteristic F2m

a the elliptic curve parameter
s0, s1 as defined in equation (3.23)
r the order of the main subgroup
n the scalar multiple

Output: RTNAF (n)
1 (r0, r1)← n mod δ via algorithm 11 or 12a

2 (ui−1, ui−2, . . . , u1, u0) = TNAF (r0, r1) via algorithm 8
3 return (ui−1, ui−2, . . . , u1, u0)

aρ = r0 + r1τ .

3.3.2.2 Scalar Multiplication using Reduced τ −NAF

The following is the scalar multiplication algorithm using the reduced τ -NAF.

Algorithm 14: Scalar Multiplication on Koblitz Curves

Input:
m from the field characteristic F2m

a the elliptic curve parameter
s0, s1 as defined in equation (3.23)
r the order of the main subgroup.
n < r/2 the scalar multiple
P a point on the elliptic curve within the main subgroup

Output: nP
1 (r0, r1)← n mod δ via algorithm 11a

2 Q←∞
3 P0 ← P
4 while r0 6= 0 or r1 6= 0 do
5 if r0 is odd then
6 u← 2− (r0 − 2r1 mod 4)
7 r0 ← r0 − u
8 if u = 1 then
9 Q← Q+ P0

10 else if u = −1 then
11 Q← Q− P0

12 P0 ← τP0 // using the τ mapping

13 (r0, r1)← (r1 + µr0/2,−r0/2)

14 return Q

aρ = r0 + r1τ .

Solinas showed in [19] this algorithm has only m/3 point additions and no point dou-

blings!

40

3.3.2.3 Efficient Squaring

In algorithm 14, step 12 can be efficiently implemented in hardware when working with

a normal basis. It is well known that there exists an element β ∈ F2m such that the set

{β, β2, β22 , . . . , β2m−1} is a basis of F2m over F2 known as a normal basis. The binary

vector associated with a =
m−1∑
i=0

aiβ
2i is A = (am−1 . . . a1a0), and, hence, squaring is a

simple right cyclic shift in this representation. [4]

It is also possible to implement squaring efficiently in software when working with binary

fields. Recall from chapter 2, subsection 2.2.3.1, the discussion on Polynomials over a

Ring

R[x] = a0 + a1x+ a2x
2 + . . .+ am−1x

m−1. (3.27)

Here x serves merely as a positional place holder. If we square this polynomial, we

obtain

R2[x] = a0 + a1x
2 + a2x

4 + . . .+ am−1x
2m−2. (3.28)

This is equivalent to placing a zero term between each term of the original representation.

This is easily accomplished in software by simply reading each of the binary bits of the

base and transferring them to every other bit location in the receiving target∗.

We can expand on this notion by noting that continually squaring R[x] results in

R4[x] = a0 + a1x
4 + a2x

8 + . . .+ am−1x
4(m−1) ⇒ 3 zeros between terms

R8[x] = a0 + a1x
8 + a2x

16 + . . .+ am−1x
8(m−1) ⇒ 7 zeros between terms

R16[x] = a0 + a1x
16 + a2x

32 + . . .+ am−1x
16(m−1) ⇒ 15 zeros between terms

...

Rm[x] = a0 + a1x
m + a2x

2m + . . .+ am−1x
m(m−1) ⇒ (m− 1) zeros between terms.

This can be used when calculating powers of τ since

τP (x, y) 7→ P (x2, y2)

τ2P (x, y) 7→ P (x4, y4)

τ3P (x, y) 7→ P (x8, y8)

...

τmP (x, y) 7→ P (x2
m
, y2

m
).

∗See the square method in appendix C: for an implementation in Java.

41

3.4 Width-w τ-NAF

We now wish to elucidate a width-w τ -adic NAF method following the same strategy as

the ordinary width-w NAF described in section 3.1.3 and specified in [19]. As with the

width-w NAF, we pre-compute and store the points in the corresponding odd congruence

class (mod τw). Recall from theorem 3.2 that an element r0 + r1τ is divisible by τ if

and only if r0 is even. By odd, then, it is meant that r0 is odd. Thus, when an odd

element r0 + r1τ is encountered, then the odd congruence class r0 + r1τ , modulo τw in

which it belongs must be determined, and the congruence class representative must be

subtracted off producing a new element divisible by τw. Analogous with the width-w

NAF, we can determine the congruence class by examining the w least significant bits.

From 3.13, we know that

τk = Ukτ − 2Uk−1 for k ≥ 1. (3.29)

Multiplying this equation by its conjugate, i.e. taking the norm, we get∗

U2
k − µUkUk−1 + 2U2

k−1 = 2k−1, for all k ≥ 1. (3.30)

Let

tk = 2Uk−1U
−1
k (mod 2k). (3.31)

Now Uk is odd since U0 = 0, U1 = 1 ⇒ U2 = 1 so succeeding terms will consist of an

odd term, minus an even term, which will always be odd. In addition, U−1k will also

be odd since Uk odd ⇒ gcd(Uk, 2
k) = 1. Then, by the extended Euclidean Algorithm,

sUk + t2k = 1.

Now t2k is even so sUk must be odd. But Uk odd ⇒ s must also be odd. Further, s

is the inverse of Uk modulo 2k ⇒ U−1k (mod 2k) is odd. Therefore tk is a well defined

integer modulo 2k that is even but not divisible by 4†.

Therefore, by 3.30 and 3.31,

t2k − µtk + 2 ≡ 0 (mod 2k), for all k ≥ 1.‡ (3.32)

Hence, tk satisfies the same polynomial equation over Z/2kZ that τ satisfies over the

complex numbers, viz. τ2−µτ +2. [19] showed that the correspondence τ 7→ tw induces

∗Recall N(d0 + d1τ) = d20 − µd0d1 + 2d21. Let d0 = −2Uk−1 and d1 = Uk. Further N(τ) = 2 so that
N(τk) = 2k. Hence 2k = 4U2

k−1 − 2µUkUk−1 + 2U2
k ⇒ 2k−1 = u2

k − µUkUk−1 + 2U2
k−1.

†Since we multiply two odd numbers by 2. The result is not divisible by 4 since neither Uk−1 or U−1
k is

divisible by 2 both being odd numbers.
‡or t2k + 2 ≡ µtk (mod 2k).

42

a ring homomorphism (surjective) via the mapping

φw : Z[τ]→ Z/2wZ (3.33)

with kernal

{α ∈ Z[τ] |α is divisible by τk}. (3.34)

This asserts that the odd equivalence classes in Z[τ] are incongruent modulo τw so that

an even value for α has a 0 residual, and an odd value for α will have a residual (mod

τw) falling into one of the equivalence classes ±1,±3, . . . ,±(2w−1 − 1) . Furthermore,

under the mapping φw, the odd congruence classes in Z[τ] (mod τw) equate with the

odd elements in Z/2wZ. Hence, [2]

r0 + r1τ ≡ 0 (mod τk)⇔ r0 + r1tk ≡ 0 (mod 2k). (3.35)

Therefore, if we let αu = u mod τw then the numbers ±α1,±α3, . . . ,±α(2w−1−1) will

also have an odd residual (mod τw).

We are now in a position to write down Solinas’s width-w τ -adic NAF algorithm (algo-

rithm 15).

43

Algorithm 15: width-w τ -adic NAF Method

Input:
m from the field characteristic F2m

a the elliptic curve parameter
s0, s1 as defined in equation (3.23)
r the order of the main subgroup
w the window width
tw(= 2Uw−1U

−1
w)

αu(= βu + γuτ for u = 1, 3, . . . , 2w−1 − 1)
A positive integer n
An elliptic point P

Precompute:
Pu = αuP for u = 1, 3, . . . , 2w−1 − 1

Output: The point nP
1 j ← 0
2 (r0, r1)← n mod δ // from algorithm 11

3 Q←∞
4 while r0 6= 0 or r1 6= 0 do
5 if r0 is odd then
6 u← (r0 + r1tw) modsa 2w

7 if u > 0 then
8 ξ ← 1

9 else
10 ξ ← −1
11 u← −u
12 Q← Q+ ξPu

13 j ← j + 1
14 Q← τ−1Q
15 r0 ← r1 + µr0/2
16 r1 ← −r0/2
17 Q← τ jQ
18 return Q

amods means that the remainder u satisfies −2w−1 ≤ u < 2w−1.

This algorithm has an approximate running time of:(
2w−2 − 1 +

m

w + 1

)
A

with no point doublings [8].

3.4.1 Precomputation Width-w τ-NAF

We now turn our attention to pre-computation in the width-w τ -adic NAF algorithm

15. In table 2 of [19], and, as stated in [2], pre-computation costs 39% of the point

multiplication for a width size of w = 6, but 60% for a width size of w = 7. We explore

various width sizes and offer improvements in pre-computation over current published

44

results. In addition, we explore width sizes of w = 7 and w = 8, since widths of these

sizes have not been produced in any literature to date, and offer efficient tables for these

widths as well.

Again, the mods used in algorithm 15 means that the remainder u satisfies −2w−1 ≤
u < 2w−1 implying that α is an element with the smallest norm. [2] demonstrated

and provided a proof of termination that this condition can be relaxed provided that

N(αu) < 2w for u = 3, 5, . . . , 2w−1 − 1. They called this method the general width-w

τ -adic NAF. We now expand on this idea by generating all possible values of αu such

that the N(αu) < 2w.

The calculations were done as follows. Let

αu = βu + γuτ. (3.36)

Since

αu ≡ u mod τw ⇒ αu = qτw + u (3.37)

where αu, q ∈ Z[τ]. Let

q = q0 + q1τ. (3.38)

Then we have

βu + γuτ = (q0 + q1τ)τw + u. (3.39)

Recall by the Lucas sequence 3.11, τw can be reduced to its canonical form c0 + c1τ so

that
(q0 + q1τ)τw = (q0 + q1τ)(c0 + c1τ)

= q0c0 + q0c1τ + q1c0τ + q1c1τ
2. (3.40)

But τ2 = µτ − 2 so that

= q0c0 + q0c1τ + q1c0τ + q1c1µτ − 2q1c1

= (q0c0 − 2q1c1) + (q0c1 + q1c0 + q1c1µ)τ. (3.41)

Therefore,

(q0 + q1τ)τw + u = (q0c0 − 2q1c1) + (q0c1 + q1c0 + q1c1µ)τ + u. (3.42)

Equating terms in τ , we have

βu = q0c0 − 2q1c1 + u and

γu = q0c1 + q1c0 + q1c1µ. (3.43)

w, c0, c1, u and µ are known so one merely varies the values for q0 and q1 validating that

45

N(αu) = β2u + µβuγu + 2γ2u < N(τw) = 2w.

As an example, we perform a calculation for α3 (u = 3) for the elliptic curve E1(a =

1, µ = 1) for a window size w = 4. Thus N(τ4) = 24 = 16 so that we will have four odd

equivalence classes or residues.

In order to get the c0 and c1 terms, we need to reduce τ4 to its canonical form. This is

easily done using the Lucas sequence for U∗, equation 3.11, where τ4 = U4τ − 2U3. We

find that τ4 = −3τ + 2 => c0 = 2 and c1 = −3. Let’s choose q0 = 1 and q1 = 1. Then

βu = q0c0 − 2q1c1 + u = 11 and

γu = (q0c1 + q1c0 + q1c1µ) = −4 (3.44)

so that u mod τ4 = 11− 4τ . However, N(11− 4τ) = 109 > 16 and, hence, this does not

qualify. Let’s try q0 = 1 and q1 = −1. Then

βu = q0c0 − 2q1c1 + u = −1 and

γu = (q0c1 + q1c0 + q1c1µ) = −2 (3.45)

so that u mod τ4 = −1− 2τ with N(−1− 2τ) = 11 < 16.

We present the entire table for E1 for a window size w = 4, following the modus operandi

outlined above, by varying q0 and q1 between large values such that the norm is well

outside the acceptable range, and discarding those values whose norm is outside this

range.

Table 3.1: E1: w = 4, N(τw) = 16, τw(reduced) = −3τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1

3 8 0 -1 τ− 3 τ2 − 1
3 9 0 0 3 τ5 + τ2 − 1
3 11 1 -1 −2τ− 1 τ4 + τ2 − 1

5 2 0 -1 τ− 1 τ2 + 1
5 7 1 -1 −2τ + 1 τ4 + τ2 + 1

7 4 0 -1 τ + 1 −τ3 − 1
7 11 1 -1 −2τ + 3 τ5 + τ3 − 1
7 14 1 -2 −τ− 3 τ3 − 1

∗U0 = 0, U1 = 1, U2 = 1, U3 = −1, U4 = −3.

46

Solinas in [19] worked with a window width of w = 5 for E1 and presented the following

values for αu based on the least norm:

Table 3.2: E1: w = 5, N(τw) = 32, τw(reduced) = −τ + 6

u norm q0 q1 u mod τw αu Reduction

1 1 0 0 1 1

3 8 -1 0 τ− 3 τ2 − 1

5 2 -1 0 τ− 1 τ2 + 1

7 4 -1 0 τ + 1 −τ3 − 1

9 11 -2 0 2τ− 3 −τ5 − τ3 + 1 −τ3α5 + 1

11 7 -2 0 2τ− 1 −τ4 − τ2 − 1 −τ2α5 − 1

13 11 -2 0 2τ + 1 −τ4 − τ2 + 1 −τ2α5 + 1

15 16 -2 -1 −3τ + 1 τ4 − 1

Since each term in αu involves an elliptic curve addition it is desirable, to the extent

possible, to reduce these terms in combinations of other αu values, taking advantage of

the fact that they have already been calculated.

Solinas was able to show an efficient arrangement for the terms α9, α11, and α13. How-

ever, α15 has a large power of τ , viz. τ4. Of course, it is undesirable to use terms

such as −3τ + 1, favoring the τ mapping τ4 − 1, since, again, scalar multiplication is

substantially more expensive. Furthermore, since αu ≡ u mod τw, it would be equally

valid to have chosen the u mod τw of τ − 1 for α5 and τ + 1 for α7, since these values

are also valid congruence class representatives∗.

Larger table sizes have αu terms requiring longer τ -NAF representation, with high pow-

ers of τ , each requiring an elliptic curve addition. For example, a window width size of

8 has τ terms ranging as high as ten, with up to four elliptic curve additions. Window

width sizes of 7 and 8 have not been studied extensively in the literature, and smaller

table sizes show suboptimal arrangements. [2] produced a better pre-computation ar-

∗Easily seen since τ2 = µτ − 2.

47

rangement than that of Solinas in that the power of τ was reduced to 2. They were

able to do this by picking terms that were not of least norm. However, we have im-

proved upon this with no equation containing a term higher than a single power of τ .

Furthermore, these terms all involve least norms!

The following is one such arrangement for a = 1 and w = 5 which is an improvement

over any known arrangements.

α1 = 1, α3 = τ − 3

α5 = τ − 1, α7 = τ + 1

α9 = 2τ − 3, α11 = 2τ − 1

α13 = 2τ + 1, α15 = 3τ − 3

with arrangement

α1 = 1, α5 = τ − 1

α7 = τ + 1, α3 = α5 + τα5

α11 = α5 + τ , α13 = α7 + τ

α9 = α3 + τ , α15 = α9 + τ

We verify this result as follows using the fact that τ2 = τ − 2 for a = 1:

α1 = 1

α5 = τ − 1

α7 = τ + 1

α3 = α5 + τα5 = τ − 1 + τ(τ − 1) = τ − 1 + τ2 − τ = τ − 3

α11 = α5 + τ = τ − 1 + τ = 2τ − 1

α13 = α7 + τ = τ + 1 + τ = 2τ + 1

α9 = α3 + τ = τ − 3 + τ = 2τ − 3

α15 = α9 + τ = 2τ − 3 + τ = 3τ − 3

48

Chapter 4

Pre-Computation

4.1 Efficient Table Calculation

Our goal was to examine the various width-w τ -NAF tables, and, based on observations,

determine if we could find a pattern to producing more efficient arrangements, as well as

examining width sizes of 7 and 8. Based on the work by [2], we did not restrict ourselves

to least norm values. The tables exhibited in appendix A: and B: reflect all those values

such that N(αu) < τw.

Based on observation of smaller tables, it appeared that we could compute an efficient

arrangement, not necessarily using least norms, such that all terms were combinations

of αj = ±αi±τ or αj = ±αi±ταi. Favoring the former equation in terms of ±τ , we can

save some computational time and memory by precalculating ±τP . αi is any previously

determined arrangement from previous stages of reasoning, so we required initial starting

values. It made sense to start with initial values of α1 = 1 and α′is = ±τ ± 1 and begin

deliberations from there.

We were able to write a computer program which did most of the heavy lifting following

the above paradigm. This program implements a greedy algorithm insofar that it looks

for terms in the next stage with αj = ±αi ± τ first, followed by terms of the form

αj = ±αi± ταi, if no match was found. The program moves on to the next term on the

very first match, i.e. we do not attempt to discover every conceivable permutation of

terms, since our goal was to find just one optimal arrangement. These arrangements are

49

not unique in that we can find other similar arrangements, but none of more efficiency

in elliptic curve operations.

After generating many sets of arrangements using assorted combinations of terms (not

necessarily of least norm) it appeared feasible that we could generate an efficient arrange-

ment by using least norms. After some additional experimentation and observation, we

were finally able to achieve our ultimate goal of generating efficient equations using least

norms.

The following arrangements are the culmination of our work. These arrangements are

better than any previously published results as they only use least norms and demand

just 2w−2− 1 elliptic curve operations with single powers of τ . They are optimal insofar

as no values exist of the form αj = −αi, where N(αu) < τw, so the best we can hope

for is two term equations as presented below.

In addition, we present the same efficient arrangements for window widths of 7 and 8

which have never before been presented in the literature. It is interesting to note that

the order of the arrangements are the same for the same width with the only deviation

being the difference in the sign on the τ term. This is due to the fact that µ = 1 when

a = 0 and µ = −1 when a = 1.

According to table 2 in [19], there is a diminishing return on precalculation. Based on

the number of operations, the break even point, on average, between standard τ -NAF

vs window-w τ -NAF occurs with a window width of 8. However, with a field size of

m = 521 we have

m/3 = 521/3 ≈ 174

additions for standard τ -NAF and

2w−2 − 1 +m/(w + 1) = 27 − 1 + 521/10 ≈ 180

additions for window-w τ -NAF where w = 9. Thus, for larger field sizes, corresponding

to larger key sizes in data encryption, it may be advantageous to apply larger window

width sizes.

The following are our arrangements for windows size of 5 ≤ w ≤ 8 for a = 0, 1. Notice

that each table has exactly 2w−2 − 1 elliptic curve operations which is optimal since,

again, no terms exist of the form αj = −αi where αu < N(τw). Moreover, these tables

50

were produced by picking the term of least norm from the congruence classes. Also take

note that the arrangements are not in order, i.e. α terms with lower indices may appear

later in the arrangements. Furthermore, as an added improvement in computational

time, one can pre-compute τP .

Verification was performed by hand on table sizes up to w = 6 and then by random

sampling on widths of 7 and 8. In addition, all arrangements were tested programmat-

ically.

4.2 E0, w = 5

Congruence class representative:

α1 = 1, α3 = −τ − 3
α5 = −τ − 1, α7 = −τ + 1
α9 = −2τ − 3, α11 = −2τ − 1
α13 = −2τ + 1, α15 = 3τ + 1

Arrangement:

α1 = 1, α5 = −τ − 1
α7 = −τ + 1, α3 = α5 − τα5

α11 = α5 − τ , α13 = α7 − τ
α15 = −α7 + τα7, α9 = α3 − τ

4.3 E1, w = 5

Congruence class representative:

α1 = 1, α3 = τ − 3
α5 = τ − 1, α7 = τ + 1
α9 = 2τ − 3, α11 = 2τ − 1
α13 = 2τ + 1, α15 = −3τ + 1

Arrangement:

α1 = 1, α5 = τ − 1
α7 = τ + 1, α3 = α5 + τα5

α11 = α5 + τ , α13 = α7 + τ
α15 = −α7 − τα7, α9 = α3 + τ

51

4.4 E0, w = 6

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = −2τ − 5

α9 = −2τ − 3, α11 = −2τ − 1
α13 = −2τ + 1, α15 = 3τ + 1
α17 = 3τ + 3, α19 = 3τ + 5

α21 = −4τ − 3, α23 = τ − 3
α25 = τ − 1, α27 = τ + 1
α29 = τ + 3, α31 = τ + 5

Arrangement:

α1 = 1, α25 = τ − 1
α27 = τ + 1, α13 = −α25 − τ

α15 = α25 − τα25, α29 = −α25 − τα25

α11 = −α27 − τ , α31 = α13 + τα13

α3 = α29 − τ , α9 = −α29 − τ
α19 = −α11 + τα11, α23 = −α11 − τα11

α5 = α31 − τ , α7 = −α31 − τ
α17 = α3 + τα3, α21 = −α17 − τ

52

4.5 E1, w = 6

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = 2τ − 5

α9 = 2τ − 3, α11 = 2τ − 1
α13 = 2τ + 1, α15 = −3τ + 1

α17 = −3τ + 3, α19 = −3τ + 5
α21 = 4τ − 3, α23 = −τ − 3
α25 = −τ − 1, α27 = −τ + 1
α29 = −τ + 3, α31 = −τ + 5

Arrangement:

α1 = 1, α25 = −τ − 1
α27 = −τ + 1, α13 = −α25 + τ

α15 = α25 + τα25, α29 = −α25 + τα25

α11 = −α27 + τ , α31 = α13 − τα13

α3 = α29 + τ , α9 = −α29 + τ
α19 = −α11 − τα11, α23 = −α11 + τα11

α5 = α31 + τ , α7 = −α31 + τ
α17 = α3 − τα3, α21 = −α17 + τ

53

4.6 E0, w = 7

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = 7

α9 = 3τ − 5, α11 = 3τ − 3
α13 = 3τ − 1, α15 = 3τ + 1
α17 = 3τ + 3, α19 = 3τ + 5

α21 = −4τ − 3, α23 = −4τ − 1
α25 = −4τ + 1, α27 = −4τ + 3
α29 = 6τ + 1, α31 = −τ − 7
α33 = −τ − 5, α35 = −τ − 3
α37 = −τ − 1, α39 = −τ + 1
α41 = −τ + 3, α43 = −τ + 5
α45 = −τ + 7, α47 = 2τ − 5
α49 = 2τ − 3, α51 = 2τ − 1
α53 = 2τ + 1, α55 = 2τ + 3
α57 = 2τ + 5, α59 = 2τ + 7

α61 = −5τ − 1, α63 = −5τ + 1

Arrangement:

α1 = 1, α37 = −τ − 1
α39 = −τ + 1, α35 = α37 − τα37

α53 = −α37 + τ , α15 = −α39 + τα39

α51 = −α39 + τ , α3 = −α35 − τ
α43 = −α35 + τα35, α55 = −α35 + τ
α19 = α53 − τα53, α41 = −α53 − τα53

α23 = −α15 − τ , α13 = α51 + τ
α33 = α51 + τα51, α11 = −α3 + τα3

α17 = α3 + τα3, α5 = α43 + τ
α47 = −α43 + τ , α31 = −α55 + τα55

α57 = α19 − τ , α63 = −α19 − τα19

α49 = −α41 + τ , α45 = α23 + τα23

α61 = α23 − τ , α25 = −α13 − τ
α27 = −α11 − τ , α21 = −α17 − τ
α9 = α47 + τ , α7 = −α31 − τ

α59 = −α31 + τ , α29 = −α61 + τ

54

4.7 E1, w = 7

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = 7

α9 = −3τ − 5, α11 = −3τ − 3
α13 = −3τ − 1, α15 = −3τ + 1
α17 = −3τ + 3, α19 = −3τ + 5
α21 = 4τ − 3, α23 = 4τ − 1
α25 = 4τ + 1, α27 = 4τ + 3

α29 = −6τ + 1, α31 = τ − 7
α33 = τ − 5, α35 = τ − 3
α37 = τ − 1, α39 = τ + 1
α41 = τ + 3, α43 = τ + 5
α45 = τ + 7, α47 = −2τ − 5

α49 = −2τ − 3, α51 = −2τ − 1
α53 = −2τ + 1, α55 = −2τ + 3
α57 = −2τ + 5, α59 = −2τ + 7
α61 = 5τ − 1, α63 = 5τ + 1

Arrangement:

α1 = 1, α37 = τ − 1
α39 = τ + 1, α35 = α37 + τα37

α53 = −α37 − τ , α15 = −α39 − τα39

α51 = −α39 − τ , α3 = −α35 + τ
α43 = −α35 − τα35, α55 = −α35 − τ
α19 = α53 + τα53, α41 = −α53 + τα53

α23 = −α15 + τ , α13 = α51 − τ
α33 = α51 − τα51, α11 = −α3 − τα3

α17 = α3 − τα3, α5 = α43 − τ
α47 = −α43 − τ , α31 = −α55 − τα55

α57 = α19 + τ , α63 = −α19 + τα19

α49 = −α41 − τ , α45 = α23 − τα23

α61 = α23 + τ , α25 = −α13 + τ
α27 = −α11 + τ , α21 = −α17 + τ
α9 = α47 − τ , α7 = −α31 + τ

α59 = −α31 − τ , α29 = −α61 − τ

55

4.8 E0, w = 8

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = 7

α9 = 3τ − 5, α11 = 3τ − 3
α13 = 3τ − 1, α15 = 3τ + 1
α17 = 3τ + 3, α19 = 3τ + 5
α21 = 3τ + 7, α23 = 3τ + 9
α25 = 6τ − 3, α27 = 6τ − 1
α29 = 6τ + 1, α31 = 6τ + 3
α33 = 6τ + 5, α35 = 6τ + 7
α37 = 6τ + 9, α39 = 6τ + 11

α41 = −8τ − 7, α43 = −8τ − 5
α45 = −8τ − 3, α47 = −8τ − 1
α49 = −8τ + 1, α51 = −5τ − 11
α53 = −5τ − 9, α55 = −5τ − 7
α57 = −5τ − 5, α59 = −5τ − 3
α61 = −5τ − 1, α63 = −5τ + 1
α65 = −5τ + 3, α67 = −2τ − 9
α69 = −2τ − 7, α71 = −2τ − 5
α73 = −2τ − 3, α75 = −2τ − 1
α77 = −2τ + 1, α79 = −2τ + 3
α81 = −2τ + 5, α83 = τ − 7
α85 = τ − 5, α87 = τ − 3
α89 = τ − 1, α91 = τ + 1
α93 = τ + 3, α95 = τ + 5
α97 = τ + 7, α99 = τ + 9

α101 = 4τ − 3, α103 = 4τ − 1
α105 = 4τ + 1, α107 = 4τ + 3
α109 = 4τ + 5, α111 = 4τ + 7
α113 = 4τ + 9, α115 = 4τ + 11
α117 = 7τ − 1, α119 = 7τ + 1
α121 = 7τ + 3, α123 = 7τ + 5
α125 = 7τ + 7, α127 = 7τ + 9

56

Arrangement:

α1 = 1, α89 = τ − 1
α91 = τ + 1, α15 = α89 − τα89

α77 = −α89 − τ , α93 = −α89 − τα89

α75 = −α91 − τ , α55 = −α15 + τα15

α85 = α15 + τα15, α105 = α15 + τ
α13 = −α77 + τ , α59 = α77 − τα77

α95 = α77 + τα77, α3 = α93 − τ
α73 = −α93 − τ , α19 = −α75 + τα75

α87 = −α75 − τα75, α35 = −α55 + τ
α111 = −α55 − τ , α5 = −α85 + τ
α81 = −α85 − τ , α61 = −α105 − τ

α83 = α105 + τα105, α127 = α105 − τα105

α97 = −α13 − τα13, α103 = α13 + τ
α123 = α13 − τα13, α31 = −α59 + τ
α107 = −α59 − τ , α71 = −α95 − τ
α11 = −α3 + τα3, α17 = α3 + τα3

α63 = −α19 − τα19, α109 = α19 + τ
α79 = −α87 − τ , α125 = α35 + τ
α21 = α111 − τ , α117 = α111 + τα111

α57 = −α5 − τα5, α9 = −α81 + τ
α53 = −α81 − τα81, α29 = −α61 + τ

α7 = −α83 + τ , α37 = α127 − τ
α69 = −α97 − τ , α99 = −α103 − τα103

α33 = α123 − τ , α43 = −α123 − τ
α121 = α31 + τ , α51 = −α107 + τα107

α23 = −α11 − τα11, α101 = α11 + τ
α27 = −α63 + τ , α65 = −α109 − τα109

α119 = −α79 + τα79, α41 = −α125 − τ
α49 = −α117 − τ , α113 = −α53 − τ
α67 = −α99 − τ , α45 = −α121 − τ
α39 = −α51 + τ , α115 = −α51 − τ
α25 = −α65 + τ , α47 = −α119 − τ

57

4.9 E1, w = 8

Congruence class representative:

α1 = 1, α3 = 3
α5 = 5, α7 = 7

α9 = −3τ − 5, α11 = −3τ − 3
α13 = −3τ − 1, α15 = −3τ + 1
α17 = −3τ + 3, α19 = −3τ + 5
α21 = −3τ + 7, α23 = −3τ + 9
α25 = −6τ − 3, α27 = −6τ − 1
α29 = −6τ + 1, α31 = −6τ + 3
α33 = −6τ + 5, α35 = −6τ + 7
α37 = −6τ + 9, α39 = −6τ + 11
α41 = 8τ − 7, α43 = 8τ − 5
α45 = 8τ − 3, α47 = 8τ − 1
α49 = 8τ + 1, α51 = 5τ − 11
α53 = 5τ − 9, α55 = 5τ − 7
α57 = 5τ − 5, α59 = 5τ − 3
α61 = 5τ − 1, α63 = 5τ + 1
α65 = 5τ + 3, α67 = 2τ − 9
α69 = 2τ − 7, α71 = 2τ − 5
α73 = 2τ − 3, α75 = 2τ − 1
α77 = 2τ + 1, α79 = 2τ + 3
α81 = 2τ + 5, α83 = −τ − 7
α85 = −τ − 5, α87 = −τ − 3
α89 = −τ − 1, α91 = −τ + 1
α93 = −τ + 3, α95 = −τ + 5
α97 = −τ + 7, α99 = −τ + 9

α101 = −4τ − 3, α103 = −4τ − 1
α105 = −4τ + 1, α107 = −4τ + 3
α109 = −4τ + 5, α111 = −4τ + 7
α113 = −4τ + 9, α115 = −4τ + 11
α117 = −7τ − 1, α119 = −7τ + 1
α121 = −7τ + 3, α123 = −7τ + 5
α125 = −7τ + 7, α127 = −7τ + 9

58

Arrangement:

α1 = 1, α89 = −τ − 1
α91 = −τ + 1, α15 = α89 + τα89

α77 = −α89 + τ , α93 = −α89 + τα89

α75 = −α91 + τ , α55 = −α15 − τα15

α85 = α15 − τα15, α105 = α15 − τ
α13 = −α77 − τ , α59 = α77 + τα77

α95 = α77 − τα77, α3 = α93 + τ
α73 = −α93 + τ , α19 = −α75 − τα75

α87 = −α75 + τα75, α35 = −α55 − τ
α111 = −α55 + τ , α5 = −α85 − τ
α81 = −α85 + τ , α61 = −α105 + τ

α83 = α105 − τα105, α127 = α105 + τα105

α97 = −α13 + τα13, α103 = α13 − τ
α123 = α13 + τα13, α31 = −α59 − τ
α107 = −α59 + τ , α71 = −α95 + τ
α11 = −α3 − τα3, α17 = α3 − τα3

α63 = −α19 + τα19, α109 = α19 − τ
α79 = −α87 + τ , α125 = α35 − τ
α21 = α111 + τ , α117 = α111 − τα111

α57 = −α5 + τα5, α9 = −α81 − τ
α53 = −α81 + τα81, α29 = −α61 − τ

α7 = −α83 − τ , α37 = α127 + τ
α69 = −α97 + τ , α99 = −α103 + τα103

α33 = α123 + τ , α43 = −α123 + τ
α121 = α31 − τ , α51 = −α107 − τα107

α23 = −α11 + τα11, α101 = α11 − τ
α27 = −α63 − τ , α65 = −α109 + τα109

α119 = −α79 − τα79, α41 = −α125 + τ
α49 = −α117 + τ , α113 = −α53 + τ
α67 = −α99 + τ , α45 = −α121 + τ
α39 = −α51 − τ , α115 = −α51 + τ
α25 = −α65 − τ , α47 = −α119 + τ

59

Chapter 5

Discussion

5.1 Summary

Solinas [19] was able to develop a τ -NAF algorithm on Koblitz curves which provided a

50% improvement in scalar multiplication over previously known methods by exploiting

the Frobenius endomorphism property of Koblitz curves. Furthermore, Solinas demon-

strated an improvement in this algorithm by offering a width-w τ -NAF algorithm where

he worked with a window width of 5, and showing well over a one third improvement in

the work required over standard τ -NAF. He also offered an efficient arrangement of αu

terms which capitalizes on previous computation of terms. [2] later showed a further im-

provement over Solinas by relaxing the condition of least norm, offering a more efficient

arrangement. However, one term involved a τ2.

We further expanded on this work and provided more efficient arrangement utilizing

single powers of τ , with just 2w−2 − 1 elliptic curve operations and using least norms!

Examining the tables in appendix A: and B:, we see that there are no terms such that

αj = −αi. Hence, we would expect at least two term equations with the exception of

α1 = 1.

Predecessors have worked with window width sizes of 6 or less. We have provided

arrangements for window widths of 7 and 8, and we conjecture that such arrangements

exist for larger window sizes. However, as mentioned previously, and based on current

key size requirements, there is presently no advantage to applying larger window width

sizes above 8.

60

Following the work of [2], and relaxing the requirement of least norm, we were able

to provide a simplified rounding technique which led to a more elementary reduction

modulo δ, algorithm 12, no less valid than that of using least norms. We provided

mathematical proof via use of the division theorem.

Lastly, we discussed an O(n) squaring algorithm that can be used in software which

we presented in section 3.3.2.3. The disadvantage of this technique is that it requires a

large memory footprint. An improvement but, at the expense of some efficiency, would

be to apply a reduction each time the squared value exceeds the field size.

5.2 Future Work

We explored widths of size 7 and 8 and produced efficient arrangements. Although there

is a diminishing return on larger window sizes, widths of 9 and 10 should be explored,

especially since larger key sizes may be needed in the future, due to ever increasing

computational power. In addition, by relaxing the condition of least norm as shown

by [2], more equivalence class representatives are available, especially as width sizes get

larger and, thus, a relationship of the form αj = −αi may exist. This would reduce the

number of elliptic curve operations.

Applying the approach in this thesis to find optimal arrangements for fields with char-

acteristic 3 and larger.

Lastly, improvements in implementation by taking advantage of multi-core processors.

For example, since elliptic curve addition forms an abelian group, we could easily parallel

process a width-w τ -adic NAF by continuously taking widths of w and sending each to

its own thread of execution. Results from each thread could then be summed to provide

the final result. Note that there is no guarantee of the order in which a thread of

execution completes, due to the nature of thread scheduling in a processor, but this

does not matter since, again, elliptic curve addition forms an abelian group.

61

Bibliography

[1] Ian F. Blake, Kumar Murty, and Guangwu Xu. Efficient algorithms for koblitz

curves over fields of charateristic three. Journal of Discrete Algorithms 3 (2005)

113-124, pages 113–124, 2005.

[2] Ian F. Blake, Kumar Murty, and Guangwu Xu. A note on window τ -naf algorithm.

Information Processing Letters 95, pages 496–502, 2005.

[3] Ian F. Blake, Kumar Murty, and Guangwu Xu. Nonadjacent radix-τ expansions

of integers in euclidean imaginary quadratic number fields. Canadian Journal of

Mathematics, 60:1267–1282, 2008.

[4] Ricardo Dahab, Darrel Hankerson, Men Long, Julio López, and Alfred Menezes.

Software multiplication using gaussian normal bases. IEEE Trans. Comput, 55:974–

984, 2006.

[5] David Steven Dummit and Richard M. Foote. Abstract algebra. John Wiley & sons,

Hoboken, NJ, 2004.

[6] Behrouz A. Forouzan. Cryptography & Network Security. McGraw-Hill, Inc., New

York, NY, USA, 1 edition, 2008.

[7] L. Gilbert and J. Gilbert. Elements of Modern Algebra. BROOKS COLE Publishing

Company, 2008.

[8] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve

Cryptography. Springer-Verlag, New York, NY, 2010.

[9] T.W. Judson. Abstract Algebra: Theory and Applications. The Prindle, Weber &

Schmidt Series in Advanced Mathematics. PWS Publishing Company, 1994.

62

[10] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1 1987.

[11] Neal Koblitz. Cm-curves with good cryptographic properties. In Proc. Crypto ’91,

pages 279–287. Springer-Verlag, 1992.

[12] http : //csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf. Recom-

mended elliptic curves for federal government use, 1999. Accessed: 2013-09-13.

[13] http : //en.wikipedia.org/wiki/Euclidean domain. Euclidean domain, 2013. Ac-

cessed: 2013-09-25.

[14] http : //www.nsa.gov/business/programs/elliptic curve.shtml. The case for elliptic

curve cryptography, 2009. Accessed: 2013-05-08.

[15] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, and R. L. Rivest.

Handbook of Applied Cryptography. CRC Press, 1997.

[16] Victor S. Miller. Use of elliptic curves in cryptography. In Lecture notes in computer

sciences; 218 on Advances in cryptology—CRYPTO 85, pages 417–426, New York,

NY, USA, 1986. Springer-Verlag New York, Inc.

[17] Charles C. Pinter. A Book of Abstract Algebra. Dover Publications, Inc, Mineola,

NY, 2 edition, 2010.

[18] Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. Springer-

Verlag New York Inc., 2010.

[19] Jerome A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes, and

Cryptography, pages 195–249, 2000.

[20] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography.

Chapman & Hall/CRC, 2 edition, 2008.

63

Appendix A:

a = 0 Width-w τ-NAF Tables

This appendix lists the complete τ -NAF table for window sizes 3 to 8 for E0.

Table A:.1: E0: w = 3, N(τw) = 8, τw(reduced) = −τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 4 -1 0 τ− 1 −τ3 + 1

3 2 -1 0 τ + 1 −τ2 − 1
3 7 -1 -1 −2τ− 1 −τ4 − τ2 − 1

Table A:.2: E0: w = 4, N(τw) = 16, τw(reduced) = 3τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1

3 8 0 1 −τ− 3 τ2 − 1
3 9 0 0 3 −τ5 + τ2 − 1
3 11 1 1 2τ− 1 τ4 + τ2 − 1

5 2 0 1 −τ− 1 τ2 + 1
5 7 1 1 2τ + 1 τ4 + τ2 + 1

7 4 0 1 −τ + 1 τ3 − 1
7 11 1 1 2τ + 3 −τ5 − τ3 − 1
7 14 1 2 τ− 3 −τ3 − 1

64

Table A:.3: E0: w = 5, N(τw) = 32, τw(reduced) = −τ− 6

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 22 1 0 −τ− 5 τ5 + 1

3 8 1 0 −τ− 3 τ2 − 1
3 9 0 0 3 −τ5 + τ2 − 1

5 2 1 0 −τ− 1 τ2 + 1
5 25 0 0 5 −τ5 + τ2 + 1

7 4 1 0 −τ + 1 τ3 − 1
7 23 2 0 −2τ− 5 τ5 + τ3 − 1

9 11 2 0 −2τ− 3 τ5 + τ3 + 1
9 14 1 0 −τ + 3 τ3 + 1
9 29 1 -1 4τ + 1 −τ6 + τ3 + 1

11 7 2 0 −2τ− 1 −τ4 − τ2 − 1
11 29 1 -1 4τ + 3 τ4 − τ2 − 1

13 11 2 0 −2τ + 1 −τ4 − τ2 + 1
13 22 2 -1 3τ− 1 −τ6 − τ4 − τ2 + 1
13 28 3 0 −3τ− 5 −τ7 + τ4 − τ2 + 1

15 16 2 -1 3τ + 1 τ4 − 1
15 18 3 0 −3τ− 3 −τ4 − 1
15 23 2 0 −2τ + 3 τ6 + τ4 − 1

65

Table A:.4: E0: w = 6, N(τw) = 64, τw(reduced) = −5τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 56 -1 0 5τ− 1 −τ6 + 1

3 9 0 0 3 −τ5 + τ2 − 1
3 46 -1 0 5τ + 1 τ7 + τ5 + τ2 − 1

5 25 0 0 5 −τ5 + τ2 + 1
5 43 -1 -1 −2τ− 7 τ5 + τ2 + 1
5 44 -1 0 5τ + 3 τ7 + τ5 + τ2 + 1

7 23 -1 -1 −2τ− 5 τ5 + τ3 − 1
7 49 0 0 7 −τ5 + τ3 − 1
7 50 -1 0 5τ + 5 τ7 + τ5 + τ3 − 1

9 11 -1 -1 −2τ− 3 τ5 + τ3 + 1
9 58 -2 -1 3τ− 5 τ8 − τ5 + τ3 + 1

11 7 -1 -1 −2τ− 1 −τ4 − τ2 − 1
11 36 -2 -1 3τ− 3 −τ6 − τ4 − τ2 − 1

13 11 -1 -1 −2τ + 1 −τ4 − τ2 + 1
13 22 -2 -1 3τ− 1 −τ6 − τ4 − τ2 + 1

15 16 -2 -1 3τ + 1 τ4 − 1
15 23 -1 -1 −2τ + 3 τ6 + τ4 − 1

17 18 -2 -1 3τ + 3 τ4 + 1
17 43 -1 -1 −2τ + 5 τ6 + τ4 + 1
17 53 -2 -2 −4τ− 7 −τ7 + τ4 + 1

19 28 -2 -1 3τ + 5 τ7 − τ4 + τ2 − 1
19 37 -2 -2 −4τ− 5 −τ4 + τ2 − 1
19 58 -3 -2 τ− 7 −τ6 − τ4 + τ2 − 1

21 29 -2 -2 −4τ− 3 −τ4 + τ2 + 1
21 32 -3 -2 τ− 5 −τ6 − τ4 + τ2 + 1
21 46 -2 -1 3τ + 7 τ7 − τ4 + τ2 + 1

23 14 -3 -2 τ− 3 −τ3 − 1
23 29 -2 -2 −4τ− 1 τ6 − τ3 − 1

25 4 -3 -2 τ− 1 −τ3 + 1
25 37 -2 -2 −4τ + 1 τ6 − τ3 + 1

27 2 -3 -2 τ + 1 −τ2 − 1
27 53 -2 -2 −4τ + 3 τ6 − τ2 − 1

29 8 -3 -2 τ + 3 −τ2 + 1

31 22 -3 -2 τ + 5 −τ5 − 1
31 44 -4 -3 −τ− 7 τ5 − 1
31 63 -4 -2 6τ + 3 τ7 + τ5 − 1

66

Table A:.5: E0: w = 7, N(τw) = 128, τw(reduced) = 7τ + 10

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 116 -1 0 −7τ− 9 −τ7 + 1

3 9 0 0 3 −τ5 + τ2 − 1
3 98 -1 0 −7τ− 7 −τ7 − τ5 + τ2 − 1

5 25 0 0 5 −τ5 + τ2 + 1
5 88 -1 0 −7τ− 5 −τ7 − τ5 + τ2 + 1
5 126 0 1 3τ− 9 τ8 − τ5 + τ2 + 1

7 49 0 0 7 −τ5 + τ3 − 1
7 86 -1 0 −7τ− 3 −τ7 − τ5 + τ3 − 1
7 88 0 1 3τ− 7 τ8 − τ5 + τ3 − 1

9 58 0 1 3τ− 5 τ8 − τ5 + τ3 + 1
9 81 0 0 9 −τ5 + τ3 + 1
9 92 -1 0 −7τ− 1 −τ7 − τ5 + τ3 + 1

11 36 0 1 3τ− 3 −τ6 − τ4 − τ2 − 1
11 106 -1 0 −7τ + 1 τ6 − τ4 − τ2 − 1
11 121 0 0 11 −τ8 − τ6 − τ4 − τ2 − 1

13 22 0 1 3τ− 1 −τ6 − τ4 − τ2 + 1
13 109 -1 1 −4τ− 11 τ8 + τ6 − τ4 − τ2 + 1

15 16 0 1 3τ + 1 τ4 − 1
15 77 -1 1 −4τ− 9 −τ7 + τ4 − 1

17 18 0 1 3τ + 3 τ4 + 1
17 53 -1 1 −4τ− 7 −τ7 + τ4 + 1

19 28 0 1 3τ + 5 τ7 − τ4 + τ2 − 1
19 37 -1 1 −4τ− 5 −τ4 + τ2 − 1

21 29 -1 1 −4τ− 3 −τ4 + τ2 + 1
21 46 0 1 3τ + 7 τ7 − τ4 + τ2 + 1

23 29 -1 1 −4τ− 1 τ6 − τ3 − 1
23 72 0 1 3τ + 9 −τ8 − τ6 − τ3 − 1
23 127 0 2 6τ− 5 −τ6 − τ3 − 1

25 37 -1 1 −4τ + 1 τ6 − τ3 + 1
25 99 0 2 6τ− 3 −τ6 − τ3 + 1
25 106 0 1 3τ + 11 −τ8 − τ6 − τ3 + 1

27 53 -1 1 −4τ + 3 τ6 − τ2 − 1
27 79 0 2 6τ− 1 −τ6 − τ2 − 1
27 112 -1 2 −τ− 11 τ8 + τ6 − τ2 − 1

29 67 0 2 6τ + 1 −τ6 − τ2 + 1
29 74 -1 2 −τ− 9 τ8 + τ6 − τ2 + 1
29 77 -1 1 −4τ + 5 τ6 − τ2 + 1

31 44 -1 2 −τ− 7 τ5 − 1
31 63 0 2 6τ + 3 τ7 + τ5 − 1
31 109 -1 1 −4τ + 7 −τ8 + τ5 − 1

33 22 -1 2 −τ− 5 τ5 + 1
33 67 0 2 6τ + 5 τ7 + τ5 + 1

Continued on next page

67

Table A:.5 E0: w = 7, N(τw) = 128, τw(reduced) = 7τ + 10 (continued from previous page)

u norm q0 q1 u mod τw αu

35 8 -1 2 −τ− 3 τ2 − 1
35 79 0 2 6τ + 7 τ7 + τ2 − 1

37 2 -1 2 −τ− 1 τ2 + 1
37 99 0 2 6τ + 9 τ7 + τ2 + 1

39 4 -1 2 −τ + 1 τ3 − 1
39 127 0 2 6τ + 11 τ7 + τ3 − 1

41 14 -1 2 −τ + 3 τ3 + 1
41 121 -2 2 −8τ− 7 −τ7 + τ3 + 1

43 32 -1 2 −τ + 5 τ6 + τ4 − τ2 − 1
43 107 -1 3 2τ− 9 τ8 + τ6 + τ4 − τ2 − 1
43 113 -2 2 −8τ− 5 τ9 − τ6 + τ4 − τ2 − 1

45 58 -1 2 −τ + 7 τ6 + τ4 − τ2 + 1
45 71 -1 3 2τ− 7 τ8 + τ6 + τ4 − τ2 + 1
45 113 -2 2 −8τ− 3 τ9 − τ6 + τ4 − τ2 + 1

47 43 -1 3 2τ− 5 −τ6 − τ4 − 1
47 92 -1 2 −τ + 9 −τ8 − τ6 − τ4 − 1
47 121 -2 2 −8τ− 1 τ6 − τ4 − 1

49 23 -1 3 2τ− 3 −τ6 − τ4 + 1

51 11 -1 3 2τ− 1 τ4 + τ2 − 1
51 116 -2 3 −5τ− 11 −τ7 + τ4 + τ2 − 1

53 7 -1 3 2τ + 1 τ4 + τ2 + 1
53 86 -2 3 −5τ− 9 −τ7 + τ4 + τ2 + 1

55 11 -1 3 2τ + 3 −τ5 − τ3 − 1
55 64 -2 3 −5τ− 7 −τ7 − τ5 − τ3 − 1

57 23 -1 3 2τ + 5 −τ5 − τ3 + 1
57 50 -2 3 −5τ− 5 −τ7 − τ5 − τ3 + 1

59 43 -1 3 2τ + 7 −τ5 − τ2 − 1
59 44 -2 3 −5τ− 3 −τ7 − τ5 − τ2 − 1

61 46 -2 3 −5τ− 1 −τ7 − τ5 − τ2 + 1
61 71 -1 3 2τ + 9 −τ5 − τ2 + 1
61 100 -1 4 5τ− 5 τ8 − τ5 − τ2 + 1

63 56 -2 3 −5τ + 1 τ6 − 1
63 74 -1 4 5τ− 3 −τ6 − 1
63 107 -1 3 2τ + 11 −τ8 − τ6 − 1

68

Table A:.6: E0: w = 8, N(τw) = 256, τw(reduced) = 3τ− 14

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 226 1 0 3τ− 13 τ8 + 1

3 9 0 0 3 −τ5 + τ2 − 1
3 172 1 0 3τ− 11 τ8 − τ5 + τ2 − 1

5 25 0 0 5 −τ5 + τ2 + 1
5 126 1 0 3τ− 9 τ8 − τ5 + τ2 + 1

7 49 0 0 7 −τ5 + τ3 − 1
7 88 1 0 3τ− 7 τ8 − τ5 + τ3 − 1

9 58 1 0 3τ− 5 τ8 − τ5 + τ3 + 1
9 81 0 0 9 −τ5 + τ3 + 1

11 36 1 0 3τ− 3 −τ6 − τ4 − τ2 − 1
11 121 0 0 11 −τ8 − τ6 − τ4 − τ2 − 1

13 22 1 0 3τ− 1 −τ6 − τ4 − τ2 + 1
13 169 0 0 13 −τ8 − τ6 − τ4 − τ2 + 1

15 16 1 0 3τ + 1 τ4 − 1
15 225 0 0 15 −τ8 + τ4 − 1

17 18 1 0 3τ + 3 τ4 + 1

19 28 1 0 3τ + 5 τ7 − τ4 + τ2 − 1
19 207 2 0 6τ− 9 −τ9 − τ7 − τ4 + τ2 − 1

21 46 1 0 3τ + 7 τ7 − τ4 + τ2 + 1
21 163 2 0 6τ− 7 −τ9 − τ7 − τ4 + τ2 + 1

23 72 1 0 3τ + 9 −τ8 − τ6 − τ3 − 1
23 127 2 0 6τ− 5 −τ6 − τ3 − 1
23 242 2 1 −11τ− 11 τ9 − τ6 − τ3 − 1

25 99 2 0 6τ− 3 −τ6 − τ3 + 1
25 106 1 0 3τ + 11 −τ8 − τ6 − τ3 + 1
25 224 2 1 −11τ− 9 τ9 − τ6 − τ3 + 1

27 79 2 0 6τ− 1 −τ6 − τ2 − 1
27 148 1 0 3τ + 13 −τ8 − τ6 − τ2 − 1
27 214 2 1 −11τ− 7 τ9 − τ6 − τ2 − 1

29 67 2 0 6τ + 1 −τ6 − τ2 + 1
29 198 1 0 3τ + 15 −τ8 − τ6 − τ2 + 1
29 212 2 1 −11τ− 5 τ9 − τ6 − τ2 + 1

31 63 2 0 6τ + 3 τ7 + τ5 − 1
31 218 2 1 −11τ− 3 τ9 + τ7 + τ5 − 1

33 67 2 0 6τ + 5 τ7 + τ5 + 1
33 232 2 1 −11τ− 1 τ9 + τ7 + τ5 + 1
33 233 3 1 −8τ− 15 −τ7 + τ5 + 1

35 79 2 0 6τ + 7 τ7 + τ2 − 1
35 193 3 1 −8τ− 13 −τ7 + τ2 − 1
35 254 2 1 −11τ + 1 τ9 + τ7 + τ2 − 1

Continued on next page

69

Table A:.6 E0: w = 8, N(τw) = 256, τw(reduced) = 3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

37 99 2 0 6τ + 9 τ7 + τ2 + 1
37 161 3 1 −8τ− 11 −τ7 + τ2 + 1
37 232 3 0 9τ− 5 −τ9 − τ7 + τ2 + 1

39 127 2 0 6τ + 11 τ7 + τ3 − 1
39 137 3 1 −8τ− 9 −τ7 + τ3 − 1
39 198 3 0 9τ− 3 −τ9 − τ7 + τ3 − 1

41 121 3 1 −8τ− 7 −τ7 + τ3 + 1
41 163 2 0 6τ + 13 τ7 + τ3 + 1
41 172 3 0 9τ− 1 −τ9 − τ7 + τ3 + 1

43 113 3 1 −8τ− 5 τ9 − τ6 + τ4 − τ2 − 1
43 154 3 0 9τ + 1 −τ6 + τ4 − τ2 − 1
43 207 2 0 6τ + 15 −τ8 − τ6 + τ4 − τ2 − 1

45 113 3 1 −8τ− 3 τ9 − τ6 + τ4 − τ2 + 1
45 144 3 0 9τ + 3 −τ6 + τ4 − τ2 + 1
45 254 4 1 −5τ− 17 −τ10 − τ8 − τ6 + τ4 − τ2 + 1

47 121 3 1 −8τ− 1 τ6 − τ4 − 1
47 142 3 0 9τ + 5 −τ9 + τ6 − τ4 − 1
47 200 4 1 −5τ− 15 τ8 + τ6 − τ4 − 1

49 137 3 1 −8τ + 1 τ6 − τ4 + 1
49 148 3 0 9τ + 7 −τ9 + τ6 − τ4 + 1
49 154 4 1 −5τ− 13 τ8 + τ6 − τ4 + 1

51 116 4 1 −5τ− 11 −τ7 + τ4 + τ2 − 1
51 161 3 1 −8τ + 3 τ9 + τ7 + τ4 + τ2 − 1
51 162 3 0 9τ + 9 τ7 + τ4 + τ2 − 1

53 86 4 1 −5τ− 9 −τ7 + τ4 + τ2 + 1
53 184 3 0 9τ + 11 τ7 + τ4 + τ2 + 1
53 193 3 1 −8τ + 5 τ9 + τ7 + τ4 + τ2 + 1

55 64 4 1 −5τ− 7 −τ7 − τ5 − τ3 − 1
55 214 3 0 9τ + 13 τ7 − τ5 − τ3 − 1
55 233 3 1 −8τ + 7 τ9 + τ7 − τ5 − τ3 − 1

57 50 4 1 −5τ− 5 −τ7 − τ5 − τ3 + 1
57 252 3 0 9τ + 15 τ7 − τ5 − τ3 + 1

59 44 4 1 −5τ− 3 −τ7 − τ5 − τ2 − 1

61 46 4 1 −5τ− 1 −τ7 − τ5 − τ2 + 1
61 203 5 1 −2τ− 15 −τ10 + τ7 − τ5 − τ2 + 1
61 253 4 0 12τ + 5 −τ9 − τ7 − τ5 − τ2 + 1

63 56 4 1 −5τ + 1 τ6 − 1
63 151 5 1 −2τ− 13 τ8 + τ6 − 1
63 253 4 0 12τ + 7 −τ9 + τ6 − 1

65 74 4 1 −5τ + 3 τ6 + 1
65 107 5 1 −2τ− 11 τ8 + τ6 + 1

67 71 5 1 −2τ− 9 τ5 + τ2 − 1
67 100 4 1 −5τ + 5 −τ8 + τ5 + τ2 − 1

69 43 5 1 −2τ− 7 τ5 + τ2 + 1

Continued on next page

70

Table A:.6 E0: w = 8, N(τw) = 256, τw(reduced) = 3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

69 134 4 1 −5τ + 7 −τ8 + τ5 + τ2 + 1

71 23 5 1 −2τ− 5 τ5 + τ3 − 1
71 176 4 1 −5τ + 9 −τ8 + τ5 + τ3 − 1

73 11 5 1 −2τ− 3 τ5 + τ3 + 1
73 226 4 1 −5τ + 11 −τ8 + τ5 + τ3 + 1

75 7 5 1 −2τ− 1 −τ4 − τ2 − 1
75 242 6 1 τ− 15 τ8 − τ4 − τ2 − 1

77 11 5 1 −2τ + 1 −τ4 − τ2 + 1
77 184 6 1 τ− 13 τ8 − τ4 − τ2 + 1

79 23 5 1 −2τ + 3 τ6 + τ4 − 1
79 134 6 1 τ− 11 τ8 + τ6 + τ4 − 1

81 43 5 1 −2τ + 5 τ6 + τ4 + 1
81 92 6 1 τ− 9 τ8 + τ6 + τ4 + 1

83 58 6 1 τ− 7 −τ6 − τ4 + τ2 − 1
83 71 5 1 −2τ + 7 −τ8 − τ6 − τ4 + τ2 − 1

85 32 6 1 τ− 5 −τ6 − τ4 + τ2 + 1
85 107 5 1 −2τ + 9 −τ8 − τ6 − τ4 + τ2 + 1

87 14 6 1 τ− 3 −τ3 − 1
87 151 5 1 −2τ + 11 −τ8 − τ3 − 1

89 4 6 1 τ− 1 −τ3 + 1
89 203 5 1 −2τ + 13 −τ8 − τ3 + 1

91 2 6 1 τ + 1 −τ2 − 1
91 253 7 1 4τ− 13 τ8 − τ2 − 1

93 8 6 1 τ + 3 −τ2 + 1
93 197 7 1 4τ− 11 τ8 − τ2 + 1

95 22 6 1 τ + 5 −τ5 − 1
95 149 7 1 4τ− 9 τ8 − τ5 − 1

97 44 6 1 τ + 7 −τ5 + 1
97 109 7 1 4τ− 7 τ8 − τ5 + 1

99 74 6 1 τ + 9 −τ8 − τ6 + τ2 − 1
99 77 7 1 4τ− 5 −τ6 + τ2 − 1

101 53 7 1 4τ− 3 −τ6 + τ2 + 1
101 112 6 1 τ + 11 −τ8 − τ6 + τ2 + 1

103 37 7 1 4τ− 1 −τ6 + τ3 − 1
103 158 6 1 τ + 13 −τ8 − τ6 + τ3 − 1

105 29 7 1 4τ + 1 −τ6 + τ3 + 1
105 212 6 1 τ + 15 −τ8 − τ6 + τ3 + 1

107 29 7 1 4τ + 3 τ4 − τ2 − 1

109 37 7 1 4τ + 5 τ4 − τ2 + 1
109 242 8 1 7τ− 9 τ8 + τ4 − τ2 + 1

Continued on next page

71

Table A:.6 E0: w = 8, N(τw) = 256, τw(reduced) = 3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

111 53 7 1 4τ + 7 τ7 − τ4 − 1
111 196 8 1 7τ− 7 −τ9 − τ7 − τ4 − 1
111 239 8 2 −10τ− 13 −τ7 − τ4 − 1

113 77 7 1 4τ + 9 τ7 − τ4 + 1
113 158 8 1 7τ− 5 −τ9 − τ7 − τ4 + 1
113 211 8 2 −10τ− 11 −τ7 − τ4 + 1

115 109 7 1 4τ + 11 −τ8 − τ6 + τ4 + τ2 − 1
115 128 8 1 7τ− 3 −τ6 + τ4 + τ2 − 1
115 191 8 2 −10τ− 9 τ9 − τ6 + τ4 + τ2 − 1

117 106 8 1 7τ− 1 −τ6 + τ4 + τ2 + 1
117 149 7 1 4τ + 13 −τ8 − τ6 + τ4 + τ2 + 1
117 179 8 2 −10τ− 7 τ9 − τ6 + τ4 + τ2 + 1

119 92 8 1 7τ + 1 τ7 + τ5 − τ3 − 1
119 175 8 2 −10τ− 5 τ9 + τ7 + τ5 − τ3 − 1
119 197 7 1 4τ + 15 τ10 − τ7 + τ5 − τ3 − 1

121 86 8 1 7τ + 3 τ7 + τ5 − τ3 + 1
121 179 8 2 −10τ− 3 τ9 + τ7 + τ5 − τ3 + 1
121 253 7 1 4τ + 17 τ10 − τ7 + τ5 − τ3 + 1

123 88 8 1 7τ + 5 τ7 + τ5 − τ2 − 1
123 191 8 2 −10τ− 1 τ9 + τ7 + τ5 − τ2 − 1
123 218 9 2 −7τ− 15 −τ7 + τ5 − τ2 − 1

125 98 8 1 7τ + 7 τ7 + τ5 − τ2 + 1
125 176 9 2 −7τ− 13 −τ7 + τ5 − τ2 + 1
125 211 8 2 −10τ + 1 τ9 + τ7 + τ5 − τ2 + 1

127 116 8 1 7τ + 9 τ7 − 1
127 142 9 2 −7τ− 11 −τ7 − 1
127 239 8 2 −10τ + 3 τ9 + τ7 − 1

72

Appendix B:

a = 1 Width-w τ-NAF Tables

This appendix lists the complete τ -NAF table for window sizes 3 to 8 for E1.

Table B:.1: E1: w = 3, N(τw) = 8, τw(reduced) = −τ− 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 4 1 0 −τ− 1 τ3 + 1

3 2 1 0 −τ + 1 −τ2 − 1
3 7 1 -1 2τ− 1 −τ4 − τ2 − 1

Table B:.2: E1: w = 4, N(τw) = 16, τw(reduced) = −3τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1

3 8 0 -1 τ− 3 τ2 − 1
3 9 0 0 3 τ5 + τ2 − 1
3 11 1 -1 −2τ− 1 τ4 + τ2 − 1

5 2 0 -1 τ− 1 τ2 + 1
5 7 1 -1 −2τ + 1 τ4 + τ2 + 1

7 4 0 -1 τ + 1 −τ3 − 1
7 11 1 -1 −2τ + 3 τ5 + τ3 − 1
7 14 1 -2 −τ− 3 τ3 − 1

Table B:.3: E1: w = 5, N(τw) = 32, τw(reduced) = −τ + 6

u norm q0 q1 u mod τw αu

1 1 0 0 1 1

Continued on next page

73

Table B:.3 E1: w = 5, N(τw) = 32, τw(reduced) = −τ + 6 (continued from previous page)

u norm q0 q1 u mod τw αu

1 22 -1 0 τ− 5 −τ5 + 1

3 8 -1 0 τ− 3 τ2 − 1
3 9 0 0 3 τ5 + τ2 − 1

5 2 -1 0 τ− 1 τ2 + 1
5 25 0 0 5 τ5 + τ2 + 1

7 4 -1 0 τ + 1 −τ3 − 1
7 23 -2 0 2τ− 5 −τ5 − τ3 − 1

9 11 -2 0 2τ− 3 −τ5 − τ3 + 1
9 14 -1 0 τ + 3 −τ3 + 1
9 29 -1 -1 −4τ + 1 −τ6 − τ3 + 1

11 7 -2 0 2τ− 1 −τ4 − τ2 − 1
11 29 -1 -1 −4τ + 3 τ4 − τ2 − 1

13 11 -2 0 2τ + 1 −τ4 − τ2 + 1
13 22 -2 -1 −3τ− 1 −τ6 − τ4 − τ2 + 1
13 28 -3 0 3τ− 5 τ7 + τ4 − τ2 + 1

15 16 -2 -1 −3τ + 1 τ4 − 1
15 18 -3 0 3τ− 3 −τ4 − 1
15 23 -2 0 2τ + 3 τ6 + τ4 − 1

74

Table B:.4: E1: w = 6, N(τw) = 64, τw(reduced) = 5τ + 2

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 56 -1 0 −5τ− 1 −τ6 + 1

3 9 0 0 3 τ5 + τ2 − 1
3 46 -1 0 −5τ + 1 −τ7 − τ5 + τ2 − 1

5 25 0 0 5 τ5 + τ2 + 1
5 43 -1 1 2τ− 7 −τ5 + τ2 + 1
5 44 -1 0 −5τ + 3 −τ7 − τ5 + τ2 + 1

7 23 -1 1 2τ− 5 −τ5 − τ3 − 1
7 49 0 0 7 τ5 − τ3 − 1
7 50 -1 0 −5τ + 5 −τ7 − τ5 − τ3 − 1

9 11 -1 1 2τ− 3 −τ5 − τ3 + 1
9 58 -2 1 −3τ− 5 τ8 + τ5 − τ3 + 1

11 7 -1 1 2τ− 1 −τ4 − τ2 − 1
11 36 -2 1 −3τ− 3 −τ6 − τ4 − τ2 − 1

13 11 -1 1 2τ + 1 −τ4 − τ2 + 1
13 22 -2 1 −3τ− 1 −τ6 − τ4 − τ2 + 1

15 16 -2 1 −3τ + 1 τ4 − 1
15 23 -1 1 2τ + 3 τ6 + τ4 − 1

17 18 -2 1 −3τ + 3 τ4 + 1
17 43 -1 1 2τ + 5 τ6 + τ4 + 1
17 53 -2 2 4τ− 7 τ7 + τ4 + 1

19 28 -2 1 −3τ + 5 −τ7 − τ4 + τ2 − 1
19 37 -2 2 4τ− 5 −τ4 + τ2 − 1
19 58 -3 2 −τ− 7 −τ6 − τ4 + τ2 − 1

21 29 -2 2 4τ− 3 −τ4 + τ2 + 1
21 32 -3 2 −τ− 5 −τ6 − τ4 + τ2 + 1
21 46 -2 1 −3τ + 7 −τ7 − τ4 + τ2 + 1

23 14 -3 2 −τ− 3 τ3 − 1
23 29 -2 2 4τ− 1 τ6 + τ3 − 1

25 4 -3 2 −τ− 1 τ3 + 1
25 37 -2 2 4τ + 1 τ6 + τ3 + 1

27 2 -3 2 −τ + 1 −τ2 − 1
27 53 -2 2 4τ + 3 τ6 − τ2 − 1

29 8 -3 2 −τ + 3 −τ2 + 1

31 22 -3 2 −τ + 5 τ5 − 1
31 44 -4 3 τ− 7 −τ5 − 1
31 63 -4 2 −6τ + 3 −τ7 − τ5 − 1

75

Table B:.5: E1: w = 7, N(τw) = 128, τw(reduced) = 7τ− 10

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 116 1 0 7τ− 9 τ7 + 1

3 9 0 0 3 τ5 + τ2 − 1
3 98 1 0 7τ− 7 τ7 + τ5 + τ2 − 1

5 25 0 0 5 τ5 + τ2 + 1
5 88 1 0 7τ− 5 τ7 + τ5 + τ2 + 1
5 126 0 1 −3τ− 9 τ8 + τ5 + τ2 + 1

7 49 0 0 7 τ5 − τ3 − 1
7 86 1 0 7τ− 3 τ7 + τ5 − τ3 − 1
7 88 0 1 −3τ− 7 τ8 + τ5 − τ3 − 1

9 58 0 1 −3τ− 5 τ8 + τ5 − τ3 + 1
9 81 0 0 9 τ5 − τ3 + 1
9 92 1 0 7τ− 1 τ7 + τ5 − τ3 + 1

11 36 0 1 −3τ− 3 −τ6 − τ4 − τ2 − 1
11 106 1 0 7τ + 1 τ6 − τ4 − τ2 − 1
11 121 0 0 11 −τ8 − τ6 − τ4 − τ2 − 1

13 22 0 1 −3τ− 1 −τ6 − τ4 − τ2 + 1
13 109 1 1 4τ− 11 τ8 + τ6 − τ4 − τ2 + 1

15 16 0 1 −3τ + 1 τ4 − 1
15 77 1 1 4τ− 9 τ7 + τ4 − 1

17 18 0 1 −3τ + 3 τ4 + 1
17 53 1 1 4τ− 7 τ7 + τ4 + 1

19 28 0 1 −3τ + 5 −τ7 − τ4 + τ2 − 1
19 37 1 1 4τ− 5 −τ4 + τ2 − 1

21 29 1 1 4τ− 3 −τ4 + τ2 + 1
21 46 0 1 −3τ + 7 −τ7 − τ4 + τ2 + 1

23 29 1 1 4τ− 1 τ6 + τ3 − 1
23 72 0 1 −3τ + 9 −τ8 − τ6 + τ3 − 1
23 127 0 2 −6τ− 5 −τ6 + τ3 − 1

25 37 1 1 4τ + 1 τ6 + τ3 + 1
25 99 0 2 −6τ− 3 −τ6 + τ3 + 1
25 106 0 1 −3τ + 11 −τ8 − τ6 + τ3 + 1

27 53 1 1 4τ + 3 τ6 − τ2 − 1
27 79 0 2 −6τ− 1 −τ6 − τ2 − 1
27 112 1 2 τ− 11 τ8 + τ6 − τ2 − 1

29 67 0 2 −6τ + 1 −τ6 − τ2 + 1
29 74 1 2 τ− 9 τ8 + τ6 − τ2 + 1
29 77 1 1 4τ + 5 τ6 − τ2 + 1

31 44 1 2 τ− 7 −τ5 − 1
31 63 0 2 −6τ + 3 −τ7 − τ5 − 1
31 109 1 1 4τ + 7 −τ8 − τ5 − 1

33 22 1 2 τ− 5 −τ5 + 1
33 67 0 2 −6τ + 5 −τ7 − τ5 + 1

Continued on next page

76

Table B:.5 E1: w = 7, N(τw) = 128, τw(reduced) = 7τ− 10 (continued from previous page)

u norm q0 q1 u mod τw αu

35 8 1 2 τ− 3 τ2 − 1
35 79 0 2 −6τ + 7 −τ7 + τ2 − 1

37 2 1 2 τ− 1 τ2 + 1
37 99 0 2 −6τ + 9 −τ7 + τ2 + 1

39 4 1 2 τ + 1 −τ3 − 1
39 127 0 2 −6τ + 11 −τ7 − τ3 − 1

41 14 1 2 τ + 3 −τ3 + 1
41 121 2 2 8τ− 7 τ7 − τ3 + 1

43 32 1 2 τ + 5 τ6 + τ4 − τ2 − 1
43 107 1 3 −2τ− 9 τ8 + τ6 + τ4 − τ2 − 1
43 113 2 2 8τ− 5 −τ9 − τ6 + τ4 − τ2 − 1

45 58 1 2 τ + 7 τ6 + τ4 − τ2 + 1
45 71 1 3 −2τ− 7 τ8 + τ6 + τ4 − τ2 + 1
45 113 2 2 8τ− 3 −τ9 − τ6 + τ4 − τ2 + 1

47 43 1 3 −2τ− 5 −τ6 − τ4 − 1
47 92 1 2 τ + 9 −τ8 − τ6 − τ4 − 1
47 121 2 2 8τ− 1 τ6 − τ4 − 1

49 23 1 3 −2τ− 3 −τ6 − τ4 + 1

51 11 1 3 −2τ− 1 τ4 + τ2 − 1
51 116 2 3 5τ− 11 τ7 + τ4 + τ2 − 1

53 7 1 3 −2τ + 1 τ4 + τ2 + 1
53 86 2 3 5τ− 9 τ7 + τ4 + τ2 + 1

55 11 1 3 −2τ + 3 τ5 + τ3 − 1
55 64 2 3 5τ− 7 τ7 + τ5 + τ3 − 1

57 23 1 3 −2τ + 5 τ5 + τ3 + 1
57 50 2 3 5τ− 5 τ7 + τ5 + τ3 + 1

59 43 1 3 −2τ + 7 τ5 − τ2 − 1
59 44 2 3 5τ− 3 τ7 + τ5 − τ2 − 1

61 46 2 3 5τ− 1 τ7 + τ5 − τ2 + 1
61 71 1 3 −2τ + 9 τ5 − τ2 + 1
61 100 1 4 −5τ− 5 τ8 + τ5 − τ2 + 1

63 56 2 3 5τ + 1 τ6 − 1
63 74 1 4 −5τ− 3 −τ6 − 1
63 107 1 3 −2τ + 11 −τ8 − τ6 − 1

77

Table B:.6: E1: w = 8, N(τw) = 256, τw(reduced) = −3τ− 14

u norm q0 q1 u mod τw αu

1 1 0 0 1 1
1 226 1 0 −3τ− 13 τ8 + 1

3 9 0 0 3 τ5 + τ2 − 1
3 172 1 0 −3τ− 11 τ8 + τ5 + τ2 − 1

5 25 0 0 5 τ5 + τ2 + 1
5 126 1 0 −3τ− 9 τ8 + τ5 + τ2 + 1

7 49 0 0 7 τ5 − τ3 − 1
7 88 1 0 −3τ− 7 τ8 + τ5 − τ3 − 1

9 58 1 0 −3τ− 5 τ8 + τ5 − τ3 + 1
9 81 0 0 9 τ5 − τ3 + 1

11 36 1 0 −3τ− 3 −τ6 − τ4 − τ2 − 1
11 121 0 0 11 −τ8 − τ6 − τ4 − τ2 − 1

13 22 1 0 −3τ− 1 −τ6 − τ4 − τ2 + 1
13 169 0 0 13 −τ8 − τ6 − τ4 − τ2 + 1

15 16 1 0 −3τ + 1 τ4 − 1
15 225 0 0 15 −τ8 + τ4 − 1

17 18 1 0 −3τ + 3 τ4 + 1

19 28 1 0 −3τ + 5 −τ7 − τ4 + τ2 − 1
19 207 2 0 −6τ− 9 τ9 + τ7 − τ4 + τ2 − 1

21 46 1 0 −3τ + 7 −τ7 − τ4 + τ2 + 1
21 163 2 0 −6τ− 7 τ9 + τ7 − τ4 + τ2 + 1

23 72 1 0 −3τ + 9 −τ8 − τ6 + τ3 − 1
23 127 2 0 −6τ− 5 −τ6 + τ3 − 1
23 242 2 -1 11τ− 11 −τ9 − τ6 + τ3 − 1

25 99 2 0 −6τ− 3 −τ6 + τ3 + 1
25 106 1 0 −3τ + 11 −τ8 − τ6 + τ3 + 1
25 224 2 -1 11τ− 9 −τ9 − τ6 + τ3 + 1

27 79 2 0 −6τ− 1 −τ6 − τ2 − 1
27 148 1 0 −3τ + 13 −τ8 − τ6 − τ2 − 1
27 214 2 -1 11τ− 7 −τ9 − τ6 − τ2 − 1

29 67 2 0 −6τ + 1 −τ6 − τ2 + 1
29 198 1 0 −3τ + 15 −τ8 − τ6 − τ2 + 1
29 212 2 -1 11τ− 5 −τ9 − τ6 − τ2 + 1

31 63 2 0 −6τ + 3 −τ7 − τ5 − 1
31 218 2 -1 11τ− 3 −τ9 − τ7 − τ5 − 1

33 67 2 0 −6τ + 5 −τ7 − τ5 + 1
33 232 2 -1 11τ− 1 −τ9 − τ7 − τ5 + 1
33 233 3 -1 8τ− 15 τ7 − τ5 + 1

35 79 2 0 −6τ + 7 −τ7 + τ2 − 1
35 193 3 -1 8τ− 13 τ7 + τ2 − 1
35 254 2 -1 11τ + 1 −τ9 − τ7 + τ2 − 1

Continued on next page

78

Table B:.6 E1: w = 8, N(τw) = 256, τw(reduced) = −3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

37 99 2 0 −6τ + 9 −τ7 + τ2 + 1
37 161 3 -1 8τ− 11 τ7 + τ2 + 1
37 232 3 0 −9τ− 5 τ9 + τ7 + τ2 + 1

39 127 2 0 −6τ + 11 −τ7 − τ3 − 1
39 137 3 -1 8τ− 9 τ7 − τ3 − 1
39 198 3 0 −9τ− 3 τ9 + τ7 − τ3 − 1

41 121 3 -1 8τ− 7 τ7 − τ3 + 1
41 163 2 0 −6τ + 13 −τ7 − τ3 + 1
41 172 3 0 −9τ− 1 τ9 + τ7 − τ3 + 1

43 113 3 -1 8τ− 5 −τ9 − τ6 + τ4 − τ2 − 1
43 154 3 0 −9τ + 1 −τ6 + τ4 − τ2 − 1
43 207 2 0 −6τ + 15 −τ8 − τ6 + τ4 − τ2 − 1

45 113 3 -1 8τ− 3 −τ9 − τ6 + τ4 − τ2 + 1
45 144 3 0 −9τ + 3 −τ6 + τ4 − τ2 + 1
45 254 4 -1 5τ− 17 −τ10 − τ8 − τ6 + τ4 − τ2 + 1

47 121 3 -1 8τ− 1 τ6 − τ4 − 1
47 142 3 0 −9τ + 5 τ9 + τ6 − τ4 − 1
47 200 4 -1 5τ− 15 τ8 + τ6 − τ4 − 1

49 137 3 -1 8τ + 1 τ6 − τ4 + 1
49 148 3 0 −9τ + 7 τ9 + τ6 − τ4 + 1
49 154 4 -1 5τ− 13 τ8 + τ6 − τ4 + 1

51 116 4 -1 5τ− 11 τ7 + τ4 + τ2 − 1
51 161 3 -1 8τ + 3 −τ9 − τ7 + τ4 + τ2 − 1
51 162 3 0 −9τ + 9 −τ7 + τ4 + τ2 − 1

53 86 4 -1 5τ− 9 τ7 + τ4 + τ2 + 1
53 184 3 0 −9τ + 11 −τ7 + τ4 + τ2 + 1
53 193 3 -1 8τ + 5 −τ9 − τ7 + τ4 + τ2 + 1

55 64 4 -1 5τ− 7 τ7 + τ5 + τ3 − 1
55 214 3 0 −9τ + 13 −τ7 + τ5 + τ3 − 1
55 233 3 -1 8τ + 7 −τ9 − τ7 + τ5 + τ3 − 1

57 50 4 -1 5τ− 5 τ7 + τ5 + τ3 + 1
57 252 3 0 −9τ + 15 −τ7 + τ5 + τ3 + 1

59 44 4 -1 5τ− 3 τ7 + τ5 − τ2 − 1

61 46 4 -1 5τ− 1 τ7 + τ5 − τ2 + 1
61 203 5 -1 2τ− 15 −τ10 − τ7 + τ5 − τ2 + 1
61 253 4 0 −12τ + 5 τ9 + τ7 + τ5 − τ2 + 1

63 56 4 -1 5τ + 1 τ6 − 1
63 151 5 -1 2τ− 13 τ8 + τ6 − 1
63 253 4 0 −12τ + 7 τ9 + τ6 − 1

65 74 4 -1 5τ + 3 τ6 + 1
65 107 5 -1 2τ− 11 τ8 + τ6 + 1

67 71 5 -1 2τ− 9 −τ5 + τ2 − 1
67 100 4 -1 5τ + 5 −τ8 − τ5 + τ2 − 1

69 43 5 -1 2τ− 7 −τ5 + τ2 + 1

Continued on next page

79

Table B:.6 E1: w = 8, N(τw) = 256, τw(reduced) = −3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

69 134 4 -1 5τ + 7 −τ8 − τ5 + τ2 + 1

71 23 5 -1 2τ− 5 −τ5 − τ3 − 1
71 176 4 -1 5τ + 9 −τ8 − τ5 − τ3 − 1

73 11 5 -1 2τ− 3 −τ5 − τ3 + 1
73 226 4 -1 5τ + 11 −τ8 − τ5 − τ3 + 1

75 7 5 -1 2τ− 1 −τ4 − τ2 − 1
75 242 6 -1 −τ− 15 τ8 − τ4 − τ2 − 1

77 11 5 -1 2τ + 1 −τ4 − τ2 + 1
77 184 6 -1 −τ− 13 τ8 − τ4 − τ2 + 1

79 23 5 -1 2τ + 3 τ6 + τ4 − 1
79 134 6 -1 −τ− 11 τ8 + τ6 + τ4 − 1

81 43 5 -1 2τ + 5 τ6 + τ4 + 1
81 92 6 -1 −τ− 9 τ8 + τ6 + τ4 + 1

83 58 6 -1 −τ− 7 −τ6 − τ4 + τ2 − 1
83 71 5 -1 2τ + 7 −τ8 − τ6 − τ4 + τ2 − 1

85 32 6 -1 −τ− 5 −τ6 − τ4 + τ2 + 1
85 107 5 -1 2τ + 9 −τ8 − τ6 − τ4 + τ2 + 1

87 14 6 -1 −τ− 3 τ3 − 1
87 151 5 -1 2τ + 11 −τ8 + τ3 − 1

89 4 6 -1 −τ− 1 τ3 + 1
89 203 5 -1 2τ + 13 −τ8 + τ3 + 1

91 2 6 -1 −τ + 1 −τ2 − 1
91 253 7 -1 −4τ− 13 τ8 − τ2 − 1

93 8 6 -1 −τ + 3 −τ2 + 1
93 197 7 -1 −4τ− 11 τ8 − τ2 + 1

95 22 6 -1 −τ + 5 τ5 − 1
95 149 7 -1 −4τ− 9 τ8 + τ5 − 1

97 44 6 -1 −τ + 7 τ5 + 1
97 109 7 -1 −4τ− 7 τ8 + τ5 + 1

99 74 6 -1 −τ + 9 −τ8 − τ6 + τ2 − 1
99 77 7 -1 −4τ− 5 −τ6 + τ2 − 1

101 53 7 -1 −4τ− 3 −τ6 + τ2 + 1
101 112 6 -1 −τ + 11 −τ8 − τ6 + τ2 + 1

103 37 7 -1 −4τ− 1 −τ6 − τ3 − 1
103 158 6 -1 −τ + 13 −τ8 − τ6 − τ3 − 1

105 29 7 -1 −4τ + 1 −τ6 − τ3 + 1
105 212 6 -1 −τ + 15 −τ8 − τ6 − τ3 + 1

107 29 7 -1 −4τ + 3 τ4 − τ2 − 1

109 37 7 -1 −4τ + 5 τ4 − τ2 + 1
109 242 8 -1 −7τ− 9 τ8 + τ4 − τ2 + 1

Continued on next page

80

Table B:.6 E1: w = 8, N(τw) = 256, τw(reduced) = −3τ− 14 (continued from previous page)

u norm q0 q1 u mod τw αu

111 53 7 -1 −4τ + 7 −τ7 − τ4 − 1
111 196 8 -1 −7τ− 7 τ9 + τ7 − τ4 − 1
111 239 8 -2 10τ− 13 τ7 − τ4 − 1

113 77 7 -1 −4τ + 9 −τ7 − τ4 + 1
113 158 8 -1 −7τ− 5 τ9 + τ7 − τ4 + 1
113 211 8 -2 10τ− 11 τ7 − τ4 + 1

115 109 7 -1 −4τ + 11 −τ8 − τ6 + τ4 + τ2 − 1
115 128 8 -1 −7τ− 3 −τ6 + τ4 + τ2 − 1
115 191 8 -2 10τ− 9 −τ9 − τ6 + τ4 + τ2 − 1

117 106 8 -1 −7τ− 1 −τ6 + τ4 + τ2 + 1
117 149 7 -1 −4τ + 13 −τ8 − τ6 + τ4 + τ2 + 1
117 179 8 -2 10τ− 7 −τ9 − τ6 + τ4 + τ2 + 1

119 92 8 -1 −7τ + 1 −τ7 − τ5 + τ3 − 1
119 175 8 -2 10τ− 5 −τ9 − τ7 − τ5 + τ3 − 1
119 197 7 -1 −4τ + 15 τ10 + τ7 − τ5 + τ3 − 1

121 86 8 -1 −7τ + 3 −τ7 − τ5 + τ3 + 1
121 179 8 -2 10τ− 3 −τ9 − τ7 − τ5 + τ3 + 1
121 253 7 -1 −4τ + 17 τ10 + τ7 − τ5 + τ3 + 1

123 88 8 -1 −7τ + 5 −τ7 − τ5 − τ2 − 1
123 191 8 -2 10τ− 1 −τ9 − τ7 − τ5 − τ2 − 1
123 218 9 -2 7τ− 15 τ7 − τ5 − τ2 − 1

125 98 8 -1 −7τ + 7 −τ7 − τ5 − τ2 + 1
125 176 9 -2 7τ− 13 τ7 − τ5 − τ2 + 1
125 211 8 -2 10τ + 1 −τ9 − τ7 − τ5 − τ2 + 1

127 116 8 -1 −7τ + 9 −τ7 − 1
127 142 9 -2 7τ− 11 τ7 − 1
127 239 8 -2 10τ + 3 −τ9 − τ7 − 1

81

Appendix C:

Code Snippets

The following code snippets are examples of Java implementations for an O(n) squaring
algorithm along with Solina’s modulo δ reduction algorithm using his rounding technique
and our simplified reduction algorithm using our rounding technique. We also present
the Java code used to produce the tables which appear in appendices A: and B:.

The O(n) algorithm presented in 3.3.2.3 for arbitrary squares. This provides an efficient
method for computing arbitrary powers of squares in software as would be needed for
calculating τn, i.e. τ2, τ3, . . .

public int[] square(int[] a) {

int[] c = new int[2 * a.length];

int aBitMask = 0x1;

int cBitMask = 0x1;

int aIntPtr = 0, cIntPtr = 0;

for (int b = 0; b < a.length * 32; b++) {

// Careful here. In Java all integer values are signed so that when

// you shift the bitMask into the highest bit the number becomes

// negative e.g. 0x40 (positive) << 1 = 0x80 (now negative)

if ((a[aIntPtr] & aBitMask) != 0)

c[cIntPtr] ^= cBitMask;

aBitMask <<= 1;

if (aBitMask == 0) {

aIntPtr++;

aBitMask = 0x1;

}

cBitMask <<= 2;

if (cBitMask == 0) {

cIntPtr++;

cBitMask = 0x1;

}

}

return trim(c);

}

82

This is an implementation of Solina’s reduction algorithm along with his rounding tech-
nique as presented in [19]

/**

* Routine 74 - P. 225. Solinas’s reduction algorithm.

*

* @param n - the scalar multiple

* @return - the parameters r₀ and r₁ representing the

* reduction modulo delta.

* @throws Exception

*/

public BigInteger[] reductionModDelta(BigInteger n) throws Exception {

BigDecimal s0 = new BigDecimal(this.s0);

BigDecimal s1 = new BigDecimal(this.s1);

BigDecimal mu = new BigDecimal(this.mu);

BigDecimal d0 = s0.add(s1.multiply(mu));

BigDecimal nn = new BigDecimal(n);

BigDecimal rr = new BigDecimal(r);

BigDecimal lambda0 = s0.multiply(nn).divide(rr);

BigDecimal lambda1 = s1.multiply(nn).divide(rr);

BigDecimal[] q = round(lambda0, lambda1); //Solina’s rounding technique

BigDecimal r0 = nn.subtract(d0.multiply(q[0])).subtract(

BD_TWO.multiply(s1.multiply(q[1])));

BigDecimal r1 = s1.multiply(q[0]).subtract(s0.multiply(q[1]));

return new BigInteger[] { r0.toBigInteger(), r1.toBigInteger() };

}

/**

* This is an implementation of Solina’s rounding algorithm which

* picks the closest value of least norm.

*

* Input: lamda = l₀ + l₁ * tau

*

* @param q₀

* - the rounded integer value of l₀

* @param q₁

* - the rounded integer value of l₁

* @return q₀, q₁ specifying the complex

number q₀ + q₁ * tau = round(lamda)

* @throws Exception

*/

public BigDecimal[] round(BigDecimal lambda0, BigDecimal lambda1) throws Exception {

BigDecimal f0 = lambda0.add(new BigDecimal("0.5")).setScale(0, BigDecimal.ROUND_FLOOR);

BigDecimal f1 = lambda1.add(new BigDecimal("0.5")).setScale(0, BigDecimal.ROUND_FLOOR);

BigDecimal eta0 = lambda0.subtract(f0);

BigDecimal eta1 = lambda1.subtract(f1);

BigDecimal h0 = BigDecimal.ZERO;

BigDecimal h1 = BigDecimal.ZERO;

BigDecimal mu = new BigDecimal(this.mu);

BigDecimal eta = BD_TWO.multiply(eta0).add(mu.multiply(eta1));

if (eta.compareTo(BD_ONE) >= 0) {

BigDecimal temp = eta0.subtract(BD_THREE.multiply(mu).multiply(eta1));

if (temp.compareTo(BD_NEG_ONE) < 0)

h1 = mu;

else

h0 = BD_ONE;

} else {

BigDecimal temp = eta0.add(BD_FOUR.multiply(mu).multiply(eta1));

if (temp.compareTo(BD_TWO) >= 0)

h1 = mu;

83

}

if (eta.compareTo(BD_NEG_ONE) < 0) {

BigDecimal temp = eta0.subtract(BD_THREE.multiply(mu).multiply(eta1));

if (temp.compareTo(BD_ONE) >= 0)

h1 = mu.negate();

else

h0 = BD_NEG_ONE;

} else {

BigDecimal temp = eta0.add(BD_FOUR.multiply(mu).multiply(eta1));

if (temp.compareTo(BD_TWO.negate()) < 0)

h1 = mu.negate();

}

BigDecimal q0 = f0.add(h0);

BigDecimal q1 = f1.add(h1);

return new BigDecimal[] { q0, q1 };

}

This is an implementation of our reduction algorithm using our simplified rounding
technique as presented in section 3.3.2.1.

/**

* Reduction modulo delta using simplified rounding.

*

* @param n - the scalar multiple

* @return - the parameters r₀ and r₁ representing the

* reduction modulo delta.

* @throws Exception

*/

public BigInteger[] simplifiedReductionModDelta(BigInteger n)

throws Exception {

BigInteger d0 = s0.add(s1.multiply(mu));

// We simply truncate the decimal.

BigInteger q0 = s0.multiply(n).divide(r);

BigInteger q1 = s1.multiply(n).divide(r);

BigInteger r0 = n.subtract(d0.multiply(q0)).subtract(

TWO.multiply(s1.multiply(q1)));

BigInteger r1 = s1.multiply(q0).subtract(s0.multiply(q1));

return new BigInteger[] { r0, r1 };

}

84

This code snippet was used to produce all of the tables which appear in appendices A:
and B:. The snippet outputs its data in a latex format so that it can simply be cut/paste
into a latex document.

/**

* Computes alpha_u for a given "a". That is, E₀

* or E₁.

*

* Results are printed in latex format so that they can simply be copied into

* a latex document following the mantra "work smarter not harder".

*

* @param a

* - the a constant from the elliptic curve 0 for E₀ 1

* for E₁

* @param w

* - the window size

* @throws Exception

*/

public static void alphaAllWindows(int a) throws Exception {

int mu = a == 0 ? -1 : 1;

int table = 1;

for (int w = 3; w <= 8; w++) {

if (w >= 6)

System.out.println("\\pagebreak");

// returns the reduction of t^w = t0 + t1 * tau

//This uses the Lucas sequence t^k =

// U_kt - 2U_{k-1} for k >= 1

//where t is tau.

int[] t = tKReduction(w, mu);

int uUpper = (int) Math.pow(2, w - 1) - 1;

int tW = (int) Math.pow(2, w);

System.out.println("\\begin{center}");

System.out.println("\\begin{footnotesize}");

StringBuilder caption = new StringBuilder("$E_" + a + "$: $w = "

+ w + ", N(\\uptau^w) = " + tW + ", \\uptau^w (reduced) = ");

if (t[1] > 1)

caption.append(t[1]).append("\\uptau");

else if (t[1] == 1)

caption.append("\\uptau");

else if (t[1] == -1)

caption.append("-\\uptau");

else if (t[1] < -1)

caption.append(t[1]).append("\\uptau");

if (t[0] >= 1)

caption.append(" + ").append(t[0]);

else if (t[0] == -1)

caption.append("- 1");

else if (t[0] < -1)

caption.append(" - ").append(Math.abs(t[0]));

caption.append("$");

System.out.println("\\caption[$E_" + a + "$: Width $" + w

+ "\\tau$-NAF Table]{" + caption.toString()

+ "\\\\\\label{tab:E" + a + "table" + (table++)

+ "}}\\\\ % **NB**");

System.out.println("\\hline \\multicolumn{1}{|c|}{u} &"

+ "\\multicolumn{1}{c|}{norm} & \\multicolumn{1}{c|}{q_0}"

+ " & \\multicolumn{1}{c|}{q_1} & \\multicolumn{1}{c|}{$u ~mod ~\\uptau^w$}"

+ " & \\multicolumn{1}{c|}{$\\alpha_u$}\\\\ \\hline");

85

System.out.println("\\endfirsthead");

System.out.println("\\multicolumn{6}{c}%");

System.out.println("{{\\bfseries \\tablename\\ \\thetable{} "

+ caption.toString()

+ " (continued from previous page) }} \\\\");

System.out.println("\\hline \\multicolumn{1}{|c|}{u} &");

System.out.println("\\multicolumn{1}{c|}{norm} &");

System.out.println("\\multicolumn{1}{c|}{q_0} &");

System.out.println("\\multicolumn{1}{c|}{q_1} &");

System.out.println("\\multicolumn{1}{c|}{$u ~mod ~\\uptau^w$} &");

System.out.println("\\multicolumn{1}{c|}{$\\alpha_u$}\\\\ \\hline");

System.out.println("\\endhead");

System.out.println("\\hline \\multicolumn{6}{|r|}"

+ "{{Continued on next page}} \\\\ \\hline");

System.out.println("\\endfoot");

System.out.println("\\hline \\hline");

System.out.println("\\endlastfoot");

System.out.println("% Now the regular content :");

for (int u = 1; u <= uUpper; u++) {

//TableRow is simply a convenience data structure

//so that I can sort this information later.

List<TableRow> rows = new ArrayList<>();

//The real work horse section. We pick a range of q values

//that generate norms way outside the range. Not the most

//optimal but we only need to do this once.

for (int q0 = -50; q0 <= 50; q0++)

for (int q1 = -50; q1 <= 50; q1++) {

int betau = t[0] * q0 + (-2 * t[1] * q1) + u;

int gammau = t[1] * q0 + (t[0] + mu * t[1]) * q1;

String nModTauW = "";

Integer[] tnaf = {};

int norm = norm(mu, betau, gammau);

if (norm < tW) {

if (gammau == 0)

nModTauW = Integer.toString(betau);

else if (gammau == 1)

nModTauW = "\\uptau"

+ (betau < 0 ? " - " + -betau : " + "

+ betau);

else if (gammau == -1)

nModTauW = "-\\uptau"

+ (betau < 0 ? " - " + -betau : " + "

+ betau);

else

nModTauW = ""

+ gammau

+ "\\uptau"

+ (betau < 0 ? " - " + -betau : " + "

+ betau);

rows.add(new TableRow(u, norm, q0, q1, nModTauW,

tnaf));

}

}

TableRow[] sortRows = new TableRow[rows.size()];

rows.toArray(sortRows);

Arrays.sort(sortRows);

86

boolean isRow = false;

for (TableRow r : sortRows)

if (r.u % 2 == 1) {

System.out.printf("%3s & %5s & %3s & %3s & $%15s$ & $%s$\\\\\n",

r.u, r.norm, r.q0, r.q1,

r.nModTauW, r.polyTNAF);

isRow = true;

}

if (isRow) {

System.out.println(" & & & & & \\\\");

isRow = false;

}

}

System.out.println("\\end{longtable}");

System.out.println("\\end{footnotesize}");

System.out.println("\\end{center}");

}

}

}

	University of Wisconsin Milwaukee
	UWM Digital Commons
	5-1-2014

	Pre-computation in Width-w τ-adic NAF Implementations on Koblitz Curves
	William Robert Trost
	Recommended Citation

	tmp.1403902443.pdf.9fc4j

